drm/i915: s/intel_ring_buffer/intel_engine_cs
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <linux/vgaarb.h>
34 #include <drm/i915_powerwell.h>
35 #include <linux/pm_runtime.h>
36
37 /**
38 * RC6 is a special power stage which allows the GPU to enter an very
39 * low-voltage mode when idle, using down to 0V while at this stage. This
40 * stage is entered automatically when the GPU is idle when RC6 support is
41 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42 *
43 * There are different RC6 modes available in Intel GPU, which differentiate
44 * among each other with the latency required to enter and leave RC6 and
45 * voltage consumed by the GPU in different states.
46 *
47 * The combination of the following flags define which states GPU is allowed
48 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49 * RC6pp is deepest RC6. Their support by hardware varies according to the
50 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51 * which brings the most power savings; deeper states save more power, but
52 * require higher latency to switch to and wake up.
53 */
54 #define INTEL_RC6_ENABLE (1<<0)
55 #define INTEL_RC6p_ENABLE (1<<1)
56 #define INTEL_RC6pp_ENABLE (1<<2)
57
58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
59 * framebuffer contents in-memory, aiming at reducing the required bandwidth
60 * during in-memory transfers and, therefore, reduce the power packet.
61 *
62 * The benefits of FBC are mostly visible with solid backgrounds and
63 * variation-less patterns.
64 *
65 * FBC-related functionality can be enabled by the means of the
66 * i915.i915_enable_fbc parameter
67 */
68
69 static void i8xx_disable_fbc(struct drm_device *dev)
70 {
71 struct drm_i915_private *dev_priv = dev->dev_private;
72 u32 fbc_ctl;
73
74 /* Disable compression */
75 fbc_ctl = I915_READ(FBC_CONTROL);
76 if ((fbc_ctl & FBC_CTL_EN) == 0)
77 return;
78
79 fbc_ctl &= ~FBC_CTL_EN;
80 I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82 /* Wait for compressing bit to clear */
83 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84 DRM_DEBUG_KMS("FBC idle timed out\n");
85 return;
86 }
87
88 DRM_DEBUG_KMS("disabled FBC\n");
89 }
90
91 static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 {
93 struct drm_device *dev = crtc->dev;
94 struct drm_i915_private *dev_priv = dev->dev_private;
95 struct drm_framebuffer *fb = crtc->primary->fb;
96 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
97 struct drm_i915_gem_object *obj = intel_fb->obj;
98 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
99 int cfb_pitch;
100 int i;
101 u32 fbc_ctl;
102
103 cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
104 if (fb->pitches[0] < cfb_pitch)
105 cfb_pitch = fb->pitches[0];
106
107 /* FBC_CTL wants 32B or 64B units */
108 if (IS_GEN2(dev))
109 cfb_pitch = (cfb_pitch / 32) - 1;
110 else
111 cfb_pitch = (cfb_pitch / 64) - 1;
112
113 /* Clear old tags */
114 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
115 I915_WRITE(FBC_TAG + (i * 4), 0);
116
117 if (IS_GEN4(dev)) {
118 u32 fbc_ctl2;
119
120 /* Set it up... */
121 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
122 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
123 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
124 I915_WRITE(FBC_FENCE_OFF, crtc->y);
125 }
126
127 /* enable it... */
128 fbc_ctl = I915_READ(FBC_CONTROL);
129 fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
130 fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
131 if (IS_I945GM(dev))
132 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
133 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
134 fbc_ctl |= obj->fence_reg;
135 I915_WRITE(FBC_CONTROL, fbc_ctl);
136
137 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
138 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
139 }
140
141 static bool i8xx_fbc_enabled(struct drm_device *dev)
142 {
143 struct drm_i915_private *dev_priv = dev->dev_private;
144
145 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
146 }
147
148 static void g4x_enable_fbc(struct drm_crtc *crtc)
149 {
150 struct drm_device *dev = crtc->dev;
151 struct drm_i915_private *dev_priv = dev->dev_private;
152 struct drm_framebuffer *fb = crtc->primary->fb;
153 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
154 struct drm_i915_gem_object *obj = intel_fb->obj;
155 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
156 u32 dpfc_ctl;
157
158 dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
159 if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
160 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
161 else
162 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
163 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
164
165 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
166
167 /* enable it... */
168 I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
169
170 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
171 }
172
173 static void g4x_disable_fbc(struct drm_device *dev)
174 {
175 struct drm_i915_private *dev_priv = dev->dev_private;
176 u32 dpfc_ctl;
177
178 /* Disable compression */
179 dpfc_ctl = I915_READ(DPFC_CONTROL);
180 if (dpfc_ctl & DPFC_CTL_EN) {
181 dpfc_ctl &= ~DPFC_CTL_EN;
182 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
183
184 DRM_DEBUG_KMS("disabled FBC\n");
185 }
186 }
187
188 static bool g4x_fbc_enabled(struct drm_device *dev)
189 {
190 struct drm_i915_private *dev_priv = dev->dev_private;
191
192 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
193 }
194
195 static void sandybridge_blit_fbc_update(struct drm_device *dev)
196 {
197 struct drm_i915_private *dev_priv = dev->dev_private;
198 u32 blt_ecoskpd;
199
200 /* Make sure blitter notifies FBC of writes */
201
202 /* Blitter is part of Media powerwell on VLV. No impact of
203 * his param in other platforms for now */
204 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
205
206 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
207 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
208 GEN6_BLITTER_LOCK_SHIFT;
209 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
211 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
212 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
213 GEN6_BLITTER_LOCK_SHIFT);
214 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
215 POSTING_READ(GEN6_BLITTER_ECOSKPD);
216
217 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
218 }
219
220 static void ironlake_enable_fbc(struct drm_crtc *crtc)
221 {
222 struct drm_device *dev = crtc->dev;
223 struct drm_i915_private *dev_priv = dev->dev_private;
224 struct drm_framebuffer *fb = crtc->primary->fb;
225 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
226 struct drm_i915_gem_object *obj = intel_fb->obj;
227 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
228 u32 dpfc_ctl;
229
230 dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
231 if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
232 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
233 else
234 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
235 dpfc_ctl |= DPFC_CTL_FENCE_EN;
236 if (IS_GEN5(dev))
237 dpfc_ctl |= obj->fence_reg;
238
239 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
240 I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
241 /* enable it... */
242 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
243
244 if (IS_GEN6(dev)) {
245 I915_WRITE(SNB_DPFC_CTL_SA,
246 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
247 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
248 sandybridge_blit_fbc_update(dev);
249 }
250
251 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
252 }
253
254 static void ironlake_disable_fbc(struct drm_device *dev)
255 {
256 struct drm_i915_private *dev_priv = dev->dev_private;
257 u32 dpfc_ctl;
258
259 /* Disable compression */
260 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
261 if (dpfc_ctl & DPFC_CTL_EN) {
262 dpfc_ctl &= ~DPFC_CTL_EN;
263 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
264
265 DRM_DEBUG_KMS("disabled FBC\n");
266 }
267 }
268
269 static bool ironlake_fbc_enabled(struct drm_device *dev)
270 {
271 struct drm_i915_private *dev_priv = dev->dev_private;
272
273 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
274 }
275
276 static void gen7_enable_fbc(struct drm_crtc *crtc)
277 {
278 struct drm_device *dev = crtc->dev;
279 struct drm_i915_private *dev_priv = dev->dev_private;
280 struct drm_framebuffer *fb = crtc->primary->fb;
281 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
282 struct drm_i915_gem_object *obj = intel_fb->obj;
283 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
284 u32 dpfc_ctl;
285
286 dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
287 if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
288 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
289 else
290 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
291 dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
292
293 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
294
295 if (IS_IVYBRIDGE(dev)) {
296 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
297 I915_WRITE(ILK_DISPLAY_CHICKEN1,
298 I915_READ(ILK_DISPLAY_CHICKEN1) |
299 ILK_FBCQ_DIS);
300 } else {
301 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
302 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
303 I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
304 HSW_FBCQ_DIS);
305 }
306
307 I915_WRITE(SNB_DPFC_CTL_SA,
308 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
309 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
310
311 sandybridge_blit_fbc_update(dev);
312
313 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
314 }
315
316 bool intel_fbc_enabled(struct drm_device *dev)
317 {
318 struct drm_i915_private *dev_priv = dev->dev_private;
319
320 if (!dev_priv->display.fbc_enabled)
321 return false;
322
323 return dev_priv->display.fbc_enabled(dev);
324 }
325
326 static void intel_fbc_work_fn(struct work_struct *__work)
327 {
328 struct intel_fbc_work *work =
329 container_of(to_delayed_work(__work),
330 struct intel_fbc_work, work);
331 struct drm_device *dev = work->crtc->dev;
332 struct drm_i915_private *dev_priv = dev->dev_private;
333
334 mutex_lock(&dev->struct_mutex);
335 if (work == dev_priv->fbc.fbc_work) {
336 /* Double check that we haven't switched fb without cancelling
337 * the prior work.
338 */
339 if (work->crtc->primary->fb == work->fb) {
340 dev_priv->display.enable_fbc(work->crtc);
341
342 dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
343 dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
344 dev_priv->fbc.y = work->crtc->y;
345 }
346
347 dev_priv->fbc.fbc_work = NULL;
348 }
349 mutex_unlock(&dev->struct_mutex);
350
351 kfree(work);
352 }
353
354 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
355 {
356 if (dev_priv->fbc.fbc_work == NULL)
357 return;
358
359 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
360
361 /* Synchronisation is provided by struct_mutex and checking of
362 * dev_priv->fbc.fbc_work, so we can perform the cancellation
363 * entirely asynchronously.
364 */
365 if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
366 /* tasklet was killed before being run, clean up */
367 kfree(dev_priv->fbc.fbc_work);
368
369 /* Mark the work as no longer wanted so that if it does
370 * wake-up (because the work was already running and waiting
371 * for our mutex), it will discover that is no longer
372 * necessary to run.
373 */
374 dev_priv->fbc.fbc_work = NULL;
375 }
376
377 static void intel_enable_fbc(struct drm_crtc *crtc)
378 {
379 struct intel_fbc_work *work;
380 struct drm_device *dev = crtc->dev;
381 struct drm_i915_private *dev_priv = dev->dev_private;
382
383 if (!dev_priv->display.enable_fbc)
384 return;
385
386 intel_cancel_fbc_work(dev_priv);
387
388 work = kzalloc(sizeof(*work), GFP_KERNEL);
389 if (work == NULL) {
390 DRM_ERROR("Failed to allocate FBC work structure\n");
391 dev_priv->display.enable_fbc(crtc);
392 return;
393 }
394
395 work->crtc = crtc;
396 work->fb = crtc->primary->fb;
397 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
398
399 dev_priv->fbc.fbc_work = work;
400
401 /* Delay the actual enabling to let pageflipping cease and the
402 * display to settle before starting the compression. Note that
403 * this delay also serves a second purpose: it allows for a
404 * vblank to pass after disabling the FBC before we attempt
405 * to modify the control registers.
406 *
407 * A more complicated solution would involve tracking vblanks
408 * following the termination of the page-flipping sequence
409 * and indeed performing the enable as a co-routine and not
410 * waiting synchronously upon the vblank.
411 *
412 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
413 */
414 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
415 }
416
417 void intel_disable_fbc(struct drm_device *dev)
418 {
419 struct drm_i915_private *dev_priv = dev->dev_private;
420
421 intel_cancel_fbc_work(dev_priv);
422
423 if (!dev_priv->display.disable_fbc)
424 return;
425
426 dev_priv->display.disable_fbc(dev);
427 dev_priv->fbc.plane = -1;
428 }
429
430 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
431 enum no_fbc_reason reason)
432 {
433 if (dev_priv->fbc.no_fbc_reason == reason)
434 return false;
435
436 dev_priv->fbc.no_fbc_reason = reason;
437 return true;
438 }
439
440 /**
441 * intel_update_fbc - enable/disable FBC as needed
442 * @dev: the drm_device
443 *
444 * Set up the framebuffer compression hardware at mode set time. We
445 * enable it if possible:
446 * - plane A only (on pre-965)
447 * - no pixel mulitply/line duplication
448 * - no alpha buffer discard
449 * - no dual wide
450 * - framebuffer <= max_hdisplay in width, max_vdisplay in height
451 *
452 * We can't assume that any compression will take place (worst case),
453 * so the compressed buffer has to be the same size as the uncompressed
454 * one. It also must reside (along with the line length buffer) in
455 * stolen memory.
456 *
457 * We need to enable/disable FBC on a global basis.
458 */
459 void intel_update_fbc(struct drm_device *dev)
460 {
461 struct drm_i915_private *dev_priv = dev->dev_private;
462 struct drm_crtc *crtc = NULL, *tmp_crtc;
463 struct intel_crtc *intel_crtc;
464 struct drm_framebuffer *fb;
465 struct intel_framebuffer *intel_fb;
466 struct drm_i915_gem_object *obj;
467 const struct drm_display_mode *adjusted_mode;
468 unsigned int max_width, max_height;
469
470 if (!HAS_FBC(dev)) {
471 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
472 return;
473 }
474
475 if (!i915.powersave) {
476 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
477 DRM_DEBUG_KMS("fbc disabled per module param\n");
478 return;
479 }
480
481 /*
482 * If FBC is already on, we just have to verify that we can
483 * keep it that way...
484 * Need to disable if:
485 * - more than one pipe is active
486 * - changing FBC params (stride, fence, mode)
487 * - new fb is too large to fit in compressed buffer
488 * - going to an unsupported config (interlace, pixel multiply, etc.)
489 */
490 for_each_crtc(dev, tmp_crtc) {
491 if (intel_crtc_active(tmp_crtc) &&
492 to_intel_crtc(tmp_crtc)->primary_enabled) {
493 if (crtc) {
494 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
495 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
496 goto out_disable;
497 }
498 crtc = tmp_crtc;
499 }
500 }
501
502 if (!crtc || crtc->primary->fb == NULL) {
503 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
504 DRM_DEBUG_KMS("no output, disabling\n");
505 goto out_disable;
506 }
507
508 intel_crtc = to_intel_crtc(crtc);
509 fb = crtc->primary->fb;
510 intel_fb = to_intel_framebuffer(fb);
511 obj = intel_fb->obj;
512 adjusted_mode = &intel_crtc->config.adjusted_mode;
513
514 if (i915.enable_fbc < 0 &&
515 INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
516 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
517 DRM_DEBUG_KMS("disabled per chip default\n");
518 goto out_disable;
519 }
520 if (!i915.enable_fbc) {
521 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
522 DRM_DEBUG_KMS("fbc disabled per module param\n");
523 goto out_disable;
524 }
525 if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
526 (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
527 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
528 DRM_DEBUG_KMS("mode incompatible with compression, "
529 "disabling\n");
530 goto out_disable;
531 }
532
533 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
534 max_width = 4096;
535 max_height = 2048;
536 } else {
537 max_width = 2048;
538 max_height = 1536;
539 }
540 if (intel_crtc->config.pipe_src_w > max_width ||
541 intel_crtc->config.pipe_src_h > max_height) {
542 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
543 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
544 goto out_disable;
545 }
546 if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
547 intel_crtc->plane != PLANE_A) {
548 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
549 DRM_DEBUG_KMS("plane not A, disabling compression\n");
550 goto out_disable;
551 }
552
553 /* The use of a CPU fence is mandatory in order to detect writes
554 * by the CPU to the scanout and trigger updates to the FBC.
555 */
556 if (obj->tiling_mode != I915_TILING_X ||
557 obj->fence_reg == I915_FENCE_REG_NONE) {
558 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
559 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
560 goto out_disable;
561 }
562
563 /* If the kernel debugger is active, always disable compression */
564 if (in_dbg_master())
565 goto out_disable;
566
567 if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
568 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
569 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
570 goto out_disable;
571 }
572
573 /* If the scanout has not changed, don't modify the FBC settings.
574 * Note that we make the fundamental assumption that the fb->obj
575 * cannot be unpinned (and have its GTT offset and fence revoked)
576 * without first being decoupled from the scanout and FBC disabled.
577 */
578 if (dev_priv->fbc.plane == intel_crtc->plane &&
579 dev_priv->fbc.fb_id == fb->base.id &&
580 dev_priv->fbc.y == crtc->y)
581 return;
582
583 if (intel_fbc_enabled(dev)) {
584 /* We update FBC along two paths, after changing fb/crtc
585 * configuration (modeswitching) and after page-flipping
586 * finishes. For the latter, we know that not only did
587 * we disable the FBC at the start of the page-flip
588 * sequence, but also more than one vblank has passed.
589 *
590 * For the former case of modeswitching, it is possible
591 * to switch between two FBC valid configurations
592 * instantaneously so we do need to disable the FBC
593 * before we can modify its control registers. We also
594 * have to wait for the next vblank for that to take
595 * effect. However, since we delay enabling FBC we can
596 * assume that a vblank has passed since disabling and
597 * that we can safely alter the registers in the deferred
598 * callback.
599 *
600 * In the scenario that we go from a valid to invalid
601 * and then back to valid FBC configuration we have
602 * no strict enforcement that a vblank occurred since
603 * disabling the FBC. However, along all current pipe
604 * disabling paths we do need to wait for a vblank at
605 * some point. And we wait before enabling FBC anyway.
606 */
607 DRM_DEBUG_KMS("disabling active FBC for update\n");
608 intel_disable_fbc(dev);
609 }
610
611 intel_enable_fbc(crtc);
612 dev_priv->fbc.no_fbc_reason = FBC_OK;
613 return;
614
615 out_disable:
616 /* Multiple disables should be harmless */
617 if (intel_fbc_enabled(dev)) {
618 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
619 intel_disable_fbc(dev);
620 }
621 i915_gem_stolen_cleanup_compression(dev);
622 }
623
624 static void i915_pineview_get_mem_freq(struct drm_device *dev)
625 {
626 struct drm_i915_private *dev_priv = dev->dev_private;
627 u32 tmp;
628
629 tmp = I915_READ(CLKCFG);
630
631 switch (tmp & CLKCFG_FSB_MASK) {
632 case CLKCFG_FSB_533:
633 dev_priv->fsb_freq = 533; /* 133*4 */
634 break;
635 case CLKCFG_FSB_800:
636 dev_priv->fsb_freq = 800; /* 200*4 */
637 break;
638 case CLKCFG_FSB_667:
639 dev_priv->fsb_freq = 667; /* 167*4 */
640 break;
641 case CLKCFG_FSB_400:
642 dev_priv->fsb_freq = 400; /* 100*4 */
643 break;
644 }
645
646 switch (tmp & CLKCFG_MEM_MASK) {
647 case CLKCFG_MEM_533:
648 dev_priv->mem_freq = 533;
649 break;
650 case CLKCFG_MEM_667:
651 dev_priv->mem_freq = 667;
652 break;
653 case CLKCFG_MEM_800:
654 dev_priv->mem_freq = 800;
655 break;
656 }
657
658 /* detect pineview DDR3 setting */
659 tmp = I915_READ(CSHRDDR3CTL);
660 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
661 }
662
663 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
664 {
665 struct drm_i915_private *dev_priv = dev->dev_private;
666 u16 ddrpll, csipll;
667
668 ddrpll = I915_READ16(DDRMPLL1);
669 csipll = I915_READ16(CSIPLL0);
670
671 switch (ddrpll & 0xff) {
672 case 0xc:
673 dev_priv->mem_freq = 800;
674 break;
675 case 0x10:
676 dev_priv->mem_freq = 1066;
677 break;
678 case 0x14:
679 dev_priv->mem_freq = 1333;
680 break;
681 case 0x18:
682 dev_priv->mem_freq = 1600;
683 break;
684 default:
685 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
686 ddrpll & 0xff);
687 dev_priv->mem_freq = 0;
688 break;
689 }
690
691 dev_priv->ips.r_t = dev_priv->mem_freq;
692
693 switch (csipll & 0x3ff) {
694 case 0x00c:
695 dev_priv->fsb_freq = 3200;
696 break;
697 case 0x00e:
698 dev_priv->fsb_freq = 3733;
699 break;
700 case 0x010:
701 dev_priv->fsb_freq = 4266;
702 break;
703 case 0x012:
704 dev_priv->fsb_freq = 4800;
705 break;
706 case 0x014:
707 dev_priv->fsb_freq = 5333;
708 break;
709 case 0x016:
710 dev_priv->fsb_freq = 5866;
711 break;
712 case 0x018:
713 dev_priv->fsb_freq = 6400;
714 break;
715 default:
716 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
717 csipll & 0x3ff);
718 dev_priv->fsb_freq = 0;
719 break;
720 }
721
722 if (dev_priv->fsb_freq == 3200) {
723 dev_priv->ips.c_m = 0;
724 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
725 dev_priv->ips.c_m = 1;
726 } else {
727 dev_priv->ips.c_m = 2;
728 }
729 }
730
731 static const struct cxsr_latency cxsr_latency_table[] = {
732 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
733 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
734 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
735 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
736 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
737
738 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
739 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
740 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
741 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
742 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
743
744 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
745 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
746 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
747 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
748 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
749
750 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
751 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
752 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
753 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
754 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
755
756 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
757 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
758 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
759 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
760 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
761
762 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
763 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
764 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
765 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
766 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
767 };
768
769 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
770 int is_ddr3,
771 int fsb,
772 int mem)
773 {
774 const struct cxsr_latency *latency;
775 int i;
776
777 if (fsb == 0 || mem == 0)
778 return NULL;
779
780 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
781 latency = &cxsr_latency_table[i];
782 if (is_desktop == latency->is_desktop &&
783 is_ddr3 == latency->is_ddr3 &&
784 fsb == latency->fsb_freq && mem == latency->mem_freq)
785 return latency;
786 }
787
788 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
789
790 return NULL;
791 }
792
793 static void pineview_disable_cxsr(struct drm_device *dev)
794 {
795 struct drm_i915_private *dev_priv = dev->dev_private;
796
797 /* deactivate cxsr */
798 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
799 }
800
801 /*
802 * Latency for FIFO fetches is dependent on several factors:
803 * - memory configuration (speed, channels)
804 * - chipset
805 * - current MCH state
806 * It can be fairly high in some situations, so here we assume a fairly
807 * pessimal value. It's a tradeoff between extra memory fetches (if we
808 * set this value too high, the FIFO will fetch frequently to stay full)
809 * and power consumption (set it too low to save power and we might see
810 * FIFO underruns and display "flicker").
811 *
812 * A value of 5us seems to be a good balance; safe for very low end
813 * platforms but not overly aggressive on lower latency configs.
