drm/i915: Always call the adjusted mode 'adjusted_mode'
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35 * RC6 is a special power stage which allows the GPU to enter an very
36 * low-voltage mode when idle, using down to 0V while at this stage. This
37 * stage is entered automatically when the GPU is idle when RC6 support is
38 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39 *
40 * There are different RC6 modes available in Intel GPU, which differentiate
41 * among each other with the latency required to enter and leave RC6 and
42 * voltage consumed by the GPU in different states.
43 *
44 * The combination of the following flags define which states GPU is allowed
45 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46 * RC6pp is deepest RC6. Their support by hardware varies according to the
47 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48 * which brings the most power savings; deeper states save more power, but
49 * require higher latency to switch to and wake up.
50 */
51 #define INTEL_RC6_ENABLE (1<<0)
52 #define INTEL_RC6p_ENABLE (1<<1)
53 #define INTEL_RC6pp_ENABLE (1<<2)
54
55 static void gen9_init_clock_gating(struct drm_device *dev)
56 {
57 struct drm_i915_private *dev_priv = dev->dev_private;
58
59 /* WaEnableLbsSlaRetryTimerDecrement:skl */
60 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
61 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
62
63 /* WaDisableKillLogic:bxt,skl */
64 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
65 ECOCHK_DIS_TLB);
66 }
67
68 static void skl_init_clock_gating(struct drm_device *dev)
69 {
70 struct drm_i915_private *dev_priv = dev->dev_private;
71
72 gen9_init_clock_gating(dev);
73
74 if (INTEL_REVID(dev) <= SKL_REVID_B0) {
75 /*
76 * WaDisableSDEUnitClockGating:skl
77 * WaSetGAPSunitClckGateDisable:skl
78 */
79 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
80 GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
81 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
82
83 /* WaDisableVFUnitClockGating:skl */
84 I915_WRITE(GEN6_UCGCTL2, I915_READ(GEN6_UCGCTL2) |
85 GEN6_VFUNIT_CLOCK_GATE_DISABLE);
86 }
87
88 if (INTEL_REVID(dev) <= SKL_REVID_D0) {
89 /* WaDisableHDCInvalidation:skl */
90 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
91 BDW_DISABLE_HDC_INVALIDATION);
92
93 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
94 I915_WRITE(FF_SLICE_CS_CHICKEN2,
95 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
96 }
97
98 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
99 * involving this register should also be added to WA batch as required.
100 */
101 if (INTEL_REVID(dev) <= SKL_REVID_E0)
102 /* WaDisableLSQCROPERFforOCL:skl */
103 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
104 GEN8_LQSC_RO_PERF_DIS);
105
106 /* WaEnableGapsTsvCreditFix:skl */
107 if (IS_SKYLAKE(dev) && (INTEL_REVID(dev) >= SKL_REVID_C0)) {
108 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
109 GEN9_GAPS_TSV_CREDIT_DISABLE));
110 }
111 }
112
113 static void bxt_init_clock_gating(struct drm_device *dev)
114 {
115 struct drm_i915_private *dev_priv = dev->dev_private;
116
117 gen9_init_clock_gating(dev);
118
119 /* WaDisableSDEUnitClockGating:bxt */
120 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
121 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
122
123 /*
124 * FIXME:
125 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
126 */
127 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
128 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
129
130 if (INTEL_REVID(dev) == BXT_REVID_A0) {
131 /*
132 * Hardware specification requires this bit to be
133 * set to 1 for A0
134 */
135 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
136 }
137
138 /* WaSetClckGatingDisableMedia:bxt */
139 if (INTEL_REVID(dev) == BXT_REVID_A0) {
140 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
141 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
142 }
143 }
144
145 static void i915_pineview_get_mem_freq(struct drm_device *dev)
146 {
147 struct drm_i915_private *dev_priv = dev->dev_private;
148 u32 tmp;
149
150 tmp = I915_READ(CLKCFG);
151
152 switch (tmp & CLKCFG_FSB_MASK) {
153 case CLKCFG_FSB_533:
154 dev_priv->fsb_freq = 533; /* 133*4 */
155 break;
156 case CLKCFG_FSB_800:
157 dev_priv->fsb_freq = 800; /* 200*4 */
158 break;
159 case CLKCFG_FSB_667:
160 dev_priv->fsb_freq = 667; /* 167*4 */
161 break;
162 case CLKCFG_FSB_400:
163 dev_priv->fsb_freq = 400; /* 100*4 */
164 break;
165 }
166
167 switch (tmp & CLKCFG_MEM_MASK) {
168 case CLKCFG_MEM_533:
169 dev_priv->mem_freq = 533;
170 break;
171 case CLKCFG_MEM_667:
172 dev_priv->mem_freq = 667;
173 break;
174 case CLKCFG_MEM_800:
175 dev_priv->mem_freq = 800;
176 break;
177 }
178
179 /* detect pineview DDR3 setting */
180 tmp = I915_READ(CSHRDDR3CTL);
181 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
182 }
183
184 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
185 {
186 struct drm_i915_private *dev_priv = dev->dev_private;
187 u16 ddrpll, csipll;
188
189 ddrpll = I915_READ16(DDRMPLL1);
190 csipll = I915_READ16(CSIPLL0);
191
192 switch (ddrpll & 0xff) {
193 case 0xc:
194 dev_priv->mem_freq = 800;
195 break;
196 case 0x10:
197 dev_priv->mem_freq = 1066;
198 break;
199 case 0x14:
200 dev_priv->mem_freq = 1333;
201 break;
202 case 0x18:
203 dev_priv->mem_freq = 1600;
204 break;
205 default:
206 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
207 ddrpll & 0xff);
208 dev_priv->mem_freq = 0;
209 break;
210 }
211
212 dev_priv->ips.r_t = dev_priv->mem_freq;
213
214 switch (csipll & 0x3ff) {
215 case 0x00c:
216 dev_priv->fsb_freq = 3200;
217 break;
218 case 0x00e:
219 dev_priv->fsb_freq = 3733;
220 break;
221 case 0x010:
222 dev_priv->fsb_freq = 4266;
223 break;
224 case 0x012:
225 dev_priv->fsb_freq = 4800;
226 break;
227 case 0x014:
228 dev_priv->fsb_freq = 5333;
229 break;
230 case 0x016:
231 dev_priv->fsb_freq = 5866;
232 break;
233 case 0x018:
234 dev_priv->fsb_freq = 6400;
235 break;
236 default:
237 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
238 csipll & 0x3ff);
239 dev_priv->fsb_freq = 0;
240 break;
241 }
242
243 if (dev_priv->fsb_freq == 3200) {
244 dev_priv->ips.c_m = 0;
245 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
246 dev_priv->ips.c_m = 1;
247 } else {
248 dev_priv->ips.c_m = 2;
249 }
250 }
251
252 static const struct cxsr_latency cxsr_latency_table[] = {
253 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
254 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
255 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
256 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
257 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
258
259 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
260 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
261 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
262 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
263 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
264
265 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
266 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
267 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
268 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
269 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
270
271 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
272 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
273 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
274 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
275 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
276
277 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
278 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
279 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
280 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
281 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
282
283 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
284 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
285 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
286 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
287 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
288 };
289
290 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
291 int is_ddr3,
292 int fsb,
293 int mem)
294 {
295 const struct cxsr_latency *latency;
296 int i;
297
298 if (fsb == 0 || mem == 0)
299 return NULL;
300
301 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
302 latency = &cxsr_latency_table[i];
303 if (is_desktop == latency->is_desktop &&
304 is_ddr3 == latency->is_ddr3 &&
305 fsb == latency->fsb_freq && mem == latency->mem_freq)
306 return latency;
307 }
308
309 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
310
311 return NULL;
312 }
313
314 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
315 {
316 u32 val;
317
318 mutex_lock(&dev_priv->rps.hw_lock);
319
320 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
321 if (enable)
322 val &= ~FORCE_DDR_HIGH_FREQ;
323 else
324 val |= FORCE_DDR_HIGH_FREQ;
325 val &= ~FORCE_DDR_LOW_FREQ;
326 val |= FORCE_DDR_FREQ_REQ_ACK;
327 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
328
329 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
330 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
331 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
332
333 mutex_unlock(&dev_priv->rps.hw_lock);
334 }
335
336 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
337 {
338 u32 val;
339
340 mutex_lock(&dev_priv->rps.hw_lock);
341
342 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
343 if (enable)
344 val |= DSP_MAXFIFO_PM5_ENABLE;
345 else
346 val &= ~DSP_MAXFIFO_PM5_ENABLE;
347 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
348
349 mutex_unlock(&dev_priv->rps.hw_lock);
350 }
351
352 #define FW_WM(value, plane) \
353 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
354
355 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
356 {
357 struct drm_device *dev = dev_priv->dev;
358 u32 val;
359
360 if (IS_VALLEYVIEW(dev)) {
361 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
362 POSTING_READ(FW_BLC_SELF_VLV);
363 dev_priv->wm.vlv.cxsr = enable;
364 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
365 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
366 POSTING_READ(FW_BLC_SELF);
367 } else if (IS_PINEVIEW(dev)) {
368 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
369 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
370 I915_WRITE(DSPFW3, val);
371 POSTING_READ(DSPFW3);
372 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
373 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
374 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
375 I915_WRITE(FW_BLC_SELF, val);
376 POSTING_READ(FW_BLC_SELF);
377 } else if (IS_I915GM(dev)) {
378 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
379 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
380 I915_WRITE(INSTPM, val);
381 POSTING_READ(INSTPM);
382 } else {
383 return;
384 }
385
386 DRM_DEBUG_KMS("memory self-refresh is %s\n",
387 enable ? "enabled" : "disabled");
388 }
389
390
391 /*
392 * Latency for FIFO fetches is dependent on several factors:
393 * - memory configuration (speed, channels)
394 * - chipset
395 * - current MCH state
396 * It can be fairly high in some situations, so here we assume a fairly
397 * pessimal value. It's a tradeoff between extra memory fetches (if we
398 * set this value too high, the FIFO will fetch frequently to stay full)
399 * and power consumption (set it too low to save power and we might see
400 * FIFO underruns and display "flicker").
401 *
402 * A value of 5us seems to be a good balance; safe for very low end
403 * platforms but not overly aggressive on lower latency configs.
404 */
405 static const int pessimal_latency_ns = 5000;
406
407 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
408 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
409
410 static int vlv_get_fifo_size(struct drm_device *dev,
411 enum pipe pipe, int plane)
412 {
413 struct drm_i915_private *dev_priv = dev->dev_private;
414 int sprite0_start, sprite1_start, size;
415
416 switch (pipe) {
417 uint32_t dsparb, dsparb2, dsparb3;
418 case PIPE_A:
419 dsparb = I915_READ(DSPARB);
420 dsparb2 = I915_READ(DSPARB2);
421 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
422 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
423 break;
424 case PIPE_B:
425 dsparb = I915_READ(DSPARB);
426 dsparb2 = I915_READ(DSPARB2);
427 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
428 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
429 break;
430 case PIPE_C:
431 dsparb2 = I915_READ(DSPARB2);
432 dsparb3 = I915_READ(DSPARB3);
433 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
434 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
435 break;
436 default:
437 return 0;
438 }
439
440 switch (plane) {
441 case 0:
442 size = sprite0_start;
443 break;
444 case 1:
445 size = sprite1_start - sprite0_start;
446 break;
447 case 2:
448 size = 512 - 1 - sprite1_start;
449 break;
450 default:
451 return 0;
452 }
453
454 DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
455 pipe_name(pipe), plane == 0 ? "primary" : "sprite",
456 plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
457 size);
458
459 return size;
460 }
461
462 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
463 {
464 struct drm_i915_private *dev_priv = dev->dev_private;
465 uint32_t dsparb = I915_READ(DSPARB);
466 int size;
467
468 size = dsparb & 0x7f;
469 if (plane)
470 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
471
472 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
473 plane ? "B" : "A", size);
474
475 return size;
476 }
477
478 static int i830_get_fifo_size(struct drm_device *dev, int plane)
479 {
480 struct drm_i915_private *dev_priv = dev->dev_private;
481 uint32_t dsparb = I915_READ(DSPARB);
482 int size;
483
484 size = dsparb & 0x1ff;
485 if (plane)
486 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
487 size >>= 1; /* Convert to cachelines */
488
489 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
490 plane ? "B" : "A", size);
491
492 return size;
493 }
494
495 static int i845_get_fifo_size(struct drm_device *dev, int plane)
496 {
497 struct drm_i915_private *dev_priv = dev->dev_private;
498 uint32_t dsparb = I915_READ(DSPARB);
499 int size;
500
501 size = dsparb & 0x7f;
502 size >>= 2; /* Convert to cachelines */
503
504 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
505 plane ? "B" : "A",
506 size);
507
508 return size;
509 }
510
511 /* Pineview has different values for various configs */
512 static const struct intel_watermark_params pineview_display_wm = {
513 .fifo_size = PINEVIEW_DISPLAY_FIFO,
514 .max_wm = PINEVIEW_MAX_WM,
515 .default_wm = PINEVIEW_DFT_WM,
516 .guard_size = PINEVIEW_GUARD_WM,
517 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
518 };
519 static const struct intel_watermark_params pineview_display_hplloff_wm = {
520 .fifo_size = PINEVIEW_DISPLAY_FIFO,
521 .max_wm = PINEVIEW_MAX_WM,
522 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
523 .guard_size = PINEVIEW_GUARD_WM,
524 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
525 };
526 static const struct intel_watermark_params pineview_cursor_wm = {
527 .fifo_size = PINEVIEW_CURSOR_FIFO,
528 .max_wm = PINEVIEW_CURSOR_MAX_WM,
529 .default_wm = PINEVIEW_CURSOR_DFT_WM,
530 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
531 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
532 };
533 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
534 .fifo_size = PINEVIEW_CURSOR_FIFO,
535 .max_wm = PINEVIEW_CURSOR_MAX_WM,
536 .default_wm = PINEVIEW_CURSOR_DFT_WM,
537 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
538 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
539 };
540 static const struct intel_watermark_params g4x_wm_info = {
541 .fifo_size = G4X_FIFO_SIZE,
542 .max_wm = G4X_MAX_WM,
543 .default_wm = G4X_MAX_WM,
544 .guard_size = 2,
545 .cacheline_size = G4X_FIFO_LINE_SIZE,
546 };
547 static const struct intel_watermark_params g4x_cursor_wm_info = {
548 .fifo_size = I965_CURSOR_FIFO,
549 .max_wm = I965_CURSOR_MAX_WM,
550 .default_wm = I965_CURSOR_DFT_WM,
551 .guard_size = 2,
552 .cacheline_size = G4X_FIFO_LINE_SIZE,
553 };
554 static const struct intel_watermark_params valleyview_wm_info = {
555 .fifo_size = VALLEYVIEW_FIFO_SIZE,
556 .max_wm = VALLEYVIEW_MAX_WM,
557 .default_wm = VALLEYVIEW_MAX_WM,
558 .guard_size = 2,
559 .cacheline_size = G4X_FIFO_LINE_SIZE,
560 };
561 static const struct intel_watermark_params valleyview_cursor_wm_info = {
562 .fifo_size = I965_CURSOR_FIFO,
563 .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
564 .default_wm = I965_CURSOR_DFT_WM,
565 .guard_size = 2,
566 .cacheline_size = G4X_FIFO_LINE_SIZE,
567 };
568 static const struct intel_watermark_params i965_cursor_wm_info = {
569 .fifo_size = I965_CURSOR_FIFO,
570 .max_wm = I965_CURSOR_MAX_WM,
571 .default_wm = I965_CURSOR_DFT_WM,
572 .guard_size = 2,
573 .cacheline_size = I915_FIFO_LINE_SIZE,
574 };
575 static const struct intel_watermark_params i945_wm_info = {
576 .fifo_size = I945_FIFO_SIZE,
577 .max_wm = I915_MAX_WM,
578 .default_wm = 1,
579 .guard_size = 2,
580 .cacheline_size = I915_FIFO_LINE_SIZE,
581 };
582 static const struct intel_watermark_params i915_wm_info = {
583 .fifo_size = I915_FIFO_SIZE,
584 .max_wm = I915_MAX_WM,
585 .default_wm = 1,
586 .guard_size = 2,
587 .cacheline_size = I915_FIFO_LINE_SIZE,
588 };
589 static const struct intel_watermark_params i830_a_wm_info = {
590 .fifo_size = I855GM_FIFO_SIZE,
591 .max_wm = I915_MAX_WM,
592 .default_wm = 1,
593 .guard_size = 2,
594 .cacheline_size = I830_FIFO_LINE_SIZE,
595 };
596 static const struct intel_watermark_params i830_bc_wm_info = {
597 .fifo_size = I855GM_FIFO_SIZE,
598 .max_wm = I915_MAX_WM/2,
599 .default_wm = 1,
600 .guard_size = 2,
601 .cacheline_size = I830_FIFO_LINE_SIZE,
602 };
603 static const struct intel_watermark_params i845_wm_info = {
604 .fifo_size = I830_FIFO_SIZE,
605 .max_wm = I915_MAX_WM,
606 .default_wm = 1,
607 .guard_size = 2,
608 .cacheline_size = I830_FIFO_LINE_SIZE,
609 };
610
611 /**
612 * intel_calculate_wm - calculate watermark level
613 * @clock_in_khz: pixel clock
614 * @wm: chip FIFO params
615 * @pixel_size: display pixel size
616 * @latency_ns: memory latency for the platform
617 *
618 * Calculate the watermark level (the level at which the display plane will
619 * start fetching from memory again). Each chip has a different display
620 * FIFO size and allocation, so the caller needs to figure that out and pass
621 * in the correct intel_watermark_params structure.
622 *
623 * As the pixel clock runs, the FIFO will be drained at a rate that depends
624 * on the pixel size. When it reaches the watermark level, it'll start
625 * fetching FIFO line sized based chunks from memory until the FIFO fills
626 * past the watermark point. If the FIFO drains completely, a FIFO underrun
627 * will occur, and a display engine hang could result.
628 */
629 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
630 const struct intel_watermark_params *wm,
631 int fifo_size,
632 int pixel_size,
633 unsigned long latency_ns)
634 {
635 long entries_required, wm_size;
636
637 /*
638 * Note: we need to make sure we don't overflow for various clock &
639 * latency values.
640 * clocks go from a few thousand to several hundred thousand.
641 * latency is usually a few thousand
642 */
643 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
644 1000;
645 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
646
647 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
648
649 wm_size = fifo_size - (entries_required + wm->guard_size);
650
651 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
652
653 /* Don't promote wm_size to unsigned... */
654 if (wm_size > (long)wm->max_wm)
655 wm_size = wm->max_wm;
656 if (wm_size <= 0)
657 wm_size = wm->default_wm;
658
659 /*
660 * Bspec seems to indicate that the value shouldn't be lower than
661 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
662 * Lets go for 8 which is the burst size since certain platforms
663 * already use a hardcoded 8 (which is what the spec says should be
664 * done).
665 */
666 if (wm_size <= 8)
667 wm_size = 8;
668
669 return wm_size;
670 }
671
672 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
673 {
674 struct drm_crtc *crtc, *enabled = NULL;
675
676 for_each_crtc(dev, crtc) {
677 if (intel_crtc_active(crtc)) {
678 if (enabled)
679 return NULL;
680 enabled = crtc;
681 }
682 }
683
684 return enabled;
685 }
686
687 static void pineview_update_wm(struct drm_crtc *unused_crtc)
688 {
689 struct drm_device *dev = unused_crtc->dev;
690 struct drm_i915_private *dev_priv = dev->dev_private;
691 struct drm_crtc *crtc;
692 const struct cxsr_latency *latency;
693 u32 reg;
694 unsigned long wm;
695
696 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
697 dev_priv->fsb_freq, dev_priv->mem_freq);
698 if (!latency) {
699 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
700 intel_set_memory_cxsr(dev_priv, false);
701 return;
702 }
703
704 crtc = single_enabled_crtc(dev);
705 if (crtc) {
706 const struct drm_display_mode *adjusted_mode;
707 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
708 int clock;
709
710 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
711 clock = adjusted_mode->crtc_clock;
712
713 /* Display SR */
714 wm = intel_calculate_wm(clock, &pineview_display_wm,
715 pineview_display_wm.fifo_size,
716 pixel_size, latency->display_sr);
717 reg = I915_READ(DSPFW1);
718 reg &= ~DSPFW_SR_MASK;
719 reg |= FW_WM(wm, SR);
720 I915_WRITE(DSPFW1, reg);
721 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
722
723 /* cursor SR */
724 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
725 pineview_display_wm.fifo_size,
726 pixel_size, latency->cursor_sr);
727 reg = I915_READ(DSPFW3);
728 reg &= ~DSPFW_CURSOR_SR_MASK;
729 reg |= FW_WM(wm, CURSOR_SR);
730 I915_WRITE(DSPFW3, reg);
731
732 /* Display HPLL off SR */
733 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
734 pineview_display_hplloff_wm.fifo_size,
735 pixel_size, latency->display_hpll_disable);
736 reg = I915_READ(DSPFW3);
737 reg &= ~DSPFW_HPLL_SR_MASK;
738 reg |= FW_WM(wm, HPLL_SR);
739 I915_WRITE(DSPFW3, reg);
740
741 /* cursor HPLL off SR */
742 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
743 pineview_display_hplloff_wm.fifo_size,
744 pixel_size, latency->cursor_hpll_disable);
745 reg = I915_READ(DSPFW3);
746 reg &= ~DSPFW_HPLL_CURSOR_MASK;
747 reg |= FW_WM(wm, HPLL_CURSOR);
748 I915_WRITE(DSPFW3, reg);
749 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
750
751 intel_set_memory_cxsr(dev_priv, true);
752 } else {
753 intel_set_memory_cxsr(dev_priv, false);
754 }
755 }
756
757 static bool g4x_compute_wm0(struct drm_device *dev,
758 int plane,
759 const struct intel_watermark_params *display,
760 int display_latency_ns,
761 const struct intel_watermark_params *cursor,
762 int cursor_latency_ns,
763 int *plane_wm,
764 int *cursor_wm)
765 {
766 struct drm_crtc *crtc;
767 const struct drm_display_mode *adjusted_mode;
768 int htotal, hdisplay, clock, pixel_size;
769 int line_time_us, line_count;
770 int entries, tlb_miss;
771
772 crtc = intel_get_crtc_for_plane(dev, plane);
773 if (!intel_crtc_active(crtc)) {
774 *cursor_wm = cursor->guard_size;
775 *plane_wm = display->guard_size;
776 return false;
777 }
778
779 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
780 clock = adjusted_mode->crtc_clock;
781 htotal = adjusted_mode->crtc_htotal;
782 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
783 pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
784
785 /* Use the small buffer method to calculate plane watermark */
786 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
787 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
788 if (tlb_miss > 0)
789 entries += tlb_miss;
790 entries = DIV_ROUND_UP(entries, display->cacheline_size);
791 *plane_wm = entries + display->guard_size;
792 if (*plane_wm > (int)display->max_wm)
793 *plane_wm = display->max_wm;
794
795 /* Use the large buffer method to calculate cursor watermark */
796 line_time_us = max(htotal * 1000 / clock, 1);
797 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
798 entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
799 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
800 if (tlb_miss > 0)
801 entries += tlb_miss;
802 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
803 *cursor_wm = entries + cursor->guard_size;
804 if (*cursor_wm > (int)cursor->max_wm)
805 *cursor_wm = (int)cursor->max_wm;
806
807 return true;
808 }
809
810 /*
811 * Check the wm result.
812 *
813 * If any calculated watermark values is larger than the maximum value that
814 * can be programmed into the associated watermark register, that watermark
815 * must be disabled.
816 */
817 static bool g4x_check_srwm(struct drm_device *dev,
818 int display_wm, int cursor_wm,
819 const struct intel_watermark_params *display,
820 const struct intel_watermark_params *cursor)
821 {
822 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
823 display_wm, cursor_wm);
824
825 if (display_wm > display->max_wm) {
826 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
827 display_wm, display->max_wm);
828 return false;
829 }
830
831 if (cursor_wm > cursor->max_wm) {
832 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
833 cursor_wm, cursor->max_wm);
834 return false;
835 }
836
837 if (!(display_wm || cursor_wm)) {
838 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
839 return false;
840 }
841
842 return true;
843 }
844
845 static bool g4x_compute_srwm(struct drm_device *dev,
846 int plane,
847 int latency_ns,
848 const struct intel_watermark_params *display,
849 const struct intel_watermark_params *cursor,
850 int *display_wm, int *cursor_wm)
851 {
852 struct drm_crtc *crtc;
853 const struct drm_display_mode *adjusted_mode;
854 int hdisplay, htotal, pixel_size, clock;
855 unsigned long line_time_us;
856 int line_count, line_size;
857 int small, large;
858 int entries;
859
860 if (!latency_ns) {
861 *display_wm = *cursor_wm = 0;
862 return false;
863 }
864
865 crtc = intel_get_crtc_for_plane(dev, plane);
866 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
867 clock = adjusted_mode->crtc_clock;
868 htotal = adjusted_mode->crtc_htotal;
869 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
870 pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
871
872 line_time_us = max(htotal * 1000 / clock, 1);
873 line_count = (latency_ns / line_time_us + 1000) / 1000;
874 line_size = hdisplay * pixel_size;
875
876 /* Use the minimum of the small and large buffer method for primary */
877 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
878 large = line_count * line_size;
879
880 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
881 *display_wm = entries + display->guard_size;
882
883 /* calculate the self-refresh watermark for display cursor */
884 entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
885 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
886 *cursor_wm = entries + cursor->guard_size;
887
888 return g4x_check_srwm(dev,
889 *display_wm, *cursor_wm,
890 display, cursor);
891 }
892
893 #define FW_WM_VLV(value, plane) \
894 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
895
896 static void vlv_write_wm_values(struct intel_crtc *crtc,
897 const struct vlv_wm_values *wm)
898 {
899 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
900 enum pipe pipe = crtc->pipe;
901
902 I915_WRITE(VLV_DDL(pipe),
903 (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
904 (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
905 (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
906 (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
907
908 I915_WRITE(DSPFW1,
909 FW_WM(wm->sr.plane, SR) |
910 FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
911 FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
912 FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
913 I915_WRITE(DSPFW2,
914 FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
915 FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
916 FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
917 I915_WRITE(DSPFW3,
918 FW_WM(wm->sr.cursor, CURSOR_SR));
919
920 if (IS_CHERRYVIEW(dev_priv)) {
921 I915_WRITE(DSPFW7_CHV,
922 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
923 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
924 I915_WRITE(DSPFW8_CHV,
925 FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
926 FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
927 I915_WRITE(DSPFW9_CHV,
928 FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
929 FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
930 I915_WRITE(DSPHOWM,
931 FW_WM(wm->sr.plane >> 9, SR_HI) |
932 FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
933 FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
934 FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
935 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
936 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
937 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
938 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
939 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
940 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
941 } else {
942 I915_WRITE(DSPFW7,
943 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
944 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
945 I915_WRITE(DSPHOWM,
946 FW_WM(wm->sr.plane >> 9, SR_HI) |
947 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
948 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
949 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
950 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
951 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
952 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
953 }
954
955 /* zero (unused) WM1 watermarks */
956 I915_WRITE(DSPFW4, 0);
957 I915_WRITE(DSPFW5, 0);
958 I915_WRITE(DSPFW6, 0);
959 I915_WRITE(DSPHOWM1, 0);
960
961 POSTING_READ(DSPFW1);
962 }
963
964 #undef FW_WM_VLV
965
966 enum vlv_wm_level {
967 VLV_WM_LEVEL_PM2,
968 VLV_WM_LEVEL_PM5,
969 VLV_WM_LEVEL_DDR_DVFS,
970 };
971
972 /* latency must be in 0.1us units. */
973 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
974 unsigned int pipe_htotal,
975 unsigned int horiz_pixels,
976 unsigned int bytes_per_pixel,
977 unsigned int latency)
978 {
979 unsigned int ret;
980
981 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
982 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
983 ret = DIV_ROUND_UP(ret, 64);
984
985 return ret;
986 }
987
988 static void vlv_setup_wm_latency(struct drm_device *dev)
989 {
990 struct drm_i915_private *dev_priv = dev->dev_private;
991
992 /* all latencies in usec */
993 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
994
995 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
996
997 if (IS_CHERRYVIEW(dev_priv)) {
998 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
999 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1000
1001 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1002 }
1003 }
1004
1005 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
1006 struct intel_crtc *crtc,
1007 const struct intel_plane_state *state,
1008 int level)
1009 {
1010 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1011 int clock, htotal, pixel_size, width, wm;
1012
1013 if (dev_priv->wm.pri_latency[level] == 0)
1014 return USHRT_MAX;
1015
1016 if (!state->visible)
1017 return 0;
1018
1019 pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1020 clock = crtc->config->base.adjusted_mode.crtc_clock;
1021 htotal = crtc->config->base.adjusted_mode.crtc_htotal;
1022 width = crtc->config->pipe_src_w;
1023 if (WARN_ON(htotal == 0))
1024 htotal = 1;
1025
1026 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1027 /*
1028 * FIXME the formula gives values that are
1029 * too big for the cursor FIFO, and hence we
1030 * would never be able to use cursors. For
1031 * now just hardcode the watermark.
