c0721ffb56a2ab131b736b250c8ccbd7b174ef1f
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
35 * framebuffer contents in-memory, aiming at reducing the required bandwidth
36 * during in-memory transfers and, therefore, reduce the power packet.
37 *
38 * The benefits of FBC are mostly visible with solid backgrounds and
39 * variation-less patterns.
40 *
41 * FBC-related functionality can be enabled by the means of the
42 * i915.i915_enable_fbc parameter
43 */
44
45 static void i8xx_disable_fbc(struct drm_device *dev)
46 {
47 struct drm_i915_private *dev_priv = dev->dev_private;
48 u32 fbc_ctl;
49
50 /* Disable compression */
51 fbc_ctl = I915_READ(FBC_CONTROL);
52 if ((fbc_ctl & FBC_CTL_EN) == 0)
53 return;
54
55 fbc_ctl &= ~FBC_CTL_EN;
56 I915_WRITE(FBC_CONTROL, fbc_ctl);
57
58 /* Wait for compressing bit to clear */
59 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
60 DRM_DEBUG_KMS("FBC idle timed out\n");
61 return;
62 }
63
64 DRM_DEBUG_KMS("disabled FBC\n");
65 }
66
67 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
68 {
69 struct drm_device *dev = crtc->dev;
70 struct drm_i915_private *dev_priv = dev->dev_private;
71 struct drm_framebuffer *fb = crtc->fb;
72 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
73 struct drm_i915_gem_object *obj = intel_fb->obj;
74 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
75 int cfb_pitch;
76 int plane, i;
77 u32 fbc_ctl, fbc_ctl2;
78
79 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
80 if (fb->pitches[0] < cfb_pitch)
81 cfb_pitch = fb->pitches[0];
82
83 /* FBC_CTL wants 64B units */
84 cfb_pitch = (cfb_pitch / 64) - 1;
85 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
86
87 /* Clear old tags */
88 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
89 I915_WRITE(FBC_TAG + (i * 4), 0);
90
91 /* Set it up... */
92 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
93 fbc_ctl2 |= plane;
94 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
95 I915_WRITE(FBC_FENCE_OFF, crtc->y);
96
97 /* enable it... */
98 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
99 if (IS_I945GM(dev))
100 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
101 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
102 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
103 fbc_ctl |= obj->fence_reg;
104 I915_WRITE(FBC_CONTROL, fbc_ctl);
105
106 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
107 cfb_pitch, crtc->y, intel_crtc->plane);
108 }
109
110 static bool i8xx_fbc_enabled(struct drm_device *dev)
111 {
112 struct drm_i915_private *dev_priv = dev->dev_private;
113
114 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
115 }
116
117 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
118 {
119 struct drm_device *dev = crtc->dev;
120 struct drm_i915_private *dev_priv = dev->dev_private;
121 struct drm_framebuffer *fb = crtc->fb;
122 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
123 struct drm_i915_gem_object *obj = intel_fb->obj;
124 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
125 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
126 unsigned long stall_watermark = 200;
127 u32 dpfc_ctl;
128
129 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
130 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
131 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
132
133 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
134 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
135 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
136 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
137
138 /* enable it... */
139 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
140
141 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
142 }
143
144 static void g4x_disable_fbc(struct drm_device *dev)
145 {
146 struct drm_i915_private *dev_priv = dev->dev_private;
147 u32 dpfc_ctl;
148
149 /* Disable compression */
150 dpfc_ctl = I915_READ(DPFC_CONTROL);
151 if (dpfc_ctl & DPFC_CTL_EN) {
152 dpfc_ctl &= ~DPFC_CTL_EN;
153 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
154
155 DRM_DEBUG_KMS("disabled FBC\n");
156 }
157 }
158
159 static bool g4x_fbc_enabled(struct drm_device *dev)
160 {
161 struct drm_i915_private *dev_priv = dev->dev_private;
162
163 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
164 }
165
166 static void sandybridge_blit_fbc_update(struct drm_device *dev)
167 {
168 struct drm_i915_private *dev_priv = dev->dev_private;
169 u32 blt_ecoskpd;
170
171 /* Make sure blitter notifies FBC of writes */
172 gen6_gt_force_wake_get(dev_priv);
173 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
174 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
175 GEN6_BLITTER_LOCK_SHIFT;
176 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
177 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
178 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
179 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
180 GEN6_BLITTER_LOCK_SHIFT);
181 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
182 POSTING_READ(GEN6_BLITTER_ECOSKPD);
183 gen6_gt_force_wake_put(dev_priv);
184 }
185
186 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
187 {
188 struct drm_device *dev = crtc->dev;
189 struct drm_i915_private *dev_priv = dev->dev_private;
190 struct drm_framebuffer *fb = crtc->fb;
191 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
192 struct drm_i915_gem_object *obj = intel_fb->obj;
193 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
194 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
195 unsigned long stall_watermark = 200;
196 u32 dpfc_ctl;
197
198 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
199 dpfc_ctl &= DPFC_RESERVED;
200 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
201 /* Set persistent mode for front-buffer rendering, ala X. */
202 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
203 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
204 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
205
206 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
207 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
208 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
209 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
210 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
211 /* enable it... */
212 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
213
214 if (IS_GEN6(dev)) {
215 I915_WRITE(SNB_DPFC_CTL_SA,
216 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
217 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
218 sandybridge_blit_fbc_update(dev);
219 }
220
221 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
222 }
223
224 static void ironlake_disable_fbc(struct drm_device *dev)
225 {
226 struct drm_i915_private *dev_priv = dev->dev_private;
227 u32 dpfc_ctl;
228
229 /* Disable compression */
230 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
231 if (dpfc_ctl & DPFC_CTL_EN) {
232 dpfc_ctl &= ~DPFC_CTL_EN;
233 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
234
235 DRM_DEBUG_KMS("disabled FBC\n");
236 }
237 }
238
239 static bool ironlake_fbc_enabled(struct drm_device *dev)
240 {
241 struct drm_i915_private *dev_priv = dev->dev_private;
242
243 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
244 }
245
246 bool intel_fbc_enabled(struct drm_device *dev)
247 {
248 struct drm_i915_private *dev_priv = dev->dev_private;
249
250 if (!dev_priv->display.fbc_enabled)
251 return false;
252
253 return dev_priv->display.fbc_enabled(dev);
254 }
255
256 static void intel_fbc_work_fn(struct work_struct *__work)
257 {
258 struct intel_fbc_work *work =
259 container_of(to_delayed_work(__work),
260 struct intel_fbc_work, work);
261 struct drm_device *dev = work->crtc->dev;
262 struct drm_i915_private *dev_priv = dev->dev_private;
263
264 mutex_lock(&dev->struct_mutex);
265 if (work == dev_priv->fbc_work) {
266 /* Double check that we haven't switched fb without cancelling
267 * the prior work.
268 */
269 if (work->crtc->fb == work->fb) {
270 dev_priv->display.enable_fbc(work->crtc,
271 work->interval);
272
273 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
274 dev_priv->cfb_fb = work->crtc->fb->base.id;
275 dev_priv->cfb_y = work->crtc->y;
276 }
277
278 dev_priv->fbc_work = NULL;
279 }
280 mutex_unlock(&dev->struct_mutex);
281
282 kfree(work);
283 }
284
285 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
286 {
287 if (dev_priv->fbc_work == NULL)
288 return;
289
290 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
291
292 /* Synchronisation is provided by struct_mutex and checking of
293 * dev_priv->fbc_work, so we can perform the cancellation
294 * entirely asynchronously.
295 */
296 if (cancel_delayed_work(&dev_priv->fbc_work->work))
297 /* tasklet was killed before being run, clean up */
298 kfree(dev_priv->fbc_work);
299
300 /* Mark the work as no longer wanted so that if it does
301 * wake-up (because the work was already running and waiting
302 * for our mutex), it will discover that is no longer
303 * necessary to run.
304 */
305 dev_priv->fbc_work = NULL;
306 }
307
308 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
309 {
310 struct intel_fbc_work *work;
311 struct drm_device *dev = crtc->dev;
312 struct drm_i915_private *dev_priv = dev->dev_private;
313
314 if (!dev_priv->display.enable_fbc)
315 return;
316
317 intel_cancel_fbc_work(dev_priv);
318
319 work = kzalloc(sizeof *work, GFP_KERNEL);
320 if (work == NULL) {
321 dev_priv->display.enable_fbc(crtc, interval);
322 return;
323 }
324
325 work->crtc = crtc;
326 work->fb = crtc->fb;
327 work->interval = interval;
328 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
329
330 dev_priv->fbc_work = work;
331
332 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
333
334 /* Delay the actual enabling to let pageflipping cease and the
335 * display to settle before starting the compression. Note that
336 * this delay also serves a second purpose: it allows for a
337 * vblank to pass after disabling the FBC before we attempt
338 * to modify the control registers.
339 *
340 * A more complicated solution would involve tracking vblanks
341 * following the termination of the page-flipping sequence
342 * and indeed performing the enable as a co-routine and not
343 * waiting synchronously upon the vblank.
344 */
345 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
346 }
347
348 void intel_disable_fbc(struct drm_device *dev)
349 {
350 struct drm_i915_private *dev_priv = dev->dev_private;
351
352 intel_cancel_fbc_work(dev_priv);
353
354 if (!dev_priv->display.disable_fbc)
355 return;
356
357 dev_priv->display.disable_fbc(dev);
358 dev_priv->cfb_plane = -1;
359 }
360
361 /**
362 * intel_update_fbc - enable/disable FBC as needed
363 * @dev: the drm_device
364 *
365 * Set up the framebuffer compression hardware at mode set time. We
366 * enable it if possible:
367 * - plane A only (on pre-965)
368 * - no pixel mulitply/line duplication
369 * - no alpha buffer discard
370 * - no dual wide
371 * - framebuffer <= 2048 in width, 1536 in height
372 *
373 * We can't assume that any compression will take place (worst case),
374 * so the compressed buffer has to be the same size as the uncompressed
375 * one. It also must reside (along with the line length buffer) in
376 * stolen memory.
377 *
378 * We need to enable/disable FBC on a global basis.
379 */
380 void intel_update_fbc(struct drm_device *dev)
381 {
382 struct drm_i915_private *dev_priv = dev->dev_private;
383 struct drm_crtc *crtc = NULL, *tmp_crtc;
384 struct intel_crtc *intel_crtc;
385 struct drm_framebuffer *fb;
386 struct intel_framebuffer *intel_fb;
387 struct drm_i915_gem_object *obj;
388 int enable_fbc;
389
390 if (!i915_powersave)
391 return;
392
393 if (!I915_HAS_FBC(dev))
394 return;
395
396 /*
397 * If FBC is already on, we just have to verify that we can
398 * keep it that way...
399 * Need to disable if:
400 * - more than one pipe is active
401 * - changing FBC params (stride, fence, mode)
402 * - new fb is too large to fit in compressed buffer
403 * - going to an unsupported config (interlace, pixel multiply, etc.)
404 */
405 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
406 if (tmp_crtc->enabled &&
407 !to_intel_crtc(tmp_crtc)->primary_disabled &&
408 tmp_crtc->fb) {
409 if (crtc) {
410 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
411 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
412 goto out_disable;
413 }
414 crtc = tmp_crtc;
415 }
416 }
417
418 if (!crtc || crtc->fb == NULL) {
419 DRM_DEBUG_KMS("no output, disabling\n");
420 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
421 goto out_disable;
422 }
423
424 intel_crtc = to_intel_crtc(crtc);
425 fb = crtc->fb;
426 intel_fb = to_intel_framebuffer(fb);
427 obj = intel_fb->obj;
428
429 enable_fbc = i915_enable_fbc;
430 if (enable_fbc < 0) {
431 DRM_DEBUG_KMS("fbc set to per-chip default\n");
432 enable_fbc = 1;
433 if (INTEL_INFO(dev)->gen <= 6)
434 enable_fbc = 0;
435 }
436 if (!enable_fbc) {
437 DRM_DEBUG_KMS("fbc disabled per module param\n");
438 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
439 goto out_disable;
440 }
441 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
442 DRM_DEBUG_KMS("framebuffer too large, disabling "
443 "compression\n");
444 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
445 goto out_disable;
446 }
447 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
448 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
449 DRM_DEBUG_KMS("mode incompatible with compression, "
450 "disabling\n");
451 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
452 goto out_disable;
453 }
454 if ((crtc->mode.hdisplay > 2048) ||
455 (crtc->mode.vdisplay > 1536)) {
456 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
457 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
458 goto out_disable;
459 }
460 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
461 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
462 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
463 goto out_disable;
464 }
465
466 /* The use of a CPU fence is mandatory in order to detect writes
467 * by the CPU to the scanout and trigger updates to the FBC.
468 */
469 if (obj->tiling_mode != I915_TILING_X ||
470 obj->fence_reg == I915_FENCE_REG_NONE) {
471 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
472 dev_priv->no_fbc_reason = FBC_NOT_TILED;
473 goto out_disable;
474 }
475
476 /* If the kernel debugger is active, always disable compression */
477 if (in_dbg_master())
478 goto out_disable;
479
480 /* If the scanout has not changed, don't modify the FBC settings.
481 * Note that we make the fundamental assumption that the fb->obj
482 * cannot be unpinned (and have its GTT offset and fence revoked)
483 * without first being decoupled from the scanout and FBC disabled.
484 */
485 if (dev_priv->cfb_plane == intel_crtc->plane &&
486 dev_priv->cfb_fb == fb->base.id &&
487 dev_priv->cfb_y == crtc->y)
488 return;
489
490 if (intel_fbc_enabled(dev)) {
491 /* We update FBC along two paths, after changing fb/crtc
492 * configuration (modeswitching) and after page-flipping
493 * finishes. For the latter, we know that not only did
494 * we disable the FBC at the start of the page-flip
495 * sequence, but also more than one vblank has passed.
496 *
497 * For the former case of modeswitching, it is possible
498 * to switch between two FBC valid configurations
499 * instantaneously so we do need to disable the FBC
500 * before we can modify its control registers. We also
501 * have to wait for the next vblank for that to take
502 * effect. However, since we delay enabling FBC we can
503 * assume that a vblank has passed since disabling and
504 * that we can safely alter the registers in the deferred
505 * callback.
506 *
507 * In the scenario that we go from a valid to invalid
508 * and then back to valid FBC configuration we have
509 * no strict enforcement that a vblank occurred since
510 * disabling the FBC. However, along all current pipe
511 * disabling paths we do need to wait for a vblank at
512 * some point. And we wait before enabling FBC anyway.