814 */
815 static const int latency_ns = 5000;
816
817 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
818 {
819 struct drm_i915_private *dev_priv = dev->dev_private;
820 uint32_t dsparb = I915_READ(DSPARB);
821 int size;
822
823 size = dsparb & 0x7f;
824 if (plane)
825 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
826
827 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
828 plane ? "B" : "A", size);
829
830 return size;
831 }
832
833 static int i830_get_fifo_size(struct drm_device *dev, int plane)
834 {
835 struct drm_i915_private *dev_priv = dev->dev_private;
836 uint32_t dsparb = I915_READ(DSPARB);
837 int size;
838
839 size = dsparb & 0x1ff;
840 if (plane)
841 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
842 size >>= 1; /* Convert to cachelines */
843
844 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
845 plane ? "B" : "A", size);
846
847 return size;
848 }
849
850 static int i845_get_fifo_size(struct drm_device *dev, int plane)
851 {
852 struct drm_i915_private *dev_priv = dev->dev_private;
853 uint32_t dsparb = I915_READ(DSPARB);
854 int size;
855
856 size = dsparb & 0x7f;
857 size >>= 2; /* Convert to cachelines */
858
859 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
860 plane ? "B" : "A",
861 size);
862
863 return size;
864 }
865
866 /* Pineview has different values for various configs */
867 static const struct intel_watermark_params pineview_display_wm = {
868 PINEVIEW_DISPLAY_FIFO,
869 PINEVIEW_MAX_WM,
870 PINEVIEW_DFT_WM,
871 PINEVIEW_GUARD_WM,
872 PINEVIEW_FIFO_LINE_SIZE
873 };
874 static const struct intel_watermark_params pineview_display_hplloff_wm = {
875 PINEVIEW_DISPLAY_FIFO,
876 PINEVIEW_MAX_WM,
877 PINEVIEW_DFT_HPLLOFF_WM,
878 PINEVIEW_GUARD_WM,
879 PINEVIEW_FIFO_LINE_SIZE
880 };
881 static const struct intel_watermark_params pineview_cursor_wm = {
882 PINEVIEW_CURSOR_FIFO,
883 PINEVIEW_CURSOR_MAX_WM,
884 PINEVIEW_CURSOR_DFT_WM,
885 PINEVIEW_CURSOR_GUARD_WM,
886 PINEVIEW_FIFO_LINE_SIZE,
887 };
888 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
889 PINEVIEW_CURSOR_FIFO,
890 PINEVIEW_CURSOR_MAX_WM,
891 PINEVIEW_CURSOR_DFT_WM,
892 PINEVIEW_CURSOR_GUARD_WM,
893 PINEVIEW_FIFO_LINE_SIZE
894 };
895 static const struct intel_watermark_params g4x_wm_info = {
896 G4X_FIFO_SIZE,
897 G4X_MAX_WM,
898 G4X_MAX_WM,
899 2,
900 G4X_FIFO_LINE_SIZE,
901 };
902 static const struct intel_watermark_params g4x_cursor_wm_info = {
903 I965_CURSOR_FIFO,
904 I965_CURSOR_MAX_WM,
905 I965_CURSOR_DFT_WM,
906 2,
907 G4X_FIFO_LINE_SIZE,
908 };
909 static const struct intel_watermark_params valleyview_wm_info = {
910 VALLEYVIEW_FIFO_SIZE,
911 VALLEYVIEW_MAX_WM,
912 VALLEYVIEW_MAX_WM,
913 2,
914 G4X_FIFO_LINE_SIZE,
915 };
916 static const struct intel_watermark_params valleyview_cursor_wm_info = {
917 I965_CURSOR_FIFO,
918 VALLEYVIEW_CURSOR_MAX_WM,
919 I965_CURSOR_DFT_WM,
920 2,
921 G4X_FIFO_LINE_SIZE,
922 };
923 static const struct intel_watermark_params i965_cursor_wm_info = {
924 I965_CURSOR_FIFO,
925 I965_CURSOR_MAX_WM,
926 I965_CURSOR_DFT_WM,
927 2,
928 I915_FIFO_LINE_SIZE,
929 };
930 static const struct intel_watermark_params i945_wm_info = {
931 I945_FIFO_SIZE,
932 I915_MAX_WM,
933 1,
934 2,
935 I915_FIFO_LINE_SIZE
936 };
937 static const struct intel_watermark_params i915_wm_info = {
938 I915_FIFO_SIZE,
939 I915_MAX_WM,
940 1,
941 2,
942 I915_FIFO_LINE_SIZE
943 };
944 static const struct intel_watermark_params i830_wm_info = {
945 I855GM_FIFO_SIZE,
946 I915_MAX_WM,
947 1,
948 2,
949 I830_FIFO_LINE_SIZE
950 };
951 static const struct intel_watermark_params i845_wm_info = {
952 I830_FIFO_SIZE,
953 I915_MAX_WM,
954 1,
955 2,
956 I830_FIFO_LINE_SIZE
957 };
958
959 /**
960 * intel_calculate_wm - calculate watermark level
961 * @clock_in_khz: pixel clock
962 * @wm: chip FIFO params
963 * @pixel_size: display pixel size
964 * @latency_ns: memory latency for the platform
965 *
966 * Calculate the watermark level (the level at which the display plane will
967 * start fetching from memory again). Each chip has a different display
968 * FIFO size and allocation, so the caller needs to figure that out and pass
969 * in the correct intel_watermark_params structure.
970 *
971 * As the pixel clock runs, the FIFO will be drained at a rate that depends
972 * on the pixel size. When it reaches the watermark level, it'll start
973 * fetching FIFO line sized based chunks from memory until the FIFO fills
974 * past the watermark point. If the FIFO drains completely, a FIFO underrun
975 * will occur, and a display engine hang could result.
976 */
977 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
978 const struct intel_watermark_params *wm,
979 int fifo_size,
980 int pixel_size,
981 unsigned long latency_ns)
982 {
983 long entries_required, wm_size;
984
985 /*
986 * Note: we need to make sure we don't overflow for various clock &
987 * latency values.
988 * clocks go from a few thousand to several hundred thousand.
989 * latency is usually a few thousand
990 */
991 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
992 1000;
993 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
994
995 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
996
997 wm_size = fifo_size - (entries_required + wm->guard_size);
998
999 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1000
1001 /* Don't promote wm_size to unsigned... */
1002 if (wm_size > (long)wm->max_wm)
1003 wm_size = wm->max_wm;
1004 if (wm_size <= 0)
1005 wm_size = wm->default_wm;
1006 return wm_size;
1007 }
1008
1009 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1010 {
1011 struct drm_crtc *crtc, *enabled = NULL;
1012
1013 for_each_crtc(dev, crtc) {
1014 if (intel_crtc_active(crtc)) {
1015 if (enabled)
1016 return NULL;
1017 enabled = crtc;
1018 }
1019 }
1020
1021 return enabled;
1022 }
1023
1024 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1025 {
1026 struct drm_device *dev = unused_crtc->dev;
1027 struct drm_i915_private *dev_priv = dev->dev_private;
1028 struct drm_crtc *crtc;
1029 const struct cxsr_latency *latency;
1030 u32 reg;
1031 unsigned long wm;
1032
1033 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1034 dev_priv->fsb_freq, dev_priv->mem_freq);
1035 if (!latency) {
1036 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1037 pineview_disable_cxsr(dev);
1038 return;
1039 }
1040
1041 crtc = single_enabled_crtc(dev);
1042 if (crtc) {
1043 const struct drm_display_mode *adjusted_mode;
1044 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1045 int clock;
1046
1047 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1048 clock = adjusted_mode->crtc_clock;
1049
1050 /* Display SR */
1051 wm = intel_calculate_wm(clock, &pineview_display_wm,
1052 pineview_display_wm.fifo_size,
1053 pixel_size, latency->display_sr);
1054 reg = I915_READ(DSPFW1);
1055 reg &= ~DSPFW_SR_MASK;
1056 reg |= wm << DSPFW_SR_SHIFT;
1057 I915_WRITE(DSPFW1, reg);
1058 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1059
1060 /* cursor SR */
1061 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1062 pineview_display_wm.fifo_size,
1063 pixel_size, latency->cursor_sr);
1064 reg = I915_READ(DSPFW3);
1065 reg &= ~DSPFW_CURSOR_SR_MASK;
1066 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1067 I915_WRITE(DSPFW3, reg);
1068
1069 /* Display HPLL off SR */
1070 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1071 pineview_display_hplloff_wm.fifo_size,
1072 pixel_size, latency->display_hpll_disable);
1073 reg = I915_READ(DSPFW3);
1074 reg &= ~DSPFW_HPLL_SR_MASK;
1075 reg |= wm & DSPFW_HPLL_SR_MASK;
1076 I915_WRITE(DSPFW3, reg);
1077
1078 /* cursor HPLL off SR */
1079 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1080 pineview_display_hplloff_wm.fifo_size,
1081 pixel_size, latency->cursor_hpll_disable);
1082 reg = I915_READ(DSPFW3);
1083 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1084 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1085 I915_WRITE(DSPFW3, reg);
1086 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1087
1088 /* activate cxsr */
1089 I915_WRITE(DSPFW3,
1090 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1091 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1092 } else {
1093 pineview_disable_cxsr(dev);
1094 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1095 }
1096 }
1097
1098 static bool g4x_compute_wm0(struct drm_device *dev,
1099 int plane,
1100 const struct intel_watermark_params *display,
1101 int display_latency_ns,
1102 const struct intel_watermark_params *cursor,
1103 int cursor_latency_ns,
1104 int *plane_wm,
1105 int *cursor_wm)
1106 {
1107 struct drm_crtc *crtc;
1108 const struct drm_display_mode *adjusted_mode;
1109 int htotal, hdisplay, clock, pixel_size;
1110 int line_time_us, line_count;
1111 int entries, tlb_miss;
1112
1113 crtc = intel_get_crtc_for_plane(dev, plane);
1114 if (!intel_crtc_active(crtc)) {
1115 *cursor_wm = cursor->guard_size;
1116 *plane_wm = display->guard_size;
1117 return false;
1118 }
1119
1120 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1121 clock = adjusted_mode->crtc_clock;
1122 htotal = adjusted_mode->crtc_htotal;
1123 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1124 pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1125
1126 /* Use the small buffer method to calculate plane watermark */
1127 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1128 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1129 if (tlb_miss > 0)
1130 entries += tlb_miss;
1131 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1132 *plane_wm = entries + display->guard_size;
1133 if (*plane_wm > (int)display->max_wm)
1134 *plane_wm = display->max_wm;
1135
1136 /* Use the large buffer method to calculate cursor watermark */
1137 line_time_us = max(htotal * 1000 / clock, 1);
1138 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1139 entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1140 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1141 if (tlb_miss > 0)
1142 entries += tlb_miss;
1143 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1144 *cursor_wm = entries + cursor->guard_size;
1145 if (*cursor_wm > (int)cursor->max_wm)
1146 *cursor_wm = (int)cursor->max_wm;
1147
1148 return true;
1149 }
1150
1151 /*
1152 * Check the wm result.
1153 *
1154 * If any calculated watermark values is larger than the maximum value that
1155 * can be programmed into the associated watermark register, that watermark
1156 * must be disabled.
1157 */
1158 static bool g4x_check_srwm(struct drm_device *dev,
1159 int display_wm, int cursor_wm,
1160 const struct intel_watermark_params *display,
1161 const struct intel_watermark_params *cursor)
1162 {
1163 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1164 display_wm, cursor_wm);
1165
1166 if (display_wm > display->max_wm) {
1167 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1168 display_wm, display->max_wm);
1169 return false;
1170 }
1171
1172 if (cursor_wm > cursor->max_wm) {
1173 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1174 cursor_wm, cursor->max_wm);
1175 return false;
1176 }
1177
1178 if (!(display_wm || cursor_wm)) {
1179 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1180 return false;
1181 }
1182
1183 return true;
1184 }
1185
1186 static bool g4x_compute_srwm(struct drm_device *dev,
1187 int plane,
1188 int latency_ns,
1189 const struct intel_watermark_params *display,
1190 const struct intel_watermark_params *cursor,
1191 int *display_wm, int *cursor_wm)
1192 {
1193 struct drm_crtc *crtc;
1194 const struct drm_display_mode *adjusted_mode;
1195 int hdisplay, htotal, pixel_size, clock;
1196 unsigned long line_time_us;
1197 int line_count, line_size;
1198 int small, large;
1199 int entries;
1200
1201 if (!latency_ns) {
1202 *display_wm = *cursor_wm = 0;
1203 return false;
1204 }
1205
1206 crtc = intel_get_crtc_for_plane(dev, plane);
1207 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1208 clock = adjusted_mode->crtc_clock;
1209 htotal = adjusted_mode->crtc_htotal;
1210 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1211 pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1212
1213 line_time_us = max(htotal * 1000 / clock, 1);
1214 line_count = (latency_ns / line_time_us + 1000) / 1000;
1215 line_size = hdisplay * pixel_size;
1216
1217 /* Use the minimum of the small and large buffer method for primary */
1218 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1219 large = line_count * line_size;
1220
1221 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1222 *display_wm = entries + display->guard_size;
1223
1224 /* calculate the self-refresh watermark for display cursor */
1225 entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1226 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1227 *cursor_wm = entries + cursor->guard_size;
1228
1229 return g4x_check_srwm(dev,
1230 *display_wm, *cursor_wm,
1231 display, cursor);
1232 }
1233
1234 static bool vlv_compute_drain_latency(struct drm_device *dev,
1235 int plane,
1236 int *plane_prec_mult,
1237 int *plane_dl,
1238 int *cursor_prec_mult,
1239 int *cursor_dl)
1240 {
1241 struct drm_crtc *crtc;
1242 int clock, pixel_size;
1243 int entries;
1244
1245 crtc = intel_get_crtc_for_plane(dev, plane);
1246 if (!intel_crtc_active(crtc))
1247 return false;
1248
1249 clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1250 pixel_size = crtc->primary->fb->bits_per_pixel / 8; /* BPP */
1251
1252 entries = (clock / 1000) * pixel_size;
1253 *plane_prec_mult = (entries > 256) ?
1254 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1255 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1256 pixel_size);
1257
1258 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1259 *cursor_prec_mult = (entries > 256) ?
1260 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1261 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1262
1263 return true;
1264 }
1265
1266 /*
1267 * Update drain latency registers of memory arbiter
1268 *
1269 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1270 * to be programmed. Each plane has a drain latency multiplier and a drain
1271 * latency value.
1272 */
1273
1274 static void vlv_update_drain_latency(struct drm_device *dev)
1275 {
1276 struct drm_i915_private *dev_priv = dev->dev_private;
1277 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1278 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1279 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1280 either 16 or 32 */
1281
1282 /* For plane A, Cursor A */
1283 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1284 &cursor_prec_mult, &cursora_dl)) {
1285 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1286 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1287 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1288 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1289
1290 I915_WRITE(VLV_DDL1, cursora_prec |
1291 (cursora_dl << DDL_CURSORA_SHIFT) |
1292 planea_prec | planea_dl);
1293 }
1294
1295 /* For plane B, Cursor B */
1296 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1297 &cursor_prec_mult, &cursorb_dl)) {
1298 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1299 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1300 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1301 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1302
1303 I915_WRITE(VLV_DDL2, cursorb_prec |
1304 (cursorb_dl << DDL_CURSORB_SHIFT) |
1305 planeb_prec | planeb_dl);
1306 }
1307 }
1308
1309 #define single_plane_enabled(mask) is_power_of_2(mask)
1310
1311 static void valleyview_update_wm(struct drm_crtc *crtc)
1312 {
1313 struct drm_device *dev = crtc->dev;
1314 static const int sr_latency_ns = 12000;
1315 struct drm_i915_private *dev_priv = dev->dev_private;
1316 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1317 int plane_sr, cursor_sr;
1318 int ignore_plane_sr, ignore_cursor_sr;
1319 unsigned int enabled = 0;
1320
1321 vlv_update_drain_latency(dev);
1322
1323 if (g4x_compute_wm0(dev, PIPE_A,
1324 &valleyview_wm_info, latency_ns,
1325 &valleyview_cursor_wm_info, latency_ns,
1326 &planea_wm, &cursora_wm))
1327 enabled |= 1 << PIPE_A;
1328
1329 if (g4x_compute_wm0(dev, PIPE_B,
1330 &valleyview_wm_info, latency_ns,
1331 &valleyview_cursor_wm_info, latency_ns,
1332 &planeb_wm, &cursorb_wm))
1333 enabled |= 1 << PIPE_B;
1334
1335 if (single_plane_enabled(enabled) &&
1336 g4x_compute_srwm(dev, ffs(enabled) - 1,
1337 sr_latency_ns,
1338 &valleyview_wm_info,
1339 &valleyview_cursor_wm_info,
1340 &plane_sr, &ignore_cursor_sr) &&
1341 g4x_compute_srwm(dev, ffs(enabled) - 1,
1342 2*sr_latency_ns,
1343 &valleyview_wm_info,
1344 &valleyview_cursor_wm_info,
1345 &ignore_plane_sr, &cursor_sr)) {
1346 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1347 } else {
1348 I915_WRITE(FW_BLC_SELF_VLV,
1349 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1350 plane_sr = cursor_sr = 0;
1351 }
1352
1353 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1354 planea_wm, cursora_wm,
1355 planeb_wm, cursorb_wm,
1356 plane_sr, cursor_sr);
1357
1358 I915_WRITE(DSPFW1,
1359 (plane_sr << DSPFW_SR_SHIFT) |
1360 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1361 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1362 planea_wm);
1363 I915_WRITE(DSPFW2,
1364 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1365 (cursora_wm << DSPFW_CURSORA_SHIFT));
1366 I915_WRITE(DSPFW3,
1367 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1368 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1369 }
1370
1371 static void g4x_update_wm(struct drm_crtc *crtc)
1372 {
1373 struct drm_device *dev = crtc->dev;
1374 static const int sr_latency_ns = 12000;
1375 struct drm_i915_private *dev_priv = dev->dev_private;
1376 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1377 int plane_sr, cursor_sr;
1378 unsigned int enabled = 0;
1379
1380 if (g4x_compute_wm0(dev, PIPE_A,
1381 &g4x_wm_info, latency_ns,
1382 &g4x_cursor_wm_info, latency_ns,
1383 &planea_wm, &cursora_wm))
1384 enabled |= 1 << PIPE_A;
1385
1386 if (g4x_compute_wm0(dev, PIPE_B,
1387 &g4x_wm_info, latency_ns,
1388 &g4x_cursor_wm_info, latency_ns,
1389 &planeb_wm, &cursorb_wm))
1390 enabled |= 1 << PIPE_B;
1391
1392 if (single_plane_enabled(enabled) &&
1393 g4x_compute_srwm(dev, ffs(enabled) - 1,
1394 sr_latency_ns,
1395 &g4x_wm_info,
1396 &g4x_cursor_wm_info,
1397 &plane_sr, &cursor_sr)) {
1398 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1399 } else {
1400 I915_WRITE(FW_BLC_SELF,
1401 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1402 plane_sr = cursor_sr = 0;
1403 }
1404
1405 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1406 planea_wm, cursora_wm,
1407 planeb_wm, cursorb_wm,
1408 plane_sr, cursor_sr);
1409
1410 I915_WRITE(DSPFW1,
1411 (plane_sr << DSPFW_SR_SHIFT) |
1412 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1413 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1414 planea_wm);
1415 I915_WRITE(DSPFW2,
1416 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1417 (cursora_wm << DSPFW_CURSORA_SHIFT));
1418 /* HPLL off in SR has some issues on G4x... disable it */
1419 I915_WRITE(DSPFW3,
1420 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1421 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1422 }
1423
1424 static void i965_update_wm(struct drm_crtc *unused_crtc)
1425 {
1426 struct drm_device *dev = unused_crtc->dev;
1427 struct drm_i915_private *dev_priv = dev->dev_private;
1428 struct drm_crtc *crtc;
1429 int srwm = 1;
1430 int cursor_sr = 16;
1431
1432 /* Calc sr entries for one plane configs */
1433 crtc = single_enabled_crtc(dev);
1434 if (crtc) {
1435 /* self-refresh has much higher latency */
1436 static const int sr_latency_ns = 12000;
1437 const struct drm_display_mode *adjusted_mode =
1438 &to_intel_crtc(crtc)->config.adjusted_mode;
1439 int clock = adjusted_mode->crtc_clock;
1440 int htotal = adjusted_mode->crtc_htotal;
1441 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1442 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1443 unsigned long line_time_us;
1444 int entries;
1445
1446 line_time_us = max(htotal * 1000 / clock, 1);
1447
1448 /* Use ns/us then divide to preserve precision */
1449 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1450 pixel_size * hdisplay;
1451 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1452 srwm = I965_FIFO_SIZE - entries;
1453 if (srwm < 0)
1454 srwm = 1;
1455 srwm &= 0x1ff;
1456 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1457 entries, srwm);
1458
1459 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1460 pixel_size * to_intel_crtc(crtc)->cursor_width;
1461 entries = DIV_ROUND_UP(entries,
1462 i965_cursor_wm_info.cacheline_size);
1463 cursor_sr = i965_cursor_wm_info.fifo_size -
1464 (entries + i965_cursor_wm_info.guard_size);
1465
1466 if (cursor_sr > i965_cursor_wm_info.max_wm)
1467 cursor_sr = i965_cursor_wm_info.max_wm;
1468
1469 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1470 "cursor %d\n", srwm, cursor_sr);
1471
1472 if (IS_CRESTLINE(dev))
1473 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1474 } else {
1475 /* Turn off self refresh if both pipes are enabled */
1476 if (IS_CRESTLINE(dev))
1477 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1478 & ~FW_BLC_SELF_EN);
1479 }
1480
1481 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1482 srwm);
1483
1484 /* 965 has limitations... */
1485 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1486 (8 << 16) | (8 << 8) | (8 << 0));
1487 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1488 /* update cursor SR watermark */
1489 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1490 }
1491
1492 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1493 {
1494 struct drm_device *dev = unused_crtc->dev;
1495 struct drm_i915_private *dev_priv = dev->dev_private;
1496 const struct intel_watermark_params *wm_info;
1497 uint32_t fwater_lo;
1498 uint32_t fwater_hi;
1499 int cwm, srwm = 1;
1500 int fifo_size;
1501 int planea_wm, planeb_wm;
1502 struct drm_crtc *crtc, *enabled = NULL;
1503
1504 if (IS_I945GM(dev))
1505 wm_info = &i945_wm_info;
1506 else if (!IS_GEN2(dev))
1507 wm_info = &i915_wm_info;
1508 else
1509 wm_info = &i830_wm_info;
1510
1511 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1512 crtc = intel_get_crtc_for_plane(dev, 0);
1513 if (intel_crtc_active(crtc)) {
1514 const struct drm_display_mode *adjusted_mode;
1515 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1516 if (IS_GEN2(dev))
1517 cpp = 4;
1518
1519 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1520 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1521 wm_info, fifo_size, cpp,
1522 latency_ns);
1523 enabled = crtc;
1524 } else
1525 planea_wm = fifo_size - wm_info->guard_size;
1526
1527 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1528 crtc = intel_get_crtc_for_plane(dev, 1);
1529 if (intel_crtc_active(crtc)) {
1530 const struct drm_display_mode *adjusted_mode;
1531 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1532 if (IS_GEN2(dev))
1533 cpp = 4;
1534
1535 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1536 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1537 wm_info, fifo_size, cpp,
1538 latency_ns);
1539 if (enabled == NULL)
1540 enabled = crtc;
1541 else
1542 enabled = NULL;
1543 } else
1544 planeb_wm = fifo_size - wm_info->guard_size;
1545
1546 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1547
1548 if (IS_I915GM(dev) && enabled) {
1549 struct intel_framebuffer *fb;
1550
1551 fb = to_intel_framebuffer(enabled->primary->fb);
1552
1553 /* self-refresh seems busted with untiled */
1554 if (fb->obj->tiling_mode == I915_TILING_NONE)
1555 enabled = NULL;
1556 }
1557
1558 /*
1559 * Overlay gets an aggressive default since video jitter is bad.
