drm/i915: Add scaled paramater to update_sprite_watermarks()
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <drm/i915_powerwell.h>
34
35 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
36 * framebuffer contents in-memory, aiming at reducing the required bandwidth
37 * during in-memory transfers and, therefore, reduce the power packet.
38 *
39 * The benefits of FBC are mostly visible with solid backgrounds and
40 * variation-less patterns.
41 *
42 * FBC-related functionality can be enabled by the means of the
43 * i915.i915_enable_fbc parameter
44 */
45
46 static bool intel_crtc_active(struct drm_crtc *crtc)
47 {
48 /* Be paranoid as we can arrive here with only partial
49 * state retrieved from the hardware during setup.
50 */
51 return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
52 }
53
54 static void i8xx_disable_fbc(struct drm_device *dev)
55 {
56 struct drm_i915_private *dev_priv = dev->dev_private;
57 u32 fbc_ctl;
58
59 /* Disable compression */
60 fbc_ctl = I915_READ(FBC_CONTROL);
61 if ((fbc_ctl & FBC_CTL_EN) == 0)
62 return;
63
64 fbc_ctl &= ~FBC_CTL_EN;
65 I915_WRITE(FBC_CONTROL, fbc_ctl);
66
67 /* Wait for compressing bit to clear */
68 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
69 DRM_DEBUG_KMS("FBC idle timed out\n");
70 return;
71 }
72
73 DRM_DEBUG_KMS("disabled FBC\n");
74 }
75
76 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
77 {
78 struct drm_device *dev = crtc->dev;
79 struct drm_i915_private *dev_priv = dev->dev_private;
80 struct drm_framebuffer *fb = crtc->fb;
81 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
82 struct drm_i915_gem_object *obj = intel_fb->obj;
83 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84 int cfb_pitch;
85 int plane, i;
86 u32 fbc_ctl, fbc_ctl2;
87
88 cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
89 if (fb->pitches[0] < cfb_pitch)
90 cfb_pitch = fb->pitches[0];
91
92 /* FBC_CTL wants 64B units */
93 cfb_pitch = (cfb_pitch / 64) - 1;
94 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
95
96 /* Clear old tags */
97 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
98 I915_WRITE(FBC_TAG + (i * 4), 0);
99
100 /* Set it up... */
101 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
102 fbc_ctl2 |= plane;
103 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
104 I915_WRITE(FBC_FENCE_OFF, crtc->y);
105
106 /* enable it... */
107 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
108 if (IS_I945GM(dev))
109 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
110 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
111 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
112 fbc_ctl |= obj->fence_reg;
113 I915_WRITE(FBC_CONTROL, fbc_ctl);
114
115 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
116 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
117 }
118
119 static bool i8xx_fbc_enabled(struct drm_device *dev)
120 {
121 struct drm_i915_private *dev_priv = dev->dev_private;
122
123 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
124 }
125
126 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
127 {
128 struct drm_device *dev = crtc->dev;
129 struct drm_i915_private *dev_priv = dev->dev_private;
130 struct drm_framebuffer *fb = crtc->fb;
131 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
132 struct drm_i915_gem_object *obj = intel_fb->obj;
133 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
134 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
135 unsigned long stall_watermark = 200;
136 u32 dpfc_ctl;
137
138 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
139 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
140 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
141
142 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
143 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
144 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
145 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
146
147 /* enable it... */
148 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
149
150 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
151 }
152
153 static void g4x_disable_fbc(struct drm_device *dev)
154 {
155 struct drm_i915_private *dev_priv = dev->dev_private;
156 u32 dpfc_ctl;
157
158 /* Disable compression */
159 dpfc_ctl = I915_READ(DPFC_CONTROL);
160 if (dpfc_ctl & DPFC_CTL_EN) {
161 dpfc_ctl &= ~DPFC_CTL_EN;
162 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
163
164 DRM_DEBUG_KMS("disabled FBC\n");
165 }
166 }
167
168 static bool g4x_fbc_enabled(struct drm_device *dev)
169 {
170 struct drm_i915_private *dev_priv = dev->dev_private;
171
172 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
173 }
174
175 static void sandybridge_blit_fbc_update(struct drm_device *dev)
176 {
177 struct drm_i915_private *dev_priv = dev->dev_private;
178 u32 blt_ecoskpd;
179
180 /* Make sure blitter notifies FBC of writes */
181 gen6_gt_force_wake_get(dev_priv);
182 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
183 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
184 GEN6_BLITTER_LOCK_SHIFT;
185 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