1032 */
1033 wm = 63;
1034 } else {
1035 wm = vlv_wm_method2(clock, htotal, width, pixel_size,
1036 dev_priv->wm.pri_latency[level] * 10);
1037 }
1038
1039 return min_t(int, wm, USHRT_MAX);
1040 }
1041
1042 static void vlv_compute_fifo(struct intel_crtc *crtc)
1043 {
1044 struct drm_device *dev = crtc->base.dev;
1045 struct vlv_wm_state *wm_state = &crtc->wm_state;
1046 struct intel_plane *plane;
1047 unsigned int total_rate = 0;
1048 const int fifo_size = 512 - 1;
1049 int fifo_extra, fifo_left = fifo_size;
1050
1051 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1052 struct intel_plane_state *state =
1053 to_intel_plane_state(plane->base.state);
1054
1055 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1056 continue;
1057
1058 if (state->visible) {
1059 wm_state->num_active_planes++;
1060 total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1061 }
1062 }
1063
1064 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1065 struct intel_plane_state *state =
1066 to_intel_plane_state(plane->base.state);
1067 unsigned int rate;
1068
1069 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1070 plane->wm.fifo_size = 63;
1071 continue;
1072 }
1073
1074 if (!state->visible) {
1075 plane->wm.fifo_size = 0;
1076 continue;
1077 }
1078
1079 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1080 plane->wm.fifo_size = fifo_size * rate / total_rate;
1081 fifo_left -= plane->wm.fifo_size;
1082 }
1083
1084 fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1085
1086 /* spread the remainder evenly */
1087 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1088 int plane_extra;
1089
1090 if (fifo_left == 0)
1091 break;
1092
1093 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1094 continue;
1095
1096 /* give it all to the first plane if none are active */
1097 if (plane->wm.fifo_size == 0 &&
1098 wm_state->num_active_planes)
1099 continue;
1100
1101 plane_extra = min(fifo_extra, fifo_left);
1102 plane->wm.fifo_size += plane_extra;
1103 fifo_left -= plane_extra;
1104 }
1105
1106 WARN_ON(fifo_left != 0);
1107 }
1108
1109 static void vlv_invert_wms(struct intel_crtc *crtc)
1110 {
1111 struct vlv_wm_state *wm_state = &crtc->wm_state;
1112 int level;
1113
1114 for (level = 0; level < wm_state->num_levels; level++) {
1115 struct drm_device *dev = crtc->base.dev;
1116 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1117 struct intel_plane *plane;
1118
1119 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1120 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1121
1122 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1123 switch (plane->base.type) {
1124 int sprite;
1125 case DRM_PLANE_TYPE_CURSOR:
1126 wm_state->wm[level].cursor = plane->wm.fifo_size -
1127 wm_state->wm[level].cursor;
1128 break;
1129 case DRM_PLANE_TYPE_PRIMARY:
1130 wm_state->wm[level].primary = plane->wm.fifo_size -
1131 wm_state->wm[level].primary;
1132 break;
1133 case DRM_PLANE_TYPE_OVERLAY:
1134 sprite = plane->plane;
1135 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1136 wm_state->wm[level].sprite[sprite];
1137 break;
1138 }
1139 }
1140 }
1141 }
1142
1143 static void vlv_compute_wm(struct intel_crtc *crtc)
1144 {
1145 struct drm_device *dev = crtc->base.dev;
1146 struct vlv_wm_state *wm_state = &crtc->wm_state;
1147 struct intel_plane *plane;
1148 int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1149 int level;
1150
1151 memset(wm_state, 0, sizeof(*wm_state));
1152
1153 wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1154 wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1155
1156 wm_state->num_active_planes = 0;
1157
1158 vlv_compute_fifo(crtc);
1159
1160 if (wm_state->num_active_planes != 1)
1161 wm_state->cxsr = false;
1162
1163 if (wm_state->cxsr) {
1164 for (level = 0; level < wm_state->num_levels; level++) {
1165 wm_state->sr[level].plane = sr_fifo_size;
1166 wm_state->sr[level].cursor = 63;
1167 }
1168 }
1169
1170 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1171 struct intel_plane_state *state =
1172 to_intel_plane_state(plane->base.state);
1173
1174 if (!state->visible)
1175 continue;
1176
1177 /* normal watermarks */
1178 for (level = 0; level < wm_state->num_levels; level++) {
1179 int wm = vlv_compute_wm_level(plane, crtc, state, level);
1180 int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1181
1182 /* hack */
1183 if (WARN_ON(level == 0 && wm > max_wm))
1184 wm = max_wm;
1185
1186 if (wm > plane->wm.fifo_size)
1187 break;
1188
1189 switch (plane->base.type) {
1190 int sprite;
1191 case DRM_PLANE_TYPE_CURSOR:
1192 wm_state->wm[level].cursor = wm;
1193 break;
1194 case DRM_PLANE_TYPE_PRIMARY:
1195 wm_state->wm[level].primary = wm;
1196 break;
1197 case DRM_PLANE_TYPE_OVERLAY:
1198 sprite = plane->plane;
1199 wm_state->wm[level].sprite[sprite] = wm;
1200 break;
1201 }
1202 }
1203
1204 wm_state->num_levels = level;
1205
1206 if (!wm_state->cxsr)
1207 continue;
1208
1209 /* maxfifo watermarks */
1210 switch (plane->base.type) {
1211 int sprite, level;
1212 case DRM_PLANE_TYPE_CURSOR:
1213 for (level = 0; level < wm_state->num_levels; level++)
1214 wm_state->sr[level].cursor =
1215 wm_state->sr[level].cursor;
1216 break;
1217 case DRM_PLANE_TYPE_PRIMARY:
1218 for (level = 0; level < wm_state->num_levels; level++)
1219 wm_state->sr[level].plane =
1220 min(wm_state->sr[level].plane,
1221 wm_state->wm[level].primary);
1222 break;
1223 case DRM_PLANE_TYPE_OVERLAY:
1224 sprite = plane->plane;
1225 for (level = 0; level < wm_state->num_levels; level++)
1226 wm_state->sr[level].plane =
1227 min(wm_state->sr[level].plane,
1228 wm_state->wm[level].sprite[sprite]);
1229 break;
1230 }
1231 }
1232
1233 /* clear any (partially) filled invalid levels */
1234 for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1235 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1236 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1237 }
1238
1239 vlv_invert_wms(crtc);
1240 }
1241
1242 #define VLV_FIFO(plane, value) \
1243 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1244
1245 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1246 {
1247 struct drm_device *dev = crtc->base.dev;
1248 struct drm_i915_private *dev_priv = to_i915(dev);
1249 struct intel_plane *plane;
1250 int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1251
1252 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1253 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1254 WARN_ON(plane->wm.fifo_size != 63);
1255 continue;
1256 }
1257
1258 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1259 sprite0_start = plane->wm.fifo_size;
1260 else if (plane->plane == 0)
1261 sprite1_start = sprite0_start + plane->wm.fifo_size;
1262 else
1263 fifo_size = sprite1_start + plane->wm.fifo_size;
1264 }
1265
1266 WARN_ON(fifo_size != 512 - 1);
1267
1268 DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1269 pipe_name(crtc->pipe), sprite0_start,
1270 sprite1_start, fifo_size);
1271
1272 switch (crtc->pipe) {
1273 uint32_t dsparb, dsparb2, dsparb3;
1274 case PIPE_A:
1275 dsparb = I915_READ(DSPARB);
1276 dsparb2 = I915_READ(DSPARB2);
1277
1278 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1279 VLV_FIFO(SPRITEB, 0xff));
1280 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1281 VLV_FIFO(SPRITEB, sprite1_start));
1282
1283 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1284 VLV_FIFO(SPRITEB_HI, 0x1));
1285 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1286 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1287
1288 I915_WRITE(DSPARB, dsparb);
1289 I915_WRITE(DSPARB2, dsparb2);
1290 break;
1291 case PIPE_B:
1292 dsparb = I915_READ(DSPARB);
1293 dsparb2 = I915_READ(DSPARB2);
1294
1295 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1296 VLV_FIFO(SPRITED, 0xff));
1297 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1298 VLV_FIFO(SPRITED, sprite1_start));
1299
1300 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1301 VLV_FIFO(SPRITED_HI, 0xff));
1302 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1303 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1304
1305 I915_WRITE(DSPARB, dsparb);
1306 I915_WRITE(DSPARB2, dsparb2);
1307 break;
1308 case PIPE_C:
1309 dsparb3 = I915_READ(DSPARB3);
1310 dsparb2 = I915_READ(DSPARB2);
1311
1312 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1313 VLV_FIFO(SPRITEF, 0xff));
1314 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1315 VLV_FIFO(SPRITEF, sprite1_start));
1316
1317 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1318 VLV_FIFO(SPRITEF_HI, 0xff));
1319 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1320 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1321
1322 I915_WRITE(DSPARB3, dsparb3);
1323 I915_WRITE(DSPARB2, dsparb2);
1324 break;
1325 default:
1326 break;
1327 }
1328 }
1329
1330 #undef VLV_FIFO
1331
1332 static void vlv_merge_wm(struct drm_device *dev,
1333 struct vlv_wm_values *wm)
1334 {
1335 struct intel_crtc *crtc;
1336 int num_active_crtcs = 0;
1337
1338 wm->level = to_i915(dev)->wm.max_level;
1339 wm->cxsr = true;
1340
1341 for_each_intel_crtc(dev, crtc) {
1342 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1343
1344 if (!crtc->active)
1345 continue;
1346
1347 if (!wm_state->cxsr)
1348 wm->cxsr = false;
1349
1350 num_active_crtcs++;
1351 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1352 }
1353
1354 if (num_active_crtcs != 1)
1355 wm->cxsr = false;
1356
1357 if (num_active_crtcs > 1)
1358 wm->level = VLV_WM_LEVEL_PM2;
1359
1360 for_each_intel_crtc(dev, crtc) {
1361 struct vlv_wm_state *wm_state = &crtc->wm_state;
1362 enum pipe pipe = crtc->pipe;
1363
1364 if (!crtc->active)
1365 continue;
1366
1367 wm->pipe[pipe] = wm_state->wm[wm->level];
1368 if (wm->cxsr)
1369 wm->sr = wm_state->sr[wm->level];
1370
1371 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1372 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1373 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1374 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1375 }
1376 }
1377
1378 static void vlv_update_wm(struct drm_crtc *crtc)
1379 {
1380 struct drm_device *dev = crtc->dev;
1381 struct drm_i915_private *dev_priv = dev->dev_private;
1382 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1383 enum pipe pipe = intel_crtc->pipe;
1384 struct vlv_wm_values wm = {};
1385
1386 vlv_compute_wm(intel_crtc);
1387 vlv_merge_wm(dev, &wm);
1388
1389 if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1390 /* FIXME should be part of crtc atomic commit */
1391 vlv_pipe_set_fifo_size(intel_crtc);
1392 return;
1393 }
1394
1395 if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1396 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1397 chv_set_memory_dvfs(dev_priv, false);
1398
1399 if (wm.level < VLV_WM_LEVEL_PM5 &&
1400 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1401 chv_set_memory_pm5(dev_priv, false);
1402
1403 if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1404 intel_set_memory_cxsr(dev_priv, false);
1405
1406 /* FIXME should be part of crtc atomic commit */
1407 vlv_pipe_set_fifo_size(intel_crtc);
1408
1409 vlv_write_wm_values(intel_crtc, &wm);
1410
1411 DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1412 "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1413 pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1414 wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1415 wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1416
1417 if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1418 intel_set_memory_cxsr(dev_priv, true);
1419
1420 if (wm.level >= VLV_WM_LEVEL_PM5 &&
1421 dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1422 chv_set_memory_pm5(dev_priv, true);
1423
1424 if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1425 dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1426 chv_set_memory_dvfs(dev_priv, true);
1427
1428 dev_priv->wm.vlv = wm;
1429 }
1430
1431 #define single_plane_enabled(mask) is_power_of_2(mask)
1432
1433 static void g4x_update_wm(struct drm_crtc *crtc)
1434 {
1435 struct drm_device *dev = crtc->dev;
1436 static const int sr_latency_ns = 12000;
1437 struct drm_i915_private *dev_priv = dev->dev_private;
1438 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1439 int plane_sr, cursor_sr;
1440 unsigned int enabled = 0;
1441 bool cxsr_enabled;
1442
1443 if (g4x_compute_wm0(dev, PIPE_A,
1444 &g4x_wm_info, pessimal_latency_ns,
1445 &g4x_cursor_wm_info, pessimal_latency_ns,
1446 &planea_wm, &cursora_wm))
1447 enabled |= 1 << PIPE_A;
1448
1449 if (g4x_compute_wm0(dev, PIPE_B,
1450 &g4x_wm_info, pessimal_latency_ns,
1451 &g4x_cursor_wm_info, pessimal_latency_ns,
1452 &planeb_wm, &cursorb_wm))
1453 enabled |= 1 << PIPE_B;
1454
1455 if (single_plane_enabled(enabled) &&
1456 g4x_compute_srwm(dev, ffs(enabled) - 1,
1457 sr_latency_ns,
1458 &g4x_wm_info,
1459 &g4x_cursor_wm_info,
1460 &plane_sr, &cursor_sr)) {
1461 cxsr_enabled = true;
1462 } else {
1463 cxsr_enabled = false;
1464 intel_set_memory_cxsr(dev_priv, false);
1465 plane_sr = cursor_sr = 0;
1466 }
1467
1468 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1469 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1470 planea_wm, cursora_wm,
1471 planeb_wm, cursorb_wm,
1472 plane_sr, cursor_sr);
1473
1474 I915_WRITE(DSPFW1,
1475 FW_WM(plane_sr, SR) |
1476 FW_WM(cursorb_wm, CURSORB) |
1477 FW_WM(planeb_wm, PLANEB) |
1478 FW_WM(planea_wm, PLANEA));
1479 I915_WRITE(DSPFW2,
1480 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1481 FW_WM(cursora_wm, CURSORA));
1482 /* HPLL off in SR has some issues on G4x... disable it */
1483 I915_WRITE(DSPFW3,
1484 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1485 FW_WM(cursor_sr, CURSOR_SR));
1486
1487 if (cxsr_enabled)
1488 intel_set_memory_cxsr(dev_priv, true);
1489 }
1490
1491 static void i965_update_wm(struct drm_crtc *unused_crtc)
1492 {
1493 struct drm_device *dev = unused_crtc->dev;
1494 struct drm_i915_private *dev_priv = dev->dev_private;
1495 struct drm_crtc *crtc;
1496 int srwm = 1;
1497 int cursor_sr = 16;
1498 bool cxsr_enabled;
1499
1500 /* Calc sr entries for one plane configs */
1501 crtc = single_enabled_crtc(dev);
1502 if (crtc) {
1503 /* self-refresh has much higher latency */
1504 static const int sr_latency_ns = 12000;
1505 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1506 int clock = adjusted_mode->crtc_clock;
1507 int htotal = adjusted_mode->crtc_htotal;
1508 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1509 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1510 unsigned long line_time_us;
1511 int entries;
1512
1513 line_time_us = max(htotal * 1000 / clock, 1);
1514
1515 /* Use ns/us then divide to preserve precision */
1516 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1517 pixel_size * hdisplay;
1518 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1519 srwm = I965_FIFO_SIZE - entries;
1520 if (srwm < 0)
1521 srwm = 1;
1522 srwm &= 0x1ff;
1523 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1524 entries, srwm);
1525
1526 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1527 pixel_size * crtc->cursor->state->crtc_w;
1528 entries = DIV_ROUND_UP(entries,
1529 i965_cursor_wm_info.cacheline_size);
1530 cursor_sr = i965_cursor_wm_info.fifo_size -
1531 (entries + i965_cursor_wm_info.guard_size);
1532
1533 if (cursor_sr > i965_cursor_wm_info.max_wm)
1534 cursor_sr = i965_cursor_wm_info.max_wm;
1535
1536 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1537 "cursor %d\n", srwm, cursor_sr);
1538
1539 cxsr_enabled = true;
1540 } else {
1541 cxsr_enabled = false;
1542 /* Turn off self refresh if both pipes are enabled */
1543 intel_set_memory_cxsr(dev_priv, false);
1544 }
1545
1546 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1547 srwm);
1548
1549 /* 965 has limitations... */
1550 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1551 FW_WM(8, CURSORB) |
1552 FW_WM(8, PLANEB) |
1553 FW_WM(8, PLANEA));
1554 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1555 FW_WM(8, PLANEC_OLD));
1556 /* update cursor SR watermark */
1557 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1558
1559 if (cxsr_enabled)
1560 intel_set_memory_cxsr(dev_priv, true);
1561 }
1562
1563 #undef FW_WM
1564
1565 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1566 {
1567 struct drm_device *dev = unused_crtc->dev;
1568 struct drm_i915_private *dev_priv = dev->dev_private;
1569 const struct intel_watermark_params *wm_info;
1570 uint32_t fwater_lo;
1571 uint32_t fwater_hi;
1572 int cwm, srwm = 1;
1573 int fifo_size;
1574 int planea_wm, planeb_wm;
1575 struct drm_crtc *crtc, *enabled = NULL;
1576
1577 if (IS_I945GM(dev))
1578 wm_info = &i945_wm_info;
1579 else if (!IS_GEN2(dev))
1580 wm_info = &i915_wm_info;
1581 else
1582 wm_info = &i830_a_wm_info;
1583
1584 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1585 crtc = intel_get_crtc_for_plane(dev, 0);
1586 if (intel_crtc_active(crtc)) {
1587 const struct drm_display_mode *adjusted_mode;
1588 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1589 if (IS_GEN2(dev))
1590 cpp = 4;
1591
1592 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1593 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1594 wm_info, fifo_size, cpp,
1595 pessimal_latency_ns);
1596 enabled = crtc;
1597 } else {
1598 planea_wm = fifo_size - wm_info->guard_size;
1599 if (planea_wm > (long)wm_info->max_wm)
1600 planea_wm = wm_info->max_wm;
1601 }
1602
1603 if (IS_GEN2(dev))
1604 wm_info = &i830_bc_wm_info;
1605
1606 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1607 crtc = intel_get_crtc_for_plane(dev, 1);
1608 if (intel_crtc_active(crtc)) {
1609 const struct drm_display_mode *adjusted_mode;
1610 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1611 if (IS_GEN2(dev))
1612 cpp = 4;
1613
1614 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1615 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1616 wm_info, fifo_size, cpp,
1617 pessimal_latency_ns);
1618 if (enabled == NULL)
1619 enabled = crtc;
1620 else
1621 enabled = NULL;
1622 } else {
1623 planeb_wm = fifo_size - wm_info->guard_size;
1624 if (planeb_wm > (long)wm_info->max_wm)
1625 planeb_wm = wm_info->max_wm;
1626 }
1627
1628 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1629
1630 if (IS_I915GM(dev) && enabled) {
1631 struct drm_i915_gem_object *obj;
1632
1633 obj = intel_fb_obj(enabled->primary->state->fb);
1634
1635 /* self-refresh seems busted with untiled */
1636 if (obj->tiling_mode == I915_TILING_NONE)
1637 enabled = NULL;
1638 }
1639
1640 /*
1641 * Overlay gets an aggressive default since video jitter is bad.
1642 */
1643 cwm = 2;
1644
1645 /* Play safe and disable self-refresh before adjusting watermarks. */
1646 intel_set_memory_cxsr(dev_priv, false);
1647
1648 /* Calc sr entries for one plane configs */
1649 if (HAS_FW_BLC(dev) && enabled) {
1650 /* self-refresh has much higher latency */
1651 static const int sr_latency_ns = 6000;
1652 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1653 int clock = adjusted_mode->crtc_clock;
1654 int htotal = adjusted_mode->crtc_htotal;
1655 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1656 int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1657 unsigned long line_time_us;
1658 int entries;
1659
1660 line_time_us = max(htotal * 1000 / clock, 1);
1661
1662 /* Use ns/us then divide to preserve precision */
1663 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1664 pixel_size * hdisplay;
1665 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1666 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1667 srwm = wm_info->fifo_size - entries;
1668 if (srwm < 0)
1669 srwm = 1;
1670
1671 if (IS_I945G(dev) || IS_I945GM(dev))
1672 I915_WRITE(FW_BLC_SELF,
1673 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1674 else if (IS_I915GM(dev))
1675 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1676 }
1677
1678 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1679 planea_wm, planeb_wm, cwm, srwm);
1680
1681 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1682 fwater_hi = (cwm & 0x1f);
1683
1684 /* Set request length to 8 cachelines per fetch */
1685 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1686 fwater_hi = fwater_hi | (1 << 8);
1687
1688 I915_WRITE(FW_BLC, fwater_lo);
1689 I915_WRITE(FW_BLC2, fwater_hi);
1690
1691 if (enabled)
1692 intel_set_memory_cxsr(dev_priv, true);
1693 }
1694
1695 static void i845_update_wm(struct drm_crtc *unused_crtc)
1696 {
1697 struct drm_device *dev = unused_crtc->dev;
1698 struct drm_i915_private *dev_priv = dev->dev_private;
1699 struct drm_crtc *crtc;
1700 const struct drm_display_mode *adjusted_mode;
1701 uint32_t fwater_lo;
1702 int planea_wm;
1703
1704 crtc = single_enabled_crtc(dev);
1705 if (crtc == NULL)
1706 return;
1707
1708 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1709 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1710 &i845_wm_info,
1711 dev_priv->display.get_fifo_size(dev, 0),
1712 4, pessimal_latency_ns);
1713 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1714 fwater_lo |= (3<<8) | planea_wm;
1715
1716 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1717
1718 I915_WRITE(FW_BLC, fwater_lo);
1719 }
1720
1721 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1722 {
1723 uint32_t pixel_rate;
1724
1725 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1726
1727 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1728 * adjust the pixel_rate here. */
1729
1730 if (pipe_config->pch_pfit.enabled) {
1731 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1732 uint32_t pfit_size = pipe_config->pch_pfit.size;
1733
1734 pipe_w = pipe_config->pipe_src_w;
1735 pipe_h = pipe_config->pipe_src_h;
1736
1737 pfit_w = (pfit_size >> 16) & 0xFFFF;
1738 pfit_h = pfit_size & 0xFFFF;
1739 if (pipe_w < pfit_w)
1740 pipe_w = pfit_w;
1741 if (pipe_h < pfit_h)
1742 pipe_h = pfit_h;
1743
1744 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1745 pfit_w * pfit_h);
1746 }
1747
1748 return pixel_rate;
1749 }
1750
1751 /* latency must be in 0.1us units. */
1752 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1753 uint32_t latency)
1754 {
1755 uint64_t ret;
1756
1757 if (WARN(latency == 0, "Latency value missing\n"))
1758 return UINT_MAX;
1759
1760 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1761 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1762
1763 return ret;
1764 }
1765
1766 /* latency must be in 0.1us units. */
1767 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1768 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1769 uint32_t latency)
1770 {
1771 uint32_t ret;
1772
1773 if (WARN(latency == 0, "Latency value missing\n"))
1774 return UINT_MAX;
1775
1776 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1777 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1778 ret = DIV_ROUND_UP(ret, 64) + 2;
1779 return ret;
1780 }
1781
1782 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1783 uint8_t bytes_per_pixel)
1784 {
1785 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1786 }
1787
1788 struct skl_pipe_wm_parameters {
1789 bool active;
1790 uint32_t pipe_htotal;
1791 uint32_t pixel_rate; /* in KHz */
1792 struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1793 struct intel_plane_wm_parameters cursor;
1794 };
1795
1796 struct ilk_pipe_wm_parameters {
1797 bool active;
1798 uint32_t pipe_htotal;
1799 uint32_t pixel_rate;
1800 struct intel_plane_wm_parameters pri;
1801 struct intel_plane_wm_parameters spr;
1802 struct intel_plane_wm_parameters cur;
1803 };
1804
1805 struct ilk_wm_maximums {
1806 uint16_t pri;
1807 uint16_t spr;
1808 uint16_t cur;
1809 uint16_t fbc;
1810 };
1811
1812 /* used in computing the new watermarks state */
1813 struct intel_wm_config {
1814 unsigned int num_pipes_active;
1815 bool sprites_enabled;
1816 bool sprites_scaled;
1817 };
1818
1819 /*
1820 * For both WM_PIPE and WM_LP.
1821 * mem_value must be in 0.1us units.
1822 */
1823 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1824 uint32_t mem_value,
1825 bool is_lp)
1826 {
1827 uint32_t method1, method2;
1828
1829 if (!params->active || !params->pri.enabled)
1830 return 0;
1831
1832 method1 = ilk_wm_method1(params->pixel_rate,
1833 params->pri.bytes_per_pixel,
1834 mem_value);
1835
1836 if (!is_lp)
1837 return method1;
1838
1839 method2 = ilk_wm_method2(params->pixel_rate,
1840 params->pipe_htotal,
1841 params->pri.horiz_pixels,
1842 params->pri.bytes_per_pixel,
1843 mem_value);
1844
1845 return min(method1, method2);
1846 }
1847
1848 /*
1849 * For both WM_PIPE and WM_LP.
1850 * mem_value must be in 0.1us units.
1851 */
1852 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1853 uint32_t mem_value)
1854 {
1855 uint32_t method1, method2;
1856
1857 if (!params->active || !params->spr.enabled)
1858 return 0;
1859
1860 method1 = ilk_wm_method1(params->pixel_rate,
1861 params->spr.bytes_per_pixel,
1862 mem_value);
1863 method2 = ilk_wm_method2(params->pixel_rate,
1864 params->pipe_htotal,
1865 params->spr.horiz_pixels,
1866 params->spr.bytes_per_pixel,
1867 mem_value);
1868 return min(method1, method2);
1869 }
1870
1871 /*
1872 * For both WM_PIPE and WM_LP.
