drm/i915: Add atomic_get_property entrypoint for connectors (v2)
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35 * RC6 is a special power stage which allows the GPU to enter an very
36 * low-voltage mode when idle, using down to 0V while at this stage. This
37 * stage is entered automatically when the GPU is idle when RC6 support is
38 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39 *
40 * There are different RC6 modes available in Intel GPU, which differentiate
41 * among each other with the latency required to enter and leave RC6 and
42 * voltage consumed by the GPU in different states.
43 *
44 * The combination of the following flags define which states GPU is allowed
45 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46 * RC6pp is deepest RC6. Their support by hardware varies according to the
47 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48 * which brings the most power savings; deeper states save more power, but
49 * require higher latency to switch to and wake up.
50 */
51 #define INTEL_RC6_ENABLE (1<<0)
52 #define INTEL_RC6p_ENABLE (1<<1)
53 #define INTEL_RC6pp_ENABLE (1<<2)
54
55 static void gen9_init_clock_gating(struct drm_device *dev)
56 {
57 struct drm_i915_private *dev_priv = dev->dev_private;
58
59 /*
60 * WaDisableSDEUnitClockGating:skl
61 * This seems to be a pre-production w/a.
62 */
63 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
64 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
65
66 /*
67 * WaDisableDgMirrorFixInHalfSliceChicken5:skl
68 * This is a pre-production w/a.
69 */
70 I915_WRITE(GEN9_HALF_SLICE_CHICKEN5,
71 I915_READ(GEN9_HALF_SLICE_CHICKEN5) &
72 ~GEN9_DG_MIRROR_FIX_ENABLE);
73
74 /* Wa4x4STCOptimizationDisable:skl */
75 I915_WRITE(CACHE_MODE_1,
76 _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
77 }
78
79 static void i915_pineview_get_mem_freq(struct drm_device *dev)
80 {
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 u32 tmp;
83
84 tmp = I915_READ(CLKCFG);
85
86 switch (tmp & CLKCFG_FSB_MASK) {
87 case CLKCFG_FSB_533:
88 dev_priv->fsb_freq = 533; /* 133*4 */
89 break;
90 case CLKCFG_FSB_800:
91 dev_priv->fsb_freq = 800; /* 200*4 */
92 break;
93 case CLKCFG_FSB_667:
94 dev_priv->fsb_freq = 667; /* 167*4 */
95 break;
96 case CLKCFG_FSB_400:
97 dev_priv->fsb_freq = 400; /* 100*4 */
98 break;
99 }
100
101 switch (tmp & CLKCFG_MEM_MASK) {
102 case CLKCFG_MEM_533:
103 dev_priv->mem_freq = 533;
104 break;
105 case CLKCFG_MEM_667:
106 dev_priv->mem_freq = 667;
107 break;
108 case CLKCFG_MEM_800:
109 dev_priv->mem_freq = 800;
110 break;
111 }
112
113 /* detect pineview DDR3 setting */
114 tmp = I915_READ(CSHRDDR3CTL);
115 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
116 }
117
118 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
119 {
120 struct drm_i915_private *dev_priv = dev->dev_private;
121 u16 ddrpll, csipll;
122
123 ddrpll = I915_READ16(DDRMPLL1);
124 csipll = I915_READ16(CSIPLL0);
125
126 switch (ddrpll & 0xff) {
127 case 0xc:
128 dev_priv->mem_freq = 800;
129 break;
130 case 0x10:
131 dev_priv->mem_freq = 1066;
132 break;
133 case 0x14:
134 dev_priv->mem_freq = 1333;
135 break;
136 case 0x18:
137 dev_priv->mem_freq = 1600;
138 break;
139 default:
140 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
141 ddrpll & 0xff);
142 dev_priv->mem_freq = 0;
143 break;
144 }
145
146 dev_priv->ips.r_t = dev_priv->mem_freq;
147
148 switch (csipll & 0x3ff) {
149 case 0x00c:
150 dev_priv->fsb_freq = 3200;
151 break;
152 case 0x00e:
153 dev_priv->fsb_freq = 3733;
154 break;
155 case 0x010:
156 dev_priv->fsb_freq = 4266;
157 break;
158 case 0x012:
159 dev_priv->fsb_freq = 4800;
160 break;
161 case 0x014:
162 dev_priv->fsb_freq = 5333;
163 break;
164 case 0x016:
165 dev_priv->fsb_freq = 5866;
166 break;
167 case 0x018:
168 dev_priv->fsb_freq = 6400;
169 break;
170 default:
171 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
172 csipll & 0x3ff);
173 dev_priv->fsb_freq = 0;
174 break;
175 }
176
177 if (dev_priv->fsb_freq == 3200) {
178 dev_priv->ips.c_m = 0;
179 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
180 dev_priv->ips.c_m = 1;
181 } else {
182 dev_priv->ips.c_m = 2;
183 }
184 }
185
186 static const struct cxsr_latency cxsr_latency_table[] = {
187 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
188 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
189 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
190 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
191 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
192
193 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
194 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
195 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
196 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
197 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
198
199 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
200 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
201 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
202 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
203 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
204
205 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
206 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
207 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
208 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
209 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
210
211 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
212 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
213 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
214 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
215 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
216
217 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
218 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
219 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
220 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
221 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
222 };
223
224 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
225 int is_ddr3,
226 int fsb,
227 int mem)
228 {
229 const struct cxsr_latency *latency;
230 int i;
231
232 if (fsb == 0 || mem == 0)
233 return NULL;
234
235 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
236 latency = &cxsr_latency_table[i];
237 if (is_desktop == latency->is_desktop &&
238 is_ddr3 == latency->is_ddr3 &&
239 fsb == latency->fsb_freq && mem == latency->mem_freq)
240 return latency;
241 }
242
243 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
244
245 return NULL;
246 }
247
248 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
249 {
250 struct drm_device *dev = dev_priv->dev;
251 u32 val;
252
253 if (IS_VALLEYVIEW(dev)) {
254 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
255 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
256 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
257 } else if (IS_PINEVIEW(dev)) {
258 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
259 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
260 I915_WRITE(DSPFW3, val);
261 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
262 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
263 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
264 I915_WRITE(FW_BLC_SELF, val);
265 } else if (IS_I915GM(dev)) {
266 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
267 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
268 I915_WRITE(INSTPM, val);
269 } else {
270 return;
271 }
272
273 DRM_DEBUG_KMS("memory self-refresh is %s\n",
274 enable ? "enabled" : "disabled");
275 }
276
277 /*
278 * Latency for FIFO fetches is dependent on several factors:
279 * - memory configuration (speed, channels)
280 * - chipset
281 * - current MCH state
282 * It can be fairly high in some situations, so here we assume a fairly
283 * pessimal value. It's a tradeoff between extra memory fetches (if we
284 * set this value too high, the FIFO will fetch frequently to stay full)
285 * and power consumption (set it too low to save power and we might see
286 * FIFO underruns and display "flicker").
287 *
288 * A value of 5us seems to be a good balance; safe for very low end
289 * platforms but not overly aggressive on lower latency configs.
290 */
291 static const int pessimal_latency_ns = 5000;
292
293 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
294 {
295 struct drm_i915_private *dev_priv = dev->dev_private;
296 uint32_t dsparb = I915_READ(DSPARB);
297 int size;
298
299 size = dsparb & 0x7f;
300 if (plane)
301 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
302
303 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
304 plane ? "B" : "A", size);
305
306 return size;
307 }
308
309 static int i830_get_fifo_size(struct drm_device *dev, int plane)
310 {
311 struct drm_i915_private *dev_priv = dev->dev_private;
312 uint32_t dsparb = I915_READ(DSPARB);
313 int size;
314
315 size = dsparb & 0x1ff;
316 if (plane)
317 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
318 size >>= 1; /* Convert to cachelines */
319
320 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
321 plane ? "B" : "A", size);
322
323 return size;
324 }
325
326 static int i845_get_fifo_size(struct drm_device *dev, int plane)
327 {
328 struct drm_i915_private *dev_priv = dev->dev_private;
329 uint32_t dsparb = I915_READ(DSPARB);
330 int size;
331
332 size = dsparb & 0x7f;
333 size >>= 2; /* Convert to cachelines */
334
335 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
336 plane ? "B" : "A",
337 size);
338
339 return size;
340 }
341
342 /* Pineview has different values for various configs */
343 static const struct intel_watermark_params pineview_display_wm = {
344 .fifo_size = PINEVIEW_DISPLAY_FIFO,
345 .max_wm = PINEVIEW_MAX_WM,
346 .default_wm = PINEVIEW_DFT_WM,
347 .guard_size = PINEVIEW_GUARD_WM,
348 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
349 };
350 static const struct intel_watermark_params pineview_display_hplloff_wm = {
351 .fifo_size = PINEVIEW_DISPLAY_FIFO,
352 .max_wm = PINEVIEW_MAX_WM,
353 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
354 .guard_size = PINEVIEW_GUARD_WM,
355 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
356 };
357 static const struct intel_watermark_params pineview_cursor_wm = {
358 .fifo_size = PINEVIEW_CURSOR_FIFO,
359 .max_wm = PINEVIEW_CURSOR_MAX_WM,
360 .default_wm = PINEVIEW_CURSOR_DFT_WM,
361 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
362 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
363 };
364 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
365 .fifo_size = PINEVIEW_CURSOR_FIFO,
366 .max_wm = PINEVIEW_CURSOR_MAX_WM,
367 .default_wm = PINEVIEW_CURSOR_DFT_WM,
368 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
369 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
370 };
371 static const struct intel_watermark_params g4x_wm_info = {
372 .fifo_size = G4X_FIFO_SIZE,
373 .max_wm = G4X_MAX_WM,
374 .default_wm = G4X_MAX_WM,
375 .guard_size = 2,
376 .cacheline_size = G4X_FIFO_LINE_SIZE,
377 };
378 static const struct intel_watermark_params g4x_cursor_wm_info = {
379 .fifo_size = I965_CURSOR_FIFO,
380 .max_wm = I965_CURSOR_MAX_WM,
381 .default_wm = I965_CURSOR_DFT_WM,
382 .guard_size = 2,
383 .cacheline_size = G4X_FIFO_LINE_SIZE,
384 };
385 static const struct intel_watermark_params valleyview_wm_info = {
386 .fifo_size = VALLEYVIEW_FIFO_SIZE,
387 .max_wm = VALLEYVIEW_MAX_WM,
388 .default_wm = VALLEYVIEW_MAX_WM,
389 .guard_size = 2,
390 .cacheline_size = G4X_FIFO_LINE_SIZE,
391 };
392 static const struct intel_watermark_params valleyview_cursor_wm_info = {
393 .fifo_size = I965_CURSOR_FIFO,
394 .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
395 .default_wm = I965_CURSOR_DFT_WM,
396 .guard_size = 2,
397 .cacheline_size = G4X_FIFO_LINE_SIZE,
398 };
399 static const struct intel_watermark_params i965_cursor_wm_info = {
400 .fifo_size = I965_CURSOR_FIFO,
401 .max_wm = I965_CURSOR_MAX_WM,
402 .default_wm = I965_CURSOR_DFT_WM,
403 .guard_size = 2,
404 .cacheline_size = I915_FIFO_LINE_SIZE,
405 };
406 static const struct intel_watermark_params i945_wm_info = {
407 .fifo_size = I945_FIFO_SIZE,
408 .max_wm = I915_MAX_WM,
409 .default_wm = 1,
410 .guard_size = 2,
411 .cacheline_size = I915_FIFO_LINE_SIZE,
412 };
413 static const struct intel_watermark_params i915_wm_info = {
414 .fifo_size = I915_FIFO_SIZE,
415 .max_wm = I915_MAX_WM,
416 .default_wm = 1,
417 .guard_size = 2,
418 .cacheline_size = I915_FIFO_LINE_SIZE,
419 };
420 static const struct intel_watermark_params i830_a_wm_info = {
421 .fifo_size = I855GM_FIFO_SIZE,
422 .max_wm = I915_MAX_WM,
423 .default_wm = 1,
424 .guard_size = 2,
425 .cacheline_size = I830_FIFO_LINE_SIZE,
426 };
427 static const struct intel_watermark_params i830_bc_wm_info = {
428 .fifo_size = I855GM_FIFO_SIZE,
429 .max_wm = I915_MAX_WM/2,
430 .default_wm = 1,
431 .guard_size = 2,
432 .cacheline_size = I830_FIFO_LINE_SIZE,
433 };
434 static const struct intel_watermark_params i845_wm_info = {
435 .fifo_size = I830_FIFO_SIZE,
436 .max_wm = I915_MAX_WM,
437 .default_wm = 1,
438 .guard_size = 2,
439 .cacheline_size = I830_FIFO_LINE_SIZE,
440 };
441
442 /**
443 * intel_calculate_wm - calculate watermark level
444 * @clock_in_khz: pixel clock
445 * @wm: chip FIFO params
446 * @pixel_size: display pixel size
447 * @latency_ns: memory latency for the platform
448 *
449 * Calculate the watermark level (the level at which the display plane will
450 * start fetching from memory again). Each chip has a different display
451 * FIFO size and allocation, so the caller needs to figure that out and pass
452 * in the correct intel_watermark_params structure.
453 *
454 * As the pixel clock runs, the FIFO will be drained at a rate that depends
455 * on the pixel size. When it reaches the watermark level, it'll start
456 * fetching FIFO line sized based chunks from memory until the FIFO fills
457 * past the watermark point. If the FIFO drains completely, a FIFO underrun
458 * will occur, and a display engine hang could result.
459 */
460 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
461 const struct intel_watermark_params *wm,
462 int fifo_size,
463 int pixel_size,
464 unsigned long latency_ns)
465 {
466 long entries_required, wm_size;
467
468 /*
469 * Note: we need to make sure we don't overflow for various clock &
470 * latency values.
471 * clocks go from a few thousand to several hundred thousand.
472 * latency is usually a few thousand
473 */
474 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
475 1000;
476 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
477
478 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
479
480 wm_size = fifo_size - (entries_required + wm->guard_size);
481
482 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
483
484 /* Don't promote wm_size to unsigned... */
485 if (wm_size > (long)wm->max_wm)
486 wm_size = wm->max_wm;
487 if (wm_size <= 0)
488 wm_size = wm->default_wm;
489
490 /*
491 * Bspec seems to indicate that the value shouldn't be lower than
492 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
493 * Lets go for 8 which is the burst size since certain platforms
494 * already use a hardcoded 8 (which is what the spec says should be
495 * done).
496 */
497 if (wm_size <= 8)
498 wm_size = 8;
499
500 return wm_size;
501 }
502
503 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
504 {
505 struct drm_crtc *crtc, *enabled = NULL;
506
507 for_each_crtc(dev, crtc) {
508 if (intel_crtc_active(crtc)) {
509 if (enabled)
510 return NULL;
511 enabled = crtc;
512 }
513 }
514
515 return enabled;
516 }
517
518 static void pineview_update_wm(struct drm_crtc *unused_crtc)
519 {
520 struct drm_device *dev = unused_crtc->dev;
521 struct drm_i915_private *dev_priv = dev->dev_private;
522 struct drm_crtc *crtc;
523 const struct cxsr_latency *latency;
524 u32 reg;
525 unsigned long wm;
526
527 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
528 dev_priv->fsb_freq, dev_priv->mem_freq);
529 if (!latency) {
530 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
531 intel_set_memory_cxsr(dev_priv, false);
532 return;
533 }
534
535 crtc = single_enabled_crtc(dev);
536 if (crtc) {
537 const struct drm_display_mode *adjusted_mode;
538 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
539 int clock;
540
541 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
542 clock = adjusted_mode->crtc_clock;
543
544 /* Display SR */
545 wm = intel_calculate_wm(clock, &pineview_display_wm,
546 pineview_display_wm.fifo_size,
547 pixel_size, latency->display_sr);
548 reg = I915_READ(DSPFW1);
549 reg &= ~DSPFW_SR_MASK;
550 reg |= wm << DSPFW_SR_SHIFT;
551 I915_WRITE(DSPFW1, reg);
552 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
553
554 /* cursor SR */
555 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
556 pineview_display_wm.fifo_size,
557 pixel_size, latency->cursor_sr);
558 reg = I915_READ(DSPFW3);
559 reg &= ~DSPFW_CURSOR_SR_MASK;
560 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
561 I915_WRITE(DSPFW3, reg);
562
563 /* Display HPLL off SR */
564 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
565 pineview_display_hplloff_wm.fifo_size,
566 pixel_size, latency->display_hpll_disable);
567 reg = I915_READ(DSPFW3);
568 reg &= ~DSPFW_HPLL_SR_MASK;
569 reg |= wm & DSPFW_HPLL_SR_MASK;
570 I915_WRITE(DSPFW3, reg);
571
572 /* cursor HPLL off SR */
573 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
574 pineview_display_hplloff_wm.fifo_size,
575 pixel_size, latency->cursor_hpll_disable);
576 reg = I915_READ(DSPFW3);
577 reg &= ~DSPFW_HPLL_CURSOR_MASK;
578 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
579 I915_WRITE(DSPFW3, reg);
580 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
581
582 intel_set_memory_cxsr(dev_priv, true);
583 } else {
584 intel_set_memory_cxsr(dev_priv, false);
585 }
586 }
587
588 static bool g4x_compute_wm0(struct drm_device *dev,
589 int plane,
590 const struct intel_watermark_params *display,
591 int display_latency_ns,
592 const struct intel_watermark_params *cursor,
593 int cursor_latency_ns,
594 int *plane_wm,
595 int *cursor_wm)
596 {
597 struct drm_crtc *crtc;
598 const struct drm_display_mode *adjusted_mode;
599 int htotal, hdisplay, clock, pixel_size;
600 int line_time_us, line_count;
601 int entries, tlb_miss;
602
603 crtc = intel_get_crtc_for_plane(dev, plane);
604 if (!intel_crtc_active(crtc)) {
605 *cursor_wm = cursor->guard_size;
606 *plane_wm = display->guard_size;
607 return false;
608 }
609
610 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
611 clock = adjusted_mode->crtc_clock;
612 htotal = adjusted_mode->crtc_htotal;
613 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
614 pixel_size = crtc->primary->fb->bits_per_pixel / 8;
615
616 /* Use the small buffer method to calculate plane watermark */
617 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
618 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
619 if (tlb_miss > 0)
620 entries += tlb_miss;
621 entries = DIV_ROUND_UP(entries, display->cacheline_size);
622 *plane_wm = entries + display->guard_size;
623 if (*plane_wm > (int)display->max_wm)
624 *plane_wm = display->max_wm;
625
626 /* Use the large buffer method to calculate cursor watermark */
627 line_time_us = max(htotal * 1000 / clock, 1);
628 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
629 entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
630 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
631 if (tlb_miss > 0)
632 entries += tlb_miss;
633 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
634 *cursor_wm = entries + cursor->guard_size;
635 if (*cursor_wm > (int)cursor->max_wm)
636 *cursor_wm = (int)cursor->max_wm;
637
638 return true;
639 }
640
641 /*
642 * Check the wm result.
643 *
644 * If any calculated watermark values is larger than the maximum value that
645 * can be programmed into the associated watermark register, that watermark
646 * must be disabled.
647 */
648 static bool g4x_check_srwm(struct drm_device *dev,
649 int display_wm, int cursor_wm,
650 const struct intel_watermark_params *display,
651 const struct intel_watermark_params *cursor)
652 {
653 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
654 display_wm, cursor_wm);
655
656 if (display_wm > display->max_wm) {
657 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
658 display_wm, display->max_wm);
659 return false;
660 }
661
662 if (cursor_wm > cursor->max_wm) {
663 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
664 cursor_wm, cursor->max_wm);
665 return false;
666 }
667
668 if (!(display_wm || cursor_wm)) {
669 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
670 return false;
671 }
672
673 return true;
674 }
675
676 static bool g4x_compute_srwm(struct drm_device *dev,
677 int plane,
678 int latency_ns,
679 const struct intel_watermark_params *display,
680 const struct intel_watermark_params *cursor,
681 int *display_wm, int *cursor_wm)
682 {
683 struct drm_crtc *crtc;
684 const struct drm_display_mode *adjusted_mode;
685 int hdisplay, htotal, pixel_size, clock;
686 unsigned long line_time_us;
687 int line_count, line_size;
688 int small, large;
689 int entries;
690
691 if (!latency_ns) {
692 *display_wm = *cursor_wm = 0;
693 return false;
694 }
695
696 crtc = intel_get_crtc_for_plane(dev, plane);
697 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
698 clock = adjusted_mode->crtc_clock;
699 htotal = adjusted_mode->crtc_htotal;
700 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
701 pixel_size = crtc->primary->fb->bits_per_pixel / 8;
702
703 line_time_us = max(htotal * 1000 / clock, 1);
704 line_count = (latency_ns / line_time_us + 1000) / 1000;
705 line_size = hdisplay * pixel_size;
706
707 /* Use the minimum of the small and large buffer method for primary */
708 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
709 large = line_count * line_size;
710
711 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
712 *display_wm = entries + display->guard_size;
713
714 /* calculate the self-refresh watermark for display cursor */
715 entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
716 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
717 *cursor_wm = entries + cursor->guard_size;
718
719 return g4x_check_srwm(dev,
720 *display_wm, *cursor_wm,
721 display, cursor);
722 }
723
724 static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
725 int pixel_size,
726 int *prec_mult,
727 int *drain_latency)
728 {
729 struct drm_device *dev = crtc->dev;
730 int entries;
731 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
732
733 if (WARN(clock == 0, "Pixel clock is zero!\n"))
734 return false;
735
736 if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
737 return false;
738
739 entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
740 if (IS_CHERRYVIEW(dev))
741 *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_32 :
742 DRAIN_LATENCY_PRECISION_16;
743 else
744 *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
745 DRAIN_LATENCY_PRECISION_32;
746 *drain_latency = (64 * (*prec_mult) * 4) / entries;
747
748 if (*drain_latency > DRAIN_LATENCY_MASK)
749 *drain_latency = DRAIN_LATENCY_MASK;
750
751 return true;
752 }
753
754 /*
755 * Update drain latency registers of memory arbiter
756 *
757 * Valleyview SoC has a new memory arbiter and needs drain latency registers
758 * to be programmed. Each plane has a drain latency multiplier and a drain
759 * latency value.
760 */
761
762 static void vlv_update_drain_latency(struct drm_crtc *crtc)
763 {
764 struct drm_device *dev = crtc->dev;
765 struct drm_i915_private *dev_priv = dev->dev_private;
766 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
767 int pixel_size;
768 int drain_latency;
769 enum pipe pipe = intel_crtc->pipe;
770 int plane_prec, prec_mult, plane_dl;
771 const int high_precision = IS_CHERRYVIEW(dev) ?
772 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_64;
773
774 plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_HIGH |
775 DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_HIGH |
776 (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));
777
778 if (!intel_crtc_active(crtc)) {
779 I915_WRITE(VLV_DDL(pipe), plane_dl);
780 return;
781 }
782
783 /* Primary plane Drain Latency */
784 pixel_size = crtc->primary->fb->bits_per_pixel / 8; /* BPP */
785 if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
786 plane_prec = (prec_mult == high_precision) ?
787 DDL_PLANE_PRECISION_HIGH :
788 DDL_PLANE_PRECISION_LOW;
789 plane_dl |= plane_prec | drain_latency;
790 }
791
792 /* Cursor Drain Latency
793 * BPP is always 4 for cursor
794 */
795 pixel_size = 4;
796
797 /* Program cursor DL only if it is enabled */
798 if (intel_crtc->cursor_base &&
799 vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
800 plane_prec = (prec_mult == high_precision) ?