1560 */
1561 cwm = 2;
1562
1563 /* Play safe and disable self-refresh before adjusting watermarks. */
1564 if (IS_I945G(dev) || IS_I945GM(dev))
1565 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1566 else if (IS_I915GM(dev))
1567 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
1568
1569 /* Calc sr entries for one plane configs */
1570 if (HAS_FW_BLC(dev) && enabled) {
1571 /* self-refresh has much higher latency */
1572 static const int sr_latency_ns = 6000;
1573 const struct drm_display_mode *adjusted_mode =
1574 &to_intel_crtc(enabled)->config.adjusted_mode;
1575 int clock = adjusted_mode->crtc_clock;
1576 int htotal = adjusted_mode->crtc_htotal;
1577 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1578 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1579 unsigned long line_time_us;
1580 int entries;
1581
1582 line_time_us = max(htotal * 1000 / clock, 1);
1583
1584 /* Use ns/us then divide to preserve precision */
1585 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1586 pixel_size * hdisplay;
1587 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1588 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1589 srwm = wm_info->fifo_size - entries;
1590 if (srwm < 0)
1591 srwm = 1;
1592
1593 if (IS_I945G(dev) || IS_I945GM(dev))
1594 I915_WRITE(FW_BLC_SELF,
1595 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1596 else if (IS_I915GM(dev))
1597 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1598 }
1599
1600 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1601 planea_wm, planeb_wm, cwm, srwm);
1602
1603 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1604 fwater_hi = (cwm & 0x1f);
1605
1606 /* Set request length to 8 cachelines per fetch */
1607 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1608 fwater_hi = fwater_hi | (1 << 8);
1609
1610 I915_WRITE(FW_BLC, fwater_lo);
1611 I915_WRITE(FW_BLC2, fwater_hi);
1612
1613 if (HAS_FW_BLC(dev)) {
1614 if (enabled) {
1615 if (IS_I945G(dev) || IS_I945GM(dev))
1616 I915_WRITE(FW_BLC_SELF,
1617 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1618 else if (IS_I915GM(dev))
1619 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
1620 DRM_DEBUG_KMS("memory self refresh enabled\n");
1621 } else
1622 DRM_DEBUG_KMS("memory self refresh disabled\n");
1623 }
1624 }
1625
1626 static void i845_update_wm(struct drm_crtc *unused_crtc)
1627 {
1628 struct drm_device *dev = unused_crtc->dev;
1629 struct drm_i915_private *dev_priv = dev->dev_private;
1630 struct drm_crtc *crtc;
1631 const struct drm_display_mode *adjusted_mode;
1632 uint32_t fwater_lo;
1633 int planea_wm;
1634
1635 crtc = single_enabled_crtc(dev);
1636 if (crtc == NULL)
1637 return;
1638
1639 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1640 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1641 &i845_wm_info,
1642 dev_priv->display.get_fifo_size(dev, 0),
1643 4, latency_ns);
1644 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1645 fwater_lo |= (3<<8) | planea_wm;
1646
1647 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1648
1649 I915_WRITE(FW_BLC, fwater_lo);
1650 }
1651
1652 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1653 struct drm_crtc *crtc)
1654 {
1655 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1656 uint32_t pixel_rate;
1657
1658 pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1659
1660 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1661 * adjust the pixel_rate here. */
1662
1663 if (intel_crtc->config.pch_pfit.enabled) {
1664 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1665 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1666
1667 pipe_w = intel_crtc->config.pipe_src_w;
1668 pipe_h = intel_crtc->config.pipe_src_h;
1669 pfit_w = (pfit_size >> 16) & 0xFFFF;
1670 pfit_h = pfit_size & 0xFFFF;
1671 if (pipe_w < pfit_w)
1672 pipe_w = pfit_w;
1673 if (pipe_h < pfit_h)
1674 pipe_h = pfit_h;
1675
1676 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1677 pfit_w * pfit_h);
1678 }
1679
1680 return pixel_rate;
1681 }
1682
1683 /* latency must be in 0.1us units. */
1684 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1685 uint32_t latency)
1686 {
1687 uint64_t ret;
1688
1689 if (WARN(latency == 0, "Latency value missing\n"))
1690 return UINT_MAX;
1691
1692 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1693 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1694
1695 return ret;
1696 }
1697
1698 /* latency must be in 0.1us units. */
1699 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1700 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1701 uint32_t latency)
1702 {
1703 uint32_t ret;
1704
1705 if (WARN(latency == 0, "Latency value missing\n"))
1706 return UINT_MAX;
1707
1708 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1709 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1710 ret = DIV_ROUND_UP(ret, 64) + 2;
1711 return ret;
1712 }
1713
1714 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1715 uint8_t bytes_per_pixel)
1716 {
1717 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1718 }
1719
1720 struct ilk_pipe_wm_parameters {
1721 bool active;
1722 uint32_t pipe_htotal;
1723 uint32_t pixel_rate;
1724 struct intel_plane_wm_parameters pri;
1725 struct intel_plane_wm_parameters spr;
1726 struct intel_plane_wm_parameters cur;
1727 };
1728
1729 struct ilk_wm_maximums {
1730 uint16_t pri;
1731 uint16_t spr;
1732 uint16_t cur;
1733 uint16_t fbc;
1734 };
1735
1736 /* used in computing the new watermarks state */
1737 struct intel_wm_config {
1738 unsigned int num_pipes_active;
1739 bool sprites_enabled;
1740 bool sprites_scaled;
1741 };
1742
1743 /*
1744 * For both WM_PIPE and WM_LP.
1745 * mem_value must be in 0.1us units.
1746 */
1747 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1748 uint32_t mem_value,
1749 bool is_lp)
1750 {
1751 uint32_t method1, method2;
1752
1753 if (!params->active || !params->pri.enabled)
1754 return 0;
1755
1756 method1 = ilk_wm_method1(params->pixel_rate,
1757 params->pri.bytes_per_pixel,
1758 mem_value);
1759
1760 if (!is_lp)
1761 return method1;
1762
1763 method2 = ilk_wm_method2(params->pixel_rate,
1764 params->pipe_htotal,
1765 params->pri.horiz_pixels,
1766 params->pri.bytes_per_pixel,
1767 mem_value);
1768
1769 return min(method1, method2);
1770 }
1771
1772 /*
1773 * For both WM_PIPE and WM_LP.
1774 * mem_value must be in 0.1us units.
1775 */
1776 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1777 uint32_t mem_value)
1778 {
1779 uint32_t method1, method2;
1780
1781 if (!params->active || !params->spr.enabled)
1782 return 0;
1783
1784 method1 = ilk_wm_method1(params->pixel_rate,
1785 params->spr.bytes_per_pixel,
1786 mem_value);
1787 method2 = ilk_wm_method2(params->pixel_rate,
1788 params->pipe_htotal,
1789 params->spr.horiz_pixels,
1790 params->spr.bytes_per_pixel,
1791 mem_value);
1792 return min(method1, method2);
1793 }
1794
1795 /*
1796 * For both WM_PIPE and WM_LP.
1797 * mem_value must be in 0.1us units.
1798 */
1799 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1800 uint32_t mem_value)
1801 {
1802 if (!params->active || !params->cur.enabled)
1803 return 0;
1804
1805 return ilk_wm_method2(params->pixel_rate,
1806 params->pipe_htotal,
1807 params->cur.horiz_pixels,
1808 params->cur.bytes_per_pixel,
1809 mem_value);
1810 }
1811
1812 /* Only for WM_LP. */
1813 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1814 uint32_t pri_val)
1815 {
1816 if (!params->active || !params->pri.enabled)
1817 return 0;
1818
1819 return ilk_wm_fbc(pri_val,
1820 params->pri.horiz_pixels,
1821 params->pri.bytes_per_pixel);
1822 }
1823
1824 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1825 {
1826 if (INTEL_INFO(dev)->gen >= 8)
1827 return 3072;
1828 else if (INTEL_INFO(dev)->gen >= 7)
1829 return 768;
1830 else
1831 return 512;
1832 }
1833
1834 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1835 int level, bool is_sprite)
1836 {
1837 if (INTEL_INFO(dev)->gen >= 8)
1838 /* BDW primary/sprite plane watermarks */
1839 return level == 0 ? 255 : 2047;
1840 else if (INTEL_INFO(dev)->gen >= 7)
1841 /* IVB/HSW primary/sprite plane watermarks */
1842 return level == 0 ? 127 : 1023;
1843 else if (!is_sprite)
1844 /* ILK/SNB primary plane watermarks */
1845 return level == 0 ? 127 : 511;
1846 else
1847 /* ILK/SNB sprite plane watermarks */
1848 return level == 0 ? 63 : 255;
1849 }
1850
1851 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1852 int level)
1853 {
1854 if (INTEL_INFO(dev)->gen >= 7)
1855 return level == 0 ? 63 : 255;
1856 else
1857 return level == 0 ? 31 : 63;
1858 }
1859
1860 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1861 {
1862 if (INTEL_INFO(dev)->gen >= 8)
1863 return 31;
1864 else
1865 return 15;
1866 }
1867
1868 /* Calculate the maximum primary/sprite plane watermark */
1869 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1870 int level,
1871 const struct intel_wm_config *config,
1872 enum intel_ddb_partitioning ddb_partitioning,
1873 bool is_sprite)
1874 {
1875 unsigned int fifo_size = ilk_display_fifo_size(dev);
1876
1877 /* if sprites aren't enabled, sprites get nothing */
1878 if (is_sprite && !config->sprites_enabled)
1879 return 0;
1880
1881 /* HSW allows LP1+ watermarks even with multiple pipes */
1882 if (level == 0 || config->num_pipes_active > 1) {
1883 fifo_size /= INTEL_INFO(dev)->num_pipes;
1884
1885 /*
1886 * For some reason the non self refresh
1887 * FIFO size is only half of the self
1888 * refresh FIFO size on ILK/SNB.
1889 */
1890 if (INTEL_INFO(dev)->gen <= 6)
1891 fifo_size /= 2;
1892 }
1893
1894 if (config->sprites_enabled) {
1895 /* level 0 is always calculated with 1:1 split */
1896 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1897 if (is_sprite)
1898 fifo_size *= 5;
1899 fifo_size /= 6;
1900 } else {
1901 fifo_size /= 2;
1902 }
1903 }
1904
1905 /* clamp to max that the registers can hold */
1906 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1907 }
1908
1909 /* Calculate the maximum cursor plane watermark */
1910 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1911 int level,
1912 const struct intel_wm_config *config)
1913 {
1914 /* HSW LP1+ watermarks w/ multiple pipes */
1915 if (level > 0 && config->num_pipes_active > 1)
1916 return 64;
1917
1918 /* otherwise just report max that registers can hold */
1919 return ilk_cursor_wm_reg_max(dev, level);
1920 }
1921
1922 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1923 int level,
1924 const struct intel_wm_config *config,
1925 enum intel_ddb_partitioning ddb_partitioning,
1926 struct ilk_wm_maximums *max)
1927 {
1928 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1929 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1930 max->cur = ilk_cursor_wm_max(dev, level, config);
1931 max->fbc = ilk_fbc_wm_reg_max(dev);
1932 }
1933
1934 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1935 int level,
1936 struct ilk_wm_maximums *max)
1937 {
1938 max->pri = ilk_plane_wm_reg_max(dev, level, false);
1939 max->spr = ilk_plane_wm_reg_max(dev, level, true);
1940 max->cur = ilk_cursor_wm_reg_max(dev, level);
1941 max->fbc = ilk_fbc_wm_reg_max(dev);
1942 }
1943
1944 static bool ilk_validate_wm_level(int level,
1945 const struct ilk_wm_maximums *max,
1946 struct intel_wm_level *result)
1947 {
1948 bool ret;
1949
1950 /* already determined to be invalid? */
1951 if (!result->enable)
1952 return false;
1953
1954 result->enable = result->pri_val <= max->pri &&
1955 result->spr_val <= max->spr &&
1956 result->cur_val <= max->cur;
1957
1958 ret = result->enable;
1959
1960 /*
1961 * HACK until we can pre-compute everything,
1962 * and thus fail gracefully if LP0 watermarks
1963 * are exceeded...
1964 */
1965 if (level == 0 && !result->enable) {
1966 if (result->pri_val > max->pri)
1967 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1968 level, result->pri_val, max->pri);
1969 if (result->spr_val > max->spr)
1970 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1971 level, result->spr_val, max->spr);
1972 if (result->cur_val > max->cur)
1973 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1974 level, result->cur_val, max->cur);
1975
1976 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1977 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1978 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1979 result->enable = true;
1980 }
1981
1982 return ret;
1983 }
1984
1985 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1986 int level,
1987 const struct ilk_pipe_wm_parameters *p,
1988 struct intel_wm_level *result)
1989 {
1990 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1991 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1992 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1993
1994 /* WM1+ latency values stored in 0.5us units */
1995 if (level > 0) {
1996 pri_latency *= 5;
1997 spr_latency *= 5;
1998 cur_latency *= 5;
1999 }
2000
2001 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2002 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2003 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2004 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2005 result->enable = true;
2006 }
2007
2008 static uint32_t
2009 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2010 {
2011 struct drm_i915_private *dev_priv = dev->dev_private;
2012 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2013 struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2014 u32 linetime, ips_linetime;
2015
2016 if (!intel_crtc_active(crtc))
2017 return 0;
2018
2019 /* The WM are computed with base on how long it takes to fill a single
2020 * row at the given clock rate, multiplied by 8.
2021 * */
2022 linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2023 mode->crtc_clock);
2024 ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2025 intel_ddi_get_cdclk_freq(dev_priv));
2026
2027 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2028 PIPE_WM_LINETIME_TIME(linetime);
2029 }
2030
2031 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2032 {
2033 struct drm_i915_private *dev_priv = dev->dev_private;
2034
2035 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2036 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2037
2038 wm[0] = (sskpd >> 56) & 0xFF;
2039 if (wm[0] == 0)
2040 wm[0] = sskpd & 0xF;
2041 wm[1] = (sskpd >> 4) & 0xFF;
2042 wm[2] = (sskpd >> 12) & 0xFF;
2043 wm[3] = (sskpd >> 20) & 0x1FF;
2044 wm[4] = (sskpd >> 32) & 0x1FF;
2045 } else if (INTEL_INFO(dev)->gen >= 6) {
2046 uint32_t sskpd = I915_READ(MCH_SSKPD);
2047
2048 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2049 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2050 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2051 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2052 } else if (INTEL_INFO(dev)->gen >= 5) {
2053 uint32_t mltr = I915_READ(MLTR_ILK);
2054
2055 /* ILK primary LP0 latency is 700 ns */
2056 wm[0] = 7;
2057 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2058 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2059 }
2060 }
2061
2062 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2063 {
2064 /* ILK sprite LP0 latency is 1300 ns */
2065 if (INTEL_INFO(dev)->gen == 5)
2066 wm[0] = 13;
2067 }
2068
2069 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2070 {
2071 /* ILK cursor LP0 latency is 1300 ns */
2072 if (INTEL_INFO(dev)->gen == 5)
2073 wm[0] = 13;
2074
2075 /* WaDoubleCursorLP3Latency:ivb */
2076 if (IS_IVYBRIDGE(dev))
2077 wm[3] *= 2;
2078 }
2079
2080 int ilk_wm_max_level(const struct drm_device *dev)
2081 {
2082 /* how many WM levels are we expecting */
2083 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2084 return 4;
2085 else if (INTEL_INFO(dev)->gen >= 6)
2086 return 3;
2087 else
2088 return 2;
2089 }
2090
2091 static void intel_print_wm_latency(struct drm_device *dev,
2092 const char *name,
2093 const uint16_t wm[5])
2094 {
2095 int level, max_level = ilk_wm_max_level(dev);
2096
2097 for (level = 0; level <= max_level; level++) {
2098 unsigned int latency = wm[level];
2099
2100 if (latency == 0) {
2101 DRM_ERROR("%s WM%d latency not provided\n",
2102 name, level);
2103 continue;
2104 }
2105
2106 /* WM1+ latency values in 0.5us units */
2107 if (level > 0)
2108 latency *= 5;
2109
2110 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2111 name, level, wm[level],
2112 latency / 10, latency % 10);
2113 }
2114 }
2115
2116 static void ilk_setup_wm_latency(struct drm_device *dev)
2117 {
2118 struct drm_i915_private *dev_priv = dev->dev_private;
2119
2120 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2121
2122 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2123 sizeof(dev_priv->wm.pri_latency));
2124 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2125 sizeof(dev_priv->wm.pri_latency));
2126
2127 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2128 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2129
2130 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2131 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2132 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2133 }
2134
2135 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2136 struct ilk_pipe_wm_parameters *p)
2137 {
2138 struct drm_device *dev = crtc->dev;
2139 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2140 enum pipe pipe = intel_crtc->pipe;
2141 struct drm_plane *plane;
2142
2143 if (!intel_crtc_active(crtc))
2144 return;
2145
2146 p->active = true;
2147 p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2148 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2149 p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2150 p->cur.bytes_per_pixel = 4;
2151 p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2152 p->cur.horiz_pixels = intel_crtc->cursor_width;
2153 /* TODO: for now, assume primary and cursor planes are always enabled. */
2154 p->pri.enabled = true;
2155 p->cur.enabled = true;
2156
2157 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2158 struct intel_plane *intel_plane = to_intel_plane(plane);
2159
2160 if (intel_plane->pipe == pipe) {
2161 p->spr = intel_plane->wm;
2162 break;
2163 }
2164 }
2165 }
2166
2167 static void ilk_compute_wm_config(struct drm_device *dev,
2168 struct intel_wm_config *config)
2169 {
2170 struct intel_crtc *intel_crtc;
2171
2172 /* Compute the currently _active_ config */
2173 for_each_intel_crtc(dev, intel_crtc) {
2174 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2175
2176 if (!wm->pipe_enabled)
2177 continue;
2178
2179 config->sprites_enabled |= wm->sprites_enabled;
2180 config->sprites_scaled |= wm->sprites_scaled;
2181 config->num_pipes_active++;
2182 }
2183 }
2184
2185 /* Compute new watermarks for the pipe */
2186 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2187 const struct ilk_pipe_wm_parameters *params,
2188 struct intel_pipe_wm *pipe_wm)
2189 {
2190 struct drm_device *dev = crtc->dev;
2191 const struct drm_i915_private *dev_priv = dev->dev_private;
2192 int level, max_level = ilk_wm_max_level(dev);
2193 /* LP0 watermark maximums depend on this pipe alone */
2194 struct intel_wm_config config = {
2195 .num_pipes_active = 1,
2196 .sprites_enabled = params->spr.enabled,
2197 .sprites_scaled = params->spr.scaled,
2198 };
2199 struct ilk_wm_maximums max;
2200
2201 pipe_wm->pipe_enabled = params->active;
2202 pipe_wm->sprites_enabled = params->spr.enabled;
2203 pipe_wm->sprites_scaled = params->spr.scaled;
2204
2205 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2206 if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2207 max_level = 1;
2208
2209 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2210 if (params->spr.scaled)
2211 max_level = 0;
2212
2213 ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2214
2215 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2216 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2217
2218 /* LP0 watermarks always use 1/2 DDB partitioning */
2219 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2220
2221 /* At least LP0 must be valid */
2222 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2223 return false;
2224
2225 ilk_compute_wm_reg_maximums(dev, 1, &max);
2226
2227 for (level = 1; level <= max_level; level++) {
2228 struct intel_wm_level wm = {};
2229
2230 ilk_compute_wm_level(dev_priv, level, params, &wm);
2231
2232 /*
2233 * Disable any watermark level that exceeds the
2234 * register maximums since such watermarks are
2235 * always invalid.
2236 */
2237 if (!ilk_validate_wm_level(level, &max, &wm))
2238 break;
2239
2240 pipe_wm->wm[level] = wm;
2241 }
2242
2243 return true;
2244 }
2245
2246 /*
2247 * Merge the watermarks from all active pipes for a specific level.
2248 */
2249 static void ilk_merge_wm_level(struct drm_device *dev,
2250 int level,
2251 struct intel_wm_level *ret_wm)
2252 {
2253 const struct intel_crtc *intel_crtc;
2254
2255 ret_wm->enable = true;
2256
2257 for_each_intel_crtc(dev, intel_crtc) {
2258 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2259 const struct intel_wm_level *wm = &active->wm[level];
2260
2261 if (!active->pipe_enabled)
2262 continue;
2263
2264 /*
2265 * The watermark values may have been used in the past,
2266 * so we must maintain them in the registers for some
2267 * time even if the level is now disabled.
2268 */
2269 if (!wm->enable)
2270 ret_wm->enable = false;
2271
2272 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2273 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2274 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2275 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2276 }
2277 }
2278
2279 /*
2280 * Merge all low power watermarks for all active pipes.
2281 */
2282 static void ilk_wm_merge(struct drm_device *dev,
2283 const struct intel_wm_config *config,
2284 const struct ilk_wm_maximums *max,
2285 struct intel_pipe_wm *merged)
2286 {
2287 int level, max_level = ilk_wm_max_level(dev);
2288 int last_enabled_level = max_level;
2289
2290 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2291 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2292 config->num_pipes_active > 1)
2293 return;
2294
2295 /* ILK: FBC WM must be disabled always */
2296 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2297
2298 /* merge each WM1+ level */
2299 for (level = 1; level <= max_level; level++) {
2300 struct intel_wm_level *wm = &merged->wm[level];
2301
2302 ilk_merge_wm_level(dev, level, wm);
2303
2304 if (level > last_enabled_level)
2305 wm->enable = false;
2306 else if (!ilk_validate_wm_level(level, max, wm))
2307 /* make sure all following levels get disabled */
2308 last_enabled_level = level - 1;
2309
2310 /*
2311 * The spec says it is preferred to disable
2312 * FBC WMs instead of disabling a WM level.
2313 */
2314 if (wm->fbc_val > max->fbc) {
2315 if (wm->enable)
2316 merged->fbc_wm_enabled = false;
2317 wm->fbc_val = 0;
2318 }
2319 }
2320
2321 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2322 /*
2323 * FIXME this is racy. FBC might get enabled later.
2324 * What we should check here is whether FBC can be
2325 * enabled sometime later.
2326 */
2327 if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2328 for (level = 2; level <= max_level; level++) {
2329 struct intel_wm_level *wm = &merged->wm[level];
2330
2331 wm->enable = false;
2332 }
2333 }
2334 }
2335
2336 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2337 {
2338 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2339 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2340 }
2341
2342 /* The value we need to program into the WM_LPx latency field */
2343 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2344 {
2345 struct drm_i915_private *dev_priv = dev->dev_private;
2346
2347 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2348 return 2 * level;
2349 else
2350 return dev_priv->wm.pri_latency[level];
2351 }
2352
2353 static void ilk_compute_wm_results(struct drm_device *dev,
2354 const struct intel_pipe_wm *merged,
2355 enum intel_ddb_partitioning partitioning,
2356 struct ilk_wm_values *results)
2357 {
2358 struct intel_crtc *intel_crtc;
2359 int level, wm_lp;
2360
2361 results->enable_fbc_wm = merged->fbc_wm_enabled;
2362 results->partitioning = partitioning;
2363
2364 /* LP1+ register values */
2365 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2366 const struct intel_wm_level *r;
2367
2368 level = ilk_wm_lp_to_level(wm_lp, merged);
2369
2370 r = &merged->wm[level];
2371
2372 /*
2373 * Maintain the watermark values even if the level is
2374 * disabled. Doing otherwise could cause underruns.
2375 */
2376 results->wm_lp[wm_lp - 1] =
2377 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2378 (r->pri_val << WM1_LP_SR_SHIFT) |
2379 r->cur_val;
2380
2381 if (r->enable)
2382 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2383
2384 if (INTEL_INFO(dev)->gen >= 8)
2385 results->wm_lp[wm_lp - 1] |=
2386 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2387 else
2388 results->wm_lp[wm_lp - 1] |=
2389 r->fbc_val << WM1_LP_FBC_SHIFT;
2390
2391 /*
2392 * Always set WM1S_LP_EN when spr_val != 0, even if the
2393 * level is disabled. Doing otherwise could cause underruns.