186 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
187 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
188 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
189 GEN6_BLITTER_LOCK_SHIFT);
190 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
191 POSTING_READ(GEN6_BLITTER_ECOSKPD);
192 gen6_gt_force_wake_put(dev_priv);
193 }
194
195 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
196 {
197 struct drm_device *dev = crtc->dev;
198 struct drm_i915_private *dev_priv = dev->dev_private;
199 struct drm_framebuffer *fb = crtc->fb;
200 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
201 struct drm_i915_gem_object *obj = intel_fb->obj;
202 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
203 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
204 unsigned long stall_watermark = 200;
205 u32 dpfc_ctl;
206
207 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
208 dpfc_ctl &= DPFC_RESERVED;
209 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
210 /* Set persistent mode for front-buffer rendering, ala X. */
211 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
212 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
213 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
214
215 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
216 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
217 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
218 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
219 I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
220 /* enable it... */
221 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
222
223 if (IS_GEN6(dev)) {
224 I915_WRITE(SNB_DPFC_CTL_SA,
225 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
226 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
227 sandybridge_blit_fbc_update(dev);
228 }
229
230 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
231 }
232
233 static void ironlake_disable_fbc(struct drm_device *dev)
234 {
235 struct drm_i915_private *dev_priv = dev->dev_private;
236 u32 dpfc_ctl;
237
238 /* Disable compression */
239 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
240 if (dpfc_ctl & DPFC_CTL_EN) {
241 dpfc_ctl &= ~DPFC_CTL_EN;
242 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
243
244 if (IS_IVYBRIDGE(dev))
245 /* WaFbcDisableDpfcClockGating:ivb */
246 I915_WRITE(ILK_DSPCLK_GATE_D,
247 I915_READ(ILK_DSPCLK_GATE_D) &
248 ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
249
250 if (IS_HASWELL(dev))
251 /* WaFbcDisableDpfcClockGating:hsw */
252 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
253 I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
254 ~HSW_DPFC_GATING_DISABLE);
255
256 DRM_DEBUG_KMS("disabled FBC\n");
257 }
258 }
259
260 static bool ironlake_fbc_enabled(struct drm_device *dev)
261 {
262 struct drm_i915_private *dev_priv = dev->dev_private;
263
264 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
265 }
266
267 static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
268 {
269 struct drm_device *dev = crtc->dev;
270 struct drm_i915_private *dev_priv = dev->dev_private;
271 struct drm_framebuffer *fb = crtc->fb;
272 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
273 struct drm_i915_gem_object *obj = intel_fb->obj;
274 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
275
276 I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
277
278 I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
279 IVB_DPFC_CTL_FENCE_EN |
280 intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
281
282 if (IS_IVYBRIDGE(dev)) {
283 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
284 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
285 /* WaFbcDisableDpfcClockGating:ivb */
286 I915_WRITE(ILK_DSPCLK_GATE_D,
287 I915_READ(ILK_DSPCLK_GATE_D) |
288 ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
289 } else {
290 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
291 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
292 HSW_BYPASS_FBC_QUEUE);
293 /* WaFbcDisableDpfcClockGating:hsw */
294 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
295 I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
296 HSW_DPFC_GATING_DISABLE);
297 }
298
299 I915_WRITE(SNB_DPFC_CTL_SA,
300 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
301 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
302
303 sandybridge_blit_fbc_update(dev);
304
305 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
306 }
307
308 bool intel_fbc_enabled(struct drm_device *dev)
309 {
310 struct drm_i915_private *dev_priv = dev->dev_private;
311
312 if (!dev_priv->display.fbc_enabled)
313 return false;
314
315 return dev_priv->display.fbc_enabled(dev);
316 }
317
318 static void intel_fbc_work_fn(struct work_struct *__work)
319 {
320 struct intel_fbc_work *work =
321 container_of(to_delayed_work(__work),
322 struct intel_fbc_work, work);
323 struct drm_device *dev = work->crtc->dev;
324 struct drm_i915_private *dev_priv = dev->dev_private;
325
326 mutex_lock(&dev->struct_mutex);
327 if (work == dev_priv->fbc.fbc_work) {
328 /* Double check that we haven't switched fb without cancelling
329 * the prior work.
