dd63bba147a45514941fb1a115b194682cda1764
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35 * RC6 is a special power stage which allows the GPU to enter an very
36 * low-voltage mode when idle, using down to 0V while at this stage. This
37 * stage is entered automatically when the GPU is idle when RC6 support is
38 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39 *
40 * There are different RC6 modes available in Intel GPU, which differentiate
41 * among each other with the latency required to enter and leave RC6 and
42 * voltage consumed by the GPU in different states.
43 *
44 * The combination of the following flags define which states GPU is allowed
45 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46 * RC6pp is deepest RC6. Their support by hardware varies according to the
47 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48 * which brings the most power savings; deeper states save more power, but
49 * require higher latency to switch to and wake up.
50 */
51 #define INTEL_RC6_ENABLE (1<<0)
52 #define INTEL_RC6p_ENABLE (1<<1)
53 #define INTEL_RC6pp_ENABLE (1<<2)
54
55 static void bxt_init_clock_gating(struct drm_device *dev)
56 {
57 struct drm_i915_private *dev_priv = dev->dev_private;
58
59 /* WaDisableSDEUnitClockGating:bxt */
60 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
61 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
62
63 /*
64 * FIXME:
65 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
66 */
67 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
68 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
69 }
70
71 static void i915_pineview_get_mem_freq(struct drm_device *dev)
72 {
73 struct drm_i915_private *dev_priv = dev->dev_private;
74 u32 tmp;
75
76 tmp = I915_READ(CLKCFG);
77
78 switch (tmp & CLKCFG_FSB_MASK) {
79 case CLKCFG_FSB_533:
80 dev_priv->fsb_freq = 533; /* 133*4 */
81 break;
82 case CLKCFG_FSB_800:
83 dev_priv->fsb_freq = 800; /* 200*4 */
84 break;
85 case CLKCFG_FSB_667:
86 dev_priv->fsb_freq = 667; /* 167*4 */
87 break;
88 case CLKCFG_FSB_400:
89 dev_priv->fsb_freq = 400; /* 100*4 */
90 break;
91 }
92
93 switch (tmp & CLKCFG_MEM_MASK) {
94 case CLKCFG_MEM_533:
95 dev_priv->mem_freq = 533;
96 break;
97 case CLKCFG_MEM_667:
98 dev_priv->mem_freq = 667;
99 break;
100 case CLKCFG_MEM_800:
101 dev_priv->mem_freq = 800;
102 break;
103 }
104
105 /* detect pineview DDR3 setting */
106 tmp = I915_READ(CSHRDDR3CTL);
107 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
108 }
109
110 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
111 {
112 struct drm_i915_private *dev_priv = dev->dev_private;
113 u16 ddrpll, csipll;
114
115 ddrpll = I915_READ16(DDRMPLL1);
116 csipll = I915_READ16(CSIPLL0);
117
118 switch (ddrpll & 0xff) {
119 case 0xc:
120 dev_priv->mem_freq = 800;
121 break;
122 case 0x10:
123 dev_priv->mem_freq = 1066;
124 break;
125 case 0x14:
126 dev_priv->mem_freq = 1333;
127 break;
128 case 0x18:
129 dev_priv->mem_freq = 1600;
130 break;
131 default:
132 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
133 ddrpll & 0xff);
134 dev_priv->mem_freq = 0;
135 break;
136 }
137
138 dev_priv->ips.r_t = dev_priv->mem_freq;
139
140 switch (csipll & 0x3ff) {
141 case 0x00c:
142 dev_priv->fsb_freq = 3200;
143 break;
144 case 0x00e:
145 dev_priv->fsb_freq = 3733;
146 break;
147 case 0x010:
148 dev_priv->fsb_freq = 4266;
149 break;
150 case 0x012:
151 dev_priv->fsb_freq = 4800;
152 break;
153 case 0x014:
154 dev_priv->fsb_freq = 5333;
155 break;
156 case 0x016:
157 dev_priv->fsb_freq = 5866;
158 break;
159 case 0x018:
160 dev_priv->fsb_freq = 6400;
161 break;
162 default:
163 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
164 csipll & 0x3ff);
165 dev_priv->fsb_freq = 0;
166 break;
167 }
168
169 if (dev_priv->fsb_freq == 3200) {
170 dev_priv->ips.c_m = 0;
171 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
172 dev_priv->ips.c_m = 1;
173 } else {
174 dev_priv->ips.c_m = 2;
175 }
176 }
177
178 static const struct cxsr_latency cxsr_latency_table[] = {
179 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
180 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
181 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
182 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
183 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
184
185 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
186 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
187 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
188 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
189 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
190
191 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
192 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
193 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
194 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
195 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
196
197 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
198 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
199 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
200 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
201 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
202
203 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
204 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
205 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
206 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
207 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
208
209 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
210 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
211 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
212 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
213 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
214 };
215
216 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
217 int is_ddr3,
218 int fsb,
219 int mem)
220 {
221 const struct cxsr_latency *latency;
222 int i;
223
224 if (fsb == 0 || mem == 0)
225 return NULL;
226
227 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
228 latency = &cxsr_latency_table[i];
229 if (is_desktop == latency->is_desktop &&
230 is_ddr3 == latency->is_ddr3 &&
231 fsb == latency->fsb_freq && mem == latency->mem_freq)
232 return latency;
233 }
234
235 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
236
237 return NULL;
238 }
239
240 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
241 {
242 u32 val;
243
244 mutex_lock(&dev_priv->rps.hw_lock);
245
246 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
247 if (enable)
248 val &= ~FORCE_DDR_HIGH_FREQ;
249 else
250 val |= FORCE_DDR_HIGH_FREQ;
251 val &= ~FORCE_DDR_LOW_FREQ;
252 val |= FORCE_DDR_FREQ_REQ_ACK;
253 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
254
255 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
256 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
257 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
258
259 mutex_unlock(&dev_priv->rps.hw_lock);
260 }
261
262 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
263 {
264 u32 val;
265
266 mutex_lock(&dev_priv->rps.hw_lock);
267
268 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
269 if (enable)
270 val |= DSP_MAXFIFO_PM5_ENABLE;
271 else
272 val &= ~DSP_MAXFIFO_PM5_ENABLE;
273 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
274
275 mutex_unlock(&dev_priv->rps.hw_lock);
276 }
277
278 #define FW_WM(value, plane) \
279 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
280
281 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
282 {
283 struct drm_device *dev = dev_priv->dev;
284 u32 val;
285
286 if (IS_VALLEYVIEW(dev)) {
287 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
288 POSTING_READ(FW_BLC_SELF_VLV);
289 dev_priv->wm.vlv.cxsr = enable;
290 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
291 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
292 POSTING_READ(FW_BLC_SELF);
293 } else if (IS_PINEVIEW(dev)) {
294 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
295 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
296 I915_WRITE(DSPFW3, val);
297 POSTING_READ(DSPFW3);
298 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
299 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
300 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
301 I915_WRITE(FW_BLC_SELF, val);
302 POSTING_READ(FW_BLC_SELF);
303 } else if (IS_I915GM(dev)) {
304 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
305 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
306 I915_WRITE(INSTPM, val);
307 POSTING_READ(INSTPM);
308 } else {
309 return;
310 }
311
312 DRM_DEBUG_KMS("memory self-refresh is %s\n",
313 enable ? "enabled" : "disabled");
314 }
315
316
317 /*
318 * Latency for FIFO fetches is dependent on several factors:
319 * - memory configuration (speed, channels)
320 * - chipset
321 * - current MCH state
322 * It can be fairly high in some situations, so here we assume a fairly
323 * pessimal value. It's a tradeoff between extra memory fetches (if we
324 * set this value too high, the FIFO will fetch frequently to stay full)
325 * and power consumption (set it too low to save power and we might see
326 * FIFO underruns and display "flicker").
327 *
328 * A value of 5us seems to be a good balance; safe for very low end
329 * platforms but not overly aggressive on lower latency configs.
330 */
331 static const int pessimal_latency_ns = 5000;
332
333 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
334 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
335
336 static int vlv_get_fifo_size(struct drm_device *dev,
337 enum pipe pipe, int plane)
338 {
339 struct drm_i915_private *dev_priv = dev->dev_private;
340 int sprite0_start, sprite1_start, size;
341
342 switch (pipe) {
343 uint32_t dsparb, dsparb2, dsparb3;
344 case PIPE_A:
345 dsparb = I915_READ(DSPARB);
346 dsparb2 = I915_READ(DSPARB2);
347 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
348 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
349 break;
350 case PIPE_B:
351 dsparb = I915_READ(DSPARB);
352 dsparb2 = I915_READ(DSPARB2);
353 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
354 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
355 break;
356 case PIPE_C:
357 dsparb2 = I915_READ(DSPARB2);
358 dsparb3 = I915_READ(DSPARB3);
359 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
360 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
361 break;
362 default:
363 return 0;
364 }
365
366 switch (plane) {
367 case 0:
368 size = sprite0_start;
369 break;
370 case 1:
371 size = sprite1_start - sprite0_start;
372 break;
373 case 2:
374 size = 512 - 1 - sprite1_start;
375 break;
376 default:
377 return 0;
378 }
379
380 DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
381 pipe_name(pipe), plane == 0 ? "primary" : "sprite",
382 plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
383 size);
384
385 return size;
386 }
387
388 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
389 {
390 struct drm_i915_private *dev_priv = dev->dev_private;
391 uint32_t dsparb = I915_READ(DSPARB);
392 int size;
393
394 size = dsparb & 0x7f;
395 if (plane)
396 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
397
398 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
399 plane ? "B" : "A", size);
400
401 return size;
402 }
403
404 static int i830_get_fifo_size(struct drm_device *dev, int plane)
405 {
406 struct drm_i915_private *dev_priv = dev->dev_private;
407 uint32_t dsparb = I915_READ(DSPARB);
408 int size;
409
410 size = dsparb & 0x1ff;
411 if (plane)
412 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
413 size >>= 1; /* Convert to cachelines */
414
415 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
416 plane ? "B" : "A", size);
417
418 return size;
419 }
420
421 static int i845_get_fifo_size(struct drm_device *dev, int plane)
422 {
423 struct drm_i915_private *dev_priv = dev->dev_private;
424 uint32_t dsparb = I915_READ(DSPARB);
425 int size;
426
427 size = dsparb & 0x7f;
428 size >>= 2; /* Convert to cachelines */
429
430 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
431 plane ? "B" : "A",
432 size);
433
434 return size;
435 }
436
437 /* Pineview has different values for various configs */
438 static const struct intel_watermark_params pineview_display_wm = {
439 .fifo_size = PINEVIEW_DISPLAY_FIFO,
440 .max_wm = PINEVIEW_MAX_WM,
441 .default_wm = PINEVIEW_DFT_WM,
442 .guard_size = PINEVIEW_GUARD_WM,
443 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
444 };
445 static const struct intel_watermark_params pineview_display_hplloff_wm = {
446 .fifo_size = PINEVIEW_DISPLAY_FIFO,
447 .max_wm = PINEVIEW_MAX_WM,
448 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
449 .guard_size = PINEVIEW_GUARD_WM,
450 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
451 };
452 static const struct intel_watermark_params pineview_cursor_wm = {
453 .fifo_size = PINEVIEW_CURSOR_FIFO,
454 .max_wm = PINEVIEW_CURSOR_MAX_WM,
455 .default_wm = PINEVIEW_CURSOR_DFT_WM,
456 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
457 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
458 };
459 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
460 .fifo_size = PINEVIEW_CURSOR_FIFO,
461 .max_wm = PINEVIEW_CURSOR_MAX_WM,
462 .default_wm = PINEVIEW_CURSOR_DFT_WM,
463 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
464 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
465 };
466 static const struct intel_watermark_params g4x_wm_info = {
467 .fifo_size = G4X_FIFO_SIZE,
468 .max_wm = G4X_MAX_WM,
469 .default_wm = G4X_MAX_WM,
470 .guard_size = 2,
471 .cacheline_size = G4X_FIFO_LINE_SIZE,
472 };
473 static const struct intel_watermark_params g4x_cursor_wm_info = {
474 .fifo_size = I965_CURSOR_FIFO,
475 .max_wm = I965_CURSOR_MAX_WM,
476 .default_wm = I965_CURSOR_DFT_WM,
477 .guard_size = 2,
478 .cacheline_size = G4X_FIFO_LINE_SIZE,
479 };
480 static const struct intel_watermark_params valleyview_wm_info = {
481 .fifo_size = VALLEYVIEW_FIFO_SIZE,
482 .max_wm = VALLEYVIEW_MAX_WM,
483 .default_wm = VALLEYVIEW_MAX_WM,
484 .guard_size = 2,
485 .cacheline_size = G4X_FIFO_LINE_SIZE,
486 };
487 static const struct intel_watermark_params valleyview_cursor_wm_info = {
488 .fifo_size = I965_CURSOR_FIFO,
489 .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
490 .default_wm = I965_CURSOR_DFT_WM,
491 .guard_size = 2,
492 .cacheline_size = G4X_FIFO_LINE_SIZE,
493 };
494 static const struct intel_watermark_params i965_cursor_wm_info = {
495 .fifo_size = I965_CURSOR_FIFO,
496 .max_wm = I965_CURSOR_MAX_WM,
497 .default_wm = I965_CURSOR_DFT_WM,
498 .guard_size = 2,
499 .cacheline_size = I915_FIFO_LINE_SIZE,
500 };
501 static const struct intel_watermark_params i945_wm_info = {
502 .fifo_size = I945_FIFO_SIZE,
503 .max_wm = I915_MAX_WM,
504 .default_wm = 1,
505 .guard_size = 2,
506 .cacheline_size = I915_FIFO_LINE_SIZE,
507 };
508 static const struct intel_watermark_params i915_wm_info = {
509 .fifo_size = I915_FIFO_SIZE,
510 .max_wm = I915_MAX_WM,
511 .default_wm = 1,
512 .guard_size = 2,
513 .cacheline_size = I915_FIFO_LINE_SIZE,
514 };
515 static const struct intel_watermark_params i830_a_wm_info = {
516 .fifo_size = I855GM_FIFO_SIZE,
517 .max_wm = I915_MAX_WM,
518 .default_wm = 1,
519 .guard_size = 2,
520 .cacheline_size = I830_FIFO_LINE_SIZE,
521 };
522 static const struct intel_watermark_params i830_bc_wm_info = {
523 .fifo_size = I855GM_FIFO_SIZE,
524 .max_wm = I915_MAX_WM/2,
525 .default_wm = 1,
526 .guard_size = 2,
527 .cacheline_size = I830_FIFO_LINE_SIZE,
528 };
529 static const struct intel_watermark_params i845_wm_info = {
530 .fifo_size = I830_FIFO_SIZE,
531 .max_wm = I915_MAX_WM,
532 .default_wm = 1,
533 .guard_size = 2,
534 .cacheline_size = I830_FIFO_LINE_SIZE,
535 };
536
537 /**
538 * intel_calculate_wm - calculate watermark level
539 * @clock_in_khz: pixel clock
540 * @wm: chip FIFO params
541 * @pixel_size: display pixel size
542 * @latency_ns: memory latency for the platform
543 *
544 * Calculate the watermark level (the level at which the display plane will
545 * start fetching from memory again). Each chip has a different display
546 * FIFO size and allocation, so the caller needs to figure that out and pass
547 * in the correct intel_watermark_params structure.
548 *
549 * As the pixel clock runs, the FIFO will be drained at a rate that depends
550 * on the pixel size. When it reaches the watermark level, it'll start
551 * fetching FIFO line sized based chunks from memory until the FIFO fills
552 * past the watermark point. If the FIFO drains completely, a FIFO underrun
553 * will occur, and a display engine hang could result.
554 */
555 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
556 const struct intel_watermark_params *wm,
557 int fifo_size,
558 int pixel_size,
559 unsigned long latency_ns)
560 {
561 long entries_required, wm_size;
562
563 /*
564 * Note: we need to make sure we don't overflow for various clock &
565 * latency values.
566 * clocks go from a few thousand to several hundred thousand.
567 * latency is usually a few thousand
568 */
569 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
570 1000;
571 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
572
573 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
574
575 wm_size = fifo_size - (entries_required + wm->guard_size);
576
577 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
578
579 /* Don't promote wm_size to unsigned... */
580 if (wm_size > (long)wm->max_wm)
581 wm_size = wm->max_wm;
582 if (wm_size <= 0)
583 wm_size = wm->default_wm;
584
585 /*
586 * Bspec seems to indicate that the value shouldn't be lower than
587 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
588 * Lets go for 8 which is the burst size since certain platforms
589 * already use a hardcoded 8 (which is what the spec says should be
590 * done).
591 */
592 if (wm_size <= 8)
593 wm_size = 8;
594
595 return wm_size;
596 }
597
598 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
599 {
600 struct drm_crtc *crtc, *enabled = NULL;
601
602 for_each_crtc(dev, crtc) {
603 if (intel_crtc_active(crtc)) {
604 if (enabled)
605 return NULL;
606 enabled = crtc;
607 }
608 }
609
610 return enabled;
611 }
612
613 static void pineview_update_wm(struct drm_crtc *unused_crtc)
614 {
615 struct drm_device *dev = unused_crtc->dev;
616 struct drm_i915_private *dev_priv = dev->dev_private;
617 struct drm_crtc *crtc;
618 const struct cxsr_latency *latency;
619 u32 reg;
620 unsigned long wm;
621
622 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
623 dev_priv->fsb_freq, dev_priv->mem_freq);
624 if (!latency) {
625 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
626 intel_set_memory_cxsr(dev_priv, false);
627 return;
628 }
629
630 crtc = single_enabled_crtc(dev);
631 if (crtc) {
632 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
633 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
634 int clock = adjusted_mode->crtc_clock;
635
636 /* Display SR */
637 wm = intel_calculate_wm(clock, &pineview_display_wm,
638 pineview_display_wm.fifo_size,
639 pixel_size, latency->display_sr);
640 reg = I915_READ(DSPFW1);
641 reg &= ~DSPFW_SR_MASK;
642 reg |= FW_WM(wm, SR);
643 I915_WRITE(DSPFW1, reg);
644 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
645
646 /* cursor SR */
647 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
648 pineview_display_wm.fifo_size,
649 pixel_size, latency->cursor_sr);
650 reg = I915_READ(DSPFW3);
651 reg &= ~DSPFW_CURSOR_SR_MASK;
652 reg |= FW_WM(wm, CURSOR_SR);
653 I915_WRITE(DSPFW3, reg);
654
655 /* Display HPLL off SR */
656 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
657 pineview_display_hplloff_wm.fifo_size,
658 pixel_size, latency->display_hpll_disable);
659 reg = I915_READ(DSPFW3);
660 reg &= ~DSPFW_HPLL_SR_MASK;
661 reg |= FW_WM(wm, HPLL_SR);
662 I915_WRITE(DSPFW3, reg);
663
664 /* cursor HPLL off SR */
665 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
666 pineview_display_hplloff_wm.fifo_size,
667 pixel_size, latency->cursor_hpll_disable);
668 reg = I915_READ(DSPFW3);
669 reg &= ~DSPFW_HPLL_CURSOR_MASK;
670 reg |= FW_WM(wm, HPLL_CURSOR);
671 I915_WRITE(DSPFW3, reg);
672 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
673
674 intel_set_memory_cxsr(dev_priv, true);
675 } else {
676 intel_set_memory_cxsr(dev_priv, false);
677 }
678 }
679
680 static bool g4x_compute_wm0(struct drm_device *dev,
681 int plane,
682 const struct intel_watermark_params *display,
683 int display_latency_ns,
684 const struct intel_watermark_params *cursor,
685 int cursor_latency_ns,
686 int *plane_wm,
687 int *cursor_wm)
688 {
689 struct drm_crtc *crtc;
690 const struct drm_display_mode *adjusted_mode;
691 int htotal, hdisplay, clock, pixel_size;
692 int line_time_us, line_count;
693 int entries, tlb_miss;
694
695 crtc = intel_get_crtc_for_plane(dev, plane);
696 if (!intel_crtc_active(crtc)) {
697 *cursor_wm = cursor->guard_size;
698 *plane_wm = display->guard_size;
699 return false;
700 }
701
702 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
703 clock = adjusted_mode->crtc_clock;
704 htotal = adjusted_mode->crtc_htotal;
705 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
706 pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
707
708 /* Use the small buffer method to calculate plane watermark */
709 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
710 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
711 if (tlb_miss > 0)
712 entries += tlb_miss;
713 entries = DIV_ROUND_UP(entries, display->cacheline_size);
714 *plane_wm = entries + display->guard_size;
715 if (*plane_wm > (int)display->max_wm)
716 *plane_wm = display->max_wm;
717
718 /* Use the large buffer method to calculate cursor watermark */
719 line_time_us = max(htotal * 1000 / clock, 1);
720 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
721 entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
722 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
723 if (tlb_miss > 0)
724 entries += tlb_miss;
725 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
726 *cursor_wm = entries + cursor->guard_size;
727 if (*cursor_wm > (int)cursor->max_wm)
728 *cursor_wm = (int)cursor->max_wm;
729
730 return true;
731 }
732
733 /*
734 * Check the wm result.
735 *
736 * If any calculated watermark values is larger than the maximum value that
737 * can be programmed into the associated watermark register, that watermark
738 * must be disabled.
739 */
740 static bool g4x_check_srwm(struct drm_device *dev,
741 int display_wm, int cursor_wm,
742 const struct intel_watermark_params *display,
743 const struct intel_watermark_params *cursor)
744 {
745 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
746 display_wm, cursor_wm);
747
748 if (display_wm > display->max_wm) {
749 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
750 display_wm, display->max_wm);
751 return false;
752 }
753
754 if (cursor_wm > cursor->max_wm) {
755 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
756 cursor_wm, cursor->max_wm);
757 return false;
758 }
759
760 if (!(display_wm || cursor_wm)) {
761 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
762 return false;
763 }
764
765 return true;
766 }
767
768 static bool g4x_compute_srwm(struct drm_device *dev,
769 int plane,
770 int latency_ns,
771 const struct intel_watermark_params *display,
772 const struct intel_watermark_params *cursor,
773 int *display_wm, int *cursor_wm)
774 {
775 struct drm_crtc *crtc;
776 const struct drm_display_mode *adjusted_mode;
777 int hdisplay, htotal, pixel_size, clock;
778 unsigned long line_time_us;
779 int line_count, line_size;
780 int small, large;
781 int entries;
782
783 if (!latency_ns) {
784 *display_wm = *cursor_wm = 0;
785 return false;
786 }
787
788 crtc = intel_get_crtc_for_plane(dev, plane);
789 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
790 clock = adjusted_mode->crtc_clock;
791 htotal = adjusted_mode->crtc_htotal;
792 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
793 pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
794
795 line_time_us = max(htotal * 1000 / clock, 1);
796 line_count = (latency_ns / line_time_us + 1000) / 1000;
797 line_size = hdisplay * pixel_size;
798
799 /* Use the minimum of the small and large buffer method for primary */
800 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
801 large = line_count * line_size;
802
803 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
804 *display_wm = entries + display->guard_size;
805
806 /* calculate the self-refresh watermark for display cursor */
807 entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
808 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
809 *cursor_wm = entries + cursor->guard_size;
810
811 return g4x_check_srwm(dev,
812 *display_wm, *cursor_wm,
813 display, cursor);
814 }
815
816 #define FW_WM_VLV(value, plane) \
817 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
818
819 static void vlv_write_wm_values(struct intel_crtc *crtc,
820 const struct vlv_wm_values *wm)
821 {
822 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
823 enum pipe pipe = crtc->pipe;
824
825 I915_WRITE(VLV_DDL(pipe),
826 (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
827 (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
828 (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
829 (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
830
831 I915_WRITE(DSPFW1,
832 FW_WM(wm->sr.plane, SR) |
833 FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
834 FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
835 FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
836 I915_WRITE(DSPFW2,
837 FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
838 FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
839 FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
840 I915_WRITE(DSPFW3,
841 FW_WM(wm->sr.cursor, CURSOR_SR));
842
843 if (IS_CHERRYVIEW(dev_priv)) {
844 I915_WRITE(DSPFW7_CHV,
845 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
846 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
847 I915_WRITE(DSPFW8_CHV,
848 FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
849 FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
850 I915_WRITE(DSPFW9_CHV,
851 FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
852 FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
853 I915_WRITE(DSPHOWM,
854 FW_WM(wm->sr.plane >> 9, SR_HI) |
855 FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
856 FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
857 FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
858 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
859 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
860 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
861 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
862 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
863 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
864 } else {
865 I915_WRITE(DSPFW7,
866 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
867 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
868 I915_WRITE(DSPHOWM,
869 FW_WM(wm->sr.plane >> 9, SR_HI) |
870 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
871 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
872 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
873 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
874 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
875 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
876 }
877
878 /* zero (unused) WM1 watermarks */
879 I915_WRITE(DSPFW4, 0);
880 I915_WRITE(DSPFW5, 0);
881 I915_WRITE(DSPFW6, 0);
882 I915_WRITE(DSPHOWM1, 0);
883
884 POSTING_READ(DSPFW1);
885 }
886
887 #undef FW_WM_VLV
888
889 enum vlv_wm_level {
890 VLV_WM_LEVEL_PM2,
891 VLV_WM_LEVEL_PM5,
892 VLV_WM_LEVEL_DDR_DVFS,
893 };
894
895 /* latency must be in 0.1us units. */
896 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
897 unsigned int pipe_htotal,
898 unsigned int horiz_pixels,
899 unsigned int bytes_per_pixel,
900 unsigned int latency)
901 {
902 unsigned int ret;
903
904 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
905 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
906 ret = DIV_ROUND_UP(ret, 64);
907
908 return ret;
909 }
910
911 static void vlv_setup_wm_latency(struct drm_device *dev)
912 {
913 struct drm_i915_private *dev_priv = dev->dev_private;
914
915 /* all latencies in usec */
916 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
917
918 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
919
920 if (IS_CHERRYVIEW(dev_priv)) {
921 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
922 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
923
924 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
925 }
926 }
927
928 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
929 struct intel_crtc *crtc,
930 const struct intel_plane_state *state,
931 int level)
932 {
933 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
934 int clock, htotal, pixel_size, width, wm;
935
936 if (dev_priv->wm.pri_latency[level] == 0)
937 return USHRT_MAX;
938
939 if (!state->visible)
940 return 0;
941
942 pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
943 clock = crtc->config->base.adjusted_mode.crtc_clock;
944 htotal = crtc->config->base.adjusted_mode.crtc_htotal;
945 width = crtc->config->pipe_src_w;
946 if (WARN_ON(htotal == 0))
947 htotal = 1;
948
949 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
950 /*
951 * FIXME the formula gives values that are
952 * too big for the cursor FIFO, and hence we
953 * would never be able to use cursors. For
954 * now just hardcode the watermark.