513 */
514 DRM_DEBUG_KMS("disabling active FBC for update\n");
515 intel_disable_fbc(dev);
516 }
517
518 intel_enable_fbc(crtc, 500);
519 return;
520
521 out_disable:
522 /* Multiple disables should be harmless */
523 if (intel_fbc_enabled(dev)) {
524 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
525 intel_disable_fbc(dev);
526 }
527 }
528
529 static void i915_pineview_get_mem_freq(struct drm_device *dev)
530 {
531 drm_i915_private_t *dev_priv = dev->dev_private;
532 u32 tmp;
533
534 tmp = I915_READ(CLKCFG);
535
536 switch (tmp & CLKCFG_FSB_MASK) {
537 case CLKCFG_FSB_533:
538 dev_priv->fsb_freq = 533; /* 133*4 */
539 break;
540 case CLKCFG_FSB_800:
541 dev_priv->fsb_freq = 800; /* 200*4 */
542 break;
543 case CLKCFG_FSB_667:
544 dev_priv->fsb_freq = 667; /* 167*4 */
545 break;
546 case CLKCFG_FSB_400:
547 dev_priv->fsb_freq = 400; /* 100*4 */
548 break;
549 }
550
551 switch (tmp & CLKCFG_MEM_MASK) {
552 case CLKCFG_MEM_533:
553 dev_priv->mem_freq = 533;
554 break;
555 case CLKCFG_MEM_667:
556 dev_priv->mem_freq = 667;
557 break;
558 case CLKCFG_MEM_800:
559 dev_priv->mem_freq = 800;
560 break;
561 }
562
563 /* detect pineview DDR3 setting */
564 tmp = I915_READ(CSHRDDR3CTL);
565 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
566 }
567
568 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
569 {
570 drm_i915_private_t *dev_priv = dev->dev_private;
571 u16 ddrpll, csipll;
572
573 ddrpll = I915_READ16(DDRMPLL1);
574 csipll = I915_READ16(CSIPLL0);
575
576 switch (ddrpll & 0xff) {
577 case 0xc:
578 dev_priv->mem_freq = 800;
579 break;
580 case 0x10:
581 dev_priv->mem_freq = 1066;
582 break;
583 case 0x14:
584 dev_priv->mem_freq = 1333;
585 break;
586 case 0x18:
587 dev_priv->mem_freq = 1600;
588 break;
589 default:
590 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
591 ddrpll & 0xff);
592 dev_priv->mem_freq = 0;
593 break;
594 }
595
596 dev_priv->r_t = dev_priv->mem_freq;
597
598 switch (csipll & 0x3ff) {
599 case 0x00c:
600 dev_priv->fsb_freq = 3200;
601 break;
602 case 0x00e:
603 dev_priv->fsb_freq = 3733;
604 break;
605 case 0x010:
606 dev_priv->fsb_freq = 4266;
607 break;
608 case 0x012:
609 dev_priv->fsb_freq = 4800;
610 break;
611 case 0x014:
612 dev_priv->fsb_freq = 5333;
613 break;
614 case 0x016:
615 dev_priv->fsb_freq = 5866;
616 break;
617 case 0x018:
618 dev_priv->fsb_freq = 6400;
619 break;
620 default:
621 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
622 csipll & 0x3ff);
623 dev_priv->fsb_freq = 0;
624 break;
625 }
626
627 if (dev_priv->fsb_freq == 3200) {
628 dev_priv->c_m = 0;
629 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
630 dev_priv->c_m = 1;
631 } else {
632 dev_priv->c_m = 2;
633 }
634 }
635
636 static const struct cxsr_latency cxsr_latency_table[] = {
637 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
638 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
639 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
640 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
641 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
642
643 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
644 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
645 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
646 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
647 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
648
649 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
650 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
651 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
652 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
653 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
654
655 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
656 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
657 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
658 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
659 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
660
661 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
662 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
663 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
664 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
665 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
666
667 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
668 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
669 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
670 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
671 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
672 };
673
674 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
675 int is_ddr3,
676 int fsb,
677 int mem)
678 {
679 const struct cxsr_latency *latency;
680 int i;
681
682 if (fsb == 0 || mem == 0)
683 return NULL;
684
685 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
686 latency = &cxsr_latency_table[i];
687 if (is_desktop == latency->is_desktop &&
688 is_ddr3 == latency->is_ddr3 &&
689 fsb == latency->fsb_freq && mem == latency->mem_freq)
690 return latency;
691 }
692
693 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
694
695 return NULL;
696 }
697
698 static void pineview_disable_cxsr(struct drm_device *dev)
699 {
700 struct drm_i915_private *dev_priv = dev->dev_private;
701
702 /* deactivate cxsr */
703 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
704 }
705
706 /*
707 * Latency for FIFO fetches is dependent on several factors:
708 * - memory configuration (speed, channels)
709 * - chipset
710 * - current MCH state
711 * It can be fairly high in some situations, so here we assume a fairly
712 * pessimal value. It's a tradeoff between extra memory fetches (if we
713 * set this value too high, the FIFO will fetch frequently to stay full)
714 * and power consumption (set it too low to save power and we might see
715 * FIFO underruns and display "flicker").
716 *
717 * A value of 5us seems to be a good balance; safe for very low end
718 * platforms but not overly aggressive on lower latency configs.
719 */
720 static const int latency_ns = 5000;
721
722 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
723 {
724 struct drm_i915_private *dev_priv = dev->dev_private;
725 uint32_t dsparb = I915_READ(DSPARB);
726 int size;
727
728 size = dsparb & 0x7f;
729 if (plane)
730 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
731
732 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
733 plane ? "B" : "A", size);
734
735 return size;
736 }
737
738 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
739 {
740 struct drm_i915_private *dev_priv = dev->dev_private;
741 uint32_t dsparb = I915_READ(DSPARB);
742 int size;
743
744 size = dsparb & 0x1ff;
745 if (plane)
746 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
747 size >>= 1; /* Convert to cachelines */
748
749 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
750 plane ? "B" : "A", size);
751
752 return size;
753 }
754
755 static int i845_get_fifo_size(struct drm_device *dev, int plane)
756 {
757 struct drm_i915_private *dev_priv = dev->dev_private;
758 uint32_t dsparb = I915_READ(DSPARB);
759 int size;
760
761 size = dsparb & 0x7f;
762 size >>= 2; /* Convert to cachelines */
763
764 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
765 plane ? "B" : "A",
766 size);
767
768 return size;
769 }
770
771 static int i830_get_fifo_size(struct drm_device *dev, int plane)
772 {
773 struct drm_i915_private *dev_priv = dev->dev_private;
774 uint32_t dsparb = I915_READ(DSPARB);
775 int size;
776
777 size = dsparb & 0x7f;
778 size >>= 1; /* Convert to cachelines */
779
780 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
781 plane ? "B" : "A", size);
782
783 return size;
784 }
785
786 /* Pineview has different values for various configs */
787 static const struct intel_watermark_params pineview_display_wm = {
788 PINEVIEW_DISPLAY_FIFO,
789 PINEVIEW_MAX_WM,
790 PINEVIEW_DFT_WM,
791 PINEVIEW_GUARD_WM,
792 PINEVIEW_FIFO_LINE_SIZE
793 };
794 static const struct intel_watermark_params pineview_display_hplloff_wm = {
795 PINEVIEW_DISPLAY_FIFO,
796 PINEVIEW_MAX_WM,
797 PINEVIEW_DFT_HPLLOFF_WM,
798 PINEVIEW_GUARD_WM,
799 PINEVIEW_FIFO_LINE_SIZE
800 };
801 static const struct intel_watermark_params pineview_cursor_wm = {
802 PINEVIEW_CURSOR_FIFO,
803 PINEVIEW_CURSOR_MAX_WM,
804 PINEVIEW_CURSOR_DFT_WM,
805 PINEVIEW_CURSOR_GUARD_WM,
806 PINEVIEW_FIFO_LINE_SIZE,
807 };
808 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
809 PINEVIEW_CURSOR_FIFO,
810 PINEVIEW_CURSOR_MAX_WM,
811 PINEVIEW_CURSOR_DFT_WM,
812 PINEVIEW_CURSOR_GUARD_WM,
813 PINEVIEW_FIFO_LINE_SIZE
814 };
815 static const struct intel_watermark_params g4x_wm_info = {
816 G4X_FIFO_SIZE,
817 G4X_MAX_WM,
818 G4X_MAX_WM,
819 2,
820 G4X_FIFO_LINE_SIZE,
821 };
822 static const struct intel_watermark_params g4x_cursor_wm_info = {
823 I965_CURSOR_FIFO,
824 I965_CURSOR_MAX_WM,
825 I965_CURSOR_DFT_WM,
826 2,
827 G4X_FIFO_LINE_SIZE,
828 };
829 static const struct intel_watermark_params valleyview_wm_info = {
830 VALLEYVIEW_FIFO_SIZE,
831 VALLEYVIEW_MAX_WM,
832 VALLEYVIEW_MAX_WM,
833 2,
834 G4X_FIFO_LINE_SIZE,
835 };
836 static const struct intel_watermark_params valleyview_cursor_wm_info = {
837 I965_CURSOR_FIFO,
838 VALLEYVIEW_CURSOR_MAX_WM,
839 I965_CURSOR_DFT_WM,
840 2,
841 G4X_FIFO_LINE_SIZE,
842 };
843 static const struct intel_watermark_params i965_cursor_wm_info = {
844 I965_CURSOR_FIFO,
845 I965_CURSOR_MAX_WM,
846 I965_CURSOR_DFT_WM,
847 2,
848 I915_FIFO_LINE_SIZE,
849 };
850 static const struct intel_watermark_params i945_wm_info = {
851 I945_FIFO_SIZE,
852 I915_MAX_WM,
853 1,
854 2,
855 I915_FIFO_LINE_SIZE
856 };
857 static const struct intel_watermark_params i915_wm_info = {
858 I915_FIFO_SIZE,
859 I915_MAX_WM,
860 1,
861 2,
862 I915_FIFO_LINE_SIZE
863 };
864 static const struct intel_watermark_params i855_wm_info = {
865 I855GM_FIFO_SIZE,
866 I915_MAX_WM,
867 1,
868 2,
869 I830_FIFO_LINE_SIZE
870 };
871 static const struct intel_watermark_params i830_wm_info = {
872 I830_FIFO_SIZE,
873 I915_MAX_WM,
874 1,
875 2,
876 I830_FIFO_LINE_SIZE
877 };
878
879 static const struct intel_watermark_params ironlake_display_wm_info = {
880 ILK_DISPLAY_FIFO,
881 ILK_DISPLAY_MAXWM,
882 ILK_DISPLAY_DFTWM,
883 2,
884 ILK_FIFO_LINE_SIZE
885 };
886 static const struct intel_watermark_params ironlake_cursor_wm_info = {
887 ILK_CURSOR_FIFO,
888 ILK_CURSOR_MAXWM,
889 ILK_CURSOR_DFTWM,
890 2,
891 ILK_FIFO_LINE_SIZE
892 };
893 static const struct intel_watermark_params ironlake_display_srwm_info = {
894 ILK_DISPLAY_SR_FIFO,
895 ILK_DISPLAY_MAX_SRWM,
896 ILK_DISPLAY_DFT_SRWM,
897 2,
898 ILK_FIFO_LINE_SIZE
899 };
900 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
901 ILK_CURSOR_SR_FIFO,
902 ILK_CURSOR_MAX_SRWM,
903 ILK_CURSOR_DFT_SRWM,
904 2,
905 ILK_FIFO_LINE_SIZE
906 };
907
908 static const struct intel_watermark_params sandybridge_display_wm_info = {
909 SNB_DISPLAY_FIFO,
910 SNB_DISPLAY_MAXWM,
911 SNB_DISPLAY_DFTWM,
912 2,
913 SNB_FIFO_LINE_SIZE
914 };
915 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
916 SNB_CURSOR_FIFO,
917 SNB_CURSOR_MAXWM,
918 SNB_CURSOR_DFTWM,
919 2,
920 SNB_FIFO_LINE_SIZE
921 };
922 static const struct intel_watermark_params sandybridge_display_srwm_info = {
923 SNB_DISPLAY_SR_FIFO,
924 SNB_DISPLAY_MAX_SRWM,
925 SNB_DISPLAY_DFT_SRWM,
926 2,
927 SNB_FIFO_LINE_SIZE
928 };
929 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
930 SNB_CURSOR_SR_FIFO,
931 SNB_CURSOR_MAX_SRWM,
932 SNB_CURSOR_DFT_SRWM,
933 2,
934 SNB_FIFO_LINE_SIZE
935 };
936
937
938 /**
939 * intel_calculate_wm - calculate watermark level
940 * @clock_in_khz: pixel clock
941 * @wm: chip FIFO params
942 * @pixel_size: display pixel size
943 * @latency_ns: memory latency for the platform
944 *
945 * Calculate the watermark level (the level at which the display plane will
946 * start fetching from memory again). Each chip has a different display
947 * FIFO size and allocation, so the caller needs to figure that out and pass
948 * in the correct intel_watermark_params structure.
949 *
950 * As the pixel clock runs, the FIFO will be drained at a rate that depends
951 * on the pixel size. When it reaches the watermark level, it'll start
952 * fetching FIFO line sized based chunks from memory until the FIFO fills
953 * past the watermark point. If the FIFO drains completely, a FIFO underrun
954 * will occur, and a display engine hang could result.
955 */
956 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
957 const struct intel_watermark_params *wm,
958 int fifo_size,
959 int pixel_size,
960 unsigned long latency_ns)
961 {
962 long entries_required, wm_size;
963
964 /*
965 * Note: we need to make sure we don't overflow for various clock &
966 * latency values.
967 * clocks go from a few thousand to several hundred thousand.
968 * latency is usually a few thousand
969 */
970 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
971 1000;
972 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
973
974 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
975
976 wm_size = fifo_size - (entries_required + wm->guard_size);
977
978 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
979
980 /* Don't promote wm_size to unsigned... */
981 if (wm_size > (long)wm->max_wm)
982 wm_size = wm->max_wm;
983 if (wm_size <= 0)
984 wm_size = wm->default_wm;
985 return wm_size;
986 }
987
988 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
989 {
990 struct drm_crtc *crtc, *enabled = NULL;
991
992 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
993 if (crtc->enabled && crtc->fb) {
994 if (enabled)
995 return NULL;
996 enabled = crtc;
997 }
998 }
999
1000 return enabled;
1001 }
1002
1003 static void pineview_update_wm(struct drm_device *dev)
1004 {
1005 struct drm_i915_private *dev_priv = dev->dev_private;
1006 struct drm_crtc *crtc;
1007 const struct cxsr_latency *latency;
1008 u32 reg;
1009 unsigned long wm;
1010
1011 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1012 dev_priv->fsb_freq, dev_priv->mem_freq);
1013 if (!latency) {
1014 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1015 pineview_disable_cxsr(dev);
1016 return;
1017 }
1018
1019 crtc = single_enabled_crtc(dev);
1020 if (crtc) {
1021 int clock = crtc->mode.clock;
1022 int pixel_size = crtc->fb->bits_per_pixel / 8;
1023
1024 /* Display SR */
1025 wm = intel_calculate_wm(clock, &pineview_display_wm,
1026 pineview_display_wm.fifo_size,
1027 pixel_size, latency->display_sr);
1028 reg = I915_READ(DSPFW1);
1029 reg &= ~DSPFW_SR_MASK;
1030 reg |= wm << DSPFW_SR_SHIFT;
1031 I915_WRITE(DSPFW1, reg);
1032 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1033
1034 /* cursor SR */
1035 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1036 pineview_display_wm.fifo_size,
1037 pixel_size, latency->cursor_sr);
1038 reg = I915_READ(DSPFW3);
1039 reg &= ~DSPFW_CURSOR_SR_MASK;
1040 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1041 I915_WRITE(DSPFW3, reg);
1042
1043 /* Display HPLL off SR */
1044 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1045 pineview_display_hplloff_wm.fifo_size,
1046 pixel_size, latency->display_hpll_disable);
1047 reg = I915_READ(DSPFW3);
1048 reg &= ~DSPFW_HPLL_SR_MASK;
1049 reg |= wm & DSPFW_HPLL_SR_MASK;
1050 I915_WRITE(DSPFW3, reg);
1051
1052 /* cursor HPLL off SR */
1053 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1054 pineview_display_hplloff_wm.fifo_size,
1055 pixel_size, latency->cursor_hpll_disable);
1056 reg = I915_READ(DSPFW3);
1057 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1058 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1059 I915_WRITE(DSPFW3, reg);
1060 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1061
1062 /* activate cxsr */
1063 I915_WRITE(DSPFW3,
1064 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1065 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1066 } else {
1067 pineview_disable_cxsr(dev);
1068 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1069 }
1070 }
1071
1072 static bool g4x_compute_wm0(struct drm_device *dev,
1073 int plane,
1074 const struct intel_watermark_params *display,
1075 int display_latency_ns,
1076 const struct intel_watermark_params *cursor,
1077 int cursor_latency_ns,
1078 int *plane_wm,
1079 int *cursor_wm)
1080 {
1081 struct drm_crtc *crtc;
1082 int htotal, hdisplay, clock, pixel_size;
1083 int line_time_us, line_count;
1084 int entries, tlb_miss;
1085
1086 crtc = intel_get_crtc_for_plane(dev, plane);
1087 if (crtc->fb == NULL || !crtc->enabled) {
1088 *cursor_wm = cursor->guard_size;
1089 *plane_wm = display->guard_size;
1090 return false;
1091 }
1092
1093 htotal = crtc->mode.htotal;
1094 hdisplay = crtc->mode.hdisplay;
1095 clock = crtc->mode.clock;
1096 pixel_size = crtc->fb->bits_per_pixel / 8;
1097
1098 /* Use the small buffer method to calculate plane watermark */
1099 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1100 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1101 if (tlb_miss > 0)
1102 entries += tlb_miss;
1103 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1104 *plane_wm = entries + display->guard_size;
1105 if (*plane_wm > (int)display->max_wm)
1106 *plane_wm = display->max_wm;
1107
1108 /* Use the large buffer method to calculate cursor watermark */
1109 line_time_us = ((htotal * 1000) / clock);
1110 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1111 entries = line_count * 64 * pixel_size;
1112 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1113 if (tlb_miss > 0)
1114 entries += tlb_miss;
1115 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1116 *cursor_wm = entries + cursor->guard_size;
1117 if (*cursor_wm > (int)cursor->max_wm)
1118 *cursor_wm = (int)cursor->max_wm;
1119
1120 return true;
1121 }
1122
1123 /*
1124 * Check the wm result.
1125 *
1126 * If any calculated watermark values is larger than the maximum value that
1127 * can be programmed into the associated watermark register, that watermark
1128 * must be disabled.