2394 */
2395 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2396 WARN_ON(wm_lp != 1);
2397 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2398 } else
2399 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2400 }
2401
2402 /* LP0 register values */
2403 for_each_intel_crtc(dev, intel_crtc) {
2404 enum pipe pipe = intel_crtc->pipe;
2405 const struct intel_wm_level *r =
2406 &intel_crtc->wm.active.wm[0];
2407
2408 if (WARN_ON(!r->enable))
2409 continue;
2410
2411 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2412
2413 results->wm_pipe[pipe] =
2414 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2415 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2416 r->cur_val;
2417 }
2418 }
2419
2420 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2421 * case both are at the same level. Prefer r1 in case they're the same. */
2422 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2423 struct intel_pipe_wm *r1,
2424 struct intel_pipe_wm *r2)
2425 {
2426 int level, max_level = ilk_wm_max_level(dev);
2427 int level1 = 0, level2 = 0;
2428
2429 for (level = 1; level <= max_level; level++) {
2430 if (r1->wm[level].enable)
2431 level1 = level;
2432 if (r2->wm[level].enable)
2433 level2 = level;
2434 }
2435
2436 if (level1 == level2) {
2437 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2438 return r2;
2439 else
2440 return r1;
2441 } else if (level1 > level2) {
2442 return r1;
2443 } else {
2444 return r2;
2445 }
2446 }
2447
2448 /* dirty bits used to track which watermarks need changes */
2449 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2450 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2451 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2452 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2453 #define WM_DIRTY_FBC (1 << 24)
2454 #define WM_DIRTY_DDB (1 << 25)
2455
2456 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2457 const struct ilk_wm_values *old,
2458 const struct ilk_wm_values *new)
2459 {
2460 unsigned int dirty = 0;
2461 enum pipe pipe;
2462 int wm_lp;
2463
2464 for_each_pipe(pipe) {
2465 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2466 dirty |= WM_DIRTY_LINETIME(pipe);
2467 /* Must disable LP1+ watermarks too */
2468 dirty |= WM_DIRTY_LP_ALL;
2469 }
2470
2471 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2472 dirty |= WM_DIRTY_PIPE(pipe);
2473 /* Must disable LP1+ watermarks too */
2474 dirty |= WM_DIRTY_LP_ALL;
2475 }
2476 }
2477
2478 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2479 dirty |= WM_DIRTY_FBC;
2480 /* Must disable LP1+ watermarks too */
2481 dirty |= WM_DIRTY_LP_ALL;
2482 }
2483
2484 if (old->partitioning != new->partitioning) {
2485 dirty |= WM_DIRTY_DDB;
2486 /* Must disable LP1+ watermarks too */
2487 dirty |= WM_DIRTY_LP_ALL;
2488 }
2489
2490 /* LP1+ watermarks already deemed dirty, no need to continue */
2491 if (dirty & WM_DIRTY_LP_ALL)
2492 return dirty;
2493
2494 /* Find the lowest numbered LP1+ watermark in need of an update... */
2495 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2496 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2497 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2498 break;
2499 }
2500
2501 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2502 for (; wm_lp <= 3; wm_lp++)
2503 dirty |= WM_DIRTY_LP(wm_lp);
2504
2505 return dirty;
2506 }
2507
2508 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2509 unsigned int dirty)
2510 {
2511 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2512 bool changed = false;
2513
2514 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2515 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2516 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2517 changed = true;
2518 }
2519 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2520 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2521 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2522 changed = true;
2523 }
2524 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2525 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2526 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2527 changed = true;
2528 }
2529
2530 /*
2531 * Don't touch WM1S_LP_EN here.
2532 * Doing so could cause underruns.
2533 */
2534
2535 return changed;
2536 }
2537
2538 /*
2539 * The spec says we shouldn't write when we don't need, because every write
2540 * causes WMs to be re-evaluated, expending some power.
2541 */
2542 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2543 struct ilk_wm_values *results)
2544 {
2545 struct drm_device *dev = dev_priv->dev;
2546 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2547 unsigned int dirty;
2548 uint32_t val;
2549
2550 dirty = ilk_compute_wm_dirty(dev, previous, results);
2551 if (!dirty)
2552 return;
2553
2554 _ilk_disable_lp_wm(dev_priv, dirty);
2555
2556 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2557 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2558 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2559 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2560 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2561 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2562
2563 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2564 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2565 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2566 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2567 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2568 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2569
2570 if (dirty & WM_DIRTY_DDB) {
2571 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2572 val = I915_READ(WM_MISC);
2573 if (results->partitioning == INTEL_DDB_PART_1_2)
2574 val &= ~WM_MISC_DATA_PARTITION_5_6;
2575 else
2576 val |= WM_MISC_DATA_PARTITION_5_6;
2577 I915_WRITE(WM_MISC, val);
2578 } else {
2579 val = I915_READ(DISP_ARB_CTL2);
2580 if (results->partitioning == INTEL_DDB_PART_1_2)
2581 val &= ~DISP_DATA_PARTITION_5_6;
2582 else
2583 val |= DISP_DATA_PARTITION_5_6;
2584 I915_WRITE(DISP_ARB_CTL2, val);
2585 }
2586 }
2587
2588 if (dirty & WM_DIRTY_FBC) {
2589 val = I915_READ(DISP_ARB_CTL);
2590 if (results->enable_fbc_wm)
2591 val &= ~DISP_FBC_WM_DIS;
2592 else
2593 val |= DISP_FBC_WM_DIS;
2594 I915_WRITE(DISP_ARB_CTL, val);
2595 }
2596
2597 if (dirty & WM_DIRTY_LP(1) &&
2598 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2599 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2600
2601 if (INTEL_INFO(dev)->gen >= 7) {
2602 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2603 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2604 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2605 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2606 }
2607
2608 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2609 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2610 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2611 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2612 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2613 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2614
2615 dev_priv->wm.hw = *results;
2616 }
2617
2618 static bool ilk_disable_lp_wm(struct drm_device *dev)
2619 {
2620 struct drm_i915_private *dev_priv = dev->dev_private;
2621
2622 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2623 }
2624
2625 static void ilk_update_wm(struct drm_crtc *crtc)
2626 {
2627 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2628 struct drm_device *dev = crtc->dev;
2629 struct drm_i915_private *dev_priv = dev->dev_private;
2630 struct ilk_wm_maximums max;
2631 struct ilk_pipe_wm_parameters params = {};
2632 struct ilk_wm_values results = {};
2633 enum intel_ddb_partitioning partitioning;
2634 struct intel_pipe_wm pipe_wm = {};
2635 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2636 struct intel_wm_config config = {};
2637
2638 ilk_compute_wm_parameters(crtc, &params);
2639
2640 intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2641
2642 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2643 return;
2644
2645 intel_crtc->wm.active = pipe_wm;
2646
2647 ilk_compute_wm_config(dev, &config);
2648
2649 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2650 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2651
2652 /* 5/6 split only in single pipe config on IVB+ */
2653 if (INTEL_INFO(dev)->gen >= 7 &&
2654 config.num_pipes_active == 1 && config.sprites_enabled) {
2655 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2656 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2657
2658 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2659 } else {
2660 best_lp_wm = &lp_wm_1_2;
2661 }
2662
2663 partitioning = (best_lp_wm == &lp_wm_1_2) ?
2664 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2665
2666 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2667
2668 ilk_write_wm_values(dev_priv, &results);
2669 }
2670
2671 static void ilk_update_sprite_wm(struct drm_plane *plane,
2672 struct drm_crtc *crtc,
2673 uint32_t sprite_width, int pixel_size,
2674 bool enabled, bool scaled)
2675 {
2676 struct drm_device *dev = plane->dev;
2677 struct intel_plane *intel_plane = to_intel_plane(plane);
2678
2679 intel_plane->wm.enabled = enabled;
2680 intel_plane->wm.scaled = scaled;
2681 intel_plane->wm.horiz_pixels = sprite_width;
2682 intel_plane->wm.bytes_per_pixel = pixel_size;
2683
2684 /*
2685 * IVB workaround: must disable low power watermarks for at least
2686 * one frame before enabling scaling. LP watermarks can be re-enabled
2687 * when scaling is disabled.
2688 *
2689 * WaCxSRDisabledForSpriteScaling:ivb
2690 */
2691 if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2692 intel_wait_for_vblank(dev, intel_plane->pipe);
2693
2694 ilk_update_wm(crtc);
2695 }
2696
2697 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2698 {
2699 struct drm_device *dev = crtc->dev;
2700 struct drm_i915_private *dev_priv = dev->dev_private;
2701 struct ilk_wm_values *hw = &dev_priv->wm.hw;
2702 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2703 struct intel_pipe_wm *active = &intel_crtc->wm.active;
2704 enum pipe pipe = intel_crtc->pipe;
2705 static const unsigned int wm0_pipe_reg[] = {
2706 [PIPE_A] = WM0_PIPEA_ILK,
2707 [PIPE_B] = WM0_PIPEB_ILK,
2708 [PIPE_C] = WM0_PIPEC_IVB,
2709 };
2710
2711 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2712 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2713 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2714
2715 active->pipe_enabled = intel_crtc_active(crtc);
2716
2717 if (active->pipe_enabled) {
2718 u32 tmp = hw->wm_pipe[pipe];
2719
2720 /*
2721 * For active pipes LP0 watermark is marked as
2722 * enabled, and LP1+ watermaks as disabled since
2723 * we can't really reverse compute them in case
2724 * multiple pipes are active.
2725 */
2726 active->wm[0].enable = true;
2727 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2728 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2729 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2730 active->linetime = hw->wm_linetime[pipe];
2731 } else {
2732 int level, max_level = ilk_wm_max_level(dev);
2733
2734 /*
2735 * For inactive pipes, all watermark levels
2736 * should be marked as enabled but zeroed,
2737 * which is what we'd compute them to.
2738 */
2739 for (level = 0; level <= max_level; level++)
2740 active->wm[level].enable = true;
2741 }
2742 }
2743
2744 void ilk_wm_get_hw_state(struct drm_device *dev)
2745 {
2746 struct drm_i915_private *dev_priv = dev->dev_private;
2747 struct ilk_wm_values *hw = &dev_priv->wm.hw;
2748 struct drm_crtc *crtc;
2749
2750 for_each_crtc(dev, crtc)
2751 ilk_pipe_wm_get_hw_state(crtc);
2752
2753 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2754 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2755 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2756
2757 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2758 if (INTEL_INFO(dev)->gen >= 7) {
2759 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2760 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2761 }
2762
2763 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2764 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2765 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2766 else if (IS_IVYBRIDGE(dev))
2767 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2768 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2769
2770 hw->enable_fbc_wm =
2771 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2772 }
2773
2774 /**
2775 * intel_update_watermarks - update FIFO watermark values based on current modes
2776 *
2777 * Calculate watermark values for the various WM regs based on current mode
2778 * and plane configuration.
2779 *
2780 * There are several cases to deal with here:
2781 * - normal (i.e. non-self-refresh)
2782 * - self-refresh (SR) mode
2783 * - lines are large relative to FIFO size (buffer can hold up to 2)
2784 * - lines are small relative to FIFO size (buffer can hold more than 2
2785 * lines), so need to account for TLB latency
2786 *
2787 * The normal calculation is:
2788 * watermark = dotclock * bytes per pixel * latency
2789 * where latency is platform & configuration dependent (we assume pessimal
2790 * values here).
2791 *
2792 * The SR calculation is:
2793 * watermark = (trunc(latency/line time)+1) * surface width *
2794 * bytes per pixel
2795 * where
2796 * line time = htotal / dotclock
2797 * surface width = hdisplay for normal plane and 64 for cursor
2798 * and latency is assumed to be high, as above.
2799 *
2800 * The final value programmed to the register should always be rounded up,
2801 * and include an extra 2 entries to account for clock crossings.
2802 *
2803 * We don't use the sprite, so we can ignore that. And on Crestline we have
2804 * to set the non-SR watermarks to 8.
2805 */
2806 void intel_update_watermarks(struct drm_crtc *crtc)
2807 {
2808 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2809
2810 if (dev_priv->display.update_wm)
2811 dev_priv->display.update_wm(crtc);
2812 }
2813
2814 void intel_update_sprite_watermarks(struct drm_plane *plane,
2815 struct drm_crtc *crtc,
2816 uint32_t sprite_width, int pixel_size,
2817 bool enabled, bool scaled)
2818 {
2819 struct drm_i915_private *dev_priv = plane->dev->dev_private;
2820
2821 if (dev_priv->display.update_sprite_wm)
2822 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
2823 pixel_size, enabled, scaled);
2824 }
2825
2826 static struct drm_i915_gem_object *
2827 intel_alloc_context_page(struct drm_device *dev)
2828 {
2829 struct drm_i915_gem_object *ctx;
2830 int ret;
2831
2832 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2833
2834 ctx = i915_gem_alloc_object(dev, 4096);
2835 if (!ctx) {
2836 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2837 return NULL;
2838 }
2839
2840 ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
2841 if (ret) {
2842 DRM_ERROR("failed to pin power context: %d\n", ret);
2843 goto err_unref;
2844 }
2845
2846 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2847 if (ret) {
2848 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2849 goto err_unpin;
2850 }
2851
2852 return ctx;
2853
2854 err_unpin:
2855 i915_gem_object_ggtt_unpin(ctx);
2856 err_unref:
2857 drm_gem_object_unreference(&ctx->base);
2858 return NULL;
2859 }
2860
2861 /**
2862 * Lock protecting IPS related data structures
2863 */
2864 DEFINE_SPINLOCK(mchdev_lock);
2865
2866 /* Global for IPS driver to get at the current i915 device. Protected by
2867 * mchdev_lock. */
2868 static struct drm_i915_private *i915_mch_dev;
2869
2870 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2871 {
2872 struct drm_i915_private *dev_priv = dev->dev_private;
2873 u16 rgvswctl;
2874
2875 assert_spin_locked(&mchdev_lock);
2876
2877 rgvswctl = I915_READ16(MEMSWCTL);
2878 if (rgvswctl & MEMCTL_CMD_STS) {
2879 DRM_DEBUG("gpu busy, RCS change rejected\n");
2880 return false; /* still busy with another command */
2881 }
2882
2883 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2884 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2885 I915_WRITE16(MEMSWCTL, rgvswctl);
2886 POSTING_READ16(MEMSWCTL);
2887
2888 rgvswctl |= MEMCTL_CMD_STS;
2889 I915_WRITE16(MEMSWCTL, rgvswctl);
2890
2891 return true;
2892 }
2893
2894 static void ironlake_enable_drps(struct drm_device *dev)
2895 {
2896 struct drm_i915_private *dev_priv = dev->dev_private;
2897 u32 rgvmodectl = I915_READ(MEMMODECTL);
2898 u8 fmax, fmin, fstart, vstart;
2899
2900 spin_lock_irq(&mchdev_lock);
2901
2902 /* Enable temp reporting */
2903 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2904 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2905
2906 /* 100ms RC evaluation intervals */
2907 I915_WRITE(RCUPEI, 100000);
2908 I915_WRITE(RCDNEI, 100000);
2909
2910 /* Set max/min thresholds to 90ms and 80ms respectively */
2911 I915_WRITE(RCBMAXAVG, 90000);
2912 I915_WRITE(RCBMINAVG, 80000);
2913
2914 I915_WRITE(MEMIHYST, 1);
2915
2916 /* Set up min, max, and cur for interrupt handling */
2917 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2918 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2919 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2920 MEMMODE_FSTART_SHIFT;
2921
2922 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2923 PXVFREQ_PX_SHIFT;
2924
2925 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2926 dev_priv->ips.fstart = fstart;
2927
2928 dev_priv->ips.max_delay = fstart;
2929 dev_priv->ips.min_delay = fmin;
2930 dev_priv->ips.cur_delay = fstart;
2931
2932 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2933 fmax, fmin, fstart);
2934
2935 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2936
2937 /*
2938 * Interrupts will be enabled in ironlake_irq_postinstall
2939 */
2940
2941 I915_WRITE(VIDSTART, vstart);
2942 POSTING_READ(VIDSTART);
2943
2944 rgvmodectl |= MEMMODE_SWMODE_EN;
2945 I915_WRITE(MEMMODECTL, rgvmodectl);
2946
2947 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2948 DRM_ERROR("stuck trying to change perf mode\n");
2949 mdelay(1);
2950
2951 ironlake_set_drps(dev, fstart);
2952
2953 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2954 I915_READ(0x112e0);
2955 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2956 dev_priv->ips.last_count2 = I915_READ(0x112f4);
2957 getrawmonotonic(&dev_priv->ips.last_time2);
2958
2959 spin_unlock_irq(&mchdev_lock);
2960 }
2961
2962 static void ironlake_disable_drps(struct drm_device *dev)
2963 {
2964 struct drm_i915_private *dev_priv = dev->dev_private;
2965 u16 rgvswctl;
2966
2967 spin_lock_irq(&mchdev_lock);
2968
2969 rgvswctl = I915_READ16(MEMSWCTL);
2970
2971 /* Ack interrupts, disable EFC interrupt */
2972 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2973 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2974 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2975 I915_WRITE(DEIIR, DE_PCU_EVENT);
2976 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2977
2978 /* Go back to the starting frequency */
2979 ironlake_set_drps(dev, dev_priv->ips.fstart);
2980 mdelay(1);
2981 rgvswctl |= MEMCTL_CMD_STS;
2982 I915_WRITE(MEMSWCTL, rgvswctl);
2983 mdelay(1);
2984
2985 spin_unlock_irq(&mchdev_lock);
2986 }
2987
2988 /* There's a funny hw issue where the hw returns all 0 when reading from
2989 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2990 * ourselves, instead of doing a rmw cycle (which might result in us clearing
2991 * all limits and the gpu stuck at whatever frequency it is at atm).
2992 */
2993 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
2994 {
2995 u32 limits;
2996
2997 /* Only set the down limit when we've reached the lowest level to avoid
2998 * getting more interrupts, otherwise leave this clear. This prevents a
2999 * race in the hw when coming out of rc6: There's a tiny window where
3000 * the hw runs at the minimal clock before selecting the desired
3001 * frequency, if the down threshold expires in that window we will not
3002 * receive a down interrupt. */
3003 limits = dev_priv->rps.max_freq_softlimit << 24;
3004 if (val <= dev_priv->rps.min_freq_softlimit)
3005 limits |= dev_priv->rps.min_freq_softlimit << 16;
3006
3007 return limits;
3008 }
3009
3010 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3011 {
3012 int new_power;
3013
3014 new_power = dev_priv->rps.power;
3015 switch (dev_priv->rps.power) {
3016 case LOW_POWER:
3017 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3018 new_power = BETWEEN;
3019 break;
3020
3021 case BETWEEN:
3022 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3023 new_power = LOW_POWER;
3024 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3025 new_power = HIGH_POWER;
3026 break;
3027
3028 case HIGH_POWER:
3029 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3030 new_power = BETWEEN;
3031 break;
3032 }
3033 /* Max/min bins are special */
3034 if (val == dev_priv->rps.min_freq_softlimit)
3035 new_power = LOW_POWER;
3036 if (val == dev_priv->rps.max_freq_softlimit)
3037 new_power = HIGH_POWER;
3038 if (new_power == dev_priv->rps.power)
3039 return;
3040
3041 /* Note the units here are not exactly 1us, but 1280ns. */
3042 switch (new_power) {
3043 case LOW_POWER:
3044 /* Upclock if more than 95% busy over 16ms */
3045 I915_WRITE(GEN6_RP_UP_EI, 12500);
3046 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3047
3048 /* Downclock if less than 85% busy over 32ms */
3049 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3050 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3051
3052 I915_WRITE(GEN6_RP_CONTROL,
3053 GEN6_RP_MEDIA_TURBO |
3054 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3055 GEN6_RP_MEDIA_IS_GFX |
3056 GEN6_RP_ENABLE |
3057 GEN6_RP_UP_BUSY_AVG |
3058 GEN6_RP_DOWN_IDLE_AVG);
3059 break;
3060
3061 case BETWEEN:
3062 /* Upclock if more than 90% busy over 13ms */
3063 I915_WRITE(GEN6_RP_UP_EI, 10250);
3064 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3065
3066 /* Downclock if less than 75% busy over 32ms */
3067 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3068 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3069
3070 I915_WRITE(GEN6_RP_CONTROL,
3071 GEN6_RP_MEDIA_TURBO |
3072 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3073 GEN6_RP_MEDIA_IS_GFX |
3074 GEN6_RP_ENABLE |
3075 GEN6_RP_UP_BUSY_AVG |
3076 GEN6_RP_DOWN_IDLE_AVG);
3077 break;
3078
3079 case HIGH_POWER:
3080 /* Upclock if more than 85% busy over 10ms */
3081 I915_WRITE(GEN6_RP_UP_EI, 8000);
3082 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3083
3084 /* Downclock if less than 60% busy over 32ms */
3085 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3086 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3087
3088 I915_WRITE(GEN6_RP_CONTROL,
3089 GEN6_RP_MEDIA_TURBO |
3090 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3091 GEN6_RP_MEDIA_IS_GFX |
3092 GEN6_RP_ENABLE |
3093 GEN6_RP_UP_BUSY_AVG |
3094 GEN6_RP_DOWN_IDLE_AVG);
3095 break;
3096 }
3097
3098 dev_priv->rps.power = new_power;
3099 dev_priv->rps.last_adj = 0;
3100 }
3101
3102 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3103 {
3104 u32 mask = 0;
3105
3106 if (val > dev_priv->rps.min_freq_softlimit)
3107 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3108 if (val < dev_priv->rps.max_freq_softlimit)
3109 mask |= GEN6_PM_RP_UP_THRESHOLD;
3110
3111 /* IVB and SNB hard hangs on looping batchbuffer
3112 * if GEN6_PM_UP_EI_EXPIRED is masked.
3113 */
3114 if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3115 mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3116
3117 if (IS_GEN8(dev_priv->dev))
3118 mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
3119
3120 return ~mask;
3121 }
3122
3123 /* gen6_set_rps is called to update the frequency request, but should also be
3124 * called when the range (min_delay and max_delay) is modified so that we can
3125 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3126 void gen6_set_rps(struct drm_device *dev, u8 val)
3127 {
3128 struct drm_i915_private *dev_priv = dev->dev_private;
3129
3130 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3131 WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3132 WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3133
3134 /* min/max delay may still have been modified so be sure to
3135 * write the limits value.
3136 */
3137 if (val != dev_priv->rps.cur_freq) {
3138 gen6_set_rps_thresholds(dev_priv, val);
3139
3140 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3141 I915_WRITE(GEN6_RPNSWREQ,
3142 HSW_FREQUENCY(val));
3143 else
3144 I915_WRITE(GEN6_RPNSWREQ,
3145 GEN6_FREQUENCY(val) |
3146 GEN6_OFFSET(0) |
3147 GEN6_AGGRESSIVE_TURBO);
3148 }
3149
3150 /* Make sure we continue to get interrupts
3151 * until we hit the minimum or maximum frequencies.
3152 */
3153 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3154 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3155
3156 POSTING_READ(GEN6_RPNSWREQ);
3157
3158 dev_priv->rps.cur_freq = val;
3159 trace_intel_gpu_freq_change(val * 50);
3160 }
3161
3162 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3163 *
3164 * * If Gfx is Idle, then
3165 * 1. Mask Turbo interrupts
3166 * 2. Bring up Gfx clock
3167 * 3. Change the freq to Rpn and wait till P-Unit updates freq
3168 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3169 * 5. Unmask Turbo interrupts
3170 */
3171 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3172 {
3173 /*
3174 * When we are idle. Drop to min voltage state.