955 */
956 wm = 63;
957 } else {
958 wm = vlv_wm_method2(clock, htotal, width, pixel_size,
959 dev_priv->wm.pri_latency[level] * 10);
960 }
961
962 return min_t(int, wm, USHRT_MAX);
963 }
964
965 static void vlv_compute_fifo(struct intel_crtc *crtc)
966 {
967 struct drm_device *dev = crtc->base.dev;
968 struct vlv_wm_state *wm_state = &crtc->wm_state;
969 struct intel_plane *plane;
970 unsigned int total_rate = 0;
971 const int fifo_size = 512 - 1;
972 int fifo_extra, fifo_left = fifo_size;
973
974 for_each_intel_plane_on_crtc(dev, crtc, plane) {
975 struct intel_plane_state *state =
976 to_intel_plane_state(plane->base.state);
977
978 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
979 continue;
980
981 if (state->visible) {
982 wm_state->num_active_planes++;
983 total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
984 }
985 }
986
987 for_each_intel_plane_on_crtc(dev, crtc, plane) {
988 struct intel_plane_state *state =
989 to_intel_plane_state(plane->base.state);
990 unsigned int rate;
991
992 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
993 plane->wm.fifo_size = 63;
994 continue;
995 }
996
997 if (!state->visible) {
998 plane->wm.fifo_size = 0;
999 continue;
1000 }
1001
1002 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1003 plane->wm.fifo_size = fifo_size * rate / total_rate;
1004 fifo_left -= plane->wm.fifo_size;
1005 }
1006
1007 fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1008
1009 /* spread the remainder evenly */
1010 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1011 int plane_extra;
1012
1013 if (fifo_left == 0)
1014 break;
1015
1016 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1017 continue;
1018
1019 /* give it all to the first plane if none are active */
1020 if (plane->wm.fifo_size == 0 &&
1021 wm_state->num_active_planes)
1022 continue;
1023
1024 plane_extra = min(fifo_extra, fifo_left);
1025 plane->wm.fifo_size += plane_extra;
1026 fifo_left -= plane_extra;
1027 }
1028
1029 WARN_ON(fifo_left != 0);
1030 }
1031
1032 static void vlv_invert_wms(struct intel_crtc *crtc)
1033 {
1034 struct vlv_wm_state *wm_state = &crtc->wm_state;
1035 int level;
1036
1037 for (level = 0; level < wm_state->num_levels; level++) {
1038 struct drm_device *dev = crtc->base.dev;
1039 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1040 struct intel_plane *plane;
1041
1042 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1043 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1044
1045 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1046 switch (plane->base.type) {
1047 int sprite;
1048 case DRM_PLANE_TYPE_CURSOR:
1049 wm_state->wm[level].cursor = plane->wm.fifo_size -
1050 wm_state->wm[level].cursor;
1051 break;
1052 case DRM_PLANE_TYPE_PRIMARY:
1053 wm_state->wm[level].primary = plane->wm.fifo_size -
1054 wm_state->wm[level].primary;
1055 break;
1056 case DRM_PLANE_TYPE_OVERLAY:
1057 sprite = plane->plane;
1058 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1059 wm_state->wm[level].sprite[sprite];
1060 break;
1061 }
1062 }
1063 }
1064 }
1065
1066 static void vlv_compute_wm(struct intel_crtc *crtc)
1067 {
1068 struct drm_device *dev = crtc->base.dev;
1069 struct vlv_wm_state *wm_state = &crtc->wm_state;
1070 struct intel_plane *plane;
1071 int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1072 int level;
1073
1074 memset(wm_state, 0, sizeof(*wm_state));
1075
1076 wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1077 wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1078
1079 wm_state->num_active_planes = 0;
1080
1081 vlv_compute_fifo(crtc);
1082
1083 if (wm_state->num_active_planes != 1)
1084 wm_state->cxsr = false;
1085
1086 if (wm_state->cxsr) {
1087 for (level = 0; level < wm_state->num_levels; level++) {
1088 wm_state->sr[level].plane = sr_fifo_size;
1089 wm_state->sr[level].cursor = 63;
1090 }
1091 }
1092
1093 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1094 struct intel_plane_state *state =
1095 to_intel_plane_state(plane->base.state);
1096
1097 if (!state->visible)
1098 continue;
1099
1100 /* normal watermarks */
1101 for (level = 0; level < wm_state->num_levels; level++) {
1102 int wm = vlv_compute_wm_level(plane, crtc, state, level);
1103 int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1104
1105 /* hack */
1106 if (WARN_ON(level == 0 && wm > max_wm))
1107 wm = max_wm;
1108
1109 if (wm > plane->wm.fifo_size)
1110 break;
1111
1112 switch (plane->base.type) {
1113 int sprite;
1114 case DRM_PLANE_TYPE_CURSOR:
1115 wm_state->wm[level].cursor = wm;
1116 break;
1117 case DRM_PLANE_TYPE_PRIMARY:
1118 wm_state->wm[level].primary = wm;
1119 break;
1120 case DRM_PLANE_TYPE_OVERLAY:
1121 sprite = plane->plane;
1122 wm_state->wm[level].sprite[sprite] = wm;
1123 break;
1124 }
1125 }
1126
1127 wm_state->num_levels = level;
1128
1129 if (!wm_state->cxsr)
1130 continue;
1131
1132 /* maxfifo watermarks */
1133 switch (plane->base.type) {
1134 int sprite, level;
1135 case DRM_PLANE_TYPE_CURSOR:
1136 for (level = 0; level < wm_state->num_levels; level++)
1137 wm_state->sr[level].cursor =
1138 wm_state->sr[level].cursor;
1139 break;
1140 case DRM_PLANE_TYPE_PRIMARY:
1141 for (level = 0; level < wm_state->num_levels; level++)
1142 wm_state->sr[level].plane =
1143 min(wm_state->sr[level].plane,
1144 wm_state->wm[level].primary);
1145 break;
1146 case DRM_PLANE_TYPE_OVERLAY:
1147 sprite = plane->plane;
1148 for (level = 0; level < wm_state->num_levels; level++)
1149 wm_state->sr[level].plane =
1150 min(wm_state->sr[level].plane,
1151 wm_state->wm[level].sprite[sprite]);
1152 break;
1153 }
1154 }
1155
1156 /* clear any (partially) filled invalid levels */
1157 for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1158 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1159 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1160 }
1161
1162 vlv_invert_wms(crtc);
1163 }
1164
1165 #define VLV_FIFO(plane, value) \
1166 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1167
1168 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1169 {
1170 struct drm_device *dev = crtc->base.dev;
1171 struct drm_i915_private *dev_priv = to_i915(dev);
1172 struct intel_plane *plane;
1173 int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1174
1175 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1176 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1177 WARN_ON(plane->wm.fifo_size != 63);
1178 continue;
1179 }
1180
1181 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1182 sprite0_start = plane->wm.fifo_size;
1183 else if (plane->plane == 0)
1184 sprite1_start = sprite0_start + plane->wm.fifo_size;
1185 else
1186 fifo_size = sprite1_start + plane->wm.fifo_size;
1187 }
1188
1189 WARN_ON(fifo_size != 512 - 1);
1190
1191 DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1192 pipe_name(crtc->pipe), sprite0_start,
1193 sprite1_start, fifo_size);
1194
1195 switch (crtc->pipe) {
1196 uint32_t dsparb, dsparb2, dsparb3;
1197 case PIPE_A:
1198 dsparb = I915_READ(DSPARB);
1199 dsparb2 = I915_READ(DSPARB2);
1200
1201 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1202 VLV_FIFO(SPRITEB, 0xff));
1203 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1204 VLV_FIFO(SPRITEB, sprite1_start));
1205
1206 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1207 VLV_FIFO(SPRITEB_HI, 0x1));
1208 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1209 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1210
1211 I915_WRITE(DSPARB, dsparb);
1212 I915_WRITE(DSPARB2, dsparb2);
1213 break;
1214 case PIPE_B:
1215 dsparb = I915_READ(DSPARB);
1216 dsparb2 = I915_READ(DSPARB2);
1217
1218 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1219 VLV_FIFO(SPRITED, 0xff));
1220 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1221 VLV_FIFO(SPRITED, sprite1_start));
1222
1223 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1224 VLV_FIFO(SPRITED_HI, 0xff));
1225 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1226 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1227
1228 I915_WRITE(DSPARB, dsparb);
1229 I915_WRITE(DSPARB2, dsparb2);
1230 break;
1231 case PIPE_C:
1232 dsparb3 = I915_READ(DSPARB3);
1233 dsparb2 = I915_READ(DSPARB2);
1234
1235 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1236 VLV_FIFO(SPRITEF, 0xff));
1237 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1238 VLV_FIFO(SPRITEF, sprite1_start));
1239
1240 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1241 VLV_FIFO(SPRITEF_HI, 0xff));
1242 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1243 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1244
1245 I915_WRITE(DSPARB3, dsparb3);
1246 I915_WRITE(DSPARB2, dsparb2);
1247 break;
1248 default:
1249 break;
1250 }
1251 }
1252
1253 #undef VLV_FIFO
1254
1255 static void vlv_merge_wm(struct drm_device *dev,
1256 struct vlv_wm_values *wm)
1257 {
1258 struct intel_crtc *crtc;
1259 int num_active_crtcs = 0;
1260
1261 wm->level = to_i915(dev)->wm.max_level;
1262 wm->cxsr = true;
1263
1264 for_each_intel_crtc(dev, crtc) {
1265 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1266
1267 if (!crtc->active)
1268 continue;
1269
1270 if (!wm_state->cxsr)
1271 wm->cxsr = false;
1272
1273 num_active_crtcs++;
1274 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1275 }
1276
1277 if (num_active_crtcs != 1)
1278 wm->cxsr = false;
1279
1280 if (num_active_crtcs > 1)
1281 wm->level = VLV_WM_LEVEL_PM2;
1282
1283 for_each_intel_crtc(dev, crtc) {
1284 struct vlv_wm_state *wm_state = &crtc->wm_state;
1285 enum pipe pipe = crtc->pipe;
1286
1287 if (!crtc->active)
1288 continue;
1289
1290 wm->pipe[pipe] = wm_state->wm[wm->level];
1291 if (wm->cxsr)
1292 wm->sr = wm_state->sr[wm->level];
1293
1294 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1295 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1296 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1297 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1298 }
1299 }
1300
1301 static void vlv_update_wm(struct drm_crtc *crtc)
1302 {
1303 struct drm_device *dev = crtc->dev;
1304 struct drm_i915_private *dev_priv = dev->dev_private;
1305 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1306 enum pipe pipe = intel_crtc->pipe;
1307 struct vlv_wm_values wm = {};
1308
1309 vlv_compute_wm(intel_crtc);
1310 vlv_merge_wm(dev, &wm);
1311
1312 if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1313 /* FIXME should be part of crtc atomic commit */
1314 vlv_pipe_set_fifo_size(intel_crtc);
1315 return;
1316 }
1317
1318 if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1319 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1320 chv_set_memory_dvfs(dev_priv, false);
1321
1322 if (wm.level < VLV_WM_LEVEL_PM5 &&
1323 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1324 chv_set_memory_pm5(dev_priv, false);
1325
1326 if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1327 intel_set_memory_cxsr(dev_priv, false);
1328
1329 /* FIXME should be part of crtc atomic commit */
1330 vlv_pipe_set_fifo_size(intel_crtc);
1331
1332 vlv_write_wm_values(intel_crtc, &wm);
1333
1334 DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1335 "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1336 pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1337 wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1338 wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1339
1340 if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1341 intel_set_memory_cxsr(dev_priv, true);
1342
1343 if (wm.level >= VLV_WM_LEVEL_PM5 &&
1344 dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1345 chv_set_memory_pm5(dev_priv, true);
1346
1347 if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1348 dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1349 chv_set_memory_dvfs(dev_priv, true);
1350
1351 dev_priv->wm.vlv = wm;
1352 }
1353
1354 #define single_plane_enabled(mask) is_power_of_2(mask)
1355
1356 static void g4x_update_wm(struct drm_crtc *crtc)
1357 {
1358 struct drm_device *dev = crtc->dev;
1359 static const int sr_latency_ns = 12000;
1360 struct drm_i915_private *dev_priv = dev->dev_private;
1361 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1362 int plane_sr, cursor_sr;
1363 unsigned int enabled = 0;
1364 bool cxsr_enabled;
1365
1366 if (g4x_compute_wm0(dev, PIPE_A,
1367 &g4x_wm_info, pessimal_latency_ns,
1368 &g4x_cursor_wm_info, pessimal_latency_ns,
1369 &planea_wm, &cursora_wm))
1370 enabled |= 1 << PIPE_A;
1371
1372 if (g4x_compute_wm0(dev, PIPE_B,
1373 &g4x_wm_info, pessimal_latency_ns,
1374 &g4x_cursor_wm_info, pessimal_latency_ns,
1375 &planeb_wm, &cursorb_wm))
1376 enabled |= 1 << PIPE_B;
1377
1378 if (single_plane_enabled(enabled) &&
1379 g4x_compute_srwm(dev, ffs(enabled) - 1,
1380 sr_latency_ns,
1381 &g4x_wm_info,
1382 &g4x_cursor_wm_info,
1383 &plane_sr, &cursor_sr)) {
1384 cxsr_enabled = true;
1385 } else {
1386 cxsr_enabled = false;
1387 intel_set_memory_cxsr(dev_priv, false);
1388 plane_sr = cursor_sr = 0;
1389 }
1390
1391 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1392 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1393 planea_wm, cursora_wm,
1394 planeb_wm, cursorb_wm,
1395 plane_sr, cursor_sr);
1396
1397 I915_WRITE(DSPFW1,
1398 FW_WM(plane_sr, SR) |
1399 FW_WM(cursorb_wm, CURSORB) |
1400 FW_WM(planeb_wm, PLANEB) |
1401 FW_WM(planea_wm, PLANEA));
1402 I915_WRITE(DSPFW2,
1403 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1404 FW_WM(cursora_wm, CURSORA));
1405 /* HPLL off in SR has some issues on G4x... disable it */
1406 I915_WRITE(DSPFW3,
1407 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1408 FW_WM(cursor_sr, CURSOR_SR));
1409
1410 if (cxsr_enabled)
1411 intel_set_memory_cxsr(dev_priv, true);
1412 }
1413
1414 static void i965_update_wm(struct drm_crtc *unused_crtc)
1415 {
1416 struct drm_device *dev = unused_crtc->dev;
1417 struct drm_i915_private *dev_priv = dev->dev_private;
1418 struct drm_crtc *crtc;
1419 int srwm = 1;
1420 int cursor_sr = 16;
1421 bool cxsr_enabled;
1422
1423 /* Calc sr entries for one plane configs */
1424 crtc = single_enabled_crtc(dev);
1425 if (crtc) {
1426 /* self-refresh has much higher latency */
1427 static const int sr_latency_ns = 12000;
1428 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1429 int clock = adjusted_mode->crtc_clock;
1430 int htotal = adjusted_mode->crtc_htotal;
1431 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1432 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1433 unsigned long line_time_us;
1434 int entries;
1435
1436 line_time_us = max(htotal * 1000 / clock, 1);
1437
1438 /* Use ns/us then divide to preserve precision */
1439 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1440 pixel_size * hdisplay;
1441 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1442 srwm = I965_FIFO_SIZE - entries;
1443 if (srwm < 0)
1444 srwm = 1;
1445 srwm &= 0x1ff;
1446 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1447 entries, srwm);
1448
1449 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1450 pixel_size * crtc->cursor->state->crtc_w;
1451 entries = DIV_ROUND_UP(entries,
1452 i965_cursor_wm_info.cacheline_size);
1453 cursor_sr = i965_cursor_wm_info.fifo_size -
1454 (entries + i965_cursor_wm_info.guard_size);
1455
1456 if (cursor_sr > i965_cursor_wm_info.max_wm)
1457 cursor_sr = i965_cursor_wm_info.max_wm;
1458
1459 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1460 "cursor %d\n", srwm, cursor_sr);
1461
1462 cxsr_enabled = true;
1463 } else {
1464 cxsr_enabled = false;
1465 /* Turn off self refresh if both pipes are enabled */
1466 intel_set_memory_cxsr(dev_priv, false);
1467 }
1468
1469 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1470 srwm);
1471
1472 /* 965 has limitations... */
1473 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1474 FW_WM(8, CURSORB) |
1475 FW_WM(8, PLANEB) |
1476 FW_WM(8, PLANEA));
1477 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1478 FW_WM(8, PLANEC_OLD));
1479 /* update cursor SR watermark */
1480 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1481
1482 if (cxsr_enabled)
1483 intel_set_memory_cxsr(dev_priv, true);
1484 }
1485
1486 #undef FW_WM
1487
1488 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1489 {
1490 struct drm_device *dev = unused_crtc->dev;
1491 struct drm_i915_private *dev_priv = dev->dev_private;
1492 const struct intel_watermark_params *wm_info;
1493 uint32_t fwater_lo;
1494 uint32_t fwater_hi;
1495 int cwm, srwm = 1;
1496 int fifo_size;
1497 int planea_wm, planeb_wm;
1498 struct drm_crtc *crtc, *enabled = NULL;
1499
1500 if (IS_I945GM(dev))
1501 wm_info = &i945_wm_info;
1502 else if (!IS_GEN2(dev))
1503 wm_info = &i915_wm_info;
1504 else
1505 wm_info = &i830_a_wm_info;
1506
1507 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1508 crtc = intel_get_crtc_for_plane(dev, 0);
1509 if (intel_crtc_active(crtc)) {
1510 const struct drm_display_mode *adjusted_mode;
1511 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1512 if (IS_GEN2(dev))
1513 cpp = 4;
1514
1515 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1516 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1517 wm_info, fifo_size, cpp,
1518 pessimal_latency_ns);
1519 enabled = crtc;
1520 } else {
1521 planea_wm = fifo_size - wm_info->guard_size;
1522 if (planea_wm > (long)wm_info->max_wm)
1523 planea_wm = wm_info->max_wm;
1524 }
1525
1526 if (IS_GEN2(dev))
1527 wm_info = &i830_bc_wm_info;
1528
1529 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1530 crtc = intel_get_crtc_for_plane(dev, 1);
1531 if (intel_crtc_active(crtc)) {
1532 const struct drm_display_mode *adjusted_mode;
1533 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1534 if (IS_GEN2(dev))
1535 cpp = 4;
1536
1537 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1538 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1539 wm_info, fifo_size, cpp,
1540 pessimal_latency_ns);
1541 if (enabled == NULL)
1542 enabled = crtc;
1543 else
1544 enabled = NULL;
1545 } else {
1546 planeb_wm = fifo_size - wm_info->guard_size;
1547 if (planeb_wm > (long)wm_info->max_wm)
1548 planeb_wm = wm_info->max_wm;
1549 }
1550
1551 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1552
1553 if (IS_I915GM(dev) && enabled) {
1554 struct drm_i915_gem_object *obj;
1555
1556 obj = intel_fb_obj(enabled->primary->state->fb);
1557
1558 /* self-refresh seems busted with untiled */
1559 if (obj->tiling_mode == I915_TILING_NONE)
1560 enabled = NULL;
1561 }
1562
1563 /*
1564 * Overlay gets an aggressive default since video jitter is bad.
1565 */
1566 cwm = 2;
1567
1568 /* Play safe and disable self-refresh before adjusting watermarks. */
1569 intel_set_memory_cxsr(dev_priv, false);
1570
1571 /* Calc sr entries for one plane configs */
1572 if (HAS_FW_BLC(dev) && enabled) {
1573 /* self-refresh has much higher latency */
1574 static const int sr_latency_ns = 6000;
1575 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1576 int clock = adjusted_mode->crtc_clock;
1577 int htotal = adjusted_mode->crtc_htotal;
1578 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1579 int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1580 unsigned long line_time_us;
1581 int entries;
1582
1583 line_time_us = max(htotal * 1000 / clock, 1);
1584
1585 /* Use ns/us then divide to preserve precision */
1586 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1587 pixel_size * hdisplay;
1588 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1589 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1590 srwm = wm_info->fifo_size - entries;
1591 if (srwm < 0)
1592 srwm = 1;
1593
1594 if (IS_I945G(dev) || IS_I945GM(dev))
1595 I915_WRITE(FW_BLC_SELF,
1596 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1597 else if (IS_I915GM(dev))
1598 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1599 }
1600
1601 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1602 planea_wm, planeb_wm, cwm, srwm);
1603
1604 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1605 fwater_hi = (cwm & 0x1f);
1606
1607 /* Set request length to 8 cachelines per fetch */
1608 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1609 fwater_hi = fwater_hi | (1 << 8);
1610
1611 I915_WRITE(FW_BLC, fwater_lo);
1612 I915_WRITE(FW_BLC2, fwater_hi);
1613
1614 if (enabled)
1615 intel_set_memory_cxsr(dev_priv, true);
1616 }
1617
1618 static void i845_update_wm(struct drm_crtc *unused_crtc)
1619 {
1620 struct drm_device *dev = unused_crtc->dev;
1621 struct drm_i915_private *dev_priv = dev->dev_private;
1622 struct drm_crtc *crtc;
1623 const struct drm_display_mode *adjusted_mode;
1624 uint32_t fwater_lo;
1625 int planea_wm;
1626
1627 crtc = single_enabled_crtc(dev);
1628 if (crtc == NULL)
1629 return;
1630
1631 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1632 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1633 &i845_wm_info,
1634 dev_priv->display.get_fifo_size(dev, 0),
1635 4, pessimal_latency_ns);
1636 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1637 fwater_lo |= (3<<8) | planea_wm;
1638
1639 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1640
1641 I915_WRITE(FW_BLC, fwater_lo);
1642 }
1643
1644 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1645 {
1646 uint32_t pixel_rate;
1647
1648 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1649
1650 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1651 * adjust the pixel_rate here. */
1652
1653 if (pipe_config->pch_pfit.enabled) {
1654 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1655 uint32_t pfit_size = pipe_config->pch_pfit.size;
1656
1657 pipe_w = pipe_config->pipe_src_w;
1658 pipe_h = pipe_config->pipe_src_h;
1659
1660 pfit_w = (pfit_size >> 16) & 0xFFFF;
1661 pfit_h = pfit_size & 0xFFFF;
1662 if (pipe_w < pfit_w)
1663 pipe_w = pfit_w;
1664 if (pipe_h < pfit_h)
1665 pipe_h = pfit_h;
1666
1667 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1668 pfit_w * pfit_h);
1669 }
1670
1671 return pixel_rate;
1672 }
1673
1674 /* latency must be in 0.1us units. */
1675 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1676 uint32_t latency)
1677 {
1678 uint64_t ret;
1679
1680 if (WARN(latency == 0, "Latency value missing\n"))
1681 return UINT_MAX;
1682
1683 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1684 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1685
1686 return ret;
1687 }
1688
1689 /* latency must be in 0.1us units. */
1690 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1691 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1692 uint32_t latency)
1693 {
1694 uint32_t ret;
1695
1696 if (WARN(latency == 0, "Latency value missing\n"))
1697 return UINT_MAX;
1698
1699 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1700 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1701 ret = DIV_ROUND_UP(ret, 64) + 2;
1702 return ret;
1703 }
1704
1705 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1706 uint8_t bytes_per_pixel)
1707 {
1708 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1709 }
1710
1711 struct ilk_wm_maximums {
1712 uint16_t pri;
1713 uint16_t spr;
1714 uint16_t cur;
1715 uint16_t fbc;
1716 };
1717
1718 /*
1719 * For both WM_PIPE and WM_LP.
1720 * mem_value must be in 0.1us units.
1721 */
1722 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1723 const struct intel_plane_state *pstate,
1724 uint32_t mem_value,
1725 bool is_lp)
1726 {
1727 int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1728 uint32_t method1, method2;
1729
1730 if (!cstate->base.active || !pstate->visible)
1731 return 0;
1732
1733 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1734
1735 if (!is_lp)
1736 return method1;
1737
1738 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1739 cstate->base.adjusted_mode.crtc_htotal,
1740 drm_rect_width(&pstate->dst),
1741 bpp,
1742 mem_value);
1743
1744 return min(method1, method2);
1745 }
1746
1747 /*
1748 * For both WM_PIPE and WM_LP.
1749 * mem_value must be in 0.1us units.
1750 */
1751 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1752 const struct intel_plane_state *pstate,
1753 uint32_t mem_value)
1754 {
1755 int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1756 uint32_t method1, method2;
1757
1758 if (!cstate->base.active || !pstate->visible)
1759 return 0;
1760
1761 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1762 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1763 cstate->base.adjusted_mode.crtc_htotal,
1764 drm_rect_width(&pstate->dst),
1765 bpp,
1766 mem_value);
1767 return min(method1, method2);
1768 }
1769
1770 /*
1771 * For both WM_PIPE and WM_LP.
1772 * mem_value must be in 0.1us units.