1873 * mem_value must be in 0.1us units.
1874 */
1875 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1876 uint32_t mem_value)
1877 {
1878 if (!params->active || !params->cur.enabled)
1879 return 0;
1880
1881 return ilk_wm_method2(params->pixel_rate,
1882 params->pipe_htotal,
1883 params->cur.horiz_pixels,
1884 params->cur.bytes_per_pixel,
1885 mem_value);
1886 }
1887
1888 /* Only for WM_LP. */
1889 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1890 uint32_t pri_val)
1891 {
1892 if (!params->active || !params->pri.enabled)
1893 return 0;
1894
1895 return ilk_wm_fbc(pri_val,
1896 params->pri.horiz_pixels,
1897 params->pri.bytes_per_pixel);
1898 }
1899
1900 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1901 {
1902 if (INTEL_INFO(dev)->gen >= 8)
1903 return 3072;
1904 else if (INTEL_INFO(dev)->gen >= 7)
1905 return 768;
1906 else
1907 return 512;
1908 }
1909
1910 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1911 int level, bool is_sprite)
1912 {
1913 if (INTEL_INFO(dev)->gen >= 8)
1914 /* BDW primary/sprite plane watermarks */
1915 return level == 0 ? 255 : 2047;
1916 else if (INTEL_INFO(dev)->gen >= 7)
1917 /* IVB/HSW primary/sprite plane watermarks */
1918 return level == 0 ? 127 : 1023;
1919 else if (!is_sprite)
1920 /* ILK/SNB primary plane watermarks */
1921 return level == 0 ? 127 : 511;
1922 else
1923 /* ILK/SNB sprite plane watermarks */
1924 return level == 0 ? 63 : 255;
1925 }
1926
1927 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1928 int level)
1929 {
1930 if (INTEL_INFO(dev)->gen >= 7)
1931 return level == 0 ? 63 : 255;
1932 else
1933 return level == 0 ? 31 : 63;
1934 }
1935
1936 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1937 {
1938 if (INTEL_INFO(dev)->gen >= 8)
1939 return 31;
1940 else
1941 return 15;
1942 }
1943
1944 /* Calculate the maximum primary/sprite plane watermark */
1945 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1946 int level,
1947 const struct intel_wm_config *config,
1948 enum intel_ddb_partitioning ddb_partitioning,
1949 bool is_sprite)
1950 {
1951 unsigned int fifo_size = ilk_display_fifo_size(dev);
1952
1953 /* if sprites aren't enabled, sprites get nothing */
1954 if (is_sprite && !config->sprites_enabled)
1955 return 0;
1956
1957 /* HSW allows LP1+ watermarks even with multiple pipes */
1958 if (level == 0 || config->num_pipes_active > 1) {
1959 fifo_size /= INTEL_INFO(dev)->num_pipes;
1960
1961 /*
1962 * For some reason the non self refresh
1963 * FIFO size is only half of the self
1964 * refresh FIFO size on ILK/SNB.
1965 */
1966 if (INTEL_INFO(dev)->gen <= 6)
1967 fifo_size /= 2;
1968 }
1969
1970 if (config->sprites_enabled) {
1971 /* level 0 is always calculated with 1:1 split */
1972 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1973 if (is_sprite)
1974 fifo_size *= 5;
1975 fifo_size /= 6;
1976 } else {
1977 fifo_size /= 2;
1978 }
1979 }
1980
1981 /* clamp to max that the registers can hold */
1982 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1983 }
1984
1985 /* Calculate the maximum cursor plane watermark */
1986 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1987 int level,
1988 const struct intel_wm_config *config)
1989 {
1990 /* HSW LP1+ watermarks w/ multiple pipes */
1991 if (level > 0 && config->num_pipes_active > 1)
1992 return 64;
1993
1994 /* otherwise just report max that registers can hold */
1995 return ilk_cursor_wm_reg_max(dev, level);
1996 }
1997
1998 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1999 int level,
2000 const struct intel_wm_config *config,
2001 enum intel_ddb_partitioning ddb_partitioning,
2002 struct ilk_wm_maximums *max)
2003 {
2004 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2005 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2006 max->cur = ilk_cursor_wm_max(dev, level, config);
2007 max->fbc = ilk_fbc_wm_reg_max(dev);
2008 }
2009
2010 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
2011 int level,
2012 struct ilk_wm_maximums *max)
2013 {
2014 max->pri = ilk_plane_wm_reg_max(dev, level, false);
2015 max->spr = ilk_plane_wm_reg_max(dev, level, true);
2016 max->cur = ilk_cursor_wm_reg_max(dev, level);
2017 max->fbc = ilk_fbc_wm_reg_max(dev);
2018 }
2019
2020 static bool ilk_validate_wm_level(int level,
2021 const struct ilk_wm_maximums *max,
2022 struct intel_wm_level *result)
2023 {
2024 bool ret;
2025
2026 /* already determined to be invalid? */
2027 if (!result->enable)
2028 return false;
2029
2030 result->enable = result->pri_val <= max->pri &&
2031 result->spr_val <= max->spr &&
2032 result->cur_val <= max->cur;
2033
2034 ret = result->enable;
2035
2036 /*
2037 * HACK until we can pre-compute everything,
2038 * and thus fail gracefully if LP0 watermarks
2039 * are exceeded...
2040 */
2041 if (level == 0 && !result->enable) {
2042 if (result->pri_val > max->pri)
2043 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2044 level, result->pri_val, max->pri);
2045 if (result->spr_val > max->spr)
2046 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2047 level, result->spr_val, max->spr);
2048 if (result->cur_val > max->cur)
2049 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2050 level, result->cur_val, max->cur);
2051
2052 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2053 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2054 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2055 result->enable = true;
2056 }
2057
2058 return ret;
2059 }
2060
2061 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2062 int level,
2063 const struct ilk_pipe_wm_parameters *p,
2064 struct intel_wm_level *result)
2065 {
2066 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2067 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2068 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2069
2070 /* WM1+ latency values stored in 0.5us units */
2071 if (level > 0) {
2072 pri_latency *= 5;
2073 spr_latency *= 5;
2074 cur_latency *= 5;
2075 }
2076
2077 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2078 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2079 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2080 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2081 result->enable = true;
2082 }
2083
2084 static uint32_t
2085 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2086 {
2087 struct drm_i915_private *dev_priv = dev->dev_private;
2088 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2089 struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
2090 u32 linetime, ips_linetime;
2091
2092 if (!intel_crtc->active)
2093 return 0;
2094
2095 /* The WM are computed with base on how long it takes to fill a single
2096 * row at the given clock rate, multiplied by 8.
2097 * */
2098 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2099 adjusted_mode->crtc_clock);
2100 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2101 dev_priv->cdclk_freq);
2102
2103 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2104 PIPE_WM_LINETIME_TIME(linetime);
2105 }
2106
2107 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2108 {
2109 struct drm_i915_private *dev_priv = dev->dev_private;
2110
2111 if (IS_GEN9(dev)) {
2112 uint32_t val;
2113 int ret, i;
2114 int level, max_level = ilk_wm_max_level(dev);
2115
2116 /* read the first set of memory latencies[0:3] */
2117 val = 0; /* data0 to be programmed to 0 for first set */
2118 mutex_lock(&dev_priv->rps.hw_lock);
2119 ret = sandybridge_pcode_read(dev_priv,
2120 GEN9_PCODE_READ_MEM_LATENCY,
2121 &val);
2122 mutex_unlock(&dev_priv->rps.hw_lock);
2123
2124 if (ret) {
2125 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2126 return;
2127 }
2128
2129 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2130 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2131 GEN9_MEM_LATENCY_LEVEL_MASK;
2132 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2133 GEN9_MEM_LATENCY_LEVEL_MASK;
2134 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2135 GEN9_MEM_LATENCY_LEVEL_MASK;
2136
2137 /* read the second set of memory latencies[4:7] */
2138 val = 1; /* data0 to be programmed to 1 for second set */
2139 mutex_lock(&dev_priv->rps.hw_lock);
2140 ret = sandybridge_pcode_read(dev_priv,
2141 GEN9_PCODE_READ_MEM_LATENCY,
2142 &val);
2143 mutex_unlock(&dev_priv->rps.hw_lock);
2144 if (ret) {
2145 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2146 return;
2147 }
2148
2149 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2150 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2151 GEN9_MEM_LATENCY_LEVEL_MASK;
2152 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2153 GEN9_MEM_LATENCY_LEVEL_MASK;
2154 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2155 GEN9_MEM_LATENCY_LEVEL_MASK;
2156
2157 /*
2158 * WaWmMemoryReadLatency:skl
2159 *
2160 * punit doesn't take into account the read latency so we need
2161 * to add 2us to the various latency levels we retrieve from
2162 * the punit.
2163 * - W0 is a bit special in that it's the only level that
2164 * can't be disabled if we want to have display working, so
2165 * we always add 2us there.
2166 * - For levels >=1, punit returns 0us latency when they are
2167 * disabled, so we respect that and don't add 2us then
2168 *
2169 * Additionally, if a level n (n > 1) has a 0us latency, all
2170 * levels m (m >= n) need to be disabled. We make sure to
2171 * sanitize the values out of the punit to satisfy this
2172 * requirement.
2173 */
2174 wm[0] += 2;
2175 for (level = 1; level <= max_level; level++)
2176 if (wm[level] != 0)
2177 wm[level] += 2;
2178 else {
2179 for (i = level + 1; i <= max_level; i++)
2180 wm[i] = 0;
2181
2182 break;
2183 }
2184 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2185 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2186
2187 wm[0] = (sskpd >> 56) & 0xFF;
2188 if (wm[0] == 0)
2189 wm[0] = sskpd & 0xF;
2190 wm[1] = (sskpd >> 4) & 0xFF;
2191 wm[2] = (sskpd >> 12) & 0xFF;
2192 wm[3] = (sskpd >> 20) & 0x1FF;
2193 wm[4] = (sskpd >> 32) & 0x1FF;
2194 } else if (INTEL_INFO(dev)->gen >= 6) {
2195 uint32_t sskpd = I915_READ(MCH_SSKPD);
2196
2197 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2198 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2199 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2200 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2201 } else if (INTEL_INFO(dev)->gen >= 5) {
2202 uint32_t mltr = I915_READ(MLTR_ILK);
2203
2204 /* ILK primary LP0 latency is 700 ns */
2205 wm[0] = 7;
2206 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2207 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2208 }
2209 }
2210
2211 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2212 {
2213 /* ILK sprite LP0 latency is 1300 ns */
2214 if (INTEL_INFO(dev)->gen == 5)
2215 wm[0] = 13;
2216 }
2217
2218 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2219 {
2220 /* ILK cursor LP0 latency is 1300 ns */
2221 if (INTEL_INFO(dev)->gen == 5)
2222 wm[0] = 13;
2223
2224 /* WaDoubleCursorLP3Latency:ivb */
2225 if (IS_IVYBRIDGE(dev))
2226 wm[3] *= 2;
2227 }
2228
2229 int ilk_wm_max_level(const struct drm_device *dev)
2230 {
2231 /* how many WM levels are we expecting */
2232 if (INTEL_INFO(dev)->gen >= 9)
2233 return 7;
2234 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2235 return 4;
2236 else if (INTEL_INFO(dev)->gen >= 6)
2237 return 3;
2238 else
2239 return 2;
2240 }
2241
2242 static void intel_print_wm_latency(struct drm_device *dev,
2243 const char *name,
2244 const uint16_t wm[8])
2245 {
2246 int level, max_level = ilk_wm_max_level(dev);
2247
2248 for (level = 0; level <= max_level; level++) {
2249 unsigned int latency = wm[level];
2250
2251 if (latency == 0) {
2252 DRM_ERROR("%s WM%d latency not provided\n",
2253 name, level);
2254 continue;
2255 }
2256
2257 /*
2258 * - latencies are in us on gen9.
2259 * - before then, WM1+ latency values are in 0.5us units
2260 */
2261 if (IS_GEN9(dev))
2262 latency *= 10;
2263 else if (level > 0)
2264 latency *= 5;
2265
2266 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2267 name, level, wm[level],
2268 latency / 10, latency % 10);
2269 }
2270 }
2271
2272 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2273 uint16_t wm[5], uint16_t min)
2274 {
2275 int level, max_level = ilk_wm_max_level(dev_priv->dev);
2276
2277 if (wm[0] >= min)
2278 return false;
2279
2280 wm[0] = max(wm[0], min);
2281 for (level = 1; level <= max_level; level++)
2282 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2283
2284 return true;
2285 }
2286
2287 static void snb_wm_latency_quirk(struct drm_device *dev)
2288 {
2289 struct drm_i915_private *dev_priv = dev->dev_private;
2290 bool changed;
2291
2292 /*
2293 * The BIOS provided WM memory latency values are often
2294 * inadequate for high resolution displays. Adjust them.
2295 */
2296 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2297 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2298 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2299
2300 if (!changed)
2301 return;
2302
2303 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2304 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2305 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2306 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2307 }
2308
2309 static void ilk_setup_wm_latency(struct drm_device *dev)
2310 {
2311 struct drm_i915_private *dev_priv = dev->dev_private;
2312
2313 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2314
2315 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2316 sizeof(dev_priv->wm.pri_latency));
2317 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2318 sizeof(dev_priv->wm.pri_latency));
2319
2320 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2321 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2322
2323 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2324 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2325 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2326
2327 if (IS_GEN6(dev))
2328 snb_wm_latency_quirk(dev);
2329 }
2330
2331 static void skl_setup_wm_latency(struct drm_device *dev)
2332 {
2333 struct drm_i915_private *dev_priv = dev->dev_private;
2334
2335 intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2336 intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2337 }
2338
2339 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2340 struct ilk_pipe_wm_parameters *p)
2341 {
2342 struct drm_device *dev = crtc->dev;
2343 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2344 enum pipe pipe = intel_crtc->pipe;
2345 struct drm_plane *plane;
2346
2347 if (!intel_crtc->active)
2348 return;
2349
2350 p->active = true;
2351 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2352 p->pixel_rate = ilk_pipe_pixel_rate(intel_crtc->config);
2353
2354 if (crtc->primary->state->fb)
2355 p->pri.bytes_per_pixel =
2356 crtc->primary->state->fb->bits_per_pixel / 8;
2357 else
2358 p->pri.bytes_per_pixel = 4;
2359
2360 p->cur.bytes_per_pixel = 4;
2361 /*
2362 * TODO: for now, assume primary and cursor planes are always enabled.
2363 * Setting them to false makes the screen flicker.
2364 */
2365 p->pri.enabled = true;
2366 p->cur.enabled = true;
2367
2368 p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
2369 p->cur.horiz_pixels = intel_crtc->base.cursor->state->crtc_w;
2370
2371 drm_for_each_legacy_plane(plane, dev) {
2372 struct intel_plane *intel_plane = to_intel_plane(plane);
2373
2374 if (intel_plane->pipe == pipe) {
2375 p->spr = intel_plane->wm;
2376 break;
2377 }
2378 }
2379 }
2380
2381 static void ilk_compute_wm_config(struct drm_device *dev,
2382 struct intel_wm_config *config)
2383 {
2384 struct intel_crtc *intel_crtc;
2385
2386 /* Compute the currently _active_ config */
2387 for_each_intel_crtc(dev, intel_crtc) {
2388 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2389
2390 if (!wm->pipe_enabled)
2391 continue;
2392
2393 config->sprites_enabled |= wm->sprites_enabled;
2394 config->sprites_scaled |= wm->sprites_scaled;
2395 config->num_pipes_active++;
2396 }
2397 }
2398
2399 /* Compute new watermarks for the pipe */
2400 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2401 const struct ilk_pipe_wm_parameters *params,
2402 struct intel_pipe_wm *pipe_wm)
2403 {
2404 struct drm_device *dev = crtc->dev;
2405 const struct drm_i915_private *dev_priv = dev->dev_private;
2406 int level, max_level = ilk_wm_max_level(dev);
2407 /* LP0 watermark maximums depend on this pipe alone */
2408 struct intel_wm_config config = {
2409 .num_pipes_active = 1,
2410 .sprites_enabled = params->spr.enabled,
2411 .sprites_scaled = params->spr.scaled,
2412 };
2413 struct ilk_wm_maximums max;
2414
2415 pipe_wm->pipe_enabled = params->active;
2416 pipe_wm->sprites_enabled = params->spr.enabled;
2417 pipe_wm->sprites_scaled = params->spr.scaled;
2418
2419 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2420 if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2421 max_level = 1;
2422
2423 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2424 if (params->spr.scaled)
2425 max_level = 0;
2426
2427 ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2428
2429 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2430 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2431
2432 /* LP0 watermarks always use 1/2 DDB partitioning */
2433 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2434
2435 /* At least LP0 must be valid */
2436 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2437 return false;
2438
2439 ilk_compute_wm_reg_maximums(dev, 1, &max);
2440
2441 for (level = 1; level <= max_level; level++) {
2442 struct intel_wm_level wm = {};
2443
2444 ilk_compute_wm_level(dev_priv, level, params, &wm);
2445
2446 /*
2447 * Disable any watermark level that exceeds the
2448 * register maximums since such watermarks are
2449 * always invalid.
2450 */
2451 if (!ilk_validate_wm_level(level, &max, &wm))
2452 break;
2453
2454 pipe_wm->wm[level] = wm;
2455 }
2456
2457 return true;
2458 }
2459
2460 /*
2461 * Merge the watermarks from all active pipes for a specific level.
2462 */
2463 static void ilk_merge_wm_level(struct drm_device *dev,
2464 int level,
2465 struct intel_wm_level *ret_wm)
2466 {
2467 const struct intel_crtc *intel_crtc;
2468
2469 ret_wm->enable = true;
2470
2471 for_each_intel_crtc(dev, intel_crtc) {
2472 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2473 const struct intel_wm_level *wm = &active->wm[level];
2474
2475 if (!active->pipe_enabled)
2476 continue;
2477
2478 /*
2479 * The watermark values may have been used in the past,
2480 * so we must maintain them in the registers for some
2481 * time even if the level is now disabled.
2482 */
2483 if (!wm->enable)
2484 ret_wm->enable = false;
2485
2486 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2487 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2488 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2489 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2490 }
2491 }
2492
2493 /*
2494 * Merge all low power watermarks for all active pipes.
2495 */
2496 static void ilk_wm_merge(struct drm_device *dev,
2497 const struct intel_wm_config *config,
2498 const struct ilk_wm_maximums *max,
2499 struct intel_pipe_wm *merged)
2500 {
2501 struct drm_i915_private *dev_priv = dev->dev_private;
2502 int level, max_level = ilk_wm_max_level(dev);
2503 int last_enabled_level = max_level;
2504
2505 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2506 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2507 config->num_pipes_active > 1)
2508 return;
2509
2510 /* ILK: FBC WM must be disabled always */
2511 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2512
2513 /* merge each WM1+ level */
2514 for (level = 1; level <= max_level; level++) {
2515 struct intel_wm_level *wm = &merged->wm[level];
2516
2517 ilk_merge_wm_level(dev, level, wm);
2518
2519 if (level > last_enabled_level)
2520 wm->enable = false;
2521 else if (!ilk_validate_wm_level(level, max, wm))
2522 /* make sure all following levels get disabled */
2523 last_enabled_level = level - 1;
2524
2525 /*
2526 * The spec says it is preferred to disable
2527 * FBC WMs instead of disabling a WM level.
2528 */
2529 if (wm->fbc_val > max->fbc) {
2530 if (wm->enable)
2531 merged->fbc_wm_enabled = false;
2532 wm->fbc_val = 0;
2533 }
2534 }
2535
2536 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2537 /*
2538 * FIXME this is racy. FBC might get enabled later.
2539 * What we should check here is whether FBC can be
2540 * enabled sometime later.
2541 */
2542 if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2543 intel_fbc_enabled(dev_priv)) {
2544 for (level = 2; level <= max_level; level++) {
2545 struct intel_wm_level *wm = &merged->wm[level];
2546
2547 wm->enable = false;
2548 }
2549 }
2550 }
2551
2552 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2553 {
2554 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2555 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2556 }
2557
2558 /* The value we need to program into the WM_LPx latency field */
2559 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2560 {
2561 struct drm_i915_private *dev_priv = dev->dev_private;
2562
2563 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2564 return 2 * level;
2565 else
2566 return dev_priv->wm.pri_latency[level];
2567 }
2568
2569 static void ilk_compute_wm_results(struct drm_device *dev,
2570 const struct intel_pipe_wm *merged,
2571 enum intel_ddb_partitioning partitioning,
2572 struct ilk_wm_values *results)
2573 {
2574 struct intel_crtc *intel_crtc;
2575 int level, wm_lp;
2576
2577 results->enable_fbc_wm = merged->fbc_wm_enabled;
2578 results->partitioning = partitioning;
2579
2580 /* LP1+ register values */
2581 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2582 const struct intel_wm_level *r;
2583
2584 level = ilk_wm_lp_to_level(wm_lp, merged);
2585
2586 r = &merged->wm[level];
2587
2588 /*
2589 * Maintain the watermark values even if the level is
2590 * disabled. Doing otherwise could cause underruns.
2591 */
2592 results->wm_lp[wm_lp - 1] =
2593 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2594 (r->pri_val << WM1_LP_SR_SHIFT) |
2595 r->cur_val;
2596
2597 if (r->enable)
2598 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2599
2600 if (INTEL_INFO(dev)->gen >= 8)
2601 results->wm_lp[wm_lp - 1] |=
2602 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2603 else
2604 results->wm_lp[wm_lp - 1] |=
2605 r->fbc_val << WM1_LP_FBC_SHIFT;
2606
2607 /*
2608 * Always set WM1S_LP_EN when spr_val != 0, even if the
2609 * level is disabled. Doing otherwise could cause underruns.
2610 */
2611 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2612 WARN_ON(wm_lp != 1);
2613 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2614 } else
2615 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2616 }
2617
2618 /* LP0 register values */
2619 for_each_intel_crtc(dev, intel_crtc) {
2620 enum pipe pipe = intel_crtc->pipe;
2621 const struct intel_wm_level *r =
2622 &intel_crtc->wm.active.wm[0];
2623
2624 if (WARN_ON(!r->enable))
2625 continue;
2626
2627 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2628
2629 results->wm_pipe[pipe] =
2630 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2631 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2632 r->cur_val;
2633 }
2634 }
2635
2636 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2637 * case both are at the same level. Prefer r1 in case they're the same. */
2638 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2639 struct intel_pipe_wm *r1,
2640 struct intel_pipe_wm *r2)
2641 {
2642 int level, max_level = ilk_wm_max_level(dev);
2643 int level1 = 0, level2 = 0;
2644
2645 for (level = 1; level <= max_level; level++) {
2646 if (r1->wm[level].enable)
2647 level1 = level;
2648 if (r2->wm[level].enable)
2649 level2 = level;
2650 }
2651
2652 if (level1 == level2) {
2653 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2654 return r2;
2655 else
2656 return r1;
2657 } else if (level1 > level2) {
2658 return r1;
2659 } else {
2660 return r2;
2661 }
2662 }
2663
2664 /* dirty bits used to track which watermarks need changes */
2665 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2666 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2667 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2668 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2669 #define WM_DIRTY_FBC (1 << 24)
2670 #define WM_DIRTY_DDB (1 << 25)
2671
2672 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2673 const struct ilk_wm_values *old,
2674 const struct ilk_wm_values *new)
2675 {
2676 unsigned int dirty = 0;
2677 enum pipe pipe;
2678 int wm_lp;
2679
2680 for_each_pipe(dev_priv, pipe) {
2681 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2682 dirty |= WM_DIRTY_LINETIME(pipe);
2683 /* Must disable LP1+ watermarks too */
2684 dirty |= WM_DIRTY_LP_ALL;
2685 }
2686
2687 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2688 dirty |= WM_DIRTY_PIPE(pipe);
2689 /* Must disable LP1+ watermarks too */
2690 dirty |= WM_DIRTY_LP_ALL;
2691 }
2692 }
2693
2694 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2695 dirty |= WM_DIRTY_FBC;
2696 /* Must disable LP1+ watermarks too */
2697 dirty |= WM_DIRTY_LP_ALL;
2698 }
2699
2700 if (old->partitioning != new->partitioning) {
2701 dirty |= WM_DIRTY_DDB;
2702 /* Must disable LP1+ watermarks too */
2703 dirty |= WM_DIRTY_LP_ALL;
2704 }
2705
2706 /* LP1+ watermarks already deemed dirty, no need to continue */
2707 if (dirty & WM_DIRTY_LP_ALL)
2708 return dirty;
2709
2710 /* Find the lowest numbered LP1+ watermark in need of an update... */
2711 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2712 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2713 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2714 break;
2715 }
2716
2717 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2718 for (; wm_lp <= 3; wm_lp++)
2719 dirty |= WM_DIRTY_LP(wm_lp);
2720
2721 return dirty;
2722 }
2723
2724 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2725 unsigned int dirty)
2726 {
2727 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2728 bool changed = false;
2729
2730 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2731 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2732 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2733 changed = true;
2734 }
2735 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2736 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2737 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2738 changed = true;
2739 }
2740 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2741 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2742 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2743 changed = true;
2744 }
2745
2746 /*
2747 * Don't touch WM1S_LP_EN here.
2748 * Doing so could cause underruns.
2749 */
2750
2751 return changed;
2752 }
2753
2754 /*
2755 * The spec says we shouldn't write when we don't need, because every write
2756 * causes WMs to be re-evaluated, expending some power.
2757 */
2758 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2759 struct ilk_wm_values *results)
2760 {
2761 struct drm_device *dev = dev_priv->dev;
2762 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2763 unsigned int dirty;
2764 uint32_t val;
2765
2766 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2767 if (!dirty)
2768 return;
2769
2770 _ilk_disable_lp_wm(dev_priv, dirty);
2771
2772 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2773 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2774 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2775 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2776 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2777 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2778
2779 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2780 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2781 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2782 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2783 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2784 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2785
2786 if (dirty & WM_DIRTY_DDB) {
2787 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2788 val = I915_READ(WM_MISC);
2789 if (results->partitioning == INTEL_DDB_PART_1_2)
2790 val &= ~WM_MISC_DATA_PARTITION_5_6;
2791 else
2792 val |= WM_MISC_DATA_PARTITION_5_6;
2793 I915_WRITE(WM_MISC, val);
2794 } else {
2795 val = I915_READ(DISP_ARB_CTL2);
2796 if (results->partitioning == INTEL_DDB_PART_1_2)
2797 val &= ~DISP_DATA_PARTITION_5_6;
2798 else
2799 val |= DISP_DATA_PARTITION_5_6;
2800 I915_WRITE(DISP_ARB_CTL2, val);
2801 }
2802 }
2803
2804 if (dirty & WM_DIRTY_FBC) {
2805 val = I915_READ(DISP_ARB_CTL);
2806 if (results->enable_fbc_wm)
2807 val &= ~DISP_FBC_WM_DIS;
2808 else
2809 val |= DISP_FBC_WM_DIS;
2810 I915_WRITE(DISP_ARB_CTL, val);
2811 }
2812
2813 if (dirty & WM_DIRTY_LP(1) &&
2814 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2815 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2816
2817 if (INTEL_INFO(dev)->gen >= 7) {
2818 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2819 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2820 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2821 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2822 }
2823
2824 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2825 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2826 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2827 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2828 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2829 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2830
2831 dev_priv->wm.hw = *results;
2832 }
2833
2834 static bool ilk_disable_lp_wm(struct drm_device *dev)
2835 {
2836 struct drm_i915_private *dev_priv = dev->dev_private;
2837
2838 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2839 }
2840
2841 /*
2842 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2843 * different active planes.