1129 */
1130 static bool g4x_check_srwm(struct drm_device *dev,
1131 int display_wm, int cursor_wm,
1132 const struct intel_watermark_params *display,
1133 const struct intel_watermark_params *cursor)
1134 {
1135 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1136 display_wm, cursor_wm);
1137
1138 if (display_wm > display->max_wm) {
1139 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1140 display_wm, display->max_wm);
1141 return false;
1142 }
1143
1144 if (cursor_wm > cursor->max_wm) {
1145 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1146 cursor_wm, cursor->max_wm);
1147 return false;
1148 }
1149
1150 if (!(display_wm || cursor_wm)) {
1151 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1152 return false;
1153 }
1154
1155 return true;
1156 }
1157
1158 static bool g4x_compute_srwm(struct drm_device *dev,
1159 int plane,
1160 int latency_ns,
1161 const struct intel_watermark_params *display,
1162 const struct intel_watermark_params *cursor,
1163 int *display_wm, int *cursor_wm)
1164 {
1165 struct drm_crtc *crtc;
1166 int hdisplay, htotal, pixel_size, clock;
1167 unsigned long line_time_us;
1168 int line_count, line_size;
1169 int small, large;
1170 int entries;
1171
1172 if (!latency_ns) {
1173 *display_wm = *cursor_wm = 0;
1174 return false;
1175 }
1176
1177 crtc = intel_get_crtc_for_plane(dev, plane);
1178 hdisplay = crtc->mode.hdisplay;
1179 htotal = crtc->mode.htotal;
1180 clock = crtc->mode.clock;
1181 pixel_size = crtc->fb->bits_per_pixel / 8;
1182
1183 line_time_us = (htotal * 1000) / clock;
1184 line_count = (latency_ns / line_time_us + 1000) / 1000;
1185 line_size = hdisplay * pixel_size;
1186
1187 /* Use the minimum of the small and large buffer method for primary */
1188 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1189 large = line_count * line_size;
1190
1191 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1192 *display_wm = entries + display->guard_size;
1193
1194 /* calculate the self-refresh watermark for display cursor */
1195 entries = line_count * pixel_size * 64;
1196 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1197 *cursor_wm = entries + cursor->guard_size;
1198
1199 return g4x_check_srwm(dev,
1200 *display_wm, *cursor_wm,
1201 display, cursor);
1202 }
1203
1204 static bool vlv_compute_drain_latency(struct drm_device *dev,
1205 int plane,
1206 int *plane_prec_mult,
1207 int *plane_dl,
1208 int *cursor_prec_mult,
1209 int *cursor_dl)
1210 {
1211 struct drm_crtc *crtc;
1212 int clock, pixel_size;
1213 int entries;
1214
1215 crtc = intel_get_crtc_for_plane(dev, plane);
1216 if (crtc->fb == NULL || !crtc->enabled)
1217 return false;
1218
1219 clock = crtc->mode.clock; /* VESA DOT Clock */
1220 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
1221
1222 entries = (clock / 1000) * pixel_size;
1223 *plane_prec_mult = (entries > 256) ?
1224 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1225 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1226 pixel_size);
1227
1228 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1229 *cursor_prec_mult = (entries > 256) ?
1230 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1231 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1232
1233 return true;
1234 }
1235
1236 /*
1237 * Update drain latency registers of memory arbiter
1238 *
1239 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1240 * to be programmed. Each plane has a drain latency multiplier and a drain
1241 * latency value.
1242 */
1243
1244 static void vlv_update_drain_latency(struct drm_device *dev)
1245 {
1246 struct drm_i915_private *dev_priv = dev->dev_private;
1247 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1248 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1249 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1250 either 16 or 32 */
1251
1252 /* For plane A, Cursor A */
1253 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1254 &cursor_prec_mult, &cursora_dl)) {
1255 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1256 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1257 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1258 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1259
1260 I915_WRITE(VLV_DDL1, cursora_prec |
1261 (cursora_dl << DDL_CURSORA_SHIFT) |
1262 planea_prec | planea_dl);
1263 }
1264
1265 /* For plane B, Cursor B */
1266 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1267 &cursor_prec_mult, &cursorb_dl)) {
1268 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1269 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1270 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1271 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1272
1273 I915_WRITE(VLV_DDL2, cursorb_prec |
1274 (cursorb_dl << DDL_CURSORB_SHIFT) |
1275 planeb_prec | planeb_dl);
1276 }
1277 }
1278
1279 #define single_plane_enabled(mask) is_power_of_2(mask)
1280
1281 static void valleyview_update_wm(struct drm_device *dev)
1282 {
1283 static const int sr_latency_ns = 12000;
1284 struct drm_i915_private *dev_priv = dev->dev_private;
1285 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1286 int plane_sr, cursor_sr;
1287 unsigned int enabled = 0;
1288
1289 vlv_update_drain_latency(dev);
1290
1291 if (g4x_compute_wm0(dev, 0,
1292 &valleyview_wm_info, latency_ns,
1293 &valleyview_cursor_wm_info, latency_ns,
1294 &planea_wm, &cursora_wm))
1295 enabled |= 1;
1296
1297 if (g4x_compute_wm0(dev, 1,
1298 &valleyview_wm_info, latency_ns,
1299 &valleyview_cursor_wm_info, latency_ns,
1300 &planeb_wm, &cursorb_wm))
1301 enabled |= 2;
1302
1303 plane_sr = cursor_sr = 0;
1304 if (single_plane_enabled(enabled) &&
1305 g4x_compute_srwm(dev, ffs(enabled) - 1,
1306 sr_latency_ns,
1307 &valleyview_wm_info,
1308 &valleyview_cursor_wm_info,
1309 &plane_sr, &cursor_sr))
1310 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1311 else
1312 I915_WRITE(FW_BLC_SELF_VLV,
1313 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1314
1315 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1316 planea_wm, cursora_wm,
1317 planeb_wm, cursorb_wm,
1318 plane_sr, cursor_sr);
1319
1320 I915_WRITE(DSPFW1,
1321 (plane_sr << DSPFW_SR_SHIFT) |
1322 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1323 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1324 planea_wm);
1325 I915_WRITE(DSPFW2,
1326 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1327 (cursora_wm << DSPFW_CURSORA_SHIFT));
1328 I915_WRITE(DSPFW3,
1329 (I915_READ(DSPFW3) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)));
1330 }
1331
1332 static void g4x_update_wm(struct drm_device *dev)
1333 {
1334 static const int sr_latency_ns = 12000;
1335 struct drm_i915_private *dev_priv = dev->dev_private;
1336 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1337 int plane_sr, cursor_sr;
1338 unsigned int enabled = 0;
1339
1340 if (g4x_compute_wm0(dev, 0,
1341 &g4x_wm_info, latency_ns,
1342 &g4x_cursor_wm_info, latency_ns,
1343 &planea_wm, &cursora_wm))
1344 enabled |= 1;
1345
1346 if (g4x_compute_wm0(dev, 1,
1347 &g4x_wm_info, latency_ns,
1348 &g4x_cursor_wm_info, latency_ns,
1349 &planeb_wm, &cursorb_wm))
1350 enabled |= 2;
1351
1352 plane_sr = cursor_sr = 0;
1353 if (single_plane_enabled(enabled) &&
1354 g4x_compute_srwm(dev, ffs(enabled) - 1,
1355 sr_latency_ns,
1356 &g4x_wm_info,
1357 &g4x_cursor_wm_info,
1358 &plane_sr, &cursor_sr))
1359 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1360 else
1361 I915_WRITE(FW_BLC_SELF,
1362 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1363
1364 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1365 planea_wm, cursora_wm,
1366 planeb_wm, cursorb_wm,
1367 plane_sr, cursor_sr);
1368
1369 I915_WRITE(DSPFW1,
1370 (plane_sr << DSPFW_SR_SHIFT) |
1371 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1372 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1373 planea_wm);
1374 I915_WRITE(DSPFW2,
1375 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1376 (cursora_wm << DSPFW_CURSORA_SHIFT));
1377 /* HPLL off in SR has some issues on G4x... disable it */
1378 I915_WRITE(DSPFW3,
1379 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
1380 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1381 }
1382
1383 static void i965_update_wm(struct drm_device *dev)
1384 {
1385 struct drm_i915_private *dev_priv = dev->dev_private;
1386 struct drm_crtc *crtc;
1387 int srwm = 1;
1388 int cursor_sr = 16;
1389
1390 /* Calc sr entries for one plane configs */
1391 crtc = single_enabled_crtc(dev);
1392 if (crtc) {
1393 /* self-refresh has much higher latency */
1394 static const int sr_latency_ns = 12000;
1395 int clock = crtc->mode.clock;
1396 int htotal = crtc->mode.htotal;
1397 int hdisplay = crtc->mode.hdisplay;
1398 int pixel_size = crtc->fb->bits_per_pixel / 8;
1399 unsigned long line_time_us;
1400 int entries;
1401
1402 line_time_us = ((htotal * 1000) / clock);
1403
1404 /* Use ns/us then divide to preserve precision */
1405 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1406 pixel_size * hdisplay;
1407 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1408 srwm = I965_FIFO_SIZE - entries;
1409 if (srwm < 0)
1410 srwm = 1;
1411 srwm &= 0x1ff;
1412 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1413 entries, srwm);
1414
1415 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1416 pixel_size * 64;
1417 entries = DIV_ROUND_UP(entries,
1418 i965_cursor_wm_info.cacheline_size);
1419 cursor_sr = i965_cursor_wm_info.fifo_size -
1420 (entries + i965_cursor_wm_info.guard_size);
1421
1422 if (cursor_sr > i965_cursor_wm_info.max_wm)
1423 cursor_sr = i965_cursor_wm_info.max_wm;
1424
1425 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1426 "cursor %d\n", srwm, cursor_sr);
1427
1428 if (IS_CRESTLINE(dev))
1429 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1430 } else {
1431 /* Turn off self refresh if both pipes are enabled */
1432 if (IS_CRESTLINE(dev))
1433 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1434 & ~FW_BLC_SELF_EN);
1435 }
1436
1437 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1438 srwm);
1439
1440 /* 965 has limitations... */
1441 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1442 (8 << 16) | (8 << 8) | (8 << 0));
1443 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1444 /* update cursor SR watermark */
1445 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1446 }
1447
1448 static void i9xx_update_wm(struct drm_device *dev)
1449 {
1450 struct drm_i915_private *dev_priv = dev->dev_private;
1451 const struct intel_watermark_params *wm_info;
1452 uint32_t fwater_lo;
1453 uint32_t fwater_hi;
1454 int cwm, srwm = 1;
1455 int fifo_size;
1456 int planea_wm, planeb_wm;
1457 struct drm_crtc *crtc, *enabled = NULL;
1458
1459 if (IS_I945GM(dev))
1460 wm_info = &i945_wm_info;
1461 else if (!IS_GEN2(dev))
1462 wm_info = &i915_wm_info;
1463 else
1464 wm_info = &i855_wm_info;
1465
1466 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1467 crtc = intel_get_crtc_for_plane(dev, 0);
1468 if (crtc->enabled && crtc->fb) {
1469 planea_wm = intel_calculate_wm(crtc->mode.clock,
1470 wm_info, fifo_size,
1471 crtc->fb->bits_per_pixel / 8,
1472 latency_ns);
1473 enabled = crtc;
1474 } else
1475 planea_wm = fifo_size - wm_info->guard_size;
1476
1477 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1478 crtc = intel_get_crtc_for_plane(dev, 1);
1479 if (crtc->enabled && crtc->fb) {
1480 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1481 wm_info, fifo_size,
1482 crtc->fb->bits_per_pixel / 8,
1483 latency_ns);
1484 if (enabled == NULL)
1485 enabled = crtc;
1486 else
1487 enabled = NULL;
1488 } else
1489 planeb_wm = fifo_size - wm_info->guard_size;
1490
1491 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1492
1493 /*
1494 * Overlay gets an aggressive default since video jitter is bad.
1495 */
1496 cwm = 2;
1497
1498 /* Play safe and disable self-refresh before adjusting watermarks. */
1499 if (IS_I945G(dev) || IS_I945GM(dev))
1500 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1501 else if (IS_I915GM(dev))
1502 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1503
1504 /* Calc sr entries for one plane configs */
1505 if (HAS_FW_BLC(dev) && enabled) {
1506 /* self-refresh has much higher latency */
1507 static const int sr_latency_ns = 6000;
1508 int clock = enabled->mode.clock;
1509 int htotal = enabled->mode.htotal;
1510 int hdisplay = enabled->mode.hdisplay;
1511 int pixel_size = enabled->fb->bits_per_pixel / 8;
1512 unsigned long line_time_us;
1513 int entries;
1514
1515 line_time_us = (htotal * 1000) / clock;
1516
1517 /* Use ns/us then divide to preserve precision */
1518 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1519 pixel_size * hdisplay;
1520 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1521 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1522 srwm = wm_info->fifo_size - entries;
1523 if (srwm < 0)
1524 srwm = 1;
1525
1526 if (IS_I945G(dev) || IS_I945GM(dev))
1527 I915_WRITE(FW_BLC_SELF,
1528 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1529 else if (IS_I915GM(dev))
1530 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1531 }
1532
1533 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1534 planea_wm, planeb_wm, cwm, srwm);
1535
1536 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1537 fwater_hi = (cwm & 0x1f);
1538
1539 /* Set request length to 8 cachelines per fetch */
1540 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1541 fwater_hi = fwater_hi | (1 << 8);
1542
1543 I915_WRITE(FW_BLC, fwater_lo);
1544 I915_WRITE(FW_BLC2, fwater_hi);
1545
1546 if (HAS_FW_BLC(dev)) {
1547 if (enabled) {
1548 if (IS_I945G(dev) || IS_I945GM(dev))
1549 I915_WRITE(FW_BLC_SELF,
1550 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1551 else if (IS_I915GM(dev))
1552 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1553 DRM_DEBUG_KMS("memory self refresh enabled\n");
1554 } else
1555 DRM_DEBUG_KMS("memory self refresh disabled\n");
1556 }
1557 }
1558
1559 static void i830_update_wm(struct drm_device *dev)
1560 {
1561 struct drm_i915_private *dev_priv = dev->dev_private;
1562 struct drm_crtc *crtc;
1563 uint32_t fwater_lo;
1564 int planea_wm;
1565
1566 crtc = single_enabled_crtc(dev);
1567 if (crtc == NULL)
1568 return;
1569
1570 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1571 dev_priv->display.get_fifo_size(dev, 0),
1572 crtc->fb->bits_per_pixel / 8,
1573 latency_ns);
1574 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1575 fwater_lo |= (3<<8) | planea_wm;
1576
1577 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1578
1579 I915_WRITE(FW_BLC, fwater_lo);
1580 }
1581
1582 #define ILK_LP0_PLANE_LATENCY 700
1583 #define ILK_LP0_CURSOR_LATENCY 1300
1584
1585 /*
1586 * Check the wm result.
1587 *
1588 * If any calculated watermark values is larger than the maximum value that
1589 * can be programmed into the associated watermark register, that watermark
1590 * must be disabled.