3175 */
3176
3177 if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3178 return;
3179
3180 /* Mask turbo interrupt so that they will not come in between */
3181 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3182
3183 vlv_force_gfx_clock(dev_priv, true);
3184
3185 dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3186
3187 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3188 dev_priv->rps.min_freq_softlimit);
3189
3190 if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3191 & GENFREQSTATUS) == 0, 5))
3192 DRM_ERROR("timed out waiting for Punit\n");
3193
3194 vlv_force_gfx_clock(dev_priv, false);
3195
3196 I915_WRITE(GEN6_PMINTRMSK,
3197 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3198 }
3199
3200 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3201 {
3202 struct drm_device *dev = dev_priv->dev;
3203
3204 mutex_lock(&dev_priv->rps.hw_lock);
3205 if (dev_priv->rps.enabled) {
3206 if (IS_VALLEYVIEW(dev))
3207 vlv_set_rps_idle(dev_priv);
3208 else
3209 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3210 dev_priv->rps.last_adj = 0;
3211 }
3212 mutex_unlock(&dev_priv->rps.hw_lock);
3213 }
3214
3215 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3216 {
3217 struct drm_device *dev = dev_priv->dev;
3218
3219 mutex_lock(&dev_priv->rps.hw_lock);
3220 if (dev_priv->rps.enabled) {
3221 if (IS_VALLEYVIEW(dev))
3222 valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3223 else
3224 gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3225 dev_priv->rps.last_adj = 0;
3226 }
3227 mutex_unlock(&dev_priv->rps.hw_lock);
3228 }
3229
3230 void valleyview_set_rps(struct drm_device *dev, u8 val)
3231 {
3232 struct drm_i915_private *dev_priv = dev->dev_private;
3233
3234 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3235 WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3236 WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3237
3238 DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3239 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3240 dev_priv->rps.cur_freq,
3241 vlv_gpu_freq(dev_priv, val), val);
3242
3243 if (val != dev_priv->rps.cur_freq)
3244 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3245
3246 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3247
3248 dev_priv->rps.cur_freq = val;
3249 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3250 }
3251
3252 static void gen8_disable_rps_interrupts(struct drm_device *dev)
3253 {
3254 struct drm_i915_private *dev_priv = dev->dev_private;
3255
3256 I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
3257 I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
3258 ~dev_priv->pm_rps_events);
3259 /* Complete PM interrupt masking here doesn't race with the rps work
3260 * item again unmasking PM interrupts because that is using a different
3261 * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
3262 * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
3263 * gen8_enable_rps will clean up. */
3264
3265 spin_lock_irq(&dev_priv->irq_lock);
3266 dev_priv->rps.pm_iir = 0;
3267 spin_unlock_irq(&dev_priv->irq_lock);
3268
3269 I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3270 }
3271
3272 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3273 {
3274 struct drm_i915_private *dev_priv = dev->dev_private;
3275
3276 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3277 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3278 ~dev_priv->pm_rps_events);
3279 /* Complete PM interrupt masking here doesn't race with the rps work
3280 * item again unmasking PM interrupts because that is using a different
3281 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3282 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3283
3284 spin_lock_irq(&dev_priv->irq_lock);
3285 dev_priv->rps.pm_iir = 0;
3286 spin_unlock_irq(&dev_priv->irq_lock);
3287
3288 I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3289 }
3290
3291 static void gen6_disable_rps(struct drm_device *dev)
3292 {
3293 struct drm_i915_private *dev_priv = dev->dev_private;
3294
3295 I915_WRITE(GEN6_RC_CONTROL, 0);
3296 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3297
3298 if (IS_BROADWELL(dev))
3299 gen8_disable_rps_interrupts(dev);
3300 else
3301 gen6_disable_rps_interrupts(dev);
3302 }
3303
3304 static void valleyview_disable_rps(struct drm_device *dev)
3305 {
3306 struct drm_i915_private *dev_priv = dev->dev_private;
3307
3308 I915_WRITE(GEN6_RC_CONTROL, 0);
3309
3310 gen6_disable_rps_interrupts(dev);
3311 }
3312
3313 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3314 {
3315 if (IS_VALLEYVIEW(dev)) {
3316 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3317 mode = GEN6_RC_CTL_RC6_ENABLE;
3318 else
3319 mode = 0;
3320 }
3321 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3322 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3323 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3324 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3325 }
3326
3327 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3328 {
3329 /* No RC6 before Ironlake */
3330 if (INTEL_INFO(dev)->gen < 5)
3331 return 0;
3332
3333 /* RC6 is only on Ironlake mobile not on desktop */
3334 if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3335 return 0;
3336
3337 /* Respect the kernel parameter if it is set */
3338 if (enable_rc6 >= 0) {
3339 int mask;
3340
3341 if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
3342 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3343 INTEL_RC6pp_ENABLE;
3344 else
3345 mask = INTEL_RC6_ENABLE;
3346
3347 if ((enable_rc6 & mask) != enable_rc6)
3348 DRM_INFO("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3349 enable_rc6 & mask, enable_rc6, mask);
3350
3351 return enable_rc6 & mask;
3352 }
3353
3354 /* Disable RC6 on Ironlake */
3355 if (INTEL_INFO(dev)->gen == 5)
3356 return 0;
3357
3358 if (IS_IVYBRIDGE(dev))
3359 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3360
3361 return INTEL_RC6_ENABLE;
3362 }
3363
3364 int intel_enable_rc6(const struct drm_device *dev)
3365 {
3366 return i915.enable_rc6;
3367 }
3368
3369 static void gen8_enable_rps_interrupts(struct drm_device *dev)
3370 {
3371 struct drm_i915_private *dev_priv = dev->dev_private;
3372
3373 spin_lock_irq(&dev_priv->irq_lock);
3374 WARN_ON(dev_priv->rps.pm_iir);
3375 bdw_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3376 I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3377 spin_unlock_irq(&dev_priv->irq_lock);
3378 }
3379
3380 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3381 {
3382 struct drm_i915_private *dev_priv = dev->dev_private;
3383
3384 spin_lock_irq(&dev_priv->irq_lock);
3385 WARN_ON(dev_priv->rps.pm_iir);
3386 snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3387 I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3388 spin_unlock_irq(&dev_priv->irq_lock);
3389 }
3390
3391 static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
3392 {
3393 /* All of these values are in units of 50MHz */
3394 dev_priv->rps.cur_freq = 0;
3395 /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3396 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
3397 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
3398 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
3399 /* XXX: only BYT has a special efficient freq */
3400 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
3401 /* hw_max = RP0 until we check for overclocking */
3402 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
3403
3404 /* Preserve min/max settings in case of re-init */
3405 if (dev_priv->rps.max_freq_softlimit == 0)
3406 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3407
3408 if (dev_priv->rps.min_freq_softlimit == 0)
3409 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3410 }
3411
3412 static void gen8_enable_rps(struct drm_device *dev)
3413 {
3414 struct drm_i915_private *dev_priv = dev->dev_private;
3415 struct intel_engine_cs *ring;
3416 uint32_t rc6_mask = 0, rp_state_cap;
3417 int unused;
3418
3419 /* 1a: Software RC state - RC0 */
3420 I915_WRITE(GEN6_RC_STATE, 0);
3421
3422 /* 1c & 1d: Get forcewake during program sequence. Although the driver
3423 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3424 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3425
3426 /* 2a: Disable RC states. */
3427 I915_WRITE(GEN6_RC_CONTROL, 0);
3428
3429 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3430 parse_rp_state_cap(dev_priv, rp_state_cap);
3431
3432 /* 2b: Program RC6 thresholds.*/
3433 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3434 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3435 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3436 for_each_ring(ring, dev_priv, unused)
3437 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3438 I915_WRITE(GEN6_RC_SLEEP, 0);
3439 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3440
3441 /* 3: Enable RC6 */
3442 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3443 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3444 intel_print_rc6_info(dev, rc6_mask);
3445 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3446 GEN6_RC_CTL_EI_MODE(1) |
3447 rc6_mask);
3448
3449 /* 4 Program defaults and thresholds for RPS*/
3450 I915_WRITE(GEN6_RPNSWREQ,
3451 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3452 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3453 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3454 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3455 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3456
3457 /* Docs recommend 900MHz, and 300 MHz respectively */
3458 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3459 dev_priv->rps.max_freq_softlimit << 24 |
3460 dev_priv->rps.min_freq_softlimit << 16);
3461
3462 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3463 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3464 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3465 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3466
3467 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3468
3469 /* WaDisablePwrmtrEvent:chv (pre-production hw) */
3470 I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
3471 I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
3472
3473 /* 5: Enable RPS */
3474 I915_WRITE(GEN6_RP_CONTROL,
3475 GEN6_RP_MEDIA_TURBO |
3476 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3477 GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
3478 GEN6_RP_ENABLE |
3479 GEN6_RP_UP_BUSY_AVG |
3480 GEN6_RP_DOWN_IDLE_AVG);
3481
3482 /* 6: Ring frequency + overclocking (our driver does this later */
3483
3484 gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3485
3486 gen8_enable_rps_interrupts(dev);
3487
3488 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3489 }
3490
3491 static void gen6_enable_rps(struct drm_device *dev)
3492 {
3493 struct drm_i915_private *dev_priv = dev->dev_private;
3494 struct intel_engine_cs *ring;
3495 u32 rp_state_cap;
3496 u32 gt_perf_status;
3497 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3498 u32 gtfifodbg;
3499 int rc6_mode;
3500 int i, ret;
3501
3502 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3503
3504 /* Here begins a magic sequence of register writes to enable
3505 * auto-downclocking.
3506 *
3507 * Perhaps there might be some value in exposing these to
3508 * userspace...
3509 */
3510 I915_WRITE(GEN6_RC_STATE, 0);
3511
3512 /* Clear the DBG now so we don't confuse earlier errors */
3513 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3514 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3515 I915_WRITE(GTFIFODBG, gtfifodbg);
3516 }
3517
3518 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3519
3520 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3521 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3522
3523 parse_rp_state_cap(dev_priv, rp_state_cap);
3524
3525 /* disable the counters and set deterministic thresholds */
3526 I915_WRITE(GEN6_RC_CONTROL, 0);
3527
3528 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3529 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3530 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3531 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3532 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3533
3534 for_each_ring(ring, dev_priv, i)
3535 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3536
3537 I915_WRITE(GEN6_RC_SLEEP, 0);
3538 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3539 if (IS_IVYBRIDGE(dev))
3540 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3541 else
3542 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3543 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3544 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3545
3546 /* Check if we are enabling RC6 */
3547 rc6_mode = intel_enable_rc6(dev_priv->dev);
3548 if (rc6_mode & INTEL_RC6_ENABLE)
3549 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3550
3551 /* We don't use those on Haswell */
3552 if (!IS_HASWELL(dev)) {
3553 if (rc6_mode & INTEL_RC6p_ENABLE)
3554 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3555
3556 if (rc6_mode & INTEL_RC6pp_ENABLE)
3557 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3558 }
3559
3560 intel_print_rc6_info(dev, rc6_mask);
3561
3562 I915_WRITE(GEN6_RC_CONTROL,
3563 rc6_mask |
3564 GEN6_RC_CTL_EI_MODE(1) |
3565 GEN6_RC_CTL_HW_ENABLE);
3566
3567 /* Power down if completely idle for over 50ms */
3568 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3569 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3570
3571 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3572 if (ret)
3573 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3574
3575 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3576 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3577 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3578 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3579 (pcu_mbox & 0xff) * 50);
3580 dev_priv->rps.max_freq = pcu_mbox & 0xff;
3581 }
3582
3583 dev_priv->rps.power = HIGH_POWER; /* force a reset */
3584 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3585
3586 gen6_enable_rps_interrupts(dev);
3587
3588 rc6vids = 0;
3589 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3590 if (IS_GEN6(dev) && ret) {
3591 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3592 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3593 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3594 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3595 rc6vids &= 0xffff00;
3596 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3597 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3598 if (ret)
3599 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3600 }
3601
3602 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3603 }
3604
3605 static void __gen6_update_ring_freq(struct drm_device *dev)
3606 {
3607 struct drm_i915_private *dev_priv = dev->dev_private;
3608 int min_freq = 15;
3609 unsigned int gpu_freq;
3610 unsigned int max_ia_freq, min_ring_freq;
3611 int scaling_factor = 180;
3612 struct cpufreq_policy *policy;
3613
3614 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3615
3616 policy = cpufreq_cpu_get(0);
3617 if (policy) {
3618 max_ia_freq = policy->cpuinfo.max_freq;
3619 cpufreq_cpu_put(policy);
3620 } else {
3621 /*
3622 * Default to measured freq if none found, PCU will ensure we
3623 * don't go over
3624 */
3625 max_ia_freq = tsc_khz;
3626 }
3627
3628 /* Convert from kHz to MHz */
3629 max_ia_freq /= 1000;
3630
3631 min_ring_freq = I915_READ(DCLK) & 0xf;
3632 /* convert DDR frequency from units of 266.6MHz to bandwidth */
3633 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3634
3635 /*
3636 * For each potential GPU frequency, load a ring frequency we'd like
3637 * to use for memory access. We do this by specifying the IA frequency
3638 * the PCU should use as a reference to determine the ring frequency.
3639 */
3640 for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3641 gpu_freq--) {
3642 int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3643 unsigned int ia_freq = 0, ring_freq = 0;
3644
3645 if (INTEL_INFO(dev)->gen >= 8) {
3646 /* max(2 * GT, DDR). NB: GT is 50MHz units */
3647 ring_freq = max(min_ring_freq, gpu_freq);
3648 } else if (IS_HASWELL(dev)) {
3649 ring_freq = mult_frac(gpu_freq, 5, 4);
3650 ring_freq = max(min_ring_freq, ring_freq);
3651 /* leave ia_freq as the default, chosen by cpufreq */
3652 } else {
3653 /* On older processors, there is no separate ring
3654 * clock domain, so in order to boost the bandwidth
3655 * of the ring, we need to upclock the CPU (ia_freq).
3656 *
3657 * For GPU frequencies less than 750MHz,
3658 * just use the lowest ring freq.
3659 */
3660 if (gpu_freq < min_freq)
3661 ia_freq = 800;
3662 else
3663 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3664 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3665 }
3666
3667 sandybridge_pcode_write(dev_priv,
3668 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3669 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3670 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3671 gpu_freq);
3672 }
3673 }
3674
3675 void gen6_update_ring_freq(struct drm_device *dev)
3676 {
3677 struct drm_i915_private *dev_priv = dev->dev_private;
3678
3679 if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
3680 return;
3681
3682 mutex_lock(&dev_priv->rps.hw_lock);
3683 __gen6_update_ring_freq(dev);
3684 mutex_unlock(&dev_priv->rps.hw_lock);
3685 }
3686
3687 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3688 {
3689 u32 val, rp0;
3690
3691 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3692
3693 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3694 /* Clamp to max */
3695 rp0 = min_t(u32, rp0, 0xea);
3696
3697 return rp0;
3698 }
3699
3700 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3701 {
3702 u32 val, rpe;
3703
3704 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3705 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3706 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3707 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3708
3709 return rpe;
3710 }
3711
3712 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3713 {
3714 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3715 }
3716
3717 /* Check that the pctx buffer wasn't move under us. */
3718 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
3719 {
3720 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3721
3722 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
3723 dev_priv->vlv_pctx->stolen->start);
3724 }
3725
3726 static void valleyview_setup_pctx(struct drm_device *dev)
3727 {
3728 struct drm_i915_private *dev_priv = dev->dev_private;
3729 struct drm_i915_gem_object *pctx;
3730 unsigned long pctx_paddr;
3731 u32 pcbr;
3732 int pctx_size = 24*1024;
3733
3734 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3735
3736 pcbr = I915_READ(VLV_PCBR);
3737 if (pcbr) {
3738 /* BIOS set it up already, grab the pre-alloc'd space */
3739 int pcbr_offset;
3740
3741 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3742 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3743 pcbr_offset,
3744 I915_GTT_OFFSET_NONE,
3745 pctx_size);
3746 goto out;
3747 }
3748
3749 /*
3750 * From the Gunit register HAS:
3751 * The Gfx driver is expected to program this register and ensure
3752 * proper allocation within Gfx stolen memory. For example, this
3753 * register should be programmed such than the PCBR range does not
3754 * overlap with other ranges, such as the frame buffer, protected
3755 * memory, or any other relevant ranges.
3756 */
3757 pctx = i915_gem_object_create_stolen(dev, pctx_size);
3758 if (!pctx) {
3759 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3760 return;
3761 }
3762
3763 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3764 I915_WRITE(VLV_PCBR, pctx_paddr);
3765
3766 out:
3767 dev_priv->vlv_pctx = pctx;
3768 }
3769
3770 static void valleyview_cleanup_pctx(struct drm_device *dev)
3771 {
3772 struct drm_i915_private *dev_priv = dev->dev_private;
3773
3774 if (WARN_ON(!dev_priv->vlv_pctx))
3775 return;
3776
3777 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3778 dev_priv->vlv_pctx = NULL;
3779 }
3780
3781 static void valleyview_init_gt_powersave(struct drm_device *dev)
3782 {
3783 struct drm_i915_private *dev_priv = dev->dev_private;
3784
3785 valleyview_setup_pctx(dev);
3786
3787 mutex_lock(&dev_priv->rps.hw_lock);
3788
3789 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
3790 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
3791 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3792 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
3793 dev_priv->rps.max_freq);
3794
3795 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
3796 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3797 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3798 dev_priv->rps.efficient_freq);
3799
3800 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
3801 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3802 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
3803 dev_priv->rps.min_freq);
3804
3805 /* Preserve min/max settings in case of re-init */
3806 if (dev_priv->rps.max_freq_softlimit == 0)
3807 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3808
3809 if (dev_priv->rps.min_freq_softlimit == 0)
3810 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3811
3812 mutex_unlock(&dev_priv->rps.hw_lock);
3813 }
3814
3815 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
3816 {
3817 valleyview_cleanup_pctx(dev);
3818 }
3819
3820 static void valleyview_enable_rps(struct drm_device *dev)
3821 {
3822 struct drm_i915_private *dev_priv = dev->dev_private;
3823 struct intel_engine_cs *ring;
3824 u32 gtfifodbg, val, rc6_mode = 0;
3825 int i;
3826
3827 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3828
3829 valleyview_check_pctx(dev_priv);
3830
3831 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3832 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
3833 gtfifodbg);
3834 I915_WRITE(GTFIFODBG, gtfifodbg);
3835 }
3836
3837 /* If VLV, Forcewake all wells, else re-direct to regular path */
3838 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3839
3840 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3841 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3842 I915_WRITE(GEN6_RP_UP_EI, 66000);
3843 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3844
3845 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3846
3847 I915_WRITE(GEN6_RP_CONTROL,
3848 GEN6_RP_MEDIA_TURBO |
3849 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3850 GEN6_RP_MEDIA_IS_GFX |
3851 GEN6_RP_ENABLE |
3852 GEN6_RP_UP_BUSY_AVG |
3853 GEN6_RP_DOWN_IDLE_CONT);
3854
3855 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3856 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3857 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3858
3859 for_each_ring(ring, dev_priv, i)
3860 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3861
3862 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
3863
3864 /* allows RC6 residency counter to work */
3865 I915_WRITE(VLV_COUNTER_CONTROL,
3866 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
3867 VLV_MEDIA_RC6_COUNT_EN |
3868 VLV_RENDER_RC6_COUNT_EN));
3869 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3870 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
3871
3872 intel_print_rc6_info(dev, rc6_mode);
3873
3874 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
3875
3876 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3877
3878 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3879 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3880
3881 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
3882 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3883 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3884 dev_priv->rps.cur_freq);
3885
3886 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3887 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3888 dev_priv->rps.efficient_freq);
3889
3890 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
3891
3892 gen6_enable_rps_interrupts(dev);
3893
3894 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3895 }
3896
3897 void ironlake_teardown_rc6(struct drm_device *dev)
3898 {
3899 struct drm_i915_private *dev_priv = dev->dev_private;
3900
3901 if (dev_priv->ips.renderctx) {
3902 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
3903 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3904 dev_priv->ips.renderctx = NULL;
3905 }
3906
3907 if (dev_priv->ips.pwrctx) {
3908 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
3909 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3910 dev_priv->ips.pwrctx = NULL;
3911 }
3912 }
3913
3914 static void ironlake_disable_rc6(struct drm_device *dev)
3915 {
3916 struct drm_i915_private *dev_priv = dev->dev_private;
3917
3918 if (I915_READ(PWRCTXA)) {
3919 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3920 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3921 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3922 50);
3923
3924 I915_WRITE(PWRCTXA, 0);
3925 POSTING_READ(PWRCTXA);
3926
3927 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3928 POSTING_READ(RSTDBYCTL);
3929 }
3930 }
3931
3932 static int ironlake_setup_rc6(struct drm_device *dev)
3933 {
3934 struct drm_i915_private *dev_priv = dev->dev_private;
3935
3936 if (dev_priv->ips.renderctx == NULL)
3937 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3938 if (!dev_priv->ips.renderctx)
3939 return -ENOMEM;
3940
3941 if (dev_priv->ips.pwrctx == NULL)
3942 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3943 if (!dev_priv->ips.pwrctx) {
3944 ironlake_teardown_rc6(dev);
3945 return -ENOMEM;
3946 }
3947
3948 return 0;
3949 }
3950
3951 static void ironlake_enable_rc6(struct drm_device *dev)
3952 {
3953 struct drm_i915_private *dev_priv = dev->dev_private;
3954 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
3955 bool was_interruptible;
3956 int ret;
3957
3958 /* rc6 disabled by default due to repeated reports of hanging during
3959 * boot and resume.
3960 */
3961 if (!intel_enable_rc6(dev))
3962 return;
3963
3964 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3965
3966 ret = ironlake_setup_rc6(dev);
3967 if (ret)
3968 return;
3969
3970 was_interruptible = dev_priv->mm.interruptible;
3971 dev_priv->mm.interruptible = false;
3972
3973 /*
3974 * GPU can automatically power down the render unit if given a page
3975 * to save state.
3976 */
3977 ret = intel_ring_begin(ring, 6);
3978 if (ret) {
3979 ironlake_teardown_rc6(dev);
3980 dev_priv->mm.interruptible = was_interruptible;
3981 return;
3982 }
3983
3984 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3985 intel_ring_emit(ring, MI_SET_CONTEXT);
3986 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3987 MI_MM_SPACE_GTT |
3988 MI_SAVE_EXT_STATE_EN |
3989 MI_RESTORE_EXT_STATE_EN |
3990 MI_RESTORE_INHIBIT);
3991 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3992 intel_ring_emit(ring, MI_NOOP);
3993 intel_ring_emit(ring, MI_FLUSH);
3994 intel_ring_advance(ring);
3995
3996 /*
3997 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3998 * does an implicit flush, combined with MI_FLUSH above, it should be
3999 * safe to assume that renderctx is valid
4000 */
4001 ret = intel_ring_idle(ring);
4002 dev_priv->mm.interruptible = was_interruptible;
4003 if (ret) {
4004 DRM_ERROR("failed to enable ironlake power savings\n");
4005 ironlake_teardown_rc6(dev);
4006 return;
4007 }
4008
4009 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4010 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4011
4012 intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4013 }
4014
4015 static unsigned long intel_pxfreq(u32 vidfreq)
4016 {
4017 unsigned long freq;
4018 int div = (vidfreq & 0x3f0000) >> 16;
4019 int post = (vidfreq & 0x3000) >> 12;
4020 int pre = (vidfreq & 0x7);
4021
4022 if (!pre)
4023 return 0;
4024
4025 freq = ((div * 133333) / ((1<<post) * pre));
4026
4027 return freq;
4028 }
4029
4030 static const struct cparams {
4031 u16 i;
4032 u16 t;
4033 u16 m;
4034 u16 c;
4035 } cparams[] = {
4036 { 1, 1333, 301, 28664 },
4037 { 1, 1066, 294, 24460 },
4038 { 1, 800, 294, 25192 },
4039 { 0, 1333, 276, 27605 },
4040 { 0, 1066, 276, 27605 },
4041 { 0, 800, 231, 23784 },
4042 };
4043
4044 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4045 {
4046 u64 total_count, diff, ret;
4047 u32 count1, count2, count3, m = 0, c = 0;
4048 unsigned long now = jiffies_to_msecs(jiffies), diff1;
4049 int i;
4050
4051 assert_spin_locked(&mchdev_lock);
4052
4053 diff1 = now - dev_priv->ips.last_time1;
4054
4055 /* Prevent division-by-zero if we are asking too fast.
4056 * Also, we don't get interesting results if we are polling
4057 * faster than once in 10ms, so just return the saved value
4058 * in such cases.