2844 */
2845
2846 #define SKL_DDB_SIZE 896 /* in blocks */
2847 #define BXT_DDB_SIZE 512
2848
2849 static void
2850 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2851 struct drm_crtc *for_crtc,
2852 const struct intel_wm_config *config,
2853 const struct skl_pipe_wm_parameters *params,
2854 struct skl_ddb_entry *alloc /* out */)
2855 {
2856 struct drm_crtc *crtc;
2857 unsigned int pipe_size, ddb_size;
2858 int nth_active_pipe;
2859
2860 if (!params->active) {
2861 alloc->start = 0;
2862 alloc->end = 0;
2863 return;
2864 }
2865
2866 if (IS_BROXTON(dev))
2867 ddb_size = BXT_DDB_SIZE;
2868 else
2869 ddb_size = SKL_DDB_SIZE;
2870
2871 ddb_size -= 4; /* 4 blocks for bypass path allocation */
2872
2873 nth_active_pipe = 0;
2874 for_each_crtc(dev, crtc) {
2875 if (!to_intel_crtc(crtc)->active)
2876 continue;
2877
2878 if (crtc == for_crtc)
2879 break;
2880
2881 nth_active_pipe++;
2882 }
2883
2884 pipe_size = ddb_size / config->num_pipes_active;
2885 alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2886 alloc->end = alloc->start + pipe_size;
2887 }
2888
2889 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2890 {
2891 if (config->num_pipes_active == 1)
2892 return 32;
2893
2894 return 8;
2895 }
2896
2897 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2898 {
2899 entry->start = reg & 0x3ff;
2900 entry->end = (reg >> 16) & 0x3ff;
2901 if (entry->end)
2902 entry->end += 1;
2903 }
2904
2905 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2906 struct skl_ddb_allocation *ddb /* out */)
2907 {
2908 enum pipe pipe;
2909 int plane;
2910 u32 val;
2911
2912 for_each_pipe(dev_priv, pipe) {
2913 for_each_plane(dev_priv, pipe, plane) {
2914 val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2915 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2916 val);
2917 }
2918
2919 val = I915_READ(CUR_BUF_CFG(pipe));
2920 skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
2921 }
2922 }
2923
2924 static unsigned int
2925 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
2926 {
2927
2928 /* for planar format */
2929 if (p->y_bytes_per_pixel) {
2930 if (y) /* y-plane data rate */
2931 return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
2932 else /* uv-plane data rate */
2933 return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
2934 }
2935
2936 /* for packed formats */
2937 return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2938 }
2939
2940 /*
2941 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2942 * a 8192x4096@32bpp framebuffer:
2943 * 3 * 4096 * 8192 * 4 < 2^32
2944 */
2945 static unsigned int
2946 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2947 const struct skl_pipe_wm_parameters *params)
2948 {
2949 unsigned int total_data_rate = 0;
2950 int plane;
2951
2952 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2953 const struct intel_plane_wm_parameters *p;
2954
2955 p = &params->plane[plane];
2956 if (!p->enabled)
2957 continue;
2958
2959 total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
2960 if (p->y_bytes_per_pixel) {
2961 total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
2962 }
2963 }
2964
2965 return total_data_rate;
2966 }
2967
2968 static void
2969 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2970 const struct intel_wm_config *config,
2971 const struct skl_pipe_wm_parameters *params,
2972 struct skl_ddb_allocation *ddb /* out */)
2973 {
2974 struct drm_device *dev = crtc->dev;
2975 struct drm_i915_private *dev_priv = dev->dev_private;
2976 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2977 enum pipe pipe = intel_crtc->pipe;
2978 struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2979 uint16_t alloc_size, start, cursor_blocks;
2980 uint16_t minimum[I915_MAX_PLANES];
2981 uint16_t y_minimum[I915_MAX_PLANES];
2982 unsigned int total_data_rate;
2983 int plane;
2984
2985 skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2986 alloc_size = skl_ddb_entry_size(alloc);
2987 if (alloc_size == 0) {
2988 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2989 memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
2990 return;
2991 }
2992
2993 cursor_blocks = skl_cursor_allocation(config);
2994 ddb->cursor[pipe].start = alloc->end - cursor_blocks;
2995 ddb->cursor[pipe].end = alloc->end;
2996
2997 alloc_size -= cursor_blocks;
2998 alloc->end -= cursor_blocks;
2999
3000 /* 1. Allocate the mininum required blocks for each active plane */
3001 for_each_plane(dev_priv, pipe, plane) {
3002 const struct intel_plane_wm_parameters *p;
3003
3004 p = &params->plane[plane];
3005 if (!p->enabled)
3006 continue;
3007
3008 minimum[plane] = 8;
3009 alloc_size -= minimum[plane];
3010 y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
3011 alloc_size -= y_minimum[plane];
3012 }
3013
3014 /*
3015 * 2. Distribute the remaining space in proportion to the amount of
3016 * data each plane needs to fetch from memory.
3017 *
3018 * FIXME: we may not allocate every single block here.
3019 */
3020 total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
3021
3022 start = alloc->start;
3023 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
3024 const struct intel_plane_wm_parameters *p;
3025 unsigned int data_rate, y_data_rate;
3026 uint16_t plane_blocks, y_plane_blocks = 0;
3027
3028 p = &params->plane[plane];
3029 if (!p->enabled)
3030 continue;
3031
3032 data_rate = skl_plane_relative_data_rate(p, 0);
3033
3034 /*
3035 * allocation for (packed formats) or (uv-plane part of planar format):
3036 * promote the expression to 64 bits to avoid overflowing, the
3037 * result is < available as data_rate / total_data_rate < 1
3038 */
3039 plane_blocks = minimum[plane];
3040 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3041 total_data_rate);
3042
3043 ddb->plane[pipe][plane].start = start;
3044 ddb->plane[pipe][plane].end = start + plane_blocks;
3045
3046 start += plane_blocks;
3047
3048 /*
3049 * allocation for y_plane part of planar format:
3050 */
3051 if (p->y_bytes_per_pixel) {
3052 y_data_rate = skl_plane_relative_data_rate(p, 1);
3053 y_plane_blocks = y_minimum[plane];
3054 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3055 total_data_rate);
3056
3057 ddb->y_plane[pipe][plane].start = start;
3058 ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
3059
3060 start += y_plane_blocks;
3061 }
3062
3063 }
3064
3065 }
3066
3067 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3068 {
3069 /* TODO: Take into account the scalers once we support them */
3070 return config->base.adjusted_mode.crtc_clock;
3071 }
3072
3073 /*
3074 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3075 * for the read latency) and bytes_per_pixel should always be <= 8, so that
3076 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3077 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3078 */
3079 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
3080 uint32_t latency)
3081 {
3082 uint32_t wm_intermediate_val, ret;
3083
3084 if (latency == 0)
3085 return UINT_MAX;
3086
3087 wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3088 ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3089
3090 return ret;
3091 }
3092
3093 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3094 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3095 uint64_t tiling, uint32_t latency)
3096 {
3097 uint32_t ret;
3098 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3099 uint32_t wm_intermediate_val;
3100
3101 if (latency == 0)
3102 return UINT_MAX;
3103
3104 plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3105
3106 if (tiling == I915_FORMAT_MOD_Y_TILED ||
3107 tiling == I915_FORMAT_MOD_Yf_TILED) {
3108 plane_bytes_per_line *= 4;
3109 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3110 plane_blocks_per_line /= 4;
3111 } else {
3112 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3113 }
3114
3115 wm_intermediate_val = latency * pixel_rate;
3116 ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3117 plane_blocks_per_line;
3118
3119 return ret;
3120 }
3121
3122 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3123 const struct intel_crtc *intel_crtc)
3124 {
3125 struct drm_device *dev = intel_crtc->base.dev;
3126 struct drm_i915_private *dev_priv = dev->dev_private;
3127 const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3128 enum pipe pipe = intel_crtc->pipe;
3129
3130 if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
3131 sizeof(new_ddb->plane[pipe])))
3132 return true;
3133
3134 if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
3135 sizeof(new_ddb->cursor[pipe])))
3136 return true;
3137
3138 return false;
3139 }
3140
3141 static void skl_compute_wm_global_parameters(struct drm_device *dev,
3142 struct intel_wm_config *config)
3143 {
3144 struct drm_crtc *crtc;
3145 struct drm_plane *plane;
3146
3147 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3148 config->num_pipes_active += to_intel_crtc(crtc)->active;
3149
3150 /* FIXME: I don't think we need those two global parameters on SKL */
3151 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3152 struct intel_plane *intel_plane = to_intel_plane(plane);
3153
3154 config->sprites_enabled |= intel_plane->wm.enabled;
3155 config->sprites_scaled |= intel_plane->wm.scaled;
3156 }
3157 }
3158
3159 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
3160 struct skl_pipe_wm_parameters *p)
3161 {
3162 struct drm_device *dev = crtc->dev;
3163 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3164 enum pipe pipe = intel_crtc->pipe;
3165 struct drm_plane *plane;
3166 struct drm_framebuffer *fb;
3167 int i = 1; /* Index for sprite planes start */
3168
3169 p->active = intel_crtc->active;
3170 if (p->active) {
3171 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
3172 p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
3173
3174 fb = crtc->primary->state->fb;
3175 /* For planar: Bpp is for uv plane, y_Bpp is for y plane */
3176 if (fb) {
3177 p->plane[0].enabled = true;
3178 p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3179 drm_format_plane_cpp(fb->pixel_format, 1) :
3180 drm_format_plane_cpp(fb->pixel_format, 0);
3181 p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3182 drm_format_plane_cpp(fb->pixel_format, 0) : 0;
3183 p->plane[0].tiling = fb->modifier[0];
3184 } else {
3185 p->plane[0].enabled = false;
3186 p->plane[0].bytes_per_pixel = 0;
3187 p->plane[0].y_bytes_per_pixel = 0;
3188 p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
3189 }
3190 p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
3191 p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
3192 p->plane[0].rotation = crtc->primary->state->rotation;
3193
3194 fb = crtc->cursor->state->fb;
3195 p->cursor.y_bytes_per_pixel = 0;
3196 if (fb) {
3197 p->cursor.enabled = true;
3198 p->cursor.bytes_per_pixel = fb->bits_per_pixel / 8;
3199 p->cursor.horiz_pixels = crtc->cursor->state->crtc_w;
3200 p->cursor.vert_pixels = crtc->cursor->state->crtc_h;
3201 } else {
3202 p->cursor.enabled = false;
3203 p->cursor.bytes_per_pixel = 0;
3204 p->cursor.horiz_pixels = 64;
3205 p->cursor.vert_pixels = 64;
3206 }
3207 }
3208
3209 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3210 struct intel_plane *intel_plane = to_intel_plane(plane);
3211
3212 if (intel_plane->pipe == pipe &&
3213 plane->type == DRM_PLANE_TYPE_OVERLAY)
3214 p->plane[i++] = intel_plane->wm;
3215 }
3216 }
3217
3218 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3219 struct skl_pipe_wm_parameters *p,
3220 struct intel_plane_wm_parameters *p_params,
3221 uint16_t ddb_allocation,
3222 int level,
3223 uint16_t *out_blocks, /* out */
3224 uint8_t *out_lines /* out */)
3225 {
3226 uint32_t latency = dev_priv->wm.skl_latency[level];
3227 uint32_t method1, method2;
3228 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3229 uint32_t res_blocks, res_lines;
3230 uint32_t selected_result;
3231 uint8_t bytes_per_pixel;
3232
3233 if (latency == 0 || !p->active || !p_params->enabled)
3234 return false;
3235
3236 bytes_per_pixel = p_params->y_bytes_per_pixel ?
3237 p_params->y_bytes_per_pixel :
3238 p_params->bytes_per_pixel;
3239 method1 = skl_wm_method1(p->pixel_rate,
3240 bytes_per_pixel,
3241 latency);
3242 method2 = skl_wm_method2(p->pixel_rate,
3243 p->pipe_htotal,
3244 p_params->horiz_pixels,
3245 bytes_per_pixel,
3246 p_params->tiling,
3247 latency);
3248
3249 plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
3250 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3251
3252 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3253 p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
3254 uint32_t min_scanlines = 4;
3255 uint32_t y_tile_minimum;
3256 if (intel_rotation_90_or_270(p_params->rotation)) {
3257 switch (p_params->bytes_per_pixel) {
3258 case 1:
3259 min_scanlines = 16;
3260 break;
3261 case 2:
3262 min_scanlines = 8;
3263 break;
3264 case 8:
3265 WARN(1, "Unsupported pixel depth for rotation");
3266 }
3267 }
3268 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3269 selected_result = max(method2, y_tile_minimum);
3270 } else {
3271 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3272 selected_result = min(method1, method2);
3273 else
3274 selected_result = method1;
3275 }
3276
3277 res_blocks = selected_result + 1;
3278 res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3279
3280 if (level >= 1 && level <= 7) {
3281 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3282 p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
3283 res_lines += 4;
3284 else
3285 res_blocks++;
3286 }
3287
3288 if (res_blocks >= ddb_allocation || res_lines > 31)
3289 return false;
3290
3291 *out_blocks = res_blocks;
3292 *out_lines = res_lines;
3293
3294 return true;
3295 }
3296
3297 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3298 struct skl_ddb_allocation *ddb,
3299 struct skl_pipe_wm_parameters *p,
3300 enum pipe pipe,
3301 int level,
3302 int num_planes,
3303 struct skl_wm_level *result)
3304 {
3305 uint16_t ddb_blocks;
3306 int i;
3307
3308 for (i = 0; i < num_planes; i++) {
3309 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3310
3311 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3312 p, &p->plane[i],
3313 ddb_blocks,
3314 level,
3315 &result->plane_res_b[i],
3316 &result->plane_res_l[i]);
3317 }
3318
3319 ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
3320 result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
3321 ddb_blocks, level,
3322 &result->cursor_res_b,
3323 &result->cursor_res_l);
3324 }
3325
3326 static uint32_t
3327 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
3328 {
3329 if (!to_intel_crtc(crtc)->active)
3330 return 0;
3331
3332 if (WARN_ON(p->pixel_rate == 0))
3333 return 0;
3334
3335 return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3336 }
3337
3338 static void skl_compute_transition_wm(struct drm_crtc *crtc,
3339 struct skl_pipe_wm_parameters *params,
3340 struct skl_wm_level *trans_wm /* out */)
3341 {
3342 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3343 int i;
3344
3345 if (!params->active)
3346 return;
3347
3348 /* Until we know more, just disable transition WMs */
3349 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3350 trans_wm->plane_en[i] = false;
3351 trans_wm->cursor_en = false;
3352 }
3353
3354 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3355 struct skl_ddb_allocation *ddb,
3356 struct skl_pipe_wm_parameters *params,
3357 struct skl_pipe_wm *pipe_wm)
3358 {
3359 struct drm_device *dev = crtc->dev;
3360 const struct drm_i915_private *dev_priv = dev->dev_private;
3361 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3362 int level, max_level = ilk_wm_max_level(dev);
3363
3364 for (level = 0; level <= max_level; level++) {
3365 skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3366 level, intel_num_planes(intel_crtc),
3367 &pipe_wm->wm[level]);
3368 }
3369 pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3370
3371 skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3372 }
3373
3374 static void skl_compute_wm_results(struct drm_device *dev,
3375 struct skl_pipe_wm_parameters *p,
3376 struct skl_pipe_wm *p_wm,
3377 struct skl_wm_values *r,
3378 struct intel_crtc *intel_crtc)
3379 {
3380 int level, max_level = ilk_wm_max_level(dev);
3381 enum pipe pipe = intel_crtc->pipe;
3382 uint32_t temp;
3383 int i;
3384
3385 for (level = 0; level <= max_level; level++) {
3386 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3387 temp = 0;
3388
3389 temp |= p_wm->wm[level].plane_res_l[i] <<
3390 PLANE_WM_LINES_SHIFT;
3391 temp |= p_wm->wm[level].plane_res_b[i];
3392 if (p_wm->wm[level].plane_en[i])
3393 temp |= PLANE_WM_EN;
3394
3395 r->plane[pipe][i][level] = temp;
3396 }
3397
3398 temp = 0;
3399
3400 temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
3401 temp |= p_wm->wm[level].cursor_res_b;
3402
3403 if (p_wm->wm[level].cursor_en)
3404 temp |= PLANE_WM_EN;
3405
3406 r->cursor[pipe][level] = temp;
3407
3408 }
3409
3410 /* transition WMs */
3411 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3412 temp = 0;
3413 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3414 temp |= p_wm->trans_wm.plane_res_b[i];
3415 if (p_wm->trans_wm.plane_en[i])
3416 temp |= PLANE_WM_EN;
3417
3418 r->plane_trans[pipe][i] = temp;
3419 }
3420
3421 temp = 0;
3422 temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
3423 temp |= p_wm->trans_wm.cursor_res_b;
3424 if (p_wm->trans_wm.cursor_en)
3425 temp |= PLANE_WM_EN;
3426
3427 r->cursor_trans[pipe] = temp;
3428
3429 r->wm_linetime[pipe] = p_wm->linetime;
3430 }
3431
3432 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3433 const struct skl_ddb_entry *entry)
3434 {
3435 if (entry->end)
3436 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3437 else
3438 I915_WRITE(reg, 0);
3439 }
3440
3441 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3442 const struct skl_wm_values *new)
3443 {
3444 struct drm_device *dev = dev_priv->dev;
3445 struct intel_crtc *crtc;
3446
3447 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3448 int i, level, max_level = ilk_wm_max_level(dev);
3449 enum pipe pipe = crtc->pipe;
3450
3451 if (!new->dirty[pipe])
3452 continue;
3453
3454 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3455
3456 for (level = 0; level <= max_level; level++) {
3457 for (i = 0; i < intel_num_planes(crtc); i++)
3458 I915_WRITE(PLANE_WM(pipe, i, level),
3459 new->plane[pipe][i][level]);
3460 I915_WRITE(CUR_WM(pipe, level),
3461 new->cursor[pipe][level]);
3462 }
3463 for (i = 0; i < intel_num_planes(crtc); i++)
3464 I915_WRITE(PLANE_WM_TRANS(pipe, i),
3465 new->plane_trans[pipe][i]);
3466 I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
3467
3468 for (i = 0; i < intel_num_planes(crtc); i++) {
3469 skl_ddb_entry_write(dev_priv,
3470 PLANE_BUF_CFG(pipe, i),
3471 &new->ddb.plane[pipe][i]);
3472 skl_ddb_entry_write(dev_priv,
3473 PLANE_NV12_BUF_CFG(pipe, i),
3474 &new->ddb.y_plane[pipe][i]);
3475 }
3476
3477 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3478 &new->ddb.cursor[pipe]);
3479 }
3480 }
3481
3482 /*
3483 * When setting up a new DDB allocation arrangement, we need to correctly
3484 * sequence the times at which the new allocations for the pipes are taken into
3485 * account or we'll have pipes fetching from space previously allocated to
3486 * another pipe.
3487 *
3488 * Roughly the sequence looks like:
3489 * 1. re-allocate the pipe(s) with the allocation being reduced and not
3490 * overlapping with a previous light-up pipe (another way to put it is:
3491 * pipes with their new allocation strickly included into their old ones).
3492 * 2. re-allocate the other pipes that get their allocation reduced
3493 * 3. allocate the pipes having their allocation increased
3494 *
3495 * Steps 1. and 2. are here to take care of the following case:
3496 * - Initially DDB looks like this:
3497 * | B | C |
3498 * - enable pipe A.
3499 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3500 * allocation
3501 * | A | B | C |
3502 *
3503 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3504 */
3505
3506 static void
3507 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3508 {
3509 int plane;
3510
3511 DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3512
3513 for_each_plane(dev_priv, pipe, plane) {
3514 I915_WRITE(PLANE_SURF(pipe, plane),
3515 I915_READ(PLANE_SURF(pipe, plane)));
3516 }
3517 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3518 }
3519
3520 static bool
3521 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3522 const struct skl_ddb_allocation *new,
3523 enum pipe pipe)
3524 {
3525 uint16_t old_size, new_size;
3526
3527 old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3528 new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3529
3530 return old_size != new_size &&
3531 new->pipe[pipe].start >= old->pipe[pipe].start &&
3532 new->pipe[pipe].end <= old->pipe[pipe].end;
3533 }
3534
3535 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3536 struct skl_wm_values *new_values)
3537 {
3538 struct drm_device *dev = dev_priv->dev;
3539 struct skl_ddb_allocation *cur_ddb, *new_ddb;
3540 bool reallocated[I915_MAX_PIPES] = {};
3541 struct intel_crtc *crtc;
3542 enum pipe pipe;
3543
3544 new_ddb = &new_values->ddb;
3545 cur_ddb = &dev_priv->wm.skl_hw.ddb;
3546
3547 /*
3548 * First pass: flush the pipes with the new allocation contained into
3549 * the old space.
3550 *
3551 * We'll wait for the vblank on those pipes to ensure we can safely
3552 * re-allocate the freed space without this pipe fetching from it.
3553 */
3554 for_each_intel_crtc(dev, crtc) {
3555 if (!crtc->active)
3556 continue;
3557
3558 pipe = crtc->pipe;
3559
3560 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3561 continue;
3562
3563 skl_wm_flush_pipe(dev_priv, pipe, 1);
3564 intel_wait_for_vblank(dev, pipe);
3565
3566 reallocated[pipe] = true;
3567 }
3568
3569
3570 /*
3571 * Second pass: flush the pipes that are having their allocation
3572 * reduced, but overlapping with a previous allocation.
3573 *
3574 * Here as well we need to wait for the vblank to make sure the freed
3575 * space is not used anymore.
3576 */
3577 for_each_intel_crtc(dev, crtc) {
3578 if (!crtc->active)
3579 continue;
3580
3581 pipe = crtc->pipe;
3582
3583 if (reallocated[pipe])
3584 continue;
3585
3586 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3587 skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3588 skl_wm_flush_pipe(dev_priv, pipe, 2);
3589 intel_wait_for_vblank(dev, pipe);
3590 reallocated[pipe] = true;
3591 }
3592 }
3593
3594 /*
3595 * Third pass: flush the pipes that got more space allocated.
3596 *
3597 * We don't need to actively wait for the update here, next vblank
3598 * will just get more DDB space with the correct WM values.
3599 */
3600 for_each_intel_crtc(dev, crtc) {
3601 if (!crtc->active)
3602 continue;
3603
3604 pipe = crtc->pipe;
3605
3606 /*
3607 * At this point, only the pipes more space than before are
3608 * left to re-allocate.
3609 */
3610 if (reallocated[pipe])
3611 continue;
3612
3613 skl_wm_flush_pipe(dev_priv, pipe, 3);
3614 }
3615 }
3616
3617 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3618 struct skl_pipe_wm_parameters *params,
3619 struct intel_wm_config *config,
3620 struct skl_ddb_allocation *ddb, /* out */
3621 struct skl_pipe_wm *pipe_wm /* out */)
3622 {
3623 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3624
3625 skl_compute_wm_pipe_parameters(crtc, params);
3626 skl_allocate_pipe_ddb(crtc, config, params, ddb);
3627 skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3628
3629 if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3630 return false;
3631
3632 intel_crtc->wm.skl_active = *pipe_wm;
3633
3634 return true;
3635 }
3636
3637 static void skl_update_other_pipe_wm(struct drm_device *dev,
3638 struct drm_crtc *crtc,
3639 struct intel_wm_config *config,
3640 struct skl_wm_values *r)
3641 {
3642 struct intel_crtc *intel_crtc;
3643 struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3644
3645 /*
3646 * If the WM update hasn't changed the allocation for this_crtc (the
3647 * crtc we are currently computing the new WM values for), other
3648 * enabled crtcs will keep the same allocation and we don't need to
3649 * recompute anything for them.
3650 */
3651 if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3652 return;
3653
3654 /*
3655 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3656 * other active pipes need new DDB allocation and WM values.
3657 */
3658 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3659 base.head) {
3660 struct skl_pipe_wm_parameters params = {};
3661 struct skl_pipe_wm pipe_wm = {};
3662 bool wm_changed;
3663
3664 if (this_crtc->pipe == intel_crtc->pipe)
3665 continue;
3666
3667 if (!intel_crtc->active)
3668 continue;
3669
3670 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3671 &params, config,
3672 &r->ddb, &pipe_wm);
3673
3674 /*
3675 * If we end up re-computing the other pipe WM values, it's
3676 * because it was really needed, so we expect the WM values to
3677 * be different.
3678 */
3679 WARN_ON(!wm_changed);
3680
3681 skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3682 r->dirty[intel_crtc->pipe] = true;
3683 }
3684 }
3685
3686 static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3687 {
3688 watermarks->wm_linetime[pipe] = 0;
3689 memset(watermarks->plane[pipe], 0,
3690 sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3691 memset(watermarks->cursor[pipe], 0, sizeof(uint32_t) * 8);
3692 memset(watermarks->plane_trans[pipe],
3693 0, sizeof(uint32_t) * I915_MAX_PLANES);
3694 watermarks->cursor_trans[pipe] = 0;
3695
3696 /* Clear ddb entries for pipe */
3697 memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3698 memset(&watermarks->ddb.plane[pipe], 0,
3699 sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3700 memset(&watermarks->ddb.y_plane[pipe], 0,
3701 sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3702 memset(&watermarks->ddb.cursor[pipe], 0, sizeof(struct skl_ddb_entry));
3703
3704 }
3705
3706 static void skl_update_wm(struct drm_crtc *crtc)
3707 {
3708 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3709 struct drm_device *dev = crtc->dev;
3710 struct drm_i915_private *dev_priv = dev->dev_private;
3711 struct skl_pipe_wm_parameters params = {};
3712 struct skl_wm_values *results = &dev_priv->wm.skl_results;
3713 struct skl_pipe_wm pipe_wm = {};
3714 struct intel_wm_config config = {};
3715
3716
3717 /* Clear all dirty flags */
3718 memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3719
3720 skl_clear_wm(results, intel_crtc->pipe);
3721
3722 skl_compute_wm_global_parameters(dev, &config);
3723
3724 if (!skl_update_pipe_wm(crtc, &params, &config,
3725 &results->ddb, &pipe_wm))
3726 return;
3727
3728 skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3729 results->dirty[intel_crtc->pipe] = true;
3730
3731 skl_update_other_pipe_wm(dev, crtc, &config, results);
3732 skl_write_wm_values(dev_priv, results);
3733 skl_flush_wm_values(dev_priv, results);
3734
3735 /* store the new configuration */
3736 dev_priv->wm.skl_hw = *results;
3737 }
3738
3739 static void
3740 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3741 uint32_t sprite_width, uint32_t sprite_height,
3742 int pixel_size, bool enabled, bool scaled)
3743 {
3744 struct intel_plane *intel_plane = to_intel_plane(plane);
3745 struct drm_framebuffer *fb = plane->state->fb;
3746
3747 intel_plane->wm.enabled = enabled;
3748 intel_plane->wm.scaled = scaled;
3749 intel_plane->wm.horiz_pixels = sprite_width;
3750 intel_plane->wm.vert_pixels = sprite_height;
3751 intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3752
3753 /* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
3754 intel_plane->wm.bytes_per_pixel =
3755 (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3756 drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
3757 intel_plane->wm.y_bytes_per_pixel =
3758 (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3759 drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
3760
3761 /*
3762 * Framebuffer can be NULL on plane disable, but it does not
3763 * matter for watermarks if we assume no tiling in that case.