1591 */
1592 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1593 int fbc_wm, int display_wm, int cursor_wm,
1594 const struct intel_watermark_params *display,
1595 const struct intel_watermark_params *cursor)
1596 {
1597 struct drm_i915_private *dev_priv = dev->dev_private;
1598
1599 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1600 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1601
1602 if (fbc_wm > SNB_FBC_MAX_SRWM) {
1603 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1604 fbc_wm, SNB_FBC_MAX_SRWM, level);
1605
1606 /* fbc has it's own way to disable FBC WM */
1607 I915_WRITE(DISP_ARB_CTL,
1608 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1609 return false;
1610 }
1611
1612 if (display_wm > display->max_wm) {
1613 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1614 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1615 return false;
1616 }
1617
1618 if (cursor_wm > cursor->max_wm) {
1619 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1620 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1621 return false;
1622 }
1623
1624 if (!(fbc_wm || display_wm || cursor_wm)) {
1625 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1626 return false;
1627 }
1628
1629 return true;
1630 }
1631
1632 /*
1633 * Compute watermark values of WM[1-3],
1634 */
1635 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1636 int latency_ns,
1637 const struct intel_watermark_params *display,
1638 const struct intel_watermark_params *cursor,
1639 int *fbc_wm, int *display_wm, int *cursor_wm)
1640 {
1641 struct drm_crtc *crtc;
1642 unsigned long line_time_us;
1643 int hdisplay, htotal, pixel_size, clock;
1644 int line_count, line_size;
1645 int small, large;
1646 int entries;
1647
1648 if (!latency_ns) {
1649 *fbc_wm = *display_wm = *cursor_wm = 0;
1650 return false;
1651 }
1652
1653 crtc = intel_get_crtc_for_plane(dev, plane);
1654 hdisplay = crtc->mode.hdisplay;
1655 htotal = crtc->mode.htotal;
1656 clock = crtc->mode.clock;
1657 pixel_size = crtc->fb->bits_per_pixel / 8;
1658
1659 line_time_us = (htotal * 1000) / clock;
1660 line_count = (latency_ns / line_time_us + 1000) / 1000;
1661 line_size = hdisplay * pixel_size;
1662
1663 /* Use the minimum of the small and large buffer method for primary */
1664 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1665 large = line_count * line_size;
1666
1667 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1668 *display_wm = entries + display->guard_size;
1669
1670 /*
1671 * Spec says:
1672 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1673 */
1674 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1675
1676 /* calculate the self-refresh watermark for display cursor */
1677 entries = line_count * pixel_size * 64;
1678 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1679 *cursor_wm = entries + cursor->guard_size;
1680
1681 return ironlake_check_srwm(dev, level,
1682 *fbc_wm, *display_wm, *cursor_wm,
1683 display, cursor);
1684 }
1685
1686 static void ironlake_update_wm(struct drm_device *dev)
1687 {
1688 struct drm_i915_private *dev_priv = dev->dev_private;
1689 int fbc_wm, plane_wm, cursor_wm;
1690 unsigned int enabled;
1691
1692 enabled = 0;
1693 if (g4x_compute_wm0(dev, 0,
1694 &ironlake_display_wm_info,
1695 ILK_LP0_PLANE_LATENCY,
1696 &ironlake_cursor_wm_info,
1697 ILK_LP0_CURSOR_LATENCY,
1698 &plane_wm, &cursor_wm)) {
1699 I915_WRITE(WM0_PIPEA_ILK,
1700 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1701 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1702 " plane %d, " "cursor: %d\n",
1703 plane_wm, cursor_wm);
1704 enabled |= 1;
1705 }
1706
1707 if (g4x_compute_wm0(dev, 1,
1708 &ironlake_display_wm_info,
1709 ILK_LP0_PLANE_LATENCY,
1710 &ironlake_cursor_wm_info,
1711 ILK_LP0_CURSOR_LATENCY,
1712 &plane_wm, &cursor_wm)) {
1713 I915_WRITE(WM0_PIPEB_ILK,
1714 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1715 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1716 " plane %d, cursor: %d\n",
1717 plane_wm, cursor_wm);
1718 enabled |= 2;
1719 }
1720
1721 /*
1722 * Calculate and update the self-refresh watermark only when one
1723 * display plane is used.
1724 */
1725 I915_WRITE(WM3_LP_ILK, 0);
1726 I915_WRITE(WM2_LP_ILK, 0);
1727 I915_WRITE(WM1_LP_ILK, 0);
1728
1729 if (!single_plane_enabled(enabled))
1730 return;
1731 enabled = ffs(enabled) - 1;
1732
1733 /* WM1 */
1734 if (!ironlake_compute_srwm(dev, 1, enabled,
1735 ILK_READ_WM1_LATENCY() * 500,
1736 &ironlake_display_srwm_info,
1737 &ironlake_cursor_srwm_info,
1738 &fbc_wm, &plane_wm, &cursor_wm))
1739 return;
1740
1741 I915_WRITE(WM1_LP_ILK,
1742 WM1_LP_SR_EN |
1743 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1744 (fbc_wm << WM1_LP_FBC_SHIFT) |
1745 (plane_wm << WM1_LP_SR_SHIFT) |
1746 cursor_wm);
1747
1748 /* WM2 */
1749 if (!ironlake_compute_srwm(dev, 2, enabled,
1750 ILK_READ_WM2_LATENCY() * 500,
1751 &ironlake_display_srwm_info,
1752 &ironlake_cursor_srwm_info,
1753 &fbc_wm, &plane_wm, &cursor_wm))
1754 return;
1755
1756 I915_WRITE(WM2_LP_ILK,
1757 WM2_LP_EN |
1758 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1759 (fbc_wm << WM1_LP_FBC_SHIFT) |
1760 (plane_wm << WM1_LP_SR_SHIFT) |
1761 cursor_wm);
1762
1763 /*
1764 * WM3 is unsupported on ILK, probably because we don't have latency
1765 * data for that power state
1766 */
1767 }
1768
1769 static void sandybridge_update_wm(struct drm_device *dev)
1770 {
1771 struct drm_i915_private *dev_priv = dev->dev_private;
1772 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1773 u32 val;
1774 int fbc_wm, plane_wm, cursor_wm;
1775 unsigned int enabled;
1776
1777 enabled = 0;
1778 if (g4x_compute_wm0(dev, 0,
1779 &sandybridge_display_wm_info, latency,
1780 &sandybridge_cursor_wm_info, latency,
1781 &plane_wm, &cursor_wm)) {
1782 val = I915_READ(WM0_PIPEA_ILK);
1783 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1784 I915_WRITE(WM0_PIPEA_ILK, val |
1785 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1786 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1787 " plane %d, " "cursor: %d\n",
1788 plane_wm, cursor_wm);
1789 enabled |= 1;
1790 }
1791
1792 if (g4x_compute_wm0(dev, 1,
1793 &sandybridge_display_wm_info, latency,
1794 &sandybridge_cursor_wm_info, latency,
1795 &plane_wm, &cursor_wm)) {
1796 val = I915_READ(WM0_PIPEB_ILK);
1797 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1798 I915_WRITE(WM0_PIPEB_ILK, val |
1799 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1800 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1801 " plane %d, cursor: %d\n",
1802 plane_wm, cursor_wm);
1803 enabled |= 2;
1804 }
1805
1806 if ((dev_priv->num_pipe == 3) &&
1807 g4x_compute_wm0(dev, 2,
1808 &sandybridge_display_wm_info, latency,
1809 &sandybridge_cursor_wm_info, latency,
1810 &plane_wm, &cursor_wm)) {
1811 val = I915_READ(WM0_PIPEC_IVB);
1812 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1813 I915_WRITE(WM0_PIPEC_IVB, val |
1814 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1815 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1816 " plane %d, cursor: %d\n",
1817 plane_wm, cursor_wm);
1818 enabled |= 3;
1819 }
1820
1821 /*
1822 * Calculate and update the self-refresh watermark only when one
1823 * display plane is used.
1824 *
1825 * SNB support 3 levels of watermark.
1826 *
1827 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1828 * and disabled in the descending order
1829 *
1830 */
1831 I915_WRITE(WM3_LP_ILK, 0);
1832 I915_WRITE(WM2_LP_ILK, 0);
1833 I915_WRITE(WM1_LP_ILK, 0);
1834
1835 if (!single_plane_enabled(enabled) ||
1836 dev_priv->sprite_scaling_enabled)
1837 return;
1838 enabled = ffs(enabled) - 1;
1839
1840 /* WM1 */
1841 if (!ironlake_compute_srwm(dev, 1, enabled,
1842 SNB_READ_WM1_LATENCY() * 500,
1843 &sandybridge_display_srwm_info,
1844 &sandybridge_cursor_srwm_info,
1845 &fbc_wm, &plane_wm, &cursor_wm))
1846 return;
1847
1848 I915_WRITE(WM1_LP_ILK,
1849 WM1_LP_SR_EN |
1850 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1851 (fbc_wm << WM1_LP_FBC_SHIFT) |
1852 (plane_wm << WM1_LP_SR_SHIFT) |
1853 cursor_wm);
1854
1855 /* WM2 */
1856 if (!ironlake_compute_srwm(dev, 2, enabled,
1857 SNB_READ_WM2_LATENCY() * 500,
1858 &sandybridge_display_srwm_info,
1859 &sandybridge_cursor_srwm_info,
1860 &fbc_wm, &plane_wm, &cursor_wm))
1861 return;
1862
1863 I915_WRITE(WM2_LP_ILK,
1864 WM2_LP_EN |
1865 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1866 (fbc_wm << WM1_LP_FBC_SHIFT) |
1867 (plane_wm << WM1_LP_SR_SHIFT) |
1868 cursor_wm);
1869
1870 /* WM3 */
1871 if (!ironlake_compute_srwm(dev, 3, enabled,
1872 SNB_READ_WM3_LATENCY() * 500,
1873 &sandybridge_display_srwm_info,
1874 &sandybridge_cursor_srwm_info,
1875 &fbc_wm, &plane_wm, &cursor_wm))
1876 return;
1877
1878 I915_WRITE(WM3_LP_ILK,
1879 WM3_LP_EN |
1880 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1881 (fbc_wm << WM1_LP_FBC_SHIFT) |
1882 (plane_wm << WM1_LP_SR_SHIFT) |
1883 cursor_wm);
1884 }
1885
1886 static void
1887 haswell_update_linetime_wm(struct drm_device *dev, int pipe,
1888 struct drm_display_mode *mode)
1889 {
1890 struct drm_i915_private *dev_priv = dev->dev_private;
1891 u32 temp;
1892
1893 temp = I915_READ(PIPE_WM_LINETIME(pipe));
1894 temp &= ~PIPE_WM_LINETIME_MASK;
1895
1896 /* The WM are computed with base on how long it takes to fill a single
1897 * row at the given clock rate, multiplied by 8.
1898 * */
1899 temp |= PIPE_WM_LINETIME_TIME(
1900 ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
1901
1902 /* IPS watermarks are only used by pipe A, and are ignored by
1903 * pipes B and C. They are calculated similarly to the common
1904 * linetime values, except that we are using CD clock frequency
1905 * in MHz instead of pixel rate for the division.
1906 *
1907 * This is a placeholder for the IPS watermark calculation code.
1908 */
1909
1910 I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
1911 }
1912
1913 static bool
1914 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
1915 uint32_t sprite_width, int pixel_size,
1916 const struct intel_watermark_params *display,
1917 int display_latency_ns, int *sprite_wm)
1918 {
1919 struct drm_crtc *crtc;
1920 int clock;
1921 int entries, tlb_miss;
1922
1923 crtc = intel_get_crtc_for_plane(dev, plane);
1924 if (crtc->fb == NULL || !crtc->enabled) {
1925 *sprite_wm = display->guard_size;
1926 return false;
1927 }
1928
1929 clock = crtc->mode.clock;
1930
1931 /* Use the small buffer method to calculate the sprite watermark */
1932 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1933 tlb_miss = display->fifo_size*display->cacheline_size -
1934 sprite_width * 8;
1935 if (tlb_miss > 0)
1936 entries += tlb_miss;
1937 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1938 *sprite_wm = entries + display->guard_size;
1939 if (*sprite_wm > (int)display->max_wm)
1940 *sprite_wm = display->max_wm;
1941
1942 return true;
1943 }
1944
1945 static bool
1946 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
1947 uint32_t sprite_width, int pixel_size,
1948 const struct intel_watermark_params *display,
1949 int latency_ns, int *sprite_wm)
1950 {
1951 struct drm_crtc *crtc;
1952 unsigned long line_time_us;
1953 int clock;
1954 int line_count, line_size;
1955 int small, large;
1956 int entries;
1957
1958 if (!latency_ns) {
1959 *sprite_wm = 0;
1960 return false;
1961 }
1962
1963 crtc = intel_get_crtc_for_plane(dev, plane);
1964 clock = crtc->mode.clock;
1965 if (!clock) {
1966 *sprite_wm = 0;
1967 return false;
1968 }
1969
1970 line_time_us = (sprite_width * 1000) / clock;
1971 if (!line_time_us) {
1972 *sprite_wm = 0;
1973 return false;
1974 }
1975
1976 line_count = (latency_ns / line_time_us + 1000) / 1000;
1977 line_size = sprite_width * pixel_size;
1978
1979 /* Use the minimum of the small and large buffer method for primary */
1980 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1981 large = line_count * line_size;
1982
1983 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1984 *sprite_wm = entries + display->guard_size;
1985
1986 return *sprite_wm > 0x3ff ? false : true;
1987 }
1988
1989 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
1990 uint32_t sprite_width, int pixel_size)
1991 {
1992 struct drm_i915_private *dev_priv = dev->dev_private;
1993 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1994 u32 val;
1995 int sprite_wm, reg;
1996 int ret;
1997
1998 switch (pipe) {
1999 case 0:
2000 reg = WM0_PIPEA_ILK;
2001 break;
2002 case 1:
2003 reg = WM0_PIPEB_ILK;
2004 break;
2005 case 2:
2006 reg = WM0_PIPEC_IVB;
2007 break;
2008 default:
2009 return; /* bad pipe */
2010 }
2011
2012 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2013 &sandybridge_display_wm_info,
2014 latency, &sprite_wm);
2015 if (!ret) {
2016 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2017 pipe);
2018 return;
2019 }
2020
2021 val = I915_READ(reg);
2022 val &= ~WM0_PIPE_SPRITE_MASK;
2023 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2024 DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2025
2026
2027 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2028 pixel_size,
2029 &sandybridge_display_srwm_info,
2030 SNB_READ_WM1_LATENCY() * 500,
2031 &sprite_wm);
2032 if (!ret) {
2033 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2034 pipe);
2035 return;
2036 }
2037 I915_WRITE(WM1S_LP_ILK, sprite_wm);
2038
2039 /* Only IVB has two more LP watermarks for sprite */
2040 if (!IS_IVYBRIDGE(dev))
2041 return;
2042
2043 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2044 pixel_size,
2045 &sandybridge_display_srwm_info,
2046 SNB_READ_WM2_LATENCY() * 500,
2047 &sprite_wm);
2048 if (!ret) {
2049 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2050 pipe);
2051 return;
2052 }
2053 I915_WRITE(WM2S_LP_IVB, sprite_wm);
2054
2055 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2056 pixel_size,
2057 &sandybridge_display_srwm_info,
2058 SNB_READ_WM3_LATENCY() * 500,
2059 &sprite_wm);
2060 if (!ret) {
2061 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2062 pipe);
2063 return;
2064 }
2065 I915_WRITE(WM3S_LP_IVB, sprite_wm);
2066 }
2067
2068 /**
2069 * intel_update_watermarks - update FIFO watermark values based on current modes
2070 *
2071 * Calculate watermark values for the various WM regs based on current mode
2072 * and plane configuration.
2073 *
2074 * There are several cases to deal with here:
2075 * - normal (i.e. non-self-refresh)
2076 * - self-refresh (SR) mode
2077 * - lines are large relative to FIFO size (buffer can hold up to 2)
2078 * - lines are small relative to FIFO size (buffer can hold more than 2
2079 * lines), so need to account for TLB latency
2080 *
2081 * The normal calculation is:
2082 * watermark = dotclock * bytes per pixel * latency
2083 * where latency is platform & configuration dependent (we assume pessimal
2084 * values here).
2085 *
2086 * The SR calculation is:
2087 * watermark = (trunc(latency/line time)+1) * surface width *
2088 * bytes per pixel
2089 * where
2090 * line time = htotal / dotclock
2091 * surface width = hdisplay for normal plane and 64 for cursor
2092 * and latency is assumed to be high, as above.
2093 *
2094 * The final value programmed to the register should always be rounded up,
2095 * and include an extra 2 entries to account for clock crossings.
2096 *
2097 * We don't use the sprite, so we can ignore that. And on Crestline we have
2098 * to set the non-SR watermarks to 8.