1773 */
1774 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1775 const struct intel_plane_state *pstate,
1776 uint32_t mem_value)
1777 {
1778 int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1779
1780 if (!cstate->base.active || !pstate->visible)
1781 return 0;
1782
1783 return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1784 cstate->base.adjusted_mode.crtc_htotal,
1785 drm_rect_width(&pstate->dst),
1786 bpp,
1787 mem_value);
1788 }
1789
1790 /* Only for WM_LP. */
1791 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1792 const struct intel_plane_state *pstate,
1793 uint32_t pri_val)
1794 {
1795 int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1796
1797 if (!cstate->base.active || !pstate->visible)
1798 return 0;
1799
1800 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
1801 }
1802
1803 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1804 {
1805 if (INTEL_INFO(dev)->gen >= 8)
1806 return 3072;
1807 else if (INTEL_INFO(dev)->gen >= 7)
1808 return 768;
1809 else
1810 return 512;
1811 }
1812
1813 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1814 int level, bool is_sprite)
1815 {
1816 if (INTEL_INFO(dev)->gen >= 8)
1817 /* BDW primary/sprite plane watermarks */
1818 return level == 0 ? 255 : 2047;
1819 else if (INTEL_INFO(dev)->gen >= 7)
1820 /* IVB/HSW primary/sprite plane watermarks */
1821 return level == 0 ? 127 : 1023;
1822 else if (!is_sprite)
1823 /* ILK/SNB primary plane watermarks */
1824 return level == 0 ? 127 : 511;
1825 else
1826 /* ILK/SNB sprite plane watermarks */
1827 return level == 0 ? 63 : 255;
1828 }
1829
1830 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1831 int level)
1832 {
1833 if (INTEL_INFO(dev)->gen >= 7)
1834 return level == 0 ? 63 : 255;
1835 else
1836 return level == 0 ? 31 : 63;
1837 }
1838
1839 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1840 {
1841 if (INTEL_INFO(dev)->gen >= 8)
1842 return 31;
1843 else
1844 return 15;
1845 }
1846
1847 /* Calculate the maximum primary/sprite plane watermark */
1848 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1849 int level,
1850 const struct intel_wm_config *config,
1851 enum intel_ddb_partitioning ddb_partitioning,
1852 bool is_sprite)
1853 {
1854 unsigned int fifo_size = ilk_display_fifo_size(dev);
1855
1856 /* if sprites aren't enabled, sprites get nothing */
1857 if (is_sprite && !config->sprites_enabled)
1858 return 0;
1859
1860 /* HSW allows LP1+ watermarks even with multiple pipes */
1861 if (level == 0 || config->num_pipes_active > 1) {
1862 fifo_size /= INTEL_INFO(dev)->num_pipes;
1863
1864 /*
1865 * For some reason the non self refresh
1866 * FIFO size is only half of the self
1867 * refresh FIFO size on ILK/SNB.
1868 */
1869 if (INTEL_INFO(dev)->gen <= 6)
1870 fifo_size /= 2;
1871 }
1872
1873 if (config->sprites_enabled) {
1874 /* level 0 is always calculated with 1:1 split */
1875 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1876 if (is_sprite)
1877 fifo_size *= 5;
1878 fifo_size /= 6;
1879 } else {
1880 fifo_size /= 2;
1881 }
1882 }
1883
1884 /* clamp to max that the registers can hold */
1885 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1886 }
1887
1888 /* Calculate the maximum cursor plane watermark */
1889 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1890 int level,
1891 const struct intel_wm_config *config)
1892 {
1893 /* HSW LP1+ watermarks w/ multiple pipes */
1894 if (level > 0 && config->num_pipes_active > 1)
1895 return 64;
1896
1897 /* otherwise just report max that registers can hold */
1898 return ilk_cursor_wm_reg_max(dev, level);
1899 }
1900
1901 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1902 int level,
1903 const struct intel_wm_config *config,
1904 enum intel_ddb_partitioning ddb_partitioning,
1905 struct ilk_wm_maximums *max)
1906 {
1907 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1908 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1909 max->cur = ilk_cursor_wm_max(dev, level, config);
1910 max->fbc = ilk_fbc_wm_reg_max(dev);
1911 }
1912
1913 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1914 int level,
1915 struct ilk_wm_maximums *max)
1916 {
1917 max->pri = ilk_plane_wm_reg_max(dev, level, false);
1918 max->spr = ilk_plane_wm_reg_max(dev, level, true);
1919 max->cur = ilk_cursor_wm_reg_max(dev, level);
1920 max->fbc = ilk_fbc_wm_reg_max(dev);
1921 }
1922
1923 static bool ilk_validate_wm_level(int level,
1924 const struct ilk_wm_maximums *max,
1925 struct intel_wm_level *result)
1926 {
1927 bool ret;
1928
1929 /* already determined to be invalid? */
1930 if (!result->enable)
1931 return false;
1932
1933 result->enable = result->pri_val <= max->pri &&
1934 result->spr_val <= max->spr &&
1935 result->cur_val <= max->cur;
1936
1937 ret = result->enable;
1938
1939 /*
1940 * HACK until we can pre-compute everything,
1941 * and thus fail gracefully if LP0 watermarks
1942 * are exceeded...
1943 */
1944 if (level == 0 && !result->enable) {
1945 if (result->pri_val > max->pri)
1946 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1947 level, result->pri_val, max->pri);
1948 if (result->spr_val > max->spr)
1949 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1950 level, result->spr_val, max->spr);
1951 if (result->cur_val > max->cur)
1952 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1953 level, result->cur_val, max->cur);
1954
1955 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1956 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1957 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1958 result->enable = true;
1959 }
1960
1961 return ret;
1962 }
1963
1964 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1965 const struct intel_crtc *intel_crtc,
1966 int level,
1967 struct intel_crtc_state *cstate,
1968 struct intel_plane_state *pristate,
1969 struct intel_plane_state *sprstate,
1970 struct intel_plane_state *curstate,
1971 struct intel_wm_level *result)
1972 {
1973 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1974 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1975 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1976
1977 /* WM1+ latency values stored in 0.5us units */
1978 if (level > 0) {
1979 pri_latency *= 5;
1980 spr_latency *= 5;
1981 cur_latency *= 5;
1982 }
1983
1984 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
1985 pri_latency, level);
1986 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
1987 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
1988 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
1989 result->enable = true;
1990 }
1991
1992 static uint32_t
1993 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1994 {
1995 struct drm_i915_private *dev_priv = dev->dev_private;
1996 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1997 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1998 u32 linetime, ips_linetime;
1999
2000 if (!intel_crtc->active)
2001 return 0;
2002
2003 /* The WM are computed with base on how long it takes to fill a single
2004 * row at the given clock rate, multiplied by 8.
2005 * */
2006 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2007 adjusted_mode->crtc_clock);
2008 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2009 dev_priv->cdclk_freq);
2010
2011 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2012 PIPE_WM_LINETIME_TIME(linetime);
2013 }
2014
2015 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2016 {
2017 struct drm_i915_private *dev_priv = dev->dev_private;
2018
2019 if (IS_GEN9(dev)) {
2020 uint32_t val;
2021 int ret, i;
2022 int level, max_level = ilk_wm_max_level(dev);
2023
2024 /* read the first set of memory latencies[0:3] */
2025 val = 0; /* data0 to be programmed to 0 for first set */
2026 mutex_lock(&dev_priv->rps.hw_lock);
2027 ret = sandybridge_pcode_read(dev_priv,
2028 GEN9_PCODE_READ_MEM_LATENCY,
2029 &val);
2030 mutex_unlock(&dev_priv->rps.hw_lock);
2031
2032 if (ret) {
2033 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2034 return;
2035 }
2036
2037 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2038 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2039 GEN9_MEM_LATENCY_LEVEL_MASK;
2040 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2041 GEN9_MEM_LATENCY_LEVEL_MASK;
2042 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2043 GEN9_MEM_LATENCY_LEVEL_MASK;
2044
2045 /* read the second set of memory latencies[4:7] */
2046 val = 1; /* data0 to be programmed to 1 for second set */
2047 mutex_lock(&dev_priv->rps.hw_lock);
2048 ret = sandybridge_pcode_read(dev_priv,
2049 GEN9_PCODE_READ_MEM_LATENCY,
2050 &val);
2051 mutex_unlock(&dev_priv->rps.hw_lock);
2052 if (ret) {
2053 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2054 return;
2055 }
2056
2057 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2058 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2059 GEN9_MEM_LATENCY_LEVEL_MASK;
2060 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2061 GEN9_MEM_LATENCY_LEVEL_MASK;
2062 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2063 GEN9_MEM_LATENCY_LEVEL_MASK;
2064
2065 /*
2066 * WaWmMemoryReadLatency:skl
2067 *
2068 * punit doesn't take into account the read latency so we need
2069 * to add 2us to the various latency levels we retrieve from
2070 * the punit.
2071 * - W0 is a bit special in that it's the only level that
2072 * can't be disabled if we want to have display working, so
2073 * we always add 2us there.
2074 * - For levels >=1, punit returns 0us latency when they are
2075 * disabled, so we respect that and don't add 2us then
2076 *
2077 * Additionally, if a level n (n > 1) has a 0us latency, all
2078 * levels m (m >= n) need to be disabled. We make sure to
2079 * sanitize the values out of the punit to satisfy this
2080 * requirement.
2081 */
2082 wm[0] += 2;
2083 for (level = 1; level <= max_level; level++)
2084 if (wm[level] != 0)
2085 wm[level] += 2;
2086 else {
2087 for (i = level + 1; i <= max_level; i++)
2088 wm[i] = 0;
2089
2090 break;
2091 }
2092 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2093 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2094
2095 wm[0] = (sskpd >> 56) & 0xFF;
2096 if (wm[0] == 0)
2097 wm[0] = sskpd & 0xF;
2098 wm[1] = (sskpd >> 4) & 0xFF;
2099 wm[2] = (sskpd >> 12) & 0xFF;
2100 wm[3] = (sskpd >> 20) & 0x1FF;
2101 wm[4] = (sskpd >> 32) & 0x1FF;
2102 } else if (INTEL_INFO(dev)->gen >= 6) {
2103 uint32_t sskpd = I915_READ(MCH_SSKPD);
2104
2105 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2106 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2107 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2108 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2109 } else if (INTEL_INFO(dev)->gen >= 5) {
2110 uint32_t mltr = I915_READ(MLTR_ILK);
2111
2112 /* ILK primary LP0 latency is 700 ns */
2113 wm[0] = 7;
2114 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2115 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2116 }
2117 }
2118
2119 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2120 {
2121 /* ILK sprite LP0 latency is 1300 ns */
2122 if (INTEL_INFO(dev)->gen == 5)
2123 wm[0] = 13;
2124 }
2125
2126 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2127 {
2128 /* ILK cursor LP0 latency is 1300 ns */
2129 if (INTEL_INFO(dev)->gen == 5)
2130 wm[0] = 13;
2131
2132 /* WaDoubleCursorLP3Latency:ivb */
2133 if (IS_IVYBRIDGE(dev))
2134 wm[3] *= 2;
2135 }
2136
2137 int ilk_wm_max_level(const struct drm_device *dev)
2138 {
2139 /* how many WM levels are we expecting */
2140 if (INTEL_INFO(dev)->gen >= 9)
2141 return 7;
2142 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2143 return 4;
2144 else if (INTEL_INFO(dev)->gen >= 6)
2145 return 3;
2146 else
2147 return 2;
2148 }
2149
2150 static void intel_print_wm_latency(struct drm_device *dev,
2151 const char *name,
2152 const uint16_t wm[8])
2153 {
2154 int level, max_level = ilk_wm_max_level(dev);
2155
2156 for (level = 0; level <= max_level; level++) {
2157 unsigned int latency = wm[level];
2158
2159 if (latency == 0) {
2160 DRM_ERROR("%s WM%d latency not provided\n",
2161 name, level);
2162 continue;
2163 }
2164
2165 /*
2166 * - latencies are in us on gen9.
2167 * - before then, WM1+ latency values are in 0.5us units
2168 */
2169 if (IS_GEN9(dev))
2170 latency *= 10;
2171 else if (level > 0)
2172 latency *= 5;
2173
2174 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2175 name, level, wm[level],
2176 latency / 10, latency % 10);
2177 }
2178 }
2179
2180 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2181 uint16_t wm[5], uint16_t min)
2182 {
2183 int level, max_level = ilk_wm_max_level(dev_priv->dev);
2184
2185 if (wm[0] >= min)
2186 return false;
2187
2188 wm[0] = max(wm[0], min);
2189 for (level = 1; level <= max_level; level++)
2190 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2191
2192 return true;
2193 }
2194
2195 static void snb_wm_latency_quirk(struct drm_device *dev)
2196 {
2197 struct drm_i915_private *dev_priv = dev->dev_private;
2198 bool changed;
2199
2200 /*
2201 * The BIOS provided WM memory latency values are often
2202 * inadequate for high resolution displays. Adjust them.
2203 */
2204 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2205 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2206 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2207
2208 if (!changed)
2209 return;
2210
2211 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2212 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2213 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2214 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2215 }
2216
2217 static void ilk_setup_wm_latency(struct drm_device *dev)
2218 {
2219 struct drm_i915_private *dev_priv = dev->dev_private;
2220
2221 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2222
2223 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2224 sizeof(dev_priv->wm.pri_latency));
2225 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2226 sizeof(dev_priv->wm.pri_latency));
2227
2228 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2229 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2230
2231 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2232 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2233 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2234
2235 if (IS_GEN6(dev))
2236 snb_wm_latency_quirk(dev);
2237 }
2238
2239 static void skl_setup_wm_latency(struct drm_device *dev)
2240 {
2241 struct drm_i915_private *dev_priv = dev->dev_private;
2242
2243 intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2244 intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2245 }
2246
2247 /* Compute new watermarks for the pipe */
2248 static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
2249 struct drm_atomic_state *state)
2250 {
2251 struct intel_pipe_wm *pipe_wm;
2252 struct drm_device *dev = intel_crtc->base.dev;
2253 const struct drm_i915_private *dev_priv = dev->dev_private;
2254 struct intel_crtc_state *cstate = NULL;
2255 struct intel_plane *intel_plane;
2256 struct drm_plane_state *ps;
2257 struct intel_plane_state *pristate = NULL;
2258 struct intel_plane_state *sprstate = NULL;
2259 struct intel_plane_state *curstate = NULL;
2260 int level, max_level = ilk_wm_max_level(dev);
2261 /* LP0 watermark maximums depend on this pipe alone */
2262 struct intel_wm_config config = {
2263 .num_pipes_active = 1,
2264 };
2265 struct ilk_wm_maximums max;
2266
2267 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
2268 if (IS_ERR(cstate))
2269 return PTR_ERR(cstate);
2270
2271 pipe_wm = &cstate->wm.optimal.ilk;
2272
2273 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2274 ps = drm_atomic_get_plane_state(state,
2275 &intel_plane->base);
2276 if (IS_ERR(ps))
2277 return PTR_ERR(ps);
2278
2279 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2280 pristate = to_intel_plane_state(ps);
2281 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2282 sprstate = to_intel_plane_state(ps);
2283 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2284 curstate = to_intel_plane_state(ps);
2285 }
2286
2287 config.sprites_enabled = sprstate->visible;
2288 config.sprites_scaled = sprstate->visible &&
2289 (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2290 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2291
2292 pipe_wm->pipe_enabled = cstate->base.active;
2293 pipe_wm->sprites_enabled = config.sprites_enabled;
2294 pipe_wm->sprites_scaled = config.sprites_scaled;
2295
2296 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2297 if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2298 max_level = 1;
2299
2300 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2301 if (config.sprites_scaled)
2302 max_level = 0;
2303
2304 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2305 pristate, sprstate, curstate, &pipe_wm->wm[0]);
2306
2307 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2308 pipe_wm->linetime = hsw_compute_linetime_wm(dev,
2309 &intel_crtc->base);
2310
2311 /* LP0 watermarks always use 1/2 DDB partitioning */
2312 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2313
2314 /* At least LP0 must be valid */
2315 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2316 return -EINVAL;
2317
2318 ilk_compute_wm_reg_maximums(dev, 1, &max);
2319
2320 for (level = 1; level <= max_level; level++) {
2321 struct intel_wm_level wm = {};
2322
2323 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2324 pristate, sprstate, curstate, &wm);
2325
2326 /*
2327 * Disable any watermark level that exceeds the
2328 * register maximums since such watermarks are
2329 * always invalid.
2330 */
2331 if (!ilk_validate_wm_level(level, &max, &wm))
2332 break;
2333
2334 pipe_wm->wm[level] = wm;
2335 }
2336
2337 return 0;
2338 }
2339
2340 /*
2341 * Merge the watermarks from all active pipes for a specific level.
2342 */
2343 static void ilk_merge_wm_level(struct drm_device *dev,
2344 int level,
2345 struct intel_wm_level *ret_wm)
2346 {
2347 const struct intel_crtc *intel_crtc;
2348
2349 ret_wm->enable = true;
2350
2351 for_each_intel_crtc(dev, intel_crtc) {
2352 const struct intel_crtc_state *cstate =
2353 to_intel_crtc_state(intel_crtc->base.state);
2354 const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
2355 const struct intel_wm_level *wm = &active->wm[level];
2356
2357 if (!active->pipe_enabled)
2358 continue;
2359
2360 /*
2361 * The watermark values may have been used in the past,
2362 * so we must maintain them in the registers for some
2363 * time even if the level is now disabled.
2364 */
2365 if (!wm->enable)
2366 ret_wm->enable = false;
2367
2368 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2369 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2370 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2371 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2372 }
2373 }
2374
2375 /*
2376 * Merge all low power watermarks for all active pipes.
2377 */
2378 static void ilk_wm_merge(struct drm_device *dev,
2379 const struct intel_wm_config *config,
2380 const struct ilk_wm_maximums *max,
2381 struct intel_pipe_wm *merged)
2382 {
2383 struct drm_i915_private *dev_priv = dev->dev_private;
2384 int level, max_level = ilk_wm_max_level(dev);
2385 int last_enabled_level = max_level;
2386
2387 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2388 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2389 config->num_pipes_active > 1)
2390 return;
2391
2392 /* ILK: FBC WM must be disabled always */
2393 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2394
2395 /* merge each WM1+ level */
2396 for (level = 1; level <= max_level; level++) {
2397 struct intel_wm_level *wm = &merged->wm[level];
2398
2399 ilk_merge_wm_level(dev, level, wm);
2400
2401 if (level > last_enabled_level)
2402 wm->enable = false;
2403 else if (!ilk_validate_wm_level(level, max, wm))
2404 /* make sure all following levels get disabled */
2405 last_enabled_level = level - 1;
2406
2407 /*
2408 * The spec says it is preferred to disable
2409 * FBC WMs instead of disabling a WM level.
2410 */
2411 if (wm->fbc_val > max->fbc) {
2412 if (wm->enable)
2413 merged->fbc_wm_enabled = false;
2414 wm->fbc_val = 0;
2415 }
2416 }
2417
2418 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2419 /*
2420 * FIXME this is racy. FBC might get enabled later.
2421 * What we should check here is whether FBC can be
2422 * enabled sometime later.
2423 */
2424 if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2425 intel_fbc_enabled(dev_priv)) {
2426 for (level = 2; level <= max_level; level++) {
2427 struct intel_wm_level *wm = &merged->wm[level];
2428
2429 wm->enable = false;
2430 }
2431 }
2432 }
2433
2434 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2435 {
2436 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2437 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2438 }
2439
2440 /* The value we need to program into the WM_LPx latency field */
2441 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2442 {
2443 struct drm_i915_private *dev_priv = dev->dev_private;
2444
2445 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2446 return 2 * level;
2447 else
2448 return dev_priv->wm.pri_latency[level];
2449 }
2450
2451 static void ilk_compute_wm_results(struct drm_device *dev,
2452 const struct intel_pipe_wm *merged,
2453 enum intel_ddb_partitioning partitioning,
2454 struct ilk_wm_values *results)
2455 {
2456 struct intel_crtc *intel_crtc;
2457 int level, wm_lp;
2458
2459 results->enable_fbc_wm = merged->fbc_wm_enabled;
2460 results->partitioning = partitioning;
2461
2462 /* LP1+ register values */
2463 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2464 const struct intel_wm_level *r;
2465
2466 level = ilk_wm_lp_to_level(wm_lp, merged);
2467
2468 r = &merged->wm[level];
2469
2470 /*
2471 * Maintain the watermark values even if the level is
2472 * disabled. Doing otherwise could cause underruns.
2473 */
2474 results->wm_lp[wm_lp - 1] =
2475 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2476 (r->pri_val << WM1_LP_SR_SHIFT) |
2477 r->cur_val;
2478
2479 if (r->enable)
2480 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2481
2482 if (INTEL_INFO(dev)->gen >= 8)
2483 results->wm_lp[wm_lp - 1] |=
2484 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2485 else
2486 results->wm_lp[wm_lp - 1] |=
2487 r->fbc_val << WM1_LP_FBC_SHIFT;
2488
2489 /*
2490 * Always set WM1S_LP_EN when spr_val != 0, even if the
2491 * level is disabled. Doing otherwise could cause underruns.
2492 */
2493 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2494 WARN_ON(wm_lp != 1);
2495 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2496 } else
2497 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2498 }
2499
2500 /* LP0 register values */
2501 for_each_intel_crtc(dev, intel_crtc) {
2502 const struct intel_crtc_state *cstate =
2503 to_intel_crtc_state(intel_crtc->base.state);
2504 enum pipe pipe = intel_crtc->pipe;
2505 const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
2506
2507 if (WARN_ON(!r->enable))
2508 continue;
2509
2510 results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
2511
2512 results->wm_pipe[pipe] =
2513 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2514 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2515 r->cur_val;
2516 }
2517 }
2518
2519 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2520 * case both are at the same level. Prefer r1 in case they're the same. */
2521 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2522 struct intel_pipe_wm *r1,
2523 struct intel_pipe_wm *r2)
2524 {
2525 int level, max_level = ilk_wm_max_level(dev);
2526 int level1 = 0, level2 = 0;
2527
2528 for (level = 1; level <= max_level; level++) {
2529 if (r1->wm[level].enable)
2530 level1 = level;
2531 if (r2->wm[level].enable)
2532 level2 = level;
2533 }
2534
2535 if (level1 == level2) {
2536 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2537 return r2;
2538 else
2539 return r1;
2540 } else if (level1 > level2) {
2541 return r1;
2542 } else {
2543 return r2;
2544 }
2545 }
2546
2547 /* dirty bits used to track which watermarks need changes */
2548 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2549 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2550 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2551 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2552 #define WM_DIRTY_FBC (1 << 24)
2553 #define WM_DIRTY_DDB (1 << 25)
2554
2555 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2556 const struct ilk_wm_values *old,
2557 const struct ilk_wm_values *new)
2558 {
2559 unsigned int dirty = 0;
2560 enum pipe pipe;
2561 int wm_lp;
2562
2563 for_each_pipe(dev_priv, pipe) {
2564 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2565 dirty |= WM_DIRTY_LINETIME(pipe);
2566 /* Must disable LP1+ watermarks too */
2567 dirty |= WM_DIRTY_LP_ALL;
2568 }
2569
2570 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2571 dirty |= WM_DIRTY_PIPE(pipe);
2572 /* Must disable LP1+ watermarks too */
2573 dirty |= WM_DIRTY_LP_ALL;
2574 }
2575 }
2576
2577 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2578 dirty |= WM_DIRTY_FBC;
2579 /* Must disable LP1+ watermarks too */
2580 dirty |= WM_DIRTY_LP_ALL;
2581 }
2582
2583 if (old->partitioning != new->partitioning) {
2584 dirty |= WM_DIRTY_DDB;
2585 /* Must disable LP1+ watermarks too */
2586 dirty |= WM_DIRTY_LP_ALL;
2587 }
2588
2589 /* LP1+ watermarks already deemed dirty, no need to continue */
2590 if (dirty & WM_DIRTY_LP_ALL)
2591 return dirty;
2592
2593 /* Find the lowest numbered LP1+ watermark in need of an update... */
2594 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2595 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2596 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2597 break;
2598 }
2599
2600 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2601 for (; wm_lp <= 3; wm_lp++)
2602 dirty |= WM_DIRTY_LP(wm_lp);
2603
2604 return dirty;
2605 }
2606
2607 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2608 unsigned int dirty)
2609 {
2610 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2611 bool changed = false;
2612
2613 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2614 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2615 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2616 changed = true;
2617 }
2618 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2619 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2620 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2621 changed = true;
2622 }
2623 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2624 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2625 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2626 changed = true;
2627 }
2628
2629 /*
2630 * Don't touch WM1S_LP_EN here.
2631 * Doing so could cause underruns.
2632 */
2633
2634 return changed;
2635 }
2636
2637 /*
2638 * The spec says we shouldn't write when we don't need, because every write
2639 * causes WMs to be re-evaluated, expending some power.
2640 */
2641 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2642 struct ilk_wm_values *results)
2643 {
2644 struct drm_device *dev = dev_priv->dev;
2645 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2646 unsigned int dirty;
2647 uint32_t val;
2648
2649 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2650 if (!dirty)
2651 return;
2652
2653 _ilk_disable_lp_wm(dev_priv, dirty);
2654
2655 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2656 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2657 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2658 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2659 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2660 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2661
2662 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2663 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2664 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2665 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2666 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2667 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2668
2669 if (dirty & WM_DIRTY_DDB) {
2670 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2671 val = I915_READ(WM_MISC);
2672 if (results->partitioning == INTEL_DDB_PART_1_2)
2673 val &= ~WM_MISC_DATA_PARTITION_5_6;
2674 else
2675 val |= WM_MISC_DATA_PARTITION_5_6;
2676 I915_WRITE(WM_MISC, val);
2677 } else {
2678 val = I915_READ(DISP_ARB_CTL2);
2679 if (results->partitioning == INTEL_DDB_PART_1_2)
2680 val &= ~DISP_DATA_PARTITION_5_6;
2681 else
2682 val |= DISP_DATA_PARTITION_5_6;
2683 I915_WRITE(DISP_ARB_CTL2, val);
2684 }
2685 }
2686
2687 if (dirty & WM_DIRTY_FBC) {
2688 val = I915_READ(DISP_ARB_CTL);
2689 if (results->enable_fbc_wm)
2690 val &= ~DISP_FBC_WM_DIS;
2691 else
2692 val |= DISP_FBC_WM_DIS;
2693 I915_WRITE(DISP_ARB_CTL, val);
2694 }
2695
2696 if (dirty & WM_DIRTY_LP(1) &&
2697 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2698 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2699
2700 if (INTEL_INFO(dev)->gen >= 7) {
2701 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2702 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2703 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2704 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2705 }
2706
2707 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2708 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2709 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2710 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2711 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2712 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2713
2714 dev_priv->wm.hw = *results;
2715 }
2716
2717 static bool ilk_disable_lp_wm(struct drm_device *dev)
2718 {
2719 struct drm_i915_private *dev_priv = dev->dev_private;
2720
2721 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2722 }
2723
2724 /*
2725 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2726 * different active planes.
2727 */
2728
2729 #define SKL_DDB_SIZE 896 /* in blocks */
2730 #define BXT_DDB_SIZE 512
2731
2732 /*
2733 * Return the index of a plane in the SKL DDB and wm result arrays. Primary
2734 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2735 * other universal planes are in indices 1..n. Note that this may leave unused
2736 * indices between the top "sprite" plane and the cursor.