801 DDL_CURSOR_PRECISION_HIGH :
802 DDL_CURSOR_PRECISION_LOW;
803 plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
804 }
805
806 I915_WRITE(VLV_DDL(pipe), plane_dl);
807 }
808
809 #define single_plane_enabled(mask) is_power_of_2(mask)
810
811 static void valleyview_update_wm(struct drm_crtc *crtc)
812 {
813 struct drm_device *dev = crtc->dev;
814 static const int sr_latency_ns = 12000;
815 struct drm_i915_private *dev_priv = dev->dev_private;
816 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
817 int plane_sr, cursor_sr;
818 int ignore_plane_sr, ignore_cursor_sr;
819 unsigned int enabled = 0;
820 bool cxsr_enabled;
821
822 vlv_update_drain_latency(crtc);
823
824 if (g4x_compute_wm0(dev, PIPE_A,
825 &valleyview_wm_info, pessimal_latency_ns,
826 &valleyview_cursor_wm_info, pessimal_latency_ns,
827 &planea_wm, &cursora_wm))
828 enabled |= 1 << PIPE_A;
829
830 if (g4x_compute_wm0(dev, PIPE_B,
831 &valleyview_wm_info, pessimal_latency_ns,
832 &valleyview_cursor_wm_info, pessimal_latency_ns,
833 &planeb_wm, &cursorb_wm))
834 enabled |= 1 << PIPE_B;
835
836 if (single_plane_enabled(enabled) &&
837 g4x_compute_srwm(dev, ffs(enabled) - 1,
838 sr_latency_ns,
839 &valleyview_wm_info,
840 &valleyview_cursor_wm_info,
841 &plane_sr, &ignore_cursor_sr) &&
842 g4x_compute_srwm(dev, ffs(enabled) - 1,
843 2*sr_latency_ns,
844 &valleyview_wm_info,
845 &valleyview_cursor_wm_info,
846 &ignore_plane_sr, &cursor_sr)) {
847 cxsr_enabled = true;
848 } else {
849 cxsr_enabled = false;
850 intel_set_memory_cxsr(dev_priv, false);
851 plane_sr = cursor_sr = 0;
852 }
853
854 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
855 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
856 planea_wm, cursora_wm,
857 planeb_wm, cursorb_wm,
858 plane_sr, cursor_sr);
859
860 I915_WRITE(DSPFW1,
861 (plane_sr << DSPFW_SR_SHIFT) |
862 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
863 (planeb_wm << DSPFW_PLANEB_SHIFT) |
864 (planea_wm << DSPFW_PLANEA_SHIFT));
865 I915_WRITE(DSPFW2,
866 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
867 (cursora_wm << DSPFW_CURSORA_SHIFT));
868 I915_WRITE(DSPFW3,
869 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
870 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
871
872 if (cxsr_enabled)
873 intel_set_memory_cxsr(dev_priv, true);
874 }
875
876 static void cherryview_update_wm(struct drm_crtc *crtc)
877 {
878 struct drm_device *dev = crtc->dev;
879 static const int sr_latency_ns = 12000;
880 struct drm_i915_private *dev_priv = dev->dev_private;
881 int planea_wm, planeb_wm, planec_wm;
882 int cursora_wm, cursorb_wm, cursorc_wm;
883 int plane_sr, cursor_sr;
884 int ignore_plane_sr, ignore_cursor_sr;
885 unsigned int enabled = 0;
886 bool cxsr_enabled;
887
888 vlv_update_drain_latency(crtc);
889
890 if (g4x_compute_wm0(dev, PIPE_A,
891 &valleyview_wm_info, pessimal_latency_ns,
892 &valleyview_cursor_wm_info, pessimal_latency_ns,
893 &planea_wm, &cursora_wm))
894 enabled |= 1 << PIPE_A;
895
896 if (g4x_compute_wm0(dev, PIPE_B,
897 &valleyview_wm_info, pessimal_latency_ns,
898 &valleyview_cursor_wm_info, pessimal_latency_ns,
899 &planeb_wm, &cursorb_wm))
900 enabled |= 1 << PIPE_B;
901
902 if (g4x_compute_wm0(dev, PIPE_C,
903 &valleyview_wm_info, pessimal_latency_ns,
904 &valleyview_cursor_wm_info, pessimal_latency_ns,
905 &planec_wm, &cursorc_wm))
906 enabled |= 1 << PIPE_C;
907
908 if (single_plane_enabled(enabled) &&
909 g4x_compute_srwm(dev, ffs(enabled) - 1,
910 sr_latency_ns,
911 &valleyview_wm_info,
912 &valleyview_cursor_wm_info,
913 &plane_sr, &ignore_cursor_sr) &&
914 g4x_compute_srwm(dev, ffs(enabled) - 1,
915 2*sr_latency_ns,
916 &valleyview_wm_info,
917 &valleyview_cursor_wm_info,
918 &ignore_plane_sr, &cursor_sr)) {
919 cxsr_enabled = true;
920 } else {
921 cxsr_enabled = false;
922 intel_set_memory_cxsr(dev_priv, false);
923 plane_sr = cursor_sr = 0;
924 }
925
926 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
927 "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
928 "SR: plane=%d, cursor=%d\n",
929 planea_wm, cursora_wm,
930 planeb_wm, cursorb_wm,
931 planec_wm, cursorc_wm,
932 plane_sr, cursor_sr);
933
934 I915_WRITE(DSPFW1,
935 (plane_sr << DSPFW_SR_SHIFT) |
936 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
937 (planeb_wm << DSPFW_PLANEB_SHIFT) |
938 (planea_wm << DSPFW_PLANEA_SHIFT));
939 I915_WRITE(DSPFW2,
940 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
941 (cursora_wm << DSPFW_CURSORA_SHIFT));
942 I915_WRITE(DSPFW3,
943 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
944 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
945 I915_WRITE(DSPFW9_CHV,
946 (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
947 DSPFW_CURSORC_MASK)) |
948 (planec_wm << DSPFW_PLANEC_SHIFT) |
949 (cursorc_wm << DSPFW_CURSORC_SHIFT));
950
951 if (cxsr_enabled)
952 intel_set_memory_cxsr(dev_priv, true);
953 }
954
955 static void valleyview_update_sprite_wm(struct drm_plane *plane,
956 struct drm_crtc *crtc,
957 uint32_t sprite_width,
958 uint32_t sprite_height,
959 int pixel_size,
960 bool enabled, bool scaled)
961 {
962 struct drm_device *dev = crtc->dev;
963 struct drm_i915_private *dev_priv = dev->dev_private;
964 int pipe = to_intel_plane(plane)->pipe;
965 int sprite = to_intel_plane(plane)->plane;
966 int drain_latency;
967 int plane_prec;
968 int sprite_dl;
969 int prec_mult;
970 const int high_precision = IS_CHERRYVIEW(dev) ?
971 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_64;
972
973 sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_HIGH(sprite) |
974 (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));
975
976 if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
977 &drain_latency)) {
978 plane_prec = (prec_mult == high_precision) ?
979 DDL_SPRITE_PRECISION_HIGH(sprite) :
980 DDL_SPRITE_PRECISION_LOW(sprite);
981 sprite_dl |= plane_prec |
982 (drain_latency << DDL_SPRITE_SHIFT(sprite));
983 }
984
985 I915_WRITE(VLV_DDL(pipe), sprite_dl);
986 }
987
988 static void g4x_update_wm(struct drm_crtc *crtc)
989 {
990 struct drm_device *dev = crtc->dev;
991 static const int sr_latency_ns = 12000;
992 struct drm_i915_private *dev_priv = dev->dev_private;
993 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
994 int plane_sr, cursor_sr;
995 unsigned int enabled = 0;
996 bool cxsr_enabled;
997
998 if (g4x_compute_wm0(dev, PIPE_A,
999 &g4x_wm_info, pessimal_latency_ns,
1000 &g4x_cursor_wm_info, pessimal_latency_ns,
1001 &planea_wm, &cursora_wm))
1002 enabled |= 1 << PIPE_A;
1003
1004 if (g4x_compute_wm0(dev, PIPE_B,
1005 &g4x_wm_info, pessimal_latency_ns,
1006 &g4x_cursor_wm_info, pessimal_latency_ns,
1007 &planeb_wm, &cursorb_wm))
1008 enabled |= 1 << PIPE_B;
1009
1010 if (single_plane_enabled(enabled) &&
1011 g4x_compute_srwm(dev, ffs(enabled) - 1,
1012 sr_latency_ns,
1013 &g4x_wm_info,
1014 &g4x_cursor_wm_info,
1015 &plane_sr, &cursor_sr)) {
1016 cxsr_enabled = true;
1017 } else {
1018 cxsr_enabled = false;
1019 intel_set_memory_cxsr(dev_priv, false);
1020 plane_sr = cursor_sr = 0;
1021 }
1022
1023 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1024 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1025 planea_wm, cursora_wm,
1026 planeb_wm, cursorb_wm,
1027 plane_sr, cursor_sr);
1028
1029 I915_WRITE(DSPFW1,
1030 (plane_sr << DSPFW_SR_SHIFT) |
1031 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1032 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1033 (planea_wm << DSPFW_PLANEA_SHIFT));
1034 I915_WRITE(DSPFW2,
1035 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1036 (cursora_wm << DSPFW_CURSORA_SHIFT));
1037 /* HPLL off in SR has some issues on G4x... disable it */
1038 I915_WRITE(DSPFW3,
1039 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1040 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1041
1042 if (cxsr_enabled)
1043 intel_set_memory_cxsr(dev_priv, true);
1044 }
1045
1046 static void i965_update_wm(struct drm_crtc *unused_crtc)
1047 {
1048 struct drm_device *dev = unused_crtc->dev;
1049 struct drm_i915_private *dev_priv = dev->dev_private;
1050 struct drm_crtc *crtc;
1051 int srwm = 1;
1052 int cursor_sr = 16;
1053 bool cxsr_enabled;
1054
1055 /* Calc sr entries for one plane configs */
1056 crtc = single_enabled_crtc(dev);
1057 if (crtc) {
1058 /* self-refresh has much higher latency */
1059 static const int sr_latency_ns = 12000;
1060 const struct drm_display_mode *adjusted_mode =
1061 &to_intel_crtc(crtc)->config->base.adjusted_mode;
1062 int clock = adjusted_mode->crtc_clock;
1063 int htotal = adjusted_mode->crtc_htotal;
1064 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1065 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1066 unsigned long line_time_us;
1067 int entries;
1068
1069 line_time_us = max(htotal * 1000 / clock, 1);
1070
1071 /* Use ns/us then divide to preserve precision */
1072 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1073 pixel_size * hdisplay;
1074 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1075 srwm = I965_FIFO_SIZE - entries;
1076 if (srwm < 0)
1077 srwm = 1;
1078 srwm &= 0x1ff;
1079 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1080 entries, srwm);
1081
1082 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1083 pixel_size * to_intel_crtc(crtc)->cursor_width;
1084 entries = DIV_ROUND_UP(entries,
1085 i965_cursor_wm_info.cacheline_size);
1086 cursor_sr = i965_cursor_wm_info.fifo_size -
1087 (entries + i965_cursor_wm_info.guard_size);
1088
1089 if (cursor_sr > i965_cursor_wm_info.max_wm)
1090 cursor_sr = i965_cursor_wm_info.max_wm;
1091
1092 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1093 "cursor %d\n", srwm, cursor_sr);
1094
1095 cxsr_enabled = true;
1096 } else {
1097 cxsr_enabled = false;
1098 /* Turn off self refresh if both pipes are enabled */
1099 intel_set_memory_cxsr(dev_priv, false);
1100 }
1101
1102 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1103 srwm);
1104
1105 /* 965 has limitations... */
1106 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1107 (8 << DSPFW_CURSORB_SHIFT) |
1108 (8 << DSPFW_PLANEB_SHIFT) |
1109 (8 << DSPFW_PLANEA_SHIFT));
1110 I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
1111 (8 << DSPFW_PLANEC_SHIFT_OLD));
1112 /* update cursor SR watermark */
1113 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1114
1115 if (cxsr_enabled)
1116 intel_set_memory_cxsr(dev_priv, true);
1117 }
1118
1119 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1120 {
1121 struct drm_device *dev = unused_crtc->dev;
1122 struct drm_i915_private *dev_priv = dev->dev_private;
1123 const struct intel_watermark_params *wm_info;
1124 uint32_t fwater_lo;
1125 uint32_t fwater_hi;
1126 int cwm, srwm = 1;
1127 int fifo_size;
1128 int planea_wm, planeb_wm;
1129 struct drm_crtc *crtc, *enabled = NULL;
1130
1131 if (IS_I945GM(dev))
1132 wm_info = &i945_wm_info;
1133 else if (!IS_GEN2(dev))
1134 wm_info = &i915_wm_info;
1135 else
1136 wm_info = &i830_a_wm_info;
1137
1138 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1139 crtc = intel_get_crtc_for_plane(dev, 0);
1140 if (intel_crtc_active(crtc)) {
1141 const struct drm_display_mode *adjusted_mode;
1142 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1143 if (IS_GEN2(dev))
1144 cpp = 4;
1145
1146 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1147 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1148 wm_info, fifo_size, cpp,
1149 pessimal_latency_ns);
1150 enabled = crtc;
1151 } else {
1152 planea_wm = fifo_size - wm_info->guard_size;
1153 if (planea_wm > (long)wm_info->max_wm)
1154 planea_wm = wm_info->max_wm;
1155 }
1156
1157 if (IS_GEN2(dev))
1158 wm_info = &i830_bc_wm_info;
1159
1160 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1161 crtc = intel_get_crtc_for_plane(dev, 1);
1162 if (intel_crtc_active(crtc)) {
1163 const struct drm_display_mode *adjusted_mode;
1164 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1165 if (IS_GEN2(dev))
1166 cpp = 4;
1167
1168 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1169 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1170 wm_info, fifo_size, cpp,
1171 pessimal_latency_ns);
1172 if (enabled == NULL)
1173 enabled = crtc;
1174 else
1175 enabled = NULL;
1176 } else {
1177 planeb_wm = fifo_size - wm_info->guard_size;
1178 if (planeb_wm > (long)wm_info->max_wm)
1179 planeb_wm = wm_info->max_wm;
1180 }
1181
1182 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1183
1184 if (IS_I915GM(dev) && enabled) {
1185 struct drm_i915_gem_object *obj;
1186
1187 obj = intel_fb_obj(enabled->primary->fb);
1188
1189 /* self-refresh seems busted with untiled */
1190 if (obj->tiling_mode == I915_TILING_NONE)
1191 enabled = NULL;
1192 }
1193
1194 /*
1195 * Overlay gets an aggressive default since video jitter is bad.
1196 */
1197 cwm = 2;
1198
1199 /* Play safe and disable self-refresh before adjusting watermarks. */
1200 intel_set_memory_cxsr(dev_priv, false);
1201
1202 /* Calc sr entries for one plane configs */
1203 if (HAS_FW_BLC(dev) && enabled) {
1204 /* self-refresh has much higher latency */
1205 static const int sr_latency_ns = 6000;
1206 const struct drm_display_mode *adjusted_mode =
1207 &to_intel_crtc(enabled)->config->base.adjusted_mode;
1208 int clock = adjusted_mode->crtc_clock;
1209 int htotal = adjusted_mode->crtc_htotal;
1210 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1211 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1212 unsigned long line_time_us;
1213 int entries;
1214
1215 line_time_us = max(htotal * 1000 / clock, 1);
1216
1217 /* Use ns/us then divide to preserve precision */
1218 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1219 pixel_size * hdisplay;
1220 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1221 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1222 srwm = wm_info->fifo_size - entries;
1223 if (srwm < 0)
1224 srwm = 1;
1225
1226 if (IS_I945G(dev) || IS_I945GM(dev))
1227 I915_WRITE(FW_BLC_SELF,
1228 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1229 else if (IS_I915GM(dev))
1230 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1231 }
1232
1233 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1234 planea_wm, planeb_wm, cwm, srwm);
1235
1236 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1237 fwater_hi = (cwm & 0x1f);
1238
1239 /* Set request length to 8 cachelines per fetch */
1240 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1241 fwater_hi = fwater_hi | (1 << 8);
1242
1243 I915_WRITE(FW_BLC, fwater_lo);
1244 I915_WRITE(FW_BLC2, fwater_hi);
1245
1246 if (enabled)
1247 intel_set_memory_cxsr(dev_priv, true);
1248 }
1249
1250 static void i845_update_wm(struct drm_crtc *unused_crtc)
1251 {
1252 struct drm_device *dev = unused_crtc->dev;
1253 struct drm_i915_private *dev_priv = dev->dev_private;
1254 struct drm_crtc *crtc;
1255 const struct drm_display_mode *adjusted_mode;
1256 uint32_t fwater_lo;
1257 int planea_wm;
1258
1259 crtc = single_enabled_crtc(dev);
1260 if (crtc == NULL)
1261 return;
1262
1263 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1264 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1265 &i845_wm_info,
1266 dev_priv->display.get_fifo_size(dev, 0),
1267 4, pessimal_latency_ns);
1268 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1269 fwater_lo |= (3<<8) | planea_wm;
1270
1271 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1272
1273 I915_WRITE(FW_BLC, fwater_lo);
1274 }
1275
1276 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1277 struct drm_crtc *crtc)
1278 {
1279 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1280 uint32_t pixel_rate;
1281
1282 pixel_rate = intel_crtc->config->base.adjusted_mode.crtc_clock;
1283
1284 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1285 * adjust the pixel_rate here. */
1286
1287 if (intel_crtc->config->pch_pfit.enabled) {
1288 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1289 uint32_t pfit_size = intel_crtc->config->pch_pfit.size;
1290
1291 pipe_w = intel_crtc->config->pipe_src_w;
1292 pipe_h = intel_crtc->config->pipe_src_h;
1293 pfit_w = (pfit_size >> 16) & 0xFFFF;
1294 pfit_h = pfit_size & 0xFFFF;
1295 if (pipe_w < pfit_w)
1296 pipe_w = pfit_w;
1297 if (pipe_h < pfit_h)
1298 pipe_h = pfit_h;
1299
1300 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1301 pfit_w * pfit_h);
1302 }
1303
1304 return pixel_rate;
1305 }
1306
1307 /* latency must be in 0.1us units. */
1308 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1309 uint32_t latency)
1310 {
1311 uint64_t ret;
1312
1313 if (WARN(latency == 0, "Latency value missing\n"))
1314 return UINT_MAX;
1315
1316 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1317 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1318
1319 return ret;
1320 }
1321
1322 /* latency must be in 0.1us units. */
1323 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1324 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1325 uint32_t latency)
1326 {
1327 uint32_t ret;
1328
1329 if (WARN(latency == 0, "Latency value missing\n"))
1330 return UINT_MAX;
1331
1332 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1333 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1334 ret = DIV_ROUND_UP(ret, 64) + 2;
1335 return ret;
1336 }
1337
1338 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1339 uint8_t bytes_per_pixel)
1340 {
1341 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1342 }
1343
1344 struct skl_pipe_wm_parameters {
1345 bool active;
1346 uint32_t pipe_htotal;
1347 uint32_t pixel_rate; /* in KHz */
1348 struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1349 struct intel_plane_wm_parameters cursor;
1350 };
1351
1352 struct ilk_pipe_wm_parameters {
1353 bool active;
1354 uint32_t pipe_htotal;
1355 uint32_t pixel_rate;
1356 struct intel_plane_wm_parameters pri;
1357 struct intel_plane_wm_parameters spr;
1358 struct intel_plane_wm_parameters cur;
1359 };
1360
1361 struct ilk_wm_maximums {
1362 uint16_t pri;
1363 uint16_t spr;
1364 uint16_t cur;
1365 uint16_t fbc;
1366 };
1367
1368 /* used in computing the new watermarks state */
1369 struct intel_wm_config {
1370 unsigned int num_pipes_active;
1371 bool sprites_enabled;
1372 bool sprites_scaled;
1373 };
1374
1375 /*
1376 * For both WM_PIPE and WM_LP.
1377 * mem_value must be in 0.1us units.
1378 */
1379 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1380 uint32_t mem_value,
1381 bool is_lp)
1382 {
1383 uint32_t method1, method2;
1384
1385 if (!params->active || !params->pri.enabled)
1386 return 0;
1387
1388 method1 = ilk_wm_method1(params->pixel_rate,
1389 params->pri.bytes_per_pixel,
1390 mem_value);
1391
1392 if (!is_lp)
1393 return method1;
1394
1395 method2 = ilk_wm_method2(params->pixel_rate,
1396 params->pipe_htotal,
1397 params->pri.horiz_pixels,
1398 params->pri.bytes_per_pixel,
1399 mem_value);
1400
1401 return min(method1, method2);
1402 }
1403
1404 /*
1405 * For both WM_PIPE and WM_LP.
1406 * mem_value must be in 0.1us units.
1407 */
1408 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1409 uint32_t mem_value)
1410 {
1411 uint32_t method1, method2;
1412
1413 if (!params->active || !params->spr.enabled)
1414 return 0;
1415
1416 method1 = ilk_wm_method1(params->pixel_rate,
1417 params->spr.bytes_per_pixel,
1418 mem_value);
1419 method2 = ilk_wm_method2(params->pixel_rate,
1420 params->pipe_htotal,
1421 params->spr.horiz_pixels,
1422 params->spr.bytes_per_pixel,
1423 mem_value);
1424 return min(method1, method2);
1425 }
1426
1427 /*
1428 * For both WM_PIPE and WM_LP.
1429 * mem_value must be in 0.1us units.
1430 */
1431 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1432 uint32_t mem_value)
1433 {
1434 if (!params->active || !params->cur.enabled)
1435 return 0;
1436
1437 return ilk_wm_method2(params->pixel_rate,
1438 params->pipe_htotal,
1439 params->cur.horiz_pixels,
1440 params->cur.bytes_per_pixel,
1441 mem_value);
1442 }
1443
1444 /* Only for WM_LP. */
1445 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1446 uint32_t pri_val)
1447 {
1448 if (!params->active || !params->pri.enabled)
1449 return 0;
1450
1451 return ilk_wm_fbc(pri_val,
1452 params->pri.horiz_pixels,
1453 params->pri.bytes_per_pixel);
1454 }
1455
1456 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1457 {
1458 if (INTEL_INFO(dev)->gen >= 8)
1459 return 3072;
1460 else if (INTEL_INFO(dev)->gen >= 7)
1461 return 768;
1462 else
1463 return 512;
1464 }
1465
1466 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1467 int level, bool is_sprite)
1468 {
1469 if (INTEL_INFO(dev)->gen >= 8)
1470 /* BDW primary/sprite plane watermarks */
1471 return level == 0 ? 255 : 2047;
1472 else if (INTEL_INFO(dev)->gen >= 7)
1473 /* IVB/HSW primary/sprite plane watermarks */
1474 return level == 0 ? 127 : 1023;
1475 else if (!is_sprite)
1476 /* ILK/SNB primary plane watermarks */
1477 return level == 0 ? 127 : 511;
1478 else
1479 /* ILK/SNB sprite plane watermarks */
1480 return level == 0 ? 63 : 255;
1481 }
1482
1483 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1484 int level)
1485 {
1486 if (INTEL_INFO(dev)->gen >= 7)
1487 return level == 0 ? 63 : 255;
1488 else
1489 return level == 0 ? 31 : 63;
1490 }
1491
1492 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1493 {
1494 if (INTEL_INFO(dev)->gen >= 8)
1495 return 31;
1496 else
1497 return 15;
1498 }
1499
1500 /* Calculate the maximum primary/sprite plane watermark */
1501 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1502 int level,
1503 const struct intel_wm_config *config,
1504 enum intel_ddb_partitioning ddb_partitioning,
1505 bool is_sprite)
1506 {
1507 unsigned int fifo_size = ilk_display_fifo_size(dev);
1508
1509 /* if sprites aren't enabled, sprites get nothing */
1510 if (is_sprite && !config->sprites_enabled)
1511 return 0;
1512
1513 /* HSW allows LP1+ watermarks even with multiple pipes */
1514 if (level == 0 || config->num_pipes_active > 1) {
1515 fifo_size /= INTEL_INFO(dev)->num_pipes;
1516
1517 /*
1518 * For some reason the non self refresh
1519 * FIFO size is only half of the self
1520 * refresh FIFO size on ILK/SNB.
1521 */
1522 if (INTEL_INFO(dev)->gen <= 6)
1523 fifo_size /= 2;
1524 }
1525
1526 if (config->sprites_enabled) {
1527 /* level 0 is always calculated with 1:1 split */
1528 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1529 if (is_sprite)
1530 fifo_size *= 5;
1531 fifo_size /= 6;
1532 } else {
1533 fifo_size /= 2;
1534 }
1535 }
1536
1537 /* clamp to max that the registers can hold */
1538 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1539 }
1540
1541 /* Calculate the maximum cursor plane watermark */
1542 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1543 int level,
1544 const struct intel_wm_config *config)
1545 {
1546 /* HSW LP1+ watermarks w/ multiple pipes */
1547 if (level > 0 && config->num_pipes_active > 1)
1548 return 64;
1549
1550 /* otherwise just report max that registers can hold */
1551 return ilk_cursor_wm_reg_max(dev, level);
1552 }
1553
1554 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1555 int level,
1556 const struct intel_wm_config *config,
1557 enum intel_ddb_partitioning ddb_partitioning,
1558 struct ilk_wm_maximums *max)
1559 {
1560 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1561 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1562 max->cur = ilk_cursor_wm_max(dev, level, config);
1563 max->fbc = ilk_fbc_wm_reg_max(dev);
1564 }
1565
1566 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1567 int level,
1568 struct ilk_wm_maximums *max)
1569 {
1570 max->pri = ilk_plane_wm_reg_max(dev, level, false);
1571 max->spr = ilk_plane_wm_reg_max(dev, level, true);
1572 max->cur = ilk_cursor_wm_reg_max(dev, level);
1573 max->fbc = ilk_fbc_wm_reg_max(dev);
1574 }
1575
1576 static bool ilk_validate_wm_level(int level,
1577 const struct ilk_wm_maximums *max,
1578 struct intel_wm_level *result)
1579 {
1580 bool ret;
1581
1582 /* already determined to be invalid? */
1583 if (!result->enable)
1584 return false;
1585
1586 result->enable = result->pri_val <= max->pri &&
1587 result->spr_val <= max->spr &&
1588 result->cur_val <= max->cur;
1589
1590 ret = result->enable;
1591
1592 /*
1593 * HACK until we can pre-compute everything,
1594 * and thus fail gracefully if LP0 watermarks
1595 * are exceeded...