3764 */
3765 if (fb)
3766 intel_plane->wm.tiling = fb->modifier[0];
3767 intel_plane->wm.rotation = plane->state->rotation;
3768
3769 skl_update_wm(crtc);
3770 }
3771
3772 static void ilk_update_wm(struct drm_crtc *crtc)
3773 {
3774 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3775 struct drm_device *dev = crtc->dev;
3776 struct drm_i915_private *dev_priv = dev->dev_private;
3777 struct ilk_wm_maximums max;
3778 struct ilk_pipe_wm_parameters params = {};
3779 struct ilk_wm_values results = {};
3780 enum intel_ddb_partitioning partitioning;
3781 struct intel_pipe_wm pipe_wm = {};
3782 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3783 struct intel_wm_config config = {};
3784
3785 ilk_compute_wm_parameters(crtc, &params);
3786
3787 intel_compute_pipe_wm(crtc, &params, &pipe_wm);
3788
3789 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3790 return;
3791
3792 intel_crtc->wm.active = pipe_wm;
3793
3794 ilk_compute_wm_config(dev, &config);
3795
3796 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3797 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3798
3799 /* 5/6 split only in single pipe config on IVB+ */
3800 if (INTEL_INFO(dev)->gen >= 7 &&
3801 config.num_pipes_active == 1 && config.sprites_enabled) {
3802 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3803 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3804
3805 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3806 } else {
3807 best_lp_wm = &lp_wm_1_2;
3808 }
3809
3810 partitioning = (best_lp_wm == &lp_wm_1_2) ?
3811 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3812
3813 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3814
3815 ilk_write_wm_values(dev_priv, &results);
3816 }
3817
3818 static void
3819 ilk_update_sprite_wm(struct drm_plane *plane,
3820 struct drm_crtc *crtc,
3821 uint32_t sprite_width, uint32_t sprite_height,
3822 int pixel_size, bool enabled, bool scaled)
3823 {
3824 struct drm_device *dev = plane->dev;
3825 struct intel_plane *intel_plane = to_intel_plane(plane);
3826
3827 intel_plane->wm.enabled = enabled;
3828 intel_plane->wm.scaled = scaled;
3829 intel_plane->wm.horiz_pixels = sprite_width;
3830 intel_plane->wm.vert_pixels = sprite_width;
3831 intel_plane->wm.bytes_per_pixel = pixel_size;
3832
3833 /*
3834 * IVB workaround: must disable low power watermarks for at least
3835 * one frame before enabling scaling. LP watermarks can be re-enabled
3836 * when scaling is disabled.
3837 *
3838 * WaCxSRDisabledForSpriteScaling:ivb
3839 */
3840 if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3841 intel_wait_for_vblank(dev, intel_plane->pipe);
3842
3843 ilk_update_wm(crtc);
3844 }
3845
3846 static void skl_pipe_wm_active_state(uint32_t val,
3847 struct skl_pipe_wm *active,
3848 bool is_transwm,
3849 bool is_cursor,
3850 int i,
3851 int level)
3852 {
3853 bool is_enabled = (val & PLANE_WM_EN) != 0;
3854
3855 if (!is_transwm) {
3856 if (!is_cursor) {
3857 active->wm[level].plane_en[i] = is_enabled;
3858 active->wm[level].plane_res_b[i] =
3859 val & PLANE_WM_BLOCKS_MASK;
3860 active->wm[level].plane_res_l[i] =
3861 (val >> PLANE_WM_LINES_SHIFT) &
3862 PLANE_WM_LINES_MASK;
3863 } else {
3864 active->wm[level].cursor_en = is_enabled;
3865 active->wm[level].cursor_res_b =
3866 val & PLANE_WM_BLOCKS_MASK;
3867 active->wm[level].cursor_res_l =
3868 (val >> PLANE_WM_LINES_SHIFT) &
3869 PLANE_WM_LINES_MASK;
3870 }
3871 } else {
3872 if (!is_cursor) {
3873 active->trans_wm.plane_en[i] = is_enabled;
3874 active->trans_wm.plane_res_b[i] =
3875 val & PLANE_WM_BLOCKS_MASK;
3876 active->trans_wm.plane_res_l[i] =
3877 (val >> PLANE_WM_LINES_SHIFT) &
3878 PLANE_WM_LINES_MASK;
3879 } else {
3880 active->trans_wm.cursor_en = is_enabled;
3881 active->trans_wm.cursor_res_b =
3882 val & PLANE_WM_BLOCKS_MASK;
3883 active->trans_wm.cursor_res_l =
3884 (val >> PLANE_WM_LINES_SHIFT) &
3885 PLANE_WM_LINES_MASK;
3886 }
3887 }
3888 }
3889
3890 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3891 {
3892 struct drm_device *dev = crtc->dev;
3893 struct drm_i915_private *dev_priv = dev->dev_private;
3894 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3895 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3896 struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3897 enum pipe pipe = intel_crtc->pipe;
3898 int level, i, max_level;
3899 uint32_t temp;
3900
3901 max_level = ilk_wm_max_level(dev);
3902
3903 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3904
3905 for (level = 0; level <= max_level; level++) {
3906 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3907 hw->plane[pipe][i][level] =
3908 I915_READ(PLANE_WM(pipe, i, level));
3909 hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
3910 }
3911
3912 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3913 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3914 hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
3915
3916 if (!intel_crtc->active)
3917 return;
3918
3919 hw->dirty[pipe] = true;
3920
3921 active->linetime = hw->wm_linetime[pipe];
3922
3923 for (level = 0; level <= max_level; level++) {
3924 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3925 temp = hw->plane[pipe][i][level];
3926 skl_pipe_wm_active_state(temp, active, false,
3927 false, i, level);
3928 }
3929 temp = hw->cursor[pipe][level];
3930 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3931 }
3932
3933 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3934 temp = hw->plane_trans[pipe][i];
3935 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3936 }
3937
3938 temp = hw->cursor_trans[pipe];
3939 skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3940 }
3941
3942 void skl_wm_get_hw_state(struct drm_device *dev)
3943 {
3944 struct drm_i915_private *dev_priv = dev->dev_private;
3945 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3946 struct drm_crtc *crtc;
3947
3948 skl_ddb_get_hw_state(dev_priv, ddb);
3949 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3950 skl_pipe_wm_get_hw_state(crtc);
3951 }
3952
3953 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3954 {
3955 struct drm_device *dev = crtc->dev;
3956 struct drm_i915_private *dev_priv = dev->dev_private;
3957 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3958 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3959 struct intel_pipe_wm *active = &intel_crtc->wm.active;
3960 enum pipe pipe = intel_crtc->pipe;
3961 static const unsigned int wm0_pipe_reg[] = {
3962 [PIPE_A] = WM0_PIPEA_ILK,
3963 [PIPE_B] = WM0_PIPEB_ILK,
3964 [PIPE_C] = WM0_PIPEC_IVB,
3965 };
3966
3967 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3968 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3969 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3970
3971 active->pipe_enabled = intel_crtc->active;
3972
3973 if (active->pipe_enabled) {
3974 u32 tmp = hw->wm_pipe[pipe];
3975
3976 /*
3977 * For active pipes LP0 watermark is marked as
3978 * enabled, and LP1+ watermaks as disabled since
3979 * we can't really reverse compute them in case
3980 * multiple pipes are active.
3981 */
3982 active->wm[0].enable = true;
3983 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3984 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3985 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3986 active->linetime = hw->wm_linetime[pipe];
3987 } else {
3988 int level, max_level = ilk_wm_max_level(dev);
3989
3990 /*
3991 * For inactive pipes, all watermark levels
3992 * should be marked as enabled but zeroed,
3993 * which is what we'd compute them to.
3994 */
3995 for (level = 0; level <= max_level; level++)
3996 active->wm[level].enable = true;
3997 }
3998 }
3999
4000 #define _FW_WM(value, plane) \
4001 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4002 #define _FW_WM_VLV(value, plane) \
4003 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4004
4005 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4006 struct vlv_wm_values *wm)
4007 {
4008 enum pipe pipe;
4009 uint32_t tmp;
4010
4011 for_each_pipe(dev_priv, pipe) {
4012 tmp = I915_READ(VLV_DDL(pipe));
4013
4014 wm->ddl[pipe].primary =
4015 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4016 wm->ddl[pipe].cursor =
4017 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4018 wm->ddl[pipe].sprite[0] =
4019 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4020 wm->ddl[pipe].sprite[1] =
4021 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4022 }
4023
4024 tmp = I915_READ(DSPFW1);
4025 wm->sr.plane = _FW_WM(tmp, SR);
4026 wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
4027 wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
4028 wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
4029
4030 tmp = I915_READ(DSPFW2);
4031 wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
4032 wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4033 wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4034
4035 tmp = I915_READ(DSPFW3);
4036 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4037
4038 if (IS_CHERRYVIEW(dev_priv)) {
4039 tmp = I915_READ(DSPFW7_CHV);
4040 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4041 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4042
4043 tmp = I915_READ(DSPFW8_CHV);
4044 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4045 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4046
4047 tmp = I915_READ(DSPFW9_CHV);
4048 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4049 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4050
4051 tmp = I915_READ(DSPHOWM);
4052 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4053 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4054 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4055 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4056 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4057 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4058 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4059 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4060 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4061 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4062 } else {
4063 tmp = I915_READ(DSPFW7);
4064 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4065 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4066
4067 tmp = I915_READ(DSPHOWM);
4068 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4069 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4070 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4071 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4072 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4073 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4074 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4075 }
4076 }
4077
4078 #undef _FW_WM
4079 #undef _FW_WM_VLV
4080
4081 void vlv_wm_get_hw_state(struct drm_device *dev)
4082 {
4083 struct drm_i915_private *dev_priv = to_i915(dev);
4084 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4085 struct intel_plane *plane;
4086 enum pipe pipe;
4087 u32 val;
4088
4089 vlv_read_wm_values(dev_priv, wm);
4090
4091 for_each_intel_plane(dev, plane) {
4092 switch (plane->base.type) {
4093 int sprite;
4094 case DRM_PLANE_TYPE_CURSOR:
4095 plane->wm.fifo_size = 63;
4096 break;
4097 case DRM_PLANE_TYPE_PRIMARY:
4098 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4099 break;
4100 case DRM_PLANE_TYPE_OVERLAY:
4101 sprite = plane->plane;
4102 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4103 break;
4104 }
4105 }
4106
4107 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4108 wm->level = VLV_WM_LEVEL_PM2;
4109
4110 if (IS_CHERRYVIEW(dev_priv)) {
4111 mutex_lock(&dev_priv->rps.hw_lock);
4112
4113 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4114 if (val & DSP_MAXFIFO_PM5_ENABLE)
4115 wm->level = VLV_WM_LEVEL_PM5;
4116
4117 /*
4118 * If DDR DVFS is disabled in the BIOS, Punit
4119 * will never ack the request. So if that happens
4120 * assume we don't have to enable/disable DDR DVFS
4121 * dynamically. To test that just set the REQ_ACK
4122 * bit to poke the Punit, but don't change the
4123 * HIGH/LOW bits so that we don't actually change
4124 * the current state.
4125 */
4126 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4127 val |= FORCE_DDR_FREQ_REQ_ACK;
4128 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4129
4130 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4131 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4132 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4133 "assuming DDR DVFS is disabled\n");
4134 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4135 } else {
4136 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4137 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4138 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4139 }
4140
4141 mutex_unlock(&dev_priv->rps.hw_lock);
4142 }
4143
4144 for_each_pipe(dev_priv, pipe)
4145 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4146 pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4147 wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4148
4149 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4150 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4151 }
4152
4153 void ilk_wm_get_hw_state(struct drm_device *dev)
4154 {
4155 struct drm_i915_private *dev_priv = dev->dev_private;
4156 struct ilk_wm_values *hw = &dev_priv->wm.hw;
4157 struct drm_crtc *crtc;
4158
4159 for_each_crtc(dev, crtc)
4160 ilk_pipe_wm_get_hw_state(crtc);
4161
4162 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4163 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4164 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4165
4166 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4167 if (INTEL_INFO(dev)->gen >= 7) {
4168 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4169 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4170 }
4171
4172 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4173 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4174 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4175 else if (IS_IVYBRIDGE(dev))
4176 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4177 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4178
4179 hw->enable_fbc_wm =
4180 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4181 }
4182
4183 /**
4184 * intel_update_watermarks - update FIFO watermark values based on current modes
4185 *
4186 * Calculate watermark values for the various WM regs based on current mode
4187 * and plane configuration.
4188 *
4189 * There are several cases to deal with here:
4190 * - normal (i.e. non-self-refresh)
4191 * - self-refresh (SR) mode
4192 * - lines are large relative to FIFO size (buffer can hold up to 2)
4193 * - lines are small relative to FIFO size (buffer can hold more than 2
4194 * lines), so need to account for TLB latency
4195 *
4196 * The normal calculation is:
4197 * watermark = dotclock * bytes per pixel * latency
4198 * where latency is platform & configuration dependent (we assume pessimal
4199 * values here).
4200 *
4201 * The SR calculation is:
4202 * watermark = (trunc(latency/line time)+1) * surface width *
4203 * bytes per pixel
4204 * where
4205 * line time = htotal / dotclock
4206 * surface width = hdisplay for normal plane and 64 for cursor
4207 * and latency is assumed to be high, as above.
4208 *
4209 * The final value programmed to the register should always be rounded up,
4210 * and include an extra 2 entries to account for clock crossings.
4211 *
4212 * We don't use the sprite, so we can ignore that. And on Crestline we have
4213 * to set the non-SR watermarks to 8.
4214 */
4215 void intel_update_watermarks(struct drm_crtc *crtc)
4216 {
4217 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4218
4219 if (dev_priv->display.update_wm)
4220 dev_priv->display.update_wm(crtc);
4221 }
4222
4223 void intel_update_sprite_watermarks(struct drm_plane *plane,
4224 struct drm_crtc *crtc,
4225 uint32_t sprite_width,
4226 uint32_t sprite_height,
4227 int pixel_size,
4228 bool enabled, bool scaled)
4229 {
4230 struct drm_i915_private *dev_priv = plane->dev->dev_private;
4231
4232 if (dev_priv->display.update_sprite_wm)
4233 dev_priv->display.update_sprite_wm(plane, crtc,
4234 sprite_width, sprite_height,
4235 pixel_size, enabled, scaled);
4236 }
4237
4238 /**
4239 * Lock protecting IPS related data structures
4240 */
4241 DEFINE_SPINLOCK(mchdev_lock);
4242
4243 /* Global for IPS driver to get at the current i915 device. Protected by
4244 * mchdev_lock. */
4245 static struct drm_i915_private *i915_mch_dev;
4246
4247 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4248 {
4249 struct drm_i915_private *dev_priv = dev->dev_private;
4250 u16 rgvswctl;
4251
4252 assert_spin_locked(&mchdev_lock);
4253
4254 rgvswctl = I915_READ16(MEMSWCTL);
4255 if (rgvswctl & MEMCTL_CMD_STS) {
4256 DRM_DEBUG("gpu busy, RCS change rejected\n");
4257 return false; /* still busy with another command */
4258 }
4259
4260 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4261 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4262 I915_WRITE16(MEMSWCTL, rgvswctl);
4263 POSTING_READ16(MEMSWCTL);
4264
4265 rgvswctl |= MEMCTL_CMD_STS;
4266 I915_WRITE16(MEMSWCTL, rgvswctl);
4267
4268 return true;
4269 }
4270
4271 static void ironlake_enable_drps(struct drm_device *dev)
4272 {
4273 struct drm_i915_private *dev_priv = dev->dev_private;
4274 u32 rgvmodectl = I915_READ(MEMMODECTL);
4275 u8 fmax, fmin, fstart, vstart;
4276
4277 spin_lock_irq(&mchdev_lock);
4278
4279 /* Enable temp reporting */
4280 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4281 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4282
4283 /* 100ms RC evaluation intervals */
4284 I915_WRITE(RCUPEI, 100000);
4285 I915_WRITE(RCDNEI, 100000);
4286
4287 /* Set max/min thresholds to 90ms and 80ms respectively */
4288 I915_WRITE(RCBMAXAVG, 90000);
4289 I915_WRITE(RCBMINAVG, 80000);
4290
4291 I915_WRITE(MEMIHYST, 1);
4292
4293 /* Set up min, max, and cur for interrupt handling */
4294 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4295 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4296 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4297 MEMMODE_FSTART_SHIFT;
4298
4299 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4300 PXVFREQ_PX_SHIFT;
4301
4302 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4303 dev_priv->ips.fstart = fstart;
4304
4305 dev_priv->ips.max_delay = fstart;
4306 dev_priv->ips.min_delay = fmin;
4307 dev_priv->ips.cur_delay = fstart;
4308
4309 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4310 fmax, fmin, fstart);
4311
4312 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4313
4314 /*
4315 * Interrupts will be enabled in ironlake_irq_postinstall
4316 */
4317
4318 I915_WRITE(VIDSTART, vstart);
4319 POSTING_READ(VIDSTART);
4320
4321 rgvmodectl |= MEMMODE_SWMODE_EN;
4322 I915_WRITE(MEMMODECTL, rgvmodectl);
4323
4324 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4325 DRM_ERROR("stuck trying to change perf mode\n");
4326 mdelay(1);
4327
4328 ironlake_set_drps(dev, fstart);
4329
4330 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4331 I915_READ(DDREC) + I915_READ(CSIEC);
4332 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4333 dev_priv->ips.last_count2 = I915_READ(GFXEC);
4334 dev_priv->ips.last_time2 = ktime_get_raw_ns();
4335
4336 spin_unlock_irq(&mchdev_lock);
4337 }
4338
4339 static void ironlake_disable_drps(struct drm_device *dev)
4340 {
4341 struct drm_i915_private *dev_priv = dev->dev_private;
4342 u16 rgvswctl;
4343
4344 spin_lock_irq(&mchdev_lock);
4345
4346 rgvswctl = I915_READ16(MEMSWCTL);
4347
4348 /* Ack interrupts, disable EFC interrupt */
4349 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4350 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4351 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4352 I915_WRITE(DEIIR, DE_PCU_EVENT);
4353 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4354
4355 /* Go back to the starting frequency */
4356 ironlake_set_drps(dev, dev_priv->ips.fstart);
4357 mdelay(1);
4358 rgvswctl |= MEMCTL_CMD_STS;
4359 I915_WRITE(MEMSWCTL, rgvswctl);
4360 mdelay(1);
4361
4362 spin_unlock_irq(&mchdev_lock);
4363 }
4364
4365 /* There's a funny hw issue where the hw returns all 0 when reading from
4366 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4367 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4368 * all limits and the gpu stuck at whatever frequency it is at atm).
4369 */
4370 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4371 {
4372 u32 limits;
4373
4374 /* Only set the down limit when we've reached the lowest level to avoid
4375 * getting more interrupts, otherwise leave this clear. This prevents a
4376 * race in the hw when coming out of rc6: There's a tiny window where
4377 * the hw runs at the minimal clock before selecting the desired
4378 * frequency, if the down threshold expires in that window we will not
4379 * receive a down interrupt. */
4380 if (IS_GEN9(dev_priv->dev)) {
4381 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4382 if (val <= dev_priv->rps.min_freq_softlimit)
4383 limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4384 } else {
4385 limits = dev_priv->rps.max_freq_softlimit << 24;
4386 if (val <= dev_priv->rps.min_freq_softlimit)
4387 limits |= dev_priv->rps.min_freq_softlimit << 16;
4388 }
4389
4390 return limits;
4391 }
4392
4393 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4394 {
4395 int new_power;
4396 u32 threshold_up = 0, threshold_down = 0; /* in % */
4397 u32 ei_up = 0, ei_down = 0;
4398
4399 new_power = dev_priv->rps.power;
4400 switch (dev_priv->rps.power) {
4401 case LOW_POWER:
4402 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4403 new_power = BETWEEN;
4404 break;
4405
4406 case BETWEEN:
4407 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4408 new_power = LOW_POWER;
4409 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4410 new_power = HIGH_POWER;
4411 break;
4412
4413 case HIGH_POWER:
4414 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4415 new_power = BETWEEN;
4416 break;
4417 }
4418 /* Max/min bins are special */
4419 if (val <= dev_priv->rps.min_freq_softlimit)
4420 new_power = LOW_POWER;
4421 if (val >= dev_priv->rps.max_freq_softlimit)
4422 new_power = HIGH_POWER;
4423 if (new_power == dev_priv->rps.power)
4424 return;
4425
4426 /* Note the units here are not exactly 1us, but 1280ns. */
4427 switch (new_power) {
4428 case LOW_POWER:
4429 /* Upclock if more than 95% busy over 16ms */
4430 ei_up = 16000;
4431 threshold_up = 95;
4432
4433 /* Downclock if less than 85% busy over 32ms */
4434 ei_down = 32000;
4435 threshold_down = 85;
4436 break;
4437
4438 case BETWEEN:
4439 /* Upclock if more than 90% busy over 13ms */
4440 ei_up = 13000;
4441 threshold_up = 90;
4442
4443 /* Downclock if less than 75% busy over 32ms */
4444 ei_down = 32000;
4445 threshold_down = 75;
4446 break;
4447
4448 case HIGH_POWER:
4449 /* Upclock if more than 85% busy over 10ms */
4450 ei_up = 10000;
4451 threshold_up = 85;
4452
4453 /* Downclock if less than 60% busy over 32ms */
4454 ei_down = 32000;
4455 threshold_down = 60;
4456 break;
4457 }
4458
4459 I915_WRITE(GEN6_RP_UP_EI,
4460 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4461 I915_WRITE(GEN6_RP_UP_THRESHOLD,
4462 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4463
4464 I915_WRITE(GEN6_RP_DOWN_EI,
4465 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4466 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4467 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4468
4469 I915_WRITE(GEN6_RP_CONTROL,
4470 GEN6_RP_MEDIA_TURBO |
4471 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4472 GEN6_RP_MEDIA_IS_GFX |
4473 GEN6_RP_ENABLE |
4474 GEN6_RP_UP_BUSY_AVG |
4475 GEN6_RP_DOWN_IDLE_AVG);
4476
4477 dev_priv->rps.power = new_power;
4478 dev_priv->rps.up_threshold = threshold_up;
4479 dev_priv->rps.down_threshold = threshold_down;
4480 dev_priv->rps.last_adj = 0;
4481 }
4482
4483 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4484 {
4485 u32 mask = 0;
4486
4487 if (val > dev_priv->rps.min_freq_softlimit)
4488 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4489 if (val < dev_priv->rps.max_freq_softlimit)
4490 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4491
4492 mask &= dev_priv->pm_rps_events;
4493
4494 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4495 }
4496
4497 /* gen6_set_rps is called to update the frequency request, but should also be
4498 * called when the range (min_delay and max_delay) is modified so that we can
4499 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4500 static void gen6_set_rps(struct drm_device *dev, u8 val)
4501 {
4502 struct drm_i915_private *dev_priv = dev->dev_private;
4503
4504 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4505 if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
4506 return;
4507
4508 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4509 WARN_ON(val > dev_priv->rps.max_freq);
4510 WARN_ON(val < dev_priv->rps.min_freq);
4511
4512 /* min/max delay may still have been modified so be sure to
4513 * write the limits value.
4514 */
4515 if (val != dev_priv->rps.cur_freq) {
4516 gen6_set_rps_thresholds(dev_priv, val);
4517
4518 if (IS_GEN9(dev))
4519 I915_WRITE(GEN6_RPNSWREQ,
4520 GEN9_FREQUENCY(val));
4521 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4522 I915_WRITE(GEN6_RPNSWREQ,
4523 HSW_FREQUENCY(val));
4524 else
4525 I915_WRITE(GEN6_RPNSWREQ,
4526 GEN6_FREQUENCY(val) |
4527 GEN6_OFFSET(0) |
4528 GEN6_AGGRESSIVE_TURBO);
4529 }
4530
4531 /* Make sure we continue to get interrupts
4532 * until we hit the minimum or maximum frequencies.
4533 */
4534 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4535 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4536
4537 POSTING_READ(GEN6_RPNSWREQ);
4538
4539 dev_priv->rps.cur_freq = val;
4540 trace_intel_gpu_freq_change(val * 50);
4541 }
4542
4543 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4544 {
4545 struct drm_i915_private *dev_priv = dev->dev_private;
4546
4547 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4548 WARN_ON(val > dev_priv->rps.max_freq);
4549 WARN_ON(val < dev_priv->rps.min_freq);
4550
4551 if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4552 "Odd GPU freq value\n"))
4553 val &= ~1;
4554
4555 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4556
4557 if (val != dev_priv->rps.cur_freq) {
4558 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4559 if (!IS_CHERRYVIEW(dev_priv))
4560 gen6_set_rps_thresholds(dev_priv, val);
4561 }
4562
4563 dev_priv->rps.cur_freq = val;
4564 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4565 }
4566
4567 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4568 *
4569 * * If Gfx is Idle, then
4570 * 1. Forcewake Media well.
4571 * 2. Request idle freq.
4572 * 3. Release Forcewake of Media well.
4573 */
4574 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4575 {
4576 u32 val = dev_priv->rps.idle_freq;
4577
4578 if (dev_priv->rps.cur_freq <= val)
4579 return;
4580
4581 /* Wake up the media well, as that takes a lot less
4582 * power than the Render well. */
4583 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4584 valleyview_set_rps(dev_priv->dev, val);
4585 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4586 }
4587
4588 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4589 {
4590 mutex_lock(&dev_priv->rps.hw_lock);
4591 if (dev_priv->rps.enabled) {
4592 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4593 gen6_rps_reset_ei(dev_priv);
4594 I915_WRITE(GEN6_PMINTRMSK,
4595 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4596 }
4597 mutex_unlock(&dev_priv->rps.hw_lock);
4598 }
4599
4600 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4601 {
4602 struct drm_device *dev = dev_priv->dev;
4603
4604 mutex_lock(&dev_priv->rps.hw_lock);
4605 if (dev_priv->rps.enabled) {
4606 if (IS_VALLEYVIEW(dev))
4607 vlv_set_rps_idle(dev_priv);
4608 else
4609 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4610 dev_priv->rps.last_adj = 0;
4611 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4612 }
4613 mutex_unlock(&dev_priv->rps.hw_lock);
4614
4615 spin_lock(&dev_priv->rps.client_lock);
4616 while (!list_empty(&dev_priv->rps.clients))
4617 list_del_init(dev_priv->rps.clients.next);
4618 spin_unlock(&dev_priv->rps.client_lock);
4619 }
4620
4621 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4622 struct intel_rps_client *rps,
4623 unsigned long submitted)
4624 {
4625 /* This is intentionally racy! We peek at the state here, then
4626 * validate inside the RPS worker.
4627 */
4628 if (!(dev_priv->mm.busy &&
4629 dev_priv->rps.enabled &&
4630 dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4631 return;
4632
4633 /* Force a RPS boost (and don't count it against the client) if
4634 * the GPU is severely congested.