2737 */
2738 static int
2739 skl_wm_plane_id(const struct intel_plane *plane)
2740 {
2741 switch (plane->base.type) {
2742 case DRM_PLANE_TYPE_PRIMARY:
2743 return 0;
2744 case DRM_PLANE_TYPE_CURSOR:
2745 return PLANE_CURSOR;
2746 case DRM_PLANE_TYPE_OVERLAY:
2747 return plane->plane + 1;
2748 default:
2749 MISSING_CASE(plane->base.type);
2750 return plane->plane;
2751 }
2752 }
2753
2754 static void
2755 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2756 const struct intel_crtc_state *cstate,
2757 const struct intel_wm_config *config,
2758 struct skl_ddb_entry *alloc /* out */)
2759 {
2760 struct drm_crtc *for_crtc = cstate->base.crtc;
2761 struct drm_crtc *crtc;
2762 unsigned int pipe_size, ddb_size;
2763 int nth_active_pipe;
2764
2765 if (!cstate->base.active) {
2766 alloc->start = 0;
2767 alloc->end = 0;
2768 return;
2769 }
2770
2771 if (IS_BROXTON(dev))
2772 ddb_size = BXT_DDB_SIZE;
2773 else
2774 ddb_size = SKL_DDB_SIZE;
2775
2776 ddb_size -= 4; /* 4 blocks for bypass path allocation */
2777
2778 nth_active_pipe = 0;
2779 for_each_crtc(dev, crtc) {
2780 if (!to_intel_crtc(crtc)->active)
2781 continue;
2782
2783 if (crtc == for_crtc)
2784 break;
2785
2786 nth_active_pipe++;
2787 }
2788
2789 pipe_size = ddb_size / config->num_pipes_active;
2790 alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2791 alloc->end = alloc->start + pipe_size;
2792 }
2793
2794 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2795 {
2796 if (config->num_pipes_active == 1)
2797 return 32;
2798
2799 return 8;
2800 }
2801
2802 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2803 {
2804 entry->start = reg & 0x3ff;
2805 entry->end = (reg >> 16) & 0x3ff;
2806 if (entry->end)
2807 entry->end += 1;
2808 }
2809
2810 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2811 struct skl_ddb_allocation *ddb /* out */)
2812 {
2813 enum pipe pipe;
2814 int plane;
2815 u32 val;
2816
2817 for_each_pipe(dev_priv, pipe) {
2818 for_each_plane(dev_priv, pipe, plane) {
2819 val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2820 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2821 val);
2822 }
2823
2824 val = I915_READ(CUR_BUF_CFG(pipe));
2825 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2826 val);
2827 }
2828 }
2829
2830 static unsigned int
2831 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
2832 const struct drm_plane_state *pstate,
2833 int y)
2834 {
2835 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2836 struct drm_framebuffer *fb = pstate->fb;
2837
2838 /* for planar format */
2839 if (fb->pixel_format == DRM_FORMAT_NV12) {
2840 if (y) /* y-plane data rate */
2841 return intel_crtc->config->pipe_src_w *
2842 intel_crtc->config->pipe_src_h *
2843 drm_format_plane_cpp(fb->pixel_format, 0);
2844 else /* uv-plane data rate */
2845 return (intel_crtc->config->pipe_src_w/2) *
2846 (intel_crtc->config->pipe_src_h/2) *
2847 drm_format_plane_cpp(fb->pixel_format, 1);
2848 }
2849
2850 /* for packed formats */
2851 return intel_crtc->config->pipe_src_w *
2852 intel_crtc->config->pipe_src_h *
2853 drm_format_plane_cpp(fb->pixel_format, 0);
2854 }
2855
2856 /*
2857 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2858 * a 8192x4096@32bpp framebuffer:
2859 * 3 * 4096 * 8192 * 4 < 2^32
2860 */
2861 static unsigned int
2862 skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2863 {
2864 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2865 struct drm_device *dev = intel_crtc->base.dev;
2866 const struct intel_plane *intel_plane;
2867 unsigned int total_data_rate = 0;
2868
2869 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2870 const struct drm_plane_state *pstate = intel_plane->base.state;
2871
2872 if (pstate->fb == NULL)
2873 continue;
2874
2875 if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2876 continue;
2877
2878 /* packed/uv */
2879 total_data_rate += skl_plane_relative_data_rate(cstate,
2880 pstate,
2881 0);
2882
2883 if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
2884 /* y-plane */
2885 total_data_rate += skl_plane_relative_data_rate(cstate,
2886 pstate,
2887 1);
2888 }
2889
2890 return total_data_rate;
2891 }
2892
2893 static void
2894 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
2895 struct skl_ddb_allocation *ddb /* out */)
2896 {
2897 struct drm_crtc *crtc = cstate->base.crtc;
2898 struct drm_device *dev = crtc->dev;
2899 struct drm_i915_private *dev_priv = to_i915(dev);
2900 struct intel_wm_config *config = &dev_priv->wm.config;
2901 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2902 struct intel_plane *intel_plane;
2903 enum pipe pipe = intel_crtc->pipe;
2904 struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2905 uint16_t alloc_size, start, cursor_blocks;
2906 uint16_t minimum[I915_MAX_PLANES];
2907 uint16_t y_minimum[I915_MAX_PLANES];
2908 unsigned int total_data_rate;
2909
2910 skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
2911 alloc_size = skl_ddb_entry_size(alloc);
2912 if (alloc_size == 0) {
2913 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2914 memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2915 sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2916 return;
2917 }
2918
2919 cursor_blocks = skl_cursor_allocation(config);
2920 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2921 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2922
2923 alloc_size -= cursor_blocks;
2924 alloc->end -= cursor_blocks;
2925
2926 /* 1. Allocate the mininum required blocks for each active plane */
2927 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2928 struct drm_plane *plane = &intel_plane->base;
2929 struct drm_framebuffer *fb = plane->state->fb;
2930 int id = skl_wm_plane_id(intel_plane);
2931
2932 if (fb == NULL)
2933 continue;
2934 if (plane->type == DRM_PLANE_TYPE_CURSOR)
2935 continue;
2936
2937 minimum[id] = 8;
2938 alloc_size -= minimum[id];
2939 y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
2940 alloc_size -= y_minimum[id];
2941 }
2942
2943 /*
2944 * 2. Distribute the remaining space in proportion to the amount of
2945 * data each plane needs to fetch from memory.
2946 *
2947 * FIXME: we may not allocate every single block here.
2948 */
2949 total_data_rate = skl_get_total_relative_data_rate(cstate);
2950
2951 start = alloc->start;
2952 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2953 struct drm_plane *plane = &intel_plane->base;
2954 struct drm_plane_state *pstate = intel_plane->base.state;
2955 unsigned int data_rate, y_data_rate;
2956 uint16_t plane_blocks, y_plane_blocks = 0;
2957 int id = skl_wm_plane_id(intel_plane);
2958
2959 if (pstate->fb == NULL)
2960 continue;
2961 if (plane->type == DRM_PLANE_TYPE_CURSOR)
2962 continue;
2963
2964 data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
2965
2966 /*
2967 * allocation for (packed formats) or (uv-plane part of planar format):
2968 * promote the expression to 64 bits to avoid overflowing, the
2969 * result is < available as data_rate / total_data_rate < 1
2970 */
2971 plane_blocks = minimum[id];
2972 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2973 total_data_rate);
2974
2975 ddb->plane[pipe][id].start = start;
2976 ddb->plane[pipe][id].end = start + plane_blocks;
2977
2978 start += plane_blocks;
2979
2980 /*
2981 * allocation for y_plane part of planar format:
2982 */
2983 if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
2984 y_data_rate = skl_plane_relative_data_rate(cstate,
2985 pstate,
2986 1);
2987 y_plane_blocks = y_minimum[id];
2988 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
2989 total_data_rate);
2990
2991 ddb->y_plane[pipe][id].start = start;
2992 ddb->y_plane[pipe][id].end = start + y_plane_blocks;
2993
2994 start += y_plane_blocks;
2995 }
2996
2997 }
2998
2999 }
3000
3001 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3002 {
3003 /* TODO: Take into account the scalers once we support them */
3004 return config->base.adjusted_mode.crtc_clock;
3005 }
3006
3007 /*
3008 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3009 * for the read latency) and bytes_per_pixel should always be <= 8, so that
3010 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3011 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3012 */
3013 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
3014 uint32_t latency)
3015 {
3016 uint32_t wm_intermediate_val, ret;
3017
3018 if (latency == 0)
3019 return UINT_MAX;
3020
3021 wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3022 ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3023
3024 return ret;
3025 }
3026
3027 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3028 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3029 uint64_t tiling, uint32_t latency)
3030 {
3031 uint32_t ret;
3032 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3033 uint32_t wm_intermediate_val;
3034
3035 if (latency == 0)
3036 return UINT_MAX;
3037
3038 plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3039
3040 if (tiling == I915_FORMAT_MOD_Y_TILED ||
3041 tiling == I915_FORMAT_MOD_Yf_TILED) {
3042 plane_bytes_per_line *= 4;
3043 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3044 plane_blocks_per_line /= 4;
3045 } else {
3046 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3047 }
3048
3049 wm_intermediate_val = latency * pixel_rate;
3050 ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3051 plane_blocks_per_line;
3052
3053 return ret;
3054 }
3055
3056 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3057 const struct intel_crtc *intel_crtc)
3058 {
3059 struct drm_device *dev = intel_crtc->base.dev;
3060 struct drm_i915_private *dev_priv = dev->dev_private;
3061 const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3062 enum pipe pipe = intel_crtc->pipe;
3063
3064 if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
3065 sizeof(new_ddb->plane[pipe])))
3066 return true;
3067
3068 if (memcmp(&new_ddb->plane[pipe][PLANE_CURSOR], &cur_ddb->plane[pipe][PLANE_CURSOR],
3069 sizeof(new_ddb->plane[pipe][PLANE_CURSOR])))
3070 return true;
3071
3072 return false;
3073 }
3074
3075 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3076 struct intel_crtc_state *cstate,
3077 struct intel_plane *intel_plane,
3078 uint16_t ddb_allocation,
3079 int level,
3080 uint16_t *out_blocks, /* out */
3081 uint8_t *out_lines /* out */)
3082 {
3083 struct drm_plane *plane = &intel_plane->base;
3084 struct drm_framebuffer *fb = plane->state->fb;
3085 uint32_t latency = dev_priv->wm.skl_latency[level];
3086 uint32_t method1, method2;
3087 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3088 uint32_t res_blocks, res_lines;
3089 uint32_t selected_result;
3090 uint8_t bytes_per_pixel;
3091
3092 if (latency == 0 || !cstate->base.active || !fb)
3093 return false;
3094
3095 bytes_per_pixel = drm_format_plane_cpp(fb->pixel_format, 0);
3096 method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3097 bytes_per_pixel,
3098 latency);
3099 method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
3100 cstate->base.adjusted_mode.crtc_htotal,
3101 cstate->pipe_src_w,
3102 bytes_per_pixel,
3103 fb->modifier[0],
3104 latency);
3105
3106 plane_bytes_per_line = cstate->pipe_src_w * bytes_per_pixel;
3107 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3108
3109 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3110 fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3111 uint32_t min_scanlines = 4;
3112 uint32_t y_tile_minimum;
3113 if (intel_rotation_90_or_270(plane->state->rotation)) {
3114 int bpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3115 drm_format_plane_cpp(fb->pixel_format, 1) :
3116 drm_format_plane_cpp(fb->pixel_format, 0);
3117
3118 switch (bpp) {
3119 case 1:
3120 min_scanlines = 16;
3121 break;
3122 case 2:
3123 min_scanlines = 8;
3124 break;
3125 case 8:
3126 WARN(1, "Unsupported pixel depth for rotation");
3127 }
3128 }
3129 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3130 selected_result = max(method2, y_tile_minimum);
3131 } else {
3132 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3133 selected_result = min(method1, method2);
3134 else
3135 selected_result = method1;
3136 }
3137
3138 res_blocks = selected_result + 1;
3139 res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3140
3141 if (level >= 1 && level <= 7) {
3142 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3143 fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3144 res_lines += 4;
3145 else
3146 res_blocks++;
3147 }
3148
3149 if (res_blocks >= ddb_allocation || res_lines > 31)
3150 return false;
3151
3152 *out_blocks = res_blocks;
3153 *out_lines = res_lines;
3154
3155 return true;
3156 }
3157
3158 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3159 struct skl_ddb_allocation *ddb,
3160 struct intel_crtc_state *cstate,
3161 int level,
3162 struct skl_wm_level *result)
3163 {
3164 struct drm_device *dev = dev_priv->dev;
3165 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3166 struct intel_plane *intel_plane;
3167 uint16_t ddb_blocks;
3168 enum pipe pipe = intel_crtc->pipe;
3169
3170 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3171 int i = skl_wm_plane_id(intel_plane);
3172
3173 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3174
3175 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3176 cstate,
3177 intel_plane,
3178 ddb_blocks,
3179 level,
3180 &result->plane_res_b[i],
3181 &result->plane_res_l[i]);
3182 }
3183 }
3184
3185 static uint32_t
3186 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3187 {
3188 if (!cstate->base.active)
3189 return 0;
3190
3191 if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3192 return 0;
3193
3194 return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3195 skl_pipe_pixel_rate(cstate));
3196 }
3197
3198 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3199 struct skl_wm_level *trans_wm /* out */)
3200 {
3201 struct drm_crtc *crtc = cstate->base.crtc;
3202 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3203 struct intel_plane *intel_plane;
3204
3205 if (!cstate->base.active)
3206 return;
3207
3208 /* Until we know more, just disable transition WMs */
3209 for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3210 int i = skl_wm_plane_id(intel_plane);
3211
3212 trans_wm->plane_en[i] = false;
3213 }
3214 }
3215
3216 static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3217 struct skl_ddb_allocation *ddb,
3218 struct skl_pipe_wm *pipe_wm)
3219 {
3220 struct drm_device *dev = cstate->base.crtc->dev;
3221 const struct drm_i915_private *dev_priv = dev->dev_private;
3222 int level, max_level = ilk_wm_max_level(dev);
3223
3224 for (level = 0; level <= max_level; level++) {
3225 skl_compute_wm_level(dev_priv, ddb, cstate,
3226 level, &pipe_wm->wm[level]);
3227 }
3228 pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3229
3230 skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3231 }
3232
3233 static void skl_compute_wm_results(struct drm_device *dev,
3234 struct skl_pipe_wm *p_wm,
3235 struct skl_wm_values *r,
3236 struct intel_crtc *intel_crtc)
3237 {
3238 int level, max_level = ilk_wm_max_level(dev);
3239 enum pipe pipe = intel_crtc->pipe;
3240 uint32_t temp;
3241 int i;
3242
3243 for (level = 0; level <= max_level; level++) {
3244 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3245 temp = 0;
3246
3247 temp |= p_wm->wm[level].plane_res_l[i] <<
3248 PLANE_WM_LINES_SHIFT;
3249 temp |= p_wm->wm[level].plane_res_b[i];
3250 if (p_wm->wm[level].plane_en[i])
3251 temp |= PLANE_WM_EN;
3252
3253 r->plane[pipe][i][level] = temp;
3254 }
3255
3256 temp = 0;
3257
3258 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3259 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3260
3261 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3262 temp |= PLANE_WM_EN;
3263
3264 r->plane[pipe][PLANE_CURSOR][level] = temp;
3265
3266 }
3267
3268 /* transition WMs */
3269 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3270 temp = 0;
3271 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3272 temp |= p_wm->trans_wm.plane_res_b[i];
3273 if (p_wm->trans_wm.plane_en[i])
3274 temp |= PLANE_WM_EN;
3275
3276 r->plane_trans[pipe][i] = temp;
3277 }
3278
3279 temp = 0;
3280 temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3281 temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3282 if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3283 temp |= PLANE_WM_EN;
3284
3285 r->plane_trans[pipe][PLANE_CURSOR] = temp;
3286
3287 r->wm_linetime[pipe] = p_wm->linetime;
3288 }
3289
3290 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3291 const struct skl_ddb_entry *entry)
3292 {
3293 if (entry->end)
3294 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3295 else
3296 I915_WRITE(reg, 0);
3297 }
3298
3299 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3300 const struct skl_wm_values *new)
3301 {
3302 struct drm_device *dev = dev_priv->dev;
3303 struct intel_crtc *crtc;
3304
3305 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3306 int i, level, max_level = ilk_wm_max_level(dev);
3307 enum pipe pipe = crtc->pipe;
3308
3309 if (!new->dirty[pipe])
3310 continue;
3311
3312 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3313
3314 for (level = 0; level <= max_level; level++) {
3315 for (i = 0; i < intel_num_planes(crtc); i++)
3316 I915_WRITE(PLANE_WM(pipe, i, level),
3317 new->plane[pipe][i][level]);
3318 I915_WRITE(CUR_WM(pipe, level),
3319 new->plane[pipe][PLANE_CURSOR][level]);
3320 }
3321 for (i = 0; i < intel_num_planes(crtc); i++)
3322 I915_WRITE(PLANE_WM_TRANS(pipe, i),
3323 new->plane_trans[pipe][i]);
3324 I915_WRITE(CUR_WM_TRANS(pipe),
3325 new->plane_trans[pipe][PLANE_CURSOR]);
3326
3327 for (i = 0; i < intel_num_planes(crtc); i++) {
3328 skl_ddb_entry_write(dev_priv,
3329 PLANE_BUF_CFG(pipe, i),
3330 &new->ddb.plane[pipe][i]);
3331 skl_ddb_entry_write(dev_priv,
3332 PLANE_NV12_BUF_CFG(pipe, i),
3333 &new->ddb.y_plane[pipe][i]);
3334 }
3335
3336 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3337 &new->ddb.plane[pipe][PLANE_CURSOR]);
3338 }
3339 }
3340
3341 /*
3342 * When setting up a new DDB allocation arrangement, we need to correctly
3343 * sequence the times at which the new allocations for the pipes are taken into
3344 * account or we'll have pipes fetching from space previously allocated to
3345 * another pipe.
3346 *
3347 * Roughly the sequence looks like:
3348 * 1. re-allocate the pipe(s) with the allocation being reduced and not
3349 * overlapping with a previous light-up pipe (another way to put it is:
3350 * pipes with their new allocation strickly included into their old ones).
3351 * 2. re-allocate the other pipes that get their allocation reduced
3352 * 3. allocate the pipes having their allocation increased
3353 *
3354 * Steps 1. and 2. are here to take care of the following case:
3355 * - Initially DDB looks like this:
3356 * | B | C |
3357 * - enable pipe A.
3358 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3359 * allocation
3360 * | A | B | C |
3361 *
3362 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3363 */
3364
3365 static void
3366 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3367 {
3368 int plane;
3369
3370 DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3371
3372 for_each_plane(dev_priv, pipe, plane) {
3373 I915_WRITE(PLANE_SURF(pipe, plane),
3374 I915_READ(PLANE_SURF(pipe, plane)));
3375 }
3376 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3377 }
3378
3379 static bool
3380 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3381 const struct skl_ddb_allocation *new,
3382 enum pipe pipe)
3383 {
3384 uint16_t old_size, new_size;
3385
3386 old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3387 new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3388
3389 return old_size != new_size &&
3390 new->pipe[pipe].start >= old->pipe[pipe].start &&
3391 new->pipe[pipe].end <= old->pipe[pipe].end;
3392 }
3393
3394 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3395 struct skl_wm_values *new_values)
3396 {
3397 struct drm_device *dev = dev_priv->dev;
3398 struct skl_ddb_allocation *cur_ddb, *new_ddb;
3399 bool reallocated[I915_MAX_PIPES] = {};
3400 struct intel_crtc *crtc;
3401 enum pipe pipe;
3402
3403 new_ddb = &new_values->ddb;
3404 cur_ddb = &dev_priv->wm.skl_hw.ddb;
3405
3406 /*
3407 * First pass: flush the pipes with the new allocation contained into
3408 * the old space.
3409 *
3410 * We'll wait for the vblank on those pipes to ensure we can safely
3411 * re-allocate the freed space without this pipe fetching from it.
3412 */
3413 for_each_intel_crtc(dev, crtc) {
3414 if (!crtc->active)
3415 continue;
3416
3417 pipe = crtc->pipe;
3418
3419 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3420 continue;
3421
3422 skl_wm_flush_pipe(dev_priv, pipe, 1);
3423 intel_wait_for_vblank(dev, pipe);
3424
3425 reallocated[pipe] = true;
3426 }
3427
3428
3429 /*
3430 * Second pass: flush the pipes that are having their allocation
3431 * reduced, but overlapping with a previous allocation.
3432 *
3433 * Here as well we need to wait for the vblank to make sure the freed
3434 * space is not used anymore.
3435 */
3436 for_each_intel_crtc(dev, crtc) {
3437 if (!crtc->active)
3438 continue;
3439
3440 pipe = crtc->pipe;
3441
3442 if (reallocated[pipe])
3443 continue;
3444
3445 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3446 skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3447 skl_wm_flush_pipe(dev_priv, pipe, 2);
3448 intel_wait_for_vblank(dev, pipe);
3449 reallocated[pipe] = true;
3450 }
3451 }
3452
3453 /*
3454 * Third pass: flush the pipes that got more space allocated.
3455 *
3456 * We don't need to actively wait for the update here, next vblank
3457 * will just get more DDB space with the correct WM values.
3458 */
3459 for_each_intel_crtc(dev, crtc) {
3460 if (!crtc->active)
3461 continue;
3462
3463 pipe = crtc->pipe;
3464
3465 /*
3466 * At this point, only the pipes more space than before are
3467 * left to re-allocate.
3468 */
3469 if (reallocated[pipe])
3470 continue;
3471
3472 skl_wm_flush_pipe(dev_priv, pipe, 3);
3473 }
3474 }
3475
3476 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3477 struct skl_ddb_allocation *ddb, /* out */
3478 struct skl_pipe_wm *pipe_wm /* out */)
3479 {
3480 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3481 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3482
3483 skl_allocate_pipe_ddb(cstate, ddb);
3484 skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3485
3486 if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3487 return false;
3488
3489 intel_crtc->wm.active.skl = *pipe_wm;
3490
3491 return true;
3492 }
3493
3494 static void skl_update_other_pipe_wm(struct drm_device *dev,
3495 struct drm_crtc *crtc,
3496 struct skl_wm_values *r)
3497 {
3498 struct intel_crtc *intel_crtc;
3499 struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3500
3501 /*
3502 * If the WM update hasn't changed the allocation for this_crtc (the
3503 * crtc we are currently computing the new WM values for), other
3504 * enabled crtcs will keep the same allocation and we don't need to
3505 * recompute anything for them.
3506 */
3507 if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3508 return;
3509
3510 /*
3511 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3512 * other active pipes need new DDB allocation and WM values.
3513 */
3514 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3515 base.head) {
3516 struct skl_pipe_wm pipe_wm = {};
3517 bool wm_changed;
3518
3519 if (this_crtc->pipe == intel_crtc->pipe)
3520 continue;
3521
3522 if (!intel_crtc->active)
3523 continue;
3524
3525 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3526 &r->ddb, &pipe_wm);
3527
3528 /*
3529 * If we end up re-computing the other pipe WM values, it's
3530 * because it was really needed, so we expect the WM values to
3531 * be different.
3532 */
3533 WARN_ON(!wm_changed);
3534
3535 skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3536 r->dirty[intel_crtc->pipe] = true;
3537 }
3538 }
3539
3540 static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3541 {
3542 watermarks->wm_linetime[pipe] = 0;
3543 memset(watermarks->plane[pipe], 0,
3544 sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3545 memset(watermarks->plane_trans[pipe],
3546 0, sizeof(uint32_t) * I915_MAX_PLANES);
3547 watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3548
3549 /* Clear ddb entries for pipe */
3550 memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3551 memset(&watermarks->ddb.plane[pipe], 0,
3552 sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3553 memset(&watermarks->ddb.y_plane[pipe], 0,
3554 sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3555 memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3556 sizeof(struct skl_ddb_entry));
3557
3558 }
3559
3560 static void skl_update_wm(struct drm_crtc *crtc)
3561 {
3562 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3563 struct drm_device *dev = crtc->dev;
3564 struct drm_i915_private *dev_priv = dev->dev_private;
3565 struct skl_wm_values *results = &dev_priv->wm.skl_results;
3566 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3567 struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3568
3569
3570 /* Clear all dirty flags */
3571 memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3572
3573 skl_clear_wm(results, intel_crtc->pipe);
3574
3575 if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
3576 return;
3577
3578 skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3579 results->dirty[intel_crtc->pipe] = true;
3580
3581 skl_update_other_pipe_wm(dev, crtc, results);
3582 skl_write_wm_values(dev_priv, results);
3583 skl_flush_wm_values(dev_priv, results);
3584
3585 /* store the new configuration */
3586 dev_priv->wm.skl_hw = *results;
3587 }
3588
3589 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3590 {
3591 struct drm_device *dev = dev_priv->dev;
3592 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3593 struct ilk_wm_maximums max;
3594 struct intel_wm_config *config = &dev_priv->wm.config;
3595 struct ilk_wm_values results = {};
3596 enum intel_ddb_partitioning partitioning;
3597
3598 ilk_compute_wm_maximums(dev, 1, config, INTEL_DDB_PART_1_2, &max);
3599 ilk_wm_merge(dev, config, &max, &lp_wm_1_2);
3600
3601 /* 5/6 split only in single pipe config on IVB+ */
3602 if (INTEL_INFO(dev)->gen >= 7 &&
3603 config->num_pipes_active == 1 && config->sprites_enabled) {
3604 ilk_compute_wm_maximums(dev, 1, config, INTEL_DDB_PART_5_6, &max);
3605 ilk_wm_merge(dev, config, &max, &lp_wm_5_6);
3606
3607 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3608 } else {
3609 best_lp_wm = &lp_wm_1_2;
3610 }
3611
3612 partitioning = (best_lp_wm == &lp_wm_1_2) ?