330 */
331 if (work->crtc->fb == work->fb) {
332 dev_priv->display.enable_fbc(work->crtc,
333 work->interval);
334
335 dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
336 dev_priv->fbc.fb_id = work->crtc->fb->base.id;
337 dev_priv->fbc.y = work->crtc->y;
338 }
339
340 dev_priv->fbc.fbc_work = NULL;
341 }
342 mutex_unlock(&dev->struct_mutex);
343
344 kfree(work);
345 }
346
347 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
348 {
349 if (dev_priv->fbc.fbc_work == NULL)
350 return;
351
352 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
353
354 /* Synchronisation is provided by struct_mutex and checking of
355 * dev_priv->fbc.fbc_work, so we can perform the cancellation
356 * entirely asynchronously.
357 */
358 if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
359 /* tasklet was killed before being run, clean up */
360 kfree(dev_priv->fbc.fbc_work);
361
362 /* Mark the work as no longer wanted so that if it does
363 * wake-up (because the work was already running and waiting
364 * for our mutex), it will discover that is no longer
365 * necessary to run.
366 */
367 dev_priv->fbc.fbc_work = NULL;
368 }
369
370 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
371 {
372 struct intel_fbc_work *work;
373 struct drm_device *dev = crtc->dev;
374 struct drm_i915_private *dev_priv = dev->dev_private;
375
376 if (!dev_priv->display.enable_fbc)
377 return;
378
379 intel_cancel_fbc_work(dev_priv);
380
381 work = kzalloc(sizeof *work, GFP_KERNEL);
382 if (work == NULL) {
383 DRM_ERROR("Failed to allocate FBC work structure\n");
384 dev_priv->display.enable_fbc(crtc, interval);
385 return;
386 }
387
388 work->crtc = crtc;
389 work->fb = crtc->fb;
390 work->interval = interval;
391 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
392
393 dev_priv->fbc.fbc_work = work;
394
395 /* Delay the actual enabling to let pageflipping cease and the
396 * display to settle before starting the compression. Note that
397 * this delay also serves a second purpose: it allows for a
398 * vblank to pass after disabling the FBC before we attempt
399 * to modify the control registers.
400 *
401 * A more complicated solution would involve tracking vblanks
402 * following the termination of the page-flipping sequence
403 * and indeed performing the enable as a co-routine and not
404 * waiting synchronously upon the vblank.
405 *
406 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
407 */
408 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
409 }
410
411 void intel_disable_fbc(struct drm_device *dev)
412 {
413 struct drm_i915_private *dev_priv = dev->dev_private;
414
415 intel_cancel_fbc_work(dev_priv);
416
417 if (!dev_priv->display.disable_fbc)
418 return;
419
420 dev_priv->display.disable_fbc(dev);
421 dev_priv->fbc.plane = -1;
422 }
423
424 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
425 enum no_fbc_reason reason)
426 {
427 if (dev_priv->fbc.no_fbc_reason == reason)
428 return false;
429
430 dev_priv->fbc.no_fbc_reason = reason;
431 return true;
432 }
433
434 /**
435 * intel_update_fbc - enable/disable FBC as needed
436 * @dev: the drm_device
437 *
438 * Set up the framebuffer compression hardware at mode set time. We
439 * enable it if possible:
440 * - plane A only (on pre-965)
441 * - no pixel mulitply/line duplication
442 * - no alpha buffer discard
443 * - no dual wide
444 * - framebuffer <= max_hdisplay in width, max_vdisplay in height
445 *
446 * We can't assume that any compression will take place (worst case),
447 * so the compressed buffer has to be the same size as the uncompressed
448 * one. It also must reside (along with the line length buffer) in
449 * stolen memory.
450 *
451 * We need to enable/disable FBC on a global basis.
452 */
453 void intel_update_fbc(struct drm_device *dev)
454 {
455 struct drm_i915_private *dev_priv = dev->dev_private;
456 struct drm_crtc *crtc = NULL, *tmp_crtc;
457 struct intel_crtc *intel_crtc;
458 struct drm_framebuffer *fb;
459 struct intel_framebuffer *intel_fb;
460 struct drm_i915_gem_object *obj;
461 unsigned int max_hdisplay, max_vdisplay;
462
463 if (!I915_HAS_FBC(dev)) {
464 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
465 return;
466 }
467
468 if (!i915_powersave) {
469 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
470 DRM_DEBUG_KMS("fbc disabled per module param\n");
471 return;
472 }
473
474 /*
475 * If FBC is already on, we just have to verify that we can
476 * keep it that way...