2099 */
2100 void intel_update_watermarks(struct drm_device *dev)
2101 {
2102 struct drm_i915_private *dev_priv = dev->dev_private;
2103
2104 if (dev_priv->display.update_wm)
2105 dev_priv->display.update_wm(dev);
2106 }
2107
2108 void intel_update_linetime_watermarks(struct drm_device *dev,
2109 int pipe, struct drm_display_mode *mode)
2110 {
2111 struct drm_i915_private *dev_priv = dev->dev_private;
2112
2113 if (dev_priv->display.update_linetime_wm)
2114 dev_priv->display.update_linetime_wm(dev, pipe, mode);
2115 }
2116
2117 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2118 uint32_t sprite_width, int pixel_size)
2119 {
2120 struct drm_i915_private *dev_priv = dev->dev_private;
2121
2122 if (dev_priv->display.update_sprite_wm)
2123 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2124 pixel_size);
2125 }
2126
2127 static struct drm_i915_gem_object *
2128 intel_alloc_context_page(struct drm_device *dev)
2129 {
2130 struct drm_i915_gem_object *ctx;
2131 int ret;
2132
2133 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2134
2135 ctx = i915_gem_alloc_object(dev, 4096);
2136 if (!ctx) {
2137 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2138 return NULL;
2139 }
2140
2141 ret = i915_gem_object_pin(ctx, 4096, true, false);
2142 if (ret) {
2143 DRM_ERROR("failed to pin power context: %d\n", ret);
2144 goto err_unref;
2145 }
2146
2147 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2148 if (ret) {
2149 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2150 goto err_unpin;
2151 }
2152
2153 return ctx;
2154
2155 err_unpin:
2156 i915_gem_object_unpin(ctx);
2157 err_unref:
2158 drm_gem_object_unreference(&ctx->base);
2159 mutex_unlock(&dev->struct_mutex);
2160 return NULL;
2161 }
2162
2163 /**
2164 * Lock protecting IPS related data structures
2165 * - i915_mch_dev
2166 * - dev_priv->max_delay
2167 * - dev_priv->min_delay
2168 * - dev_priv->fmax
2169 * - dev_priv->gpu_busy
2170 * - dev_priv->gfx_power
2171 */
2172 DEFINE_SPINLOCK(mchdev_lock);
2173
2174 /* Global for IPS driver to get at the current i915 device. Protected by
2175 * mchdev_lock. */
2176 static struct drm_i915_private *i915_mch_dev;
2177
2178 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2179 {
2180 struct drm_i915_private *dev_priv = dev->dev_private;
2181 u16 rgvswctl;
2182
2183 assert_spin_locked(&mchdev_lock);
2184
2185 rgvswctl = I915_READ16(MEMSWCTL);
2186 if (rgvswctl & MEMCTL_CMD_STS) {
2187 DRM_DEBUG("gpu busy, RCS change rejected\n");
2188 return false; /* still busy with another command */
2189 }
2190
2191 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2192 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2193 I915_WRITE16(MEMSWCTL, rgvswctl);
2194 POSTING_READ16(MEMSWCTL);
2195
2196 rgvswctl |= MEMCTL_CMD_STS;
2197 I915_WRITE16(MEMSWCTL, rgvswctl);
2198
2199 return true;
2200 }
2201
2202 static void ironlake_enable_drps(struct drm_device *dev)
2203 {
2204 struct drm_i915_private *dev_priv = dev->dev_private;
2205 u32 rgvmodectl = I915_READ(MEMMODECTL);
2206 u8 fmax, fmin, fstart, vstart;
2207
2208 spin_lock_irq(&mchdev_lock);
2209
2210 /* Enable temp reporting */
2211 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2212 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2213
2214 /* 100ms RC evaluation intervals */
2215 I915_WRITE(RCUPEI, 100000);
2216 I915_WRITE(RCDNEI, 100000);
2217
2218 /* Set max/min thresholds to 90ms and 80ms respectively */
2219 I915_WRITE(RCBMAXAVG, 90000);
2220 I915_WRITE(RCBMINAVG, 80000);
2221
2222 I915_WRITE(MEMIHYST, 1);
2223
2224 /* Set up min, max, and cur for interrupt handling */
2225 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2226 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2227 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2228 MEMMODE_FSTART_SHIFT;
2229
2230 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2231 PXVFREQ_PX_SHIFT;
2232
2233 dev_priv->fmax = fmax; /* IPS callback will increase this */
2234 dev_priv->fstart = fstart;
2235
2236 dev_priv->max_delay = fstart;
2237 dev_priv->min_delay = fmin;
2238 dev_priv->cur_delay = fstart;
2239
2240 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2241 fmax, fmin, fstart);
2242
2243 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2244
2245 /*
2246 * Interrupts will be enabled in ironlake_irq_postinstall
2247 */
2248
2249 I915_WRITE(VIDSTART, vstart);
2250 POSTING_READ(VIDSTART);
2251
2252 rgvmodectl |= MEMMODE_SWMODE_EN;
2253 I915_WRITE(MEMMODECTL, rgvmodectl);
2254
2255 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2256 DRM_ERROR("stuck trying to change perf mode\n");
2257 mdelay(1);
2258
2259 ironlake_set_drps(dev, fstart);
2260
2261 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2262 I915_READ(0x112e0);
2263 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
2264 dev_priv->last_count2 = I915_READ(0x112f4);
2265 getrawmonotonic(&dev_priv->last_time2);
2266
2267 spin_unlock_irq(&mchdev_lock);
2268 }
2269
2270 static void ironlake_disable_drps(struct drm_device *dev)
2271 {
2272 struct drm_i915_private *dev_priv = dev->dev_private;
2273 u16 rgvswctl;
2274
2275 spin_lock_irq(&mchdev_lock);
2276
2277 rgvswctl = I915_READ16(MEMSWCTL);
2278
2279 /* Ack interrupts, disable EFC interrupt */
2280 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2281 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2282 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2283 I915_WRITE(DEIIR, DE_PCU_EVENT);
2284 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2285
2286 /* Go back to the starting frequency */
2287 ironlake_set_drps(dev, dev_priv->fstart);
2288 mdelay(1);
2289 rgvswctl |= MEMCTL_CMD_STS;
2290 I915_WRITE(MEMSWCTL, rgvswctl);
2291 mdelay(1);
2292
2293 spin_unlock_irq(&mchdev_lock);
2294 }
2295
2296 /* There's a funny hw issue where the hw returns all 0 when reading from
2297 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2298 * ourselves, instead of doing a rmw cycle (which might result in us clearing
2299 * all limits and the gpu stuck at whatever frequency it is at atm).
2300 */
2301 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2302 {
2303 u32 limits;
2304
2305 limits = 0;
2306
2307 if (*val >= dev_priv->rps.max_delay)
2308 *val = dev_priv->rps.max_delay;
2309 limits |= dev_priv->rps.max_delay << 24;
2310
2311 /* Only set the down limit when we've reached the lowest level to avoid
2312 * getting more interrupts, otherwise leave this clear. This prevents a
2313 * race in the hw when coming out of rc6: There's a tiny window where
2314 * the hw runs at the minimal clock before selecting the desired
2315 * frequency, if the down threshold expires in that window we will not
2316 * receive a down interrupt. */
2317 if (*val <= dev_priv->rps.min_delay) {
2318 *val = dev_priv->rps.min_delay;
2319 limits |= dev_priv->rps.min_delay << 16;
2320 }
2321
2322 return limits;
2323 }
2324
2325 void gen6_set_rps(struct drm_device *dev, u8 val)
2326 {
2327 struct drm_i915_private *dev_priv = dev->dev_private;
2328 u32 limits = gen6_rps_limits(dev_priv, &val);
2329
2330 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2331
2332 if (val == dev_priv->rps.cur_delay)
2333 return;
2334
2335 I915_WRITE(GEN6_RPNSWREQ,
2336 GEN6_FREQUENCY(val) |
2337 GEN6_OFFSET(0) |
2338 GEN6_AGGRESSIVE_TURBO);
2339
2340 /* Make sure we continue to get interrupts
2341 * until we hit the minimum or maximum frequencies.
2342 */
2343 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2344
2345 dev_priv->rps.cur_delay = val;
2346 }
2347
2348 static void gen6_disable_rps(struct drm_device *dev)
2349 {
2350 struct drm_i915_private *dev_priv = dev->dev_private;
2351
2352 I915_WRITE(GEN6_RC_CONTROL, 0);
2353 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2354 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2355 I915_WRITE(GEN6_PMIER, 0);
2356 /* Complete PM interrupt masking here doesn't race with the rps work
2357 * item again unmasking PM interrupts because that is using a different
2358 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2359 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2360
2361 spin_lock_irq(&dev_priv->rps.lock);
2362 dev_priv->rps.pm_iir = 0;
2363 spin_unlock_irq(&dev_priv->rps.lock);
2364
2365 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2366 }
2367
2368 int intel_enable_rc6(const struct drm_device *dev)
2369 {
2370 /* Respect the kernel parameter if it is set */
2371 if (i915_enable_rc6 >= 0)
2372 return i915_enable_rc6;
2373
2374 if (INTEL_INFO(dev)->gen == 5) {
2375 DRM_DEBUG_DRIVER("Ironlake: only RC6 available\n");
2376 return INTEL_RC6_ENABLE;
2377 }
2378
2379 if (IS_HASWELL(dev)) {
2380 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2381 return INTEL_RC6_ENABLE;
2382 }
2383
2384 /* snb/ivb have more than one rc6 state. */
2385 if (INTEL_INFO(dev)->gen == 6) {
2386 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2387 return INTEL_RC6_ENABLE;
2388 }
2389
2390 DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2391 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2392 }
2393
2394 static void gen6_enable_rps(struct drm_device *dev)
2395 {
2396 struct drm_i915_private *dev_priv = dev->dev_private;
2397 struct intel_ring_buffer *ring;
2398 u32 rp_state_cap;
2399 u32 gt_perf_status;
2400 u32 pcu_mbox, rc6_mask = 0;
2401 u32 gtfifodbg;
2402 int rc6_mode;
2403 int i;
2404
2405 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2406
2407 /* Here begins a magic sequence of register writes to enable
2408 * auto-downclocking.
2409 *
2410 * Perhaps there might be some value in exposing these to
2411 * userspace...
2412 */
2413 I915_WRITE(GEN6_RC_STATE, 0);
2414
2415 /* Clear the DBG now so we don't confuse earlier errors */
2416 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2417 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2418 I915_WRITE(GTFIFODBG, gtfifodbg);
2419 }
2420
2421 gen6_gt_force_wake_get(dev_priv);
2422
2423 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2424 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2425
2426 /* In units of 100MHz */
2427 dev_priv->rps.max_delay = rp_state_cap & 0xff;
2428 dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2429 dev_priv->rps.cur_delay = 0;
2430
2431 /* disable the counters and set deterministic thresholds */
2432 I915_WRITE(GEN6_RC_CONTROL, 0);
2433
2434 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2435 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2436 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2437 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2438 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2439
2440 for_each_ring(ring, dev_priv, i)
2441 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2442
2443 I915_WRITE(GEN6_RC_SLEEP, 0);
2444 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2445 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2446 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
2447 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2448
2449 /* Check if we are enabling RC6 */
2450 rc6_mode = intel_enable_rc6(dev_priv->dev);
2451 if (rc6_mode & INTEL_RC6_ENABLE)
2452 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2453
2454 /* We don't use those on Haswell */
2455 if (!IS_HASWELL(dev)) {
2456 if (rc6_mode & INTEL_RC6p_ENABLE)
2457 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2458
2459 if (rc6_mode & INTEL_RC6pp_ENABLE)
2460 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2461 }
2462
2463 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2464 (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2465 (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2466 (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2467
2468 I915_WRITE(GEN6_RC_CONTROL,
2469 rc6_mask |
2470 GEN6_RC_CTL_EI_MODE(1) |
2471 GEN6_RC_CTL_HW_ENABLE);
2472
2473 I915_WRITE(GEN6_RPNSWREQ,
2474 GEN6_FREQUENCY(10) |
2475 GEN6_OFFSET(0) |
2476 GEN6_AGGRESSIVE_TURBO);
2477 I915_WRITE(GEN6_RC_VIDEO_FREQ,
2478 GEN6_FREQUENCY(12));
2479
2480 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2481 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2482 dev_priv->rps.max_delay << 24 |
2483 dev_priv->rps.min_delay << 16);
2484
2485 if (IS_HASWELL(dev)) {
2486 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2487 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2488 I915_WRITE(GEN6_RP_UP_EI, 66000);
2489 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2490 } else {
2491 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
2492 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
2493 I915_WRITE(GEN6_RP_UP_EI, 100000);
2494 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
2495 }
2496
2497 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2498 I915_WRITE(GEN6_RP_CONTROL,
2499 GEN6_RP_MEDIA_TURBO |
2500 GEN6_RP_MEDIA_HW_NORMAL_MODE |
2501 GEN6_RP_MEDIA_IS_GFX |
2502 GEN6_RP_ENABLE |
2503 GEN6_RP_UP_BUSY_AVG |
2504 (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2505
2506 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2507 500))
2508 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
2509
2510 I915_WRITE(GEN6_PCODE_DATA, 0);
2511 I915_WRITE(GEN6_PCODE_MAILBOX,
2512 GEN6_PCODE_READY |
2513 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
2514 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2515 500))
2516 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
2517
2518 /* Check for overclock support */
2519 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2520 500))
2521 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
2522 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
2523 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
2524 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2525 500))
2526 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
2527 if (pcu_mbox & (1<<31)) { /* OC supported */
2528 dev_priv->rps.max_delay = pcu_mbox & 0xff;
2529 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2530 }
2531
2532 gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2533
2534 /* requires MSI enabled */
2535 I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2536 spin_lock_irq(&dev_priv->rps.lock);
2537 WARN_ON(dev_priv->rps.pm_iir != 0);
2538 I915_WRITE(GEN6_PMIMR, 0);
2539 spin_unlock_irq(&dev_priv->rps.lock);
2540 /* enable all PM interrupts */
2541 I915_WRITE(GEN6_PMINTRMSK, 0);
2542
2543 gen6_gt_force_wake_put(dev_priv);
2544 }
2545
2546 static void gen6_update_ring_freq(struct drm_device *dev)
2547 {
2548 struct drm_i915_private *dev_priv = dev->dev_private;
2549 int min_freq = 15;
2550 int gpu_freq, ia_freq, max_ia_freq;
2551 int scaling_factor = 180;
2552
2553 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2554
2555 max_ia_freq = cpufreq_quick_get_max(0);
2556 /*
2557 * Default to measured freq if none found, PCU will ensure we don't go
2558 * over
2559 */
2560 if (!max_ia_freq)
2561 max_ia_freq = tsc_khz;
2562
2563 /* Convert from kHz to MHz */
2564 max_ia_freq /= 1000;
2565
2566 /*
2567 * For each potential GPU frequency, load a ring frequency we'd like
2568 * to use for memory access. We do this by specifying the IA frequency
2569 * the PCU should use as a reference to determine the ring frequency.
2570 */
2571 for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2572 gpu_freq--) {
2573 int diff = dev_priv->rps.max_delay - gpu_freq;
2574
2575 /*
2576 * For GPU frequencies less than 750MHz, just use the lowest
2577 * ring freq.
2578 */
2579 if (gpu_freq < min_freq)
2580 ia_freq = 800;
2581 else
2582 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2583 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2584
2585 I915_WRITE(GEN6_PCODE_DATA,
2586 (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
2587 gpu_freq);
2588 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
2589 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
2590 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
2591 GEN6_PCODE_READY) == 0, 10)) {
2592 DRM_ERROR("pcode write of freq table timed out\n");
2593 continue;
2594 }
2595 }
2596 }
2597
2598 void ironlake_teardown_rc6(struct drm_device *dev)
2599 {
2600 struct drm_i915_private *dev_priv = dev->dev_private;
2601
2602 if (dev_priv->renderctx) {
2603 i915_gem_object_unpin(dev_priv->renderctx);
2604 drm_gem_object_unreference(&dev_priv->renderctx->base);
2605 dev_priv->renderctx = NULL;
2606 }
2607
2608 if (dev_priv->pwrctx) {
2609 i915_gem_object_unpin(dev_priv->pwrctx);
2610 drm_gem_object_unreference(&dev_priv->pwrctx->base);
2611 dev_priv->pwrctx = NULL;
2612 }
2613 }
2614
2615 static void ironlake_disable_rc6(struct drm_device *dev)
2616 {
2617 struct drm_i915_private *dev_priv = dev->dev_private;
2618
2619 if (I915_READ(PWRCTXA)) {
2620 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2621 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2622 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2623 50);
2624
2625 I915_WRITE(PWRCTXA, 0);
2626 POSTING_READ(PWRCTXA);
2627
2628 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2629 POSTING_READ(RSTDBYCTL);
2630 }
2631 }
2632
2633 static int ironlake_setup_rc6(struct drm_device *dev)
2634 {
2635 struct drm_i915_private *dev_priv = dev->dev_private;
2636
2637 if (dev_priv->renderctx == NULL)
2638 dev_priv->renderctx = intel_alloc_context_page(dev);
2639 if (!dev_priv->renderctx)
2640 return -ENOMEM;
2641
2642 if (dev_priv->pwrctx == NULL)
2643 dev_priv->pwrctx = intel_alloc_context_page(dev);
2644 if (!dev_priv->pwrctx) {
2645 ironlake_teardown_rc6(dev);
2646 return -ENOMEM;
2647 }
2648
2649 return 0;
2650 }
2651
2652 static void ironlake_enable_rc6(struct drm_device *dev)
2653 {
2654 struct drm_i915_private *dev_priv = dev->dev_private;
2655 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2656 int ret;
2657
2658 /* rc6 disabled by default due to repeated reports of hanging during
2659 * boot and resume.