4635 */
4636 if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4637 rps = NULL;
4638
4639 spin_lock(&dev_priv->rps.client_lock);
4640 if (rps == NULL || list_empty(&rps->link)) {
4641 spin_lock_irq(&dev_priv->irq_lock);
4642 if (dev_priv->rps.interrupts_enabled) {
4643 dev_priv->rps.client_boost = true;
4644 queue_work(dev_priv->wq, &dev_priv->rps.work);
4645 }
4646 spin_unlock_irq(&dev_priv->irq_lock);
4647
4648 if (rps != NULL) {
4649 list_add(&rps->link, &dev_priv->rps.clients);
4650 rps->boosts++;
4651 } else
4652 dev_priv->rps.boosts++;
4653 }
4654 spin_unlock(&dev_priv->rps.client_lock);
4655 }
4656
4657 void intel_set_rps(struct drm_device *dev, u8 val)
4658 {
4659 if (IS_VALLEYVIEW(dev))
4660 valleyview_set_rps(dev, val);
4661 else
4662 gen6_set_rps(dev, val);
4663 }
4664
4665 static void gen9_disable_rps(struct drm_device *dev)
4666 {
4667 struct drm_i915_private *dev_priv = dev->dev_private;
4668
4669 I915_WRITE(GEN6_RC_CONTROL, 0);
4670 I915_WRITE(GEN9_PG_ENABLE, 0);
4671 }
4672
4673 static void gen6_disable_rps(struct drm_device *dev)
4674 {
4675 struct drm_i915_private *dev_priv = dev->dev_private;
4676
4677 I915_WRITE(GEN6_RC_CONTROL, 0);
4678 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4679 }
4680
4681 static void cherryview_disable_rps(struct drm_device *dev)
4682 {
4683 struct drm_i915_private *dev_priv = dev->dev_private;
4684
4685 I915_WRITE(GEN6_RC_CONTROL, 0);
4686 }
4687
4688 static void valleyview_disable_rps(struct drm_device *dev)
4689 {
4690 struct drm_i915_private *dev_priv = dev->dev_private;
4691
4692 /* we're doing forcewake before Disabling RC6,
4693 * This what the BIOS expects when going into suspend */
4694 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4695
4696 I915_WRITE(GEN6_RC_CONTROL, 0);
4697
4698 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4699 }
4700
4701 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4702 {
4703 if (IS_VALLEYVIEW(dev)) {
4704 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4705 mode = GEN6_RC_CTL_RC6_ENABLE;
4706 else
4707 mode = 0;
4708 }
4709 if (HAS_RC6p(dev))
4710 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4711 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4712 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4713 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4714
4715 else
4716 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4717 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4718 }
4719
4720 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4721 {
4722 /* No RC6 before Ironlake and code is gone for ilk. */
4723 if (INTEL_INFO(dev)->gen < 6)
4724 return 0;
4725
4726 /* Respect the kernel parameter if it is set */
4727 if (enable_rc6 >= 0) {
4728 int mask;
4729
4730 if (HAS_RC6p(dev))
4731 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4732 INTEL_RC6pp_ENABLE;
4733 else
4734 mask = INTEL_RC6_ENABLE;
4735
4736 if ((enable_rc6 & mask) != enable_rc6)
4737 DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4738 enable_rc6 & mask, enable_rc6, mask);
4739
4740 return enable_rc6 & mask;
4741 }
4742
4743 if (IS_IVYBRIDGE(dev))
4744 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4745
4746 return INTEL_RC6_ENABLE;
4747 }
4748
4749 int intel_enable_rc6(const struct drm_device *dev)
4750 {
4751 return i915.enable_rc6;
4752 }
4753
4754 static void gen6_init_rps_frequencies(struct drm_device *dev)
4755 {
4756 struct drm_i915_private *dev_priv = dev->dev_private;
4757 uint32_t rp_state_cap;
4758 u32 ddcc_status = 0;
4759 int ret;
4760
4761 /* All of these values are in units of 50MHz */
4762 dev_priv->rps.cur_freq = 0;
4763 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4764 if (IS_BROXTON(dev)) {
4765 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4766 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4767 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4768 dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
4769 } else {
4770 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4771 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
4772 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4773 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4774 }
4775
4776 /* hw_max = RP0 until we check for overclocking */
4777 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
4778
4779 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4780 if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
4781 ret = sandybridge_pcode_read(dev_priv,
4782 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4783 &ddcc_status);
4784 if (0 == ret)
4785 dev_priv->rps.efficient_freq =
4786 clamp_t(u8,
4787 ((ddcc_status >> 8) & 0xff),
4788 dev_priv->rps.min_freq,
4789 dev_priv->rps.max_freq);
4790 }
4791
4792 if (IS_SKYLAKE(dev)) {
4793 /* Store the frequency values in 16.66 MHZ units, which is
4794 the natural hardware unit for SKL */
4795 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4796 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4797 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4798 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4799 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4800 }
4801
4802 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4803
4804 /* Preserve min/max settings in case of re-init */
4805 if (dev_priv->rps.max_freq_softlimit == 0)
4806 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4807
4808 if (dev_priv->rps.min_freq_softlimit == 0) {
4809 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4810 dev_priv->rps.min_freq_softlimit =
4811 max_t(int, dev_priv->rps.efficient_freq,
4812 intel_freq_opcode(dev_priv, 450));
4813 else
4814 dev_priv->rps.min_freq_softlimit =
4815 dev_priv->rps.min_freq;
4816 }
4817 }
4818
4819 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4820 static void gen9_enable_rps(struct drm_device *dev)
4821 {
4822 struct drm_i915_private *dev_priv = dev->dev_private;
4823
4824 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4825
4826 gen6_init_rps_frequencies(dev);
4827
4828 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4829 if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
4830 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4831 return;
4832 }
4833
4834 /* Program defaults and thresholds for RPS*/
4835 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4836 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4837
4838 /* 1 second timeout*/
4839 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4840 GT_INTERVAL_FROM_US(dev_priv, 1000000));
4841
4842 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4843
4844 /* Leaning on the below call to gen6_set_rps to program/setup the
4845 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4846 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4847 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4848 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4849
4850 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4851 }
4852
4853 static void gen9_enable_rc6(struct drm_device *dev)
4854 {
4855 struct drm_i915_private *dev_priv = dev->dev_private;
4856 struct intel_engine_cs *ring;
4857 uint32_t rc6_mask = 0;
4858 int unused;
4859
4860 /* 1a: Software RC state - RC0 */
4861 I915_WRITE(GEN6_RC_STATE, 0);
4862
4863 /* 1b: Get forcewake during program sequence. Although the driver
4864 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4865 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4866
4867 /* 2a: Disable RC states. */
4868 I915_WRITE(GEN6_RC_CONTROL, 0);
4869
4870 /* 2b: Program RC6 thresholds.*/
4871
4872 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4873 if (IS_SKYLAKE(dev) && !((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) &&
4874 (INTEL_REVID(dev) <= SKL_REVID_E0)))
4875 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4876 else
4877 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4878 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4879 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4880 for_each_ring(ring, dev_priv, unused)
4881 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4882
4883 if (HAS_GUC_UCODE(dev))
4884 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4885
4886 I915_WRITE(GEN6_RC_SLEEP, 0);
4887 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4888
4889 /* 2c: Program Coarse Power Gating Policies. */
4890 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4891 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4892
4893 /* 3a: Enable RC6 */
4894 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4895 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4896 DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4897 "on" : "off");
4898
4899 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
4900 (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0))
4901 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4902 GEN7_RC_CTL_TO_MODE |
4903 rc6_mask);
4904 else
4905 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4906 GEN6_RC_CTL_EI_MODE(1) |
4907 rc6_mask);
4908
4909 /*
4910 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4911 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4912 */
4913 if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
4914 ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && (INTEL_REVID(dev) <= SKL_REVID_E0)))
4915 I915_WRITE(GEN9_PG_ENABLE, 0);
4916 else
4917 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4918 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4919
4920 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4921
4922 }
4923
4924 static void gen8_enable_rps(struct drm_device *dev)
4925 {
4926 struct drm_i915_private *dev_priv = dev->dev_private;
4927 struct intel_engine_cs *ring;
4928 uint32_t rc6_mask = 0;
4929 int unused;
4930
4931 /* 1a: Software RC state - RC0 */
4932 I915_WRITE(GEN6_RC_STATE, 0);
4933
4934 /* 1c & 1d: Get forcewake during program sequence. Although the driver
4935 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4936 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4937
4938 /* 2a: Disable RC states. */
4939 I915_WRITE(GEN6_RC_CONTROL, 0);
4940
4941 /* Initialize rps frequencies */
4942 gen6_init_rps_frequencies(dev);
4943
4944 /* 2b: Program RC6 thresholds.*/
4945 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4946 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4947 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4948 for_each_ring(ring, dev_priv, unused)
4949 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4950 I915_WRITE(GEN6_RC_SLEEP, 0);
4951 if (IS_BROADWELL(dev))
4952 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4953 else
4954 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4955
4956 /* 3: Enable RC6 */
4957 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4958 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4959 intel_print_rc6_info(dev, rc6_mask);
4960 if (IS_BROADWELL(dev))
4961 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4962 GEN7_RC_CTL_TO_MODE |
4963 rc6_mask);
4964 else
4965 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4966 GEN6_RC_CTL_EI_MODE(1) |
4967 rc6_mask);
4968
4969 /* 4 Program defaults and thresholds for RPS*/
4970 I915_WRITE(GEN6_RPNSWREQ,
4971 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4972 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4973 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4974 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4975 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4976
4977 /* Docs recommend 900MHz, and 300 MHz respectively */
4978 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4979 dev_priv->rps.max_freq_softlimit << 24 |
4980 dev_priv->rps.min_freq_softlimit << 16);
4981
4982 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4983 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4984 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4985 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4986
4987 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4988
4989 /* 5: Enable RPS */
4990 I915_WRITE(GEN6_RP_CONTROL,
4991 GEN6_RP_MEDIA_TURBO |
4992 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4993 GEN6_RP_MEDIA_IS_GFX |
4994 GEN6_RP_ENABLE |
4995 GEN6_RP_UP_BUSY_AVG |
4996 GEN6_RP_DOWN_IDLE_AVG);
4997
4998 /* 6: Ring frequency + overclocking (our driver does this later */
4999
5000 dev_priv->rps.power = HIGH_POWER; /* force a reset */
5001 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5002
5003 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5004 }
5005
5006 static void gen6_enable_rps(struct drm_device *dev)
5007 {
5008 struct drm_i915_private *dev_priv = dev->dev_private;
5009 struct intel_engine_cs *ring;
5010 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
5011 u32 gtfifodbg;
5012 int rc6_mode;
5013 int i, ret;
5014
5015 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5016
5017 /* Here begins a magic sequence of register writes to enable
5018 * auto-downclocking.
5019 *
5020 * Perhaps there might be some value in exposing these to
5021 * userspace...
5022 */
5023 I915_WRITE(GEN6_RC_STATE, 0);
5024
5025 /* Clear the DBG now so we don't confuse earlier errors */
5026 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5027 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5028 I915_WRITE(GTFIFODBG, gtfifodbg);
5029 }
5030
5031 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5032
5033 /* Initialize rps frequencies */
5034 gen6_init_rps_frequencies(dev);
5035
5036 /* disable the counters and set deterministic thresholds */
5037 I915_WRITE(GEN6_RC_CONTROL, 0);
5038
5039 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5040 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5041 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5042 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5043 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5044
5045 for_each_ring(ring, dev_priv, i)
5046 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5047
5048 I915_WRITE(GEN6_RC_SLEEP, 0);
5049 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5050 if (IS_IVYBRIDGE(dev))
5051 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5052 else
5053 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5054 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5055 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5056
5057 /* Check if we are enabling RC6 */
5058 rc6_mode = intel_enable_rc6(dev_priv->dev);
5059 if (rc6_mode & INTEL_RC6_ENABLE)
5060 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5061
5062 /* We don't use those on Haswell */
5063 if (!IS_HASWELL(dev)) {
5064 if (rc6_mode & INTEL_RC6p_ENABLE)
5065 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5066
5067 if (rc6_mode & INTEL_RC6pp_ENABLE)
5068 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5069 }
5070
5071 intel_print_rc6_info(dev, rc6_mask);
5072
5073 I915_WRITE(GEN6_RC_CONTROL,
5074 rc6_mask |
5075 GEN6_RC_CTL_EI_MODE(1) |
5076 GEN6_RC_CTL_HW_ENABLE);
5077
5078 /* Power down if completely idle for over 50ms */
5079 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5080 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5081
5082 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5083 if (ret)
5084 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5085
5086 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5087 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5088 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5089 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5090 (pcu_mbox & 0xff) * 50);
5091 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5092 }
5093
5094 dev_priv->rps.power = HIGH_POWER; /* force a reset */
5095 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5096
5097 rc6vids = 0;
5098 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5099 if (IS_GEN6(dev) && ret) {
5100 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5101 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5102 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5103 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5104 rc6vids &= 0xffff00;
5105 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5106 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5107 if (ret)
5108 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5109 }
5110
5111 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5112 }
5113
5114 static void __gen6_update_ring_freq(struct drm_device *dev)
5115 {
5116 struct drm_i915_private *dev_priv = dev->dev_private;
5117 int min_freq = 15;
5118 unsigned int gpu_freq;
5119 unsigned int max_ia_freq, min_ring_freq;
5120 unsigned int max_gpu_freq, min_gpu_freq;
5121 int scaling_factor = 180;
5122 struct cpufreq_policy *policy;
5123
5124 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5125
5126 policy = cpufreq_cpu_get(0);
5127 if (policy) {
5128 max_ia_freq = policy->cpuinfo.max_freq;
5129 cpufreq_cpu_put(policy);
5130 } else {
5131 /*
5132 * Default to measured freq if none found, PCU will ensure we
5133 * don't go over
5134 */
5135 max_ia_freq = tsc_khz;
5136 }
5137
5138 /* Convert from kHz to MHz */
5139 max_ia_freq /= 1000;
5140
5141 min_ring_freq = I915_READ(DCLK) & 0xf;
5142 /* convert DDR frequency from units of 266.6MHz to bandwidth */
5143 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5144
5145 if (IS_SKYLAKE(dev)) {
5146 /* Convert GT frequency to 50 HZ units */
5147 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5148 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5149 } else {
5150 min_gpu_freq = dev_priv->rps.min_freq;
5151 max_gpu_freq = dev_priv->rps.max_freq;
5152 }
5153
5154 /*
5155 * For each potential GPU frequency, load a ring frequency we'd like
5156 * to use for memory access. We do this by specifying the IA frequency
5157 * the PCU should use as a reference to determine the ring frequency.
5158 */
5159 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5160 int diff = max_gpu_freq - gpu_freq;
5161 unsigned int ia_freq = 0, ring_freq = 0;
5162
5163 if (IS_SKYLAKE(dev)) {
5164 /*
5165 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5166 * No floor required for ring frequency on SKL.
5167 */
5168 ring_freq = gpu_freq;
5169 } else if (INTEL_INFO(dev)->gen >= 8) {
5170 /* max(2 * GT, DDR). NB: GT is 50MHz units */
5171 ring_freq = max(min_ring_freq, gpu_freq);
5172 } else if (IS_HASWELL(dev)) {
5173 ring_freq = mult_frac(gpu_freq, 5, 4);
5174 ring_freq = max(min_ring_freq, ring_freq);
5175 /* leave ia_freq as the default, chosen by cpufreq */
5176 } else {
5177 /* On older processors, there is no separate ring
5178 * clock domain, so in order to boost the bandwidth
5179 * of the ring, we need to upclock the CPU (ia_freq).
5180 *
5181 * For GPU frequencies less than 750MHz,
5182 * just use the lowest ring freq.
5183 */
5184 if (gpu_freq < min_freq)
5185 ia_freq = 800;
5186 else
5187 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5188 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5189 }
5190
5191 sandybridge_pcode_write(dev_priv,
5192 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5193 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5194 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5195 gpu_freq);
5196 }
5197 }
5198
5199 void gen6_update_ring_freq(struct drm_device *dev)
5200 {
5201 struct drm_i915_private *dev_priv = dev->dev_private;
5202
5203 if (!HAS_CORE_RING_FREQ(dev))
5204 return;
5205
5206 mutex_lock(&dev_priv->rps.hw_lock);
5207 __gen6_update_ring_freq(dev);
5208 mutex_unlock(&dev_priv->rps.hw_lock);
5209 }
5210
5211 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5212 {
5213 struct drm_device *dev = dev_priv->dev;
5214 u32 val, rp0;
5215
5216 if (dev->pdev->revision >= 0x20) {
5217 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5218
5219 switch (INTEL_INFO(dev)->eu_total) {
5220 case 8:
5221 /* (2 * 4) config */
5222 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5223 break;
5224 case 12:
5225 /* (2 * 6) config */
5226 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5227 break;
5228 case 16:
5229 /* (2 * 8) config */
5230 default:
5231 /* Setting (2 * 8) Min RP0 for any other combination */
5232 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5233 break;
5234 }
5235 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5236 } else {
5237 /* For pre-production hardware */
5238 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
5239 rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
5240 PUNIT_GPU_STATUS_MAX_FREQ_MASK;
5241 }
5242 return rp0;
5243 }
5244
5245 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5246 {
5247 u32 val, rpe;
5248
5249 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5250 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5251
5252 return rpe;
5253 }
5254
5255 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5256 {
5257 struct drm_device *dev = dev_priv->dev;
5258 u32 val, rp1;
5259
5260 if (dev->pdev->revision >= 0x20) {
5261 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5262 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5263 } else {
5264 /* For pre-production hardware */
5265 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5266 rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
5267 PUNIT_GPU_STATUS_MAX_FREQ_MASK);
5268 }
5269 return rp1;
5270 }
5271
5272 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5273 {
5274 u32 val, rp1;
5275
5276 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5277
5278 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5279
5280 return rp1;
5281 }
5282
5283 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5284 {
5285 u32 val, rp0;
5286
5287 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5288
5289 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5290 /* Clamp to max */
5291 rp0 = min_t(u32, rp0, 0xea);
5292
5293 return rp0;
5294 }
5295
5296 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5297 {
5298 u32 val, rpe;
5299
5300 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5301 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5302 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5303 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5304
5305 return rpe;
5306 }
5307
5308 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5309 {
5310 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5311 }
5312
5313 /* Check that the pctx buffer wasn't move under us. */
5314 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5315 {
5316 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5317
5318 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5319 dev_priv->vlv_pctx->stolen->start);
5320 }
5321
5322
5323 /* Check that the pcbr address is not empty. */
5324 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5325 {
5326 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5327
5328 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5329 }
5330
5331 static void cherryview_setup_pctx(struct drm_device *dev)
5332 {
5333 struct drm_i915_private *dev_priv = dev->dev_private;
5334 unsigned long pctx_paddr, paddr;
5335 struct i915_gtt *gtt = &dev_priv->gtt;
5336 u32 pcbr;
5337 int pctx_size = 32*1024;
5338
5339 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5340
5341 pcbr = I915_READ(VLV_PCBR);
5342 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5343 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5344 paddr = (dev_priv->mm.stolen_base +
5345 (gtt->stolen_size - pctx_size));
5346
5347 pctx_paddr = (paddr & (~4095));
5348 I915_WRITE(VLV_PCBR, pctx_paddr);
5349 }
5350
5351 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5352 }
5353
5354 static void valleyview_setup_pctx(struct drm_device *dev)
5355 {
5356 struct drm_i915_private *dev_priv = dev->dev_private;
5357 struct drm_i915_gem_object *pctx;
5358 unsigned long pctx_paddr;
5359 u32 pcbr;
5360 int pctx_size = 24*1024;
5361
5362 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5363
5364 pcbr = I915_READ(VLV_PCBR);
5365 if (pcbr) {
5366 /* BIOS set it up already, grab the pre-alloc'd space */
5367 int pcbr_offset;
5368
5369 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5370 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5371 pcbr_offset,
5372 I915_GTT_OFFSET_NONE,
5373 pctx_size);
5374 goto out;
5375 }
5376
5377 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5378
5379 /*
5380 * From the Gunit register HAS:
5381 * The Gfx driver is expected to program this register and ensure
5382 * proper allocation within Gfx stolen memory. For example, this
5383 * register should be programmed such than the PCBR range does not
5384 * overlap with other ranges, such as the frame buffer, protected
5385 * memory, or any other relevant ranges.
5386 */
5387 pctx = i915_gem_object_create_stolen(dev, pctx_size);
5388 if (!pctx) {
5389 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5390 return;
5391 }
5392
5393 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5394 I915_WRITE(VLV_PCBR, pctx_paddr);
5395
5396 out:
5397 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5398 dev_priv->vlv_pctx = pctx;
5399 }
5400
5401 static void valleyview_cleanup_pctx(struct drm_device *dev)
5402 {
5403 struct drm_i915_private *dev_priv = dev->dev_private;
5404
5405 if (WARN_ON(!dev_priv->vlv_pctx))
5406 return;
5407
5408 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5409 dev_priv->vlv_pctx = NULL;
5410 }
5411
5412 static void valleyview_init_gt_powersave(struct drm_device *dev)
5413 {
5414 struct drm_i915_private *dev_priv = dev->dev_private;
5415 u32 val;
5416
5417 valleyview_setup_pctx(dev);
5418
5419 mutex_lock(&dev_priv->rps.hw_lock);
5420
5421 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5422 switch ((val >> 6) & 3) {
5423 case 0:
5424 case 1:
5425 dev_priv->mem_freq = 800;
5426 break;
5427 case 2:
5428 dev_priv->mem_freq = 1066;
5429 break;
5430 case 3:
5431 dev_priv->mem_freq = 1333;
5432 break;
5433 }
5434 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5435
5436 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5437 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5438 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5439 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5440 dev_priv->rps.max_freq);
5441
5442 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5443 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5444 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5445 dev_priv->rps.efficient_freq);
5446
5447 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5448 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5449 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5450 dev_priv->rps.rp1_freq);
5451
5452 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5453 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5454 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5455 dev_priv->rps.min_freq);
5456
5457 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5458
5459 /* Preserve min/max settings in case of re-init */
5460 if (dev_priv->rps.max_freq_softlimit == 0)
5461 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5462
5463 if (dev_priv->rps.min_freq_softlimit == 0)
5464 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5465
5466 mutex_unlock(&dev_priv->rps.hw_lock);
5467 }
5468
5469 static void cherryview_init_gt_powersave(struct drm_device *dev)
5470 {
5471 struct drm_i915_private *dev_priv = dev->dev_private;
5472 u32 val;
5473
5474 cherryview_setup_pctx(dev);
5475
5476 mutex_lock(&dev_priv->rps.hw_lock);
5477
5478 mutex_lock(&dev_priv->sb_lock);
5479 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5480 mutex_unlock(&dev_priv->sb_lock);
5481
5482 switch ((val >> 2) & 0x7) {
5483 case 0:
5484 case 1:
5485 dev_priv->rps.cz_freq = 200;
5486 dev_priv->mem_freq = 1600;
5487 break;
5488 case 2:
5489 dev_priv->rps.cz_freq = 267;
5490 dev_priv->mem_freq = 1600;
5491 break;
5492 case 3:
5493 dev_priv->rps.cz_freq = 333;
5494 dev_priv->mem_freq = 2000;
5495 break;
5496 case 4:
5497 dev_priv->rps.cz_freq = 320;
5498 dev_priv->mem_freq = 1600;
5499 break;
5500 case 5:
5501 dev_priv->rps.cz_freq = 400;
5502 dev_priv->mem_freq = 1600;
5503 break;
5504 }
5505 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5506
5507 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5508 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5509 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5510 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5511 dev_priv->rps.max_freq);
5512
5513 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5514 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5515 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5516 dev_priv->rps.efficient_freq);
5517
5518 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5519 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5520 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5521 dev_priv->rps.rp1_freq);
5522
5523 /* PUnit validated range is only [RPe, RP0] */
5524 dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5525 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5526 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5527 dev_priv->rps.min_freq);
5528
5529 WARN_ONCE((dev_priv->rps.max_freq |
5530 dev_priv->rps.efficient_freq |
5531 dev_priv->rps.rp1_freq |
5532 dev_priv->rps.min_freq) & 1,
5533 "Odd GPU freq values\n");
5534
5535 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5536
5537 /* Preserve min/max settings in case of re-init */
5538 if (dev_priv->rps.max_freq_softlimit == 0)
5539 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5540
5541 if (dev_priv->rps.min_freq_softlimit == 0)
5542 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5543
5544 mutex_unlock(&dev_priv->rps.hw_lock);
5545 }
5546
5547 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5548 {
5549 valleyview_cleanup_pctx(dev);
5550 }
5551
5552 static void cherryview_enable_rps(struct drm_device *dev)
5553 {
5554 struct drm_i915_private *dev_priv = dev->dev_private;
5555 struct intel_engine_cs *ring;
5556 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5557 int i;
5558
5559 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5560
5561 gtfifodbg = I915_READ(GTFIFODBG);
5562 if (gtfifodbg) {
5563 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5564 gtfifodbg);
5565 I915_WRITE(GTFIFODBG, gtfifodbg);
5566 }
5567
5568 cherryview_check_pctx(dev_priv);
5569
5570 /* 1a & 1b: Get forcewake during program sequence. Although the driver
5571 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5572 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5573
5574 /* Disable RC states. */
5575 I915_WRITE(GEN6_RC_CONTROL, 0);
5576
5577 /* 2a: Program RC6 thresholds.*/
5578 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5579 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5580 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5581
5582 for_each_ring(ring, dev_priv, i)
5583 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5584 I915_WRITE(GEN6_RC_SLEEP, 0);
5585
5586 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5587 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5588
5589 /* allows RC6 residency counter to work */
5590 I915_WRITE(VLV_COUNTER_CONTROL,
5591 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5592 VLV_MEDIA_RC6_COUNT_EN |
5593 VLV_RENDER_RC6_COUNT_EN));
5594
5595 /* For now we assume BIOS is allocating and populating the PCBR */
5596 pcbr = I915_READ(VLV_PCBR);
5597
5598 /* 3: Enable RC6 */
5599 if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5600 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5601 rc6_mode = GEN7_RC_CTL_TO_MODE;
5602
5603 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5604
5605 /* 4 Program defaults and thresholds for RPS*/
5606 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5607 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5608 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5609 I915_WRITE(GEN6_RP_UP_EI, 66000);
5610 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5611
5612 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5613
5614 /* 5: Enable RPS */
5615 I915_WRITE(GEN6_RP_CONTROL,
5616 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5617 GEN6_RP_MEDIA_IS_GFX |
5618 GEN6_RP_ENABLE |
5619 GEN6_RP_UP_BUSY_AVG |
5620 GEN6_RP_DOWN_IDLE_AVG);
5621
5622 /* Setting Fixed Bias */
5623 val = VLV_OVERRIDE_EN |
5624 VLV_SOC_TDP_EN |
5625 CHV_BIAS_CPU_50_SOC_50;
5626 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5627
5628 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5629
5630 /* RPS code assumes GPLL is used */
5631 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5632
5633 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5634 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5635
5636 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5637 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5638 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5639 dev_priv->rps.cur_freq);
5640
5641 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5642 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5643 dev_priv->rps.efficient_freq);
5644
5645 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5646
5647 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5648 }
5649
5650 static void valleyview_enable_rps(struct drm_device *dev)
5651 {
5652 struct drm_i915_private *dev_priv = dev->dev_private;
5653 struct intel_engine_cs *ring;
5654 u32 gtfifodbg, val, rc6_mode = 0;
5655 int i;
5656
5657 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5658
5659 valleyview_check_pctx(dev_priv);
5660
5661 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5662 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5663 gtfifodbg);
5664 I915_WRITE(GTFIFODBG, gtfifodbg);
5665 }
5666
5667 /* If VLV, Forcewake all wells, else re-direct to regular path */
5668 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5669
5670 /* Disable RC states. */
5671 I915_WRITE(GEN6_RC_CONTROL, 0);
5672
5673 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5674 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5675 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5676 I915_WRITE(GEN6_RP_UP_EI, 66000);
5677 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5678
5679 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5680
5681 I915_WRITE(GEN6_RP_CONTROL,
5682 GEN6_RP_MEDIA_TURBO |
5683 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5684 GEN6_RP_MEDIA_IS_GFX |
5685 GEN6_RP_ENABLE |
5686 GEN6_RP_UP_BUSY_AVG |
5687 GEN6_RP_DOWN_IDLE_CONT);
5688
5689 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5690 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5691 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5692
5693 for_each_ring(ring, dev_priv, i)
5694 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5695
5696 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5697
5698 /* allows RC6 residency counter to work */
5699 I915_WRITE(VLV_COUNTER_CONTROL,
5700 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5701 VLV_RENDER_RC0_COUNT_EN |
5702 VLV_MEDIA_RC6_COUNT_EN |
5703 VLV_RENDER_RC6_COUNT_EN));
5704
5705 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5706 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5707
5708 intel_print_rc6_info(dev, rc6_mode);
5709
5710 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5711
5712 /* Setting Fixed Bias */
5713 val = VLV_OVERRIDE_EN |
5714 VLV_SOC_TDP_EN |
5715 VLV_BIAS_CPU_125_SOC_875;
5716 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5717
5718 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5719
5720 /* RPS code assumes GPLL is used */
5721 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5722
5723 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5724 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5725
5726 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5727 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5728 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5729 dev_priv->rps.cur_freq);
5730
5731 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5732 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5733 dev_priv->rps.efficient_freq);
5734
5735 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5736
5737 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5738 }
5739
5740 static unsigned long intel_pxfreq(u32 vidfreq)
5741 {
5742 unsigned long freq;
5743 int div = (vidfreq & 0x3f0000) >> 16;
5744 int post = (vidfreq & 0x3000) >> 12;
5745 int pre = (vidfreq & 0x7);
5746
5747 if (!pre)
5748 return 0;
5749
5750 freq = ((div * 133333) / ((1<<post) * pre));
5751
5752 return freq;
5753 }
5754
5755 static const struct cparams {
5756 u16 i;
5757 u16 t;
5758 u16 m;
5759 u16 c;
5760 } cparams[] = {
5761 { 1, 1333, 301, 28664 },
5762 { 1, 1066, 294, 24460 },
5763 { 1, 800, 294, 25192 },
5764 { 0, 1333, 276, 27605 },
5765 { 0, 1066, 276, 27605 },
5766 { 0, 800, 231, 23784 },
5767 };
5768
5769 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5770 {
5771 u64 total_count, diff, ret;
5772 u32 count1, count2, count3, m = 0, c = 0;
5773 unsigned long now = jiffies_to_msecs(jiffies), diff1;
5774 int i;
5775
5776 assert_spin_locked(&mchdev_lock);
5777
5778 diff1 = now - dev_priv->ips.last_time1;
5779
5780 /* Prevent division-by-zero if we are asking too fast.