477 * Need to disable if:
478 * - more than one pipe is active
479 * - changing FBC params (stride, fence, mode)
480 * - new fb is too large to fit in compressed buffer
481 * - going to an unsupported config (interlace, pixel multiply, etc.)
482 */
483 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
484 if (intel_crtc_active(tmp_crtc) &&
485 !to_intel_crtc(tmp_crtc)->primary_disabled) {
486 if (crtc) {
487 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
488 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
489 goto out_disable;
490 }
491 crtc = tmp_crtc;
492 }
493 }
494
495 if (!crtc || crtc->fb == NULL) {
496 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
497 DRM_DEBUG_KMS("no output, disabling\n");
498 goto out_disable;
499 }
500
501 intel_crtc = to_intel_crtc(crtc);
502 fb = crtc->fb;
503 intel_fb = to_intel_framebuffer(fb);
504 obj = intel_fb->obj;
505
506 if (i915_enable_fbc < 0 &&
507 INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
508 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
509 DRM_DEBUG_KMS("disabled per chip default\n");
510 goto out_disable;
511 }
512 if (!i915_enable_fbc) {
513 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
514 DRM_DEBUG_KMS("fbc disabled per module param\n");
515 goto out_disable;
516 }
517 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
518 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
519 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
520 DRM_DEBUG_KMS("mode incompatible with compression, "
521 "disabling\n");
522 goto out_disable;
523 }
524
525 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
526 max_hdisplay = 4096;
527 max_vdisplay = 2048;
528 } else {
529 max_hdisplay = 2048;
530 max_vdisplay = 1536;
531 }
532 if ((crtc->mode.hdisplay > max_hdisplay) ||
533 (crtc->mode.vdisplay > max_vdisplay)) {
534 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
535 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
536 goto out_disable;
537 }
538 if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
539 intel_crtc->plane != 0) {
540 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
541 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
542 goto out_disable;
543 }
544
545 /* The use of a CPU fence is mandatory in order to detect writes
546 * by the CPU to the scanout and trigger updates to the FBC.
547 */
548 if (obj->tiling_mode != I915_TILING_X ||
549 obj->fence_reg == I915_FENCE_REG_NONE) {
550 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
551 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
552 goto out_disable;
553 }
554
555 /* If the kernel debugger is active, always disable compression */
556 if (in_dbg_master())
557 goto out_disable;
558
559 if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
560 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
561 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
562 goto out_disable;
563 }
564
565 /* If the scanout has not changed, don't modify the FBC settings.
566 * Note that we make the fundamental assumption that the fb->obj
567 * cannot be unpinned (and have its GTT offset and fence revoked)
568 * without first being decoupled from the scanout and FBC disabled.
569 */
570 if (dev_priv->fbc.plane == intel_crtc->plane &&
571 dev_priv->fbc.fb_id == fb->base.id &&
572 dev_priv->fbc.y == crtc->y)
573 return;
574
575 if (intel_fbc_enabled(dev)) {
576 /* We update FBC along two paths, after changing fb/crtc
577 * configuration (modeswitching) and after page-flipping
578 * finishes. For the latter, we know that not only did
579 * we disable the FBC at the start of the page-flip
580 * sequence, but also more than one vblank has passed.
581 *
582 * For the former case of modeswitching, it is possible
583 * to switch between two FBC valid configurations
584 * instantaneously so we do need to disable the FBC
585 * before we can modify its control registers. We also
586 * have to wait for the next vblank for that to take
587 * effect. However, since we delay enabling FBC we can
588 * assume that a vblank has passed since disabling and
589 * that we can safely alter the registers in the deferred
590 * callback.
591 *
592 * In the scenario that we go from a valid to invalid
593 * and then back to valid FBC configuration we have
594 * no strict enforcement that a vblank occurred since
595 * disabling the FBC. However, along all current pipe
596 * disabling paths we do need to wait for a vblank at
597 * some point. And we wait before enabling FBC anyway.