2660 */
2661 if (!intel_enable_rc6(dev))
2662 return;
2663
2664 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2665
2666 ret = ironlake_setup_rc6(dev);
2667 if (ret)
2668 return;
2669
2670 /*
2671 * GPU can automatically power down the render unit if given a page
2672 * to save state.
2673 */
2674 ret = intel_ring_begin(ring, 6);
2675 if (ret) {
2676 ironlake_teardown_rc6(dev);
2677 return;
2678 }
2679
2680 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2681 intel_ring_emit(ring, MI_SET_CONTEXT);
2682 intel_ring_emit(ring, dev_priv->renderctx->gtt_offset |
2683 MI_MM_SPACE_GTT |
2684 MI_SAVE_EXT_STATE_EN |
2685 MI_RESTORE_EXT_STATE_EN |
2686 MI_RESTORE_INHIBIT);
2687 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2688 intel_ring_emit(ring, MI_NOOP);
2689 intel_ring_emit(ring, MI_FLUSH);
2690 intel_ring_advance(ring);
2691
2692 /*
2693 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2694 * does an implicit flush, combined with MI_FLUSH above, it should be
2695 * safe to assume that renderctx is valid
2696 */
2697 ret = intel_wait_ring_idle(ring);
2698 if (ret) {
2699 DRM_ERROR("failed to enable ironlake power power savings\n");
2700 ironlake_teardown_rc6(dev);
2701 return;
2702 }
2703
2704 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
2705 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2706 }
2707
2708 static unsigned long intel_pxfreq(u32 vidfreq)
2709 {
2710 unsigned long freq;
2711 int div = (vidfreq & 0x3f0000) >> 16;
2712 int post = (vidfreq & 0x3000) >> 12;
2713 int pre = (vidfreq & 0x7);
2714
2715 if (!pre)
2716 return 0;
2717
2718 freq = ((div * 133333) / ((1<<post) * pre));
2719
2720 return freq;
2721 }
2722
2723 static const struct cparams {
2724 u16 i;
2725 u16 t;
2726 u16 m;
2727 u16 c;
2728 } cparams[] = {
2729 { 1, 1333, 301, 28664 },
2730 { 1, 1066, 294, 24460 },
2731 { 1, 800, 294, 25192 },
2732 { 0, 1333, 276, 27605 },
2733 { 0, 1066, 276, 27605 },
2734 { 0, 800, 231, 23784 },
2735 };
2736
2737 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2738 {
2739 u64 total_count, diff, ret;
2740 u32 count1, count2, count3, m = 0, c = 0;
2741 unsigned long now = jiffies_to_msecs(jiffies), diff1;
2742 int i;
2743
2744 assert_spin_locked(&mchdev_lock);
2745
2746 diff1 = now - dev_priv->last_time1;
2747
2748 /* Prevent division-by-zero if we are asking too fast.
2749 * Also, we don't get interesting results if we are polling
2750 * faster than once in 10ms, so just return the saved value
2751 * in such cases.
2752 */
2753 if (diff1 <= 10)
2754 return dev_priv->chipset_power;
2755
2756 count1 = I915_READ(DMIEC);
2757 count2 = I915_READ(DDREC);
2758 count3 = I915_READ(CSIEC);
2759
2760 total_count = count1 + count2 + count3;
2761
2762 /* FIXME: handle per-counter overflow */
2763 if (total_count < dev_priv->last_count1) {
2764 diff = ~0UL - dev_priv->last_count1;
2765 diff += total_count;
2766 } else {
2767 diff = total_count - dev_priv->last_count1;
2768 }
2769
2770 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2771 if (cparams[i].i == dev_priv->c_m &&
2772 cparams[i].t == dev_priv->r_t) {
2773 m = cparams[i].m;
2774 c = cparams[i].c;
2775 break;
2776 }
2777 }
2778
2779 diff = div_u64(diff, diff1);
2780 ret = ((m * diff) + c);
2781 ret = div_u64(ret, 10);
2782
2783 dev_priv->last_count1 = total_count;
2784 dev_priv->last_time1 = now;
2785
2786 dev_priv->chipset_power = ret;
2787
2788 return ret;
2789 }
2790
2791 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2792 {
2793 unsigned long m, x, b;
2794 u32 tsfs;
2795
2796 tsfs = I915_READ(TSFS);
2797
2798 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2799 x = I915_READ8(TR1);
2800
2801 b = tsfs & TSFS_INTR_MASK;
2802
2803 return ((m * x) / 127) - b;
2804 }
2805
2806 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2807 {
2808 static const struct v_table {
2809 u16 vd; /* in .1 mil */
2810 u16 vm; /* in .1 mil */
2811 } v_table[] = {
2812 { 0, 0, },
2813 { 375, 0, },
2814 { 500, 0, },
2815 { 625, 0, },
2816 { 750, 0, },
2817 { 875, 0, },
2818 { 1000, 0, },
2819 { 1125, 0, },
2820 { 4125, 3000, },
2821 { 4125, 3000, },
2822 { 4125, 3000, },
2823 { 4125, 3000, },
2824 { 4125, 3000, },
2825 { 4125, 3000, },
2826 { 4125, 3000, },
2827 { 4125, 3000, },
2828 { 4125, 3000, },
2829 { 4125, 3000, },
2830 { 4125, 3000, },
2831 { 4125, 3000, },
2832 { 4125, 3000, },
2833 { 4125, 3000, },
2834 { 4125, 3000, },
2835 { 4125, 3000, },
2836 { 4125, 3000, },
2837 { 4125, 3000, },
2838 { 4125, 3000, },
2839 { 4125, 3000, },
2840 { 4125, 3000, },
2841 { 4125, 3000, },
2842 { 4125, 3000, },
2843 { 4125, 3000, },
2844 { 4250, 3125, },
2845 { 4375, 3250, },
2846 { 4500, 3375, },
2847 { 4625, 3500, },
2848 { 4750, 3625, },
2849 { 4875, 3750, },
2850 { 5000, 3875, },
2851 { 5125, 4000, },
2852 { 5250, 4125, },
2853 { 5375, 4250, },
2854 { 5500, 4375, },
2855 { 5625, 4500, },
2856 { 5750, 4625, },
2857 { 5875, 4750, },
2858 { 6000, 4875, },
2859 { 6125, 5000, },
2860 { 6250, 5125, },
2861 { 6375, 5250, },
2862 { 6500, 5375, },
2863 { 6625, 5500, },
2864 { 6750, 5625, },
2865 { 6875, 5750, },
2866 { 7000, 5875, },
2867 { 7125, 6000, },
2868 { 7250, 6125, },
2869 { 7375, 6250, },
2870 { 7500, 6375, },
2871 { 7625, 6500, },
2872 { 7750, 6625, },
2873 { 7875, 6750, },
2874 { 8000, 6875, },
2875 { 8125, 7000, },
2876 { 8250, 7125, },
2877 { 8375, 7250, },
2878 { 8500, 7375, },
2879 { 8625, 7500, },
2880 { 8750, 7625, },
2881 { 8875, 7750, },
2882 { 9000, 7875, },
2883 { 9125, 8000, },
2884 { 9250, 8125, },
2885 { 9375, 8250, },
2886 { 9500, 8375, },
2887 { 9625, 8500, },
2888 { 9750, 8625, },
2889 { 9875, 8750, },
2890 { 10000, 8875, },
2891 { 10125, 9000, },
2892 { 10250, 9125, },
2893 { 10375, 9250, },
2894 { 10500, 9375, },
2895 { 10625, 9500, },
2896 { 10750, 9625, },
2897 { 10875, 9750, },
2898 { 11000, 9875, },
2899 { 11125, 10000, },
2900 { 11250, 10125, },
2901 { 11375, 10250, },
2902 { 11500, 10375, },
2903 { 11625, 10500, },
2904 { 11750, 10625, },
2905 { 11875, 10750, },
2906 { 12000, 10875, },
2907 { 12125, 11000, },
2908 { 12250, 11125, },
2909 { 12375, 11250, },
2910 { 12500, 11375, },
2911 { 12625, 11500, },
2912 { 12750, 11625, },
2913 { 12875, 11750, },
2914 { 13000, 11875, },
2915 { 13125, 12000, },
2916 { 13250, 12125, },
2917 { 13375, 12250, },
2918 { 13500, 12375, },
2919 { 13625, 12500, },
2920 { 13750, 12625, },
2921 { 13875, 12750, },
2922 { 14000, 12875, },
2923 { 14125, 13000, },
2924 { 14250, 13125, },
2925 { 14375, 13250, },
2926 { 14500, 13375, },
2927 { 14625, 13500, },
2928 { 14750, 13625, },
2929 { 14875, 13750, },
2930 { 15000, 13875, },
2931 { 15125, 14000, },
2932 { 15250, 14125, },
2933 { 15375, 14250, },
2934 { 15500, 14375, },
2935 { 15625, 14500, },
2936 { 15750, 14625, },
2937 { 15875, 14750, },
2938 { 16000, 14875, },
2939 { 16125, 15000, },
2940 };
2941 if (dev_priv->info->is_mobile)
2942 return v_table[pxvid].vm;
2943 else
2944 return v_table[pxvid].vd;
2945 }
2946
2947 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
2948 {
2949 struct timespec now, diff1;
2950 u64 diff;
2951 unsigned long diffms;
2952 u32 count;
2953
2954 assert_spin_locked(&mchdev_lock);
2955
2956 getrawmonotonic(&now);
2957 diff1 = timespec_sub(now, dev_priv->last_time2);
2958
2959 /* Don't divide by 0 */
2960 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
2961 if (!diffms)
2962 return;
2963
2964 count = I915_READ(GFXEC);
2965
2966 if (count < dev_priv->last_count2) {
2967 diff = ~0UL - dev_priv->last_count2;
2968 diff += count;
2969 } else {
2970 diff = count - dev_priv->last_count2;
2971 }
2972
2973 dev_priv->last_count2 = count;
2974 dev_priv->last_time2 = now;
2975
2976 /* More magic constants... */
2977 diff = diff * 1181;
2978 diff = div_u64(diff, diffms * 10);
2979 dev_priv->gfx_power = diff;
2980 }
2981
2982 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
2983 {
2984 if (dev_priv->info->gen != 5)
2985 return;
2986
2987 spin_lock_irq(&mchdev_lock);
2988
2989 __i915_update_gfx_val(dev_priv);
2990
2991 spin_unlock_irq(&mchdev_lock);
2992 }
2993
2994 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
2995 {
2996 unsigned long t, corr, state1, corr2, state2;
2997 u32 pxvid, ext_v;
2998
2999 assert_spin_locked(&mchdev_lock);
3000
3001 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3002 pxvid = (pxvid >> 24) & 0x7f;
3003 ext_v = pvid_to_extvid(dev_priv, pxvid);
3004
3005 state1 = ext_v;
3006
3007 t = i915_mch_val(dev_priv);
3008
3009 /* Revel in the empirically derived constants */
3010
3011 /* Correction factor in 1/100000 units */
3012 if (t > 80)
3013 corr = ((t * 2349) + 135940);
3014 else if (t >= 50)
3015 corr = ((t * 964) + 29317);
3016 else /* < 50 */
3017 corr = ((t * 301) + 1004);
3018
3019 corr = corr * ((150142 * state1) / 10000 - 78642);
3020 corr /= 100000;
3021 corr2 = (corr * dev_priv->corr);
3022
3023 state2 = (corr2 * state1) / 10000;
3024 state2 /= 100; /* convert to mW */
3025
3026 __i915_update_gfx_val(dev_priv);
3027
3028 return dev_priv->gfx_power + state2;
3029 }
3030
3031 /**
3032 * i915_read_mch_val - return value for IPS use
3033 *
3034 * Calculate and return a value for the IPS driver to use when deciding whether
3035 * we have thermal and power headroom to increase CPU or GPU power budget.
3036 */
3037 unsigned long i915_read_mch_val(void)
3038 {
3039 struct drm_i915_private *dev_priv;
3040 unsigned long chipset_val, graphics_val, ret = 0;
3041
3042 spin_lock_irq(&mchdev_lock);
3043 if (!i915_mch_dev)
3044 goto out_unlock;
3045 dev_priv = i915_mch_dev;
3046
3047 chipset_val = i915_chipset_val(dev_priv);
3048 graphics_val = i915_gfx_val(dev_priv);
3049
3050 ret = chipset_val + graphics_val;
3051
3052 out_unlock:
3053 spin_unlock_irq(&mchdev_lock);
3054
3055 return ret;
3056 }
3057 EXPORT_SYMBOL_GPL(i915_read_mch_val);
3058
3059 /**
3060 * i915_gpu_raise - raise GPU frequency limit
3061 *
3062 * Raise the limit; IPS indicates we have thermal headroom.
3063 */
3064 bool i915_gpu_raise(void)
3065 {
3066 struct drm_i915_private *dev_priv;
3067 bool ret = true;
3068
3069 spin_lock_irq(&mchdev_lock);
3070 if (!i915_mch_dev) {
3071 ret = false;
3072 goto out_unlock;
3073 }
3074 dev_priv = i915_mch_dev;
3075
3076 if (dev_priv->max_delay > dev_priv->fmax)
3077 dev_priv->max_delay--;
3078
3079 out_unlock:
3080 spin_unlock_irq(&mchdev_lock);
3081
3082 return ret;
3083 }
3084 EXPORT_SYMBOL_GPL(i915_gpu_raise);
3085
3086 /**
3087 * i915_gpu_lower - lower GPU frequency limit
3088 *
3089 * IPS indicates we're close to a thermal limit, so throttle back the GPU
3090 * frequency maximum.
3091 */
3092 bool i915_gpu_lower(void)
3093 {
3094 struct drm_i915_private *dev_priv;
3095 bool ret = true;
3096
3097 spin_lock_irq(&mchdev_lock);
3098 if (!i915_mch_dev) {
3099 ret = false;
3100 goto out_unlock;
3101 }
3102 dev_priv = i915_mch_dev;
3103
3104 if (dev_priv->max_delay < dev_priv->min_delay)
3105 dev_priv->max_delay++;
3106
3107 out_unlock:
3108 spin_unlock_irq(&mchdev_lock);
3109
3110 return ret;
3111 }
3112 EXPORT_SYMBOL_GPL(i915_gpu_lower);
3113
3114 /**
3115 * i915_gpu_busy - indicate GPU business to IPS
3116 *
3117 * Tell the IPS driver whether or not the GPU is busy.
3118 */
3119 bool i915_gpu_busy(void)
3120 {
3121 struct drm_i915_private *dev_priv;
3122 struct intel_ring_buffer *ring;
3123 bool ret = false;
3124 int i;
3125
3126 spin_lock_irq(&mchdev_lock);
3127 if (!i915_mch_dev)
3128 goto out_unlock;
3129 dev_priv = i915_mch_dev;
3130
3131 for_each_ring(ring, dev_priv, i)
3132 ret |= !list_empty(&ring->request_list);
3133
3134 out_unlock:
3135 spin_unlock_irq(&mchdev_lock);
3136
3137 return ret;
3138 }
3139 EXPORT_SYMBOL_GPL(i915_gpu_busy);
3140
3141 /**
3142 * i915_gpu_turbo_disable - disable graphics turbo
3143 *
3144 * Disable graphics turbo by resetting the max frequency and setting the
3145 * current frequency to the default.
3146 */
3147 bool i915_gpu_turbo_disable(void)
3148 {
3149 struct drm_i915_private *dev_priv;
3150 bool ret = true;
3151
3152 spin_lock_irq(&mchdev_lock);
3153 if (!i915_mch_dev) {
3154 ret = false;
3155 goto out_unlock;
3156 }
3157 dev_priv = i915_mch_dev;
3158
3159 dev_priv->max_delay = dev_priv->fstart;
3160
3161 if (!ironlake_set_drps(dev_priv->dev, dev_priv->fstart))
3162 ret = false;
3163
3164 out_unlock:
3165 spin_unlock_irq(&mchdev_lock);
3166
3167 return ret;
3168 }
3169 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3170
3171 /**
3172 * Tells the intel_ips driver that the i915 driver is now loaded, if
3173 * IPS got loaded first.
3174 *
3175 * This awkward dance is so that neither module has to depend on the
3176 * other in order for IPS to do the appropriate communication of
3177 * GPU turbo limits to i915.