5781 * Also, we don't get interesting results if we are polling
5782 * faster than once in 10ms, so just return the saved value
5783 * in such cases.
5784 */
5785 if (diff1 <= 10)
5786 return dev_priv->ips.chipset_power;
5787
5788 count1 = I915_READ(DMIEC);
5789 count2 = I915_READ(DDREC);
5790 count3 = I915_READ(CSIEC);
5791
5792 total_count = count1 + count2 + count3;
5793
5794 /* FIXME: handle per-counter overflow */
5795 if (total_count < dev_priv->ips.last_count1) {
5796 diff = ~0UL - dev_priv->ips.last_count1;
5797 diff += total_count;
5798 } else {
5799 diff = total_count - dev_priv->ips.last_count1;
5800 }
5801
5802 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5803 if (cparams[i].i == dev_priv->ips.c_m &&
5804 cparams[i].t == dev_priv->ips.r_t) {
5805 m = cparams[i].m;
5806 c = cparams[i].c;
5807 break;
5808 }
5809 }
5810
5811 diff = div_u64(diff, diff1);
5812 ret = ((m * diff) + c);
5813 ret = div_u64(ret, 10);
5814
5815 dev_priv->ips.last_count1 = total_count;
5816 dev_priv->ips.last_time1 = now;
5817
5818 dev_priv->ips.chipset_power = ret;
5819
5820 return ret;
5821 }
5822
5823 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5824 {
5825 struct drm_device *dev = dev_priv->dev;
5826 unsigned long val;
5827
5828 if (INTEL_INFO(dev)->gen != 5)
5829 return 0;
5830
5831 spin_lock_irq(&mchdev_lock);
5832
5833 val = __i915_chipset_val(dev_priv);
5834
5835 spin_unlock_irq(&mchdev_lock);
5836
5837 return val;
5838 }
5839
5840 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5841 {
5842 unsigned long m, x, b;
5843 u32 tsfs;
5844
5845 tsfs = I915_READ(TSFS);
5846
5847 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5848 x = I915_READ8(TR1);
5849
5850 b = tsfs & TSFS_INTR_MASK;
5851
5852 return ((m * x) / 127) - b;
5853 }
5854
5855 static int _pxvid_to_vd(u8 pxvid)
5856 {
5857 if (pxvid == 0)
5858 return 0;
5859
5860 if (pxvid >= 8 && pxvid < 31)
5861 pxvid = 31;
5862
5863 return (pxvid + 2) * 125;
5864 }
5865
5866 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5867 {
5868 struct drm_device *dev = dev_priv->dev;
5869 const int vd = _pxvid_to_vd(pxvid);
5870 const int vm = vd - 1125;
5871
5872 if (INTEL_INFO(dev)->is_mobile)
5873 return vm > 0 ? vm : 0;
5874
5875 return vd;
5876 }
5877
5878 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5879 {
5880 u64 now, diff, diffms;
5881 u32 count;
5882
5883 assert_spin_locked(&mchdev_lock);
5884
5885 now = ktime_get_raw_ns();
5886 diffms = now - dev_priv->ips.last_time2;
5887 do_div(diffms, NSEC_PER_MSEC);
5888
5889 /* Don't divide by 0 */
5890 if (!diffms)
5891 return;
5892
5893 count = I915_READ(GFXEC);
5894
5895 if (count < dev_priv->ips.last_count2) {
5896 diff = ~0UL - dev_priv->ips.last_count2;
5897 diff += count;
5898 } else {
5899 diff = count - dev_priv->ips.last_count2;
5900 }
5901
5902 dev_priv->ips.last_count2 = count;
5903 dev_priv->ips.last_time2 = now;
5904
5905 /* More magic constants... */
5906 diff = diff * 1181;
5907 diff = div_u64(diff, diffms * 10);
5908 dev_priv->ips.gfx_power = diff;
5909 }
5910
5911 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5912 {
5913 struct drm_device *dev = dev_priv->dev;
5914
5915 if (INTEL_INFO(dev)->gen != 5)
5916 return;
5917
5918 spin_lock_irq(&mchdev_lock);
5919
5920 __i915_update_gfx_val(dev_priv);
5921
5922 spin_unlock_irq(&mchdev_lock);
5923 }
5924
5925 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5926 {
5927 unsigned long t, corr, state1, corr2, state2;
5928 u32 pxvid, ext_v;
5929
5930 assert_spin_locked(&mchdev_lock);
5931
5932 pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5933 pxvid = (pxvid >> 24) & 0x7f;
5934 ext_v = pvid_to_extvid(dev_priv, pxvid);
5935
5936 state1 = ext_v;
5937
5938 t = i915_mch_val(dev_priv);
5939
5940 /* Revel in the empirically derived constants */
5941
5942 /* Correction factor in 1/100000 units */
5943 if (t > 80)
5944 corr = ((t * 2349) + 135940);
5945 else if (t >= 50)
5946 corr = ((t * 964) + 29317);
5947 else /* < 50 */
5948 corr = ((t * 301) + 1004);
5949
5950 corr = corr * ((150142 * state1) / 10000 - 78642);
5951 corr /= 100000;
5952 corr2 = (corr * dev_priv->ips.corr);
5953
5954 state2 = (corr2 * state1) / 10000;
5955 state2 /= 100; /* convert to mW */
5956
5957 __i915_update_gfx_val(dev_priv);
5958
5959 return dev_priv->ips.gfx_power + state2;
5960 }
5961
5962 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5963 {
5964 struct drm_device *dev = dev_priv->dev;
5965 unsigned long val;
5966
5967 if (INTEL_INFO(dev)->gen != 5)
5968 return 0;
5969
5970 spin_lock_irq(&mchdev_lock);
5971
5972 val = __i915_gfx_val(dev_priv);
5973
5974 spin_unlock_irq(&mchdev_lock);
5975
5976 return val;
5977 }
5978
5979 /**
5980 * i915_read_mch_val - return value for IPS use
5981 *
5982 * Calculate and return a value for the IPS driver to use when deciding whether
5983 * we have thermal and power headroom to increase CPU or GPU power budget.
5984 */
5985 unsigned long i915_read_mch_val(void)
5986 {
5987 struct drm_i915_private *dev_priv;
5988 unsigned long chipset_val, graphics_val, ret = 0;
5989
5990 spin_lock_irq(&mchdev_lock);
5991 if (!i915_mch_dev)
5992 goto out_unlock;
5993 dev_priv = i915_mch_dev;
5994
5995 chipset_val = __i915_chipset_val(dev_priv);
5996 graphics_val = __i915_gfx_val(dev_priv);
5997
5998 ret = chipset_val + graphics_val;
5999
6000 out_unlock:
6001 spin_unlock_irq(&mchdev_lock);
6002
6003 return ret;
6004 }
6005 EXPORT_SYMBOL_GPL(i915_read_mch_val);
6006
6007 /**
6008 * i915_gpu_raise - raise GPU frequency limit
6009 *
6010 * Raise the limit; IPS indicates we have thermal headroom.
6011 */
6012 bool i915_gpu_raise(void)
6013 {
6014 struct drm_i915_private *dev_priv;
6015 bool ret = true;
6016
6017 spin_lock_irq(&mchdev_lock);
6018 if (!i915_mch_dev) {
6019 ret = false;
6020 goto out_unlock;
6021 }
6022 dev_priv = i915_mch_dev;
6023
6024 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6025 dev_priv->ips.max_delay--;
6026
6027 out_unlock:
6028 spin_unlock_irq(&mchdev_lock);
6029
6030 return ret;
6031 }
6032 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6033
6034 /**
6035 * i915_gpu_lower - lower GPU frequency limit
6036 *
6037 * IPS indicates we're close to a thermal limit, so throttle back the GPU
6038 * frequency maximum.
6039 */
6040 bool i915_gpu_lower(void)
6041 {
6042 struct drm_i915_private *dev_priv;
6043 bool ret = true;
6044
6045 spin_lock_irq(&mchdev_lock);
6046 if (!i915_mch_dev) {
6047 ret = false;
6048 goto out_unlock;
6049 }
6050 dev_priv = i915_mch_dev;
6051
6052 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6053 dev_priv->ips.max_delay++;
6054
6055 out_unlock:
6056 spin_unlock_irq(&mchdev_lock);
6057
6058 return ret;
6059 }
6060 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6061
6062 /**
6063 * i915_gpu_busy - indicate GPU business to IPS
6064 *
6065 * Tell the IPS driver whether or not the GPU is busy.
6066 */
6067 bool i915_gpu_busy(void)
6068 {
6069 struct drm_i915_private *dev_priv;
6070 struct intel_engine_cs *ring;
6071 bool ret = false;
6072 int i;
6073
6074 spin_lock_irq(&mchdev_lock);
6075 if (!i915_mch_dev)
6076 goto out_unlock;
6077 dev_priv = i915_mch_dev;
6078
6079 for_each_ring(ring, dev_priv, i)
6080 ret |= !list_empty(&ring->request_list);
6081
6082 out_unlock:
6083 spin_unlock_irq(&mchdev_lock);
6084
6085 return ret;
6086 }
6087 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6088
6089 /**
6090 * i915_gpu_turbo_disable - disable graphics turbo
6091 *
6092 * Disable graphics turbo by resetting the max frequency and setting the
6093 * current frequency to the default.
6094 */
6095 bool i915_gpu_turbo_disable(void)
6096 {
6097 struct drm_i915_private *dev_priv;
6098 bool ret = true;
6099
6100 spin_lock_irq(&mchdev_lock);
6101 if (!i915_mch_dev) {
6102 ret = false;
6103 goto out_unlock;
6104 }
6105 dev_priv = i915_mch_dev;
6106
6107 dev_priv->ips.max_delay = dev_priv->ips.fstart;
6108
6109 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6110 ret = false;
6111
6112 out_unlock:
6113 spin_unlock_irq(&mchdev_lock);
6114
6115 return ret;
6116 }
6117 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6118
6119 /**
6120 * Tells the intel_ips driver that the i915 driver is now loaded, if
6121 * IPS got loaded first.
6122 *
6123 * This awkward dance is so that neither module has to depend on the
6124 * other in order for IPS to do the appropriate communication of
6125 * GPU turbo limits to i915.
6126 */
6127 static void
6128 ips_ping_for_i915_load(void)
6129 {
6130 void (*link)(void);
6131
6132 link = symbol_get(ips_link_to_i915_driver);
6133 if (link) {
6134 link();
6135 symbol_put(ips_link_to_i915_driver);
6136 }
6137 }
6138
6139 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6140 {
6141 /* We only register the i915 ips part with intel-ips once everything is
6142 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6143 spin_lock_irq(&mchdev_lock);
6144 i915_mch_dev = dev_priv;
6145 spin_unlock_irq(&mchdev_lock);
6146
6147 ips_ping_for_i915_load();
6148 }
6149
6150 void intel_gpu_ips_teardown(void)
6151 {
6152 spin_lock_irq(&mchdev_lock);
6153 i915_mch_dev = NULL;
6154 spin_unlock_irq(&mchdev_lock);
6155 }
6156
6157 static void intel_init_emon(struct drm_device *dev)
6158 {
6159 struct drm_i915_private *dev_priv = dev->dev_private;
6160 u32 lcfuse;
6161 u8 pxw[16];
6162 int i;
6163
6164 /* Disable to program */
6165 I915_WRITE(ECR, 0);
6166 POSTING_READ(ECR);
6167
6168 /* Program energy weights for various events */
6169 I915_WRITE(SDEW, 0x15040d00);
6170 I915_WRITE(CSIEW0, 0x007f0000);
6171 I915_WRITE(CSIEW1, 0x1e220004);
6172 I915_WRITE(CSIEW2, 0x04000004);
6173
6174 for (i = 0; i < 5; i++)
6175 I915_WRITE(PEW(i), 0);
6176 for (i = 0; i < 3; i++)
6177 I915_WRITE(DEW(i), 0);
6178
6179 /* Program P-state weights to account for frequency power adjustment */
6180 for (i = 0; i < 16; i++) {
6181 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6182 unsigned long freq = intel_pxfreq(pxvidfreq);
6183 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6184 PXVFREQ_PX_SHIFT;
6185 unsigned long val;
6186
6187 val = vid * vid;
6188 val *= (freq / 1000);
6189 val *= 255;
6190 val /= (127*127*900);
6191 if (val > 0xff)
6192 DRM_ERROR("bad pxval: %ld\n", val);
6193 pxw[i] = val;
6194 }
6195 /* Render standby states get 0 weight */
6196 pxw[14] = 0;
6197 pxw[15] = 0;
6198
6199 for (i = 0; i < 4; i++) {
6200 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6201 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6202 I915_WRITE(PXW(i), val);
6203 }
6204
6205 /* Adjust magic regs to magic values (more experimental results) */
6206 I915_WRITE(OGW0, 0);
6207 I915_WRITE(OGW1, 0);
6208 I915_WRITE(EG0, 0x00007f00);
6209 I915_WRITE(EG1, 0x0000000e);
6210 I915_WRITE(EG2, 0x000e0000);
6211 I915_WRITE(EG3, 0x68000300);
6212 I915_WRITE(EG4, 0x42000000);
6213 I915_WRITE(EG5, 0x00140031);
6214 I915_WRITE(EG6, 0);
6215 I915_WRITE(EG7, 0);
6216
6217 for (i = 0; i < 8; i++)
6218 I915_WRITE(PXWL(i), 0);
6219
6220 /* Enable PMON + select events */
6221 I915_WRITE(ECR, 0x80000019);
6222
6223 lcfuse = I915_READ(LCFUSE02);
6224
6225 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6226 }
6227
6228 void intel_init_gt_powersave(struct drm_device *dev)
6229 {
6230 i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6231
6232 if (IS_CHERRYVIEW(dev))
6233 cherryview_init_gt_powersave(dev);
6234 else if (IS_VALLEYVIEW(dev))
6235 valleyview_init_gt_powersave(dev);
6236 }
6237
6238 void intel_cleanup_gt_powersave(struct drm_device *dev)
6239 {
6240 if (IS_CHERRYVIEW(dev))
6241 return;
6242 else if (IS_VALLEYVIEW(dev))
6243 valleyview_cleanup_gt_powersave(dev);
6244 }
6245
6246 static void gen6_suspend_rps(struct drm_device *dev)
6247 {
6248 struct drm_i915_private *dev_priv = dev->dev_private;
6249
6250 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6251
6252 gen6_disable_rps_interrupts(dev);
6253 }
6254
6255 /**
6256 * intel_suspend_gt_powersave - suspend PM work and helper threads
6257 * @dev: drm device
6258 *
6259 * We don't want to disable RC6 or other features here, we just want
6260 * to make sure any work we've queued has finished and won't bother
6261 * us while we're suspended.
6262 */
6263 void intel_suspend_gt_powersave(struct drm_device *dev)
6264 {
6265 struct drm_i915_private *dev_priv = dev->dev_private;
6266
6267 if (INTEL_INFO(dev)->gen < 6)
6268 return;
6269
6270 gen6_suspend_rps(dev);
6271
6272 /* Force GPU to min freq during suspend */
6273 gen6_rps_idle(dev_priv);
6274 }
6275
6276 void intel_disable_gt_powersave(struct drm_device *dev)
6277 {
6278 struct drm_i915_private *dev_priv = dev->dev_private;
6279
6280 if (IS_IRONLAKE_M(dev)) {
6281 ironlake_disable_drps(dev);
6282 } else if (INTEL_INFO(dev)->gen >= 6) {
6283 intel_suspend_gt_powersave(dev);
6284
6285 mutex_lock(&dev_priv->rps.hw_lock);
6286 if (INTEL_INFO(dev)->gen >= 9)
6287 gen9_disable_rps(dev);
6288 else if (IS_CHERRYVIEW(dev))
6289 cherryview_disable_rps(dev);
6290 else if (IS_VALLEYVIEW(dev))
6291 valleyview_disable_rps(dev);
6292 else
6293 gen6_disable_rps(dev);
6294
6295 dev_priv->rps.enabled = false;
6296 mutex_unlock(&dev_priv->rps.hw_lock);
6297 }
6298 }
6299
6300 static void intel_gen6_powersave_work(struct work_struct *work)
6301 {
6302 struct drm_i915_private *dev_priv =
6303 container_of(work, struct drm_i915_private,
6304 rps.delayed_resume_work.work);
6305 struct drm_device *dev = dev_priv->dev;
6306
6307 mutex_lock(&dev_priv->rps.hw_lock);
6308
6309 gen6_reset_rps_interrupts(dev);
6310
6311 if (IS_CHERRYVIEW(dev)) {
6312 cherryview_enable_rps(dev);
6313 } else if (IS_VALLEYVIEW(dev)) {
6314 valleyview_enable_rps(dev);
6315 } else if (INTEL_INFO(dev)->gen >= 9) {
6316 gen9_enable_rc6(dev);
6317 gen9_enable_rps(dev);
6318 if (IS_SKYLAKE(dev))
6319 __gen6_update_ring_freq(dev);
6320 } else if (IS_BROADWELL(dev)) {
6321 gen8_enable_rps(dev);
6322 __gen6_update_ring_freq(dev);
6323 } else {
6324 gen6_enable_rps(dev);
6325 __gen6_update_ring_freq(dev);
6326 }
6327
6328 WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6329 WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6330
6331 WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6332 WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6333
6334 dev_priv->rps.enabled = true;
6335
6336 gen6_enable_rps_interrupts(dev);
6337
6338 mutex_unlock(&dev_priv->rps.hw_lock);
6339
6340 intel_runtime_pm_put(dev_priv);
6341 }
6342
6343 void intel_enable_gt_powersave(struct drm_device *dev)
6344 {
6345 struct drm_i915_private *dev_priv = dev->dev_private;
6346
6347 /* Powersaving is controlled by the host when inside a VM */
6348 if (intel_vgpu_active(dev))
6349 return;
6350
6351 if (IS_IRONLAKE_M(dev)) {
6352 mutex_lock(&dev->struct_mutex);
6353 ironlake_enable_drps(dev);
6354 intel_init_emon(dev);
6355 mutex_unlock(&dev->struct_mutex);
6356 } else if (INTEL_INFO(dev)->gen >= 6) {
6357 /*
6358 * PCU communication is slow and this doesn't need to be
6359 * done at any specific time, so do this out of our fast path
6360 * to make resume and init faster.
6361 *
6362 * We depend on the HW RC6 power context save/restore
6363 * mechanism when entering D3 through runtime PM suspend. So
6364 * disable RPM until RPS/RC6 is properly setup. We can only
6365 * get here via the driver load/system resume/runtime resume
6366 * paths, so the _noresume version is enough (and in case of
6367 * runtime resume it's necessary).
6368 */
6369 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6370 round_jiffies_up_relative(HZ)))
6371 intel_runtime_pm_get_noresume(dev_priv);
6372 }
6373 }
6374
6375 void intel_reset_gt_powersave(struct drm_device *dev)
6376 {
6377 struct drm_i915_private *dev_priv = dev->dev_private;
6378
6379 if (INTEL_INFO(dev)->gen < 6)
6380 return;
6381
6382 gen6_suspend_rps(dev);
6383 dev_priv->rps.enabled = false;
6384 }
6385
6386 static void ibx_init_clock_gating(struct drm_device *dev)
6387 {
6388 struct drm_i915_private *dev_priv = dev->dev_private;
6389
6390 /*
6391 * On Ibex Peak and Cougar Point, we need to disable clock
6392 * gating for the panel power sequencer or it will fail to
6393 * start up when no ports are active.
6394 */
6395 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6396 }
6397
6398 static void g4x_disable_trickle_feed(struct drm_device *dev)
6399 {
6400 struct drm_i915_private *dev_priv = dev->dev_private;
6401 enum pipe pipe;
6402
6403 for_each_pipe(dev_priv, pipe) {
6404 I915_WRITE(DSPCNTR(pipe),
6405 I915_READ(DSPCNTR(pipe)) |
6406 DISPPLANE_TRICKLE_FEED_DISABLE);
6407
6408 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6409 POSTING_READ(DSPSURF(pipe));
6410 }
6411 }
6412
6413 static void ilk_init_lp_watermarks(struct drm_device *dev)
6414 {
6415 struct drm_i915_private *dev_priv = dev->dev_private;
6416
6417 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6418 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6419 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6420
6421 /*
6422 * Don't touch WM1S_LP_EN here.
6423 * Doing so could cause underruns.
6424 */
6425 }
6426
6427 static void ironlake_init_clock_gating(struct drm_device *dev)
6428 {
6429 struct drm_i915_private *dev_priv = dev->dev_private;
6430 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6431
6432 /*
6433 * Required for FBC
6434 * WaFbcDisableDpfcClockGating:ilk
6435 */
6436 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6437 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6438 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6439
6440 I915_WRITE(PCH_3DCGDIS0,
6441 MARIUNIT_CLOCK_GATE_DISABLE |
6442 SVSMUNIT_CLOCK_GATE_DISABLE);
6443 I915_WRITE(PCH_3DCGDIS1,
6444 VFMUNIT_CLOCK_GATE_DISABLE);
6445
6446 /*
6447 * According to the spec the following bits should be set in
6448 * order to enable memory self-refresh
6449 * The bit 22/21 of 0x42004
6450 * The bit 5 of 0x42020
6451 * The bit 15 of 0x45000
6452 */
6453 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6454 (I915_READ(ILK_DISPLAY_CHICKEN2) |
6455 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6456 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6457 I915_WRITE(DISP_ARB_CTL,
6458 (I915_READ(DISP_ARB_CTL) |
6459 DISP_FBC_WM_DIS));
6460
6461 ilk_init_lp_watermarks(dev);
6462
6463 /*
6464 * Based on the document from hardware guys the following bits
6465 * should be set unconditionally in order to enable FBC.
6466 * The bit 22 of 0x42000
6467 * The bit 22 of 0x42004
6468 * The bit 7,8,9 of 0x42020.
6469 */
6470 if (IS_IRONLAKE_M(dev)) {
6471 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6472 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6473 I915_READ(ILK_DISPLAY_CHICKEN1) |
6474 ILK_FBCQ_DIS);
6475 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6476 I915_READ(ILK_DISPLAY_CHICKEN2) |
6477 ILK_DPARB_GATE);
6478 }
6479
6480 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6481
6482 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6483 I915_READ(ILK_DISPLAY_CHICKEN2) |
6484 ILK_ELPIN_409_SELECT);
6485 I915_WRITE(_3D_CHICKEN2,
6486 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6487 _3D_CHICKEN2_WM_READ_PIPELINED);
6488
6489 /* WaDisableRenderCachePipelinedFlush:ilk */
6490 I915_WRITE(CACHE_MODE_0,
6491 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6492
6493 /* WaDisable_RenderCache_OperationalFlush:ilk */
6494 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6495
6496 g4x_disable_trickle_feed(dev);
6497
6498 ibx_init_clock_gating(dev);
6499 }
6500
6501 static void cpt_init_clock_gating(struct drm_device *dev)
6502 {
6503 struct drm_i915_private *dev_priv = dev->dev_private;
6504 int pipe;
6505 uint32_t val;
6506
6507 /*
6508 * On Ibex Peak and Cougar Point, we need to disable clock
6509 * gating for the panel power sequencer or it will fail to
6510 * start up when no ports are active.
6511 */
6512 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6513 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6514 PCH_CPUNIT_CLOCK_GATE_DISABLE);
6515 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6516 DPLS_EDP_PPS_FIX_DIS);
6517 /* The below fixes the weird display corruption, a few pixels shifted
6518 * downward, on (only) LVDS of some HP laptops with IVY.