4059 */
4060 if (diff1 <= 10)
4061 return dev_priv->ips.chipset_power;
4062
4063 count1 = I915_READ(DMIEC);
4064 count2 = I915_READ(DDREC);
4065 count3 = I915_READ(CSIEC);
4066
4067 total_count = count1 + count2 + count3;
4068
4069 /* FIXME: handle per-counter overflow */
4070 if (total_count < dev_priv->ips.last_count1) {
4071 diff = ~0UL - dev_priv->ips.last_count1;
4072 diff += total_count;
4073 } else {
4074 diff = total_count - dev_priv->ips.last_count1;
4075 }
4076
4077 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4078 if (cparams[i].i == dev_priv->ips.c_m &&
4079 cparams[i].t == dev_priv->ips.r_t) {
4080 m = cparams[i].m;
4081 c = cparams[i].c;
4082 break;
4083 }
4084 }
4085
4086 diff = div_u64(diff, diff1);
4087 ret = ((m * diff) + c);
4088 ret = div_u64(ret, 10);
4089
4090 dev_priv->ips.last_count1 = total_count;
4091 dev_priv->ips.last_time1 = now;
4092
4093 dev_priv->ips.chipset_power = ret;
4094
4095 return ret;
4096 }
4097
4098 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4099 {
4100 struct drm_device *dev = dev_priv->dev;
4101 unsigned long val;
4102
4103 if (INTEL_INFO(dev)->gen != 5)
4104 return 0;
4105
4106 spin_lock_irq(&mchdev_lock);
4107
4108 val = __i915_chipset_val(dev_priv);
4109
4110 spin_unlock_irq(&mchdev_lock);
4111
4112 return val;
4113 }
4114
4115 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4116 {
4117 unsigned long m, x, b;
4118 u32 tsfs;
4119
4120 tsfs = I915_READ(TSFS);
4121
4122 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4123 x = I915_READ8(TR1);
4124
4125 b = tsfs & TSFS_INTR_MASK;
4126
4127 return ((m * x) / 127) - b;
4128 }
4129
4130 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4131 {
4132 struct drm_device *dev = dev_priv->dev;
4133 static const struct v_table {
4134 u16 vd; /* in .1 mil */
4135 u16 vm; /* in .1 mil */
4136 } v_table[] = {
4137 { 0, 0, },
4138 { 375, 0, },
4139 { 500, 0, },
4140 { 625, 0, },
4141 { 750, 0, },
4142 { 875, 0, },
4143 { 1000, 0, },
4144 { 1125, 0, },
4145 { 4125, 3000, },
4146 { 4125, 3000, },
4147 { 4125, 3000, },
4148 { 4125, 3000, },
4149 { 4125, 3000, },
4150 { 4125, 3000, },
4151 { 4125, 3000, },
4152 { 4125, 3000, },
4153 { 4125, 3000, },
4154 { 4125, 3000, },
4155 { 4125, 3000, },
4156 { 4125, 3000, },
4157 { 4125, 3000, },
4158 { 4125, 3000, },
4159 { 4125, 3000, },
4160 { 4125, 3000, },
4161 { 4125, 3000, },
4162 { 4125, 3000, },
4163 { 4125, 3000, },
4164 { 4125, 3000, },
4165 { 4125, 3000, },
4166 { 4125, 3000, },
4167 { 4125, 3000, },
4168 { 4125, 3000, },
4169 { 4250, 3125, },
4170 { 4375, 3250, },
4171 { 4500, 3375, },
4172 { 4625, 3500, },
4173 { 4750, 3625, },
4174 { 4875, 3750, },
4175 { 5000, 3875, },
4176 { 5125, 4000, },
4177 { 5250, 4125, },
4178 { 5375, 4250, },
4179 { 5500, 4375, },
4180 { 5625, 4500, },
4181 { 5750, 4625, },
4182 { 5875, 4750, },
4183 { 6000, 4875, },
4184 { 6125, 5000, },
4185 { 6250, 5125, },
4186 { 6375, 5250, },
4187 { 6500, 5375, },
4188 { 6625, 5500, },
4189 { 6750, 5625, },
4190 { 6875, 5750, },
4191 { 7000, 5875, },
4192 { 7125, 6000, },
4193 { 7250, 6125, },
4194 { 7375, 6250, },
4195 { 7500, 6375, },
4196 { 7625, 6500, },
4197 { 7750, 6625, },
4198 { 7875, 6750, },
4199 { 8000, 6875, },
4200 { 8125, 7000, },
4201 { 8250, 7125, },
4202 { 8375, 7250, },
4203 { 8500, 7375, },
4204 { 8625, 7500, },
4205 { 8750, 7625, },
4206 { 8875, 7750, },
4207 { 9000, 7875, },
4208 { 9125, 8000, },
4209 { 9250, 8125, },
4210 { 9375, 8250, },
4211 { 9500, 8375, },
4212 { 9625, 8500, },
4213 { 9750, 8625, },
4214 { 9875, 8750, },
4215 { 10000, 8875, },
4216 { 10125, 9000, },
4217 { 10250, 9125, },
4218 { 10375, 9250, },
4219 { 10500, 9375, },
4220 { 10625, 9500, },
4221 { 10750, 9625, },
4222 { 10875, 9750, },
4223 { 11000, 9875, },
4224 { 11125, 10000, },
4225 { 11250, 10125, },
4226 { 11375, 10250, },
4227 { 11500, 10375, },
4228 { 11625, 10500, },
4229 { 11750, 10625, },
4230 { 11875, 10750, },
4231 { 12000, 10875, },
4232 { 12125, 11000, },
4233 { 12250, 11125, },
4234 { 12375, 11250, },
4235 { 12500, 11375, },
4236 { 12625, 11500, },
4237 { 12750, 11625, },
4238 { 12875, 11750, },
4239 { 13000, 11875, },
4240 { 13125, 12000, },
4241 { 13250, 12125, },
4242 { 13375, 12250, },
4243 { 13500, 12375, },
4244 { 13625, 12500, },
4245 { 13750, 12625, },
4246 { 13875, 12750, },
4247 { 14000, 12875, },
4248 { 14125, 13000, },
4249 { 14250, 13125, },
4250 { 14375, 13250, },
4251 { 14500, 13375, },
4252 { 14625, 13500, },
4253 { 14750, 13625, },
4254 { 14875, 13750, },
4255 { 15000, 13875, },
4256 { 15125, 14000, },
4257 { 15250, 14125, },
4258 { 15375, 14250, },
4259 { 15500, 14375, },
4260 { 15625, 14500, },
4261 { 15750, 14625, },
4262 { 15875, 14750, },
4263 { 16000, 14875, },
4264 { 16125, 15000, },
4265 };
4266 if (INTEL_INFO(dev)->is_mobile)
4267 return v_table[pxvid].vm;
4268 else
4269 return v_table[pxvid].vd;
4270 }
4271
4272 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4273 {
4274 struct timespec now, diff1;
4275 u64 diff;
4276 unsigned long diffms;
4277 u32 count;
4278
4279 assert_spin_locked(&mchdev_lock);
4280
4281 getrawmonotonic(&now);
4282 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4283
4284 /* Don't divide by 0 */
4285 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4286 if (!diffms)
4287 return;
4288
4289 count = I915_READ(GFXEC);
4290
4291 if (count < dev_priv->ips.last_count2) {
4292 diff = ~0UL - dev_priv->ips.last_count2;
4293 diff += count;
4294 } else {
4295 diff = count - dev_priv->ips.last_count2;
4296 }
4297
4298 dev_priv->ips.last_count2 = count;
4299 dev_priv->ips.last_time2 = now;
4300
4301 /* More magic constants... */
4302 diff = diff * 1181;
4303 diff = div_u64(diff, diffms * 10);
4304 dev_priv->ips.gfx_power = diff;
4305 }
4306
4307 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4308 {
4309 struct drm_device *dev = dev_priv->dev;
4310
4311 if (INTEL_INFO(dev)->gen != 5)
4312 return;
4313
4314 spin_lock_irq(&mchdev_lock);
4315
4316 __i915_update_gfx_val(dev_priv);
4317
4318 spin_unlock_irq(&mchdev_lock);
4319 }
4320
4321 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4322 {
4323 unsigned long t, corr, state1, corr2, state2;
4324 u32 pxvid, ext_v;
4325
4326 assert_spin_locked(&mchdev_lock);
4327
4328 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4329 pxvid = (pxvid >> 24) & 0x7f;
4330 ext_v = pvid_to_extvid(dev_priv, pxvid);
4331
4332 state1 = ext_v;
4333
4334 t = i915_mch_val(dev_priv);
4335
4336 /* Revel in the empirically derived constants */
4337
4338 /* Correction factor in 1/100000 units */
4339 if (t > 80)
4340 corr = ((t * 2349) + 135940);
4341 else if (t >= 50)
4342 corr = ((t * 964) + 29317);
4343 else /* < 50 */
4344 corr = ((t * 301) + 1004);
4345
4346 corr = corr * ((150142 * state1) / 10000 - 78642);
4347 corr /= 100000;
4348 corr2 = (corr * dev_priv->ips.corr);
4349
4350 state2 = (corr2 * state1) / 10000;
4351 state2 /= 100; /* convert to mW */
4352
4353 __i915_update_gfx_val(dev_priv);
4354
4355 return dev_priv->ips.gfx_power + state2;
4356 }
4357
4358 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4359 {
4360 struct drm_device *dev = dev_priv->dev;
4361 unsigned long val;
4362
4363 if (INTEL_INFO(dev)->gen != 5)
4364 return 0;
4365
4366 spin_lock_irq(&mchdev_lock);
4367
4368 val = __i915_gfx_val(dev_priv);
4369
4370 spin_unlock_irq(&mchdev_lock);
4371
4372 return val;
4373 }
4374
4375 /**
4376 * i915_read_mch_val - return value for IPS use
4377 *
4378 * Calculate and return a value for the IPS driver to use when deciding whether
4379 * we have thermal and power headroom to increase CPU or GPU power budget.
4380 */
4381 unsigned long i915_read_mch_val(void)
4382 {
4383 struct drm_i915_private *dev_priv;
4384 unsigned long chipset_val, graphics_val, ret = 0;
4385
4386 spin_lock_irq(&mchdev_lock);
4387 if (!i915_mch_dev)
4388 goto out_unlock;
4389 dev_priv = i915_mch_dev;
4390
4391 chipset_val = __i915_chipset_val(dev_priv);
4392 graphics_val = __i915_gfx_val(dev_priv);
4393
4394 ret = chipset_val + graphics_val;
4395
4396 out_unlock:
4397 spin_unlock_irq(&mchdev_lock);
4398
4399 return ret;
4400 }
4401 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4402
4403 /**
4404 * i915_gpu_raise - raise GPU frequency limit
4405 *
4406 * Raise the limit; IPS indicates we have thermal headroom.
4407 */
4408 bool i915_gpu_raise(void)
4409 {
4410 struct drm_i915_private *dev_priv;
4411 bool ret = true;
4412
4413 spin_lock_irq(&mchdev_lock);
4414 if (!i915_mch_dev) {
4415 ret = false;
4416 goto out_unlock;
4417 }
4418 dev_priv = i915_mch_dev;
4419
4420 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4421 dev_priv->ips.max_delay--;
4422
4423 out_unlock:
4424 spin_unlock_irq(&mchdev_lock);
4425
4426 return ret;
4427 }
4428 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4429
4430 /**
4431 * i915_gpu_lower - lower GPU frequency limit
4432 *
4433 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4434 * frequency maximum.
4435 */
4436 bool i915_gpu_lower(void)
4437 {
4438 struct drm_i915_private *dev_priv;
4439 bool ret = true;
4440
4441 spin_lock_irq(&mchdev_lock);
4442 if (!i915_mch_dev) {
4443 ret = false;
4444 goto out_unlock;
4445 }
4446 dev_priv = i915_mch_dev;
4447
4448 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4449 dev_priv->ips.max_delay++;
4450
4451 out_unlock:
4452 spin_unlock_irq(&mchdev_lock);
4453
4454 return ret;
4455 }
4456 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4457
4458 /**
4459 * i915_gpu_busy - indicate GPU business to IPS
4460 *
4461 * Tell the IPS driver whether or not the GPU is busy.
4462 */
4463 bool i915_gpu_busy(void)
4464 {
4465 struct drm_i915_private *dev_priv;
4466 struct intel_engine_cs *ring;
4467 bool ret = false;
4468 int i;
4469
4470 spin_lock_irq(&mchdev_lock);
4471 if (!i915_mch_dev)
4472 goto out_unlock;
4473 dev_priv = i915_mch_dev;
4474
4475 for_each_ring(ring, dev_priv, i)
4476 ret |= !list_empty(&ring->request_list);
4477
4478 out_unlock:
4479 spin_unlock_irq(&mchdev_lock);
4480
4481 return ret;
4482 }
4483 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4484
4485 /**
4486 * i915_gpu_turbo_disable - disable graphics turbo
4487 *
4488 * Disable graphics turbo by resetting the max frequency and setting the
4489 * current frequency to the default.
4490 */
4491 bool i915_gpu_turbo_disable(void)
4492 {
4493 struct drm_i915_private *dev_priv;
4494 bool ret = true;
4495
4496 spin_lock_irq(&mchdev_lock);
4497 if (!i915_mch_dev) {
4498 ret = false;
4499 goto out_unlock;
4500 }
4501 dev_priv = i915_mch_dev;
4502
4503 dev_priv->ips.max_delay = dev_priv->ips.fstart;
4504
4505 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4506 ret = false;
4507
4508 out_unlock:
4509 spin_unlock_irq(&mchdev_lock);
4510
4511 return ret;
4512 }
4513 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4514
4515 /**
4516 * Tells the intel_ips driver that the i915 driver is now loaded, if
4517 * IPS got loaded first.
4518 *
4519 * This awkward dance is so that neither module has to depend on the
4520 * other in order for IPS to do the appropriate communication of
4521 * GPU turbo limits to i915.
4522 */
4523 static void
4524 ips_ping_for_i915_load(void)
4525 {
4526 void (*link)(void);
4527
4528 link = symbol_get(ips_link_to_i915_driver);
4529 if (link) {
4530 link();
4531 symbol_put(ips_link_to_i915_driver);
4532 }
4533 }
4534
4535 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4536 {
4537 /* We only register the i915 ips part with intel-ips once everything is
4538 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4539 spin_lock_irq(&mchdev_lock);
4540 i915_mch_dev = dev_priv;
4541 spin_unlock_irq(&mchdev_lock);
4542
4543 ips_ping_for_i915_load();
4544 }
4545
4546 void intel_gpu_ips_teardown(void)
4547 {
4548 spin_lock_irq(&mchdev_lock);
4549 i915_mch_dev = NULL;
4550 spin_unlock_irq(&mchdev_lock);
4551 }
4552
4553 static void intel_init_emon(struct drm_device *dev)
4554 {
4555 struct drm_i915_private *dev_priv = dev->dev_private;
4556 u32 lcfuse;
4557 u8 pxw[16];
4558 int i;
4559
4560 /* Disable to program */
4561 I915_WRITE(ECR, 0);
4562 POSTING_READ(ECR);
4563
4564 /* Program energy weights for various events */
4565 I915_WRITE(SDEW, 0x15040d00);
4566 I915_WRITE(CSIEW0, 0x007f0000);
4567 I915_WRITE(CSIEW1, 0x1e220004);
4568 I915_WRITE(CSIEW2, 0x04000004);
4569
4570 for (i = 0; i < 5; i++)
4571 I915_WRITE(PEW + (i * 4), 0);
4572 for (i = 0; i < 3; i++)
4573 I915_WRITE(DEW + (i * 4), 0);
4574
4575 /* Program P-state weights to account for frequency power adjustment */
4576 for (i = 0; i < 16; i++) {
4577 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4578 unsigned long freq = intel_pxfreq(pxvidfreq);
4579 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4580 PXVFREQ_PX_SHIFT;
4581 unsigned long val;
4582
4583 val = vid * vid;
4584 val *= (freq / 1000);
4585 val *= 255;
4586 val /= (127*127*900);
4587 if (val > 0xff)
4588 DRM_ERROR("bad pxval: %ld\n", val);
4589 pxw[i] = val;
4590 }
4591 /* Render standby states get 0 weight */
4592 pxw[14] = 0;
4593 pxw[15] = 0;
4594
4595 for (i = 0; i < 4; i++) {
4596 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4597 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4598 I915_WRITE(PXW + (i * 4), val);
4599 }
4600
4601 /* Adjust magic regs to magic values (more experimental results) */
4602 I915_WRITE(OGW0, 0);
4603 I915_WRITE(OGW1, 0);
4604 I915_WRITE(EG0, 0x00007f00);
4605 I915_WRITE(EG1, 0x0000000e);
4606 I915_WRITE(EG2, 0x000e0000);
4607 I915_WRITE(EG3, 0x68000300);
4608 I915_WRITE(EG4, 0x42000000);
4609 I915_WRITE(EG5, 0x00140031);
4610 I915_WRITE(EG6, 0);
4611 I915_WRITE(EG7, 0);
4612
4613 for (i = 0; i < 8; i++)
4614 I915_WRITE(PXWL + (i * 4), 0);
4615
4616 /* Enable PMON + select events */
4617 I915_WRITE(ECR, 0x80000019);
4618
4619 lcfuse = I915_READ(LCFUSE02);
4620
4621 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4622 }
4623
4624 void intel_init_gt_powersave(struct drm_device *dev)
4625 {
4626 i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
4627
4628 if (IS_VALLEYVIEW(dev))
4629 valleyview_init_gt_powersave(dev);
4630 }
4631
4632 void intel_cleanup_gt_powersave(struct drm_device *dev)
4633 {
4634 if (IS_VALLEYVIEW(dev))
4635 valleyview_cleanup_gt_powersave(dev);
4636 }
4637
4638 void intel_disable_gt_powersave(struct drm_device *dev)
4639 {
4640 struct drm_i915_private *dev_priv = dev->dev_private;
4641
4642 /* Interrupts should be disabled already to avoid re-arming. */
4643 WARN_ON(dev->irq_enabled);
4644
4645 if (IS_IRONLAKE_M(dev)) {
4646 ironlake_disable_drps(dev);
4647 ironlake_disable_rc6(dev);
4648 } else if (IS_GEN6(dev) || IS_GEN7(dev) || IS_BROADWELL(dev)) {
4649 if (cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work))
4650 intel_runtime_pm_put(dev_priv);
4651
4652 cancel_work_sync(&dev_priv->rps.work);
4653 mutex_lock(&dev_priv->rps.hw_lock);
4654 if (IS_VALLEYVIEW(dev))
4655 valleyview_disable_rps(dev);
4656 else
4657 gen6_disable_rps(dev);
4658 dev_priv->rps.enabled = false;
4659 mutex_unlock(&dev_priv->rps.hw_lock);
4660 }
4661 }
4662
4663 static void intel_gen6_powersave_work(struct work_struct *work)
4664 {
4665 struct drm_i915_private *dev_priv =
4666 container_of(work, struct drm_i915_private,
4667 rps.delayed_resume_work.work);
4668 struct drm_device *dev = dev_priv->dev;
4669
4670 mutex_lock(&dev_priv->rps.hw_lock);
4671
4672 if (IS_VALLEYVIEW(dev)) {
4673 valleyview_enable_rps(dev);
4674 } else if (IS_BROADWELL(dev)) {
4675 gen8_enable_rps(dev);
4676 __gen6_update_ring_freq(dev);
4677 } else {
4678 gen6_enable_rps(dev);
4679 __gen6_update_ring_freq(dev);
4680 }
4681 dev_priv->rps.enabled = true;
4682 mutex_unlock(&dev_priv->rps.hw_lock);
4683
4684 intel_runtime_pm_put(dev_priv);
4685 }
4686
4687 void intel_enable_gt_powersave(struct drm_device *dev)
4688 {
4689 struct drm_i915_private *dev_priv = dev->dev_private;
4690
4691 if (IS_IRONLAKE_M(dev)) {
4692 mutex_lock(&dev->struct_mutex);
4693 ironlake_enable_drps(dev);
4694 ironlake_enable_rc6(dev);
4695 intel_init_emon(dev);
4696 mutex_unlock(&dev->struct_mutex);
4697 } else if (IS_GEN6(dev) || IS_GEN7(dev) || IS_BROADWELL(dev)) {
4698 /*
4699 * PCU communication is slow and this doesn't need to be
4700 * done at any specific time, so do this out of our fast path
4701 * to make resume and init faster.
4702 *
4703 * We depend on the HW RC6 power context save/restore
4704 * mechanism when entering D3 through runtime PM suspend. So
4705 * disable RPM until RPS/RC6 is properly setup. We can only
4706 * get here via the driver load/system resume/runtime resume
4707 * paths, so the _noresume version is enough (and in case of
4708 * runtime resume it's necessary).
4709 */
4710 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4711 round_jiffies_up_relative(HZ)))
4712 intel_runtime_pm_get_noresume(dev_priv);
4713 }
4714 }
4715
4716 void intel_reset_gt_powersave(struct drm_device *dev)
4717 {
4718 struct drm_i915_private *dev_priv = dev->dev_private;
4719
4720 dev_priv->rps.enabled = false;
4721 intel_enable_gt_powersave(dev);
4722 }
4723
4724 static void ibx_init_clock_gating(struct drm_device *dev)
4725 {
4726 struct drm_i915_private *dev_priv = dev->dev_private;
4727
4728 /*
4729 * On Ibex Peak and Cougar Point, we need to disable clock
4730 * gating for the panel power sequencer or it will fail to
4731 * start up when no ports are active.
4732 */
4733 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4734 }
4735
4736 static void g4x_disable_trickle_feed(struct drm_device *dev)
4737 {
4738 struct drm_i915_private *dev_priv = dev->dev_private;
4739 int pipe;
4740
4741 for_each_pipe(pipe) {
4742 I915_WRITE(DSPCNTR(pipe),
4743 I915_READ(DSPCNTR(pipe)) |
4744 DISPPLANE_TRICKLE_FEED_DISABLE);
4745 intel_flush_primary_plane(dev_priv, pipe);
4746 }
4747 }
4748
4749 static void ilk_init_lp_watermarks(struct drm_device *dev)
4750 {
4751 struct drm_i915_private *dev_priv = dev->dev_private;
4752
4753 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
4754 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
4755 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
4756
4757 /*
4758 * Don't touch WM1S_LP_EN here.
4759 * Doing so could cause underruns.
4760 */
4761 }
4762
4763 static void ironlake_init_clock_gating(struct drm_device *dev)
4764 {
4765 struct drm_i915_private *dev_priv = dev->dev_private;
4766 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4767
4768 /*
4769 * Required for FBC
4770 * WaFbcDisableDpfcClockGating:ilk
4771 */
4772 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4773 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4774 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4775
4776 I915_WRITE(PCH_3DCGDIS0,
4777 MARIUNIT_CLOCK_GATE_DISABLE |
4778 SVSMUNIT_CLOCK_GATE_DISABLE);
4779 I915_WRITE(PCH_3DCGDIS1,
4780 VFMUNIT_CLOCK_GATE_DISABLE);
4781
4782 /*
4783 * According to the spec the following bits should be set in
4784 * order to enable memory self-refresh
4785 * The bit 22/21 of 0x42004
4786 * The bit 5 of 0x42020
4787 * The bit 15 of 0x45000
4788 */
4789 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4790 (I915_READ(ILK_DISPLAY_CHICKEN2) |
4791 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4792 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4793 I915_WRITE(DISP_ARB_CTL,
4794 (I915_READ(DISP_ARB_CTL) |
4795 DISP_FBC_WM_DIS));
4796
4797 ilk_init_lp_watermarks(dev);
4798
4799 /*
4800 * Based on the document from hardware guys the following bits
4801 * should be set unconditionally in order to enable FBC.
4802 * The bit 22 of 0x42000
4803 * The bit 22 of 0x42004
4804 * The bit 7,8,9 of 0x42020.
4805 */
4806 if (IS_IRONLAKE_M(dev)) {
4807 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4808 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4809 I915_READ(ILK_DISPLAY_CHICKEN1) |
4810 ILK_FBCQ_DIS);
4811 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4812 I915_READ(ILK_DISPLAY_CHICKEN2) |
4813 ILK_DPARB_GATE);
4814 }
4815
4816 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4817
4818 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4819 I915_READ(ILK_DISPLAY_CHICKEN2) |
4820 ILK_ELPIN_409_SELECT);
4821 I915_WRITE(_3D_CHICKEN2,
4822 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4823 _3D_CHICKEN2_WM_READ_PIPELINED);
4824
4825 /* WaDisableRenderCachePipelinedFlush:ilk */
4826 I915_WRITE(CACHE_MODE_0,
4827 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4828
4829 /* WaDisable_RenderCache_OperationalFlush:ilk */
4830 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
4831
4832 g4x_disable_trickle_feed(dev);
4833
4834 ibx_init_clock_gating(dev);
4835 }
4836
4837 static void cpt_init_clock_gating(struct drm_device *dev)
4838 {
4839 struct drm_i915_private *dev_priv = dev->dev_private;
4840 int pipe;
4841 uint32_t val;
4842
4843 /*
4844 * On Ibex Peak and Cougar Point, we need to disable clock
4845 * gating for the panel power sequencer or it will fail to
4846 * start up when no ports are active.
4847 */
4848 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
4849 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
4850 PCH_CPUNIT_CLOCK_GATE_DISABLE);
4851 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4852 DPLS_EDP_PPS_FIX_DIS);
4853 /* The below fixes the weird display corruption, a few pixels shifted
4854 * downward, on (only) LVDS of some HP laptops with IVY.