1596 */
1597 if (level == 0 && !result->enable) {
1598 if (result->pri_val > max->pri)
1599 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1600 level, result->pri_val, max->pri);
1601 if (result->spr_val > max->spr)
1602 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1603 level, result->spr_val, max->spr);
1604 if (result->cur_val > max->cur)
1605 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1606 level, result->cur_val, max->cur);
1607
1608 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1609 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1610 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1611 result->enable = true;
1612 }
1613
1614 return ret;
1615 }
1616
1617 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1618 int level,
1619 const struct ilk_pipe_wm_parameters *p,
1620 struct intel_wm_level *result)
1621 {
1622 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1623 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1624 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1625
1626 /* WM1+ latency values stored in 0.5us units */
1627 if (level > 0) {
1628 pri_latency *= 5;
1629 spr_latency *= 5;
1630 cur_latency *= 5;
1631 }
1632
1633 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1634 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1635 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1636 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1637 result->enable = true;
1638 }
1639
1640 static uint32_t
1641 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1642 {
1643 struct drm_i915_private *dev_priv = dev->dev_private;
1644 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1645 struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
1646 u32 linetime, ips_linetime;
1647
1648 if (!intel_crtc_active(crtc))
1649 return 0;
1650
1651 /* The WM are computed with base on how long it takes to fill a single
1652 * row at the given clock rate, multiplied by 8.
1653 * */
1654 linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1655 mode->crtc_clock);
1656 ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1657 intel_ddi_get_cdclk_freq(dev_priv));
1658
1659 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
1660 PIPE_WM_LINETIME_TIME(linetime);
1661 }
1662
1663 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
1664 {
1665 struct drm_i915_private *dev_priv = dev->dev_private;
1666
1667 if (IS_GEN9(dev)) {
1668 uint32_t val;
1669 int ret, i;
1670 int level, max_level = ilk_wm_max_level(dev);
1671
1672 /* read the first set of memory latencies[0:3] */
1673 val = 0; /* data0 to be programmed to 0 for first set */
1674 mutex_lock(&dev_priv->rps.hw_lock);
1675 ret = sandybridge_pcode_read(dev_priv,
1676 GEN9_PCODE_READ_MEM_LATENCY,
1677 &val);
1678 mutex_unlock(&dev_priv->rps.hw_lock);
1679
1680 if (ret) {
1681 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1682 return;
1683 }
1684
1685 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1686 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1687 GEN9_MEM_LATENCY_LEVEL_MASK;
1688 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1689 GEN9_MEM_LATENCY_LEVEL_MASK;
1690 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1691 GEN9_MEM_LATENCY_LEVEL_MASK;
1692
1693 /* read the second set of memory latencies[4:7] */
1694 val = 1; /* data0 to be programmed to 1 for second set */
1695 mutex_lock(&dev_priv->rps.hw_lock);
1696 ret = sandybridge_pcode_read(dev_priv,
1697 GEN9_PCODE_READ_MEM_LATENCY,
1698 &val);
1699 mutex_unlock(&dev_priv->rps.hw_lock);
1700 if (ret) {
1701 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1702 return;
1703 }
1704
1705 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1706 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1707 GEN9_MEM_LATENCY_LEVEL_MASK;
1708 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1709 GEN9_MEM_LATENCY_LEVEL_MASK;
1710 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1711 GEN9_MEM_LATENCY_LEVEL_MASK;
1712
1713 /*
1714 * punit doesn't take into account the read latency so we need
1715 * to add 2us to the various latency levels we retrieve from
1716 * the punit.
1717 * - W0 is a bit special in that it's the only level that
1718 * can't be disabled if we want to have display working, so
1719 * we always add 2us there.
1720 * - For levels >=1, punit returns 0us latency when they are
1721 * disabled, so we respect that and don't add 2us then
1722 *
1723 * Additionally, if a level n (n > 1) has a 0us latency, all
1724 * levels m (m >= n) need to be disabled. We make sure to
1725 * sanitize the values out of the punit to satisfy this
1726 * requirement.
1727 */
1728 wm[0] += 2;
1729 for (level = 1; level <= max_level; level++)
1730 if (wm[level] != 0)
1731 wm[level] += 2;
1732 else {
1733 for (i = level + 1; i <= max_level; i++)
1734 wm[i] = 0;
1735
1736 break;
1737 }
1738 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1739 uint64_t sskpd = I915_READ64(MCH_SSKPD);
1740
1741 wm[0] = (sskpd >> 56) & 0xFF;
1742 if (wm[0] == 0)
1743 wm[0] = sskpd & 0xF;
1744 wm[1] = (sskpd >> 4) & 0xFF;
1745 wm[2] = (sskpd >> 12) & 0xFF;
1746 wm[3] = (sskpd >> 20) & 0x1FF;
1747 wm[4] = (sskpd >> 32) & 0x1FF;
1748 } else if (INTEL_INFO(dev)->gen >= 6) {
1749 uint32_t sskpd = I915_READ(MCH_SSKPD);
1750
1751 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
1752 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
1753 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
1754 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
1755 } else if (INTEL_INFO(dev)->gen >= 5) {
1756 uint32_t mltr = I915_READ(MLTR_ILK);
1757
1758 /* ILK primary LP0 latency is 700 ns */
1759 wm[0] = 7;
1760 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
1761 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
1762 }
1763 }
1764
1765 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
1766 {
1767 /* ILK sprite LP0 latency is 1300 ns */
1768 if (INTEL_INFO(dev)->gen == 5)
1769 wm[0] = 13;
1770 }
1771
1772 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
1773 {
1774 /* ILK cursor LP0 latency is 1300 ns */
1775 if (INTEL_INFO(dev)->gen == 5)
1776 wm[0] = 13;
1777
1778 /* WaDoubleCursorLP3Latency:ivb */
1779 if (IS_IVYBRIDGE(dev))
1780 wm[3] *= 2;
1781 }
1782
1783 int ilk_wm_max_level(const struct drm_device *dev)
1784 {
1785 /* how many WM levels are we expecting */
1786 if (IS_GEN9(dev))
1787 return 7;
1788 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1789 return 4;
1790 else if (INTEL_INFO(dev)->gen >= 6)
1791 return 3;
1792 else
1793 return 2;
1794 }
1795
1796 static void intel_print_wm_latency(struct drm_device *dev,
1797 const char *name,
1798 const uint16_t wm[8])
1799 {
1800 int level, max_level = ilk_wm_max_level(dev);
1801
1802 for (level = 0; level <= max_level; level++) {
1803 unsigned int latency = wm[level];
1804
1805 if (latency == 0) {
1806 DRM_ERROR("%s WM%d latency not provided\n",
1807 name, level);
1808 continue;
1809 }
1810
1811 /*
1812 * - latencies are in us on gen9.
1813 * - before then, WM1+ latency values are in 0.5us units
1814 */
1815 if (IS_GEN9(dev))
1816 latency *= 10;
1817 else if (level > 0)
1818 latency *= 5;
1819
1820 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
1821 name, level, wm[level],
1822 latency / 10, latency % 10);
1823 }
1824 }
1825
1826 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
1827 uint16_t wm[5], uint16_t min)
1828 {
1829 int level, max_level = ilk_wm_max_level(dev_priv->dev);
1830
1831 if (wm[0] >= min)
1832 return false;
1833
1834 wm[0] = max(wm[0], min);
1835 for (level = 1; level <= max_level; level++)
1836 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
1837
1838 return true;
1839 }
1840
1841 static void snb_wm_latency_quirk(struct drm_device *dev)
1842 {
1843 struct drm_i915_private *dev_priv = dev->dev_private;
1844 bool changed;
1845
1846 /*
1847 * The BIOS provided WM memory latency values are often
1848 * inadequate for high resolution displays. Adjust them.
1849 */
1850 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
1851 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
1852 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
1853
1854 if (!changed)
1855 return;
1856
1857 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
1858 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
1859 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
1860 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
1861 }
1862
1863 static void ilk_setup_wm_latency(struct drm_device *dev)
1864 {
1865 struct drm_i915_private *dev_priv = dev->dev_private;
1866
1867 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
1868
1869 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
1870 sizeof(dev_priv->wm.pri_latency));
1871 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
1872 sizeof(dev_priv->wm.pri_latency));
1873
1874 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
1875 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
1876
1877 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
1878 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
1879 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
1880
1881 if (IS_GEN6(dev))
1882 snb_wm_latency_quirk(dev);
1883 }
1884
1885 static void skl_setup_wm_latency(struct drm_device *dev)
1886 {
1887 struct drm_i915_private *dev_priv = dev->dev_private;
1888
1889 intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
1890 intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
1891 }
1892
1893 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
1894 struct ilk_pipe_wm_parameters *p)
1895 {
1896 struct drm_device *dev = crtc->dev;
1897 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1898 enum pipe pipe = intel_crtc->pipe;
1899 struct drm_plane *plane;
1900
1901 if (!intel_crtc_active(crtc))
1902 return;
1903
1904 p->active = true;
1905 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
1906 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
1907 p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
1908 p->cur.bytes_per_pixel = 4;
1909 p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
1910 p->cur.horiz_pixels = intel_crtc->cursor_width;
1911 /* TODO: for now, assume primary and cursor planes are always enabled. */
1912 p->pri.enabled = true;
1913 p->cur.enabled = true;
1914
1915 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
1916 struct intel_plane *intel_plane = to_intel_plane(plane);
1917
1918 if (intel_plane->pipe == pipe) {
1919 p->spr = intel_plane->wm;
1920 break;
1921 }
1922 }
1923 }
1924
1925 static void ilk_compute_wm_config(struct drm_device *dev,
1926 struct intel_wm_config *config)
1927 {
1928 struct intel_crtc *intel_crtc;
1929
1930 /* Compute the currently _active_ config */
1931 for_each_intel_crtc(dev, intel_crtc) {
1932 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
1933
1934 if (!wm->pipe_enabled)
1935 continue;
1936
1937 config->sprites_enabled |= wm->sprites_enabled;
1938 config->sprites_scaled |= wm->sprites_scaled;
1939 config->num_pipes_active++;
1940 }
1941 }
1942
1943 /* Compute new watermarks for the pipe */
1944 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
1945 const struct ilk_pipe_wm_parameters *params,
1946 struct intel_pipe_wm *pipe_wm)
1947 {
1948 struct drm_device *dev = crtc->dev;
1949 const struct drm_i915_private *dev_priv = dev->dev_private;
1950 int level, max_level = ilk_wm_max_level(dev);
1951 /* LP0 watermark maximums depend on this pipe alone */
1952 struct intel_wm_config config = {
1953 .num_pipes_active = 1,
1954 .sprites_enabled = params->spr.enabled,
1955 .sprites_scaled = params->spr.scaled,
1956 };
1957 struct ilk_wm_maximums max;
1958
1959 pipe_wm->pipe_enabled = params->active;
1960 pipe_wm->sprites_enabled = params->spr.enabled;
1961 pipe_wm->sprites_scaled = params->spr.scaled;
1962
1963 /* ILK/SNB: LP2+ watermarks only w/o sprites */
1964 if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
1965 max_level = 1;
1966
1967 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
1968 if (params->spr.scaled)
1969 max_level = 0;
1970
1971 ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
1972
1973 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1974 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
1975
1976 /* LP0 watermarks always use 1/2 DDB partitioning */
1977 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
1978
1979 /* At least LP0 must be valid */
1980 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
1981 return false;
1982
1983 ilk_compute_wm_reg_maximums(dev, 1, &max);
1984
1985 for (level = 1; level <= max_level; level++) {
1986 struct intel_wm_level wm = {};
1987
1988 ilk_compute_wm_level(dev_priv, level, params, &wm);
1989
1990 /*
1991 * Disable any watermark level that exceeds the
1992 * register maximums since such watermarks are
1993 * always invalid.
1994 */
1995 if (!ilk_validate_wm_level(level, &max, &wm))
1996 break;
1997
1998 pipe_wm->wm[level] = wm;
1999 }
2000
2001 return true;
2002 }
2003
2004 /*
2005 * Merge the watermarks from all active pipes for a specific level.
2006 */
2007 static void ilk_merge_wm_level(struct drm_device *dev,
2008 int level,
2009 struct intel_wm_level *ret_wm)
2010 {
2011 const struct intel_crtc *intel_crtc;
2012
2013 ret_wm->enable = true;
2014
2015 for_each_intel_crtc(dev, intel_crtc) {
2016 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2017 const struct intel_wm_level *wm = &active->wm[level];
2018
2019 if (!active->pipe_enabled)
2020 continue;
2021
2022 /*
2023 * The watermark values may have been used in the past,
2024 * so we must maintain them in the registers for some
2025 * time even if the level is now disabled.
2026 */
2027 if (!wm->enable)
2028 ret_wm->enable = false;
2029
2030 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2031 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2032 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2033 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2034 }
2035 }
2036
2037 /*
2038 * Merge all low power watermarks for all active pipes.
2039 */
2040 static void ilk_wm_merge(struct drm_device *dev,
2041 const struct intel_wm_config *config,
2042 const struct ilk_wm_maximums *max,
2043 struct intel_pipe_wm *merged)
2044 {
2045 int level, max_level = ilk_wm_max_level(dev);
2046 int last_enabled_level = max_level;
2047
2048 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2049 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2050 config->num_pipes_active > 1)
2051 return;
2052
2053 /* ILK: FBC WM must be disabled always */
2054 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2055
2056 /* merge each WM1+ level */
2057 for (level = 1; level <= max_level; level++) {
2058 struct intel_wm_level *wm = &merged->wm[level];
2059
2060 ilk_merge_wm_level(dev, level, wm);
2061
2062 if (level > last_enabled_level)
2063 wm->enable = false;
2064 else if (!ilk_validate_wm_level(level, max, wm))
2065 /* make sure all following levels get disabled */
2066 last_enabled_level = level - 1;
2067
2068 /*
2069 * The spec says it is preferred to disable
2070 * FBC WMs instead of disabling a WM level.
2071 */
2072 if (wm->fbc_val > max->fbc) {
2073 if (wm->enable)
2074 merged->fbc_wm_enabled = false;
2075 wm->fbc_val = 0;
2076 }
2077 }
2078
2079 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2080 /*
2081 * FIXME this is racy. FBC might get enabled later.
2082 * What we should check here is whether FBC can be
2083 * enabled sometime later.
2084 */
2085 if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2086 for (level = 2; level <= max_level; level++) {
2087 struct intel_wm_level *wm = &merged->wm[level];
2088
2089 wm->enable = false;
2090 }
2091 }
2092 }
2093
2094 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2095 {
2096 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2097 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2098 }
2099
2100 /* The value we need to program into the WM_LPx latency field */
2101 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2102 {
2103 struct drm_i915_private *dev_priv = dev->dev_private;
2104
2105 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2106 return 2 * level;
2107 else
2108 return dev_priv->wm.pri_latency[level];
2109 }
2110
2111 static void ilk_compute_wm_results(struct drm_device *dev,
2112 const struct intel_pipe_wm *merged,
2113 enum intel_ddb_partitioning partitioning,
2114 struct ilk_wm_values *results)
2115 {
2116 struct intel_crtc *intel_crtc;
2117 int level, wm_lp;
2118
2119 results->enable_fbc_wm = merged->fbc_wm_enabled;
2120 results->partitioning = partitioning;
2121
2122 /* LP1+ register values */
2123 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2124 const struct intel_wm_level *r;
2125
2126 level = ilk_wm_lp_to_level(wm_lp, merged);
2127
2128 r = &merged->wm[level];
2129
2130 /*
2131 * Maintain the watermark values even if the level is
2132 * disabled. Doing otherwise could cause underruns.
2133 */
2134 results->wm_lp[wm_lp - 1] =
2135 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2136 (r->pri_val << WM1_LP_SR_SHIFT) |
2137 r->cur_val;
2138
2139 if (r->enable)
2140 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2141
2142 if (INTEL_INFO(dev)->gen >= 8)
2143 results->wm_lp[wm_lp - 1] |=
2144 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2145 else
2146 results->wm_lp[wm_lp - 1] |=
2147 r->fbc_val << WM1_LP_FBC_SHIFT;
2148
2149 /*
2150 * Always set WM1S_LP_EN when spr_val != 0, even if the
2151 * level is disabled. Doing otherwise could cause underruns.
2152 */
2153 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2154 WARN_ON(wm_lp != 1);
2155 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2156 } else
2157 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2158 }
2159
2160 /* LP0 register values */
2161 for_each_intel_crtc(dev, intel_crtc) {
2162 enum pipe pipe = intel_crtc->pipe;
2163 const struct intel_wm_level *r =
2164 &intel_crtc->wm.active.wm[0];
2165
2166 if (WARN_ON(!r->enable))
2167 continue;
2168
2169 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2170
2171 results->wm_pipe[pipe] =
2172 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2173 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2174 r->cur_val;
2175 }
2176 }
2177
2178 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2179 * case both are at the same level. Prefer r1 in case they're the same. */
2180 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2181 struct intel_pipe_wm *r1,
2182 struct intel_pipe_wm *r2)
2183 {
2184 int level, max_level = ilk_wm_max_level(dev);
2185 int level1 = 0, level2 = 0;
2186
2187 for (level = 1; level <= max_level; level++) {
2188 if (r1->wm[level].enable)
2189 level1 = level;
2190 if (r2->wm[level].enable)
2191 level2 = level;
2192 }
2193
2194 if (level1 == level2) {
2195 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2196 return r2;
2197 else
2198 return r1;
2199 } else if (level1 > level2) {
2200 return r1;
2201 } else {
2202 return r2;
2203 }
2204 }
2205
2206 /* dirty bits used to track which watermarks need changes */
2207 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2208 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2209 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2210 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2211 #define WM_DIRTY_FBC (1 << 24)
2212 #define WM_DIRTY_DDB (1 << 25)
2213
2214 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2215 const struct ilk_wm_values *old,
2216 const struct ilk_wm_values *new)
2217 {
2218 unsigned int dirty = 0;
2219 enum pipe pipe;
2220 int wm_lp;
2221
2222 for_each_pipe(dev_priv, pipe) {
2223 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2224 dirty |= WM_DIRTY_LINETIME(pipe);
2225 /* Must disable LP1+ watermarks too */
2226 dirty |= WM_DIRTY_LP_ALL;
2227 }
2228
2229 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2230 dirty |= WM_DIRTY_PIPE(pipe);
2231 /* Must disable LP1+ watermarks too */
2232 dirty |= WM_DIRTY_LP_ALL;
2233 }
2234 }
2235
2236 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2237 dirty |= WM_DIRTY_FBC;
2238 /* Must disable LP1+ watermarks too */
2239 dirty |= WM_DIRTY_LP_ALL;
2240 }
2241
2242 if (old->partitioning != new->partitioning) {
2243 dirty |= WM_DIRTY_DDB;
2244 /* Must disable LP1+ watermarks too */
2245 dirty |= WM_DIRTY_LP_ALL;
2246 }
2247
2248 /* LP1+ watermarks already deemed dirty, no need to continue */
2249 if (dirty & WM_DIRTY_LP_ALL)
2250 return dirty;
2251
2252 /* Find the lowest numbered LP1+ watermark in need of an update... */
2253 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2254 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2255 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2256 break;
2257 }
2258
2259 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2260 for (; wm_lp <= 3; wm_lp++)
2261 dirty |= WM_DIRTY_LP(wm_lp);
2262
2263 return dirty;
2264 }
2265
2266 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2267 unsigned int dirty)
2268 {
2269 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2270 bool changed = false;
2271
2272 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2273 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2274 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2275 changed = true;
2276 }
2277 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2278 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2279 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2280 changed = true;
2281 }
2282 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2283 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2284 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2285 changed = true;
2286 }
2287
2288 /*
2289 * Don't touch WM1S_LP_EN here.
2290 * Doing so could cause underruns.
2291 */
2292
2293 return changed;
2294 }
2295
2296 /*
2297 * The spec says we shouldn't write when we don't need, because every write
2298 * causes WMs to be re-evaluated, expending some power.
2299 */
2300 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2301 struct ilk_wm_values *results)
2302 {
2303 struct drm_device *dev = dev_priv->dev;
2304 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2305 unsigned int dirty;
2306 uint32_t val;
2307
2308 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2309 if (!dirty)
2310 return;
2311
2312 _ilk_disable_lp_wm(dev_priv, dirty);
2313
2314 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2315 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2316 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2317 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2318 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2319 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2320
2321 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2322 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2323 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2324 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2325 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2326 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2327
2328 if (dirty & WM_DIRTY_DDB) {
2329 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2330 val = I915_READ(WM_MISC);
2331 if (results->partitioning == INTEL_DDB_PART_1_2)
2332 val &= ~WM_MISC_DATA_PARTITION_5_6;
2333 else
2334 val |= WM_MISC_DATA_PARTITION_5_6;
2335 I915_WRITE(WM_MISC, val);
2336 } else {
2337 val = I915_READ(DISP_ARB_CTL2);
2338 if (results->partitioning == INTEL_DDB_PART_1_2)
2339 val &= ~DISP_DATA_PARTITION_5_6;
2340 else
2341 val |= DISP_DATA_PARTITION_5_6;
2342 I915_WRITE(DISP_ARB_CTL2, val);
2343 }
2344 }
2345
2346 if (dirty & WM_DIRTY_FBC) {
2347 val = I915_READ(DISP_ARB_CTL);
2348 if (results->enable_fbc_wm)
2349 val &= ~DISP_FBC_WM_DIS;
2350 else
2351 val |= DISP_FBC_WM_DIS;
2352 I915_WRITE(DISP_ARB_CTL, val);
2353 }
2354
2355 if (dirty & WM_DIRTY_LP(1) &&
2356 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2357 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2358
2359 if (INTEL_INFO(dev)->gen >= 7) {
2360 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2361 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2362 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2363 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2364 }
2365
2366 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2367 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2368 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2369 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2370 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2371 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2372
2373 dev_priv->wm.hw = *results;
2374 }
2375
2376 static bool ilk_disable_lp_wm(struct drm_device *dev)
2377 {
2378 struct drm_i915_private *dev_priv = dev->dev_private;
2379
2380 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2381 }
2382
2383 /*
2384 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2385 * different active planes.
2386 */
2387
2388 #define SKL_DDB_SIZE 896 /* in blocks */
2389
2390 static void
2391 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2392 struct drm_crtc *for_crtc,
2393 const struct intel_wm_config *config,
2394 const struct skl_pipe_wm_parameters *params,
2395 struct skl_ddb_entry *alloc /* out */)
2396 {
2397 struct drm_crtc *crtc;
2398 unsigned int pipe_size, ddb_size;
2399 int nth_active_pipe;
2400
2401 if (!params->active) {
2402 alloc->start = 0;
2403 alloc->end = 0;
2404 return;
2405 }
2406
2407 ddb_size = SKL_DDB_SIZE;
2408
2409 ddb_size -= 4; /* 4 blocks for bypass path allocation */
2410
2411 nth_active_pipe = 0;
2412 for_each_crtc(dev, crtc) {
2413 if (!intel_crtc_active(crtc))
2414 continue;
2415
2416 if (crtc == for_crtc)
2417 break;
2418
2419 nth_active_pipe++;
2420 }
2421
2422 pipe_size = ddb_size / config->num_pipes_active;
2423 alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2424 alloc->end = alloc->start + pipe_size;
2425 }
2426
2427 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2428 {
2429 if (config->num_pipes_active == 1)
2430 return 32;
2431
2432 return 8;
2433 }
2434
2435 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2436 {
2437 entry->start = reg & 0x3ff;
2438 entry->end = (reg >> 16) & 0x3ff;
2439 if (entry->end)
2440 entry->end += 1;
2441 }
2442
2443 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2444 struct skl_ddb_allocation *ddb /* out */)
2445 {
2446 struct drm_device *dev = dev_priv->dev;
2447 enum pipe pipe;
2448 int plane;
2449 u32 val;
2450
2451 for_each_pipe(dev_priv, pipe) {
2452 for_each_plane(pipe, plane) {
2453 val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2454 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2455 val);
2456 }
2457
2458 val = I915_READ(CUR_BUF_CFG(pipe));
2459 skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
2460 }
2461 }
2462
2463 static unsigned int
2464 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
2465 {
2466 return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2467 }
2468
2469 /*
2470 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2471 * a 8192x4096@32bpp framebuffer:
2472 * 3 * 4096 * 8192 * 4 < 2^32
2473 */
2474 static unsigned int
2475 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2476 const struct skl_pipe_wm_parameters *params)
2477 {
2478 unsigned int total_data_rate = 0;
2479 int plane;
2480
2481 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2482 const struct intel_plane_wm_parameters *p;
2483
2484 p = &params->plane[plane];
2485 if (!p->enabled)
2486 continue;
2487
2488 total_data_rate += skl_plane_relative_data_rate(p);
2489 }
2490
2491 return total_data_rate;
2492 }
2493
2494 static void
2495 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2496 const struct intel_wm_config *config,
2497 const struct skl_pipe_wm_parameters *params,
2498 struct skl_ddb_allocation *ddb /* out */)
2499 {
2500 struct drm_device *dev = crtc->dev;
2501 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2502 enum pipe pipe = intel_crtc->pipe;
2503 struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2504 uint16_t alloc_size, start, cursor_blocks;
2505 unsigned int total_data_rate;
2506 int plane;
2507
2508 skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2509 alloc_size = skl_ddb_entry_size(alloc);
2510 if (alloc_size == 0) {
2511 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2512 memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
2513 return;
2514 }
2515
2516 cursor_blocks = skl_cursor_allocation(config);
2517 ddb->cursor[pipe].start = alloc->end - cursor_blocks;
2518 ddb->cursor[pipe].end = alloc->end;
2519
2520 alloc_size -= cursor_blocks;
2521 alloc->end -= cursor_blocks;
2522
2523 /*
2524 * Each active plane get a portion of the remaining space, in
2525 * proportion to the amount of data they need to fetch from memory.