598 */
599 DRM_DEBUG_KMS("disabling active FBC for update\n");
600 intel_disable_fbc(dev);
601 }
602
603 intel_enable_fbc(crtc, 500);
604 dev_priv->fbc.no_fbc_reason = FBC_OK;
605 return;
606
607 out_disable:
608 /* Multiple disables should be harmless */
609 if (intel_fbc_enabled(dev)) {
610 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
611 intel_disable_fbc(dev);
612 }
613 i915_gem_stolen_cleanup_compression(dev);
614 }
615
616 static void i915_pineview_get_mem_freq(struct drm_device *dev)
617 {
618 drm_i915_private_t *dev_priv = dev->dev_private;
619 u32 tmp;
620
621 tmp = I915_READ(CLKCFG);
622
623 switch (tmp & CLKCFG_FSB_MASK) {
624 case CLKCFG_FSB_533:
625 dev_priv->fsb_freq = 533; /* 133*4 */
626 break;
627 case CLKCFG_FSB_800:
628 dev_priv->fsb_freq = 800; /* 200*4 */
629 break;
630 case CLKCFG_FSB_667:
631 dev_priv->fsb_freq = 667; /* 167*4 */
632 break;
633 case CLKCFG_FSB_400:
634 dev_priv->fsb_freq = 400; /* 100*4 */
635 break;
636 }
637
638 switch (tmp & CLKCFG_MEM_MASK) {
639 case CLKCFG_MEM_533:
640 dev_priv->mem_freq = 533;
641 break;
642 case CLKCFG_MEM_667:
643 dev_priv->mem_freq = 667;
644 break;
645 case CLKCFG_MEM_800:
646 dev_priv->mem_freq = 800;
647 break;
648 }
649
650 /* detect pineview DDR3 setting */
651 tmp = I915_READ(CSHRDDR3CTL);
652 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
653 }
654
655 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
656 {
657 drm_i915_private_t *dev_priv = dev->dev_private;
658 u16 ddrpll, csipll;
659
660 ddrpll = I915_READ16(DDRMPLL1);
661 csipll = I915_READ16(CSIPLL0);
662
663 switch (ddrpll & 0xff) {
664 case 0xc:
665 dev_priv->mem_freq = 800;
666 break;
667 case 0x10:
668 dev_priv->mem_freq = 1066;
669 break;
670 case 0x14:
671 dev_priv->mem_freq = 1333;
672 break;
673 case 0x18:
674 dev_priv->mem_freq = 1600;
675 break;
676 default:
677 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
678 ddrpll & 0xff);
679 dev_priv->mem_freq = 0;
680 break;
681 }
682
683 dev_priv->ips.r_t = dev_priv->mem_freq;
684
685 switch (csipll & 0x3ff) {
686 case 0x00c:
687 dev_priv->fsb_freq = 3200;
688 break;
689 case 0x00e:
690 dev_priv->fsb_freq = 3733;
691 break;
692 case 0x010:
693 dev_priv->fsb_freq = 4266;
694 break;
695 case 0x012:
696 dev_priv->fsb_freq = 4800;
697 break;
698 case 0x014:
699 dev_priv->fsb_freq = 5333;
700 break;
701 case 0x016:
702 dev_priv->fsb_freq = 5866;
703 break;
704 case 0x018:
705 dev_priv->fsb_freq = 6400;
706 break;
707 default:
708 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
709 csipll & 0x3ff);
710 dev_priv->fsb_freq = 0;
711 break;
712 }
713
714 if (dev_priv->fsb_freq == 3200) {
715 dev_priv->ips.c_m = 0;
716 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
717 dev_priv->ips.c_m = 1;
718 } else {
719 dev_priv->ips.c_m = 2;
720 }
721 }
722
723 static const struct cxsr_latency cxsr_latency_table[] = {
724 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
725 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
726 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
727 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
728 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
729
730 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
731 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
732 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
733 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
734 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
735
736 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
737 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
738 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
739 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
740 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
741
742 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
743 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
744 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
745 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
746 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
747
748 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
749 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
750 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
751 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
752 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
753
754 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
755 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
756 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
757 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
758 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
759 };
760
761 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
762 int is_ddr3,
763 int fsb,
764 int mem)
765 {
766 const struct cxsr_latency *latency;
767 int i;
768
769 if (fsb == 0 || mem == 0)
770 return NULL;
771
772 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
773 latency = &cxsr_latency_table[i];
774 if (is_desktop == latency->is_desktop &&
775 is_ddr3 == latency->is_ddr3 &&
776 fsb == latency->fsb_freq && mem == latency->mem_freq)
777 return latency;
778 }
779
780 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
781
782 return NULL;
783 }
784
785 static void pineview_disable_cxsr(struct drm_device *dev)
786 {
787 struct drm_i915_private *dev_priv = dev->dev_private;
788
789 /* deactivate cxsr */
790 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
791 }
792
793 /*
794 * Latency for FIFO fetches is dependent on several factors:
795 * - memory configuration (speed, channels)
796 * - chipset
797 * - current MCH state
798 * It can be fairly high in some situations, so here we assume a fairly
799 * pessimal value. It's a tradeoff between extra memory fetches (if we
800 * set this value too high, the FIFO will fetch frequently to stay full)
801 * and power consumption (set it too low to save power and we might see
802 * FIFO underruns and display "flicker").