4855 */
4856 for_each_pipe(pipe) {
4857 val = I915_READ(TRANS_CHICKEN2(pipe));
4858 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4859 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4860 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4861 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4862 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4863 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4864 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4865 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4866 }
4867 /* WADP0ClockGatingDisable */
4868 for_each_pipe(pipe) {
4869 I915_WRITE(TRANS_CHICKEN1(pipe),
4870 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4871 }
4872 }
4873
4874 static void gen6_check_mch_setup(struct drm_device *dev)
4875 {
4876 struct drm_i915_private *dev_priv = dev->dev_private;
4877 uint32_t tmp;
4878
4879 tmp = I915_READ(MCH_SSKPD);
4880 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4881 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4882 DRM_INFO("This can cause pipe underruns and display issues.\n");
4883 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4884 }
4885 }
4886
4887 static void gen6_init_clock_gating(struct drm_device *dev)
4888 {
4889 struct drm_i915_private *dev_priv = dev->dev_private;
4890 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4891
4892 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4893
4894 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4895 I915_READ(ILK_DISPLAY_CHICKEN2) |
4896 ILK_ELPIN_409_SELECT);
4897
4898 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4899 I915_WRITE(_3D_CHICKEN,
4900 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4901
4902 /* WaSetupGtModeTdRowDispatch:snb */
4903 if (IS_SNB_GT1(dev))
4904 I915_WRITE(GEN6_GT_MODE,
4905 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4906
4907 /* WaDisable_RenderCache_OperationalFlush:snb */
4908 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
4909
4910 /*
4911 * BSpec recoomends 8x4 when MSAA is used,
4912 * however in practice 16x4 seems fastest.
4913 *
4914 * Note that PS/WM thread counts depend on the WIZ hashing
4915 * disable bit, which we don't touch here, but it's good
4916 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
4917 */
4918 I915_WRITE(GEN6_GT_MODE,
4919 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
4920
4921 ilk_init_lp_watermarks(dev);
4922
4923 I915_WRITE(CACHE_MODE_0,
4924 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4925
4926 I915_WRITE(GEN6_UCGCTL1,
4927 I915_READ(GEN6_UCGCTL1) |
4928 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4929 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4930
4931 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4932 * gating disable must be set. Failure to set it results in
4933 * flickering pixels due to Z write ordering failures after
4934 * some amount of runtime in the Mesa "fire" demo, and Unigine
4935 * Sanctuary and Tropics, and apparently anything else with
4936 * alpha test or pixel discard.
4937 *
4938 * According to the spec, bit 11 (RCCUNIT) must also be set,
4939 * but we didn't debug actual testcases to find it out.
4940 *
4941 * WaDisableRCCUnitClockGating:snb
4942 * WaDisableRCPBUnitClockGating:snb
4943 */
4944 I915_WRITE(GEN6_UCGCTL2,
4945 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4946 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4947
4948 /* WaStripsFansDisableFastClipPerformanceFix:snb */
4949 I915_WRITE(_3D_CHICKEN3,
4950 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
4951
4952 /*
4953 * Bspec says:
4954 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
4955 * 3DSTATE_SF number of SF output attributes is more than 16."
4956 */
4957 I915_WRITE(_3D_CHICKEN3,
4958 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
4959
4960 /*
4961 * According to the spec the following bits should be
4962 * set in order to enable memory self-refresh and fbc:
4963 * The bit21 and bit22 of 0x42000
4964 * The bit21 and bit22 of 0x42004
4965 * The bit5 and bit7 of 0x42020
4966 * The bit14 of 0x70180
4967 * The bit14 of 0x71180
4968 *
4969 * WaFbcAsynchFlipDisableFbcQueue:snb
4970 */
4971 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4972 I915_READ(ILK_DISPLAY_CHICKEN1) |
4973 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4974 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4975 I915_READ(ILK_DISPLAY_CHICKEN2) |
4976 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4977 I915_WRITE(ILK_DSPCLK_GATE_D,
4978 I915_READ(ILK_DSPCLK_GATE_D) |
4979 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
4980 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4981
4982 g4x_disable_trickle_feed(dev);
4983
4984 cpt_init_clock_gating(dev);
4985
4986 gen6_check_mch_setup(dev);
4987 }
4988
4989 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4990 {
4991 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4992
4993 /*
4994 * WaVSThreadDispatchOverride:ivb,vlv
4995 *
4996 * This actually overrides the dispatch
4997 * mode for all thread types.
4998 */
4999 reg &= ~GEN7_FF_SCHED_MASK;
5000 reg |= GEN7_FF_TS_SCHED_HW;
5001 reg |= GEN7_FF_VS_SCHED_HW;
5002 reg |= GEN7_FF_DS_SCHED_HW;
5003
5004 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5005 }
5006
5007 static void lpt_init_clock_gating(struct drm_device *dev)
5008 {
5009 struct drm_i915_private *dev_priv = dev->dev_private;
5010
5011 /*
5012 * TODO: this bit should only be enabled when really needed, then
5013 * disabled when not needed anymore in order to save power.
5014 */
5015 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5016 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5017 I915_READ(SOUTH_DSPCLK_GATE_D) |
5018 PCH_LP_PARTITION_LEVEL_DISABLE);
5019
5020 /* WADPOClockGatingDisable:hsw */
5021 I915_WRITE(_TRANSA_CHICKEN1,
5022 I915_READ(_TRANSA_CHICKEN1) |
5023 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5024 }
5025
5026 static void lpt_suspend_hw(struct drm_device *dev)
5027 {
5028 struct drm_i915_private *dev_priv = dev->dev_private;
5029
5030 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5031 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5032
5033 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5034 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5035 }
5036 }
5037
5038 static void gen8_init_clock_gating(struct drm_device *dev)
5039 {
5040 struct drm_i915_private *dev_priv = dev->dev_private;
5041 enum pipe pipe;
5042
5043 I915_WRITE(WM3_LP_ILK, 0);
5044 I915_WRITE(WM2_LP_ILK, 0);
5045 I915_WRITE(WM1_LP_ILK, 0);
5046
5047 /* FIXME(BDW): Check all the w/a, some might only apply to
5048 * pre-production hw. */
5049
5050 /* WaDisablePartialInstShootdown:bdw */
5051 I915_WRITE(GEN8_ROW_CHICKEN,
5052 _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5053
5054 /* WaDisableThreadStallDopClockGating:bdw */
5055 /* FIXME: Unclear whether we really need this on production bdw. */
5056 I915_WRITE(GEN8_ROW_CHICKEN,
5057 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5058
5059 /*
5060 * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
5061 * pre-production hardware
5062 */
5063 I915_WRITE(HALF_SLICE_CHICKEN3,
5064 _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
5065 I915_WRITE(HALF_SLICE_CHICKEN3,
5066 _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5067 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
5068
5069 I915_WRITE(_3D_CHICKEN3,
5070 _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
5071
5072 I915_WRITE(COMMON_SLICE_CHICKEN2,
5073 _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
5074
5075 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5076 _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
5077
5078 /* WaDisableDopClockGating:bdw May not be needed for production */
5079 I915_WRITE(GEN7_ROW_CHICKEN2,
5080 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5081
5082 /* WaSwitchSolVfFArbitrationPriority:bdw */
5083 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5084
5085 /* WaPsrDPAMaskVBlankInSRD:bdw */
5086 I915_WRITE(CHICKEN_PAR1_1,
5087 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5088
5089 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5090 for_each_pipe(pipe) {
5091 I915_WRITE(CHICKEN_PIPESL_1(pipe),
5092 I915_READ(CHICKEN_PIPESL_1(pipe)) |
5093 BDW_DPRS_MASK_VBLANK_SRD);
5094 }
5095
5096 /* Use Force Non-Coherent whenever executing a 3D context. This is a
5097 * workaround for for a possible hang in the unlikely event a TLB
5098 * invalidation occurs during a PSD flush.
5099 */
5100 I915_WRITE(HDC_CHICKEN0,
5101 I915_READ(HDC_CHICKEN0) |
5102 _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
5103
5104 /* WaVSRefCountFullforceMissDisable:bdw */
5105 /* WaDSRefCountFullforceMissDisable:bdw */
5106 I915_WRITE(GEN7_FF_THREAD_MODE,
5107 I915_READ(GEN7_FF_THREAD_MODE) &
5108 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5109
5110 /*
5111 * BSpec recommends 8x4 when MSAA is used,
5112 * however in practice 16x4 seems fastest.
5113 *
5114 * Note that PS/WM thread counts depend on the WIZ hashing
5115 * disable bit, which we don't touch here, but it's good
5116 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5117 */
5118 I915_WRITE(GEN7_GT_MODE,
5119 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5120
5121 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5122 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5123
5124 /* WaDisableSDEUnitClockGating:bdw */
5125 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5126 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5127
5128 /* Wa4x4STCOptimizationDisable:bdw */
5129 I915_WRITE(CACHE_MODE_1,
5130 _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
5131 }
5132
5133 static void haswell_init_clock_gating(struct drm_device *dev)
5134 {
5135 struct drm_i915_private *dev_priv = dev->dev_private;
5136
5137 ilk_init_lp_watermarks(dev);
5138
5139 /* L3 caching of data atomics doesn't work -- disable it. */
5140 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5141 I915_WRITE(HSW_ROW_CHICKEN3,
5142 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5143
5144 /* This is required by WaCatErrorRejectionIssue:hsw */
5145 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5146 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5147 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5148
5149 /* WaVSRefCountFullforceMissDisable:hsw */
5150 I915_WRITE(GEN7_FF_THREAD_MODE,
5151 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5152
5153 /* WaDisable_RenderCache_OperationalFlush:hsw */
5154 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5155
5156 /* enable HiZ Raw Stall Optimization */
5157 I915_WRITE(CACHE_MODE_0_GEN7,
5158 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5159
5160 /* WaDisable4x2SubspanOptimization:hsw */
5161 I915_WRITE(CACHE_MODE_1,
5162 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5163
5164 /*
5165 * BSpec recommends 8x4 when MSAA is used,
5166 * however in practice 16x4 seems fastest.
5167 *
5168 * Note that PS/WM thread counts depend on the WIZ hashing
5169 * disable bit, which we don't touch here, but it's good
5170 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5171 */
5172 I915_WRITE(GEN7_GT_MODE,
5173 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5174
5175 /* WaSwitchSolVfFArbitrationPriority:hsw */
5176 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5177
5178 /* WaRsPkgCStateDisplayPMReq:hsw */
5179 I915_WRITE(CHICKEN_PAR1_1,
5180 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5181
5182 lpt_init_clock_gating(dev);
5183 }
5184
5185 static void ivybridge_init_clock_gating(struct drm_device *dev)
5186 {
5187 struct drm_i915_private *dev_priv = dev->dev_private;
5188 uint32_t snpcr;
5189
5190 ilk_init_lp_watermarks(dev);
5191
5192 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5193
5194 /* WaDisableEarlyCull:ivb */
5195 I915_WRITE(_3D_CHICKEN3,
5196 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5197
5198 /* WaDisableBackToBackFlipFix:ivb */
5199 I915_WRITE(IVB_CHICKEN3,
5200 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5201 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5202
5203 /* WaDisablePSDDualDispatchEnable:ivb */
5204 if (IS_IVB_GT1(dev))
5205 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5206 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5207
5208 /* WaDisable_RenderCache_OperationalFlush:ivb */
5209 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5210
5211 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5212 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5213 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5214
5215 /* WaApplyL3ControlAndL3ChickenMode:ivb */
5216 I915_WRITE(GEN7_L3CNTLREG1,
5217 GEN7_WA_FOR_GEN7_L3_CONTROL);
5218 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5219 GEN7_WA_L3_CHICKEN_MODE);
5220 if (IS_IVB_GT1(dev))
5221 I915_WRITE(GEN7_ROW_CHICKEN2,
5222 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5223 else {
5224 /* must write both registers */
5225 I915_WRITE(GEN7_ROW_CHICKEN2,
5226 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5227 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5228 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5229 }
5230
5231 /* WaForceL3Serialization:ivb */
5232 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5233 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5234
5235 /*
5236 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5237 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5238 */
5239 I915_WRITE(GEN6_UCGCTL2,
5240 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5241
5242 /* This is required by WaCatErrorRejectionIssue:ivb */
5243 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5244 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5245 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5246
5247 g4x_disable_trickle_feed(dev);
5248
5249 gen7_setup_fixed_func_scheduler(dev_priv);
5250
5251 if (0) { /* causes HiZ corruption on ivb:gt1 */
5252 /* enable HiZ Raw Stall Optimization */
5253 I915_WRITE(CACHE_MODE_0_GEN7,
5254 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5255 }
5256
5257 /* WaDisable4x2SubspanOptimization:ivb */
5258 I915_WRITE(CACHE_MODE_1,
5259 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5260
5261 /*
5262 * BSpec recommends 8x4 when MSAA is used,
5263 * however in practice 16x4 seems fastest.
5264 *
5265 * Note that PS/WM thread counts depend on the WIZ hashing
5266 * disable bit, which we don't touch here, but it's good
5267 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5268 */
5269 I915_WRITE(GEN7_GT_MODE,
5270 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5271
5272 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5273 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5274 snpcr |= GEN6_MBC_SNPCR_MED;
5275 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5276
5277 if (!HAS_PCH_NOP(dev))
5278 cpt_init_clock_gating(dev);
5279
5280 gen6_check_mch_setup(dev);
5281 }
5282
5283 static void valleyview_init_clock_gating(struct drm_device *dev)
5284 {
5285 struct drm_i915_private *dev_priv = dev->dev_private;
5286 u32 val;
5287
5288 mutex_lock(&dev_priv->rps.hw_lock);
5289 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5290 mutex_unlock(&dev_priv->rps.hw_lock);
5291 switch ((val >> 6) & 3) {
5292 case 0:
5293 case 1:
5294 dev_priv->mem_freq = 800;
5295 break;
5296 case 2:
5297 dev_priv->mem_freq = 1066;
5298 break;
5299 case 3:
5300 dev_priv->mem_freq = 1333;
5301 break;
5302 }
5303 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5304
5305 dev_priv->vlv_cdclk_freq = valleyview_cur_cdclk(dev_priv);
5306 DRM_DEBUG_DRIVER("Current CD clock rate: %d MHz",
5307 dev_priv->vlv_cdclk_freq);
5308
5309 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5310
5311 /* WaDisableEarlyCull:vlv */
5312 I915_WRITE(_3D_CHICKEN3,
5313 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5314
5315 /* WaDisableBackToBackFlipFix:vlv */
5316 I915_WRITE(IVB_CHICKEN3,
5317 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5318 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5319
5320 /* WaPsdDispatchEnable:vlv */
5321 /* WaDisablePSDDualDispatchEnable:vlv */
5322 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5323 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5324 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5325
5326 /* WaDisable_RenderCache_OperationalFlush:vlv */
5327 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5328
5329 /* WaForceL3Serialization:vlv */
5330 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5331 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5332
5333 /* WaDisableDopClockGating:vlv */
5334 I915_WRITE(GEN7_ROW_CHICKEN2,
5335 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5336
5337 /* This is required by WaCatErrorRejectionIssue:vlv */
5338 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5339 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5340 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5341
5342 gen7_setup_fixed_func_scheduler(dev_priv);
5343
5344 /*
5345 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5346 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5347 */
5348 I915_WRITE(GEN6_UCGCTL2,
5349 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5350
5351 /* WaDisableL3Bank2xClockGate:vlv */
5352 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5353
5354 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5355
5356 /*
5357 * BSpec says this must be set, even though
5358 * WaDisable4x2SubspanOptimization isn't listed for VLV.
5359 */
5360 I915_WRITE(CACHE_MODE_1,
5361 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5362
5363 /*
5364 * WaIncreaseL3CreditsForVLVB0:vlv
5365 * This is the hardware default actually.
5366 */
5367 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5368
5369 /*
5370 * WaDisableVLVClockGating_VBIIssue:vlv
5371 * Disable clock gating on th GCFG unit to prevent a delay
5372 * in the reporting of vblank events.
5373 */
5374 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5375 }
5376
5377 static void cherryview_init_clock_gating(struct drm_device *dev)
5378 {
5379 struct drm_i915_private *dev_priv = dev->dev_private;
5380
5381 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5382
5383 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5384
5385 /* WaDisablePartialInstShootdown:chv */
5386 I915_WRITE(GEN8_ROW_CHICKEN,
5387 _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5388
5389 /* WaDisableThreadStallDopClockGating:chv */
5390 I915_WRITE(GEN8_ROW_CHICKEN,
5391 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5392
5393 /* WaVSRefCountFullforceMissDisable:chv */
5394 /* WaDSRefCountFullforceMissDisable:chv */
5395 I915_WRITE(GEN7_FF_THREAD_MODE,
5396 I915_READ(GEN7_FF_THREAD_MODE) &
5397 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5398
5399 /* WaDisableSemaphoreAndSyncFlipWait:chv */
5400 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5401 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5402
5403 /* WaDisableCSUnitClockGating:chv */
5404 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5405 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5406
5407 /* WaDisableSDEUnitClockGating:chv */
5408 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5409 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5410
5411 /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
5412 I915_WRITE(HALF_SLICE_CHICKEN3,
5413 _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5414
5415 /* WaDisableGunitClockGating:chv (pre-production hw) */
5416 I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
5417 GINT_DIS);
5418
5419 /* WaDisableFfDopClockGating:chv (pre-production hw) */
5420 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5421 _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
5422
5423 /* WaDisableDopClockGating:chv (pre-production hw) */
5424 I915_WRITE(GEN7_ROW_CHICKEN2,
5425 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5426 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5427 GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
5428 }
5429
5430 static void g4x_init_clock_gating(struct drm_device *dev)
5431 {
5432 struct drm_i915_private *dev_priv = dev->dev_private;
5433 uint32_t dspclk_gate;
5434
5435 I915_WRITE(RENCLK_GATE_D1, 0);
5436 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5437 GS_UNIT_CLOCK_GATE_DISABLE |
5438 CL_UNIT_CLOCK_GATE_DISABLE);
5439 I915_WRITE(RAMCLK_GATE_D, 0);
5440 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5441 OVRUNIT_CLOCK_GATE_DISABLE |
5442 OVCUNIT_CLOCK_GATE_DISABLE;
5443 if (IS_GM45(dev))
5444 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5445 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5446
5447 /* WaDisableRenderCachePipelinedFlush */
5448 I915_WRITE(CACHE_MODE_0,
5449 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5450
5451 /* WaDisable_RenderCache_OperationalFlush:g4x */
5452 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5453
5454 g4x_disable_trickle_feed(dev);
5455 }
5456
5457 static void crestline_init_clock_gating(struct drm_device *dev)
5458 {
5459 struct drm_i915_private *dev_priv = dev->dev_private;
5460
5461 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5462 I915_WRITE(RENCLK_GATE_D2, 0);
5463 I915_WRITE(DSPCLK_GATE_D, 0);
5464 I915_WRITE(RAMCLK_GATE_D, 0);
5465 I915_WRITE16(DEUC, 0);
5466 I915_WRITE(MI_ARB_STATE,
5467 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5468
5469 /* WaDisable_RenderCache_OperationalFlush:gen4 */
5470 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5471 }
5472
5473 static void broadwater_init_clock_gating(struct drm_device *dev)
5474 {
5475 struct drm_i915_private *dev_priv = dev->dev_private;
5476
5477 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5478 I965_RCC_CLOCK_GATE_DISABLE |
5479 I965_RCPB_CLOCK_GATE_DISABLE |
5480 I965_ISC_CLOCK_GATE_DISABLE |
5481 I965_FBC_CLOCK_GATE_DISABLE);
5482 I915_WRITE(RENCLK_GATE_D2, 0);
5483 I915_WRITE(MI_ARB_STATE,
5484 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5485
5486 /* WaDisable_RenderCache_OperationalFlush:gen4 */
5487 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5488 }
5489
5490 static void gen3_init_clock_gating(struct drm_device *dev)
5491 {
5492 struct drm_i915_private *dev_priv = dev->dev_private;
5493 u32 dstate = I915_READ(D_STATE);
5494
5495 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5496 DSTATE_DOT_CLOCK_GATING;
5497 I915_WRITE(D_STATE, dstate);
5498
5499 if (IS_PINEVIEW(dev))
5500 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5501
5502 /* IIR "flip pending" means done if this bit is set */
5503 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5504 }
5505
5506 static void i85x_init_clock_gating(struct drm_device *dev)
5507 {
5508 struct drm_i915_private *dev_priv = dev->dev_private;
5509
5510 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5511 }
5512
5513 static void i830_init_clock_gating(struct drm_device *dev)
5514 {
5515 struct drm_i915_private *dev_priv = dev->dev_private;
5516
5517 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5518 }
5519
5520 void intel_init_clock_gating(struct drm_device *dev)
5521 {
5522 struct drm_i915_private *dev_priv = dev->dev_private;
5523
5524 dev_priv->display.init_clock_gating(dev);
5525 }
5526
5527 void intel_suspend_hw(struct drm_device *dev)
5528 {
5529 if (HAS_PCH_LPT(dev))
5530 lpt_suspend_hw(dev);
5531 }
5532
5533 #define for_each_power_well(i, power_well, domain_mask, power_domains) \
5534 for (i = 0; \
5535 i < (power_domains)->power_well_count && \
5536 ((power_well) = &(power_domains)->power_wells[i]); \
5537 i++) \
5538 if ((power_well)->domains & (domain_mask))
5539
5540 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5541 for (i = (power_domains)->power_well_count - 1; \
5542 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5543 i--) \
5544 if ((power_well)->domains & (domain_mask))
5545
5546 /**
5547 * We should only use the power well if we explicitly asked the hardware to
5548 * enable it, so check if it's enabled and also check if we've requested it to
5549 * be enabled.
5550 */
5551 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
5552 struct i915_power_well *power_well)
5553 {
5554 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5555 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5556 }
5557
5558 bool intel_display_power_enabled_sw(struct drm_i915_private *dev_priv,
5559 enum intel_display_power_domain domain)
5560 {
5561 struct i915_power_domains *power_domains;
5562
5563 power_domains = &dev_priv->power_domains;
5564
5565 return power_domains->domain_use_count[domain];
5566 }
5567
5568 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
5569 enum intel_display_power_domain domain)
5570 {
5571 struct i915_power_domains *power_domains;
5572 struct i915_power_well *power_well;
5573 bool is_enabled;
5574 int i;
5575
5576 if (dev_priv->pm.suspended)
5577 return false;
5578
5579 power_domains = &dev_priv->power_domains;
5580
5581 is_enabled = true;
5582
5583 mutex_lock(&power_domains->lock);
5584 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5585 if (power_well->always_on)
5586 continue;
5587
5588 if (!power_well->ops->is_enabled(dev_priv, power_well)) {
5589 is_enabled = false;
5590 break;
5591 }
5592 }
5593 mutex_unlock(&power_domains->lock);
5594
5595 return is_enabled;
5596 }
5597
5598 /*
5599 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5600 * when not needed anymore. We have 4 registers that can request the power well
5601 * to be enabled, and it will only be disabled if none of the registers is
5602 * requesting it to be enabled.
5603 */
5604 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
5605 {
5606 struct drm_device *dev = dev_priv->dev;
5607 unsigned long irqflags;
5608
5609 /*
5610 * After we re-enable the power well, if we touch VGA register 0x3d5
5611 * we'll get unclaimed register interrupts. This stops after we write
5612 * anything to the VGA MSR register. The vgacon module uses this
5613 * register all the time, so if we unbind our driver and, as a
5614 * consequence, bind vgacon, we'll get stuck in an infinite loop at
5615 * console_unlock(). So make here we touch the VGA MSR register, making
5616 * sure vgacon can keep working normally without triggering interrupts
5617 * and error messages.