2526 *
2527 * FIXME: we may not allocate every single block here.
2528 */
2529 total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2530
2531 start = alloc->start;
2532 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2533 const struct intel_plane_wm_parameters *p;
2534 unsigned int data_rate;
2535 uint16_t plane_blocks;
2536
2537 p = &params->plane[plane];
2538 if (!p->enabled)
2539 continue;
2540
2541 data_rate = skl_plane_relative_data_rate(p);
2542
2543 /*
2544 * promote the expression to 64 bits to avoid overflowing, the
2545 * result is < available as data_rate / total_data_rate < 1
2546 */
2547 plane_blocks = div_u64((uint64_t)alloc_size * data_rate,
2548 total_data_rate);
2549
2550 ddb->plane[pipe][plane].start = start;
2551 ddb->plane[pipe][plane].end = start + plane_blocks;
2552
2553 start += plane_blocks;
2554 }
2555
2556 }
2557
2558 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2559 {
2560 /* TODO: Take into account the scalers once we support them */
2561 return config->base.adjusted_mode.crtc_clock;
2562 }
2563
2564 /*
2565 * The max latency should be 257 (max the punit can code is 255 and we add 2us
2566 * for the read latency) and bytes_per_pixel should always be <= 8, so that
2567 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
2568 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
2569 */
2570 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2571 uint32_t latency)
2572 {
2573 uint32_t wm_intermediate_val, ret;
2574
2575 if (latency == 0)
2576 return UINT_MAX;
2577
2578 wm_intermediate_val = latency * pixel_rate * bytes_per_pixel;
2579 ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
2580
2581 return ret;
2582 }
2583
2584 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2585 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2586 uint32_t latency)
2587 {
2588 uint32_t ret, plane_bytes_per_line, wm_intermediate_val;
2589
2590 if (latency == 0)
2591 return UINT_MAX;
2592
2593 plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
2594 wm_intermediate_val = latency * pixel_rate;
2595 ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
2596 plane_bytes_per_line;
2597
2598 return ret;
2599 }
2600
2601 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
2602 const struct intel_crtc *intel_crtc)
2603 {
2604 struct drm_device *dev = intel_crtc->base.dev;
2605 struct drm_i915_private *dev_priv = dev->dev_private;
2606 const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
2607 enum pipe pipe = intel_crtc->pipe;
2608
2609 if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
2610 sizeof(new_ddb->plane[pipe])))
2611 return true;
2612
2613 if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
2614 sizeof(new_ddb->cursor[pipe])))
2615 return true;
2616
2617 return false;
2618 }
2619
2620 static void skl_compute_wm_global_parameters(struct drm_device *dev,
2621 struct intel_wm_config *config)
2622 {
2623 struct drm_crtc *crtc;
2624 struct drm_plane *plane;
2625
2626 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2627 config->num_pipes_active += intel_crtc_active(crtc);
2628
2629 /* FIXME: I don't think we need those two global parameters on SKL */
2630 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2631 struct intel_plane *intel_plane = to_intel_plane(plane);
2632
2633 config->sprites_enabled |= intel_plane->wm.enabled;
2634 config->sprites_scaled |= intel_plane->wm.scaled;
2635 }
2636 }
2637
2638 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
2639 struct skl_pipe_wm_parameters *p)
2640 {
2641 struct drm_device *dev = crtc->dev;
2642 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2643 enum pipe pipe = intel_crtc->pipe;
2644 struct drm_plane *plane;
2645 int i = 1; /* Index for sprite planes start */
2646
2647 p->active = intel_crtc_active(crtc);
2648 if (p->active) {
2649 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2650 p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
2651
2652 /*
2653 * For now, assume primary and cursor planes are always enabled.
2654 */
2655 p->plane[0].enabled = true;
2656 p->plane[0].bytes_per_pixel =
2657 crtc->primary->fb->bits_per_pixel / 8;
2658 p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
2659 p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
2660
2661 p->cursor.enabled = true;
2662 p->cursor.bytes_per_pixel = 4;
2663 p->cursor.horiz_pixels = intel_crtc->cursor_width ?
2664 intel_crtc->cursor_width : 64;
2665 }
2666
2667 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2668 struct intel_plane *intel_plane = to_intel_plane(plane);
2669
2670 if (intel_plane->pipe == pipe &&
2671 plane->type == DRM_PLANE_TYPE_OVERLAY)
2672 p->plane[i++] = intel_plane->wm;
2673 }
2674 }
2675
2676 static bool skl_compute_plane_wm(struct skl_pipe_wm_parameters *p,
2677 struct intel_plane_wm_parameters *p_params,
2678 uint16_t ddb_allocation,
2679 uint32_t mem_value,
2680 uint16_t *out_blocks, /* out */
2681 uint8_t *out_lines /* out */)
2682 {
2683 uint32_t method1, method2, plane_bytes_per_line, res_blocks, res_lines;
2684 uint32_t result_bytes;
2685
2686 if (mem_value == 0 || !p->active || !p_params->enabled)
2687 return false;
2688
2689 method1 = skl_wm_method1(p->pixel_rate,
2690 p_params->bytes_per_pixel,
2691 mem_value);
2692 method2 = skl_wm_method2(p->pixel_rate,
2693 p->pipe_htotal,
2694 p_params->horiz_pixels,
2695 p_params->bytes_per_pixel,
2696 mem_value);
2697
2698 plane_bytes_per_line = p_params->horiz_pixels *
2699 p_params->bytes_per_pixel;
2700
2701 /* For now xtile and linear */
2702 if (((ddb_allocation * 512) / plane_bytes_per_line) >= 1)
2703 result_bytes = min(method1, method2);
2704 else
2705 result_bytes = method1;
2706
2707 res_blocks = DIV_ROUND_UP(result_bytes, 512) + 1;
2708 res_lines = DIV_ROUND_UP(result_bytes, plane_bytes_per_line);
2709
2710 if (res_blocks > ddb_allocation || res_lines > 31)
2711 return false;
2712
2713 *out_blocks = res_blocks;
2714 *out_lines = res_lines;
2715
2716 return true;
2717 }
2718
2719 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
2720 struct skl_ddb_allocation *ddb,
2721 struct skl_pipe_wm_parameters *p,
2722 enum pipe pipe,
2723 int level,
2724 int num_planes,
2725 struct skl_wm_level *result)
2726 {
2727 uint16_t latency = dev_priv->wm.skl_latency[level];
2728 uint16_t ddb_blocks;
2729 int i;
2730
2731 for (i = 0; i < num_planes; i++) {
2732 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
2733
2734 result->plane_en[i] = skl_compute_plane_wm(p, &p->plane[i],
2735 ddb_blocks,
2736 latency,
2737 &result->plane_res_b[i],
2738 &result->plane_res_l[i]);
2739 }
2740
2741 ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
2742 result->cursor_en = skl_compute_plane_wm(p, &p->cursor, ddb_blocks,
2743 latency, &result->cursor_res_b,
2744 &result->cursor_res_l);
2745 }
2746
2747 static uint32_t
2748 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
2749 {
2750 if (!intel_crtc_active(crtc))
2751 return 0;
2752
2753 return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
2754
2755 }
2756
2757 static void skl_compute_transition_wm(struct drm_crtc *crtc,
2758 struct skl_pipe_wm_parameters *params,
2759 struct skl_wm_level *trans_wm /* out */)
2760 {
2761 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2762 int i;
2763
2764 if (!params->active)
2765 return;
2766
2767 /* Until we know more, just disable transition WMs */
2768 for (i = 0; i < intel_num_planes(intel_crtc); i++)
2769 trans_wm->plane_en[i] = false;
2770 trans_wm->cursor_en = false;
2771 }
2772
2773 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
2774 struct skl_ddb_allocation *ddb,
2775 struct skl_pipe_wm_parameters *params,
2776 struct skl_pipe_wm *pipe_wm)
2777 {
2778 struct drm_device *dev = crtc->dev;
2779 const struct drm_i915_private *dev_priv = dev->dev_private;
2780 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2781 int level, max_level = ilk_wm_max_level(dev);
2782
2783 for (level = 0; level <= max_level; level++) {
2784 skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
2785 level, intel_num_planes(intel_crtc),
2786 &pipe_wm->wm[level]);
2787 }
2788 pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
2789
2790 skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
2791 }
2792
2793 static void skl_compute_wm_results(struct drm_device *dev,
2794 struct skl_pipe_wm_parameters *p,
2795 struct skl_pipe_wm *p_wm,
2796 struct skl_wm_values *r,
2797 struct intel_crtc *intel_crtc)
2798 {
2799 int level, max_level = ilk_wm_max_level(dev);
2800 enum pipe pipe = intel_crtc->pipe;
2801 uint32_t temp;
2802 int i;
2803
2804 for (level = 0; level <= max_level; level++) {
2805 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
2806 temp = 0;
2807
2808 temp |= p_wm->wm[level].plane_res_l[i] <<
2809 PLANE_WM_LINES_SHIFT;
2810 temp |= p_wm->wm[level].plane_res_b[i];
2811 if (p_wm->wm[level].plane_en[i])
2812 temp |= PLANE_WM_EN;
2813
2814 r->plane[pipe][i][level] = temp;
2815 }
2816
2817 temp = 0;
2818
2819 temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
2820 temp |= p_wm->wm[level].cursor_res_b;
2821
2822 if (p_wm->wm[level].cursor_en)
2823 temp |= PLANE_WM_EN;
2824
2825 r->cursor[pipe][level] = temp;
2826
2827 }
2828
2829 /* transition WMs */
2830 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
2831 temp = 0;
2832 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
2833 temp |= p_wm->trans_wm.plane_res_b[i];
2834 if (p_wm->trans_wm.plane_en[i])
2835 temp |= PLANE_WM_EN;
2836
2837 r->plane_trans[pipe][i] = temp;
2838 }
2839
2840 temp = 0;
2841 temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
2842 temp |= p_wm->trans_wm.cursor_res_b;
2843 if (p_wm->trans_wm.cursor_en)
2844 temp |= PLANE_WM_EN;
2845
2846 r->cursor_trans[pipe] = temp;
2847
2848 r->wm_linetime[pipe] = p_wm->linetime;
2849 }
2850
2851 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
2852 const struct skl_ddb_entry *entry)
2853 {
2854 if (entry->end)
2855 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
2856 else
2857 I915_WRITE(reg, 0);
2858 }
2859
2860 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
2861 const struct skl_wm_values *new)
2862 {
2863 struct drm_device *dev = dev_priv->dev;
2864 struct intel_crtc *crtc;
2865
2866 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
2867 int i, level, max_level = ilk_wm_max_level(dev);
2868 enum pipe pipe = crtc->pipe;
2869
2870 if (!new->dirty[pipe])
2871 continue;
2872
2873 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
2874
2875 for (level = 0; level <= max_level; level++) {
2876 for (i = 0; i < intel_num_planes(crtc); i++)
2877 I915_WRITE(PLANE_WM(pipe, i, level),
2878 new->plane[pipe][i][level]);
2879 I915_WRITE(CUR_WM(pipe, level),
2880 new->cursor[pipe][level]);
2881 }
2882 for (i = 0; i < intel_num_planes(crtc); i++)
2883 I915_WRITE(PLANE_WM_TRANS(pipe, i),
2884 new->plane_trans[pipe][i]);
2885 I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
2886
2887 for (i = 0; i < intel_num_planes(crtc); i++)
2888 skl_ddb_entry_write(dev_priv,
2889 PLANE_BUF_CFG(pipe, i),
2890 &new->ddb.plane[pipe][i]);
2891
2892 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
2893 &new->ddb.cursor[pipe]);
2894 }
2895 }
2896
2897 /*
2898 * When setting up a new DDB allocation arrangement, we need to correctly
2899 * sequence the times at which the new allocations for the pipes are taken into
2900 * account or we'll have pipes fetching from space previously allocated to
2901 * another pipe.
2902 *
2903 * Roughly the sequence looks like:
2904 * 1. re-allocate the pipe(s) with the allocation being reduced and not
2905 * overlapping with a previous light-up pipe (another way to put it is:
2906 * pipes with their new allocation strickly included into their old ones).
2907 * 2. re-allocate the other pipes that get their allocation reduced
2908 * 3. allocate the pipes having their allocation increased
2909 *
2910 * Steps 1. and 2. are here to take care of the following case:
2911 * - Initially DDB looks like this:
2912 * | B | C |
2913 * - enable pipe A.
2914 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
2915 * allocation
2916 * | A | B | C |
2917 *
2918 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
2919 */
2920
2921 static void
2922 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
2923 {
2924 struct drm_device *dev = dev_priv->dev;
2925 int plane;
2926
2927 DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
2928
2929 for_each_plane(pipe, plane) {
2930 I915_WRITE(PLANE_SURF(pipe, plane),
2931 I915_READ(PLANE_SURF(pipe, plane)));
2932 }
2933 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
2934 }
2935
2936 static bool
2937 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
2938 const struct skl_ddb_allocation *new,
2939 enum pipe pipe)
2940 {
2941 uint16_t old_size, new_size;
2942
2943 old_size = skl_ddb_entry_size(&old->pipe[pipe]);
2944 new_size = skl_ddb_entry_size(&new->pipe[pipe]);
2945
2946 return old_size != new_size &&
2947 new->pipe[pipe].start >= old->pipe[pipe].start &&
2948 new->pipe[pipe].end <= old->pipe[pipe].end;
2949 }
2950
2951 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
2952 struct skl_wm_values *new_values)
2953 {
2954 struct drm_device *dev = dev_priv->dev;
2955 struct skl_ddb_allocation *cur_ddb, *new_ddb;
2956 bool reallocated[I915_MAX_PIPES] = {false, false, false};
2957 struct intel_crtc *crtc;
2958 enum pipe pipe;
2959
2960 new_ddb = &new_values->ddb;
2961 cur_ddb = &dev_priv->wm.skl_hw.ddb;
2962
2963 /*
2964 * First pass: flush the pipes with the new allocation contained into
2965 * the old space.
2966 *
2967 * We'll wait for the vblank on those pipes to ensure we can safely
2968 * re-allocate the freed space without this pipe fetching from it.
2969 */
2970 for_each_intel_crtc(dev, crtc) {
2971 if (!crtc->active)
2972 continue;
2973
2974 pipe = crtc->pipe;
2975
2976 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
2977 continue;
2978
2979 skl_wm_flush_pipe(dev_priv, pipe, 1);
2980 intel_wait_for_vblank(dev, pipe);
2981
2982 reallocated[pipe] = true;
2983 }
2984
2985
2986 /*
2987 * Second pass: flush the pipes that are having their allocation
2988 * reduced, but overlapping with a previous allocation.
2989 *
2990 * Here as well we need to wait for the vblank to make sure the freed
2991 * space is not used anymore.
2992 */
2993 for_each_intel_crtc(dev, crtc) {
2994 if (!crtc->active)
2995 continue;
2996
2997 pipe = crtc->pipe;
2998
2999 if (reallocated[pipe])
3000 continue;
3001
3002 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3003 skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3004 skl_wm_flush_pipe(dev_priv, pipe, 2);
3005 intel_wait_for_vblank(dev, pipe);
3006 reallocated[pipe] = true;
3007 }
3008 }
3009
3010 /*
3011 * Third pass: flush the pipes that got more space allocated.
3012 *
3013 * We don't need to actively wait for the update here, next vblank
3014 * will just get more DDB space with the correct WM values.
3015 */
3016 for_each_intel_crtc(dev, crtc) {
3017 if (!crtc->active)
3018 continue;
3019
3020 pipe = crtc->pipe;
3021
3022 /*
3023 * At this point, only the pipes more space than before are
3024 * left to re-allocate.
3025 */
3026 if (reallocated[pipe])
3027 continue;
3028
3029 skl_wm_flush_pipe(dev_priv, pipe, 3);
3030 }
3031 }
3032
3033 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3034 struct skl_pipe_wm_parameters *params,
3035 struct intel_wm_config *config,
3036 struct skl_ddb_allocation *ddb, /* out */
3037 struct skl_pipe_wm *pipe_wm /* out */)
3038 {
3039 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3040
3041 skl_compute_wm_pipe_parameters(crtc, params);
3042 skl_allocate_pipe_ddb(crtc, config, params, ddb);
3043 skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3044
3045 if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3046 return false;
3047
3048 intel_crtc->wm.skl_active = *pipe_wm;
3049 return true;
3050 }
3051
3052 static void skl_update_other_pipe_wm(struct drm_device *dev,
3053 struct drm_crtc *crtc,
3054 struct intel_wm_config *config,
3055 struct skl_wm_values *r)
3056 {
3057 struct intel_crtc *intel_crtc;
3058 struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3059
3060 /*
3061 * If the WM update hasn't changed the allocation for this_crtc (the
3062 * crtc we are currently computing the new WM values for), other
3063 * enabled crtcs will keep the same allocation and we don't need to
3064 * recompute anything for them.
3065 */
3066 if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3067 return;
3068
3069 /*
3070 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3071 * other active pipes need new DDB allocation and WM values.
3072 */
3073 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3074 base.head) {
3075 struct skl_pipe_wm_parameters params = {};
3076 struct skl_pipe_wm pipe_wm = {};
3077 bool wm_changed;
3078
3079 if (this_crtc->pipe == intel_crtc->pipe)
3080 continue;
3081
3082 if (!intel_crtc->active)
3083 continue;
3084
3085 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3086 &params, config,
3087 &r->ddb, &pipe_wm);
3088
3089 /*
3090 * If we end up re-computing the other pipe WM values, it's
3091 * because it was really needed, so we expect the WM values to
3092 * be different.
3093 */
3094 WARN_ON(!wm_changed);
3095
3096 skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3097 r->dirty[intel_crtc->pipe] = true;
3098 }
3099 }
3100
3101 static void skl_update_wm(struct drm_crtc *crtc)
3102 {
3103 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3104 struct drm_device *dev = crtc->dev;
3105 struct drm_i915_private *dev_priv = dev->dev_private;
3106 struct skl_pipe_wm_parameters params = {};
3107 struct skl_wm_values *results = &dev_priv->wm.skl_results;
3108 struct skl_pipe_wm pipe_wm = {};
3109 struct intel_wm_config config = {};
3110
3111 memset(results, 0, sizeof(*results));
3112
3113 skl_compute_wm_global_parameters(dev, &config);
3114
3115 if (!skl_update_pipe_wm(crtc, &params, &config,
3116 &results->ddb, &pipe_wm))
3117 return;
3118
3119 skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3120 results->dirty[intel_crtc->pipe] = true;
3121
3122 skl_update_other_pipe_wm(dev, crtc, &config, results);
3123 skl_write_wm_values(dev_priv, results);
3124 skl_flush_wm_values(dev_priv, results);
3125
3126 /* store the new configuration */
3127 dev_priv->wm.skl_hw = *results;
3128 }
3129
3130 static void
3131 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3132 uint32_t sprite_width, uint32_t sprite_height,
3133 int pixel_size, bool enabled, bool scaled)
3134 {
3135 struct intel_plane *intel_plane = to_intel_plane(plane);
3136
3137 intel_plane->wm.enabled = enabled;
3138 intel_plane->wm.scaled = scaled;
3139 intel_plane->wm.horiz_pixels = sprite_width;
3140 intel_plane->wm.vert_pixels = sprite_height;
3141 intel_plane->wm.bytes_per_pixel = pixel_size;
3142
3143 skl_update_wm(crtc);
3144 }
3145
3146 static void ilk_update_wm(struct drm_crtc *crtc)
3147 {
3148 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3149 struct drm_device *dev = crtc->dev;
3150 struct drm_i915_private *dev_priv = dev->dev_private;
3151 struct ilk_wm_maximums max;
3152 struct ilk_pipe_wm_parameters params = {};
3153 struct ilk_wm_values results = {};
3154 enum intel_ddb_partitioning partitioning;
3155 struct intel_pipe_wm pipe_wm = {};
3156 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3157 struct intel_wm_config config = {};
3158
3159 ilk_compute_wm_parameters(crtc, &params);
3160
3161 intel_compute_pipe_wm(crtc, &params, &pipe_wm);
3162
3163 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3164 return;
3165
3166 intel_crtc->wm.active = pipe_wm;
3167
3168 ilk_compute_wm_config(dev, &config);
3169
3170 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3171 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3172
3173 /* 5/6 split only in single pipe config on IVB+ */
3174 if (INTEL_INFO(dev)->gen >= 7 &&
3175 config.num_pipes_active == 1 && config.sprites_enabled) {
3176 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3177 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3178
3179 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3180 } else {
3181 best_lp_wm = &lp_wm_1_2;
3182 }
3183
3184 partitioning = (best_lp_wm == &lp_wm_1_2) ?
3185 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3186
3187 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3188
3189 ilk_write_wm_values(dev_priv, &results);
3190 }
3191
3192 static void
3193 ilk_update_sprite_wm(struct drm_plane *plane,
3194 struct drm_crtc *crtc,
3195 uint32_t sprite_width, uint32_t sprite_height,
3196 int pixel_size, bool enabled, bool scaled)
3197 {
3198 struct drm_device *dev = plane->dev;
3199 struct intel_plane *intel_plane = to_intel_plane(plane);
3200
3201 intel_plane->wm.enabled = enabled;
3202 intel_plane->wm.scaled = scaled;
3203 intel_plane->wm.horiz_pixels = sprite_width;
3204 intel_plane->wm.vert_pixels = sprite_width;
3205 intel_plane->wm.bytes_per_pixel = pixel_size;
3206
3207 /*
3208 * IVB workaround: must disable low power watermarks for at least
3209 * one frame before enabling scaling. LP watermarks can be re-enabled
3210 * when scaling is disabled.
3211 *
3212 * WaCxSRDisabledForSpriteScaling:ivb
3213 */
3214 if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3215 intel_wait_for_vblank(dev, intel_plane->pipe);
3216
3217 ilk_update_wm(crtc);
3218 }
3219
3220 static void skl_pipe_wm_active_state(uint32_t val,
3221 struct skl_pipe_wm *active,
3222 bool is_transwm,
3223 bool is_cursor,
3224 int i,
3225 int level)
3226 {
3227 bool is_enabled = (val & PLANE_WM_EN) != 0;
3228
3229 if (!is_transwm) {
3230 if (!is_cursor) {
3231 active->wm[level].plane_en[i] = is_enabled;
3232 active->wm[level].plane_res_b[i] =
3233 val & PLANE_WM_BLOCKS_MASK;
3234 active->wm[level].plane_res_l[i] =
3235 (val >> PLANE_WM_LINES_SHIFT) &
3236 PLANE_WM_LINES_MASK;
3237 } else {
3238 active->wm[level].cursor_en = is_enabled;
3239 active->wm[level].cursor_res_b =
3240 val & PLANE_WM_BLOCKS_MASK;
3241 active->wm[level].cursor_res_l =
3242 (val >> PLANE_WM_LINES_SHIFT) &
3243 PLANE_WM_LINES_MASK;
3244 }
3245 } else {
3246 if (!is_cursor) {
3247 active->trans_wm.plane_en[i] = is_enabled;
3248 active->trans_wm.plane_res_b[i] =
3249 val & PLANE_WM_BLOCKS_MASK;
3250 active->trans_wm.plane_res_l[i] =
3251 (val >> PLANE_WM_LINES_SHIFT) &
3252 PLANE_WM_LINES_MASK;
3253 } else {
3254 active->trans_wm.cursor_en = is_enabled;
3255 active->trans_wm.cursor_res_b =
3256 val & PLANE_WM_BLOCKS_MASK;
3257 active->trans_wm.cursor_res_l =
3258 (val >> PLANE_WM_LINES_SHIFT) &
3259 PLANE_WM_LINES_MASK;
3260 }
3261 }
3262 }
3263
3264 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3265 {
3266 struct drm_device *dev = crtc->dev;
3267 struct drm_i915_private *dev_priv = dev->dev_private;
3268 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3269 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3270 struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3271 enum pipe pipe = intel_crtc->pipe;
3272 int level, i, max_level;
3273 uint32_t temp;
3274
3275 max_level = ilk_wm_max_level(dev);
3276
3277 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3278
3279 for (level = 0; level <= max_level; level++) {
3280 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3281 hw->plane[pipe][i][level] =
3282 I915_READ(PLANE_WM(pipe, i, level));
3283 hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
3284 }
3285
3286 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3287 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3288 hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
3289
3290 if (!intel_crtc_active(crtc))
3291 return;
3292
3293 hw->dirty[pipe] = true;
3294
3295 active->linetime = hw->wm_linetime[pipe];
3296
3297 for (level = 0; level <= max_level; level++) {
3298 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3299 temp = hw->plane[pipe][i][level];
3300 skl_pipe_wm_active_state(temp, active, false,
3301 false, i, level);
3302 }
3303 temp = hw->cursor[pipe][level];
3304 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3305 }
3306
3307 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3308 temp = hw->plane_trans[pipe][i];
3309 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3310 }
3311
3312 temp = hw->cursor_trans[pipe];
3313 skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3314 }
3315
3316 void skl_wm_get_hw_state(struct drm_device *dev)
3317 {
3318 struct drm_i915_private *dev_priv = dev->dev_private;
3319 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3320 struct drm_crtc *crtc;
3321
3322 skl_ddb_get_hw_state(dev_priv, ddb);
3323 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3324 skl_pipe_wm_get_hw_state(crtc);
3325 }
3326
3327 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3328 {
3329 struct drm_device *dev = crtc->dev;
3330 struct drm_i915_private *dev_priv = dev->dev_private;
3331 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3332 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3333 struct intel_pipe_wm *active = &intel_crtc->wm.active;
3334 enum pipe pipe = intel_crtc->pipe;
3335 static const unsigned int wm0_pipe_reg[] = {
3336 [PIPE_A] = WM0_PIPEA_ILK,
3337 [PIPE_B] = WM0_PIPEB_ILK,
3338 [PIPE_C] = WM0_PIPEC_IVB,
3339 };
3340
3341 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3342 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3343 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3344
3345 active->pipe_enabled = intel_crtc_active(crtc);
3346
3347 if (active->pipe_enabled) {
3348 u32 tmp = hw->wm_pipe[pipe];
3349
3350 /*
3351 * For active pipes LP0 watermark is marked as
3352 * enabled, and LP1+ watermaks as disabled since
3353 * we can't really reverse compute them in case
3354 * multiple pipes are active.