3613 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3614
3615 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3616
3617 ilk_write_wm_values(dev_priv, &results);
3618 }
3619
3620 static void ilk_update_wm(struct drm_crtc *crtc)
3621 {
3622 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3623 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3624 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3625
3626 WARN_ON(cstate->base.active != intel_crtc->active);
3627
3628 /*
3629 * IVB workaround: must disable low power watermarks for at least
3630 * one frame before enabling scaling. LP watermarks can be re-enabled
3631 * when scaling is disabled.
3632 *
3633 * WaCxSRDisabledForSpriteScaling:ivb
3634 */
3635 if (cstate->disable_lp_wm) {
3636 ilk_disable_lp_wm(crtc->dev);
3637 intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
3638 }
3639
3640 intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
3641
3642 ilk_program_watermarks(dev_priv);
3643 }
3644
3645 static void skl_pipe_wm_active_state(uint32_t val,
3646 struct skl_pipe_wm *active,
3647 bool is_transwm,
3648 bool is_cursor,
3649 int i,
3650 int level)
3651 {
3652 bool is_enabled = (val & PLANE_WM_EN) != 0;
3653
3654 if (!is_transwm) {
3655 if (!is_cursor) {
3656 active->wm[level].plane_en[i] = is_enabled;
3657 active->wm[level].plane_res_b[i] =
3658 val & PLANE_WM_BLOCKS_MASK;
3659 active->wm[level].plane_res_l[i] =
3660 (val >> PLANE_WM_LINES_SHIFT) &
3661 PLANE_WM_LINES_MASK;
3662 } else {
3663 active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3664 active->wm[level].plane_res_b[PLANE_CURSOR] =
3665 val & PLANE_WM_BLOCKS_MASK;
3666 active->wm[level].plane_res_l[PLANE_CURSOR] =
3667 (val >> PLANE_WM_LINES_SHIFT) &
3668 PLANE_WM_LINES_MASK;
3669 }
3670 } else {
3671 if (!is_cursor) {
3672 active->trans_wm.plane_en[i] = is_enabled;
3673 active->trans_wm.plane_res_b[i] =
3674 val & PLANE_WM_BLOCKS_MASK;
3675 active->trans_wm.plane_res_l[i] =
3676 (val >> PLANE_WM_LINES_SHIFT) &
3677 PLANE_WM_LINES_MASK;
3678 } else {
3679 active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3680 active->trans_wm.plane_res_b[PLANE_CURSOR] =
3681 val & PLANE_WM_BLOCKS_MASK;
3682 active->trans_wm.plane_res_l[PLANE_CURSOR] =
3683 (val >> PLANE_WM_LINES_SHIFT) &
3684 PLANE_WM_LINES_MASK;
3685 }
3686 }
3687 }
3688
3689 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3690 {
3691 struct drm_device *dev = crtc->dev;
3692 struct drm_i915_private *dev_priv = dev->dev_private;
3693 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3694 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3695 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3696 struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3697 enum pipe pipe = intel_crtc->pipe;
3698 int level, i, max_level;
3699 uint32_t temp;
3700
3701 max_level = ilk_wm_max_level(dev);
3702
3703 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3704
3705 for (level = 0; level <= max_level; level++) {
3706 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3707 hw->plane[pipe][i][level] =
3708 I915_READ(PLANE_WM(pipe, i, level));
3709 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3710 }
3711
3712 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3713 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3714 hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3715
3716 if (!intel_crtc->active)
3717 return;
3718
3719 hw->dirty[pipe] = true;
3720
3721 active->linetime = hw->wm_linetime[pipe];
3722
3723 for (level = 0; level <= max_level; level++) {
3724 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3725 temp = hw->plane[pipe][i][level];
3726 skl_pipe_wm_active_state(temp, active, false,
3727 false, i, level);
3728 }
3729 temp = hw->plane[pipe][PLANE_CURSOR][level];
3730 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3731 }
3732
3733 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3734 temp = hw->plane_trans[pipe][i];
3735 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3736 }
3737
3738 temp = hw->plane_trans[pipe][PLANE_CURSOR];
3739 skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3740
3741 intel_crtc->wm.active.skl = *active;
3742 }
3743
3744 void skl_wm_get_hw_state(struct drm_device *dev)
3745 {
3746 struct drm_i915_private *dev_priv = dev->dev_private;
3747 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3748 struct drm_crtc *crtc;
3749
3750 skl_ddb_get_hw_state(dev_priv, ddb);
3751 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3752 skl_pipe_wm_get_hw_state(crtc);
3753 }
3754
3755 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3756 {
3757 struct drm_device *dev = crtc->dev;
3758 struct drm_i915_private *dev_priv = dev->dev_private;
3759 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3760 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3761 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3762 struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3763 enum pipe pipe = intel_crtc->pipe;
3764 static const unsigned int wm0_pipe_reg[] = {
3765 [PIPE_A] = WM0_PIPEA_ILK,
3766 [PIPE_B] = WM0_PIPEB_ILK,
3767 [PIPE_C] = WM0_PIPEC_IVB,
3768 };
3769
3770 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3771 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3772 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3773
3774 active->pipe_enabled = intel_crtc->active;
3775
3776 if (active->pipe_enabled) {
3777 u32 tmp = hw->wm_pipe[pipe];
3778
3779 /*
3780 * For active pipes LP0 watermark is marked as
3781 * enabled, and LP1+ watermaks as disabled since
3782 * we can't really reverse compute them in case
3783 * multiple pipes are active.
3784 */
3785 active->wm[0].enable = true;
3786 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3787 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3788 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3789 active->linetime = hw->wm_linetime[pipe];
3790 } else {
3791 int level, max_level = ilk_wm_max_level(dev);
3792
3793 /*
3794 * For inactive pipes, all watermark levels
3795 * should be marked as enabled but zeroed,
3796 * which is what we'd compute them to.
3797 */
3798 for (level = 0; level <= max_level; level++)
3799 active->wm[level].enable = true;
3800 }
3801
3802 intel_crtc->wm.active.ilk = *active;
3803 }
3804
3805 #define _FW_WM(value, plane) \
3806 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3807 #define _FW_WM_VLV(value, plane) \
3808 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3809
3810 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3811 struct vlv_wm_values *wm)
3812 {
3813 enum pipe pipe;
3814 uint32_t tmp;
3815
3816 for_each_pipe(dev_priv, pipe) {
3817 tmp = I915_READ(VLV_DDL(pipe));
3818
3819 wm->ddl[pipe].primary =
3820 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3821 wm->ddl[pipe].cursor =
3822 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3823 wm->ddl[pipe].sprite[0] =
3824 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3825 wm->ddl[pipe].sprite[1] =
3826 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3827 }
3828
3829 tmp = I915_READ(DSPFW1);
3830 wm->sr.plane = _FW_WM(tmp, SR);
3831 wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3832 wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3833 wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3834
3835 tmp = I915_READ(DSPFW2);
3836 wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3837 wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3838 wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3839
3840 tmp = I915_READ(DSPFW3);
3841 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3842
3843 if (IS_CHERRYVIEW(dev_priv)) {
3844 tmp = I915_READ(DSPFW7_CHV);
3845 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3846 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3847
3848 tmp = I915_READ(DSPFW8_CHV);
3849 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3850 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3851
3852 tmp = I915_READ(DSPFW9_CHV);
3853 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3854 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3855
3856 tmp = I915_READ(DSPHOWM);
3857 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3858 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3859 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3860 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3861 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3862 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3863 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3864 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3865 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3866 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3867 } else {
3868 tmp = I915_READ(DSPFW7);
3869 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3870 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3871
3872 tmp = I915_READ(DSPHOWM);
3873 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3874 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3875 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3876 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3877 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3878 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3879 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3880 }
3881 }
3882
3883 #undef _FW_WM
3884 #undef _FW_WM_VLV
3885
3886 void vlv_wm_get_hw_state(struct drm_device *dev)
3887 {
3888 struct drm_i915_private *dev_priv = to_i915(dev);
3889 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
3890 struct intel_plane *plane;
3891 enum pipe pipe;
3892 u32 val;
3893
3894 vlv_read_wm_values(dev_priv, wm);
3895
3896 for_each_intel_plane(dev, plane) {
3897 switch (plane->base.type) {
3898 int sprite;
3899 case DRM_PLANE_TYPE_CURSOR:
3900 plane->wm.fifo_size = 63;
3901 break;
3902 case DRM_PLANE_TYPE_PRIMARY:
3903 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
3904 break;
3905 case DRM_PLANE_TYPE_OVERLAY:
3906 sprite = plane->plane;
3907 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
3908 break;
3909 }
3910 }
3911
3912 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
3913 wm->level = VLV_WM_LEVEL_PM2;
3914
3915 if (IS_CHERRYVIEW(dev_priv)) {
3916 mutex_lock(&dev_priv->rps.hw_lock);
3917
3918 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
3919 if (val & DSP_MAXFIFO_PM5_ENABLE)
3920 wm->level = VLV_WM_LEVEL_PM5;
3921
3922 /*
3923 * If DDR DVFS is disabled in the BIOS, Punit
3924 * will never ack the request. So if that happens
3925 * assume we don't have to enable/disable DDR DVFS
3926 * dynamically. To test that just set the REQ_ACK
3927 * bit to poke the Punit, but don't change the
3928 * HIGH/LOW bits so that we don't actually change
3929 * the current state.
3930 */
3931 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3932 val |= FORCE_DDR_FREQ_REQ_ACK;
3933 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
3934
3935 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
3936 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
3937 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
3938 "assuming DDR DVFS is disabled\n");
3939 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
3940 } else {
3941 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3942 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
3943 wm->level = VLV_WM_LEVEL_DDR_DVFS;
3944 }
3945
3946 mutex_unlock(&dev_priv->rps.hw_lock);
3947 }
3948
3949 for_each_pipe(dev_priv, pipe)
3950 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
3951 pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
3952 wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
3953
3954 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
3955 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
3956 }
3957
3958 void ilk_wm_get_hw_state(struct drm_device *dev)
3959 {
3960 struct drm_i915_private *dev_priv = dev->dev_private;
3961 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3962 struct drm_crtc *crtc;
3963
3964 for_each_crtc(dev, crtc)
3965 ilk_pipe_wm_get_hw_state(crtc);
3966
3967 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3968 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3969 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3970
3971 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3972 if (INTEL_INFO(dev)->gen >= 7) {
3973 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3974 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3975 }
3976
3977 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3978 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3979 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3980 else if (IS_IVYBRIDGE(dev))
3981 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
3982 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3983
3984 hw->enable_fbc_wm =
3985 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3986 }
3987
3988 /**
3989 * intel_update_watermarks - update FIFO watermark values based on current modes
3990 *
3991 * Calculate watermark values for the various WM regs based on current mode
3992 * and plane configuration.
3993 *
3994 * There are several cases to deal with here:
3995 * - normal (i.e. non-self-refresh)
3996 * - self-refresh (SR) mode
3997 * - lines are large relative to FIFO size (buffer can hold up to 2)
3998 * - lines are small relative to FIFO size (buffer can hold more than 2
3999 * lines), so need to account for TLB latency
4000 *
4001 * The normal calculation is:
4002 * watermark = dotclock * bytes per pixel * latency
4003 * where latency is platform & configuration dependent (we assume pessimal
4004 * values here).
4005 *
4006 * The SR calculation is:
4007 * watermark = (trunc(latency/line time)+1) * surface width *
4008 * bytes per pixel
4009 * where
4010 * line time = htotal / dotclock
4011 * surface width = hdisplay for normal plane and 64 for cursor
4012 * and latency is assumed to be high, as above.
4013 *
4014 * The final value programmed to the register should always be rounded up,
4015 * and include an extra 2 entries to account for clock crossings.
4016 *
4017 * We don't use the sprite, so we can ignore that. And on Crestline we have
4018 * to set the non-SR watermarks to 8.
4019 */
4020 void intel_update_watermarks(struct drm_crtc *crtc)
4021 {
4022 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4023
4024 if (dev_priv->display.update_wm)
4025 dev_priv->display.update_wm(crtc);
4026 }
4027
4028 /**
4029 * Lock protecting IPS related data structures
4030 */
4031 DEFINE_SPINLOCK(mchdev_lock);
4032
4033 /* Global for IPS driver to get at the current i915 device. Protected by
4034 * mchdev_lock. */
4035 static struct drm_i915_private *i915_mch_dev;
4036
4037 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4038 {
4039 struct drm_i915_private *dev_priv = dev->dev_private;
4040 u16 rgvswctl;
4041
4042 assert_spin_locked(&mchdev_lock);
4043
4044 rgvswctl = I915_READ16(MEMSWCTL);
4045 if (rgvswctl & MEMCTL_CMD_STS) {
4046 DRM_DEBUG("gpu busy, RCS change rejected\n");
4047 return false; /* still busy with another command */
4048 }
4049
4050 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4051 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4052 I915_WRITE16(MEMSWCTL, rgvswctl);
4053 POSTING_READ16(MEMSWCTL);
4054
4055 rgvswctl |= MEMCTL_CMD_STS;
4056 I915_WRITE16(MEMSWCTL, rgvswctl);
4057
4058 return true;
4059 }
4060
4061 static void ironlake_enable_drps(struct drm_device *dev)
4062 {
4063 struct drm_i915_private *dev_priv = dev->dev_private;
4064 u32 rgvmodectl = I915_READ(MEMMODECTL);
4065 u8 fmax, fmin, fstart, vstart;
4066
4067 spin_lock_irq(&mchdev_lock);
4068
4069 /* Enable temp reporting */
4070 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4071 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4072
4073 /* 100ms RC evaluation intervals */
4074 I915_WRITE(RCUPEI, 100000);
4075 I915_WRITE(RCDNEI, 100000);
4076
4077 /* Set max/min thresholds to 90ms and 80ms respectively */
4078 I915_WRITE(RCBMAXAVG, 90000);
4079 I915_WRITE(RCBMINAVG, 80000);
4080
4081 I915_WRITE(MEMIHYST, 1);
4082
4083 /* Set up min, max, and cur for interrupt handling */
4084 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4085 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4086 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4087 MEMMODE_FSTART_SHIFT;
4088
4089 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4090 PXVFREQ_PX_SHIFT;
4091
4092 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4093 dev_priv->ips.fstart = fstart;
4094
4095 dev_priv->ips.max_delay = fstart;
4096 dev_priv->ips.min_delay = fmin;
4097 dev_priv->ips.cur_delay = fstart;
4098
4099 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4100 fmax, fmin, fstart);
4101
4102 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4103
4104 /*
4105 * Interrupts will be enabled in ironlake_irq_postinstall
4106 */
4107
4108 I915_WRITE(VIDSTART, vstart);
4109 POSTING_READ(VIDSTART);
4110
4111 rgvmodectl |= MEMMODE_SWMODE_EN;
4112 I915_WRITE(MEMMODECTL, rgvmodectl);
4113
4114 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4115 DRM_ERROR("stuck trying to change perf mode\n");
4116 mdelay(1);
4117
4118 ironlake_set_drps(dev, fstart);
4119
4120 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4121 I915_READ(DDREC) + I915_READ(CSIEC);
4122 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4123 dev_priv->ips.last_count2 = I915_READ(GFXEC);
4124 dev_priv->ips.last_time2 = ktime_get_raw_ns();
4125
4126 spin_unlock_irq(&mchdev_lock);
4127 }
4128
4129 static void ironlake_disable_drps(struct drm_device *dev)
4130 {
4131 struct drm_i915_private *dev_priv = dev->dev_private;
4132 u16 rgvswctl;
4133
4134 spin_lock_irq(&mchdev_lock);
4135
4136 rgvswctl = I915_READ16(MEMSWCTL);
4137
4138 /* Ack interrupts, disable EFC interrupt */
4139 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4140 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4141 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4142 I915_WRITE(DEIIR, DE_PCU_EVENT);
4143 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4144
4145 /* Go back to the starting frequency */
4146 ironlake_set_drps(dev, dev_priv->ips.fstart);
4147 mdelay(1);
4148 rgvswctl |= MEMCTL_CMD_STS;
4149 I915_WRITE(MEMSWCTL, rgvswctl);
4150 mdelay(1);
4151
4152 spin_unlock_irq(&mchdev_lock);
4153 }
4154
4155 /* There's a funny hw issue where the hw returns all 0 when reading from
4156 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4157 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4158 * all limits and the gpu stuck at whatever frequency it is at atm).
4159 */
4160 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4161 {
4162 u32 limits;
4163
4164 /* Only set the down limit when we've reached the lowest level to avoid
4165 * getting more interrupts, otherwise leave this clear. This prevents a
4166 * race in the hw when coming out of rc6: There's a tiny window where
4167 * the hw runs at the minimal clock before selecting the desired
4168 * frequency, if the down threshold expires in that window we will not
4169 * receive a down interrupt. */
4170 if (IS_GEN9(dev_priv->dev)) {
4171 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4172 if (val <= dev_priv->rps.min_freq_softlimit)
4173 limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4174 } else {
4175 limits = dev_priv->rps.max_freq_softlimit << 24;
4176 if (val <= dev_priv->rps.min_freq_softlimit)
4177 limits |= dev_priv->rps.min_freq_softlimit << 16;
4178 }
4179
4180 return limits;
4181 }
4182
4183 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4184 {
4185 int new_power;
4186 u32 threshold_up = 0, threshold_down = 0; /* in % */
4187 u32 ei_up = 0, ei_down = 0;
4188
4189 new_power = dev_priv->rps.power;
4190 switch (dev_priv->rps.power) {
4191 case LOW_POWER:
4192 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4193 new_power = BETWEEN;
4194 break;
4195
4196 case BETWEEN:
4197 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4198 new_power = LOW_POWER;
4199 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4200 new_power = HIGH_POWER;
4201 break;
4202
4203 case HIGH_POWER:
4204 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4205 new_power = BETWEEN;
4206 break;
4207 }
4208 /* Max/min bins are special */
4209 if (val <= dev_priv->rps.min_freq_softlimit)
4210 new_power = LOW_POWER;
4211 if (val >= dev_priv->rps.max_freq_softlimit)
4212 new_power = HIGH_POWER;
4213 if (new_power == dev_priv->rps.power)
4214 return;
4215
4216 /* Note the units here are not exactly 1us, but 1280ns. */
4217 switch (new_power) {
4218 case LOW_POWER:
4219 /* Upclock if more than 95% busy over 16ms */
4220 ei_up = 16000;
4221 threshold_up = 95;
4222
4223 /* Downclock if less than 85% busy over 32ms */
4224 ei_down = 32000;
4225 threshold_down = 85;
4226 break;
4227
4228 case BETWEEN:
4229 /* Upclock if more than 90% busy over 13ms */
4230 ei_up = 13000;
4231 threshold_up = 90;
4232
4233 /* Downclock if less than 75% busy over 32ms */
4234 ei_down = 32000;
4235 threshold_down = 75;
4236 break;
4237
4238 case HIGH_POWER:
4239 /* Upclock if more than 85% busy over 10ms */
4240 ei_up = 10000;
4241 threshold_up = 85;
4242
4243 /* Downclock if less than 60% busy over 32ms */
4244 ei_down = 32000;
4245 threshold_down = 60;
4246 break;
4247 }
4248
4249 I915_WRITE(GEN6_RP_UP_EI,
4250 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4251 I915_WRITE(GEN6_RP_UP_THRESHOLD,
4252 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4253
4254 I915_WRITE(GEN6_RP_DOWN_EI,
4255 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4256 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4257 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4258
4259 I915_WRITE(GEN6_RP_CONTROL,
4260 GEN6_RP_MEDIA_TURBO |
4261 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4262 GEN6_RP_MEDIA_IS_GFX |
4263 GEN6_RP_ENABLE |
4264 GEN6_RP_UP_BUSY_AVG |
4265 GEN6_RP_DOWN_IDLE_AVG);
4266
4267 dev_priv->rps.power = new_power;
4268 dev_priv->rps.up_threshold = threshold_up;
4269 dev_priv->rps.down_threshold = threshold_down;
4270 dev_priv->rps.last_adj = 0;
4271 }
4272
4273 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4274 {
4275 u32 mask = 0;
4276
4277 if (val > dev_priv->rps.min_freq_softlimit)
4278 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4279 if (val < dev_priv->rps.max_freq_softlimit)
4280 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4281
4282 mask &= dev_priv->pm_rps_events;
4283
4284 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4285 }
4286
4287 /* gen6_set_rps is called to update the frequency request, but should also be
4288 * called when the range (min_delay and max_delay) is modified so that we can
4289 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4290 static void gen6_set_rps(struct drm_device *dev, u8 val)
4291 {
4292 struct drm_i915_private *dev_priv = dev->dev_private;
4293
4294 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4295 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4296 return;
4297
4298 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4299 WARN_ON(val > dev_priv->rps.max_freq);
4300 WARN_ON(val < dev_priv->rps.min_freq);
4301
4302 /* min/max delay may still have been modified so be sure to
4303 * write the limits value.
4304 */
4305 if (val != dev_priv->rps.cur_freq) {
4306 gen6_set_rps_thresholds(dev_priv, val);
4307
4308 if (IS_GEN9(dev))
4309 I915_WRITE(GEN6_RPNSWREQ,
4310 GEN9_FREQUENCY(val));
4311 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4312 I915_WRITE(GEN6_RPNSWREQ,
4313 HSW_FREQUENCY(val));
4314 else
4315 I915_WRITE(GEN6_RPNSWREQ,
4316 GEN6_FREQUENCY(val) |
4317 GEN6_OFFSET(0) |
4318 GEN6_AGGRESSIVE_TURBO);
4319 }
4320
4321 /* Make sure we continue to get interrupts
4322 * until we hit the minimum or maximum frequencies.
4323 */
4324 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4325 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4326
4327 POSTING_READ(GEN6_RPNSWREQ);
4328
4329 dev_priv->rps.cur_freq = val;
4330 trace_intel_gpu_freq_change(val * 50);
4331 }
4332
4333 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4334 {
4335 struct drm_i915_private *dev_priv = dev->dev_private;
4336
4337 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4338 WARN_ON(val > dev_priv->rps.max_freq);
4339 WARN_ON(val < dev_priv->rps.min_freq);
4340
4341 if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4342 "Odd GPU freq value\n"))
4343 val &= ~1;
4344
4345 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4346
4347 if (val != dev_priv->rps.cur_freq) {
4348 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4349 if (!IS_CHERRYVIEW(dev_priv))
4350 gen6_set_rps_thresholds(dev_priv, val);
4351 }
4352
4353 dev_priv->rps.cur_freq = val;
4354 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4355 }
4356
4357 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4358 *
4359 * * If Gfx is Idle, then
4360 * 1. Forcewake Media well.
4361 * 2. Request idle freq.
4362 * 3. Release Forcewake of Media well.
4363 */
4364 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4365 {
4366 u32 val = dev_priv->rps.idle_freq;
4367
4368 if (dev_priv->rps.cur_freq <= val)
4369 return;
4370
4371 /* Wake up the media well, as that takes a lot less
4372 * power than the Render well. */
4373 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4374 valleyview_set_rps(dev_priv->dev, val);
4375 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4376 }
4377
4378 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4379 {
4380 mutex_lock(&dev_priv->rps.hw_lock);
4381 if (dev_priv->rps.enabled) {
4382 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4383 gen6_rps_reset_ei(dev_priv);
4384 I915_WRITE(GEN6_PMINTRMSK,
4385 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4386 }
4387 mutex_unlock(&dev_priv->rps.hw_lock);
4388 }
4389
4390 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4391 {
4392 struct drm_device *dev = dev_priv->dev;
4393
4394 mutex_lock(&dev_priv->rps.hw_lock);
4395 if (dev_priv->rps.enabled) {
4396 if (IS_VALLEYVIEW(dev))
4397 vlv_set_rps_idle(dev_priv);
4398 else
4399 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4400 dev_priv->rps.last_adj = 0;
4401 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4402 }
4403 mutex_unlock(&dev_priv->rps.hw_lock);
4404
4405 spin_lock(&dev_priv->rps.client_lock);
4406 while (!list_empty(&dev_priv->rps.clients))
4407 list_del_init(dev_priv->rps.clients.next);
4408 spin_unlock(&dev_priv->rps.client_lock);
4409 }
4410
4411 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4412 struct intel_rps_client *rps,
4413 unsigned long submitted)
4414 {
4415 /* This is intentionally racy! We peek at the state here, then
4416 * validate inside the RPS worker.
4417 */
4418 if (!(dev_priv->mm.busy &&
4419 dev_priv->rps.enabled &&
4420 dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4421 return;
4422
4423 /* Force a RPS boost (and don't count it against the client) if
4424 * the GPU is severely congested.