3178 */
3179 static void
3180 ips_ping_for_i915_load(void)
3181 {
3182 void (*link)(void);
3183
3184 link = symbol_get(ips_link_to_i915_driver);
3185 if (link) {
3186 link();
3187 symbol_put(ips_link_to_i915_driver);
3188 }
3189 }
3190
3191 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3192 {
3193 /* We only register the i915 ips part with intel-ips once everything is
3194 * set up, to avoid intel-ips sneaking in and reading bogus values. */
3195 spin_lock_irq(&mchdev_lock);
3196 i915_mch_dev = dev_priv;
3197 spin_unlock_irq(&mchdev_lock);
3198
3199 ips_ping_for_i915_load();
3200 }
3201
3202 void intel_gpu_ips_teardown(void)
3203 {
3204 spin_lock_irq(&mchdev_lock);
3205 i915_mch_dev = NULL;
3206 spin_unlock_irq(&mchdev_lock);
3207 }
3208 static void intel_init_emon(struct drm_device *dev)
3209 {
3210 struct drm_i915_private *dev_priv = dev->dev_private;
3211 u32 lcfuse;
3212 u8 pxw[16];
3213 int i;
3214
3215 /* Disable to program */
3216 I915_WRITE(ECR, 0);
3217 POSTING_READ(ECR);
3218
3219 /* Program energy weights for various events */
3220 I915_WRITE(SDEW, 0x15040d00);
3221 I915_WRITE(CSIEW0, 0x007f0000);
3222 I915_WRITE(CSIEW1, 0x1e220004);
3223 I915_WRITE(CSIEW2, 0x04000004);
3224
3225 for (i = 0; i < 5; i++)
3226 I915_WRITE(PEW + (i * 4), 0);
3227 for (i = 0; i < 3; i++)
3228 I915_WRITE(DEW + (i * 4), 0);
3229
3230 /* Program P-state weights to account for frequency power adjustment */
3231 for (i = 0; i < 16; i++) {
3232 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3233 unsigned long freq = intel_pxfreq(pxvidfreq);
3234 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3235 PXVFREQ_PX_SHIFT;
3236 unsigned long val;
3237
3238 val = vid * vid;
3239 val *= (freq / 1000);
3240 val *= 255;
3241 val /= (127*127*900);
3242 if (val > 0xff)
3243 DRM_ERROR("bad pxval: %ld\n", val);
3244 pxw[i] = val;
3245 }
3246 /* Render standby states get 0 weight */
3247 pxw[14] = 0;
3248 pxw[15] = 0;
3249
3250 for (i = 0; i < 4; i++) {
3251 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3252 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3253 I915_WRITE(PXW + (i * 4), val);
3254 }
3255
3256 /* Adjust magic regs to magic values (more experimental results) */
3257 I915_WRITE(OGW0, 0);
3258 I915_WRITE(OGW1, 0);
3259 I915_WRITE(EG0, 0x00007f00);
3260 I915_WRITE(EG1, 0x0000000e);
3261 I915_WRITE(EG2, 0x000e0000);
3262 I915_WRITE(EG3, 0x68000300);
3263 I915_WRITE(EG4, 0x42000000);
3264 I915_WRITE(EG5, 0x00140031);
3265 I915_WRITE(EG6, 0);
3266 I915_WRITE(EG7, 0);
3267
3268 for (i = 0; i < 8; i++)
3269 I915_WRITE(PXWL + (i * 4), 0);
3270
3271 /* Enable PMON + select events */
3272 I915_WRITE(ECR, 0x80000019);
3273
3274 lcfuse = I915_READ(LCFUSE02);
3275
3276 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
3277 }
3278
3279 void intel_disable_gt_powersave(struct drm_device *dev)
3280 {
3281 if (IS_IRONLAKE_M(dev)) {
3282 ironlake_disable_drps(dev);
3283 ironlake_disable_rc6(dev);
3284 } else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
3285 gen6_disable_rps(dev);
3286 }
3287 }
3288
3289 void intel_enable_gt_powersave(struct drm_device *dev)
3290 {
3291 if (IS_IRONLAKE_M(dev)) {
3292 ironlake_enable_drps(dev);
3293 ironlake_enable_rc6(dev);
3294 intel_init_emon(dev);
3295 } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
3296 gen6_enable_rps(dev);
3297 gen6_update_ring_freq(dev);
3298 }
3299 }
3300
3301 static void ironlake_init_clock_gating(struct drm_device *dev)
3302 {
3303 struct drm_i915_private *dev_priv = dev->dev_private;
3304 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3305
3306 /* Required for FBC */
3307 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
3308 DPFCRUNIT_CLOCK_GATE_DISABLE |
3309 DPFDUNIT_CLOCK_GATE_DISABLE;
3310 /* Required for CxSR */
3311 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
3312
3313 I915_WRITE(PCH_3DCGDIS0,
3314 MARIUNIT_CLOCK_GATE_DISABLE |
3315 SVSMUNIT_CLOCK_GATE_DISABLE);
3316 I915_WRITE(PCH_3DCGDIS1,
3317 VFMUNIT_CLOCK_GATE_DISABLE);
3318
3319 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3320
3321 /*
3322 * According to the spec the following bits should be set in
3323 * order to enable memory self-refresh
3324 * The bit 22/21 of 0x42004
3325 * The bit 5 of 0x42020
3326 * The bit 15 of 0x45000
3327 */
3328 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3329 (I915_READ(ILK_DISPLAY_CHICKEN2) |
3330 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3331 I915_WRITE(ILK_DSPCLK_GATE,
3332 (I915_READ(ILK_DSPCLK_GATE) |
3333 ILK_DPARB_CLK_GATE));
3334 I915_WRITE(DISP_ARB_CTL,
3335 (I915_READ(DISP_ARB_CTL) |
3336 DISP_FBC_WM_DIS));
3337 I915_WRITE(WM3_LP_ILK, 0);
3338 I915_WRITE(WM2_LP_ILK, 0);
3339 I915_WRITE(WM1_LP_ILK, 0);
3340
3341 /*
3342 * Based on the document from hardware guys the following bits
3343 * should be set unconditionally in order to enable FBC.
3344 * The bit 22 of 0x42000
3345 * The bit 22 of 0x42004
3346 * The bit 7,8,9 of 0x42020.
3347 */
3348 if (IS_IRONLAKE_M(dev)) {
3349 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3350 I915_READ(ILK_DISPLAY_CHICKEN1) |
3351 ILK_FBCQ_DIS);
3352 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3353 I915_READ(ILK_DISPLAY_CHICKEN2) |
3354 ILK_DPARB_GATE);
3355 I915_WRITE(ILK_DSPCLK_GATE,
3356 I915_READ(ILK_DSPCLK_GATE) |
3357 ILK_DPFC_DIS1 |
3358 ILK_DPFC_DIS2 |
3359 ILK_CLK_FBC);
3360 }
3361
3362 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3363 I915_READ(ILK_DISPLAY_CHICKEN2) |
3364 ILK_ELPIN_409_SELECT);
3365 I915_WRITE(_3D_CHICKEN2,
3366 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3367 _3D_CHICKEN2_WM_READ_PIPELINED);
3368 }
3369
3370 static void gen6_init_clock_gating(struct drm_device *dev)
3371 {
3372 struct drm_i915_private *dev_priv = dev->dev_private;
3373 int pipe;
3374 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3375
3376 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3377
3378 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3379 I915_READ(ILK_DISPLAY_CHICKEN2) |
3380 ILK_ELPIN_409_SELECT);
3381
3382 I915_WRITE(WM3_LP_ILK, 0);
3383 I915_WRITE(WM2_LP_ILK, 0);
3384 I915_WRITE(WM1_LP_ILK, 0);
3385
3386 I915_WRITE(CACHE_MODE_0,
3387 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3388
3389 I915_WRITE(GEN6_UCGCTL1,
3390 I915_READ(GEN6_UCGCTL1) |
3391 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3392 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3393
3394 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3395 * gating disable must be set. Failure to set it results in
3396 * flickering pixels due to Z write ordering failures after
3397 * some amount of runtime in the Mesa "fire" demo, and Unigine
3398 * Sanctuary and Tropics, and apparently anything else with
3399 * alpha test or pixel discard.
3400 *
3401 * According to the spec, bit 11 (RCCUNIT) must also be set,
3402 * but we didn't debug actual testcases to find it out.
3403 *
3404 * Also apply WaDisableVDSUnitClockGating and
3405 * WaDisableRCPBUnitClockGating.
3406 */
3407 I915_WRITE(GEN6_UCGCTL2,
3408 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3409 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3410 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3411
3412 /* Bspec says we need to always set all mask bits. */
3413 I915_WRITE(_3D_CHICKEN, (0xFFFF << 16) |
3414 _3D_CHICKEN_SF_DISABLE_FASTCLIP_CULL);
3415
3416 /*
3417 * According to the spec the following bits should be
3418 * set in order to enable memory self-refresh and fbc:
3419 * The bit21 and bit22 of 0x42000
3420 * The bit21 and bit22 of 0x42004
3421 * The bit5 and bit7 of 0x42020
3422 * The bit14 of 0x70180
3423 * The bit14 of 0x71180
3424 */
3425 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3426 I915_READ(ILK_DISPLAY_CHICKEN1) |
3427 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3428 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3429 I915_READ(ILK_DISPLAY_CHICKEN2) |
3430 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3431 I915_WRITE(ILK_DSPCLK_GATE,
3432 I915_READ(ILK_DSPCLK_GATE) |
3433 ILK_DPARB_CLK_GATE |
3434 ILK_DPFD_CLK_GATE);
3435
3436 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3437 GEN6_MBCTL_ENABLE_BOOT_FETCH);
3438
3439 for_each_pipe(pipe) {
3440 I915_WRITE(DSPCNTR(pipe),
3441 I915_READ(DSPCNTR(pipe)) |
3442 DISPPLANE_TRICKLE_FEED_DISABLE);
3443 intel_flush_display_plane(dev_priv, pipe);
3444 }
3445 }
3446
3447 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3448 {
3449 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3450
3451 reg &= ~GEN7_FF_SCHED_MASK;
3452 reg |= GEN7_FF_TS_SCHED_HW;
3453 reg |= GEN7_FF_VS_SCHED_HW;
3454 reg |= GEN7_FF_DS_SCHED_HW;
3455
3456 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3457 }
3458
3459 static void haswell_init_clock_gating(struct drm_device *dev)
3460 {
3461 struct drm_i915_private *dev_priv = dev->dev_private;
3462 int pipe;
3463 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3464
3465 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3466
3467 I915_WRITE(WM3_LP_ILK, 0);
3468 I915_WRITE(WM2_LP_ILK, 0);
3469 I915_WRITE(WM1_LP_ILK, 0);
3470
3471 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3472 * This implements the WaDisableRCZUnitClockGating workaround.
3473 */
3474 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3475
3476 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
3477
3478 I915_WRITE(IVB_CHICKEN3,
3479 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3480 CHICKEN3_DGMG_DONE_FIX_DISABLE);
3481
3482 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3483 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3484 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3485
3486 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3487 I915_WRITE(GEN7_L3CNTLREG1,
3488 GEN7_WA_FOR_GEN7_L3_CONTROL);
3489 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3490 GEN7_WA_L3_CHICKEN_MODE);
3491
3492 /* This is required by WaCatErrorRejectionIssue */
3493 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3494 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3495 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3496
3497 for_each_pipe(pipe) {
3498 I915_WRITE(DSPCNTR(pipe),
3499 I915_READ(DSPCNTR(pipe)) |
3500 DISPPLANE_TRICKLE_FEED_DISABLE);
3501 intel_flush_display_plane(dev_priv, pipe);
3502 }
3503
3504 gen7_setup_fixed_func_scheduler(dev_priv);
3505
3506 /* WaDisable4x2SubspanOptimization */
3507 I915_WRITE(CACHE_MODE_1,
3508 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3509
3510 /* XXX: This is a workaround for early silicon revisions and should be
3511 * removed later.
3512 */
3513 I915_WRITE(WM_DBG,
3514 I915_READ(WM_DBG) |
3515 WM_DBG_DISALLOW_MULTIPLE_LP |
3516 WM_DBG_DISALLOW_SPRITE |
3517 WM_DBG_DISALLOW_MAXFIFO);
3518
3519 }
3520
3521 static void ivybridge_init_clock_gating(struct drm_device *dev)
3522 {
3523 struct drm_i915_private *dev_priv = dev->dev_private;
3524 int pipe;
3525 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3526 uint32_t snpcr;
3527
3528 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3529
3530 I915_WRITE(WM3_LP_ILK, 0);
3531 I915_WRITE(WM2_LP_ILK, 0);
3532 I915_WRITE(WM1_LP_ILK, 0);
3533
3534 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
3535
3536 I915_WRITE(IVB_CHICKEN3,
3537 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3538 CHICKEN3_DGMG_DONE_FIX_DISABLE);
3539
3540 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3541 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3542 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3543
3544 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3545 I915_WRITE(GEN7_L3CNTLREG1,
3546 GEN7_WA_FOR_GEN7_L3_CONTROL);
3547 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3548 GEN7_WA_L3_CHICKEN_MODE);
3549
3550 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3551 * gating disable must be set. Failure to set it results in
3552 * flickering pixels due to Z write ordering failures after
3553 * some amount of runtime in the Mesa "fire" demo, and Unigine
3554 * Sanctuary and Tropics, and apparently anything else with
3555 * alpha test or pixel discard.
3556 *
3557 * According to the spec, bit 11 (RCCUNIT) must also be set,
3558 * but we didn't debug actual testcases to find it out.
3559 *
3560 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3561 * This implements the WaDisableRCZUnitClockGating workaround.
3562 */
3563 I915_WRITE(GEN6_UCGCTL2,
3564 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3565 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3566
3567 /* This is required by WaCatErrorRejectionIssue */
3568 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3569 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3570 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3571
3572 for_each_pipe(pipe) {
3573 I915_WRITE(DSPCNTR(pipe),
3574 I915_READ(DSPCNTR(pipe)) |
3575 DISPPLANE_TRICKLE_FEED_DISABLE);
3576 intel_flush_display_plane(dev_priv, pipe);
3577 }
3578
3579 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3580 GEN6_MBCTL_ENABLE_BOOT_FETCH);
3581
3582 gen7_setup_fixed_func_scheduler(dev_priv);
3583
3584 /* WaDisable4x2SubspanOptimization */
3585 I915_WRITE(CACHE_MODE_1,
3586 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3587
3588 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3589 snpcr &= ~GEN6_MBC_SNPCR_MASK;
3590 snpcr |= GEN6_MBC_SNPCR_MED;
3591 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3592 }
3593
3594 static void valleyview_init_clock_gating(struct drm_device *dev)
3595 {
3596 struct drm_i915_private *dev_priv = dev->dev_private;
3597 int pipe;
3598 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3599
3600 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3601
3602 I915_WRITE(WM3_LP_ILK, 0);
3603 I915_WRITE(WM2_LP_ILK, 0);
3604 I915_WRITE(WM1_LP_ILK, 0);
3605
3606 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
3607
3608 I915_WRITE(IVB_CHICKEN3,
3609 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3610 CHICKEN3_DGMG_DONE_FIX_DISABLE);
3611
3612 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3613 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3614 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3615
3616 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3617 I915_WRITE(GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
3618 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3619
3620 /* This is required by WaCatErrorRejectionIssue */
3621 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3622 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3623 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3624
3625 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3626 GEN6_MBCTL_ENABLE_BOOT_FETCH);
3627
3628
3629 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3630 * gating disable must be set. Failure to set it results in
3631 * flickering pixels due to Z write ordering failures after
3632 * some amount of runtime in the Mesa "fire" demo, and Unigine
3633 * Sanctuary and Tropics, and apparently anything else with
3634 * alpha test or pixel discard.
3635 *
3636 * According to the spec, bit 11 (RCCUNIT) must also be set,
3637 * but we didn't debug actual testcases to find it out.
3638 *
3639 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3640 * This implements the WaDisableRCZUnitClockGating workaround.
3641 *
3642 * Also apply WaDisableVDSUnitClockGating and
3643 * WaDisableRCPBUnitClockGating.