3355 */
3356 active->wm[0].enable = true;
3357 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3358 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3359 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3360 active->linetime = hw->wm_linetime[pipe];
3361 } else {
3362 int level, max_level = ilk_wm_max_level(dev);
3363
3364 /*
3365 * For inactive pipes, all watermark levels
3366 * should be marked as enabled but zeroed,
3367 * which is what we'd compute them to.
3368 */
3369 for (level = 0; level <= max_level; level++)
3370 active->wm[level].enable = true;
3371 }
3372 }
3373
3374 void ilk_wm_get_hw_state(struct drm_device *dev)
3375 {
3376 struct drm_i915_private *dev_priv = dev->dev_private;
3377 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3378 struct drm_crtc *crtc;
3379
3380 for_each_crtc(dev, crtc)
3381 ilk_pipe_wm_get_hw_state(crtc);
3382
3383 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3384 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3385 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3386
3387 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3388 if (INTEL_INFO(dev)->gen >= 7) {
3389 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3390 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3391 }
3392
3393 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3394 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3395 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3396 else if (IS_IVYBRIDGE(dev))
3397 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
3398 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3399
3400 hw->enable_fbc_wm =
3401 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3402 }
3403
3404 /**
3405 * intel_update_watermarks - update FIFO watermark values based on current modes
3406 *
3407 * Calculate watermark values for the various WM regs based on current mode
3408 * and plane configuration.
3409 *
3410 * There are several cases to deal with here:
3411 * - normal (i.e. non-self-refresh)
3412 * - self-refresh (SR) mode
3413 * - lines are large relative to FIFO size (buffer can hold up to 2)
3414 * - lines are small relative to FIFO size (buffer can hold more than 2
3415 * lines), so need to account for TLB latency
3416 *
3417 * The normal calculation is:
3418 * watermark = dotclock * bytes per pixel * latency
3419 * where latency is platform & configuration dependent (we assume pessimal
3420 * values here).
3421 *
3422 * The SR calculation is:
3423 * watermark = (trunc(latency/line time)+1) * surface width *
3424 * bytes per pixel
3425 * where
3426 * line time = htotal / dotclock
3427 * surface width = hdisplay for normal plane and 64 for cursor
3428 * and latency is assumed to be high, as above.
3429 *
3430 * The final value programmed to the register should always be rounded up,
3431 * and include an extra 2 entries to account for clock crossings.
3432 *
3433 * We don't use the sprite, so we can ignore that. And on Crestline we have
3434 * to set the non-SR watermarks to 8.
3435 */
3436 void intel_update_watermarks(struct drm_crtc *crtc)
3437 {
3438 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3439
3440 if (dev_priv->display.update_wm)
3441 dev_priv->display.update_wm(crtc);
3442 }
3443
3444 void intel_update_sprite_watermarks(struct drm_plane *plane,
3445 struct drm_crtc *crtc,
3446 uint32_t sprite_width,
3447 uint32_t sprite_height,
3448 int pixel_size,
3449 bool enabled, bool scaled)
3450 {
3451 struct drm_i915_private *dev_priv = plane->dev->dev_private;
3452
3453 if (dev_priv->display.update_sprite_wm)
3454 dev_priv->display.update_sprite_wm(plane, crtc,
3455 sprite_width, sprite_height,
3456 pixel_size, enabled, scaled);
3457 }
3458
3459 static struct drm_i915_gem_object *
3460 intel_alloc_context_page(struct drm_device *dev)
3461 {
3462 struct drm_i915_gem_object *ctx;
3463 int ret;
3464
3465 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3466
3467 ctx = i915_gem_alloc_object(dev, 4096);
3468 if (!ctx) {
3469 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3470 return NULL;
3471 }
3472
3473 ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
3474 if (ret) {
3475 DRM_ERROR("failed to pin power context: %d\n", ret);
3476 goto err_unref;
3477 }
3478
3479 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3480 if (ret) {
3481 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3482 goto err_unpin;
3483 }
3484
3485 return ctx;
3486
3487 err_unpin:
3488 i915_gem_object_ggtt_unpin(ctx);
3489 err_unref:
3490 drm_gem_object_unreference(&ctx->base);
3491 return NULL;
3492 }
3493
3494 /**
3495 * Lock protecting IPS related data structures
3496 */
3497 DEFINE_SPINLOCK(mchdev_lock);
3498
3499 /* Global for IPS driver to get at the current i915 device. Protected by
3500 * mchdev_lock. */
3501 static struct drm_i915_private *i915_mch_dev;
3502
3503 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3504 {
3505 struct drm_i915_private *dev_priv = dev->dev_private;
3506 u16 rgvswctl;
3507
3508 assert_spin_locked(&mchdev_lock);
3509
3510 rgvswctl = I915_READ16(MEMSWCTL);
3511 if (rgvswctl & MEMCTL_CMD_STS) {
3512 DRM_DEBUG("gpu busy, RCS change rejected\n");
3513 return false; /* still busy with another command */
3514 }
3515
3516 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3517 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3518 I915_WRITE16(MEMSWCTL, rgvswctl);
3519 POSTING_READ16(MEMSWCTL);
3520
3521 rgvswctl |= MEMCTL_CMD_STS;
3522 I915_WRITE16(MEMSWCTL, rgvswctl);
3523
3524 return true;
3525 }
3526
3527 static void ironlake_enable_drps(struct drm_device *dev)
3528 {
3529 struct drm_i915_private *dev_priv = dev->dev_private;
3530 u32 rgvmodectl = I915_READ(MEMMODECTL);
3531 u8 fmax, fmin, fstart, vstart;
3532
3533 spin_lock_irq(&mchdev_lock);
3534
3535 /* Enable temp reporting */
3536 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3537 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3538
3539 /* 100ms RC evaluation intervals */
3540 I915_WRITE(RCUPEI, 100000);
3541 I915_WRITE(RCDNEI, 100000);
3542
3543 /* Set max/min thresholds to 90ms and 80ms respectively */
3544 I915_WRITE(RCBMAXAVG, 90000);
3545 I915_WRITE(RCBMINAVG, 80000);
3546
3547 I915_WRITE(MEMIHYST, 1);
3548
3549 /* Set up min, max, and cur for interrupt handling */
3550 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3551 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3552 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3553 MEMMODE_FSTART_SHIFT;
3554
3555 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3556 PXVFREQ_PX_SHIFT;
3557
3558 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3559 dev_priv->ips.fstart = fstart;
3560
3561 dev_priv->ips.max_delay = fstart;
3562 dev_priv->ips.min_delay = fmin;
3563 dev_priv->ips.cur_delay = fstart;
3564
3565 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3566 fmax, fmin, fstart);
3567
3568 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3569
3570 /*
3571 * Interrupts will be enabled in ironlake_irq_postinstall
3572 */
3573
3574 I915_WRITE(VIDSTART, vstart);
3575 POSTING_READ(VIDSTART);
3576
3577 rgvmodectl |= MEMMODE_SWMODE_EN;
3578 I915_WRITE(MEMMODECTL, rgvmodectl);
3579
3580 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3581 DRM_ERROR("stuck trying to change perf mode\n");
3582 mdelay(1);
3583
3584 ironlake_set_drps(dev, fstart);
3585
3586 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3587 I915_READ(0x112e0);
3588 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3589 dev_priv->ips.last_count2 = I915_READ(0x112f4);
3590 dev_priv->ips.last_time2 = ktime_get_raw_ns();
3591
3592 spin_unlock_irq(&mchdev_lock);
3593 }
3594
3595 static void ironlake_disable_drps(struct drm_device *dev)
3596 {
3597 struct drm_i915_private *dev_priv = dev->dev_private;
3598 u16 rgvswctl;
3599
3600 spin_lock_irq(&mchdev_lock);
3601
3602 rgvswctl = I915_READ16(MEMSWCTL);
3603
3604 /* Ack interrupts, disable EFC interrupt */
3605 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3606 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3607 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3608 I915_WRITE(DEIIR, DE_PCU_EVENT);
3609 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3610
3611 /* Go back to the starting frequency */
3612 ironlake_set_drps(dev, dev_priv->ips.fstart);
3613 mdelay(1);
3614 rgvswctl |= MEMCTL_CMD_STS;
3615 I915_WRITE(MEMSWCTL, rgvswctl);
3616 mdelay(1);
3617
3618 spin_unlock_irq(&mchdev_lock);
3619 }
3620
3621 /* There's a funny hw issue where the hw returns all 0 when reading from
3622 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3623 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3624 * all limits and the gpu stuck at whatever frequency it is at atm).
3625 */
3626 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3627 {
3628 u32 limits;
3629
3630 /* Only set the down limit when we've reached the lowest level to avoid
3631 * getting more interrupts, otherwise leave this clear. This prevents a
3632 * race in the hw when coming out of rc6: There's a tiny window where
3633 * the hw runs at the minimal clock before selecting the desired
3634 * frequency, if the down threshold expires in that window we will not
3635 * receive a down interrupt. */
3636 limits = dev_priv->rps.max_freq_softlimit << 24;
3637 if (val <= dev_priv->rps.min_freq_softlimit)
3638 limits |= dev_priv->rps.min_freq_softlimit << 16;
3639
3640 return limits;
3641 }
3642
3643 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3644 {
3645 int new_power;
3646
3647 new_power = dev_priv->rps.power;
3648 switch (dev_priv->rps.power) {
3649 case LOW_POWER:
3650 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3651 new_power = BETWEEN;
3652 break;
3653
3654 case BETWEEN:
3655 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3656 new_power = LOW_POWER;
3657 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3658 new_power = HIGH_POWER;
3659 break;
3660
3661 case HIGH_POWER:
3662 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3663 new_power = BETWEEN;
3664 break;
3665 }
3666 /* Max/min bins are special */
3667 if (val == dev_priv->rps.min_freq_softlimit)
3668 new_power = LOW_POWER;
3669 if (val == dev_priv->rps.max_freq_softlimit)
3670 new_power = HIGH_POWER;
3671 if (new_power == dev_priv->rps.power)
3672 return;
3673
3674 /* Note the units here are not exactly 1us, but 1280ns. */
3675 switch (new_power) {
3676 case LOW_POWER:
3677 /* Upclock if more than 95% busy over 16ms */
3678 I915_WRITE(GEN6_RP_UP_EI, 12500);
3679 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3680
3681 /* Downclock if less than 85% busy over 32ms */
3682 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3683 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3684
3685 I915_WRITE(GEN6_RP_CONTROL,
3686 GEN6_RP_MEDIA_TURBO |
3687 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3688 GEN6_RP_MEDIA_IS_GFX |
3689 GEN6_RP_ENABLE |
3690 GEN6_RP_UP_BUSY_AVG |
3691 GEN6_RP_DOWN_IDLE_AVG);
3692 break;
3693
3694 case BETWEEN:
3695 /* Upclock if more than 90% busy over 13ms */
3696 I915_WRITE(GEN6_RP_UP_EI, 10250);
3697 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3698
3699 /* Downclock if less than 75% busy over 32ms */
3700 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3701 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3702
3703 I915_WRITE(GEN6_RP_CONTROL,
3704 GEN6_RP_MEDIA_TURBO |
3705 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3706 GEN6_RP_MEDIA_IS_GFX |
3707 GEN6_RP_ENABLE |
3708 GEN6_RP_UP_BUSY_AVG |
3709 GEN6_RP_DOWN_IDLE_AVG);
3710 break;
3711
3712 case HIGH_POWER:
3713 /* Upclock if more than 85% busy over 10ms */
3714 I915_WRITE(GEN6_RP_UP_EI, 8000);
3715 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3716
3717 /* Downclock if less than 60% busy over 32ms */
3718 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3719 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3720
3721 I915_WRITE(GEN6_RP_CONTROL,
3722 GEN6_RP_MEDIA_TURBO |
3723 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3724 GEN6_RP_MEDIA_IS_GFX |
3725 GEN6_RP_ENABLE |
3726 GEN6_RP_UP_BUSY_AVG |
3727 GEN6_RP_DOWN_IDLE_AVG);
3728 break;
3729 }
3730
3731 dev_priv->rps.power = new_power;
3732 dev_priv->rps.last_adj = 0;
3733 }
3734
3735 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3736 {
3737 u32 mask = 0;
3738
3739 if (val > dev_priv->rps.min_freq_softlimit)
3740 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3741 if (val < dev_priv->rps.max_freq_softlimit)
3742 mask |= GEN6_PM_RP_UP_THRESHOLD;
3743
3744 mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
3745 mask &= dev_priv->pm_rps_events;
3746
3747 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
3748 }
3749
3750 /* gen6_set_rps is called to update the frequency request, but should also be
3751 * called when the range (min_delay and max_delay) is modified so that we can
3752 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3753 void gen6_set_rps(struct drm_device *dev, u8 val)
3754 {
3755 struct drm_i915_private *dev_priv = dev->dev_private;
3756
3757 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3758 WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3759 WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3760
3761 /* min/max delay may still have been modified so be sure to
3762 * write the limits value.
3763 */
3764 if (val != dev_priv->rps.cur_freq) {
3765 gen6_set_rps_thresholds(dev_priv, val);
3766
3767 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3768 I915_WRITE(GEN6_RPNSWREQ,
3769 HSW_FREQUENCY(val));
3770 else
3771 I915_WRITE(GEN6_RPNSWREQ,
3772 GEN6_FREQUENCY(val) |
3773 GEN6_OFFSET(0) |
3774 GEN6_AGGRESSIVE_TURBO);
3775 }
3776
3777 /* Make sure we continue to get interrupts
3778 * until we hit the minimum or maximum frequencies.
3779 */
3780 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3781 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3782
3783 POSTING_READ(GEN6_RPNSWREQ);
3784
3785 dev_priv->rps.cur_freq = val;
3786 trace_intel_gpu_freq_change(val * 50);
3787 }
3788
3789 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3790 *
3791 * * If Gfx is Idle, then
3792 * 1. Mask Turbo interrupts
3793 * 2. Bring up Gfx clock
3794 * 3. Change the freq to Rpn and wait till P-Unit updates freq
3795 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3796 * 5. Unmask Turbo interrupts
3797 */
3798 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3799 {
3800 struct drm_device *dev = dev_priv->dev;
3801
3802 /* Latest VLV doesn't need to force the gfx clock */
3803 if (dev->pdev->revision >= 0xd) {
3804 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3805 return;
3806 }
3807
3808 /*
3809 * When we are idle. Drop to min voltage state.
3810 */
3811
3812 if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3813 return;
3814
3815 /* Mask turbo interrupt so that they will not come in between */
3816 I915_WRITE(GEN6_PMINTRMSK,
3817 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
3818
3819 vlv_force_gfx_clock(dev_priv, true);
3820
3821 dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3822
3823 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3824 dev_priv->rps.min_freq_softlimit);
3825
3826 if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3827 & GENFREQSTATUS) == 0, 100))
3828 DRM_ERROR("timed out waiting for Punit\n");
3829
3830 vlv_force_gfx_clock(dev_priv, false);
3831
3832 I915_WRITE(GEN6_PMINTRMSK,
3833 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3834 }
3835
3836 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3837 {
3838 struct drm_device *dev = dev_priv->dev;
3839
3840 mutex_lock(&dev_priv->rps.hw_lock);
3841 if (dev_priv->rps.enabled) {
3842 if (IS_CHERRYVIEW(dev))
3843 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3844 else if (IS_VALLEYVIEW(dev))
3845 vlv_set_rps_idle(dev_priv);
3846 else
3847 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3848 dev_priv->rps.last_adj = 0;
3849 }
3850 mutex_unlock(&dev_priv->rps.hw_lock);
3851 }
3852
3853 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3854 {
3855 struct drm_device *dev = dev_priv->dev;
3856
3857 mutex_lock(&dev_priv->rps.hw_lock);
3858 if (dev_priv->rps.enabled) {
3859 if (IS_VALLEYVIEW(dev))
3860 valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3861 else
3862 gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3863 dev_priv->rps.last_adj = 0;
3864 }
3865 mutex_unlock(&dev_priv->rps.hw_lock);
3866 }
3867
3868 void valleyview_set_rps(struct drm_device *dev, u8 val)
3869 {
3870 struct drm_i915_private *dev_priv = dev->dev_private;
3871
3872 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3873 WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3874 WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3875
3876 if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
3877 "Odd GPU freq value\n"))
3878 val &= ~1;
3879
3880 if (val != dev_priv->rps.cur_freq)
3881 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3882
3883 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3884
3885 dev_priv->rps.cur_freq = val;
3886 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
3887 }
3888
3889 static void gen9_disable_rps(struct drm_device *dev)
3890 {
3891 struct drm_i915_private *dev_priv = dev->dev_private;
3892
3893 I915_WRITE(GEN6_RC_CONTROL, 0);
3894 I915_WRITE(GEN9_PG_ENABLE, 0);
3895 }
3896
3897 static void gen6_disable_rps(struct drm_device *dev)
3898 {
3899 struct drm_i915_private *dev_priv = dev->dev_private;
3900
3901 I915_WRITE(GEN6_RC_CONTROL, 0);
3902 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3903 }
3904
3905 static void cherryview_disable_rps(struct drm_device *dev)
3906 {
3907 struct drm_i915_private *dev_priv = dev->dev_private;
3908
3909 I915_WRITE(GEN6_RC_CONTROL, 0);
3910 }
3911
3912 static void valleyview_disable_rps(struct drm_device *dev)
3913 {
3914 struct drm_i915_private *dev_priv = dev->dev_private;
3915
3916 /* we're doing forcewake before Disabling RC6,
3917 * This what the BIOS expects when going into suspend */
3918 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
3919
3920 I915_WRITE(GEN6_RC_CONTROL, 0);
3921
3922 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
3923 }
3924
3925 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3926 {
3927 if (IS_VALLEYVIEW(dev)) {
3928 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3929 mode = GEN6_RC_CTL_RC6_ENABLE;
3930 else
3931 mode = 0;
3932 }
3933 if (HAS_RC6p(dev))
3934 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
3935 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3936 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3937 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3938
3939 else
3940 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
3941 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
3942 }
3943
3944 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3945 {
3946 /* No RC6 before Ironlake */
3947 if (INTEL_INFO(dev)->gen < 5)
3948 return 0;
3949
3950 /* RC6 is only on Ironlake mobile not on desktop */
3951 if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3952 return 0;
3953
3954 /* Respect the kernel parameter if it is set */
3955 if (enable_rc6 >= 0) {
3956 int mask;
3957
3958 if (HAS_RC6p(dev))
3959 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3960 INTEL_RC6pp_ENABLE;
3961 else
3962 mask = INTEL_RC6_ENABLE;
3963
3964 if ((enable_rc6 & mask) != enable_rc6)
3965 DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3966 enable_rc6 & mask, enable_rc6, mask);
3967
3968 return enable_rc6 & mask;
3969 }
3970
3971 /* Disable RC6 on Ironlake */
3972 if (INTEL_INFO(dev)->gen == 5)
3973 return 0;
3974
3975 if (IS_IVYBRIDGE(dev))
3976 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3977
3978 return INTEL_RC6_ENABLE;
3979 }
3980
3981 int intel_enable_rc6(const struct drm_device *dev)
3982 {
3983 return i915.enable_rc6;
3984 }
3985
3986 static void gen6_init_rps_frequencies(struct drm_device *dev)
3987 {
3988 struct drm_i915_private *dev_priv = dev->dev_private;
3989 uint32_t rp_state_cap;
3990 u32 ddcc_status = 0;
3991 int ret;
3992
3993 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3994 /* All of these values are in units of 50MHz */
3995 dev_priv->rps.cur_freq = 0;
3996 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
3997 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
3998 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
3999 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4000 /* hw_max = RP0 until we check for overclocking */
4001 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
4002
4003 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4004 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4005 ret = sandybridge_pcode_read(dev_priv,
4006 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4007 &ddcc_status);
4008 if (0 == ret)
4009 dev_priv->rps.efficient_freq =
4010 (ddcc_status >> 8) & 0xff;
4011 }
4012
4013 /* Preserve min/max settings in case of re-init */
4014 if (dev_priv->rps.max_freq_softlimit == 0)
4015 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4016
4017 if (dev_priv->rps.min_freq_softlimit == 0) {
4018 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4019 dev_priv->rps.min_freq_softlimit =
4020 /* max(RPe, 450 MHz) */
4021 max(dev_priv->rps.efficient_freq, (u8) 9);
4022 else
4023 dev_priv->rps.min_freq_softlimit =
4024 dev_priv->rps.min_freq;
4025 }
4026 }
4027
4028 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4029 static void gen9_enable_rps(struct drm_device *dev)
4030 {
4031 struct drm_i915_private *dev_priv = dev->dev_private;
4032
4033 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4034
4035 gen6_init_rps_frequencies(dev);
4036
4037 I915_WRITE(GEN6_RPNSWREQ, 0xc800000);
4038 I915_WRITE(GEN6_RC_VIDEO_FREQ, 0xc800000);
4039
4040 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4041 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, 0x12060000);
4042 I915_WRITE(GEN6_RP_UP_THRESHOLD, 0xe808);
4043 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 0x3bd08);
4044 I915_WRITE(GEN6_RP_UP_EI, 0x101d0);
4045 I915_WRITE(GEN6_RP_DOWN_EI, 0x55730);
4046 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4047 I915_WRITE(GEN6_PMINTRMSK, 0x6);
4048 I915_WRITE(GEN6_RP_CONTROL, GEN6_RP_MEDIA_TURBO |
4049 GEN6_RP_MEDIA_HW_MODE | GEN6_RP_MEDIA_IS_GFX |
4050 GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG |
4051 GEN6_RP_DOWN_IDLE_AVG);
4052
4053 gen6_enable_rps_interrupts(dev);
4054
4055 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4056 }
4057
4058 static void gen9_enable_rc6(struct drm_device *dev)
4059 {
4060 struct drm_i915_private *dev_priv = dev->dev_private;
4061 struct intel_engine_cs *ring;
4062 uint32_t rc6_mask = 0;
4063 int unused;
4064
4065 /* 1a: Software RC state - RC0 */
4066 I915_WRITE(GEN6_RC_STATE, 0);
4067
4068 /* 1b: Get forcewake during program sequence. Although the driver
4069 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4070 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4071
4072 /* 2a: Disable RC states. */
4073 I915_WRITE(GEN6_RC_CONTROL, 0);
4074
4075 /* 2b: Program RC6 thresholds.*/
4076 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4077 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4078 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4079 for_each_ring(ring, dev_priv, unused)
4080 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4081 I915_WRITE(GEN6_RC_SLEEP, 0);
4082 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4083
4084 /* 2c: Program Coarse Power Gating Policies. */
4085 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4086 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4087
4088 /* 3a: Enable RC6 */
4089 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4090 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4091 DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4092 "on" : "off");
4093 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4094 GEN6_RC_CTL_EI_MODE(1) |
4095 rc6_mask);
4096
4097 /* 3b: Enable Coarse Power Gating only when RC6 is enabled */
4098 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? 3 : 0);
4099
4100 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4101
4102 }
4103
4104 static void gen8_enable_rps(struct drm_device *dev)
4105 {
4106 struct drm_i915_private *dev_priv = dev->dev_private;
4107 struct intel_engine_cs *ring;
4108 uint32_t rc6_mask = 0;
4109 int unused;
4110
4111 /* 1a: Software RC state - RC0 */
4112 I915_WRITE(GEN6_RC_STATE, 0);
4113
4114 /* 1c & 1d: Get forcewake during program sequence. Although the driver
4115 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4116 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4117
4118 /* 2a: Disable RC states. */
4119 I915_WRITE(GEN6_RC_CONTROL, 0);
4120
4121 /* Initialize rps frequencies */
4122 gen6_init_rps_frequencies(dev);
4123
4124 /* 2b: Program RC6 thresholds.*/
4125 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4126 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4127 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4128 for_each_ring(ring, dev_priv, unused)
4129 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4130 I915_WRITE(GEN6_RC_SLEEP, 0);
4131 if (IS_BROADWELL(dev))
4132 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4133 else
4134 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4135
4136 /* 3: Enable RC6 */
4137 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4138 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4139 intel_print_rc6_info(dev, rc6_mask);
4140 if (IS_BROADWELL(dev))
4141 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4142 GEN7_RC_CTL_TO_MODE |
4143 rc6_mask);
4144 else
4145 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4146 GEN6_RC_CTL_EI_MODE(1) |
4147 rc6_mask);
4148
4149 /* 4 Program defaults and thresholds for RPS*/
4150 I915_WRITE(GEN6_RPNSWREQ,
4151 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4152 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4153 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4154 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4155 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4156
4157 /* Docs recommend 900MHz, and 300 MHz respectively */
4158 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4159 dev_priv->rps.max_freq_softlimit << 24 |
4160 dev_priv->rps.min_freq_softlimit << 16);
4161
4162 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4163 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4164 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4165 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4166
4167 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4168
4169 /* 5: Enable RPS */
4170 I915_WRITE(GEN6_RP_CONTROL,
4171 GEN6_RP_MEDIA_TURBO |
4172 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4173 GEN6_RP_MEDIA_IS_GFX |
4174 GEN6_RP_ENABLE |
4175 GEN6_RP_UP_BUSY_AVG |
4176 GEN6_RP_DOWN_IDLE_AVG);
4177
4178 /* 6: Ring frequency + overclocking (our driver does this later */
4179
4180 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4181 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4182
4183 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4184 }
4185
4186 static void gen6_enable_rps(struct drm_device *dev)
4187 {
4188 struct drm_i915_private *dev_priv = dev->dev_private;
4189 struct intel_engine_cs *ring;
4190 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4191 u32 gtfifodbg;
4192 int rc6_mode;
4193 int i, ret;
4194
4195 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4196
4197 /* Here begins a magic sequence of register writes to enable
4198 * auto-downclocking.