4425 */
4426 if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4427 rps = NULL;
4428
4429 spin_lock(&dev_priv->rps.client_lock);
4430 if (rps == NULL || list_empty(&rps->link)) {
4431 spin_lock_irq(&dev_priv->irq_lock);
4432 if (dev_priv->rps.interrupts_enabled) {
4433 dev_priv->rps.client_boost = true;
4434 queue_work(dev_priv->wq, &dev_priv->rps.work);
4435 }
4436 spin_unlock_irq(&dev_priv->irq_lock);
4437
4438 if (rps != NULL) {
4439 list_add(&rps->link, &dev_priv->rps.clients);
4440 rps->boosts++;
4441 } else
4442 dev_priv->rps.boosts++;
4443 }
4444 spin_unlock(&dev_priv->rps.client_lock);
4445 }
4446
4447 void intel_set_rps(struct drm_device *dev, u8 val)
4448 {
4449 if (IS_VALLEYVIEW(dev))
4450 valleyview_set_rps(dev, val);
4451 else
4452 gen6_set_rps(dev, val);
4453 }
4454
4455 static void gen9_disable_rps(struct drm_device *dev)
4456 {
4457 struct drm_i915_private *dev_priv = dev->dev_private;
4458
4459 I915_WRITE(GEN6_RC_CONTROL, 0);
4460 I915_WRITE(GEN9_PG_ENABLE, 0);
4461 }
4462
4463 static void gen6_disable_rps(struct drm_device *dev)
4464 {
4465 struct drm_i915_private *dev_priv = dev->dev_private;
4466
4467 I915_WRITE(GEN6_RC_CONTROL, 0);
4468 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4469 }
4470
4471 static void cherryview_disable_rps(struct drm_device *dev)
4472 {
4473 struct drm_i915_private *dev_priv = dev->dev_private;
4474
4475 I915_WRITE(GEN6_RC_CONTROL, 0);
4476 }
4477
4478 static void valleyview_disable_rps(struct drm_device *dev)
4479 {
4480 struct drm_i915_private *dev_priv = dev->dev_private;
4481
4482 /* we're doing forcewake before Disabling RC6,
4483 * This what the BIOS expects when going into suspend */
4484 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4485
4486 I915_WRITE(GEN6_RC_CONTROL, 0);
4487
4488 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4489 }
4490
4491 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4492 {
4493 if (IS_VALLEYVIEW(dev)) {
4494 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4495 mode = GEN6_RC_CTL_RC6_ENABLE;
4496 else
4497 mode = 0;
4498 }
4499 if (HAS_RC6p(dev))
4500 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4501 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4502 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4503 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4504
4505 else
4506 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4507 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4508 }
4509
4510 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4511 {
4512 /* No RC6 before Ironlake and code is gone for ilk. */
4513 if (INTEL_INFO(dev)->gen < 6)
4514 return 0;
4515
4516 /* Respect the kernel parameter if it is set */
4517 if (enable_rc6 >= 0) {
4518 int mask;
4519
4520 if (HAS_RC6p(dev))
4521 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4522 INTEL_RC6pp_ENABLE;
4523 else
4524 mask = INTEL_RC6_ENABLE;
4525
4526 if ((enable_rc6 & mask) != enable_rc6)
4527 DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4528 enable_rc6 & mask, enable_rc6, mask);
4529
4530 return enable_rc6 & mask;
4531 }
4532
4533 if (IS_IVYBRIDGE(dev))
4534 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4535
4536 return INTEL_RC6_ENABLE;
4537 }
4538
4539 int intel_enable_rc6(const struct drm_device *dev)
4540 {
4541 return i915.enable_rc6;
4542 }
4543
4544 static void gen6_init_rps_frequencies(struct drm_device *dev)
4545 {
4546 struct drm_i915_private *dev_priv = dev->dev_private;
4547 uint32_t rp_state_cap;
4548 u32 ddcc_status = 0;
4549 int ret;
4550
4551 /* All of these values are in units of 50MHz */
4552 dev_priv->rps.cur_freq = 0;
4553 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4554 if (IS_BROXTON(dev)) {
4555 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4556 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4557 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4558 dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
4559 } else {
4560 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4561 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
4562 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4563 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4564 }
4565
4566 /* hw_max = RP0 until we check for overclocking */
4567 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
4568
4569 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4570 if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
4571 IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4572 ret = sandybridge_pcode_read(dev_priv,
4573 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4574 &ddcc_status);
4575 if (0 == ret)
4576 dev_priv->rps.efficient_freq =
4577 clamp_t(u8,
4578 ((ddcc_status >> 8) & 0xff),
4579 dev_priv->rps.min_freq,
4580 dev_priv->rps.max_freq);
4581 }
4582
4583 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4584 /* Store the frequency values in 16.66 MHZ units, which is
4585 the natural hardware unit for SKL */
4586 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4587 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4588 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4589 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4590 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4591 }
4592
4593 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4594
4595 /* Preserve min/max settings in case of re-init */
4596 if (dev_priv->rps.max_freq_softlimit == 0)
4597 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4598
4599 if (dev_priv->rps.min_freq_softlimit == 0) {
4600 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4601 dev_priv->rps.min_freq_softlimit =
4602 max_t(int, dev_priv->rps.efficient_freq,
4603 intel_freq_opcode(dev_priv, 450));
4604 else
4605 dev_priv->rps.min_freq_softlimit =
4606 dev_priv->rps.min_freq;
4607 }
4608 }
4609
4610 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4611 static void gen9_enable_rps(struct drm_device *dev)
4612 {
4613 struct drm_i915_private *dev_priv = dev->dev_private;
4614
4615 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4616
4617 gen6_init_rps_frequencies(dev);
4618
4619 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4620 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4621 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4622 return;
4623 }
4624
4625 /* Program defaults and thresholds for RPS*/
4626 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4627 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4628
4629 /* 1 second timeout*/
4630 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4631 GT_INTERVAL_FROM_US(dev_priv, 1000000));
4632
4633 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4634
4635 /* Leaning on the below call to gen6_set_rps to program/setup the
4636 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4637 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4638 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4639 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4640
4641 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4642 }
4643
4644 static void gen9_enable_rc6(struct drm_device *dev)
4645 {
4646 struct drm_i915_private *dev_priv = dev->dev_private;
4647 struct intel_engine_cs *ring;
4648 uint32_t rc6_mask = 0;
4649 int unused;
4650
4651 /* 1a: Software RC state - RC0 */
4652 I915_WRITE(GEN6_RC_STATE, 0);
4653
4654 /* 1b: Get forcewake during program sequence. Although the driver
4655 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4656 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4657
4658 /* 2a: Disable RC states. */
4659 I915_WRITE(GEN6_RC_CONTROL, 0);
4660
4661 /* 2b: Program RC6 thresholds.*/
4662
4663 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4664 if (IS_SKYLAKE(dev) && !((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) &&
4665 IS_SKL_REVID(dev, 0, SKL_REVID_E0)))
4666 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4667 else
4668 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4669 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4670 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4671 for_each_ring(ring, dev_priv, unused)
4672 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4673
4674 if (HAS_GUC_UCODE(dev))
4675 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4676
4677 I915_WRITE(GEN6_RC_SLEEP, 0);
4678
4679 /* 2c: Program Coarse Power Gating Policies. */
4680 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4681 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4682
4683 /* 3a: Enable RC6 */
4684 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4685 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4686 DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4687 "on" : "off");
4688 /* WaRsUseTimeoutMode */
4689 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
4690 IS_BXT_REVID(dev, 0, BXT_REVID_A0)) {
4691 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4692 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4693 GEN7_RC_CTL_TO_MODE |
4694 rc6_mask);
4695 } else {
4696 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4697 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4698 GEN6_RC_CTL_EI_MODE(1) |
4699 rc6_mask);
4700 }
4701
4702 /*
4703 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4704 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4705 */
4706 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1) ||
4707 ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) &&
4708 IS_SKL_REVID(dev, 0, SKL_REVID_E0)))
4709 I915_WRITE(GEN9_PG_ENABLE, 0);
4710 else
4711 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4712 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4713
4714 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4715
4716 }
4717
4718 static void gen8_enable_rps(struct drm_device *dev)
4719 {
4720 struct drm_i915_private *dev_priv = dev->dev_private;
4721 struct intel_engine_cs *ring;
4722 uint32_t rc6_mask = 0;
4723 int unused;
4724
4725 /* 1a: Software RC state - RC0 */
4726 I915_WRITE(GEN6_RC_STATE, 0);
4727
4728 /* 1c & 1d: Get forcewake during program sequence. Although the driver
4729 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4730 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4731
4732 /* 2a: Disable RC states. */
4733 I915_WRITE(GEN6_RC_CONTROL, 0);
4734
4735 /* Initialize rps frequencies */
4736 gen6_init_rps_frequencies(dev);
4737
4738 /* 2b: Program RC6 thresholds.*/
4739 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4740 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4741 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4742 for_each_ring(ring, dev_priv, unused)
4743 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4744 I915_WRITE(GEN6_RC_SLEEP, 0);
4745 if (IS_BROADWELL(dev))
4746 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4747 else
4748 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4749
4750 /* 3: Enable RC6 */
4751 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4752 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4753 intel_print_rc6_info(dev, rc6_mask);
4754 if (IS_BROADWELL(dev))
4755 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4756 GEN7_RC_CTL_TO_MODE |
4757 rc6_mask);
4758 else
4759 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4760 GEN6_RC_CTL_EI_MODE(1) |
4761 rc6_mask);
4762
4763 /* 4 Program defaults and thresholds for RPS*/
4764 I915_WRITE(GEN6_RPNSWREQ,
4765 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4766 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4767 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4768 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4769 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4770
4771 /* Docs recommend 900MHz, and 300 MHz respectively */
4772 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4773 dev_priv->rps.max_freq_softlimit << 24 |
4774 dev_priv->rps.min_freq_softlimit << 16);
4775
4776 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4777 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4778 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4779 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4780
4781 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4782
4783 /* 5: Enable RPS */
4784 I915_WRITE(GEN6_RP_CONTROL,
4785 GEN6_RP_MEDIA_TURBO |
4786 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4787 GEN6_RP_MEDIA_IS_GFX |
4788 GEN6_RP_ENABLE |
4789 GEN6_RP_UP_BUSY_AVG |
4790 GEN6_RP_DOWN_IDLE_AVG);
4791
4792 /* 6: Ring frequency + overclocking (our driver does this later */
4793
4794 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4795 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4796
4797 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4798 }
4799
4800 static void gen6_enable_rps(struct drm_device *dev)
4801 {
4802 struct drm_i915_private *dev_priv = dev->dev_private;
4803 struct intel_engine_cs *ring;
4804 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4805 u32 gtfifodbg;
4806 int rc6_mode;
4807 int i, ret;
4808
4809 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4810
4811 /* Here begins a magic sequence of register writes to enable
4812 * auto-downclocking.
4813 *
4814 * Perhaps there might be some value in exposing these to
4815 * userspace...
4816 */
4817 I915_WRITE(GEN6_RC_STATE, 0);
4818
4819 /* Clear the DBG now so we don't confuse earlier errors */
4820 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4821 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4822 I915_WRITE(GTFIFODBG, gtfifodbg);
4823 }
4824
4825 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4826
4827 /* Initialize rps frequencies */
4828 gen6_init_rps_frequencies(dev);
4829
4830 /* disable the counters and set deterministic thresholds */
4831 I915_WRITE(GEN6_RC_CONTROL, 0);
4832
4833 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4834 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4835 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4836 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4837 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4838
4839 for_each_ring(ring, dev_priv, i)
4840 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4841
4842 I915_WRITE(GEN6_RC_SLEEP, 0);
4843 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4844 if (IS_IVYBRIDGE(dev))
4845 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4846 else
4847 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4848 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4849 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4850
4851 /* Check if we are enabling RC6 */
4852 rc6_mode = intel_enable_rc6(dev_priv->dev);
4853 if (rc6_mode & INTEL_RC6_ENABLE)
4854 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4855
4856 /* We don't use those on Haswell */
4857 if (!IS_HASWELL(dev)) {
4858 if (rc6_mode & INTEL_RC6p_ENABLE)
4859 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4860
4861 if (rc6_mode & INTEL_RC6pp_ENABLE)
4862 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4863 }
4864
4865 intel_print_rc6_info(dev, rc6_mask);
4866
4867 I915_WRITE(GEN6_RC_CONTROL,
4868 rc6_mask |
4869 GEN6_RC_CTL_EI_MODE(1) |
4870 GEN6_RC_CTL_HW_ENABLE);
4871
4872 /* Power down if completely idle for over 50ms */
4873 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4874 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4875
4876 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4877 if (ret)
4878 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4879
4880 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
4881 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
4882 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4883 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4884 (pcu_mbox & 0xff) * 50);
4885 dev_priv->rps.max_freq = pcu_mbox & 0xff;
4886 }
4887
4888 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4889 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4890
4891 rc6vids = 0;
4892 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
4893 if (IS_GEN6(dev) && ret) {
4894 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
4895 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
4896 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
4897 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
4898 rc6vids &= 0xffff00;
4899 rc6vids |= GEN6_ENCODE_RC6_VID(450);
4900 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
4901 if (ret)
4902 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4903 }
4904
4905 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4906 }
4907
4908 static void __gen6_update_ring_freq(struct drm_device *dev)
4909 {
4910 struct drm_i915_private *dev_priv = dev->dev_private;
4911 int min_freq = 15;
4912 unsigned int gpu_freq;
4913 unsigned int max_ia_freq, min_ring_freq;
4914 unsigned int max_gpu_freq, min_gpu_freq;
4915 int scaling_factor = 180;
4916 struct cpufreq_policy *policy;
4917
4918 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4919
4920 policy = cpufreq_cpu_get(0);
4921 if (policy) {
4922 max_ia_freq = policy->cpuinfo.max_freq;
4923 cpufreq_cpu_put(policy);
4924 } else {
4925 /*
4926 * Default to measured freq if none found, PCU will ensure we
4927 * don't go over
4928 */
4929 max_ia_freq = tsc_khz;
4930 }
4931
4932 /* Convert from kHz to MHz */
4933 max_ia_freq /= 1000;
4934
4935 min_ring_freq = I915_READ(DCLK) & 0xf;
4936 /* convert DDR frequency from units of 266.6MHz to bandwidth */
4937 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4938
4939 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4940 /* Convert GT frequency to 50 HZ units */
4941 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
4942 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
4943 } else {
4944 min_gpu_freq = dev_priv->rps.min_freq;
4945 max_gpu_freq = dev_priv->rps.max_freq;
4946 }
4947
4948 /*
4949 * For each potential GPU frequency, load a ring frequency we'd like
4950 * to use for memory access. We do this by specifying the IA frequency
4951 * the PCU should use as a reference to determine the ring frequency.
4952 */
4953 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
4954 int diff = max_gpu_freq - gpu_freq;
4955 unsigned int ia_freq = 0, ring_freq = 0;
4956
4957 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4958 /*
4959 * ring_freq = 2 * GT. ring_freq is in 100MHz units
4960 * No floor required for ring frequency on SKL.
4961 */
4962 ring_freq = gpu_freq;
4963 } else if (INTEL_INFO(dev)->gen >= 8) {
4964 /* max(2 * GT, DDR). NB: GT is 50MHz units */
4965 ring_freq = max(min_ring_freq, gpu_freq);
4966 } else if (IS_HASWELL(dev)) {
4967 ring_freq = mult_frac(gpu_freq, 5, 4);
4968 ring_freq = max(min_ring_freq, ring_freq);
4969 /* leave ia_freq as the default, chosen by cpufreq */
4970 } else {
4971 /* On older processors, there is no separate ring
4972 * clock domain, so in order to boost the bandwidth
4973 * of the ring, we need to upclock the CPU (ia_freq).
4974 *
4975 * For GPU frequencies less than 750MHz,
4976 * just use the lowest ring freq.
4977 */
4978 if (gpu_freq < min_freq)
4979 ia_freq = 800;
4980 else
4981 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
4982 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
4983 }
4984
4985 sandybridge_pcode_write(dev_priv,
4986 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4987 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
4988 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
4989 gpu_freq);
4990 }
4991 }
4992
4993 void gen6_update_ring_freq(struct drm_device *dev)
4994 {
4995 struct drm_i915_private *dev_priv = dev->dev_private;
4996
4997 if (!HAS_CORE_RING_FREQ(dev))
4998 return;
4999
5000 mutex_lock(&dev_priv->rps.hw_lock);
5001 __gen6_update_ring_freq(dev);
5002 mutex_unlock(&dev_priv->rps.hw_lock);
5003 }
5004
5005 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5006 {
5007 struct drm_device *dev = dev_priv->dev;
5008 u32 val, rp0;
5009
5010 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5011
5012 switch (INTEL_INFO(dev)->eu_total) {
5013 case 8:
5014 /* (2 * 4) config */
5015 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5016 break;
5017 case 12:
5018 /* (2 * 6) config */
5019 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5020 break;
5021 case 16:
5022 /* (2 * 8) config */
5023 default:
5024 /* Setting (2 * 8) Min RP0 for any other combination */
5025 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5026 break;
5027 }
5028
5029 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5030
5031 return rp0;
5032 }
5033
5034 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5035 {
5036 u32 val, rpe;
5037
5038 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5039 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5040
5041 return rpe;
5042 }
5043
5044 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5045 {
5046 u32 val, rp1;
5047
5048 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5049 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5050
5051 return rp1;
5052 }
5053
5054 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5055 {
5056 u32 val, rp1;
5057
5058 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5059
5060 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5061
5062 return rp1;
5063 }
5064
5065 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5066 {
5067 u32 val, rp0;
5068
5069 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5070
5071 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5072 /* Clamp to max */
5073 rp0 = min_t(u32, rp0, 0xea);
5074
5075 return rp0;
5076 }
5077
5078 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5079 {
5080 u32 val, rpe;
5081
5082 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5083 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5084 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5085 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5086
5087 return rpe;
5088 }
5089
5090 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5091 {
5092 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5093 }
5094
5095 /* Check that the pctx buffer wasn't move under us. */
5096 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5097 {
5098 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5099
5100 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5101 dev_priv->vlv_pctx->stolen->start);
5102 }
5103
5104
5105 /* Check that the pcbr address is not empty. */
5106 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5107 {
5108 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5109
5110 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5111 }
5112
5113 static void cherryview_setup_pctx(struct drm_device *dev)
5114 {
5115 struct drm_i915_private *dev_priv = dev->dev_private;
5116 unsigned long pctx_paddr, paddr;
5117 struct i915_gtt *gtt = &dev_priv->gtt;
5118 u32 pcbr;
5119 int pctx_size = 32*1024;
5120
5121 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5122
5123 pcbr = I915_READ(VLV_PCBR);
5124 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5125 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5126 paddr = (dev_priv->mm.stolen_base +
5127 (gtt->stolen_size - pctx_size));
5128
5129 pctx_paddr = (paddr & (~4095));
5130 I915_WRITE(VLV_PCBR, pctx_paddr);
5131 }
5132
5133 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5134 }
5135
5136 static void valleyview_setup_pctx(struct drm_device *dev)
5137 {
5138 struct drm_i915_private *dev_priv = dev->dev_private;
5139 struct drm_i915_gem_object *pctx;
5140 unsigned long pctx_paddr;
5141 u32 pcbr;
5142 int pctx_size = 24*1024;
5143
5144 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5145
5146 pcbr = I915_READ(VLV_PCBR);
5147 if (pcbr) {
5148 /* BIOS set it up already, grab the pre-alloc'd space */
5149 int pcbr_offset;
5150
5151 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5152 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5153 pcbr_offset,
5154 I915_GTT_OFFSET_NONE,
5155 pctx_size);
5156 goto out;
5157 }
5158
5159 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5160
5161 /*
5162 * From the Gunit register HAS:
5163 * The Gfx driver is expected to program this register and ensure
5164 * proper allocation within Gfx stolen memory. For example, this
5165 * register should be programmed such than the PCBR range does not
5166 * overlap with other ranges, such as the frame buffer, protected
5167 * memory, or any other relevant ranges.
5168 */
5169 pctx = i915_gem_object_create_stolen(dev, pctx_size);
5170 if (!pctx) {
5171 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5172 return;
5173 }
5174
5175 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5176 I915_WRITE(VLV_PCBR, pctx_paddr);
5177
5178 out:
5179 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5180 dev_priv->vlv_pctx = pctx;
5181 }
5182
5183 static void valleyview_cleanup_pctx(struct drm_device *dev)
5184 {
5185 struct drm_i915_private *dev_priv = dev->dev_private;
5186
5187 if (WARN_ON(!dev_priv->vlv_pctx))
5188 return;
5189
5190 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5191 dev_priv->vlv_pctx = NULL;
5192 }
5193
5194 static void valleyview_init_gt_powersave(struct drm_device *dev)
5195 {
5196 struct drm_i915_private *dev_priv = dev->dev_private;
5197 u32 val;
5198
5199 valleyview_setup_pctx(dev);
5200
5201 mutex_lock(&dev_priv->rps.hw_lock);
5202
5203 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5204 switch ((val >> 6) & 3) {
5205 case 0:
5206 case 1:
5207 dev_priv->mem_freq = 800;
5208 break;
5209 case 2:
5210 dev_priv->mem_freq = 1066;
5211 break;
5212 case 3:
5213 dev_priv->mem_freq = 1333;
5214 break;
5215 }
5216 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5217
5218 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5219 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5220 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5221 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5222 dev_priv->rps.max_freq);
5223
5224 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5225 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5226 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5227 dev_priv->rps.efficient_freq);
5228
5229 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5230 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5231 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5232 dev_priv->rps.rp1_freq);
5233
5234 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5235 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5236 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5237 dev_priv->rps.min_freq);
5238
5239 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5240
5241 /* Preserve min/max settings in case of re-init */
5242 if (dev_priv->rps.max_freq_softlimit == 0)
5243 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5244
5245 if (dev_priv->rps.min_freq_softlimit == 0)
5246 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5247
5248 mutex_unlock(&dev_priv->rps.hw_lock);
5249 }
5250
5251 static void cherryview_init_gt_powersave(struct drm_device *dev)
5252 {
5253 struct drm_i915_private *dev_priv = dev->dev_private;
5254 u32 val;
5255
5256 cherryview_setup_pctx(dev);
5257
5258 mutex_lock(&dev_priv->rps.hw_lock);
5259
5260 mutex_lock(&dev_priv->sb_lock);
5261 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5262 mutex_unlock(&dev_priv->sb_lock);
5263
5264 switch ((val >> 2) & 0x7) {
5265 case 3:
5266 dev_priv->mem_freq = 2000;
5267 break;
5268 default:
5269 dev_priv->mem_freq = 1600;
5270 break;
5271 }
5272 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5273
5274 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5275 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5276 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5277 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5278 dev_priv->rps.max_freq);
5279
5280 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5281 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5282 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5283 dev_priv->rps.efficient_freq);
5284
5285 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5286 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5287 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5288 dev_priv->rps.rp1_freq);
5289
5290 /* PUnit validated range is only [RPe, RP0] */
5291 dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5292 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5293 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5294 dev_priv->rps.min_freq);
5295
5296 WARN_ONCE((dev_priv->rps.max_freq |
5297 dev_priv->rps.efficient_freq |
5298 dev_priv->rps.rp1_freq |
5299 dev_priv->rps.min_freq) & 1,
5300 "Odd GPU freq values\n");
5301
5302 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5303
5304 /* Preserve min/max settings in case of re-init */
5305 if (dev_priv->rps.max_freq_softlimit == 0)
5306 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5307
5308 if (dev_priv->rps.min_freq_softlimit == 0)
5309 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5310
5311 mutex_unlock(&dev_priv->rps.hw_lock);
5312 }
5313
5314 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5315 {
5316 valleyview_cleanup_pctx(dev);
5317 }
5318
5319 static void cherryview_enable_rps(struct drm_device *dev)
5320 {
5321 struct drm_i915_private *dev_priv = dev->dev_private;
5322 struct intel_engine_cs *ring;
5323 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5324 int i;
5325
5326 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5327
5328 gtfifodbg = I915_READ(GTFIFODBG);
5329 if (gtfifodbg) {
5330 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5331 gtfifodbg);
5332 I915_WRITE(GTFIFODBG, gtfifodbg);
5333 }
5334
5335 cherryview_check_pctx(dev_priv);
5336
5337 /* 1a & 1b: Get forcewake during program sequence. Although the driver
5338 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5339 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5340
5341 /* Disable RC states. */
5342 I915_WRITE(GEN6_RC_CONTROL, 0);
5343
5344 /* 2a: Program RC6 thresholds.*/
5345 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5346 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5347 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5348
5349 for_each_ring(ring, dev_priv, i)
5350 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5351 I915_WRITE(GEN6_RC_SLEEP, 0);
5352
5353 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5354 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5355
5356 /* allows RC6 residency counter to work */
5357 I915_WRITE(VLV_COUNTER_CONTROL,
5358 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5359 VLV_MEDIA_RC6_COUNT_EN |
5360 VLV_RENDER_RC6_COUNT_EN));
5361
5362 /* For now we assume BIOS is allocating and populating the PCBR */
5363 pcbr = I915_READ(VLV_PCBR);
5364
5365 /* 3: Enable RC6 */
5366 if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5367 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5368 rc6_mode = GEN7_RC_CTL_TO_MODE;
5369
5370 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5371
5372 /* 4 Program defaults and thresholds for RPS*/
5373 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5374 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5375 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5376 I915_WRITE(GEN6_RP_UP_EI, 66000);
5377 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5378
5379 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5380
5381 /* 5: Enable RPS */
5382 I915_WRITE(GEN6_RP_CONTROL,
5383 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5384 GEN6_RP_MEDIA_IS_GFX |
5385 GEN6_RP_ENABLE |
5386 GEN6_RP_UP_BUSY_AVG |
5387 GEN6_RP_DOWN_IDLE_AVG);
5388
5389 /* Setting Fixed Bias */
5390 val = VLV_OVERRIDE_EN |
5391 VLV_SOC_TDP_EN |
5392 CHV_BIAS_CPU_50_SOC_50;
5393 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5394
5395 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5396
5397 /* RPS code assumes GPLL is used */
5398 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5399
5400 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5401 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5402
5403 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5404 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5405 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5406 dev_priv->rps.cur_freq);
5407
5408 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5409 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5410 dev_priv->rps.efficient_freq);
5411
5412 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5413
5414 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5415 }
5416
5417 static void valleyview_enable_rps(struct drm_device *dev)
5418 {
5419 struct drm_i915_private *dev_priv = dev->dev_private;
5420 struct intel_engine_cs *ring;
5421 u32 gtfifodbg, val, rc6_mode = 0;
5422 int i;
5423
5424 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5425
5426 valleyview_check_pctx(dev_priv);
5427
5428 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5429 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5430 gtfifodbg);
5431 I915_WRITE(GTFIFODBG, gtfifodbg);
5432 }
5433
5434 /* If VLV, Forcewake all wells, else re-direct to regular path */
5435 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5436
5437 /* Disable RC states. */
5438 I915_WRITE(GEN6_RC_CONTROL, 0);
5439
5440 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5441 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5442 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5443 I915_WRITE(GEN6_RP_UP_EI, 66000);
5444 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5445
5446 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5447
5448 I915_WRITE(GEN6_RP_CONTROL,
5449 GEN6_RP_MEDIA_TURBO |
5450 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5451 GEN6_RP_MEDIA_IS_GFX |
5452 GEN6_RP_ENABLE |
5453 GEN6_RP_UP_BUSY_AVG |
5454 GEN6_RP_DOWN_IDLE_CONT);
5455
5456 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5457 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5458 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5459
5460 for_each_ring(ring, dev_priv, i)
5461 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5462
5463 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5464
5465 /* allows RC6 residency counter to work */
5466 I915_WRITE(VLV_COUNTER_CONTROL,
5467 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5468 VLV_RENDER_RC0_COUNT_EN |
5469 VLV_MEDIA_RC6_COUNT_EN |
5470 VLV_RENDER_RC6_COUNT_EN));
5471
5472 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5473 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5474
5475 intel_print_rc6_info(dev, rc6_mode);
5476
5477 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5478
5479 /* Setting Fixed Bias */
5480 val = VLV_OVERRIDE_EN |
5481 VLV_SOC_TDP_EN |
5482 VLV_BIAS_CPU_125_SOC_875;
5483 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5484
5485 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5486
5487 /* RPS code assumes GPLL is used */
5488 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5489
5490 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5491 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5492
5493 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5494 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5495 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5496 dev_priv->rps.cur_freq);
5497
5498 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5499 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5500 dev_priv->rps.efficient_freq);
5501
5502 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5503
5504 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5505 }
5506
5507 static unsigned long intel_pxfreq(u32 vidfreq)
5508 {
5509 unsigned long freq;
5510 int div = (vidfreq & 0x3f0000) >> 16;
5511 int post = (vidfreq & 0x3000) >> 12;
5512 int pre = (vidfreq & 0x7);
5513
5514 if (!pre)
5515 return 0;
5516
5517 freq = ((div * 133333) / ((1<<post) * pre));
5518
5519 return freq;
5520 }
5521
5522 static const struct cparams {
5523 u16 i;
5524 u16 t;
5525 u16 m;
5526 u16 c;
5527 } cparams[] = {
5528 { 1, 1333, 301, 28664 },
5529 { 1, 1066, 294, 24460 },
5530 { 1, 800, 294, 25192 },
5531 { 0, 1333, 276, 27605 },
5532 { 0, 1066, 276, 27605 },
5533 { 0, 800, 231, 23784 },
5534 };
5535
5536 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5537 {
5538 u64 total_count, diff, ret;
5539 u32 count1, count2, count3, m = 0, c = 0;
5540 unsigned long now = jiffies_to_msecs(jiffies), diff1;
5541 int i;
5542
5543 assert_spin_locked(&mchdev_lock);
5544
5545 diff1 = now - dev_priv->ips.last_time1;
5546
5547 /* Prevent division-by-zero if we are asking too fast.