3644 */
3645 I915_WRITE(GEN6_UCGCTL2,
3646 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3647 GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
3648 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3649 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3650 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3651
3652 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3653
3654 for_each_pipe(pipe) {
3655 I915_WRITE(DSPCNTR(pipe),
3656 I915_READ(DSPCNTR(pipe)) |
3657 DISPPLANE_TRICKLE_FEED_DISABLE);
3658 intel_flush_display_plane(dev_priv, pipe);
3659 }
3660
3661 I915_WRITE(CACHE_MODE_1,
3662 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3663
3664 /*
3665 * On ValleyView, the GUnit needs to signal the GT
3666 * when flip and other events complete. So enable
3667 * all the GUnit->GT interrupts here
3668 */
3669 I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN |
3670 PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN |
3671 SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN |
3672 PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN |
3673 PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN |
3674 SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN |
3675 PLANEA_FLIPDONE_INT_EN);
3676 }
3677
3678 static void g4x_init_clock_gating(struct drm_device *dev)
3679 {
3680 struct drm_i915_private *dev_priv = dev->dev_private;
3681 uint32_t dspclk_gate;
3682
3683 I915_WRITE(RENCLK_GATE_D1, 0);
3684 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
3685 GS_UNIT_CLOCK_GATE_DISABLE |
3686 CL_UNIT_CLOCK_GATE_DISABLE);
3687 I915_WRITE(RAMCLK_GATE_D, 0);
3688 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
3689 OVRUNIT_CLOCK_GATE_DISABLE |
3690 OVCUNIT_CLOCK_GATE_DISABLE;
3691 if (IS_GM45(dev))
3692 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
3693 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3694 }
3695
3696 static void crestline_init_clock_gating(struct drm_device *dev)
3697 {
3698 struct drm_i915_private *dev_priv = dev->dev_private;
3699
3700 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
3701 I915_WRITE(RENCLK_GATE_D2, 0);
3702 I915_WRITE(DSPCLK_GATE_D, 0);
3703 I915_WRITE(RAMCLK_GATE_D, 0);
3704 I915_WRITE16(DEUC, 0);
3705 }
3706
3707 static void broadwater_init_clock_gating(struct drm_device *dev)
3708 {
3709 struct drm_i915_private *dev_priv = dev->dev_private;
3710
3711 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
3712 I965_RCC_CLOCK_GATE_DISABLE |
3713 I965_RCPB_CLOCK_GATE_DISABLE |
3714 I965_ISC_CLOCK_GATE_DISABLE |
3715 I965_FBC_CLOCK_GATE_DISABLE);
3716 I915_WRITE(RENCLK_GATE_D2, 0);
3717 }
3718
3719 static void gen3_init_clock_gating(struct drm_device *dev)
3720 {
3721 struct drm_i915_private *dev_priv = dev->dev_private;
3722 u32 dstate = I915_READ(D_STATE);
3723
3724 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
3725 DSTATE_DOT_CLOCK_GATING;
3726 I915_WRITE(D_STATE, dstate);
3727
3728 if (IS_PINEVIEW(dev))
3729 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
3730 }
3731
3732 static void i85x_init_clock_gating(struct drm_device *dev)
3733 {
3734 struct drm_i915_private *dev_priv = dev->dev_private;
3735
3736 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
3737 }
3738
3739 static void i830_init_clock_gating(struct drm_device *dev)
3740 {
3741 struct drm_i915_private *dev_priv = dev->dev_private;
3742
3743 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
3744 }
3745
3746 static void ibx_init_clock_gating(struct drm_device *dev)
3747 {
3748 struct drm_i915_private *dev_priv = dev->dev_private;
3749
3750 /*
3751 * On Ibex Peak and Cougar Point, we need to disable clock
3752 * gating for the panel power sequencer or it will fail to
3753 * start up when no ports are active.
3754 */
3755 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3756 }
3757
3758 static void cpt_init_clock_gating(struct drm_device *dev)
3759 {
3760 struct drm_i915_private *dev_priv = dev->dev_private;
3761 int pipe;
3762
3763 /*
3764 * On Ibex Peak and Cougar Point, we need to disable clock
3765 * gating for the panel power sequencer or it will fail to
3766 * start up when no ports are active.
3767 */
3768 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3769 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3770 DPLS_EDP_PPS_FIX_DIS);
3771 /* Without this, mode sets may fail silently on FDI */
3772 for_each_pipe(pipe)
3773 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
3774 }
3775
3776 void intel_init_clock_gating(struct drm_device *dev)
3777 {
3778 struct drm_i915_private *dev_priv = dev->dev_private;
3779
3780 dev_priv->display.init_clock_gating(dev);
3781
3782 if (dev_priv->display.init_pch_clock_gating)
3783 dev_priv->display.init_pch_clock_gating(dev);
3784 }
3785
3786 /* Starting with Haswell, we have different power wells for
3787 * different parts of the GPU. This attempts to enable them all.
3788 */
3789 void intel_init_power_wells(struct drm_device *dev)
3790 {
3791 struct drm_i915_private *dev_priv = dev->dev_private;
3792 unsigned long power_wells[] = {
3793 HSW_PWR_WELL_CTL1,
3794 HSW_PWR_WELL_CTL2,
3795 HSW_PWR_WELL_CTL4
3796 };
3797 int i;
3798
3799 if (!IS_HASWELL(dev))
3800 return;
3801
3802 mutex_lock(&dev->struct_mutex);
3803
3804 for (i = 0; i < ARRAY_SIZE(power_wells); i++) {
3805 int well = I915_READ(power_wells[i]);
3806
3807 if ((well & HSW_PWR_WELL_STATE) == 0) {
3808 I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE);
3809 if (wait_for(I915_READ(power_wells[i] & HSW_PWR_WELL_STATE), 20))
3810 DRM_ERROR("Error enabling power well %lx\n", power_wells[i]);
3811 }
3812 }
3813
3814 mutex_unlock(&dev->struct_mutex);
3815 }
3816
3817 /* Set up chip specific power management-related functions */
3818 void intel_init_pm(struct drm_device *dev)
3819 {
3820 struct drm_i915_private *dev_priv = dev->dev_private;
3821
3822 if (I915_HAS_FBC(dev)) {
3823 if (HAS_PCH_SPLIT(dev)) {
3824 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
3825 dev_priv->display.enable_fbc = ironlake_enable_fbc;
3826 dev_priv->display.disable_fbc = ironlake_disable_fbc;
3827 } else if (IS_GM45(dev)) {
3828 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
3829 dev_priv->display.enable_fbc = g4x_enable_fbc;
3830 dev_priv->display.disable_fbc = g4x_disable_fbc;
3831 } else if (IS_CRESTLINE(dev)) {
3832 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
3833 dev_priv->display.enable_fbc = i8xx_enable_fbc;
3834 dev_priv->display.disable_fbc = i8xx_disable_fbc;
3835 }
3836 /* 855GM needs testing */
3837 }
3838
3839 /* For cxsr */
3840 if (IS_PINEVIEW(dev))
3841 i915_pineview_get_mem_freq(dev);
3842 else if (IS_GEN5(dev))
3843 i915_ironlake_get_mem_freq(dev);
3844
3845 /* For FIFO watermark updates */
3846 if (HAS_PCH_SPLIT(dev)) {
3847 if (HAS_PCH_IBX(dev))
3848 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
3849 else if (HAS_PCH_CPT(dev))
3850 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
3851
3852 if (IS_GEN5(dev)) {
3853 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
3854 dev_priv->display.update_wm = ironlake_update_wm;
3855 else {
3856 DRM_DEBUG_KMS("Failed to get proper latency. "
3857 "Disable CxSR\n");
3858 dev_priv->display.update_wm = NULL;
3859 }
3860 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
3861 } else if (IS_GEN6(dev)) {
3862 if (SNB_READ_WM0_LATENCY()) {
3863 dev_priv->display.update_wm = sandybridge_update_wm;
3864 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3865 } else {
3866 DRM_DEBUG_KMS("Failed to read display plane latency. "
3867 "Disable CxSR\n");
3868 dev_priv->display.update_wm = NULL;
3869 }
3870 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
3871 } else if (IS_IVYBRIDGE(dev)) {
3872 /* FIXME: detect B0+ stepping and use auto training */
3873 if (SNB_READ_WM0_LATENCY()) {
3874 dev_priv->display.update_wm = sandybridge_update_wm;
3875 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3876 } else {
3877 DRM_DEBUG_KMS("Failed to read display plane latency. "
3878 "Disable CxSR\n");
3879 dev_priv->display.update_wm = NULL;
3880 }
3881 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
3882 } else if (IS_HASWELL(dev)) {
3883 if (SNB_READ_WM0_LATENCY()) {
3884 dev_priv->display.update_wm = sandybridge_update_wm;
3885 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3886 dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
3887 } else {
3888 DRM_DEBUG_KMS("Failed to read display plane latency. "
3889 "Disable CxSR\n");
3890 dev_priv->display.update_wm = NULL;
3891 }
3892 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
3893 } else
3894 dev_priv->display.update_wm = NULL;
3895 } else if (IS_VALLEYVIEW(dev)) {
3896 dev_priv->display.update_wm = valleyview_update_wm;
3897 dev_priv->display.init_clock_gating =
3898 valleyview_init_clock_gating;
3899 } else if (IS_PINEVIEW(dev)) {
3900 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
3901 dev_priv->is_ddr3,
3902 dev_priv->fsb_freq,
3903 dev_priv->mem_freq)) {
3904 DRM_INFO("failed to find known CxSR latency "
3905 "(found ddr%s fsb freq %d, mem freq %d), "
3906 "disabling CxSR\n",
3907 (dev_priv->is_ddr3 == 1) ? "3" : "2",
3908 dev_priv->fsb_freq, dev_priv->mem_freq);
3909 /* Disable CxSR and never update its watermark again */
3910 pineview_disable_cxsr(dev);
3911 dev_priv->display.update_wm = NULL;
3912 } else
3913 dev_priv->display.update_wm = pineview_update_wm;
3914 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
3915 } else if (IS_G4X(dev)) {
3916 dev_priv->display.update_wm = g4x_update_wm;
3917 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
3918 } else if (IS_GEN4(dev)) {
3919 dev_priv->display.update_wm = i965_update_wm;
3920 if (IS_CRESTLINE(dev))
3921 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
3922 else if (IS_BROADWATER(dev))
3923 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
3924 } else if (IS_GEN3(dev)) {
3925 dev_priv->display.update_wm = i9xx_update_wm;
3926 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
3927 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
3928 } else if (IS_I865G(dev)) {
3929 dev_priv->display.update_wm = i830_update_wm;
3930 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
3931 dev_priv->display.get_fifo_size = i830_get_fifo_size;
3932 } else if (IS_I85X(dev)) {
3933 dev_priv->display.update_wm = i9xx_update_wm;
3934 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
3935 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
3936 } else {
3937 dev_priv->display.update_wm = i830_update_wm;
3938 dev_priv->display.init_clock_gating = i830_init_clock_gating;
3939 if (IS_845G(dev))
3940 dev_priv->display.get_fifo_size = i845_get_fifo_size;
3941 else
3942 dev_priv->display.get_fifo_size = i830_get_fifo_size;
3943 }
3944 }
3945
3946 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
3947 {
3948 u32 gt_thread_status_mask;
3949
3950 if (IS_HASWELL(dev_priv->dev))
3951 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
3952 else
3953 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
3954
3955 /* w/a for a sporadic read returning 0 by waiting for the GT
3956 * thread to wake up.
3957 */
3958 if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
3959 DRM_ERROR("GT thread status wait timed out\n");
3960 }
3961
3962 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
3963 {
3964 u32 forcewake_ack;
3965
3966 if (IS_HASWELL(dev_priv->dev))
3967 forcewake_ack = FORCEWAKE_ACK_HSW;
3968 else
3969 forcewake_ack = FORCEWAKE_ACK;
3970
3971 if (wait_for_atomic_us((I915_READ_NOTRACE(forcewake_ack) & 1) == 0, 500))
3972 DRM_ERROR("Force wake wait timed out\n");
3973
3974 I915_WRITE_NOTRACE(FORCEWAKE, 1);
3975 POSTING_READ(FORCEWAKE);
3976
3977 if (wait_for_atomic_us((I915_READ_NOTRACE(forcewake_ack) & 1), 500))
3978 DRM_ERROR("Force wake wait timed out\n");
3979
3980 __gen6_gt_wait_for_thread_c0(dev_priv);
3981 }
3982
3983 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
3984 {
3985 u32 forcewake_ack;
3986
3987 if (IS_HASWELL(dev_priv->dev))
3988 forcewake_ack = FORCEWAKE_ACK_HSW;
3989 else
3990 forcewake_ack = FORCEWAKE_MT_ACK;
3991
3992 if (wait_for_atomic_us((I915_READ_NOTRACE(forcewake_ack) & 1) == 0, 500))
3993 DRM_ERROR("Force wake wait timed out\n");
3994
3995 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(1));
3996 POSTING_READ(FORCEWAKE_MT);
3997
3998 if (wait_for_atomic_us((I915_READ_NOTRACE(forcewake_ack) & 1), 500))
3999 DRM_ERROR("Force wake wait timed out\n");
4000
4001 __gen6_gt_wait_for_thread_c0(dev_priv);
4002 }
4003
4004 /*
4005 * Generally this is called implicitly by the register read function. However,
4006 * if some sequence requires the GT to not power down then this function should
4007 * be called at the beginning of the sequence followed by a call to
4008 * gen6_gt_force_wake_put() at the end of the sequence.
4009 */
4010 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4011 {
4012 unsigned long irqflags;
4013
4014 spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4015 if (dev_priv->forcewake_count++ == 0)
4016 dev_priv->gt.force_wake_get(dev_priv);
4017 spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4018 }
4019
4020 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4021 {
4022 u32 gtfifodbg;
4023 gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4024 if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4025 "MMIO read or write has been dropped %x\n", gtfifodbg))
4026 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4027 }
4028
4029 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4030 {
4031 I915_WRITE_NOTRACE(FORCEWAKE, 0);
4032 POSTING_READ(FORCEWAKE);
4033 gen6_gt_check_fifodbg(dev_priv);
4034 }
4035
4036 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4037 {
4038 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(1));
4039 POSTING_READ(FORCEWAKE_MT);
4040 gen6_gt_check_fifodbg(dev_priv);
4041 }
4042
4043 /*
4044 * see gen6_gt_force_wake_get()
4045 */
4046 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4047 {
4048 unsigned long irqflags;
4049
4050 spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4051 if (--dev_priv->forcewake_count == 0)
4052 dev_priv->gt.force_wake_put(dev_priv);
4053 spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4054 }
4055
4056 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4057 {
4058 int ret = 0;
4059
4060 if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4061 int loop = 500;
4062 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4063 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4064 udelay(10);
4065 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4066 }
4067 if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4068 ++ret;
4069 dev_priv->gt_fifo_count = fifo;
4070 }
4071 dev_priv->gt_fifo_count--;
4072
4073 return ret;
4074 }
4075
4076 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4077 {
4078 /* Already awake? */
4079 if ((I915_READ(0x130094) & 0xa1) == 0xa1)
4080 return;
4081
4082 I915_WRITE_NOTRACE(FORCEWAKE_VLV, 0xffffffff);
4083 POSTING_READ(FORCEWAKE_VLV);
4084
4085 if (wait_for_atomic_us((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1), 500))
4086 DRM_ERROR("Force wake wait timed out\n");
4087
4088 __gen6_gt_wait_for_thread_c0(dev_priv);
4089 }
4090
4091 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4092 {
4093 I915_WRITE_NOTRACE(FORCEWAKE_VLV, 0xffff0000);
4094 /* FIXME: confirm VLV behavior with Punit folks */
4095 POSTING_READ(FORCEWAKE_VLV);
4096 }
4097
4098 void intel_gt_init(struct drm_device *dev)
4099 {
4100 struct drm_i915_private *dev_priv = dev->dev_private;
4101
4102 spin_lock_init(&dev_priv->gt_lock);
4103
4104 if (IS_VALLEYVIEW(dev)) {
4105 dev_priv->gt.force_wake_get = vlv_force_wake_get;
4106 dev_priv->gt.force_wake_put = vlv_force_wake_put;
4107 } else if (INTEL_INFO(dev)->gen >= 6) {
4108 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4109 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
4110
4111 /* IVB configs may use multi-threaded forcewake */
4112 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4113 u32 ecobus;
4114
4115 /* A small trick here - if the bios hasn't configured
4116 * MT forcewake, and if the device is in RC6, then
4117 * force_wake_mt_get will not wake the device and the
4118 * ECOBUS read will return zero. Which will be
4119 * (correctly) interpreted by the test below as MT
4120 * forcewake being disabled.
4121 */
4122 mutex_lock(&dev->struct_mutex);
4123 __gen6_gt_force_wake_mt_get(dev_priv);
4124 ecobus = I915_READ_NOTRACE(ECOBUS);
4125 __gen6_gt_force_wake_mt_put(dev_priv);
4126 mutex_unlock(&dev->struct_mutex);
4127
4128 if (ecobus & FORCEWAKE_MT_ENABLE) {
4129 DRM_DEBUG_KMS("Using MT version of forcewake\n");
4130 dev_priv->gt.force_wake_get =
4131 __gen6_gt_force_wake_mt_get;
4132 dev_priv->gt.force_wake_put =
4133 __gen6_gt_force_wake_mt_put;
4134 }
4135 }
4136 }
4137 }
4138
This page took 0.123519 seconds and 5 git commands to generate.