6519 */
6520 for_each_pipe(dev_priv, pipe) {
6521 val = I915_READ(TRANS_CHICKEN2(pipe));
6522 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6523 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6524 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6525 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6526 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6527 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6528 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6529 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6530 }
6531 /* WADP0ClockGatingDisable */
6532 for_each_pipe(dev_priv, pipe) {
6533 I915_WRITE(TRANS_CHICKEN1(pipe),
6534 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6535 }
6536 }
6537
6538 static void gen6_check_mch_setup(struct drm_device *dev)
6539 {
6540 struct drm_i915_private *dev_priv = dev->dev_private;
6541 uint32_t tmp;
6542
6543 tmp = I915_READ(MCH_SSKPD);
6544 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6545 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6546 tmp);
6547 }
6548
6549 static void gen6_init_clock_gating(struct drm_device *dev)
6550 {
6551 struct drm_i915_private *dev_priv = dev->dev_private;
6552 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6553
6554 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6555
6556 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6557 I915_READ(ILK_DISPLAY_CHICKEN2) |
6558 ILK_ELPIN_409_SELECT);
6559
6560 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6561 I915_WRITE(_3D_CHICKEN,
6562 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6563
6564 /* WaDisable_RenderCache_OperationalFlush:snb */
6565 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6566
6567 /*
6568 * BSpec recoomends 8x4 when MSAA is used,
6569 * however in practice 16x4 seems fastest.
6570 *
6571 * Note that PS/WM thread counts depend on the WIZ hashing
6572 * disable bit, which we don't touch here, but it's good
6573 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6574 */
6575 I915_WRITE(GEN6_GT_MODE,
6576 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6577
6578 ilk_init_lp_watermarks(dev);
6579
6580 I915_WRITE(CACHE_MODE_0,
6581 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6582
6583 I915_WRITE(GEN6_UCGCTL1,
6584 I915_READ(GEN6_UCGCTL1) |
6585 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6586 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6587
6588 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6589 * gating disable must be set. Failure to set it results in
6590 * flickering pixels due to Z write ordering failures after
6591 * some amount of runtime in the Mesa "fire" demo, and Unigine
6592 * Sanctuary and Tropics, and apparently anything else with
6593 * alpha test or pixel discard.
6594 *
6595 * According to the spec, bit 11 (RCCUNIT) must also be set,
6596 * but we didn't debug actual testcases to find it out.
6597 *
6598 * WaDisableRCCUnitClockGating:snb
6599 * WaDisableRCPBUnitClockGating:snb
6600 */
6601 I915_WRITE(GEN6_UCGCTL2,
6602 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6603 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6604
6605 /* WaStripsFansDisableFastClipPerformanceFix:snb */
6606 I915_WRITE(_3D_CHICKEN3,
6607 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6608
6609 /*
6610 * Bspec says:
6611 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6612 * 3DSTATE_SF number of SF output attributes is more than 16."
6613 */
6614 I915_WRITE(_3D_CHICKEN3,
6615 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6616
6617 /*
6618 * According to the spec the following bits should be
6619 * set in order to enable memory self-refresh and fbc:
6620 * The bit21 and bit22 of 0x42000
6621 * The bit21 and bit22 of 0x42004
6622 * The bit5 and bit7 of 0x42020
6623 * The bit14 of 0x70180
6624 * The bit14 of 0x71180
6625 *
6626 * WaFbcAsynchFlipDisableFbcQueue:snb
6627 */
6628 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6629 I915_READ(ILK_DISPLAY_CHICKEN1) |
6630 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6631 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6632 I915_READ(ILK_DISPLAY_CHICKEN2) |
6633 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6634 I915_WRITE(ILK_DSPCLK_GATE_D,
6635 I915_READ(ILK_DSPCLK_GATE_D) |
6636 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
6637 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6638
6639 g4x_disable_trickle_feed(dev);
6640
6641 cpt_init_clock_gating(dev);
6642
6643 gen6_check_mch_setup(dev);
6644 }
6645
6646 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6647 {
6648 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6649
6650 /*
6651 * WaVSThreadDispatchOverride:ivb,vlv
6652 *
6653 * This actually overrides the dispatch
6654 * mode for all thread types.
6655 */
6656 reg &= ~GEN7_FF_SCHED_MASK;
6657 reg |= GEN7_FF_TS_SCHED_HW;
6658 reg |= GEN7_FF_VS_SCHED_HW;
6659 reg |= GEN7_FF_DS_SCHED_HW;
6660
6661 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6662 }
6663
6664 static void lpt_init_clock_gating(struct drm_device *dev)
6665 {
6666 struct drm_i915_private *dev_priv = dev->dev_private;
6667
6668 /*
6669 * TODO: this bit should only be enabled when really needed, then
6670 * disabled when not needed anymore in order to save power.
6671 */
6672 if (HAS_PCH_LPT_LP(dev))
6673 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6674 I915_READ(SOUTH_DSPCLK_GATE_D) |
6675 PCH_LP_PARTITION_LEVEL_DISABLE);
6676
6677 /* WADPOClockGatingDisable:hsw */
6678 I915_WRITE(_TRANSA_CHICKEN1,
6679 I915_READ(_TRANSA_CHICKEN1) |
6680 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6681 }
6682
6683 static void lpt_suspend_hw(struct drm_device *dev)
6684 {
6685 struct drm_i915_private *dev_priv = dev->dev_private;
6686
6687 if (HAS_PCH_LPT_LP(dev)) {
6688 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6689
6690 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6691 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6692 }
6693 }
6694
6695 static void broadwell_init_clock_gating(struct drm_device *dev)
6696 {
6697 struct drm_i915_private *dev_priv = dev->dev_private;
6698 enum pipe pipe;
6699 uint32_t misccpctl;
6700
6701 ilk_init_lp_watermarks(dev);
6702
6703 /* WaSwitchSolVfFArbitrationPriority:bdw */
6704 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6705
6706 /* WaPsrDPAMaskVBlankInSRD:bdw */
6707 I915_WRITE(CHICKEN_PAR1_1,
6708 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6709
6710 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6711 for_each_pipe(dev_priv, pipe) {
6712 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6713 I915_READ(CHICKEN_PIPESL_1(pipe)) |
6714 BDW_DPRS_MASK_VBLANK_SRD);
6715 }
6716
6717 /* WaVSRefCountFullforceMissDisable:bdw */
6718 /* WaDSRefCountFullforceMissDisable:bdw */
6719 I915_WRITE(GEN7_FF_THREAD_MODE,
6720 I915_READ(GEN7_FF_THREAD_MODE) &
6721 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6722
6723 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6724 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6725
6726 /* WaDisableSDEUnitClockGating:bdw */
6727 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6728 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6729
6730 /*
6731 * WaProgramL3SqcReg1Default:bdw
6732 * WaTempDisableDOPClkGating:bdw
6733 */
6734 misccpctl = I915_READ(GEN7_MISCCPCTL);
6735 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6736 I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6737 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6738
6739 /*
6740 * WaGttCachingOffByDefault:bdw
6741 * GTT cache may not work with big pages, so if those
6742 * are ever enabled GTT cache may need to be disabled.
6743 */
6744 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6745
6746 lpt_init_clock_gating(dev);
6747 }
6748
6749 static void haswell_init_clock_gating(struct drm_device *dev)
6750 {
6751 struct drm_i915_private *dev_priv = dev->dev_private;
6752
6753 ilk_init_lp_watermarks(dev);
6754
6755 /* L3 caching of data atomics doesn't work -- disable it. */
6756 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6757 I915_WRITE(HSW_ROW_CHICKEN3,
6758 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6759
6760 /* This is required by WaCatErrorRejectionIssue:hsw */
6761 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6762 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6763 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6764
6765 /* WaVSRefCountFullforceMissDisable:hsw */
6766 I915_WRITE(GEN7_FF_THREAD_MODE,
6767 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6768
6769 /* WaDisable_RenderCache_OperationalFlush:hsw */
6770 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6771
6772 /* enable HiZ Raw Stall Optimization */
6773 I915_WRITE(CACHE_MODE_0_GEN7,
6774 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6775
6776 /* WaDisable4x2SubspanOptimization:hsw */
6777 I915_WRITE(CACHE_MODE_1,
6778 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6779
6780 /*
6781 * BSpec recommends 8x4 when MSAA is used,
6782 * however in practice 16x4 seems fastest.
6783 *
6784 * Note that PS/WM thread counts depend on the WIZ hashing
6785 * disable bit, which we don't touch here, but it's good
6786 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6787 */
6788 I915_WRITE(GEN7_GT_MODE,
6789 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6790
6791 /* WaSampleCChickenBitEnable:hsw */
6792 I915_WRITE(HALF_SLICE_CHICKEN3,
6793 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6794
6795 /* WaSwitchSolVfFArbitrationPriority:hsw */
6796 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6797
6798 /* WaRsPkgCStateDisplayPMReq:hsw */
6799 I915_WRITE(CHICKEN_PAR1_1,
6800 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6801
6802 lpt_init_clock_gating(dev);
6803 }
6804
6805 static void ivybridge_init_clock_gating(struct drm_device *dev)
6806 {
6807 struct drm_i915_private *dev_priv = dev->dev_private;
6808 uint32_t snpcr;
6809
6810 ilk_init_lp_watermarks(dev);
6811
6812 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6813
6814 /* WaDisableEarlyCull:ivb */
6815 I915_WRITE(_3D_CHICKEN3,
6816 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6817
6818 /* WaDisableBackToBackFlipFix:ivb */
6819 I915_WRITE(IVB_CHICKEN3,
6820 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6821 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6822
6823 /* WaDisablePSDDualDispatchEnable:ivb */
6824 if (IS_IVB_GT1(dev))
6825 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6826 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6827
6828 /* WaDisable_RenderCache_OperationalFlush:ivb */
6829 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6830
6831 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6832 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6833 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6834
6835 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6836 I915_WRITE(GEN7_L3CNTLREG1,
6837 GEN7_WA_FOR_GEN7_L3_CONTROL);
6838 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6839 GEN7_WA_L3_CHICKEN_MODE);
6840 if (IS_IVB_GT1(dev))
6841 I915_WRITE(GEN7_ROW_CHICKEN2,
6842 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6843 else {
6844 /* must write both registers */
6845 I915_WRITE(GEN7_ROW_CHICKEN2,
6846 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6847 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6848 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6849 }
6850
6851 /* WaForceL3Serialization:ivb */
6852 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6853 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6854
6855 /*
6856 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6857 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6858 */
6859 I915_WRITE(GEN6_UCGCTL2,
6860 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6861
6862 /* This is required by WaCatErrorRejectionIssue:ivb */
6863 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6864 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6865 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6866
6867 g4x_disable_trickle_feed(dev);
6868
6869 gen7_setup_fixed_func_scheduler(dev_priv);
6870
6871 if (0) { /* causes HiZ corruption on ivb:gt1 */
6872 /* enable HiZ Raw Stall Optimization */
6873 I915_WRITE(CACHE_MODE_0_GEN7,
6874 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6875 }
6876
6877 /* WaDisable4x2SubspanOptimization:ivb */
6878 I915_WRITE(CACHE_MODE_1,
6879 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6880
6881 /*
6882 * BSpec recommends 8x4 when MSAA is used,
6883 * however in practice 16x4 seems fastest.
6884 *
6885 * Note that PS/WM thread counts depend on the WIZ hashing
6886 * disable bit, which we don't touch here, but it's good
6887 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6888 */
6889 I915_WRITE(GEN7_GT_MODE,
6890 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6891
6892 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6893 snpcr &= ~GEN6_MBC_SNPCR_MASK;
6894 snpcr |= GEN6_MBC_SNPCR_MED;
6895 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6896
6897 if (!HAS_PCH_NOP(dev))
6898 cpt_init_clock_gating(dev);
6899
6900 gen6_check_mch_setup(dev);
6901 }
6902
6903 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6904 {
6905 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6906
6907 /*
6908 * Disable trickle feed and enable pnd deadline calculation
6909 */
6910 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6911 I915_WRITE(CBR1_VLV, 0);
6912 }
6913
6914 static void valleyview_init_clock_gating(struct drm_device *dev)
6915 {
6916 struct drm_i915_private *dev_priv = dev->dev_private;
6917
6918 vlv_init_display_clock_gating(dev_priv);
6919
6920 /* WaDisableEarlyCull:vlv */
6921 I915_WRITE(_3D_CHICKEN3,
6922 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6923
6924 /* WaDisableBackToBackFlipFix:vlv */
6925 I915_WRITE(IVB_CHICKEN3,
6926 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6927 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6928
6929 /* WaPsdDispatchEnable:vlv */
6930 /* WaDisablePSDDualDispatchEnable:vlv */
6931 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6932 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6933 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6934
6935 /* WaDisable_RenderCache_OperationalFlush:vlv */
6936 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6937
6938 /* WaForceL3Serialization:vlv */
6939 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6940 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6941
6942 /* WaDisableDopClockGating:vlv */
6943 I915_WRITE(GEN7_ROW_CHICKEN2,
6944 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6945
6946 /* This is required by WaCatErrorRejectionIssue:vlv */
6947 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6948 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6949 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6950
6951 gen7_setup_fixed_func_scheduler(dev_priv);
6952
6953 /*
6954 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6955 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6956 */
6957 I915_WRITE(GEN6_UCGCTL2,
6958 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6959
6960 /* WaDisableL3Bank2xClockGate:vlv
6961 * Disabling L3 clock gating- MMIO 940c[25] = 1
6962 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6963 I915_WRITE(GEN7_UCGCTL4,
6964 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6965
6966 /*
6967 * BSpec says this must be set, even though
6968 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6969 */
6970 I915_WRITE(CACHE_MODE_1,
6971 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6972
6973 /*
6974 * BSpec recommends 8x4 when MSAA is used,
6975 * however in practice 16x4 seems fastest.
6976 *
6977 * Note that PS/WM thread counts depend on the WIZ hashing
6978 * disable bit, which we don't touch here, but it's good
6979 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6980 */
6981 I915_WRITE(GEN7_GT_MODE,
6982 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6983
6984 /*
6985 * WaIncreaseL3CreditsForVLVB0:vlv
6986 * This is the hardware default actually.
6987 */
6988 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6989
6990 /*
6991 * WaDisableVLVClockGating_VBIIssue:vlv
6992 * Disable clock gating on th GCFG unit to prevent a delay
6993 * in the reporting of vblank events.
6994 */
6995 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6996 }
6997
6998 static void cherryview_init_clock_gating(struct drm_device *dev)
6999 {
7000 struct drm_i915_private *dev_priv = dev->dev_private;
7001
7002 vlv_init_display_clock_gating(dev_priv);
7003
7004 /* WaVSRefCountFullforceMissDisable:chv */
7005 /* WaDSRefCountFullforceMissDisable:chv */
7006 I915_WRITE(GEN7_FF_THREAD_MODE,
7007 I915_READ(GEN7_FF_THREAD_MODE) &
7008 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7009
7010 /* WaDisableSemaphoreAndSyncFlipWait:chv */
7011 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7012 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7013
7014 /* WaDisableCSUnitClockGating:chv */
7015 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7016 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7017
7018 /* WaDisableSDEUnitClockGating:chv */
7019 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7020 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7021
7022 /*
7023 * GTT cache may not work with big pages, so if those
7024 * are ever enabled GTT cache may need to be disabled.
7025 */
7026 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7027 }
7028
7029 static void g4x_init_clock_gating(struct drm_device *dev)
7030 {
7031 struct drm_i915_private *dev_priv = dev->dev_private;
7032 uint32_t dspclk_gate;
7033
7034 I915_WRITE(RENCLK_GATE_D1, 0);
7035 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7036 GS_UNIT_CLOCK_GATE_DISABLE |
7037 CL_UNIT_CLOCK_GATE_DISABLE);
7038 I915_WRITE(RAMCLK_GATE_D, 0);
7039 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7040 OVRUNIT_CLOCK_GATE_DISABLE |
7041 OVCUNIT_CLOCK_GATE_DISABLE;
7042 if (IS_GM45(dev))
7043 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7044 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7045
7046 /* WaDisableRenderCachePipelinedFlush */
7047 I915_WRITE(CACHE_MODE_0,
7048 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7049
7050 /* WaDisable_RenderCache_OperationalFlush:g4x */
7051 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7052
7053 g4x_disable_trickle_feed(dev);
7054 }
7055
7056 static void crestline_init_clock_gating(struct drm_device *dev)
7057 {
7058 struct drm_i915_private *dev_priv = dev->dev_private;
7059
7060 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7061 I915_WRITE(RENCLK_GATE_D2, 0);
7062 I915_WRITE(DSPCLK_GATE_D, 0);
7063 I915_WRITE(RAMCLK_GATE_D, 0);
7064 I915_WRITE16(DEUC, 0);
7065 I915_WRITE(MI_ARB_STATE,
7066 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7067
7068 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7069 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7070 }
7071
7072 static void broadwater_init_clock_gating(struct drm_device *dev)
7073 {
7074 struct drm_i915_private *dev_priv = dev->dev_private;
7075
7076 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7077 I965_RCC_CLOCK_GATE_DISABLE |
7078 I965_RCPB_CLOCK_GATE_DISABLE |
7079 I965_ISC_CLOCK_GATE_DISABLE |
7080 I965_FBC_CLOCK_GATE_DISABLE);
7081 I915_WRITE(RENCLK_GATE_D2, 0);
7082 I915_WRITE(MI_ARB_STATE,
7083 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7084
7085 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7086 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7087 }
7088
7089 static void gen3_init_clock_gating(struct drm_device *dev)
7090 {
7091 struct drm_i915_private *dev_priv = dev->dev_private;
7092 u32 dstate = I915_READ(D_STATE);
7093
7094 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7095 DSTATE_DOT_CLOCK_GATING;
7096 I915_WRITE(D_STATE, dstate);
7097
7098 if (IS_PINEVIEW(dev))
7099 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7100
7101 /* IIR "flip pending" means done if this bit is set */
7102 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7103
7104 /* interrupts should cause a wake up from C3 */
7105 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7106
7107 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7108 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7109
7110 I915_WRITE(MI_ARB_STATE,
7111 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7112 }
7113
7114 static void i85x_init_clock_gating(struct drm_device *dev)
7115 {
7116 struct drm_i915_private *dev_priv = dev->dev_private;
7117
7118 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7119
7120 /* interrupts should cause a wake up from C3 */
7121 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7122 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7123
7124 I915_WRITE(MEM_MODE,
7125 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7126 }
7127
7128 static void i830_init_clock_gating(struct drm_device *dev)
7129 {
7130 struct drm_i915_private *dev_priv = dev->dev_private;
7131
7132 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7133
7134 I915_WRITE(MEM_MODE,
7135 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7136 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7137 }
7138
7139 void intel_init_clock_gating(struct drm_device *dev)
7140 {
7141 struct drm_i915_private *dev_priv = dev->dev_private;
7142
7143 if (dev_priv->display.init_clock_gating)
7144 dev_priv->display.init_clock_gating(dev);
7145 }
7146
7147 void intel_suspend_hw(struct drm_device *dev)
7148 {
7149 if (HAS_PCH_LPT(dev))
7150 lpt_suspend_hw(dev);
7151 }
7152
7153 /* Set up chip specific power management-related functions */
7154 void intel_init_pm(struct drm_device *dev)
7155 {
7156 struct drm_i915_private *dev_priv = dev->dev_private;
7157
7158 intel_fbc_init(dev_priv);
7159
7160 /* For cxsr */
7161 if (IS_PINEVIEW(dev))
7162 i915_pineview_get_mem_freq(dev);
7163 else if (IS_GEN5(dev))
7164 i915_ironlake_get_mem_freq(dev);
7165
7166 /* For FIFO watermark updates */
7167 if (INTEL_INFO(dev)->gen >= 9) {
7168 skl_setup_wm_latency(dev);
7169
7170 if (IS_BROXTON(dev))
7171 dev_priv->display.init_clock_gating =
7172 bxt_init_clock_gating;
7173 else if (IS_SKYLAKE(dev))
7174 dev_priv->display.init_clock_gating =
7175 skl_init_clock_gating;
7176 dev_priv->display.update_wm = skl_update_wm;
7177 dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
7178 } else if (HAS_PCH_SPLIT(dev)) {
7179 ilk_setup_wm_latency(dev);
7180
7181 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7182 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7183 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7184 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7185 dev_priv->display.update_wm = ilk_update_wm;
7186 dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7187 } else {
7188 DRM_DEBUG_KMS("Failed to read display plane latency. "
7189 "Disable CxSR\n");
7190 }
7191
7192 if (IS_GEN5(dev))
7193 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7194 else if (IS_GEN6(dev))
7195 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7196 else if (IS_IVYBRIDGE(dev))
7197 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7198 else if (IS_HASWELL(dev))
7199 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7200 else if (INTEL_INFO(dev)->gen == 8)
7201 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7202 } else if (IS_CHERRYVIEW(dev)) {
7203 vlv_setup_wm_latency(dev);
7204
7205 dev_priv->display.update_wm = vlv_update_wm;
7206 dev_priv->display.init_clock_gating =
7207 cherryview_init_clock_gating;
7208 } else if (IS_VALLEYVIEW(dev)) {
7209 vlv_setup_wm_latency(dev);
7210
7211 dev_priv->display.update_wm = vlv_update_wm;
7212 dev_priv->display.init_clock_gating =
7213 valleyview_init_clock_gating;
7214 } else if (IS_PINEVIEW(dev)) {
7215 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7216 dev_priv->is_ddr3,
7217 dev_priv->fsb_freq,
7218 dev_priv->mem_freq)) {
7219 DRM_INFO("failed to find known CxSR latency "
7220 "(found ddr%s fsb freq %d, mem freq %d), "
7221 "disabling CxSR\n",
7222 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7223 dev_priv->fsb_freq, dev_priv->mem_freq);
7224 /* Disable CxSR and never update its watermark again */
7225 intel_set_memory_cxsr(dev_priv, false);
7226 dev_priv->display.update_wm = NULL;
7227 } else
7228 dev_priv->display.update_wm = pineview_update_wm;
7229 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7230 } else if (IS_G4X(dev)) {
7231 dev_priv->display.update_wm = g4x_update_wm;
7232 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7233 } else if (IS_GEN4(dev)) {
7234 dev_priv->display.update_wm = i965_update_wm;
7235 if (IS_CRESTLINE(dev))
7236 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7237 else if (IS_BROADWATER(dev))
7238 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7239 } else if (IS_GEN3(dev)) {
7240 dev_priv->display.update_wm = i9xx_update_wm;
7241 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7242 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7243 } else if (IS_GEN2(dev)) {
7244 if (INTEL_INFO(dev)->num_pipes == 1) {
7245 dev_priv->display.update_wm = i845_update_wm;
7246 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7247 } else {
7248 dev_priv->display.update_wm = i9xx_update_wm;
7249 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7250 }
7251
7252 if (IS_I85X(dev) || IS_I865G(dev))
7253 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7254 else
7255 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7256 } else {
7257 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7258 }
7259 }
7260
7261 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7262 {
7263 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7264
7265 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7266 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7267 return -EAGAIN;
7268 }
7269
7270 I915_WRITE(GEN6_PCODE_DATA, *val);
7271 I915_WRITE(GEN6_PCODE_DATA1, 0);
7272 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7273
7274 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7275 500)) {
7276 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7277 return -ETIMEDOUT;
7278 }
7279
7280 *val = I915_READ(GEN6_PCODE_DATA);
7281 I915_WRITE(GEN6_PCODE_DATA, 0);
7282
7283 return 0;
7284 }
7285
7286 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7287 {
7288 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7289
7290 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7291 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7292 return -EAGAIN;
7293 }
7294
7295 I915_WRITE(GEN6_PCODE_DATA, val);
7296 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7297
7298 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7299 500)) {
7300 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7301 return -ETIMEDOUT;
7302 }
7303
7304 I915_WRITE(GEN6_PCODE_DATA, 0);
7305
7306 return 0;
7307 }
7308
7309 static int vlv_gpu_freq_div(unsigned int czclk_freq)
7310 {
7311 switch (czclk_freq) {
7312 case 200:
7313 return 10;
7314 case 267:
7315 return 12;
7316 case 320:
7317 case 333:
7318 return 16;
7319 case 400:
7320 return 20;
7321 default:
7322 return -1;
7323 }
7324 }
7325
7326 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7327 {
7328 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
7329
7330 div = vlv_gpu_freq_div(czclk_freq);
7331 if (div < 0)
7332 return div;
7333
7334 return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7335 }
7336
7337 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7338 {
7339 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
7340
7341 mul = vlv_gpu_freq_div(czclk_freq);
7342 if (mul < 0)
7343 return mul;
7344
7345 return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7346 }
7347
7348 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7349 {
7350 int div, czclk_freq = dev_priv->rps.cz_freq;
7351
7352 div = vlv_gpu_freq_div(czclk_freq) / 2;
7353 if (div < 0)
7354 return div;
7355
7356 return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7357 }
7358
7359 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7360 {
7361 int mul, czclk_freq = dev_priv->rps.cz_freq;
7362
7363 mul = vlv_gpu_freq_div(czclk_freq) / 2;
7364 if (mul < 0)
7365 return mul;
7366
7367 /* CHV needs even values */
7368 return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7369 }
7370
7371 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7372 {
7373 if (IS_GEN9(dev_priv->dev))
7374 return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
7375 else if (IS_CHERRYVIEW(dev_priv->dev))
7376 return chv_gpu_freq(dev_priv, val);
7377 else if (IS_VALLEYVIEW(dev_priv->dev))
7378 return byt_gpu_freq(dev_priv, val);
7379 else
7380 return val * GT_FREQUENCY_MULTIPLIER;
7381 }
7382
7383 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7384 {
7385 if (IS_GEN9(dev_priv->dev))
7386 return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
7387 else if (IS_CHERRYVIEW(dev_priv->dev))
7388 return chv_freq_opcode(dev_priv, val);
7389 else if (IS_VALLEYVIEW(dev_priv->dev))
7390 return byt_freq_opcode(dev_priv, val);
7391 else
7392 return val / GT_FREQUENCY_MULTIPLIER;
7393 }
7394
7395 struct request_boost {
7396 struct work_struct work;
7397 struct drm_i915_gem_request *req;
7398 };
7399
7400 static void __intel_rps_boost_work(struct work_struct *work)
7401 {
7402 struct request_boost *boost = container_of(work, struct request_boost, work);
7403 struct drm_i915_gem_request *req = boost->req;
7404
7405 if (!i915_gem_request_completed(req, true))
7406 gen6_rps_boost(to_i915(req->ring->dev), NULL,
7407 req->emitted_jiffies);
7408
7409 i915_gem_request_unreference__unlocked(req);
7410 kfree(boost);
7411 }
7412
7413 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7414 struct drm_i915_gem_request *req)
7415 {
7416 struct request_boost *boost;
7417
7418 if (req == NULL || INTEL_INFO(dev)->gen < 6)
7419 return;
7420
7421 if (i915_gem_request_completed(req, true))
7422 return;
7423
7424 boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7425 if (boost == NULL)
7426 return;
7427
7428 i915_gem_request_reference(req);
7429 boost->req = req;
7430
7431 INIT_WORK(&boost->work, __intel_rps_boost_work);
7432 queue_work(to_i915(dev)->wq, &boost->work);
7433 }
7434
7435 void intel_pm_setup(struct drm_device *dev)
7436 {
7437 struct drm_i915_private *dev_priv = dev->dev_private;
7438
7439 mutex_init(&dev_priv->rps.hw_lock);
7440 spin_lock_init(&dev_priv->rps.client_lock);
7441
7442 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7443 intel_gen6_powersave_work);
7444 INIT_LIST_HEAD(&dev_priv->rps.clients);
7445 INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7446 INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7447
7448 dev_priv->pm.suspended = false;
7449 }
This page took 0.327209 seconds and 5 git commands to generate.