5548 * Also, we don't get interesting results if we are polling
5549 * faster than once in 10ms, so just return the saved value
5550 * in such cases.
5551 */
5552 if (diff1 <= 10)
5553 return dev_priv->ips.chipset_power;
5554
5555 count1 = I915_READ(DMIEC);
5556 count2 = I915_READ(DDREC);
5557 count3 = I915_READ(CSIEC);
5558
5559 total_count = count1 + count2 + count3;
5560
5561 /* FIXME: handle per-counter overflow */
5562 if (total_count < dev_priv->ips.last_count1) {
5563 diff = ~0UL - dev_priv->ips.last_count1;
5564 diff += total_count;
5565 } else {
5566 diff = total_count - dev_priv->ips.last_count1;
5567 }
5568
5569 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5570 if (cparams[i].i == dev_priv->ips.c_m &&
5571 cparams[i].t == dev_priv->ips.r_t) {
5572 m = cparams[i].m;
5573 c = cparams[i].c;
5574 break;
5575 }
5576 }
5577
5578 diff = div_u64(diff, diff1);
5579 ret = ((m * diff) + c);
5580 ret = div_u64(ret, 10);
5581
5582 dev_priv->ips.last_count1 = total_count;
5583 dev_priv->ips.last_time1 = now;
5584
5585 dev_priv->ips.chipset_power = ret;
5586
5587 return ret;
5588 }
5589
5590 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5591 {
5592 struct drm_device *dev = dev_priv->dev;
5593 unsigned long val;
5594
5595 if (INTEL_INFO(dev)->gen != 5)
5596 return 0;
5597
5598 spin_lock_irq(&mchdev_lock);
5599
5600 val = __i915_chipset_val(dev_priv);
5601
5602 spin_unlock_irq(&mchdev_lock);
5603
5604 return val;
5605 }
5606
5607 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5608 {
5609 unsigned long m, x, b;
5610 u32 tsfs;
5611
5612 tsfs = I915_READ(TSFS);
5613
5614 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5615 x = I915_READ8(TR1);
5616
5617 b = tsfs & TSFS_INTR_MASK;
5618
5619 return ((m * x) / 127) - b;
5620 }
5621
5622 static int _pxvid_to_vd(u8 pxvid)
5623 {
5624 if (pxvid == 0)
5625 return 0;
5626
5627 if (pxvid >= 8 && pxvid < 31)
5628 pxvid = 31;
5629
5630 return (pxvid + 2) * 125;
5631 }
5632
5633 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5634 {
5635 struct drm_device *dev = dev_priv->dev;
5636 const int vd = _pxvid_to_vd(pxvid);
5637 const int vm = vd - 1125;
5638
5639 if (INTEL_INFO(dev)->is_mobile)
5640 return vm > 0 ? vm : 0;
5641
5642 return vd;
5643 }
5644
5645 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5646 {
5647 u64 now, diff, diffms;
5648 u32 count;
5649
5650 assert_spin_locked(&mchdev_lock);
5651
5652 now = ktime_get_raw_ns();
5653 diffms = now - dev_priv->ips.last_time2;
5654 do_div(diffms, NSEC_PER_MSEC);
5655
5656 /* Don't divide by 0 */
5657 if (!diffms)
5658 return;
5659
5660 count = I915_READ(GFXEC);
5661
5662 if (count < dev_priv->ips.last_count2) {
5663 diff = ~0UL - dev_priv->ips.last_count2;
5664 diff += count;
5665 } else {
5666 diff = count - dev_priv->ips.last_count2;
5667 }
5668
5669 dev_priv->ips.last_count2 = count;
5670 dev_priv->ips.last_time2 = now;
5671
5672 /* More magic constants... */
5673 diff = diff * 1181;
5674 diff = div_u64(diff, diffms * 10);
5675 dev_priv->ips.gfx_power = diff;
5676 }
5677
5678 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5679 {
5680 struct drm_device *dev = dev_priv->dev;
5681
5682 if (INTEL_INFO(dev)->gen != 5)
5683 return;
5684
5685 spin_lock_irq(&mchdev_lock);
5686
5687 __i915_update_gfx_val(dev_priv);
5688
5689 spin_unlock_irq(&mchdev_lock);
5690 }
5691
5692 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5693 {
5694 unsigned long t, corr, state1, corr2, state2;
5695 u32 pxvid, ext_v;
5696
5697 assert_spin_locked(&mchdev_lock);
5698
5699 pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5700 pxvid = (pxvid >> 24) & 0x7f;
5701 ext_v = pvid_to_extvid(dev_priv, pxvid);
5702
5703 state1 = ext_v;
5704
5705 t = i915_mch_val(dev_priv);
5706
5707 /* Revel in the empirically derived constants */
5708
5709 /* Correction factor in 1/100000 units */
5710 if (t > 80)
5711 corr = ((t * 2349) + 135940);
5712 else if (t >= 50)
5713 corr = ((t * 964) + 29317);
5714 else /* < 50 */
5715 corr = ((t * 301) + 1004);
5716
5717 corr = corr * ((150142 * state1) / 10000 - 78642);
5718 corr /= 100000;
5719 corr2 = (corr * dev_priv->ips.corr);
5720
5721 state2 = (corr2 * state1) / 10000;
5722 state2 /= 100; /* convert to mW */
5723
5724 __i915_update_gfx_val(dev_priv);
5725
5726 return dev_priv->ips.gfx_power + state2;
5727 }
5728
5729 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5730 {
5731 struct drm_device *dev = dev_priv->dev;
5732 unsigned long val;
5733
5734 if (INTEL_INFO(dev)->gen != 5)
5735 return 0;
5736
5737 spin_lock_irq(&mchdev_lock);
5738
5739 val = __i915_gfx_val(dev_priv);
5740
5741 spin_unlock_irq(&mchdev_lock);
5742
5743 return val;
5744 }
5745
5746 /**
5747 * i915_read_mch_val - return value for IPS use
5748 *
5749 * Calculate and return a value for the IPS driver to use when deciding whether
5750 * we have thermal and power headroom to increase CPU or GPU power budget.
5751 */
5752 unsigned long i915_read_mch_val(void)
5753 {
5754 struct drm_i915_private *dev_priv;
5755 unsigned long chipset_val, graphics_val, ret = 0;
5756
5757 spin_lock_irq(&mchdev_lock);
5758 if (!i915_mch_dev)
5759 goto out_unlock;
5760 dev_priv = i915_mch_dev;
5761
5762 chipset_val = __i915_chipset_val(dev_priv);
5763 graphics_val = __i915_gfx_val(dev_priv);
5764
5765 ret = chipset_val + graphics_val;
5766
5767 out_unlock:
5768 spin_unlock_irq(&mchdev_lock);
5769
5770 return ret;
5771 }
5772 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5773
5774 /**
5775 * i915_gpu_raise - raise GPU frequency limit
5776 *
5777 * Raise the limit; IPS indicates we have thermal headroom.
5778 */
5779 bool i915_gpu_raise(void)
5780 {
5781 struct drm_i915_private *dev_priv;
5782 bool ret = true;
5783
5784 spin_lock_irq(&mchdev_lock);
5785 if (!i915_mch_dev) {
5786 ret = false;
5787 goto out_unlock;
5788 }
5789 dev_priv = i915_mch_dev;
5790
5791 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5792 dev_priv->ips.max_delay--;
5793
5794 out_unlock:
5795 spin_unlock_irq(&mchdev_lock);
5796
5797 return ret;
5798 }
5799 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5800
5801 /**
5802 * i915_gpu_lower - lower GPU frequency limit
5803 *
5804 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5805 * frequency maximum.
5806 */
5807 bool i915_gpu_lower(void)
5808 {
5809 struct drm_i915_private *dev_priv;
5810 bool ret = true;
5811
5812 spin_lock_irq(&mchdev_lock);
5813 if (!i915_mch_dev) {
5814 ret = false;
5815 goto out_unlock;
5816 }
5817 dev_priv = i915_mch_dev;
5818
5819 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5820 dev_priv->ips.max_delay++;
5821
5822 out_unlock:
5823 spin_unlock_irq(&mchdev_lock);
5824
5825 return ret;
5826 }
5827 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5828
5829 /**
5830 * i915_gpu_busy - indicate GPU business to IPS
5831 *
5832 * Tell the IPS driver whether or not the GPU is busy.
5833 */
5834 bool i915_gpu_busy(void)
5835 {
5836 struct drm_i915_private *dev_priv;
5837 struct intel_engine_cs *ring;
5838 bool ret = false;
5839 int i;
5840
5841 spin_lock_irq(&mchdev_lock);
5842 if (!i915_mch_dev)
5843 goto out_unlock;
5844 dev_priv = i915_mch_dev;
5845
5846 for_each_ring(ring, dev_priv, i)
5847 ret |= !list_empty(&ring->request_list);
5848
5849 out_unlock:
5850 spin_unlock_irq(&mchdev_lock);
5851
5852 return ret;
5853 }
5854 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5855
5856 /**
5857 * i915_gpu_turbo_disable - disable graphics turbo
5858 *
5859 * Disable graphics turbo by resetting the max frequency and setting the
5860 * current frequency to the default.
5861 */
5862 bool i915_gpu_turbo_disable(void)
5863 {
5864 struct drm_i915_private *dev_priv;
5865 bool ret = true;
5866
5867 spin_lock_irq(&mchdev_lock);
5868 if (!i915_mch_dev) {
5869 ret = false;
5870 goto out_unlock;
5871 }
5872 dev_priv = i915_mch_dev;
5873
5874 dev_priv->ips.max_delay = dev_priv->ips.fstart;
5875
5876 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5877 ret = false;
5878
5879 out_unlock:
5880 spin_unlock_irq(&mchdev_lock);
5881
5882 return ret;
5883 }
5884 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5885
5886 /**
5887 * Tells the intel_ips driver that the i915 driver is now loaded, if
5888 * IPS got loaded first.
5889 *
5890 * This awkward dance is so that neither module has to depend on the
5891 * other in order for IPS to do the appropriate communication of
5892 * GPU turbo limits to i915.
5893 */
5894 static void
5895 ips_ping_for_i915_load(void)
5896 {
5897 void (*link)(void);
5898
5899 link = symbol_get(ips_link_to_i915_driver);
5900 if (link) {
5901 link();
5902 symbol_put(ips_link_to_i915_driver);
5903 }
5904 }
5905
5906 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5907 {
5908 /* We only register the i915 ips part with intel-ips once everything is
5909 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5910 spin_lock_irq(&mchdev_lock);
5911 i915_mch_dev = dev_priv;
5912 spin_unlock_irq(&mchdev_lock);
5913
5914 ips_ping_for_i915_load();
5915 }
5916
5917 void intel_gpu_ips_teardown(void)
5918 {
5919 spin_lock_irq(&mchdev_lock);
5920 i915_mch_dev = NULL;
5921 spin_unlock_irq(&mchdev_lock);
5922 }
5923
5924 static void intel_init_emon(struct drm_device *dev)
5925 {
5926 struct drm_i915_private *dev_priv = dev->dev_private;
5927 u32 lcfuse;
5928 u8 pxw[16];
5929 int i;
5930
5931 /* Disable to program */
5932 I915_WRITE(ECR, 0);
5933 POSTING_READ(ECR);
5934
5935 /* Program energy weights for various events */
5936 I915_WRITE(SDEW, 0x15040d00);
5937 I915_WRITE(CSIEW0, 0x007f0000);
5938 I915_WRITE(CSIEW1, 0x1e220004);
5939 I915_WRITE(CSIEW2, 0x04000004);
5940
5941 for (i = 0; i < 5; i++)
5942 I915_WRITE(PEW(i), 0);
5943 for (i = 0; i < 3; i++)
5944 I915_WRITE(DEW(i), 0);
5945
5946 /* Program P-state weights to account for frequency power adjustment */
5947 for (i = 0; i < 16; i++) {
5948 u32 pxvidfreq = I915_READ(PXVFREQ(i));
5949 unsigned long freq = intel_pxfreq(pxvidfreq);
5950 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5951 PXVFREQ_PX_SHIFT;
5952 unsigned long val;
5953
5954 val = vid * vid;
5955 val *= (freq / 1000);
5956 val *= 255;
5957 val /= (127*127*900);
5958 if (val > 0xff)
5959 DRM_ERROR("bad pxval: %ld\n", val);
5960 pxw[i] = val;
5961 }
5962 /* Render standby states get 0 weight */
5963 pxw[14] = 0;
5964 pxw[15] = 0;
5965
5966 for (i = 0; i < 4; i++) {
5967 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5968 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5969 I915_WRITE(PXW(i), val);
5970 }
5971
5972 /* Adjust magic regs to magic values (more experimental results) */
5973 I915_WRITE(OGW0, 0);
5974 I915_WRITE(OGW1, 0);
5975 I915_WRITE(EG0, 0x00007f00);
5976 I915_WRITE(EG1, 0x0000000e);
5977 I915_WRITE(EG2, 0x000e0000);
5978 I915_WRITE(EG3, 0x68000300);
5979 I915_WRITE(EG4, 0x42000000);
5980 I915_WRITE(EG5, 0x00140031);
5981 I915_WRITE(EG6, 0);
5982 I915_WRITE(EG7, 0);
5983
5984 for (i = 0; i < 8; i++)
5985 I915_WRITE(PXWL(i), 0);
5986
5987 /* Enable PMON + select events */
5988 I915_WRITE(ECR, 0x80000019);
5989
5990 lcfuse = I915_READ(LCFUSE02);
5991
5992 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5993 }
5994
5995 void intel_init_gt_powersave(struct drm_device *dev)
5996 {
5997 i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
5998
5999 if (IS_CHERRYVIEW(dev))
6000 cherryview_init_gt_powersave(dev);
6001 else if (IS_VALLEYVIEW(dev))
6002 valleyview_init_gt_powersave(dev);
6003 }
6004
6005 void intel_cleanup_gt_powersave(struct drm_device *dev)
6006 {
6007 if (IS_CHERRYVIEW(dev))
6008 return;
6009 else if (IS_VALLEYVIEW(dev))
6010 valleyview_cleanup_gt_powersave(dev);
6011 }
6012
6013 static void gen6_suspend_rps(struct drm_device *dev)
6014 {
6015 struct drm_i915_private *dev_priv = dev->dev_private;
6016
6017 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6018
6019 gen6_disable_rps_interrupts(dev);
6020 }
6021
6022 /**
6023 * intel_suspend_gt_powersave - suspend PM work and helper threads
6024 * @dev: drm device
6025 *
6026 * We don't want to disable RC6 or other features here, we just want
6027 * to make sure any work we've queued has finished and won't bother
6028 * us while we're suspended.
6029 */
6030 void intel_suspend_gt_powersave(struct drm_device *dev)
6031 {
6032 struct drm_i915_private *dev_priv = dev->dev_private;
6033
6034 if (INTEL_INFO(dev)->gen < 6)
6035 return;
6036
6037 gen6_suspend_rps(dev);
6038
6039 /* Force GPU to min freq during suspend */
6040 gen6_rps_idle(dev_priv);
6041 }
6042
6043 void intel_disable_gt_powersave(struct drm_device *dev)
6044 {
6045 struct drm_i915_private *dev_priv = dev->dev_private;
6046
6047 if (IS_IRONLAKE_M(dev)) {
6048 ironlake_disable_drps(dev);
6049 } else if (INTEL_INFO(dev)->gen >= 6) {
6050 intel_suspend_gt_powersave(dev);
6051
6052 mutex_lock(&dev_priv->rps.hw_lock);
6053 if (INTEL_INFO(dev)->gen >= 9)
6054 gen9_disable_rps(dev);
6055 else if (IS_CHERRYVIEW(dev))
6056 cherryview_disable_rps(dev);
6057 else if (IS_VALLEYVIEW(dev))
6058 valleyview_disable_rps(dev);
6059 else
6060 gen6_disable_rps(dev);
6061
6062 dev_priv->rps.enabled = false;
6063 mutex_unlock(&dev_priv->rps.hw_lock);
6064 }
6065 }
6066
6067 static void intel_gen6_powersave_work(struct work_struct *work)
6068 {
6069 struct drm_i915_private *dev_priv =
6070 container_of(work, struct drm_i915_private,
6071 rps.delayed_resume_work.work);
6072 struct drm_device *dev = dev_priv->dev;
6073
6074 mutex_lock(&dev_priv->rps.hw_lock);
6075
6076 gen6_reset_rps_interrupts(dev);
6077
6078 if (IS_CHERRYVIEW(dev)) {
6079 cherryview_enable_rps(dev);
6080 } else if (IS_VALLEYVIEW(dev)) {
6081 valleyview_enable_rps(dev);
6082 } else if (INTEL_INFO(dev)->gen >= 9) {
6083 gen9_enable_rc6(dev);
6084 gen9_enable_rps(dev);
6085 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6086 __gen6_update_ring_freq(dev);
6087 } else if (IS_BROADWELL(dev)) {
6088 gen8_enable_rps(dev);
6089 __gen6_update_ring_freq(dev);
6090 } else {
6091 gen6_enable_rps(dev);
6092 __gen6_update_ring_freq(dev);
6093 }
6094
6095 WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6096 WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6097
6098 WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6099 WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6100
6101 dev_priv->rps.enabled = true;
6102
6103 gen6_enable_rps_interrupts(dev);
6104
6105 mutex_unlock(&dev_priv->rps.hw_lock);
6106
6107 intel_runtime_pm_put(dev_priv);
6108 }
6109
6110 void intel_enable_gt_powersave(struct drm_device *dev)
6111 {
6112 struct drm_i915_private *dev_priv = dev->dev_private;
6113
6114 /* Powersaving is controlled by the host when inside a VM */
6115 if (intel_vgpu_active(dev))
6116 return;
6117
6118 if (IS_IRONLAKE_M(dev)) {
6119 mutex_lock(&dev->struct_mutex);
6120 ironlake_enable_drps(dev);
6121 intel_init_emon(dev);
6122 mutex_unlock(&dev->struct_mutex);
6123 } else if (INTEL_INFO(dev)->gen >= 6) {
6124 /*
6125 * PCU communication is slow and this doesn't need to be
6126 * done at any specific time, so do this out of our fast path
6127 * to make resume and init faster.
6128 *
6129 * We depend on the HW RC6 power context save/restore
6130 * mechanism when entering D3 through runtime PM suspend. So
6131 * disable RPM until RPS/RC6 is properly setup. We can only
6132 * get here via the driver load/system resume/runtime resume
6133 * paths, so the _noresume version is enough (and in case of
6134 * runtime resume it's necessary).
6135 */
6136 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6137 round_jiffies_up_relative(HZ)))
6138 intel_runtime_pm_get_noresume(dev_priv);
6139 }
6140 }
6141
6142 void intel_reset_gt_powersave(struct drm_device *dev)
6143 {
6144 struct drm_i915_private *dev_priv = dev->dev_private;
6145
6146 if (INTEL_INFO(dev)->gen < 6)
6147 return;
6148
6149 gen6_suspend_rps(dev);
6150 dev_priv->rps.enabled = false;
6151 }
6152
6153 static void ibx_init_clock_gating(struct drm_device *dev)
6154 {
6155 struct drm_i915_private *dev_priv = dev->dev_private;
6156
6157 /*
6158 * On Ibex Peak and Cougar Point, we need to disable clock
6159 * gating for the panel power sequencer or it will fail to
6160 * start up when no ports are active.
6161 */
6162 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6163 }
6164
6165 static void g4x_disable_trickle_feed(struct drm_device *dev)
6166 {
6167 struct drm_i915_private *dev_priv = dev->dev_private;
6168 enum pipe pipe;
6169
6170 for_each_pipe(dev_priv, pipe) {
6171 I915_WRITE(DSPCNTR(pipe),
6172 I915_READ(DSPCNTR(pipe)) |
6173 DISPPLANE_TRICKLE_FEED_DISABLE);
6174
6175 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6176 POSTING_READ(DSPSURF(pipe));
6177 }
6178 }
6179
6180 static void ilk_init_lp_watermarks(struct drm_device *dev)
6181 {
6182 struct drm_i915_private *dev_priv = dev->dev_private;
6183
6184 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6185 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6186 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6187
6188 /*
6189 * Don't touch WM1S_LP_EN here.
6190 * Doing so could cause underruns.
6191 */
6192 }
6193
6194 static void ironlake_init_clock_gating(struct drm_device *dev)
6195 {
6196 struct drm_i915_private *dev_priv = dev->dev_private;
6197 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6198
6199 /*
6200 * Required for FBC
6201 * WaFbcDisableDpfcClockGating:ilk
6202 */
6203 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6204 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6205 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6206
6207 I915_WRITE(PCH_3DCGDIS0,
6208 MARIUNIT_CLOCK_GATE_DISABLE |
6209 SVSMUNIT_CLOCK_GATE_DISABLE);
6210 I915_WRITE(PCH_3DCGDIS1,
6211 VFMUNIT_CLOCK_GATE_DISABLE);
6212
6213 /*
6214 * According to the spec the following bits should be set in
6215 * order to enable memory self-refresh
6216 * The bit 22/21 of 0x42004
6217 * The bit 5 of 0x42020
6218 * The bit 15 of 0x45000
6219 */
6220 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6221 (I915_READ(ILK_DISPLAY_CHICKEN2) |
6222 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6223 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6224 I915_WRITE(DISP_ARB_CTL,
6225 (I915_READ(DISP_ARB_CTL) |
6226 DISP_FBC_WM_DIS));
6227
6228 ilk_init_lp_watermarks(dev);
6229
6230 /*
6231 * Based on the document from hardware guys the following bits
6232 * should be set unconditionally in order to enable FBC.
6233 * The bit 22 of 0x42000
6234 * The bit 22 of 0x42004
6235 * The bit 7,8,9 of 0x42020.
6236 */
6237 if (IS_IRONLAKE_M(dev)) {
6238 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6239 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6240 I915_READ(ILK_DISPLAY_CHICKEN1) |
6241 ILK_FBCQ_DIS);
6242 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6243 I915_READ(ILK_DISPLAY_CHICKEN2) |
6244 ILK_DPARB_GATE);
6245 }
6246
6247 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6248
6249 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6250 I915_READ(ILK_DISPLAY_CHICKEN2) |
6251 ILK_ELPIN_409_SELECT);
6252 I915_WRITE(_3D_CHICKEN2,
6253 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6254 _3D_CHICKEN2_WM_READ_PIPELINED);
6255
6256 /* WaDisableRenderCachePipelinedFlush:ilk */
6257 I915_WRITE(CACHE_MODE_0,
6258 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6259
6260 /* WaDisable_RenderCache_OperationalFlush:ilk */
6261 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6262
6263 g4x_disable_trickle_feed(dev);
6264
6265 ibx_init_clock_gating(dev);
6266 }
6267
6268 static void cpt_init_clock_gating(struct drm_device *dev)
6269 {
6270 struct drm_i915_private *dev_priv = dev->dev_private;
6271 int pipe;
6272 uint32_t val;
6273
6274 /*
6275 * On Ibex Peak and Cougar Point, we need to disable clock
6276 * gating for the panel power sequencer or it will fail to
6277 * start up when no ports are active.
6278 */
6279 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6280 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6281 PCH_CPUNIT_CLOCK_GATE_DISABLE);
6282 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6283 DPLS_EDP_PPS_FIX_DIS);
6284 /* The below fixes the weird display corruption, a few pixels shifted
6285 * downward, on (only) LVDS of some HP laptops with IVY.
6286 */
6287 for_each_pipe(dev_priv, pipe) {
6288 val = I915_READ(TRANS_CHICKEN2(pipe));
6289 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6290 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6291 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6292 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6293 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6294 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6295 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6296 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6297 }
6298 /* WADP0ClockGatingDisable */
6299 for_each_pipe(dev_priv, pipe) {
6300 I915_WRITE(TRANS_CHICKEN1(pipe),
6301 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6302 }
6303 }
6304
6305 static void gen6_check_mch_setup(struct drm_device *dev)
6306 {
6307 struct drm_i915_private *dev_priv = dev->dev_private;
6308 uint32_t tmp;
6309
6310 tmp = I915_READ(MCH_SSKPD);
6311 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6312 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6313 tmp);
6314 }
6315
6316 static void gen6_init_clock_gating(struct drm_device *dev)
6317 {
6318 struct drm_i915_private *dev_priv = dev->dev_private;
6319 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6320
6321 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6322
6323 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6324 I915_READ(ILK_DISPLAY_CHICKEN2) |
6325 ILK_ELPIN_409_SELECT);
6326
6327 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6328 I915_WRITE(_3D_CHICKEN,
6329 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6330
6331 /* WaDisable_RenderCache_OperationalFlush:snb */
6332 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6333
6334 /*
6335 * BSpec recoomends 8x4 when MSAA is used,
6336 * however in practice 16x4 seems fastest.