4199 *
4200 * Perhaps there might be some value in exposing these to
4201 * userspace...
4202 */
4203 I915_WRITE(GEN6_RC_STATE, 0);
4204
4205 /* Clear the DBG now so we don't confuse earlier errors */
4206 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4207 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4208 I915_WRITE(GTFIFODBG, gtfifodbg);
4209 }
4210
4211 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4212
4213 /* Initialize rps frequencies */
4214 gen6_init_rps_frequencies(dev);
4215
4216 /* disable the counters and set deterministic thresholds */
4217 I915_WRITE(GEN6_RC_CONTROL, 0);
4218
4219 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4220 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4221 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4222 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4223 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4224
4225 for_each_ring(ring, dev_priv, i)
4226 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4227
4228 I915_WRITE(GEN6_RC_SLEEP, 0);
4229 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4230 if (IS_IVYBRIDGE(dev))
4231 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4232 else
4233 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4234 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4235 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4236
4237 /* Check if we are enabling RC6 */
4238 rc6_mode = intel_enable_rc6(dev_priv->dev);
4239 if (rc6_mode & INTEL_RC6_ENABLE)
4240 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4241
4242 /* We don't use those on Haswell */
4243 if (!IS_HASWELL(dev)) {
4244 if (rc6_mode & INTEL_RC6p_ENABLE)
4245 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4246
4247 if (rc6_mode & INTEL_RC6pp_ENABLE)
4248 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4249 }
4250
4251 intel_print_rc6_info(dev, rc6_mask);
4252
4253 I915_WRITE(GEN6_RC_CONTROL,
4254 rc6_mask |
4255 GEN6_RC_CTL_EI_MODE(1) |
4256 GEN6_RC_CTL_HW_ENABLE);
4257
4258 /* Power down if completely idle for over 50ms */
4259 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4260 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4261
4262 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4263 if (ret)
4264 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4265
4266 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
4267 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
4268 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4269 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4270 (pcu_mbox & 0xff) * 50);
4271 dev_priv->rps.max_freq = pcu_mbox & 0xff;
4272 }
4273
4274 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4275 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4276
4277 rc6vids = 0;
4278 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
4279 if (IS_GEN6(dev) && ret) {
4280 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
4281 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
4282 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
4283 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
4284 rc6vids &= 0xffff00;
4285 rc6vids |= GEN6_ENCODE_RC6_VID(450);
4286 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
4287 if (ret)
4288 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4289 }
4290
4291 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4292 }
4293
4294 static void __gen6_update_ring_freq(struct drm_device *dev)
4295 {
4296 struct drm_i915_private *dev_priv = dev->dev_private;
4297 int min_freq = 15;
4298 unsigned int gpu_freq;
4299 unsigned int max_ia_freq, min_ring_freq;
4300 int scaling_factor = 180;
4301 struct cpufreq_policy *policy;
4302
4303 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4304
4305 policy = cpufreq_cpu_get(0);
4306 if (policy) {
4307 max_ia_freq = policy->cpuinfo.max_freq;
4308 cpufreq_cpu_put(policy);
4309 } else {
4310 /*
4311 * Default to measured freq if none found, PCU will ensure we
4312 * don't go over
4313 */
4314 max_ia_freq = tsc_khz;
4315 }
4316
4317 /* Convert from kHz to MHz */
4318 max_ia_freq /= 1000;
4319
4320 min_ring_freq = I915_READ(DCLK) & 0xf;
4321 /* convert DDR frequency from units of 266.6MHz to bandwidth */
4322 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4323
4324 /*
4325 * For each potential GPU frequency, load a ring frequency we'd like
4326 * to use for memory access. We do this by specifying the IA frequency
4327 * the PCU should use as a reference to determine the ring frequency.
4328 */
4329 for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
4330 gpu_freq--) {
4331 int diff = dev_priv->rps.max_freq - gpu_freq;
4332 unsigned int ia_freq = 0, ring_freq = 0;
4333
4334 if (INTEL_INFO(dev)->gen >= 8) {
4335 /* max(2 * GT, DDR). NB: GT is 50MHz units */
4336 ring_freq = max(min_ring_freq, gpu_freq);
4337 } else if (IS_HASWELL(dev)) {
4338 ring_freq = mult_frac(gpu_freq, 5, 4);
4339 ring_freq = max(min_ring_freq, ring_freq);
4340 /* leave ia_freq as the default, chosen by cpufreq */
4341 } else {
4342 /* On older processors, there is no separate ring
4343 * clock domain, so in order to boost the bandwidth
4344 * of the ring, we need to upclock the CPU (ia_freq).
4345 *
4346 * For GPU frequencies less than 750MHz,
4347 * just use the lowest ring freq.
4348 */
4349 if (gpu_freq < min_freq)
4350 ia_freq = 800;
4351 else
4352 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
4353 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
4354 }
4355
4356 sandybridge_pcode_write(dev_priv,
4357 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4358 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
4359 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
4360 gpu_freq);
4361 }
4362 }
4363
4364 void gen6_update_ring_freq(struct drm_device *dev)
4365 {
4366 struct drm_i915_private *dev_priv = dev->dev_private;
4367
4368 if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
4369 return;
4370
4371 mutex_lock(&dev_priv->rps.hw_lock);
4372 __gen6_update_ring_freq(dev);
4373 mutex_unlock(&dev_priv->rps.hw_lock);
4374 }
4375
4376 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4377 {
4378 struct drm_device *dev = dev_priv->dev;
4379 u32 val, rp0;
4380
4381 if (dev->pdev->revision >= 0x20) {
4382 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4383
4384 switch (INTEL_INFO(dev)->eu_total) {
4385 case 8:
4386 /* (2 * 4) config */
4387 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
4388 break;
4389 case 12:
4390 /* (2 * 6) config */
4391 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
4392 break;
4393 case 16:
4394 /* (2 * 8) config */
4395 default:
4396 /* Setting (2 * 8) Min RP0 for any other combination */
4397 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
4398 break;
4399 }
4400 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
4401 } else {
4402 /* For pre-production hardware */
4403 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4404 rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
4405 PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4406 }
4407 return rp0;
4408 }
4409
4410 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4411 {
4412 u32 val, rpe;
4413
4414 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
4415 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
4416
4417 return rpe;
4418 }
4419
4420 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
4421 {
4422 struct drm_device *dev = dev_priv->dev;
4423 u32 val, rp1;
4424
4425 if (dev->pdev->revision >= 0x20) {
4426 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4427 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
4428 } else {
4429 /* For pre-production hardware */
4430 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4431 rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
4432 PUNIT_GPU_STATUS_MAX_FREQ_MASK);
4433 }
4434 return rp1;
4435 }
4436
4437 static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4438 {
4439 struct drm_device *dev = dev_priv->dev;
4440 u32 val, rpn;
4441
4442 if (dev->pdev->revision >= 0x20) {
4443 val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
4444 rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
4445 FB_GFX_FREQ_FUSE_MASK);
4446 } else { /* For pre-production hardware */
4447 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4448 rpn = ((val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) &
4449 PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK);
4450 }
4451
4452 return rpn;
4453 }
4454
4455 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
4456 {
4457 u32 val, rp1;
4458
4459 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4460
4461 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
4462
4463 return rp1;
4464 }
4465
4466 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4467 {
4468 u32 val, rp0;
4469
4470 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4471
4472 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
4473 /* Clamp to max */
4474 rp0 = min_t(u32, rp0, 0xea);
4475
4476 return rp0;
4477 }
4478
4479 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4480 {
4481 u32 val, rpe;
4482
4483 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4484 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4485 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4486 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
4487
4488 return rpe;
4489 }
4490
4491 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4492 {
4493 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4494 }
4495
4496 /* Check that the pctx buffer wasn't move under us. */
4497 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
4498 {
4499 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4500
4501 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
4502 dev_priv->vlv_pctx->stolen->start);
4503 }
4504
4505
4506 /* Check that the pcbr address is not empty. */
4507 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
4508 {
4509 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4510
4511 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
4512 }
4513
4514 static void cherryview_setup_pctx(struct drm_device *dev)
4515 {
4516 struct drm_i915_private *dev_priv = dev->dev_private;
4517 unsigned long pctx_paddr, paddr;
4518 struct i915_gtt *gtt = &dev_priv->gtt;
4519 u32 pcbr;
4520 int pctx_size = 32*1024;
4521
4522 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4523
4524 pcbr = I915_READ(VLV_PCBR);
4525 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4526 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4527 paddr = (dev_priv->mm.stolen_base +
4528 (gtt->stolen_size - pctx_size));
4529
4530 pctx_paddr = (paddr & (~4095));
4531 I915_WRITE(VLV_PCBR, pctx_paddr);
4532 }
4533
4534 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4535 }
4536
4537 static void valleyview_setup_pctx(struct drm_device *dev)
4538 {
4539 struct drm_i915_private *dev_priv = dev->dev_private;
4540 struct drm_i915_gem_object *pctx;
4541 unsigned long pctx_paddr;
4542 u32 pcbr;
4543 int pctx_size = 24*1024;
4544
4545 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4546
4547 pcbr = I915_READ(VLV_PCBR);
4548 if (pcbr) {
4549 /* BIOS set it up already, grab the pre-alloc'd space */
4550 int pcbr_offset;
4551
4552 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4553 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4554 pcbr_offset,
4555 I915_GTT_OFFSET_NONE,
4556 pctx_size);
4557 goto out;
4558 }
4559
4560 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4561
4562 /*
4563 * From the Gunit register HAS:
4564 * The Gfx driver is expected to program this register and ensure
4565 * proper allocation within Gfx stolen memory. For example, this
4566 * register should be programmed such than the PCBR range does not
4567 * overlap with other ranges, such as the frame buffer, protected
4568 * memory, or any other relevant ranges.
4569 */
4570 pctx = i915_gem_object_create_stolen(dev, pctx_size);
4571 if (!pctx) {
4572 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4573 return;
4574 }
4575
4576 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4577 I915_WRITE(VLV_PCBR, pctx_paddr);
4578
4579 out:
4580 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4581 dev_priv->vlv_pctx = pctx;
4582 }
4583
4584 static void valleyview_cleanup_pctx(struct drm_device *dev)
4585 {
4586 struct drm_i915_private *dev_priv = dev->dev_private;
4587
4588 if (WARN_ON(!dev_priv->vlv_pctx))
4589 return;
4590
4591 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
4592 dev_priv->vlv_pctx = NULL;
4593 }
4594
4595 static void valleyview_init_gt_powersave(struct drm_device *dev)
4596 {
4597 struct drm_i915_private *dev_priv = dev->dev_private;
4598 u32 val;
4599
4600 valleyview_setup_pctx(dev);
4601
4602 mutex_lock(&dev_priv->rps.hw_lock);
4603
4604 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4605 switch ((val >> 6) & 3) {
4606 case 0:
4607 case 1:
4608 dev_priv->mem_freq = 800;
4609 break;
4610 case 2:
4611 dev_priv->mem_freq = 1066;
4612 break;
4613 case 3:
4614 dev_priv->mem_freq = 1333;
4615 break;
4616 }
4617 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4618
4619 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
4620 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4621 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4622 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4623 dev_priv->rps.max_freq);
4624
4625 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
4626 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4627 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4628 dev_priv->rps.efficient_freq);
4629
4630 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
4631 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4632 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4633 dev_priv->rps.rp1_freq);
4634
4635 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
4636 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4637 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4638 dev_priv->rps.min_freq);
4639
4640 /* Preserve min/max settings in case of re-init */
4641 if (dev_priv->rps.max_freq_softlimit == 0)
4642 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4643
4644 if (dev_priv->rps.min_freq_softlimit == 0)
4645 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4646
4647 mutex_unlock(&dev_priv->rps.hw_lock);
4648 }
4649
4650 static void cherryview_init_gt_powersave(struct drm_device *dev)
4651 {
4652 struct drm_i915_private *dev_priv = dev->dev_private;
4653 u32 val;
4654
4655 cherryview_setup_pctx(dev);
4656
4657 mutex_lock(&dev_priv->rps.hw_lock);
4658
4659 mutex_lock(&dev_priv->dpio_lock);
4660 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
4661 mutex_unlock(&dev_priv->dpio_lock);
4662
4663 switch ((val >> 2) & 0x7) {
4664 case 0:
4665 case 1:
4666 dev_priv->rps.cz_freq = 200;
4667 dev_priv->mem_freq = 1600;
4668 break;
4669 case 2:
4670 dev_priv->rps.cz_freq = 267;
4671 dev_priv->mem_freq = 1600;
4672 break;
4673 case 3:
4674 dev_priv->rps.cz_freq = 333;
4675 dev_priv->mem_freq = 2000;
4676 break;
4677 case 4:
4678 dev_priv->rps.cz_freq = 320;
4679 dev_priv->mem_freq = 1600;
4680 break;
4681 case 5:
4682 dev_priv->rps.cz_freq = 400;
4683 dev_priv->mem_freq = 1600;
4684 break;
4685 }
4686 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4687
4688 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4689 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4690 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4691 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4692 dev_priv->rps.max_freq);
4693
4694 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
4695 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4696 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4697 dev_priv->rps.efficient_freq);
4698
4699 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
4700 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4701 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4702 dev_priv->rps.rp1_freq);
4703
4704 dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
4705 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4706 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4707 dev_priv->rps.min_freq);
4708
4709 WARN_ONCE((dev_priv->rps.max_freq |
4710 dev_priv->rps.efficient_freq |
4711 dev_priv->rps.rp1_freq |
4712 dev_priv->rps.min_freq) & 1,
4713 "Odd GPU freq values\n");
4714
4715 /* Preserve min/max settings in case of re-init */
4716 if (dev_priv->rps.max_freq_softlimit == 0)
4717 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4718
4719 if (dev_priv->rps.min_freq_softlimit == 0)
4720 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4721
4722 mutex_unlock(&dev_priv->rps.hw_lock);
4723 }
4724
4725 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
4726 {
4727 valleyview_cleanup_pctx(dev);
4728 }
4729
4730 static void cherryview_enable_rps(struct drm_device *dev)
4731 {
4732 struct drm_i915_private *dev_priv = dev->dev_private;
4733 struct intel_engine_cs *ring;
4734 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4735 int i;
4736
4737 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4738
4739 gtfifodbg = I915_READ(GTFIFODBG);
4740 if (gtfifodbg) {
4741 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4742 gtfifodbg);
4743 I915_WRITE(GTFIFODBG, gtfifodbg);
4744 }
4745
4746 cherryview_check_pctx(dev_priv);
4747
4748 /* 1a & 1b: Get forcewake during program sequence. Although the driver
4749 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4750 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4751
4752 /* Disable RC states. */
4753 I915_WRITE(GEN6_RC_CONTROL, 0);
4754
4755 /* 2a: Program RC6 thresholds.*/
4756 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4757 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4758 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4759
4760 for_each_ring(ring, dev_priv, i)
4761 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4762 I915_WRITE(GEN6_RC_SLEEP, 0);
4763
4764 /* TO threshold set to 1750 us ( 0x557 * 1.28 us) */
4765 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4766
4767 /* allows RC6 residency counter to work */
4768 I915_WRITE(VLV_COUNTER_CONTROL,
4769 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4770 VLV_MEDIA_RC6_COUNT_EN |
4771 VLV_RENDER_RC6_COUNT_EN));
4772
4773 /* For now we assume BIOS is allocating and populating the PCBR */
4774 pcbr = I915_READ(VLV_PCBR);
4775
4776 /* 3: Enable RC6 */
4777 if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
4778 (pcbr >> VLV_PCBR_ADDR_SHIFT))
4779 rc6_mode = GEN7_RC_CTL_TO_MODE;
4780
4781 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4782
4783 /* 4 Program defaults and thresholds for RPS*/
4784 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4785 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4786 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4787 I915_WRITE(GEN6_RP_UP_EI, 66000);
4788 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4789
4790 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4791
4792 /* 5: Enable RPS */
4793 I915_WRITE(GEN6_RP_CONTROL,
4794 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4795 GEN6_RP_MEDIA_IS_GFX |
4796 GEN6_RP_ENABLE |
4797 GEN6_RP_UP_BUSY_AVG |
4798 GEN6_RP_DOWN_IDLE_AVG);
4799
4800 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4801
4802 /* RPS code assumes GPLL is used */
4803 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
4804
4805 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
4806 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4807
4808 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4809 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4810 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4811 dev_priv->rps.cur_freq);
4812
4813 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4814 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4815 dev_priv->rps.efficient_freq);
4816
4817 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4818
4819 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4820 }
4821
4822 static void valleyview_enable_rps(struct drm_device *dev)
4823 {
4824 struct drm_i915_private *dev_priv = dev->dev_private;
4825 struct intel_engine_cs *ring;
4826 u32 gtfifodbg, val, rc6_mode = 0;
4827 int i;
4828
4829 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4830
4831 valleyview_check_pctx(dev_priv);
4832
4833 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4834 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4835 gtfifodbg);
4836 I915_WRITE(GTFIFODBG, gtfifodbg);
4837 }
4838
4839 /* If VLV, Forcewake all wells, else re-direct to regular path */
4840 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4841
4842 /* Disable RC states. */
4843 I915_WRITE(GEN6_RC_CONTROL, 0);
4844
4845 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4846 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4847 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4848 I915_WRITE(GEN6_RP_UP_EI, 66000);
4849 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4850
4851 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4852
4853 I915_WRITE(GEN6_RP_CONTROL,
4854 GEN6_RP_MEDIA_TURBO |
4855 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4856 GEN6_RP_MEDIA_IS_GFX |
4857 GEN6_RP_ENABLE |
4858 GEN6_RP_UP_BUSY_AVG |
4859 GEN6_RP_DOWN_IDLE_CONT);
4860
4861 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4862 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4863 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4864
4865 for_each_ring(ring, dev_priv, i)
4866 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4867
4868 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4869
4870 /* allows RC6 residency counter to work */
4871 I915_WRITE(VLV_COUNTER_CONTROL,
4872 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
4873 VLV_RENDER_RC0_COUNT_EN |
4874 VLV_MEDIA_RC6_COUNT_EN |
4875 VLV_RENDER_RC6_COUNT_EN));
4876
4877 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4878 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4879
4880 intel_print_rc6_info(dev, rc6_mode);
4881
4882 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4883
4884 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4885
4886 /* RPS code assumes GPLL is used */
4887 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
4888
4889 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
4890 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4891
4892 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4893 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4894 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4895 dev_priv->rps.cur_freq);
4896
4897 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4898 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4899 dev_priv->rps.efficient_freq);
4900
4901 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4902
4903 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4904 }
4905
4906 void ironlake_teardown_rc6(struct drm_device *dev)
4907 {
4908 struct drm_i915_private *dev_priv = dev->dev_private;
4909
4910 if (dev_priv->ips.renderctx) {
4911 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4912 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4913 dev_priv->ips.renderctx = NULL;
4914 }
4915
4916 if (dev_priv->ips.pwrctx) {
4917 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4918 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4919 dev_priv->ips.pwrctx = NULL;
4920 }
4921 }
4922
4923 static void ironlake_disable_rc6(struct drm_device *dev)
4924 {
4925 struct drm_i915_private *dev_priv = dev->dev_private;
4926
4927 if (I915_READ(PWRCTXA)) {
4928 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4929 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4930 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4931 50);
4932
4933 I915_WRITE(PWRCTXA, 0);
4934 POSTING_READ(PWRCTXA);
4935
4936 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4937 POSTING_READ(RSTDBYCTL);
4938 }
4939 }
4940
4941 static int ironlake_setup_rc6(struct drm_device *dev)
4942 {
4943 struct drm_i915_private *dev_priv = dev->dev_private;
4944
4945 if (dev_priv->ips.renderctx == NULL)
4946 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4947 if (!dev_priv->ips.renderctx)
4948 return -ENOMEM;
4949
4950 if (dev_priv->ips.pwrctx == NULL)
4951 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4952 if (!dev_priv->ips.pwrctx) {
4953 ironlake_teardown_rc6(dev);
4954 return -ENOMEM;
4955 }
4956
4957 return 0;
4958 }
4959
4960 static void ironlake_enable_rc6(struct drm_device *dev)
4961 {
4962 struct drm_i915_private *dev_priv = dev->dev_private;
4963 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4964 bool was_interruptible;
4965 int ret;
4966
4967 /* rc6 disabled by default due to repeated reports of hanging during
4968 * boot and resume.
4969 */
4970 if (!intel_enable_rc6(dev))
4971 return;
4972
4973 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4974
4975 ret = ironlake_setup_rc6(dev);
4976 if (ret)
4977 return;
4978
4979 was_interruptible = dev_priv->mm.interruptible;
4980 dev_priv->mm.interruptible = false;
4981
4982 /*
4983 * GPU can automatically power down the render unit if given a page
4984 * to save state.
4985 */
4986 ret = intel_ring_begin(ring, 6);
4987 if (ret) {
4988 ironlake_teardown_rc6(dev);
4989 dev_priv->mm.interruptible = was_interruptible;
4990 return;
4991 }
4992
4993 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4994 intel_ring_emit(ring, MI_SET_CONTEXT);
4995 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4996 MI_MM_SPACE_GTT |
4997 MI_SAVE_EXT_STATE_EN |
4998 MI_RESTORE_EXT_STATE_EN |
4999 MI_RESTORE_INHIBIT);
5000 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
5001 intel_ring_emit(ring, MI_NOOP);
5002 intel_ring_emit(ring, MI_FLUSH);
5003 intel_ring_advance(ring);
5004
5005 /*
5006 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
5007 * does an implicit flush, combined with MI_FLUSH above, it should be
5008 * safe to assume that renderctx is valid
5009 */
5010 ret = intel_ring_idle(ring);
5011 dev_priv->mm.interruptible = was_interruptible;
5012 if (ret) {
5013 DRM_ERROR("failed to enable ironlake power savings\n");
5014 ironlake_teardown_rc6(dev);
5015 return;
5016 }
5017
5018 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
5019 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
5020
5021 intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
5022 }
5023
5024 static unsigned long intel_pxfreq(u32 vidfreq)
5025 {
5026 unsigned long freq;
5027 int div = (vidfreq & 0x3f0000) >> 16;
5028 int post = (vidfreq & 0x3000) >> 12;
5029 int pre = (vidfreq & 0x7);
5030
5031 if (!pre)
5032 return 0;
5033
5034 freq = ((div * 133333) / ((1<<post) * pre));
5035
5036 return freq;
5037 }
5038
5039 static const struct cparams {
5040 u16 i;
5041 u16 t;
5042 u16 m;
5043 u16 c;
5044 } cparams[] = {
5045 { 1, 1333, 301, 28664 },
5046 { 1, 1066, 294, 24460 },
5047 { 1, 800, 294, 25192 },
5048 { 0, 1333, 276, 27605 },
5049 { 0, 1066, 276, 27605 },
5050 { 0, 800, 231, 23784 },
5051 };
5052
5053 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5054 {
5055 u64 total_count, diff, ret;
5056 u32 count1, count2, count3, m = 0, c = 0;
5057 unsigned long now = jiffies_to_msecs(jiffies), diff1;
5058 int i;
5059
5060 assert_spin_locked(&mchdev_lock);
5061
5062 diff1 = now - dev_priv->ips.last_time1;
5063
5064 /* Prevent division-by-zero if we are asking too fast.