5618 */
5619 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
5620 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
5621 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
5622
5623 if (IS_BROADWELL(dev)) {
5624 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5625 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
5626 dev_priv->de_irq_mask[PIPE_B]);
5627 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
5628 ~dev_priv->de_irq_mask[PIPE_B] |
5629 GEN8_PIPE_VBLANK);
5630 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
5631 dev_priv->de_irq_mask[PIPE_C]);
5632 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
5633 ~dev_priv->de_irq_mask[PIPE_C] |
5634 GEN8_PIPE_VBLANK);
5635 POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
5636 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5637 }
5638 }
5639
5640 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
5641 struct i915_power_well *power_well, bool enable)
5642 {
5643 bool is_enabled, enable_requested;
5644 uint32_t tmp;
5645
5646 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5647 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5648 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5649
5650 if (enable) {
5651 if (!enable_requested)
5652 I915_WRITE(HSW_PWR_WELL_DRIVER,
5653 HSW_PWR_WELL_ENABLE_REQUEST);
5654
5655 if (!is_enabled) {
5656 DRM_DEBUG_KMS("Enabling power well\n");
5657 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5658 HSW_PWR_WELL_STATE_ENABLED), 20))
5659 DRM_ERROR("Timeout enabling power well\n");
5660 }
5661
5662 hsw_power_well_post_enable(dev_priv);
5663 } else {
5664 if (enable_requested) {
5665 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5666 POSTING_READ(HSW_PWR_WELL_DRIVER);
5667 DRM_DEBUG_KMS("Requesting to disable the power well\n");
5668 }
5669 }
5670 }
5671
5672 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
5673 struct i915_power_well *power_well)
5674 {
5675 hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
5676
5677 /*
5678 * We're taking over the BIOS, so clear any requests made by it since
5679 * the driver is in charge now.
5680 */
5681 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5682 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5683 }
5684
5685 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
5686 struct i915_power_well *power_well)
5687 {
5688 hsw_set_power_well(dev_priv, power_well, true);
5689 }
5690
5691 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
5692 struct i915_power_well *power_well)
5693 {
5694 hsw_set_power_well(dev_priv, power_well, false);
5695 }
5696
5697 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
5698 struct i915_power_well *power_well)
5699 {
5700 }
5701
5702 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
5703 struct i915_power_well *power_well)
5704 {
5705 return true;
5706 }
5707
5708 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
5709 struct i915_power_well *power_well, bool enable)
5710 {
5711 enum punit_power_well power_well_id = power_well->data;
5712 u32 mask;
5713 u32 state;
5714 u32 ctrl;
5715
5716 mask = PUNIT_PWRGT_MASK(power_well_id);
5717 state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
5718 PUNIT_PWRGT_PWR_GATE(power_well_id);
5719
5720 mutex_lock(&dev_priv->rps.hw_lock);
5721
5722 #define COND \
5723 ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
5724
5725 if (COND)
5726 goto out;
5727
5728 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
5729 ctrl &= ~mask;
5730 ctrl |= state;
5731 vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
5732
5733 if (wait_for(COND, 100))
5734 DRM_ERROR("timout setting power well state %08x (%08x)\n",
5735 state,
5736 vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
5737
5738 #undef COND
5739
5740 out:
5741 mutex_unlock(&dev_priv->rps.hw_lock);
5742 }
5743
5744 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
5745 struct i915_power_well *power_well)
5746 {
5747 vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
5748 }
5749
5750 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
5751 struct i915_power_well *power_well)
5752 {
5753 vlv_set_power_well(dev_priv, power_well, true);
5754 }
5755
5756 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
5757 struct i915_power_well *power_well)
5758 {
5759 vlv_set_power_well(dev_priv, power_well, false);
5760 }
5761
5762 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
5763 struct i915_power_well *power_well)
5764 {
5765 int power_well_id = power_well->data;
5766 bool enabled = false;
5767 u32 mask;
5768 u32 state;
5769 u32 ctrl;
5770
5771 mask = PUNIT_PWRGT_MASK(power_well_id);
5772 ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
5773
5774 mutex_lock(&dev_priv->rps.hw_lock);
5775
5776 state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
5777 /*
5778 * We only ever set the power-on and power-gate states, anything
5779 * else is unexpected.
5780 */
5781 WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
5782 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
5783 if (state == ctrl)
5784 enabled = true;
5785
5786 /*
5787 * A transient state at this point would mean some unexpected party
5788 * is poking at the power controls too.
5789 */
5790 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
5791 WARN_ON(ctrl != state);
5792
5793 mutex_unlock(&dev_priv->rps.hw_lock);
5794
5795 return enabled;
5796 }
5797
5798 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
5799 struct i915_power_well *power_well)
5800 {
5801 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
5802
5803 vlv_set_power_well(dev_priv, power_well, true);
5804
5805 spin_lock_irq(&dev_priv->irq_lock);
5806 valleyview_enable_display_irqs(dev_priv);
5807 spin_unlock_irq(&dev_priv->irq_lock);
5808
5809 /*
5810 * During driver initialization/resume we can avoid restoring the
5811 * part of the HW/SW state that will be inited anyway explicitly.
5812 */
5813 if (dev_priv->power_domains.initializing)
5814 return;
5815
5816 intel_hpd_init(dev_priv->dev);
5817
5818 i915_redisable_vga_power_on(dev_priv->dev);
5819 }
5820
5821 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
5822 struct i915_power_well *power_well)
5823 {
5824 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
5825
5826 spin_lock_irq(&dev_priv->irq_lock);
5827 valleyview_disable_display_irqs(dev_priv);
5828 spin_unlock_irq(&dev_priv->irq_lock);
5829
5830 vlv_set_power_well(dev_priv, power_well, false);
5831 }
5832
5833 static void check_power_well_state(struct drm_i915_private *dev_priv,
5834 struct i915_power_well *power_well)
5835 {
5836 bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
5837
5838 if (power_well->always_on || !i915.disable_power_well) {
5839 if (!enabled)
5840 goto mismatch;
5841
5842 return;
5843 }
5844
5845 if (enabled != (power_well->count > 0))
5846 goto mismatch;
5847
5848 return;
5849
5850 mismatch:
5851 WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
5852 power_well->name, power_well->always_on, enabled,
5853 power_well->count, i915.disable_power_well);
5854 }
5855
5856 void intel_display_power_get(struct drm_i915_private *dev_priv,
5857 enum intel_display_power_domain domain)
5858 {
5859 struct i915_power_domains *power_domains;
5860 struct i915_power_well *power_well;
5861 int i;
5862
5863 intel_runtime_pm_get(dev_priv);
5864
5865 power_domains = &dev_priv->power_domains;
5866
5867 mutex_lock(&power_domains->lock);
5868
5869 for_each_power_well(i, power_well, BIT(domain), power_domains) {
5870 if (!power_well->count++) {
5871 DRM_DEBUG_KMS("enabling %s\n", power_well->name);
5872 power_well->ops->enable(dev_priv, power_well);
5873 }
5874
5875 check_power_well_state(dev_priv, power_well);
5876 }
5877
5878 power_domains->domain_use_count[domain]++;
5879
5880 mutex_unlock(&power_domains->lock);
5881 }
5882
5883 void intel_display_power_put(struct drm_i915_private *dev_priv,
5884 enum intel_display_power_domain domain)
5885 {
5886 struct i915_power_domains *power_domains;
5887 struct i915_power_well *power_well;
5888 int i;
5889
5890 power_domains = &dev_priv->power_domains;
5891
5892 mutex_lock(&power_domains->lock);
5893
5894 WARN_ON(!power_domains->domain_use_count[domain]);
5895 power_domains->domain_use_count[domain]--;
5896
5897 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5898 WARN_ON(!power_well->count);
5899
5900 if (!--power_well->count && i915.disable_power_well) {
5901 DRM_DEBUG_KMS("disabling %s\n", power_well->name);
5902 power_well->ops->disable(dev_priv, power_well);
5903 }
5904
5905 check_power_well_state(dev_priv, power_well);
5906 }
5907
5908 mutex_unlock(&power_domains->lock);
5909
5910 intel_runtime_pm_put(dev_priv);
5911 }
5912
5913 static struct i915_power_domains *hsw_pwr;
5914
5915 /* Display audio driver power well request */
5916 void i915_request_power_well(void)
5917 {
5918 struct drm_i915_private *dev_priv;
5919
5920 if (WARN_ON(!hsw_pwr))
5921 return;
5922
5923 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5924 power_domains);
5925 intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
5926 }
5927 EXPORT_SYMBOL_GPL(i915_request_power_well);
5928
5929 /* Display audio driver power well release */
5930 void i915_release_power_well(void)
5931 {
5932 struct drm_i915_private *dev_priv;
5933
5934 if (WARN_ON(!hsw_pwr))
5935 return;
5936
5937 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5938 power_domains);
5939 intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
5940 }
5941 EXPORT_SYMBOL_GPL(i915_release_power_well);
5942
5943 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
5944
5945 #define HSW_ALWAYS_ON_POWER_DOMAINS ( \
5946 BIT(POWER_DOMAIN_PIPE_A) | \
5947 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
5948 BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
5949 BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
5950 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
5951 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
5952 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
5953 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
5954 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
5955 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
5956 BIT(POWER_DOMAIN_PORT_CRT) | \
5957 BIT(POWER_DOMAIN_INIT))
5958 #define HSW_DISPLAY_POWER_DOMAINS ( \
5959 (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
5960 BIT(POWER_DOMAIN_INIT))
5961
5962 #define BDW_ALWAYS_ON_POWER_DOMAINS ( \
5963 HSW_ALWAYS_ON_POWER_DOMAINS | \
5964 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
5965 #define BDW_DISPLAY_POWER_DOMAINS ( \
5966 (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
5967 BIT(POWER_DOMAIN_INIT))
5968
5969 #define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
5970 #define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
5971
5972 #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
5973 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
5974 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
5975 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
5976 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
5977 BIT(POWER_DOMAIN_PORT_CRT) | \
5978 BIT(POWER_DOMAIN_INIT))
5979
5980 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
5981 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
5982 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
5983 BIT(POWER_DOMAIN_INIT))
5984
5985 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
5986 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
5987 BIT(POWER_DOMAIN_INIT))
5988
5989 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
5990 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
5991 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
5992 BIT(POWER_DOMAIN_INIT))
5993
5994 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
5995 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
5996 BIT(POWER_DOMAIN_INIT))
5997
5998 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
5999 .sync_hw = i9xx_always_on_power_well_noop,
6000 .enable = i9xx_always_on_power_well_noop,
6001 .disable = i9xx_always_on_power_well_noop,
6002 .is_enabled = i9xx_always_on_power_well_enabled,
6003 };
6004
6005 static struct i915_power_well i9xx_always_on_power_well[] = {
6006 {
6007 .name = "always-on",
6008 .always_on = 1,
6009 .domains = POWER_DOMAIN_MASK,
6010 .ops = &i9xx_always_on_power_well_ops,
6011 },
6012 };
6013
6014 static const struct i915_power_well_ops hsw_power_well_ops = {
6015 .sync_hw = hsw_power_well_sync_hw,
6016 .enable = hsw_power_well_enable,
6017 .disable = hsw_power_well_disable,
6018 .is_enabled = hsw_power_well_enabled,
6019 };
6020
6021 static struct i915_power_well hsw_power_wells[] = {
6022 {
6023 .name = "always-on",
6024 .always_on = 1,
6025 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
6026 .ops = &i9xx_always_on_power_well_ops,
6027 },
6028 {
6029 .name = "display",
6030 .domains = HSW_DISPLAY_POWER_DOMAINS,
6031 .ops = &hsw_power_well_ops,
6032 },
6033 };
6034
6035 static struct i915_power_well bdw_power_wells[] = {
6036 {
6037 .name = "always-on",
6038 .always_on = 1,
6039 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
6040 .ops = &i9xx_always_on_power_well_ops,
6041 },
6042 {
6043 .name = "display",
6044 .domains = BDW_DISPLAY_POWER_DOMAINS,
6045 .ops = &hsw_power_well_ops,
6046 },
6047 };
6048
6049 static const struct i915_power_well_ops vlv_display_power_well_ops = {
6050 .sync_hw = vlv_power_well_sync_hw,
6051 .enable = vlv_display_power_well_enable,
6052 .disable = vlv_display_power_well_disable,
6053 .is_enabled = vlv_power_well_enabled,
6054 };
6055
6056 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
6057 .sync_hw = vlv_power_well_sync_hw,
6058 .enable = vlv_power_well_enable,
6059 .disable = vlv_power_well_disable,
6060 .is_enabled = vlv_power_well_enabled,
6061 };
6062
6063 static struct i915_power_well vlv_power_wells[] = {
6064 {
6065 .name = "always-on",
6066 .always_on = 1,
6067 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
6068 .ops = &i9xx_always_on_power_well_ops,
6069 },
6070 {
6071 .name = "display",
6072 .domains = VLV_DISPLAY_POWER_DOMAINS,
6073 .data = PUNIT_POWER_WELL_DISP2D,
6074 .ops = &vlv_display_power_well_ops,
6075 },
6076 {
6077 .name = "dpio-common",
6078 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
6079 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
6080 .ops = &vlv_dpio_power_well_ops,
6081 },
6082 {
6083 .name = "dpio-tx-b-01",
6084 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6085 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6086 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6087 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6088 .ops = &vlv_dpio_power_well_ops,
6089 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
6090 },
6091 {
6092 .name = "dpio-tx-b-23",
6093 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6094 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6095 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6096 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6097 .ops = &vlv_dpio_power_well_ops,
6098 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
6099 },
6100 {
6101 .name = "dpio-tx-c-01",
6102 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6103 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6104 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6105 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6106 .ops = &vlv_dpio_power_well_ops,
6107 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
6108 },
6109 {
6110 .name = "dpio-tx-c-23",
6111 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6112 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6113 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6114 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6115 .ops = &vlv_dpio_power_well_ops,
6116 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
6117 },
6118 };
6119
6120 #define set_power_wells(power_domains, __power_wells) ({ \
6121 (power_domains)->power_wells = (__power_wells); \
6122 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
6123 })
6124
6125 int intel_power_domains_init(struct drm_i915_private *dev_priv)
6126 {
6127 struct i915_power_domains *power_domains = &dev_priv->power_domains;
6128
6129 mutex_init(&power_domains->lock);
6130
6131 /*
6132 * The enabling order will be from lower to higher indexed wells,
6133 * the disabling order is reversed.
6134 */
6135 if (IS_HASWELL(dev_priv->dev)) {
6136 set_power_wells(power_domains, hsw_power_wells);
6137 hsw_pwr = power_domains;
6138 } else if (IS_BROADWELL(dev_priv->dev)) {
6139 set_power_wells(power_domains, bdw_power_wells);
6140 hsw_pwr = power_domains;
6141 } else if (IS_VALLEYVIEW(dev_priv->dev)) {
6142 set_power_wells(power_domains, vlv_power_wells);
6143 } else {
6144 set_power_wells(power_domains, i9xx_always_on_power_well);
6145 }
6146
6147 return 0;
6148 }
6149
6150 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
6151 {
6152 hsw_pwr = NULL;
6153 }
6154
6155 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
6156 {
6157 struct i915_power_domains *power_domains = &dev_priv->power_domains;
6158 struct i915_power_well *power_well;
6159 int i;
6160
6161 mutex_lock(&power_domains->lock);
6162 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains)
6163 power_well->ops->sync_hw(dev_priv, power_well);
6164 mutex_unlock(&power_domains->lock);
6165 }
6166
6167 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
6168 {
6169 struct i915_power_domains *power_domains = &dev_priv->power_domains;
6170
6171 power_domains->initializing = true;
6172 /* For now, we need the power well to be always enabled. */
6173 intel_display_set_init_power(dev_priv, true);
6174 intel_power_domains_resume(dev_priv);
6175 power_domains->initializing = false;
6176 }
6177
6178 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
6179 {
6180 intel_runtime_pm_get(dev_priv);
6181 }
6182
6183 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
6184 {
6185 intel_runtime_pm_put(dev_priv);
6186 }
6187
6188 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
6189 {
6190 struct drm_device *dev = dev_priv->dev;
6191 struct device *device = &dev->pdev->dev;
6192
6193 if (!HAS_RUNTIME_PM(dev))
6194 return;
6195
6196 pm_runtime_get_sync(device);
6197 WARN(dev_priv->pm.suspended, "Device still suspended.\n");
6198 }
6199
6200 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
6201 {
6202 struct drm_device *dev = dev_priv->dev;
6203 struct device *device = &dev->pdev->dev;
6204
6205 if (!HAS_RUNTIME_PM(dev))
6206 return;
6207
6208 WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
6209 pm_runtime_get_noresume(device);
6210 }
6211
6212 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
6213 {
6214 struct drm_device *dev = dev_priv->dev;
6215 struct device *device = &dev->pdev->dev;
6216
6217 if (!HAS_RUNTIME_PM(dev))
6218 return;
6219
6220 pm_runtime_mark_last_busy(device);
6221 pm_runtime_put_autosuspend(device);
6222 }
6223
6224 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
6225 {
6226 struct drm_device *dev = dev_priv->dev;
6227 struct device *device = &dev->pdev->dev;
6228
6229 if (!HAS_RUNTIME_PM(dev))
6230 return;
6231
6232 pm_runtime_set_active(device);
6233
6234 /*
6235 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6236 * requirement.
6237 */
6238 if (!intel_enable_rc6(dev)) {
6239 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6240 return;
6241 }
6242
6243 pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
6244 pm_runtime_mark_last_busy(device);
6245 pm_runtime_use_autosuspend(device);
6246
6247 pm_runtime_put_autosuspend(device);
6248 }
6249
6250 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
6251 {
6252 struct drm_device *dev = dev_priv->dev;
6253 struct device *device = &dev->pdev->dev;
6254
6255 if (!HAS_RUNTIME_PM(dev))
6256 return;
6257
6258 if (!intel_enable_rc6(dev))
6259 return;
6260
6261 /* Make sure we're not suspended first. */
6262 pm_runtime_get_sync(device);
6263 pm_runtime_disable(device);
6264 }
6265
6266 /* Set up chip specific power management-related functions */
6267 void intel_init_pm(struct drm_device *dev)
6268 {
6269 struct drm_i915_private *dev_priv = dev->dev_private;
6270
6271 if (HAS_FBC(dev)) {
6272 if (INTEL_INFO(dev)->gen >= 7) {
6273 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6274 dev_priv->display.enable_fbc = gen7_enable_fbc;
6275 dev_priv->display.disable_fbc = ironlake_disable_fbc;
6276 } else if (INTEL_INFO(dev)->gen >= 5) {
6277 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6278 dev_priv->display.enable_fbc = ironlake_enable_fbc;
6279 dev_priv->display.disable_fbc = ironlake_disable_fbc;
6280 } else if (IS_GM45(dev)) {
6281 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
6282 dev_priv->display.enable_fbc = g4x_enable_fbc;
6283 dev_priv->display.disable_fbc = g4x_disable_fbc;
6284 } else {
6285 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
6286 dev_priv->display.enable_fbc = i8xx_enable_fbc;
6287 dev_priv->display.disable_fbc = i8xx_disable_fbc;
6288
6289 /* This value was pulled out of someone's hat */
6290 I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
6291 }
6292 }
6293
6294 /* For cxsr */
6295 if (IS_PINEVIEW(dev))
6296 i915_pineview_get_mem_freq(dev);
6297 else if (IS_GEN5(dev))
6298 i915_ironlake_get_mem_freq(dev);
6299
6300 /* For FIFO watermark updates */
6301 if (HAS_PCH_SPLIT(dev)) {
6302 ilk_setup_wm_latency(dev);
6303
6304 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6305 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6306 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6307 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6308 dev_priv->display.update_wm = ilk_update_wm;
6309 dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6310 } else {
6311 DRM_DEBUG_KMS("Failed to read display plane latency. "
6312 "Disable CxSR\n");
6313 }
6314
6315 if (IS_GEN5(dev))
6316 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6317 else if (IS_GEN6(dev))
6318 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6319 else if (IS_IVYBRIDGE(dev))
6320 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6321 else if (IS_HASWELL(dev))
6322 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6323 else if (INTEL_INFO(dev)->gen == 8)
6324 dev_priv->display.init_clock_gating = gen8_init_clock_gating;
6325 } else if (IS_CHERRYVIEW(dev)) {
6326 dev_priv->display.update_wm = valleyview_update_wm;
6327 dev_priv->display.init_clock_gating =
6328 cherryview_init_clock_gating;
6329 } else if (IS_VALLEYVIEW(dev)) {
6330 dev_priv->display.update_wm = valleyview_update_wm;
6331 dev_priv->display.init_clock_gating =
6332 valleyview_init_clock_gating;
6333 } else if (IS_PINEVIEW(dev)) {
6334 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6335 dev_priv->is_ddr3,
6336 dev_priv->fsb_freq,
6337 dev_priv->mem_freq)) {
6338 DRM_INFO("failed to find known CxSR latency "
6339 "(found ddr%s fsb freq %d, mem freq %d), "
6340 "disabling CxSR\n",
6341 (dev_priv->is_ddr3 == 1) ? "3" : "2",
6342 dev_priv->fsb_freq, dev_priv->mem_freq);
6343 /* Disable CxSR and never update its watermark again */
6344 pineview_disable_cxsr(dev);
6345 dev_priv->display.update_wm = NULL;
6346 } else
6347 dev_priv->display.update_wm = pineview_update_wm;
6348 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6349 } else if (IS_G4X(dev)) {
6350 dev_priv->display.update_wm = g4x_update_wm;
6351 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6352 } else if (IS_GEN4(dev)) {
6353 dev_priv->display.update_wm = i965_update_wm;
6354 if (IS_CRESTLINE(dev))
6355 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6356 else if (IS_BROADWATER(dev))
6357 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6358 } else if (IS_GEN3(dev)) {
6359 dev_priv->display.update_wm = i9xx_update_wm;
6360 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6361 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6362 } else if (IS_GEN2(dev)) {
6363 if (INTEL_INFO(dev)->num_pipes == 1) {
6364 dev_priv->display.update_wm = i845_update_wm;
6365 dev_priv->display.get_fifo_size = i845_get_fifo_size;
6366 } else {
6367 dev_priv->display.update_wm = i9xx_update_wm;
6368 dev_priv->display.get_fifo_size = i830_get_fifo_size;
6369 }
6370
6371 if (IS_I85X(dev) || IS_I865G(dev))
6372 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6373 else
6374 dev_priv->display.init_clock_gating = i830_init_clock_gating;
6375 } else {
6376 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6377 }
6378 }
6379
6380 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
6381 {
6382 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6383
6384 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6385 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6386 return -EAGAIN;
6387 }
6388
6389 I915_WRITE(GEN6_PCODE_DATA, *val);
6390 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6391
6392 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6393 500)) {
6394 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6395 return -ETIMEDOUT;
6396 }
6397
6398 *val = I915_READ(GEN6_PCODE_DATA);
6399 I915_WRITE(GEN6_PCODE_DATA, 0);
6400
6401 return 0;
6402 }
6403
6404 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
6405 {
6406 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6407
6408 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6409 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6410 return -EAGAIN;
6411 }
6412
6413 I915_WRITE(GEN6_PCODE_DATA, val);
6414 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6415
6416 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6417 500)) {
6418 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6419 return -ETIMEDOUT;
6420 }
6421
6422 I915_WRITE(GEN6_PCODE_DATA, 0);
6423
6424 return 0;
6425 }
6426
6427 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6428 {
6429 int div;
6430
6431 /* 4 x czclk */
6432 switch (dev_priv->mem_freq) {
6433 case 800:
6434 div = 10;
6435 break;
6436 case 1066:
6437 div = 12;
6438 break;
6439 case 1333:
6440 div = 16;
6441 break;
6442 default:
6443 return -1;
6444 }
6445
6446 return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6447 }
6448
6449 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6450 {
6451 int mul;
6452
6453 /* 4 x czclk */
6454 switch (dev_priv->mem_freq) {
6455 case 800:
6456 mul = 10;
6457 break;
6458 case 1066:
6459 mul = 12;
6460 break;
6461 case 1333:
6462 mul = 16;
6463 break;
6464 default:
6465 return -1;
6466 }
6467
6468 return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
6469 }
6470
6471 void intel_pm_setup(struct drm_device *dev)
6472 {
6473 struct drm_i915_private *dev_priv = dev->dev_private;
6474
6475 mutex_init(&dev_priv->rps.hw_lock);
6476
6477 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6478 intel_gen6_powersave_work);
6479
6480 dev_priv->pm.suspended = false;
6481 dev_priv->pm.irqs_disabled = false;
6482 }
This page took 0.168656 seconds and 5 git commands to generate.