6337 *
6338 * Note that PS/WM thread counts depend on the WIZ hashing
6339 * disable bit, which we don't touch here, but it's good
6340 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6341 */
6342 I915_WRITE(GEN6_GT_MODE,
6343 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6344
6345 ilk_init_lp_watermarks(dev);
6346
6347 I915_WRITE(CACHE_MODE_0,
6348 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6349
6350 I915_WRITE(GEN6_UCGCTL1,
6351 I915_READ(GEN6_UCGCTL1) |
6352 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6353 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6354
6355 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6356 * gating disable must be set. Failure to set it results in
6357 * flickering pixels due to Z write ordering failures after
6358 * some amount of runtime in the Mesa "fire" demo, and Unigine
6359 * Sanctuary and Tropics, and apparently anything else with
6360 * alpha test or pixel discard.
6361 *
6362 * According to the spec, bit 11 (RCCUNIT) must also be set,
6363 * but we didn't debug actual testcases to find it out.
6364 *
6365 * WaDisableRCCUnitClockGating:snb
6366 * WaDisableRCPBUnitClockGating:snb
6367 */
6368 I915_WRITE(GEN6_UCGCTL2,
6369 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6370 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6371
6372 /* WaStripsFansDisableFastClipPerformanceFix:snb */
6373 I915_WRITE(_3D_CHICKEN3,
6374 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6375
6376 /*
6377 * Bspec says:
6378 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6379 * 3DSTATE_SF number of SF output attributes is more than 16."
6380 */
6381 I915_WRITE(_3D_CHICKEN3,
6382 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6383
6384 /*
6385 * According to the spec the following bits should be
6386 * set in order to enable memory self-refresh and fbc:
6387 * The bit21 and bit22 of 0x42000
6388 * The bit21 and bit22 of 0x42004
6389 * The bit5 and bit7 of 0x42020
6390 * The bit14 of 0x70180
6391 * The bit14 of 0x71180
6392 *
6393 * WaFbcAsynchFlipDisableFbcQueue:snb
6394 */
6395 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6396 I915_READ(ILK_DISPLAY_CHICKEN1) |
6397 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6398 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6399 I915_READ(ILK_DISPLAY_CHICKEN2) |
6400 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6401 I915_WRITE(ILK_DSPCLK_GATE_D,
6402 I915_READ(ILK_DSPCLK_GATE_D) |
6403 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
6404 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6405
6406 g4x_disable_trickle_feed(dev);
6407
6408 cpt_init_clock_gating(dev);
6409
6410 gen6_check_mch_setup(dev);
6411 }
6412
6413 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6414 {
6415 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6416
6417 /*
6418 * WaVSThreadDispatchOverride:ivb,vlv
6419 *
6420 * This actually overrides the dispatch
6421 * mode for all thread types.
6422 */
6423 reg &= ~GEN7_FF_SCHED_MASK;
6424 reg |= GEN7_FF_TS_SCHED_HW;
6425 reg |= GEN7_FF_VS_SCHED_HW;
6426 reg |= GEN7_FF_DS_SCHED_HW;
6427
6428 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6429 }
6430
6431 static void lpt_init_clock_gating(struct drm_device *dev)
6432 {
6433 struct drm_i915_private *dev_priv = dev->dev_private;
6434
6435 /*
6436 * TODO: this bit should only be enabled when really needed, then
6437 * disabled when not needed anymore in order to save power.
6438 */
6439 if (HAS_PCH_LPT_LP(dev))
6440 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6441 I915_READ(SOUTH_DSPCLK_GATE_D) |
6442 PCH_LP_PARTITION_LEVEL_DISABLE);
6443
6444 /* WADPOClockGatingDisable:hsw */
6445 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6446 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6447 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6448 }
6449
6450 static void lpt_suspend_hw(struct drm_device *dev)
6451 {
6452 struct drm_i915_private *dev_priv = dev->dev_private;
6453
6454 if (HAS_PCH_LPT_LP(dev)) {
6455 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6456
6457 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6458 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6459 }
6460 }
6461
6462 static void broadwell_init_clock_gating(struct drm_device *dev)
6463 {
6464 struct drm_i915_private *dev_priv = dev->dev_private;
6465 enum pipe pipe;
6466 uint32_t misccpctl;
6467
6468 ilk_init_lp_watermarks(dev);
6469
6470 /* WaSwitchSolVfFArbitrationPriority:bdw */
6471 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6472
6473 /* WaPsrDPAMaskVBlankInSRD:bdw */
6474 I915_WRITE(CHICKEN_PAR1_1,
6475 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6476
6477 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6478 for_each_pipe(dev_priv, pipe) {
6479 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6480 I915_READ(CHICKEN_PIPESL_1(pipe)) |
6481 BDW_DPRS_MASK_VBLANK_SRD);
6482 }
6483
6484 /* WaVSRefCountFullforceMissDisable:bdw */
6485 /* WaDSRefCountFullforceMissDisable:bdw */
6486 I915_WRITE(GEN7_FF_THREAD_MODE,
6487 I915_READ(GEN7_FF_THREAD_MODE) &
6488 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6489
6490 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6491 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6492
6493 /* WaDisableSDEUnitClockGating:bdw */
6494 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6495 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6496
6497 /*
6498 * WaProgramL3SqcReg1Default:bdw
6499 * WaTempDisableDOPClkGating:bdw
6500 */
6501 misccpctl = I915_READ(GEN7_MISCCPCTL);
6502 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6503 I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6504 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6505
6506 /*
6507 * WaGttCachingOffByDefault:bdw
6508 * GTT cache may not work with big pages, so if those
6509 * are ever enabled GTT cache may need to be disabled.
6510 */
6511 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6512
6513 lpt_init_clock_gating(dev);
6514 }
6515
6516 static void haswell_init_clock_gating(struct drm_device *dev)
6517 {
6518 struct drm_i915_private *dev_priv = dev->dev_private;
6519
6520 ilk_init_lp_watermarks(dev);
6521
6522 /* L3 caching of data atomics doesn't work -- disable it. */
6523 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6524 I915_WRITE(HSW_ROW_CHICKEN3,
6525 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6526
6527 /* This is required by WaCatErrorRejectionIssue:hsw */
6528 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6529 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6530 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6531
6532 /* WaVSRefCountFullforceMissDisable:hsw */
6533 I915_WRITE(GEN7_FF_THREAD_MODE,
6534 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6535
6536 /* WaDisable_RenderCache_OperationalFlush:hsw */
6537 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6538
6539 /* enable HiZ Raw Stall Optimization */
6540 I915_WRITE(CACHE_MODE_0_GEN7,
6541 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6542
6543 /* WaDisable4x2SubspanOptimization:hsw */
6544 I915_WRITE(CACHE_MODE_1,
6545 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6546
6547 /*
6548 * BSpec recommends 8x4 when MSAA is used,
6549 * however in practice 16x4 seems fastest.
6550 *
6551 * Note that PS/WM thread counts depend on the WIZ hashing
6552 * disable bit, which we don't touch here, but it's good
6553 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6554 */
6555 I915_WRITE(GEN7_GT_MODE,
6556 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6557
6558 /* WaSampleCChickenBitEnable:hsw */
6559 I915_WRITE(HALF_SLICE_CHICKEN3,
6560 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6561
6562 /* WaSwitchSolVfFArbitrationPriority:hsw */
6563 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6564
6565 /* WaRsPkgCStateDisplayPMReq:hsw */
6566 I915_WRITE(CHICKEN_PAR1_1,
6567 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6568
6569 lpt_init_clock_gating(dev);
6570 }
6571
6572 static void ivybridge_init_clock_gating(struct drm_device *dev)
6573 {
6574 struct drm_i915_private *dev_priv = dev->dev_private;
6575 uint32_t snpcr;
6576
6577 ilk_init_lp_watermarks(dev);
6578
6579 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6580
6581 /* WaDisableEarlyCull:ivb */
6582 I915_WRITE(_3D_CHICKEN3,
6583 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6584
6585 /* WaDisableBackToBackFlipFix:ivb */
6586 I915_WRITE(IVB_CHICKEN3,
6587 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6588 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6589
6590 /* WaDisablePSDDualDispatchEnable:ivb */
6591 if (IS_IVB_GT1(dev))
6592 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6593 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6594
6595 /* WaDisable_RenderCache_OperationalFlush:ivb */
6596 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6597
6598 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6599 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6600 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6601
6602 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6603 I915_WRITE(GEN7_L3CNTLREG1,
6604 GEN7_WA_FOR_GEN7_L3_CONTROL);
6605 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6606 GEN7_WA_L3_CHICKEN_MODE);
6607 if (IS_IVB_GT1(dev))
6608 I915_WRITE(GEN7_ROW_CHICKEN2,
6609 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6610 else {
6611 /* must write both registers */
6612 I915_WRITE(GEN7_ROW_CHICKEN2,
6613 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6614 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6615 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6616 }
6617
6618 /* WaForceL3Serialization:ivb */
6619 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6620 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6621
6622 /*
6623 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6624 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6625 */
6626 I915_WRITE(GEN6_UCGCTL2,
6627 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6628
6629 /* This is required by WaCatErrorRejectionIssue:ivb */
6630 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6631 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6632 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6633
6634 g4x_disable_trickle_feed(dev);
6635
6636 gen7_setup_fixed_func_scheduler(dev_priv);
6637
6638 if (0) { /* causes HiZ corruption on ivb:gt1 */
6639 /* enable HiZ Raw Stall Optimization */
6640 I915_WRITE(CACHE_MODE_0_GEN7,
6641 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6642 }
6643
6644 /* WaDisable4x2SubspanOptimization:ivb */
6645 I915_WRITE(CACHE_MODE_1,
6646 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6647
6648 /*
6649 * BSpec recommends 8x4 when MSAA is used,
6650 * however in practice 16x4 seems fastest.
6651 *
6652 * Note that PS/WM thread counts depend on the WIZ hashing
6653 * disable bit, which we don't touch here, but it's good
6654 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6655 */
6656 I915_WRITE(GEN7_GT_MODE,
6657 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6658
6659 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6660 snpcr &= ~GEN6_MBC_SNPCR_MASK;
6661 snpcr |= GEN6_MBC_SNPCR_MED;
6662 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6663
6664 if (!HAS_PCH_NOP(dev))
6665 cpt_init_clock_gating(dev);
6666
6667 gen6_check_mch_setup(dev);
6668 }
6669
6670 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6671 {
6672 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6673
6674 /*
6675 * Disable trickle feed and enable pnd deadline calculation
6676 */
6677 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6678 I915_WRITE(CBR1_VLV, 0);
6679 }
6680
6681 static void valleyview_init_clock_gating(struct drm_device *dev)
6682 {
6683 struct drm_i915_private *dev_priv = dev->dev_private;
6684
6685 vlv_init_display_clock_gating(dev_priv);
6686
6687 /* WaDisableEarlyCull:vlv */
6688 I915_WRITE(_3D_CHICKEN3,
6689 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6690
6691 /* WaDisableBackToBackFlipFix:vlv */
6692 I915_WRITE(IVB_CHICKEN3,
6693 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6694 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6695
6696 /* WaPsdDispatchEnable:vlv */
6697 /* WaDisablePSDDualDispatchEnable:vlv */
6698 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6699 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6700 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6701
6702 /* WaDisable_RenderCache_OperationalFlush:vlv */
6703 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6704
6705 /* WaForceL3Serialization:vlv */
6706 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6707 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6708
6709 /* WaDisableDopClockGating:vlv */
6710 I915_WRITE(GEN7_ROW_CHICKEN2,
6711 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6712
6713 /* This is required by WaCatErrorRejectionIssue:vlv */
6714 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6715 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6716 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6717
6718 gen7_setup_fixed_func_scheduler(dev_priv);
6719
6720 /*
6721 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6722 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6723 */
6724 I915_WRITE(GEN6_UCGCTL2,
6725 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6726
6727 /* WaDisableL3Bank2xClockGate:vlv
6728 * Disabling L3 clock gating- MMIO 940c[25] = 1
6729 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6730 I915_WRITE(GEN7_UCGCTL4,
6731 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6732
6733 /*
6734 * BSpec says this must be set, even though
6735 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6736 */
6737 I915_WRITE(CACHE_MODE_1,
6738 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6739
6740 /*
6741 * BSpec recommends 8x4 when MSAA is used,
6742 * however in practice 16x4 seems fastest.
6743 *
6744 * Note that PS/WM thread counts depend on the WIZ hashing
6745 * disable bit, which we don't touch here, but it's good
6746 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6747 */
6748 I915_WRITE(GEN7_GT_MODE,
6749 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6750
6751 /*
6752 * WaIncreaseL3CreditsForVLVB0:vlv
6753 * This is the hardware default actually.
6754 */
6755 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6756
6757 /*
6758 * WaDisableVLVClockGating_VBIIssue:vlv
6759 * Disable clock gating on th GCFG unit to prevent a delay
6760 * in the reporting of vblank events.
6761 */
6762 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6763 }
6764
6765 static void cherryview_init_clock_gating(struct drm_device *dev)
6766 {
6767 struct drm_i915_private *dev_priv = dev->dev_private;
6768
6769 vlv_init_display_clock_gating(dev_priv);
6770
6771 /* WaVSRefCountFullforceMissDisable:chv */
6772 /* WaDSRefCountFullforceMissDisable:chv */
6773 I915_WRITE(GEN7_FF_THREAD_MODE,
6774 I915_READ(GEN7_FF_THREAD_MODE) &
6775 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6776
6777 /* WaDisableSemaphoreAndSyncFlipWait:chv */
6778 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6779 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6780
6781 /* WaDisableCSUnitClockGating:chv */
6782 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6783 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6784
6785 /* WaDisableSDEUnitClockGating:chv */
6786 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6787 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6788
6789 /*
6790 * GTT cache may not work with big pages, so if those
6791 * are ever enabled GTT cache may need to be disabled.
6792 */
6793 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6794 }
6795
6796 static void g4x_init_clock_gating(struct drm_device *dev)
6797 {
6798 struct drm_i915_private *dev_priv = dev->dev_private;
6799 uint32_t dspclk_gate;
6800
6801 I915_WRITE(RENCLK_GATE_D1, 0);
6802 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6803 GS_UNIT_CLOCK_GATE_DISABLE |
6804 CL_UNIT_CLOCK_GATE_DISABLE);
6805 I915_WRITE(RAMCLK_GATE_D, 0);
6806 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6807 OVRUNIT_CLOCK_GATE_DISABLE |
6808 OVCUNIT_CLOCK_GATE_DISABLE;
6809 if (IS_GM45(dev))
6810 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6811 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6812
6813 /* WaDisableRenderCachePipelinedFlush */
6814 I915_WRITE(CACHE_MODE_0,
6815 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6816
6817 /* WaDisable_RenderCache_OperationalFlush:g4x */
6818 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6819
6820 g4x_disable_trickle_feed(dev);
6821 }
6822
6823 static void crestline_init_clock_gating(struct drm_device *dev)
6824 {
6825 struct drm_i915_private *dev_priv = dev->dev_private;
6826
6827 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6828 I915_WRITE(RENCLK_GATE_D2, 0);
6829 I915_WRITE(DSPCLK_GATE_D, 0);
6830 I915_WRITE(RAMCLK_GATE_D, 0);
6831 I915_WRITE16(DEUC, 0);
6832 I915_WRITE(MI_ARB_STATE,
6833 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6834
6835 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6836 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6837 }
6838
6839 static void broadwater_init_clock_gating(struct drm_device *dev)
6840 {
6841 struct drm_i915_private *dev_priv = dev->dev_private;
6842
6843 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6844 I965_RCC_CLOCK_GATE_DISABLE |
6845 I965_RCPB_CLOCK_GATE_DISABLE |
6846 I965_ISC_CLOCK_GATE_DISABLE |
6847 I965_FBC_CLOCK_GATE_DISABLE);
6848 I915_WRITE(RENCLK_GATE_D2, 0);
6849 I915_WRITE(MI_ARB_STATE,
6850 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6851
6852 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6853 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6854 }
6855
6856 static void gen3_init_clock_gating(struct drm_device *dev)
6857 {
6858 struct drm_i915_private *dev_priv = dev->dev_private;
6859 u32 dstate = I915_READ(D_STATE);
6860
6861 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6862 DSTATE_DOT_CLOCK_GATING;
6863 I915_WRITE(D_STATE, dstate);
6864
6865 if (IS_PINEVIEW(dev))
6866 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6867
6868 /* IIR "flip pending" means done if this bit is set */
6869 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6870
6871 /* interrupts should cause a wake up from C3 */
6872 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6873
6874 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6875 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6876
6877 I915_WRITE(MI_ARB_STATE,
6878 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6879 }
6880
6881 static void i85x_init_clock_gating(struct drm_device *dev)
6882 {
6883 struct drm_i915_private *dev_priv = dev->dev_private;
6884
6885 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6886
6887 /* interrupts should cause a wake up from C3 */
6888 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6889 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6890
6891 I915_WRITE(MEM_MODE,
6892 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6893 }
6894
6895 static void i830_init_clock_gating(struct drm_device *dev)
6896 {
6897 struct drm_i915_private *dev_priv = dev->dev_private;
6898
6899 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6900
6901 I915_WRITE(MEM_MODE,
6902 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6903 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6904 }
6905
6906 void intel_init_clock_gating(struct drm_device *dev)
6907 {
6908 struct drm_i915_private *dev_priv = dev->dev_private;
6909
6910 if (dev_priv->display.init_clock_gating)
6911 dev_priv->display.init_clock_gating(dev);
6912 }
6913
6914 void intel_suspend_hw(struct drm_device *dev)
6915 {
6916 if (HAS_PCH_LPT(dev))
6917 lpt_suspend_hw(dev);
6918 }
6919
6920 /* Set up chip specific power management-related functions */
6921 void intel_init_pm(struct drm_device *dev)
6922 {
6923 struct drm_i915_private *dev_priv = dev->dev_private;
6924
6925 intel_fbc_init(dev_priv);
6926
6927 /* For cxsr */
6928 if (IS_PINEVIEW(dev))
6929 i915_pineview_get_mem_freq(dev);
6930 else if (IS_GEN5(dev))
6931 i915_ironlake_get_mem_freq(dev);
6932
6933 /* For FIFO watermark updates */
6934 if (INTEL_INFO(dev)->gen >= 9) {
6935 skl_setup_wm_latency(dev);
6936
6937 if (IS_BROXTON(dev))
6938 dev_priv->display.init_clock_gating =
6939 bxt_init_clock_gating;
6940 dev_priv->display.update_wm = skl_update_wm;
6941 } else if (HAS_PCH_SPLIT(dev)) {
6942 ilk_setup_wm_latency(dev);
6943
6944 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6945 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6946 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6947 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6948 dev_priv->display.update_wm = ilk_update_wm;
6949 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
6950 } else {
6951 DRM_DEBUG_KMS("Failed to read display plane latency. "
6952 "Disable CxSR\n");
6953 }
6954
6955 if (IS_GEN5(dev))
6956 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6957 else if (IS_GEN6(dev))
6958 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6959 else if (IS_IVYBRIDGE(dev))
6960 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6961 else if (IS_HASWELL(dev))
6962 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6963 else if (INTEL_INFO(dev)->gen == 8)
6964 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6965 } else if (IS_CHERRYVIEW(dev)) {
6966 vlv_setup_wm_latency(dev);
6967
6968 dev_priv->display.update_wm = vlv_update_wm;
6969 dev_priv->display.init_clock_gating =
6970 cherryview_init_clock_gating;
6971 } else if (IS_VALLEYVIEW(dev)) {
6972 vlv_setup_wm_latency(dev);
6973
6974 dev_priv->display.update_wm = vlv_update_wm;
6975 dev_priv->display.init_clock_gating =
6976 valleyview_init_clock_gating;
6977 } else if (IS_PINEVIEW(dev)) {
6978 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6979 dev_priv->is_ddr3,
6980 dev_priv->fsb_freq,
6981 dev_priv->mem_freq)) {
6982 DRM_INFO("failed to find known CxSR latency "
6983 "(found ddr%s fsb freq %d, mem freq %d), "
6984 "disabling CxSR\n",
6985 (dev_priv->is_ddr3 == 1) ? "3" : "2",
6986 dev_priv->fsb_freq, dev_priv->mem_freq);
6987 /* Disable CxSR and never update its watermark again */
6988 intel_set_memory_cxsr(dev_priv, false);
6989 dev_priv->display.update_wm = NULL;
6990 } else
6991 dev_priv->display.update_wm = pineview_update_wm;
6992 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6993 } else if (IS_G4X(dev)) {
6994 dev_priv->display.update_wm = g4x_update_wm;
6995 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6996 } else if (IS_GEN4(dev)) {
6997 dev_priv->display.update_wm = i965_update_wm;
6998 if (IS_CRESTLINE(dev))
6999 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7000 else if (IS_BROADWATER(dev))
7001 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7002 } else if (IS_GEN3(dev)) {
7003 dev_priv->display.update_wm = i9xx_update_wm;
7004 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7005 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7006 } else if (IS_GEN2(dev)) {
7007 if (INTEL_INFO(dev)->num_pipes == 1) {
7008 dev_priv->display.update_wm = i845_update_wm;
7009 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7010 } else {
7011 dev_priv->display.update_wm = i9xx_update_wm;
7012 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7013 }
7014
7015 if (IS_I85X(dev) || IS_I865G(dev))
7016 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7017 else
7018 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7019 } else {
7020 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7021 }
7022 }
7023
7024 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7025 {
7026 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7027
7028 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7029 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7030 return -EAGAIN;
7031 }
7032
7033 I915_WRITE(GEN6_PCODE_DATA, *val);
7034 I915_WRITE(GEN6_PCODE_DATA1, 0);
7035 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7036
7037 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7038 500)) {
7039 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7040 return -ETIMEDOUT;
7041 }
7042
7043 *val = I915_READ(GEN6_PCODE_DATA);
7044 I915_WRITE(GEN6_PCODE_DATA, 0);
7045
7046 return 0;
7047 }
7048
7049 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7050 {
7051 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7052
7053 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7054 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7055 return -EAGAIN;
7056 }
7057
7058 I915_WRITE(GEN6_PCODE_DATA, val);
7059 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7060
7061 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7062 500)) {
7063 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7064 return -ETIMEDOUT;
7065 }
7066
7067 I915_WRITE(GEN6_PCODE_DATA, 0);
7068
7069 return 0;
7070 }
7071
7072 static int vlv_gpu_freq_div(unsigned int czclk_freq)
7073 {
7074 switch (czclk_freq) {
7075 case 200:
7076 return 10;
7077 case 267:
7078 return 12;
7079 case 320:
7080 case 333:
7081 return 16;
7082 case 400:
7083 return 20;
7084 default:
7085 return -1;
7086 }
7087 }
7088
7089 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7090 {
7091 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7092
7093 div = vlv_gpu_freq_div(czclk_freq);
7094 if (div < 0)
7095 return div;
7096
7097 return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7098 }
7099
7100 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7101 {
7102 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7103
7104 mul = vlv_gpu_freq_div(czclk_freq);
7105 if (mul < 0)
7106 return mul;
7107
7108 return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7109 }
7110
7111 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7112 {
7113 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7114
7115 div = vlv_gpu_freq_div(czclk_freq) / 2;
7116 if (div < 0)
7117 return div;
7118
7119 return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7120 }
7121
7122 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7123 {
7124 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7125
7126 mul = vlv_gpu_freq_div(czclk_freq) / 2;
7127 if (mul < 0)
7128 return mul;
7129
7130 /* CHV needs even values */
7131 return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7132 }
7133
7134 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7135 {
7136 if (IS_GEN9(dev_priv->dev))
7137 return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
7138 else if (IS_CHERRYVIEW(dev_priv->dev))
7139 return chv_gpu_freq(dev_priv, val);
7140 else if (IS_VALLEYVIEW(dev_priv->dev))
7141 return byt_gpu_freq(dev_priv, val);
7142 else
7143 return val * GT_FREQUENCY_MULTIPLIER;
7144 }
7145
7146 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7147 {
7148 if (IS_GEN9(dev_priv->dev))
7149 return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
7150 else if (IS_CHERRYVIEW(dev_priv->dev))
7151 return chv_freq_opcode(dev_priv, val);
7152 else if (IS_VALLEYVIEW(dev_priv->dev))
7153 return byt_freq_opcode(dev_priv, val);
7154 else
7155 return val / GT_FREQUENCY_MULTIPLIER;
7156 }
7157
7158 struct request_boost {
7159 struct work_struct work;
7160 struct drm_i915_gem_request *req;
7161 };
7162
7163 static void __intel_rps_boost_work(struct work_struct *work)
7164 {
7165 struct request_boost *boost = container_of(work, struct request_boost, work);
7166 struct drm_i915_gem_request *req = boost->req;
7167
7168 if (!i915_gem_request_completed(req, true))
7169 gen6_rps_boost(to_i915(req->ring->dev), NULL,
7170 req->emitted_jiffies);
7171
7172 i915_gem_request_unreference__unlocked(req);
7173 kfree(boost);
7174 }
7175
7176 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7177 struct drm_i915_gem_request *req)
7178 {
7179 struct request_boost *boost;
7180
7181 if (req == NULL || INTEL_INFO(dev)->gen < 6)
7182 return;
7183
7184 if (i915_gem_request_completed(req, true))
7185 return;
7186
7187 boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7188 if (boost == NULL)
7189 return;
7190
7191 i915_gem_request_reference(req);
7192 boost->req = req;
7193
7194 INIT_WORK(&boost->work, __intel_rps_boost_work);
7195 queue_work(to_i915(dev)->wq, &boost->work);
7196 }
7197
7198 void intel_pm_setup(struct drm_device *dev)
7199 {
7200 struct drm_i915_private *dev_priv = dev->dev_private;
7201
7202 mutex_init(&dev_priv->rps.hw_lock);
7203 spin_lock_init(&dev_priv->rps.client_lock);
7204
7205 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7206 intel_gen6_powersave_work);
7207 INIT_LIST_HEAD(&dev_priv->rps.clients);
7208 INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7209 INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7210
7211 dev_priv->pm.suspended = false;
7212 }
This page took 0.227501 seconds and 4 git commands to generate.