5065 * Also, we don't get interesting results if we are polling
5066 * faster than once in 10ms, so just return the saved value
5067 * in such cases.
5068 */
5069 if (diff1 <= 10)
5070 return dev_priv->ips.chipset_power;
5071
5072 count1 = I915_READ(DMIEC);
5073 count2 = I915_READ(DDREC);
5074 count3 = I915_READ(CSIEC);
5075
5076 total_count = count1 + count2 + count3;
5077
5078 /* FIXME: handle per-counter overflow */
5079 if (total_count < dev_priv->ips.last_count1) {
5080 diff = ~0UL - dev_priv->ips.last_count1;
5081 diff += total_count;
5082 } else {
5083 diff = total_count - dev_priv->ips.last_count1;
5084 }
5085
5086 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5087 if (cparams[i].i == dev_priv->ips.c_m &&
5088 cparams[i].t == dev_priv->ips.r_t) {
5089 m = cparams[i].m;
5090 c = cparams[i].c;
5091 break;
5092 }
5093 }
5094
5095 diff = div_u64(diff, diff1);
5096 ret = ((m * diff) + c);
5097 ret = div_u64(ret, 10);
5098
5099 dev_priv->ips.last_count1 = total_count;
5100 dev_priv->ips.last_time1 = now;
5101
5102 dev_priv->ips.chipset_power = ret;
5103
5104 return ret;
5105 }
5106
5107 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5108 {
5109 struct drm_device *dev = dev_priv->dev;
5110 unsigned long val;
5111
5112 if (INTEL_INFO(dev)->gen != 5)
5113 return 0;
5114
5115 spin_lock_irq(&mchdev_lock);
5116
5117 val = __i915_chipset_val(dev_priv);
5118
5119 spin_unlock_irq(&mchdev_lock);
5120
5121 return val;
5122 }
5123
5124 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5125 {
5126 unsigned long m, x, b;
5127 u32 tsfs;
5128
5129 tsfs = I915_READ(TSFS);
5130
5131 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5132 x = I915_READ8(TR1);
5133
5134 b = tsfs & TSFS_INTR_MASK;
5135
5136 return ((m * x) / 127) - b;
5137 }
5138
5139 static int _pxvid_to_vd(u8 pxvid)
5140 {
5141 if (pxvid == 0)
5142 return 0;
5143
5144 if (pxvid >= 8 && pxvid < 31)
5145 pxvid = 31;
5146
5147 return (pxvid + 2) * 125;
5148 }
5149
5150 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5151 {
5152 struct drm_device *dev = dev_priv->dev;
5153 const int vd = _pxvid_to_vd(pxvid);
5154 const int vm = vd - 1125;
5155
5156 if (INTEL_INFO(dev)->is_mobile)
5157 return vm > 0 ? vm : 0;
5158
5159 return vd;
5160 }
5161
5162 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5163 {
5164 u64 now, diff, diffms;
5165 u32 count;
5166
5167 assert_spin_locked(&mchdev_lock);
5168
5169 now = ktime_get_raw_ns();
5170 diffms = now - dev_priv->ips.last_time2;
5171 do_div(diffms, NSEC_PER_MSEC);
5172
5173 /* Don't divide by 0 */
5174 if (!diffms)
5175 return;
5176
5177 count = I915_READ(GFXEC);
5178
5179 if (count < dev_priv->ips.last_count2) {
5180 diff = ~0UL - dev_priv->ips.last_count2;
5181 diff += count;
5182 } else {
5183 diff = count - dev_priv->ips.last_count2;
5184 }
5185
5186 dev_priv->ips.last_count2 = count;
5187 dev_priv->ips.last_time2 = now;
5188
5189 /* More magic constants... */
5190 diff = diff * 1181;
5191 diff = div_u64(diff, diffms * 10);
5192 dev_priv->ips.gfx_power = diff;
5193 }
5194
5195 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5196 {
5197 struct drm_device *dev = dev_priv->dev;
5198
5199 if (INTEL_INFO(dev)->gen != 5)
5200 return;
5201
5202 spin_lock_irq(&mchdev_lock);
5203
5204 __i915_update_gfx_val(dev_priv);
5205
5206 spin_unlock_irq(&mchdev_lock);
5207 }
5208
5209 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5210 {
5211 unsigned long t, corr, state1, corr2, state2;
5212 u32 pxvid, ext_v;
5213
5214 assert_spin_locked(&mchdev_lock);
5215
5216 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5217 pxvid = (pxvid >> 24) & 0x7f;
5218 ext_v = pvid_to_extvid(dev_priv, pxvid);
5219
5220 state1 = ext_v;
5221
5222 t = i915_mch_val(dev_priv);
5223
5224 /* Revel in the empirically derived constants */
5225
5226 /* Correction factor in 1/100000 units */
5227 if (t > 80)
5228 corr = ((t * 2349) + 135940);
5229 else if (t >= 50)
5230 corr = ((t * 964) + 29317);
5231 else /* < 50 */
5232 corr = ((t * 301) + 1004);
5233
5234 corr = corr * ((150142 * state1) / 10000 - 78642);
5235 corr /= 100000;
5236 corr2 = (corr * dev_priv->ips.corr);
5237
5238 state2 = (corr2 * state1) / 10000;
5239 state2 /= 100; /* convert to mW */
5240
5241 __i915_update_gfx_val(dev_priv);
5242
5243 return dev_priv->ips.gfx_power + state2;
5244 }
5245
5246 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5247 {
5248 struct drm_device *dev = dev_priv->dev;
5249 unsigned long val;
5250
5251 if (INTEL_INFO(dev)->gen != 5)
5252 return 0;
5253
5254 spin_lock_irq(&mchdev_lock);
5255
5256 val = __i915_gfx_val(dev_priv);
5257
5258 spin_unlock_irq(&mchdev_lock);
5259
5260 return val;
5261 }
5262
5263 /**
5264 * i915_read_mch_val - return value for IPS use
5265 *
5266 * Calculate and return a value for the IPS driver to use when deciding whether
5267 * we have thermal and power headroom to increase CPU or GPU power budget.
5268 */
5269 unsigned long i915_read_mch_val(void)
5270 {
5271 struct drm_i915_private *dev_priv;
5272 unsigned long chipset_val, graphics_val, ret = 0;
5273
5274 spin_lock_irq(&mchdev_lock);
5275 if (!i915_mch_dev)
5276 goto out_unlock;
5277 dev_priv = i915_mch_dev;
5278
5279 chipset_val = __i915_chipset_val(dev_priv);
5280 graphics_val = __i915_gfx_val(dev_priv);
5281
5282 ret = chipset_val + graphics_val;
5283
5284 out_unlock:
5285 spin_unlock_irq(&mchdev_lock);
5286
5287 return ret;
5288 }
5289 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5290
5291 /**
5292 * i915_gpu_raise - raise GPU frequency limit
5293 *
5294 * Raise the limit; IPS indicates we have thermal headroom.
5295 */
5296 bool i915_gpu_raise(void)
5297 {
5298 struct drm_i915_private *dev_priv;
5299 bool ret = true;
5300
5301 spin_lock_irq(&mchdev_lock);
5302 if (!i915_mch_dev) {
5303 ret = false;
5304 goto out_unlock;
5305 }
5306 dev_priv = i915_mch_dev;
5307
5308 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5309 dev_priv->ips.max_delay--;
5310
5311 out_unlock:
5312 spin_unlock_irq(&mchdev_lock);
5313
5314 return ret;
5315 }
5316 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5317
5318 /**
5319 * i915_gpu_lower - lower GPU frequency limit
5320 *
5321 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5322 * frequency maximum.
5323 */
5324 bool i915_gpu_lower(void)
5325 {
5326 struct drm_i915_private *dev_priv;
5327 bool ret = true;
5328
5329 spin_lock_irq(&mchdev_lock);
5330 if (!i915_mch_dev) {
5331 ret = false;
5332 goto out_unlock;
5333 }
5334 dev_priv = i915_mch_dev;
5335
5336 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5337 dev_priv->ips.max_delay++;
5338
5339 out_unlock:
5340 spin_unlock_irq(&mchdev_lock);
5341
5342 return ret;
5343 }
5344 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5345
5346 /**
5347 * i915_gpu_busy - indicate GPU business to IPS
5348 *
5349 * Tell the IPS driver whether or not the GPU is busy.
5350 */
5351 bool i915_gpu_busy(void)
5352 {
5353 struct drm_i915_private *dev_priv;
5354 struct intel_engine_cs *ring;
5355 bool ret = false;
5356 int i;
5357
5358 spin_lock_irq(&mchdev_lock);
5359 if (!i915_mch_dev)
5360 goto out_unlock;
5361 dev_priv = i915_mch_dev;
5362
5363 for_each_ring(ring, dev_priv, i)
5364 ret |= !list_empty(&ring->request_list);
5365
5366 out_unlock:
5367 spin_unlock_irq(&mchdev_lock);
5368
5369 return ret;
5370 }
5371 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5372
5373 /**
5374 * i915_gpu_turbo_disable - disable graphics turbo
5375 *
5376 * Disable graphics turbo by resetting the max frequency and setting the
5377 * current frequency to the default.
5378 */
5379 bool i915_gpu_turbo_disable(void)
5380 {
5381 struct drm_i915_private *dev_priv;
5382 bool ret = true;
5383
5384 spin_lock_irq(&mchdev_lock);
5385 if (!i915_mch_dev) {
5386 ret = false;
5387 goto out_unlock;
5388 }
5389 dev_priv = i915_mch_dev;
5390
5391 dev_priv->ips.max_delay = dev_priv->ips.fstart;
5392
5393 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5394 ret = false;
5395
5396 out_unlock:
5397 spin_unlock_irq(&mchdev_lock);
5398
5399 return ret;
5400 }
5401 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5402
5403 /**
5404 * Tells the intel_ips driver that the i915 driver is now loaded, if
5405 * IPS got loaded first.
5406 *
5407 * This awkward dance is so that neither module has to depend on the
5408 * other in order for IPS to do the appropriate communication of
5409 * GPU turbo limits to i915.
5410 */
5411 static void
5412 ips_ping_for_i915_load(void)
5413 {
5414 void (*link)(void);
5415
5416 link = symbol_get(ips_link_to_i915_driver);
5417 if (link) {
5418 link();
5419 symbol_put(ips_link_to_i915_driver);
5420 }
5421 }
5422
5423 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5424 {
5425 /* We only register the i915 ips part with intel-ips once everything is
5426 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5427 spin_lock_irq(&mchdev_lock);
5428 i915_mch_dev = dev_priv;
5429 spin_unlock_irq(&mchdev_lock);
5430
5431 ips_ping_for_i915_load();
5432 }
5433
5434 void intel_gpu_ips_teardown(void)
5435 {
5436 spin_lock_irq(&mchdev_lock);
5437 i915_mch_dev = NULL;
5438 spin_unlock_irq(&mchdev_lock);
5439 }
5440
5441 static void intel_init_emon(struct drm_device *dev)
5442 {
5443 struct drm_i915_private *dev_priv = dev->dev_private;
5444 u32 lcfuse;
5445 u8 pxw[16];
5446 int i;
5447
5448 /* Disable to program */
5449 I915_WRITE(ECR, 0);
5450 POSTING_READ(ECR);
5451
5452 /* Program energy weights for various events */
5453 I915_WRITE(SDEW, 0x15040d00);
5454 I915_WRITE(CSIEW0, 0x007f0000);
5455 I915_WRITE(CSIEW1, 0x1e220004);
5456 I915_WRITE(CSIEW2, 0x04000004);
5457
5458 for (i = 0; i < 5; i++)
5459 I915_WRITE(PEW + (i * 4), 0);
5460 for (i = 0; i < 3; i++)
5461 I915_WRITE(DEW + (i * 4), 0);
5462
5463 /* Program P-state weights to account for frequency power adjustment */
5464 for (i = 0; i < 16; i++) {
5465 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5466 unsigned long freq = intel_pxfreq(pxvidfreq);
5467 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5468 PXVFREQ_PX_SHIFT;
5469 unsigned long val;
5470
5471 val = vid * vid;
5472 val *= (freq / 1000);
5473 val *= 255;
5474 val /= (127*127*900);
5475 if (val > 0xff)
5476 DRM_ERROR("bad pxval: %ld\n", val);
5477 pxw[i] = val;
5478 }
5479 /* Render standby states get 0 weight */
5480 pxw[14] = 0;
5481 pxw[15] = 0;
5482
5483 for (i = 0; i < 4; i++) {
5484 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5485 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5486 I915_WRITE(PXW + (i * 4), val);
5487 }
5488
5489 /* Adjust magic regs to magic values (more experimental results) */
5490 I915_WRITE(OGW0, 0);
5491 I915_WRITE(OGW1, 0);
5492 I915_WRITE(EG0, 0x00007f00);
5493 I915_WRITE(EG1, 0x0000000e);
5494 I915_WRITE(EG2, 0x000e0000);
5495 I915_WRITE(EG3, 0x68000300);
5496 I915_WRITE(EG4, 0x42000000);
5497 I915_WRITE(EG5, 0x00140031);
5498 I915_WRITE(EG6, 0);
5499 I915_WRITE(EG7, 0);
5500
5501 for (i = 0; i < 8; i++)
5502 I915_WRITE(PXWL + (i * 4), 0);
5503
5504 /* Enable PMON + select events */
5505 I915_WRITE(ECR, 0x80000019);
5506
5507 lcfuse = I915_READ(LCFUSE02);
5508
5509 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5510 }
5511
5512 void intel_init_gt_powersave(struct drm_device *dev)
5513 {
5514 i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
5515
5516 if (IS_CHERRYVIEW(dev))
5517 cherryview_init_gt_powersave(dev);
5518 else if (IS_VALLEYVIEW(dev))
5519 valleyview_init_gt_powersave(dev);
5520 }
5521
5522 void intel_cleanup_gt_powersave(struct drm_device *dev)
5523 {
5524 if (IS_CHERRYVIEW(dev))
5525 return;
5526 else if (IS_VALLEYVIEW(dev))
5527 valleyview_cleanup_gt_powersave(dev);
5528 }
5529
5530 static void gen6_suspend_rps(struct drm_device *dev)
5531 {
5532 struct drm_i915_private *dev_priv = dev->dev_private;
5533
5534 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5535
5536 /*
5537 * TODO: disable RPS interrupts on GEN9+ too once RPS support
5538 * is added for it.
5539 */
5540 if (INTEL_INFO(dev)->gen < 9)
5541 gen6_disable_rps_interrupts(dev);
5542 }
5543
5544 /**
5545 * intel_suspend_gt_powersave - suspend PM work and helper threads
5546 * @dev: drm device
5547 *
5548 * We don't want to disable RC6 or other features here, we just want
5549 * to make sure any work we've queued has finished and won't bother
5550 * us while we're suspended.
5551 */
5552 void intel_suspend_gt_powersave(struct drm_device *dev)
5553 {
5554 struct drm_i915_private *dev_priv = dev->dev_private;
5555
5556 if (INTEL_INFO(dev)->gen < 6)
5557 return;
5558
5559 gen6_suspend_rps(dev);
5560
5561 /* Force GPU to min freq during suspend */
5562 gen6_rps_idle(dev_priv);
5563 }
5564
5565 void intel_disable_gt_powersave(struct drm_device *dev)
5566 {
5567 struct drm_i915_private *dev_priv = dev->dev_private;
5568
5569 if (IS_IRONLAKE_M(dev)) {
5570 ironlake_disable_drps(dev);
5571 ironlake_disable_rc6(dev);
5572 } else if (INTEL_INFO(dev)->gen >= 6) {
5573 intel_suspend_gt_powersave(dev);
5574
5575 mutex_lock(&dev_priv->rps.hw_lock);
5576 if (INTEL_INFO(dev)->gen >= 9)
5577 gen9_disable_rps(dev);
5578 else if (IS_CHERRYVIEW(dev))
5579 cherryview_disable_rps(dev);
5580 else if (IS_VALLEYVIEW(dev))
5581 valleyview_disable_rps(dev);
5582 else
5583 gen6_disable_rps(dev);
5584
5585 dev_priv->rps.enabled = false;
5586 mutex_unlock(&dev_priv->rps.hw_lock);
5587 }
5588 }
5589
5590 static void intel_gen6_powersave_work(struct work_struct *work)
5591 {
5592 struct drm_i915_private *dev_priv =
5593 container_of(work, struct drm_i915_private,
5594 rps.delayed_resume_work.work);
5595 struct drm_device *dev = dev_priv->dev;
5596
5597 mutex_lock(&dev_priv->rps.hw_lock);
5598
5599 /*
5600 * TODO: reset/enable RPS interrupts on GEN9+ too, once RPS support is
5601 * added for it.
5602 */
5603 if (INTEL_INFO(dev)->gen < 9)
5604 gen6_reset_rps_interrupts(dev);
5605
5606 if (IS_CHERRYVIEW(dev)) {
5607 cherryview_enable_rps(dev);
5608 } else if (IS_VALLEYVIEW(dev)) {
5609 valleyview_enable_rps(dev);
5610 } else if (INTEL_INFO(dev)->gen >= 9) {
5611 gen9_enable_rc6(dev);
5612 gen9_enable_rps(dev);
5613 __gen6_update_ring_freq(dev);
5614 } else if (IS_BROADWELL(dev)) {
5615 gen8_enable_rps(dev);
5616 __gen6_update_ring_freq(dev);
5617 } else {
5618 gen6_enable_rps(dev);
5619 __gen6_update_ring_freq(dev);
5620 }
5621 dev_priv->rps.enabled = true;
5622
5623 if (INTEL_INFO(dev)->gen < 9)
5624 gen6_enable_rps_interrupts(dev);
5625
5626 mutex_unlock(&dev_priv->rps.hw_lock);
5627
5628 intel_runtime_pm_put(dev_priv);
5629 }
5630
5631 void intel_enable_gt_powersave(struct drm_device *dev)
5632 {
5633 struct drm_i915_private *dev_priv = dev->dev_private;
5634
5635 if (IS_IRONLAKE_M(dev)) {
5636 mutex_lock(&dev->struct_mutex);
5637 ironlake_enable_drps(dev);
5638 ironlake_enable_rc6(dev);
5639 intel_init_emon(dev);
5640 mutex_unlock(&dev->struct_mutex);
5641 } else if (INTEL_INFO(dev)->gen >= 6) {
5642 /*
5643 * PCU communication is slow and this doesn't need to be
5644 * done at any specific time, so do this out of our fast path
5645 * to make resume and init faster.
5646 *
5647 * We depend on the HW RC6 power context save/restore
5648 * mechanism when entering D3 through runtime PM suspend. So
5649 * disable RPM until RPS/RC6 is properly setup. We can only
5650 * get here via the driver load/system resume/runtime resume
5651 * paths, so the _noresume version is enough (and in case of
5652 * runtime resume it's necessary).
5653 */
5654 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5655 round_jiffies_up_relative(HZ)))
5656 intel_runtime_pm_get_noresume(dev_priv);
5657 }
5658 }
5659
5660 void intel_reset_gt_powersave(struct drm_device *dev)
5661 {
5662 struct drm_i915_private *dev_priv = dev->dev_private;
5663
5664 if (INTEL_INFO(dev)->gen < 6)
5665 return;
5666
5667 gen6_suspend_rps(dev);
5668 dev_priv->rps.enabled = false;
5669 }
5670
5671 static void ibx_init_clock_gating(struct drm_device *dev)
5672 {
5673 struct drm_i915_private *dev_priv = dev->dev_private;
5674
5675 /*
5676 * On Ibex Peak and Cougar Point, we need to disable clock
5677 * gating for the panel power sequencer or it will fail to
5678 * start up when no ports are active.
5679 */
5680 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5681 }
5682
5683 static void g4x_disable_trickle_feed(struct drm_device *dev)
5684 {
5685 struct drm_i915_private *dev_priv = dev->dev_private;
5686 int pipe;
5687
5688 for_each_pipe(dev_priv, pipe) {
5689 I915_WRITE(DSPCNTR(pipe),
5690 I915_READ(DSPCNTR(pipe)) |
5691 DISPPLANE_TRICKLE_FEED_DISABLE);
5692 intel_flush_primary_plane(dev_priv, pipe);
5693 }
5694 }
5695
5696 static void ilk_init_lp_watermarks(struct drm_device *dev)
5697 {
5698 struct drm_i915_private *dev_priv = dev->dev_private;
5699
5700 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5701 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5702 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5703
5704 /*
5705 * Don't touch WM1S_LP_EN here.
5706 * Doing so could cause underruns.
5707 */
5708 }
5709
5710 static void ironlake_init_clock_gating(struct drm_device *dev)
5711 {
5712 struct drm_i915_private *dev_priv = dev->dev_private;
5713 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5714
5715 /*
5716 * Required for FBC
5717 * WaFbcDisableDpfcClockGating:ilk
5718 */
5719 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5720 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5721 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5722
5723 I915_WRITE(PCH_3DCGDIS0,
5724 MARIUNIT_CLOCK_GATE_DISABLE |
5725 SVSMUNIT_CLOCK_GATE_DISABLE);
5726 I915_WRITE(PCH_3DCGDIS1,
5727 VFMUNIT_CLOCK_GATE_DISABLE);
5728
5729 /*
5730 * According to the spec the following bits should be set in
5731 * order to enable memory self-refresh
5732 * The bit 22/21 of 0x42004
5733 * The bit 5 of 0x42020
5734 * The bit 15 of 0x45000
5735 */
5736 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5737 (I915_READ(ILK_DISPLAY_CHICKEN2) |
5738 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5739 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5740 I915_WRITE(DISP_ARB_CTL,
5741 (I915_READ(DISP_ARB_CTL) |
5742 DISP_FBC_WM_DIS));
5743
5744 ilk_init_lp_watermarks(dev);
5745
5746 /*
5747 * Based on the document from hardware guys the following bits
5748 * should be set unconditionally in order to enable FBC.
5749 * The bit 22 of 0x42000
5750 * The bit 22 of 0x42004
5751 * The bit 7,8,9 of 0x42020.
5752 */
5753 if (IS_IRONLAKE_M(dev)) {
5754 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5755 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5756 I915_READ(ILK_DISPLAY_CHICKEN1) |
5757 ILK_FBCQ_DIS);
5758 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5759 I915_READ(ILK_DISPLAY_CHICKEN2) |
5760 ILK_DPARB_GATE);
5761 }
5762
5763 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5764
5765 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5766 I915_READ(ILK_DISPLAY_CHICKEN2) |
5767 ILK_ELPIN_409_SELECT);
5768 I915_WRITE(_3D_CHICKEN2,
5769 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5770 _3D_CHICKEN2_WM_READ_PIPELINED);
5771
5772 /* WaDisableRenderCachePipelinedFlush:ilk */
5773 I915_WRITE(CACHE_MODE_0,
5774 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5775
5776 /* WaDisable_RenderCache_OperationalFlush:ilk */
5777 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5778
5779 g4x_disable_trickle_feed(dev);
5780
5781 ibx_init_clock_gating(dev);
5782 }
5783
5784 static void cpt_init_clock_gating(struct drm_device *dev)
5785 {
5786 struct drm_i915_private *dev_priv = dev->dev_private;
5787 int pipe;
5788 uint32_t val;
5789
5790 /*
5791 * On Ibex Peak and Cougar Point, we need to disable clock
5792 * gating for the panel power sequencer or it will fail to
5793 * start up when no ports are active.
5794 */
5795 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5796 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5797 PCH_CPUNIT_CLOCK_GATE_DISABLE);
5798 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5799 DPLS_EDP_PPS_FIX_DIS);
5800 /* The below fixes the weird display corruption, a few pixels shifted
5801 * downward, on (only) LVDS of some HP laptops with IVY.
5802 */
5803 for_each_pipe(dev_priv, pipe) {
5804 val = I915_READ(TRANS_CHICKEN2(pipe));
5805 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5806 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5807 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5808 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5809 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5810 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5811 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5812 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5813 }
5814 /* WADP0ClockGatingDisable */
5815 for_each_pipe(dev_priv, pipe) {
5816 I915_WRITE(TRANS_CHICKEN1(pipe),
5817 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5818 }
5819 }
5820
5821 static void gen6_check_mch_setup(struct drm_device *dev)
5822 {
5823 struct drm_i915_private *dev_priv = dev->dev_private;
5824 uint32_t tmp;
5825
5826 tmp = I915_READ(MCH_SSKPD);
5827 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
5828 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
5829 tmp);
5830 }
5831
5832 static void gen6_init_clock_gating(struct drm_device *dev)
5833 {
5834 struct drm_i915_private *dev_priv = dev->dev_private;
5835 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5836
5837 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5838
5839 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5840 I915_READ(ILK_DISPLAY_CHICKEN2) |
5841 ILK_ELPIN_409_SELECT);
5842
5843 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5844 I915_WRITE(_3D_CHICKEN,
5845 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5846
5847 /* WaDisable_RenderCache_OperationalFlush:snb */
5848 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5849
5850 /*
5851 * BSpec recoomends 8x4 when MSAA is used,
5852 * however in practice 16x4 seems fastest.
5853 *
5854 * Note that PS/WM thread counts depend on the WIZ hashing
5855 * disable bit, which we don't touch here, but it's good
5856 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5857 */
5858 I915_WRITE(GEN6_GT_MODE,
5859 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5860
5861 ilk_init_lp_watermarks(dev);
5862
5863 I915_WRITE(CACHE_MODE_0,
5864 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5865
5866 I915_WRITE(GEN6_UCGCTL1,
5867 I915_READ(GEN6_UCGCTL1) |
5868 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5869 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5870
5871 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5872 * gating disable must be set. Failure to set it results in
5873 * flickering pixels due to Z write ordering failures after
5874 * some amount of runtime in the Mesa "fire" demo, and Unigine
5875 * Sanctuary and Tropics, and apparently anything else with
5876 * alpha test or pixel discard.
5877 *
5878 * According to the spec, bit 11 (RCCUNIT) must also be set,
5879 * but we didn't debug actual testcases to find it out.
5880 *
5881 * WaDisableRCCUnitClockGating:snb
5882 * WaDisableRCPBUnitClockGating:snb
5883 */
5884 I915_WRITE(GEN6_UCGCTL2,
5885 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5886 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5887
5888 /* WaStripsFansDisableFastClipPerformanceFix:snb */
5889 I915_WRITE(_3D_CHICKEN3,
5890 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5891
5892 /*
5893 * Bspec says:
5894 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
5895 * 3DSTATE_SF number of SF output attributes is more than 16."
5896 */
5897 I915_WRITE(_3D_CHICKEN3,
5898 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
5899
5900 /*
5901 * According to the spec the following bits should be
5902 * set in order to enable memory self-refresh and fbc:
5903 * The bit21 and bit22 of 0x42000
5904 * The bit21 and bit22 of 0x42004
5905 * The bit5 and bit7 of 0x42020
5906 * The bit14 of 0x70180
5907 * The bit14 of 0x71180
5908 *
5909 * WaFbcAsynchFlipDisableFbcQueue:snb
5910 */
5911 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5912 I915_READ(ILK_DISPLAY_CHICKEN1) |
5913 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5914 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5915 I915_READ(ILK_DISPLAY_CHICKEN2) |
5916 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5917 I915_WRITE(ILK_DSPCLK_GATE_D,
5918 I915_READ(ILK_DSPCLK_GATE_D) |
5919 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
5920 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5921
5922 g4x_disable_trickle_feed(dev);
5923
5924 cpt_init_clock_gating(dev);
5925
5926 gen6_check_mch_setup(dev);
5927 }
5928
5929 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5930 {
5931 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5932
5933 /*
5934 * WaVSThreadDispatchOverride:ivb,vlv
5935 *
5936 * This actually overrides the dispatch
5937 * mode for all thread types.
5938 */
5939 reg &= ~GEN7_FF_SCHED_MASK;
5940 reg |= GEN7_FF_TS_SCHED_HW;
5941 reg |= GEN7_FF_VS_SCHED_HW;
5942 reg |= GEN7_FF_DS_SCHED_HW;
5943
5944 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5945 }
5946
5947 static void lpt_init_clock_gating(struct drm_device *dev)
5948 {
5949 struct drm_i915_private *dev_priv = dev->dev_private;
5950
5951 /*
5952 * TODO: this bit should only be enabled when really needed, then
5953 * disabled when not needed anymore in order to save power.
5954 */
5955 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5956 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5957 I915_READ(SOUTH_DSPCLK_GATE_D) |
5958 PCH_LP_PARTITION_LEVEL_DISABLE);
5959
5960 /* WADPOClockGatingDisable:hsw */
5961 I915_WRITE(_TRANSA_CHICKEN1,
5962 I915_READ(_TRANSA_CHICKEN1) |
5963 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5964 }
5965
5966 static void lpt_suspend_hw(struct drm_device *dev)
5967 {
5968 struct drm_i915_private *dev_priv = dev->dev_private;
5969
5970 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5971 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5972
5973 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5974 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5975 }
5976 }
5977
5978 static void broadwell_init_clock_gating(struct drm_device *dev)
5979 {
5980 struct drm_i915_private *dev_priv = dev->dev_private;
5981 enum pipe pipe;
5982
5983 I915_WRITE(WM3_LP_ILK, 0);
5984 I915_WRITE(WM2_LP_ILK, 0);
5985 I915_WRITE(WM1_LP_ILK, 0);
5986
5987 /* WaSwitchSolVfFArbitrationPriority:bdw */
5988 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5989
5990 /* WaPsrDPAMaskVBlankInSRD:bdw */
5991 I915_WRITE(CHICKEN_PAR1_1,
5992 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5993
5994 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5995 for_each_pipe(dev_priv, pipe) {
5996 I915_WRITE(CHICKEN_PIPESL_1(pipe),
5997 I915_READ(CHICKEN_PIPESL_1(pipe)) |
5998 BDW_DPRS_MASK_VBLANK_SRD);
5999 }
6000
6001 /* WaVSRefCountFullforceMissDisable:bdw */
6002 /* WaDSRefCountFullforceMissDisable:bdw */
6003 I915_WRITE(GEN7_FF_THREAD_MODE,
6004 I915_READ(GEN7_FF_THREAD_MODE) &
6005 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6006
6007 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6008 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6009
6010 /* WaDisableSDEUnitClockGating:bdw */
6011 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6012 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6013
6014 lpt_init_clock_gating(dev);
6015 }
6016
6017 static void haswell_init_clock_gating(struct drm_device *dev)
6018 {
6019 struct drm_i915_private *dev_priv = dev->dev_private;
6020
6021 ilk_init_lp_watermarks(dev);
6022
6023 /* L3 caching of data atomics doesn't work -- disable it. */
6024 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6025 I915_WRITE(HSW_ROW_CHICKEN3,
6026 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6027
6028 /* This is required by WaCatErrorRejectionIssue:hsw */
6029 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6030 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6031 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6032
6033 /* WaVSRefCountFullforceMissDisable:hsw */
6034 I915_WRITE(GEN7_FF_THREAD_MODE,
6035 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6036
6037 /* WaDisable_RenderCache_OperationalFlush:hsw */
6038 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6039
6040 /* enable HiZ Raw Stall Optimization */
6041 I915_WRITE(CACHE_MODE_0_GEN7,
6042 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6043
6044 /* WaDisable4x2SubspanOptimization:hsw */
6045 I915_WRITE(CACHE_MODE_1,
6046 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6047
6048 /*
6049 * BSpec recommends 8x4 when MSAA is used,
6050 * however in practice 16x4 seems fastest.
6051 *
6052 * Note that PS/WM thread counts depend on the WIZ hashing
6053 * disable bit, which we don't touch here, but it's good
6054 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6055 */
6056 I915_WRITE(GEN7_GT_MODE,
6057 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6058
6059 /* WaSampleCChickenBitEnable:hsw */
6060 I915_WRITE(HALF_SLICE_CHICKEN3,
6061 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6062
6063 /* WaSwitchSolVfFArbitrationPriority:hsw */
6064 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6065
6066 /* WaRsPkgCStateDisplayPMReq:hsw */
6067 I915_WRITE(CHICKEN_PAR1_1,
6068 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6069
6070 lpt_init_clock_gating(dev);
6071 }
6072
6073 static void ivybridge_init_clock_gating(struct drm_device *dev)
6074 {
6075 struct drm_i915_private *dev_priv = dev->dev_private;
6076 uint32_t snpcr;
6077
6078 ilk_init_lp_watermarks(dev);
6079
6080 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6081
6082 /* WaDisableEarlyCull:ivb */
6083 I915_WRITE(_3D_CHICKEN3,
6084 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6085
6086 /* WaDisableBackToBackFlipFix:ivb */
6087 I915_WRITE(IVB_CHICKEN3,
6088 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6089 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6090
6091 /* WaDisablePSDDualDispatchEnable:ivb */
6092 if (IS_IVB_GT1(dev))
6093 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6094 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6095
6096 /* WaDisable_RenderCache_OperationalFlush:ivb */
6097 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6098
6099 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6100 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6101 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6102
6103 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6104 I915_WRITE(GEN7_L3CNTLREG1,
6105 GEN7_WA_FOR_GEN7_L3_CONTROL);
6106 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6107 GEN7_WA_L3_CHICKEN_MODE);
6108 if (IS_IVB_GT1(dev))
6109 I915_WRITE(GEN7_ROW_CHICKEN2,
6110 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6111 else {
6112 /* must write both registers */
6113 I915_WRITE(GEN7_ROW_CHICKEN2,
6114 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6115 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6116 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6117 }
6118
6119 /* WaForceL3Serialization:ivb */
6120 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6121 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6122
6123 /*
6124 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6125 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6126 */
6127 I915_WRITE(GEN6_UCGCTL2,
6128 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6129
6130 /* This is required by WaCatErrorRejectionIssue:ivb */
6131 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6132 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6133 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6134
6135 g4x_disable_trickle_feed(dev);
6136
6137 gen7_setup_fixed_func_scheduler(dev_priv);
6138
6139 if (0) { /* causes HiZ corruption on ivb:gt1 */
6140 /* enable HiZ Raw Stall Optimization */
6141 I915_WRITE(CACHE_MODE_0_GEN7,
6142 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6143 }
6144
6145 /* WaDisable4x2SubspanOptimization:ivb */
6146 I915_WRITE(CACHE_MODE_1,
6147 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6148
6149 /*
6150 * BSpec recommends 8x4 when MSAA is used,
6151 * however in practice 16x4 seems fastest.
6152 *
6153 * Note that PS/WM thread counts depend on the WIZ hashing
6154 * disable bit, which we don't touch here, but it's good
6155 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6156 */
6157 I915_WRITE(GEN7_GT_MODE,
6158 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6159
6160 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6161 snpcr &= ~GEN6_MBC_SNPCR_MASK;
6162 snpcr |= GEN6_MBC_SNPCR_MED;
6163 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6164
6165 if (!HAS_PCH_NOP(dev))
6166 cpt_init_clock_gating(dev);
6167
6168 gen6_check_mch_setup(dev);
6169 }
6170
6171 static void valleyview_init_clock_gating(struct drm_device *dev)
6172 {
6173 struct drm_i915_private *dev_priv = dev->dev_private;
6174
6175 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6176
6177 /* WaDisableEarlyCull:vlv */
6178 I915_WRITE(_3D_CHICKEN3,
6179 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6180
6181 /* WaDisableBackToBackFlipFix:vlv */
6182 I915_WRITE(IVB_CHICKEN3,
6183 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6184 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6185
6186 /* WaPsdDispatchEnable:vlv */
6187 /* WaDisablePSDDualDispatchEnable:vlv */
6188 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6189 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6190 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6191
6192 /* WaDisable_RenderCache_OperationalFlush:vlv */
6193 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6194
6195 /* WaForceL3Serialization:vlv */
6196 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6197 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6198
6199 /* WaDisableDopClockGating:vlv */
6200 I915_WRITE(GEN7_ROW_CHICKEN2,
6201 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6202
6203 /* This is required by WaCatErrorRejectionIssue:vlv */
6204 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6205 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6206 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6207
6208 gen7_setup_fixed_func_scheduler(dev_priv);
6209
6210 /*
6211 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6212 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6213 */
6214 I915_WRITE(GEN6_UCGCTL2,
6215 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6216
6217 /* WaDisableL3Bank2xClockGate:vlv
6218 * Disabling L3 clock gating- MMIO 940c[25] = 1
6219 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6220 I915_WRITE(GEN7_UCGCTL4,
6221 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6222
6223 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6224
6225 /*
6226 * BSpec says this must be set, even though
6227 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6228 */
6229 I915_WRITE(CACHE_MODE_1,
6230 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6231
6232 /*
6233 * BSpec recommends 8x4 when MSAA is used,
6234 * however in practice 16x4 seems fastest.
6235 *
6236 * Note that PS/WM thread counts depend on the WIZ hashing
6237 * disable bit, which we don't touch here, but it's good
6238 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6239 */
6240 I915_WRITE(GEN7_GT_MODE,
6241 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6242
6243 /*
6244 * WaIncreaseL3CreditsForVLVB0:vlv
6245 * This is the hardware default actually.
6246 */
6247 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6248
6249 /*
6250 * WaDisableVLVClockGating_VBIIssue:vlv
6251 * Disable clock gating on th GCFG unit to prevent a delay
6252 * in the reporting of vblank events.
6253 */
6254 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6255 }
6256
6257 static void cherryview_init_clock_gating(struct drm_device *dev)
6258 {
6259 struct drm_i915_private *dev_priv = dev->dev_private;
6260
6261 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6262
6263 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6264
6265 /* WaVSRefCountFullforceMissDisable:chv */
6266 /* WaDSRefCountFullforceMissDisable:chv */
6267 I915_WRITE(GEN7_FF_THREAD_MODE,
6268 I915_READ(GEN7_FF_THREAD_MODE) &
6269 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6270
6271 /* WaDisableSemaphoreAndSyncFlipWait:chv */
6272 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6273 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6274
6275 /* WaDisableCSUnitClockGating:chv */
6276 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6277 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6278
6279 /* WaDisableSDEUnitClockGating:chv */
6280 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6281 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6282 }
6283
6284 static void g4x_init_clock_gating(struct drm_device *dev)
6285 {
6286 struct drm_i915_private *dev_priv = dev->dev_private;
6287 uint32_t dspclk_gate;
6288
6289 I915_WRITE(RENCLK_GATE_D1, 0);
6290 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6291 GS_UNIT_CLOCK_GATE_DISABLE |
6292 CL_UNIT_CLOCK_GATE_DISABLE);
6293 I915_WRITE(RAMCLK_GATE_D, 0);
6294 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6295 OVRUNIT_CLOCK_GATE_DISABLE |
6296 OVCUNIT_CLOCK_GATE_DISABLE;
6297 if (IS_GM45(dev))
6298 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6299 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6300
6301 /* WaDisableRenderCachePipelinedFlush */
6302 I915_WRITE(CACHE_MODE_0,
6303 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6304
6305 /* WaDisable_RenderCache_OperationalFlush:g4x */
6306 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6307
6308 g4x_disable_trickle_feed(dev);
6309 }
6310
6311 static void crestline_init_clock_gating(struct drm_device *dev)
6312 {
6313 struct drm_i915_private *dev_priv = dev->dev_private;
6314
6315 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6316 I915_WRITE(RENCLK_GATE_D2, 0);
6317 I915_WRITE(DSPCLK_GATE_D, 0);
6318 I915_WRITE(RAMCLK_GATE_D, 0);
6319 I915_WRITE16(DEUC, 0);
6320 I915_WRITE(MI_ARB_STATE,
6321 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6322
6323 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6324 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6325 }
6326
6327 static void broadwater_init_clock_gating(struct drm_device *dev)
6328 {
6329 struct drm_i915_private *dev_priv = dev->dev_private;
6330
6331 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6332 I965_RCC_CLOCK_GATE_DISABLE |
6333 I965_RCPB_CLOCK_GATE_DISABLE |
6334 I965_ISC_CLOCK_GATE_DISABLE |
6335 I965_FBC_CLOCK_GATE_DISABLE);
6336 I915_WRITE(RENCLK_GATE_D2, 0);
6337 I915_WRITE(MI_ARB_STATE,
6338 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6339
6340 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6341 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6342 }
6343
6344 static void gen3_init_clock_gating(struct drm_device *dev)
6345 {
6346 struct drm_i915_private *dev_priv = dev->dev_private;
6347 u32 dstate = I915_READ(D_STATE);
6348
6349 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6350 DSTATE_DOT_CLOCK_GATING;
6351 I915_WRITE(D_STATE, dstate);
6352
6353 if (IS_PINEVIEW(dev))
6354 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6355
6356 /* IIR "flip pending" means done if this bit is set */
6357 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6358
6359 /* interrupts should cause a wake up from C3 */
6360 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6361
6362 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6363 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6364
6365 I915_WRITE(MI_ARB_STATE,
6366 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6367 }
6368
6369 static void i85x_init_clock_gating(struct drm_device *dev)
6370 {
6371 struct drm_i915_private *dev_priv = dev->dev_private;
6372
6373 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6374
6375 /* interrupts should cause a wake up from C3 */
6376 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6377 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6378
6379 I915_WRITE(MEM_MODE,
6380 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6381 }
6382
6383 static void i830_init_clock_gating(struct drm_device *dev)
6384 {
6385 struct drm_i915_private *dev_priv = dev->dev_private;
6386
6387 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6388
6389 I915_WRITE(MEM_MODE,
6390 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6391 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6392 }
6393
6394 void intel_init_clock_gating(struct drm_device *dev)
6395 {
6396 struct drm_i915_private *dev_priv = dev->dev_private;
6397
6398 dev_priv->display.init_clock_gating(dev);
6399 }
6400
6401 void intel_suspend_hw(struct drm_device *dev)
6402 {
6403 if (HAS_PCH_LPT(dev))
6404 lpt_suspend_hw(dev);
6405 }
6406
6407 /* Set up chip specific power management-related functions */
6408 void intel_init_pm(struct drm_device *dev)
6409 {
6410 struct drm_i915_private *dev_priv = dev->dev_private;
6411
6412 intel_fbc_init(dev_priv);
6413
6414 /* For cxsr */
6415 if (IS_PINEVIEW(dev))
6416 i915_pineview_get_mem_freq(dev);
6417 else if (IS_GEN5(dev))
6418 i915_ironlake_get_mem_freq(dev);
6419
6420 /* For FIFO watermark updates */
6421 if (INTEL_INFO(dev)->gen >= 9) {
6422 skl_setup_wm_latency(dev);
6423
6424 dev_priv->display.init_clock_gating = gen9_init_clock_gating;
6425 dev_priv->display.update_wm = skl_update_wm;
6426 dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
6427 } else if (HAS_PCH_SPLIT(dev)) {
6428 ilk_setup_wm_latency(dev);
6429
6430 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6431 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6432 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6433 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6434 dev_priv->display.update_wm = ilk_update_wm;
6435 dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6436 } else {
6437 DRM_DEBUG_KMS("Failed to read display plane latency. "
6438 "Disable CxSR\n");
6439 }
6440
6441 if (IS_GEN5(dev))
6442 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6443 else if (IS_GEN6(dev))
6444 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6445 else if (IS_IVYBRIDGE(dev))
6446 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6447 else if (IS_HASWELL(dev))
6448 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6449 else if (INTEL_INFO(dev)->gen == 8)
6450 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6451 } else if (IS_CHERRYVIEW(dev)) {
6452 dev_priv->display.update_wm = cherryview_update_wm;
6453 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6454 dev_priv->display.init_clock_gating =
6455 cherryview_init_clock_gating;
6456 } else if (IS_VALLEYVIEW(dev)) {
6457 dev_priv->display.update_wm = valleyview_update_wm;
6458 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6459 dev_priv->display.init_clock_gating =
6460 valleyview_init_clock_gating;
6461 } else if (IS_PINEVIEW(dev)) {
6462 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6463 dev_priv->is_ddr3,
6464 dev_priv->fsb_freq,
6465 dev_priv->mem_freq)) {
6466 DRM_INFO("failed to find known CxSR latency "
6467 "(found ddr%s fsb freq %d, mem freq %d), "
6468 "disabling CxSR\n",
6469 (dev_priv->is_ddr3 == 1) ? "3" : "2",
6470 dev_priv->fsb_freq, dev_priv->mem_freq);
6471 /* Disable CxSR and never update its watermark again */
6472 intel_set_memory_cxsr(dev_priv, false);
6473 dev_priv->display.update_wm = NULL;
6474 } else
6475 dev_priv->display.update_wm = pineview_update_wm;
6476 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6477 } else if (IS_G4X(dev)) {
6478 dev_priv->display.update_wm = g4x_update_wm;
6479 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6480 } else if (IS_GEN4(dev)) {
6481 dev_priv->display.update_wm = i965_update_wm;
6482 if (IS_CRESTLINE(dev))
6483 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6484 else if (IS_BROADWATER(dev))
6485 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6486 } else if (IS_GEN3(dev)) {
6487 dev_priv->display.update_wm = i9xx_update_wm;
6488 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6489 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6490 } else if (IS_GEN2(dev)) {
6491 if (INTEL_INFO(dev)->num_pipes == 1) {
6492 dev_priv->display.update_wm = i845_update_wm;
6493 dev_priv->display.get_fifo_size = i845_get_fifo_size;
6494 } else {
6495 dev_priv->display.update_wm = i9xx_update_wm;
6496 dev_priv->display.get_fifo_size = i830_get_fifo_size;
6497 }
6498
6499 if (IS_I85X(dev) || IS_I865G(dev))
6500 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6501 else
6502 dev_priv->display.init_clock_gating = i830_init_clock_gating;
6503 } else {
6504 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6505 }
6506 }
6507
6508 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
6509 {
6510 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6511
6512 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6513 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6514 return -EAGAIN;
6515 }
6516
6517 I915_WRITE(GEN6_PCODE_DATA, *val);
6518 I915_WRITE(GEN6_PCODE_DATA1, 0);
6519 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6520
6521 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6522 500)) {
6523 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6524 return -ETIMEDOUT;
6525 }
6526
6527 *val = I915_READ(GEN6_PCODE_DATA);
6528 I915_WRITE(GEN6_PCODE_DATA, 0);
6529
6530 return 0;
6531 }
6532
6533 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
6534 {
6535 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6536
6537 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6538 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6539 return -EAGAIN;
6540 }
6541
6542 I915_WRITE(GEN6_PCODE_DATA, val);
6543 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6544
6545 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6546 500)) {
6547 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6548 return -ETIMEDOUT;
6549 }
6550
6551 I915_WRITE(GEN6_PCODE_DATA, 0);
6552
6553 return 0;
6554 }
6555
6556 static int vlv_gpu_freq_div(unsigned int czclk_freq)
6557 {
6558 switch (czclk_freq) {
6559 case 200:
6560 return 10;
6561 case 267:
6562 return 12;
6563 case 320:
6564 case 333:
6565 return 16;
6566 case 400:
6567 return 20;
6568 default:
6569 return -1;
6570 }
6571 }
6572
6573 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
6574 {
6575 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6576
6577 div = vlv_gpu_freq_div(czclk_freq);
6578 if (div < 0)
6579 return div;
6580
6581 return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
6582 }
6583
6584 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6585 {
6586 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6587
6588 mul = vlv_gpu_freq_div(czclk_freq);
6589 if (mul < 0)
6590 return mul;
6591
6592 return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
6593 }
6594
6595 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6596 {
6597 int div, czclk_freq = dev_priv->rps.cz_freq;
6598
6599 div = vlv_gpu_freq_div(czclk_freq) / 2;
6600 if (div < 0)
6601 return div;
6602
6603 return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
6604 }
6605
6606 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6607 {
6608 int mul, czclk_freq = dev_priv->rps.cz_freq;
6609
6610 mul = vlv_gpu_freq_div(czclk_freq) / 2;
6611 if (mul < 0)
6612 return mul;
6613
6614 /* CHV needs even values */
6615 return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
6616 }
6617
6618 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
6619 {
6620 if (IS_CHERRYVIEW(dev_priv->dev))
6621 return chv_gpu_freq(dev_priv, val);
6622 else if (IS_VALLEYVIEW(dev_priv->dev))
6623 return byt_gpu_freq(dev_priv, val);
6624 else
6625 return val * GT_FREQUENCY_MULTIPLIER;
6626 }
6627
6628 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
6629 {
6630 if (IS_CHERRYVIEW(dev_priv->dev))
6631 return chv_freq_opcode(dev_priv, val);
6632 else if (IS_VALLEYVIEW(dev_priv->dev))
6633 return byt_freq_opcode(dev_priv, val);
6634 else
6635 return val / GT_FREQUENCY_MULTIPLIER;
6636 }
6637
6638 void intel_pm_setup(struct drm_device *dev)
6639 {
6640 struct drm_i915_private *dev_priv = dev->dev_private;
6641
6642 mutex_init(&dev_priv->rps.hw_lock);
6643
6644 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6645 intel_gen6_powersave_work);
6646
6647 dev_priv->pm.suspended = false;
6648 }
This page took 0.168964 seconds and 5 git commands to generate.