803 *
804 * A value of 5us seems to be a good balance; safe for very low end
805 * platforms but not overly aggressive on lower latency configs.
806 */
807 static const int latency_ns = 5000;
808
809 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
810 {
811 struct drm_i915_private *dev_priv = dev->dev_private;
812 uint32_t dsparb = I915_READ(DSPARB);
813 int size;
814
815 size = dsparb & 0x7f;
816 if (plane)
817 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
818
819 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
820 plane ? "B" : "A", size);
821
822 return size;
823 }
824
825 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
826 {
827 struct drm_i915_private *dev_priv = dev->dev_private;
828 uint32_t dsparb = I915_READ(DSPARB);
829 int size;
830
831 size = dsparb & 0x1ff;
832 if (plane)
833 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
834 size >>= 1; /* Convert to cachelines */
835
836 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
837 plane ? "B" : "A", size);
838
839 return size;
840 }
841
842 static int i845_get_fifo_size(struct drm_device *dev, int plane)
843 {
844 struct drm_i915_private *dev_priv = dev->dev_private;
845 uint32_t dsparb = I915_READ(DSPARB);
846 int size;
847
848 size = dsparb & 0x7f;
849 size >>= 2; /* Convert to cachelines */
850
851 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
852 plane ? "B" : "A",
853 size);
854
855 return size;
856 }
857
858 static int i830_get_fifo_size(struct drm_device *dev, int plane)
859 {
860 struct drm_i915_private *dev_priv = dev->dev_private;
861 uint32_t dsparb = I915_READ(DSPARB);
862 int size;
863
864 size = dsparb & 0x7f;
865 size >>= 1; /* Convert to cachelines */
866
867 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
868 plane ? "B" : "A", size);
869
870 return size;
871 }
872
873 /* Pineview has different values for various configs */
874 static const struct intel_watermark_params pineview_display_wm = {
875 PINEVIEW_DISPLAY_FIFO,
876 PINEVIEW_MAX_WM,
877 PINEVIEW_DFT_WM,
878 PINEVIEW_GUARD_WM,
879 PINEVIEW_FIFO_LINE_SIZE
880 };
881 static const struct intel_watermark_params pineview_display_hplloff_wm = {
882 PINEVIEW_DISPLAY_FIFO,
883 PINEVIEW_MAX_WM,
884 PINEVIEW_DFT_HPLLOFF_WM,
885 PINEVIEW_GUARD_WM,
886 PINEVIEW_FIFO_LINE_SIZE
887 };
888 static const struct intel_watermark_params pineview_cursor_wm = {
889 PINEVIEW_CURSOR_FIFO,
890 PINEVIEW_CURSOR_MAX_WM,
891 PINEVIEW_CURSOR_DFT_WM,
892 PINEVIEW_CURSOR_GUARD_WM,
893 PINEVIEW_FIFO_LINE_SIZE,
894 };
895 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
896 PINEVIEW_CURSOR_FIFO,
897 PINEVIEW_CURSOR_MAX_WM,
898 PINEVIEW_CURSOR_DFT_WM,
899 PINEVIEW_CURSOR_GUARD_WM,
900 PINEVIEW_FIFO_LINE_SIZE
901 };
902 static const struct intel_watermark_params g4x_wm_info = {
903 G4X_FIFO_SIZE,
904 G4X_MAX_WM,
905 G4X_MAX_WM,
906 2,
907 G4X_FIFO_LINE_SIZE,
908 };
909 static const struct intel_watermark_params g4x_cursor_wm_info = {
910 I965_CURSOR_FIFO,
911 I965_CURSOR_MAX_WM,
912 I965_CURSOR_DFT_WM,
913 2,
914 G4X_FIFO_LINE_SIZE,
915 };
916 static const struct intel_watermark_params valleyview_wm_info = {
917 VALLEYVIEW_FIFO_SIZE,
918 VALLEYVIEW_MAX_WM,
919 VALLEYVIEW_MAX_WM,
920 2,
921 G4X_FIFO_LINE_SIZE,
922 };
923 static const struct intel_watermark_params valleyview_cursor_wm_info = {
924 I965_CURSOR_FIFO,
925 VALLEYVIEW_CURSOR_MAX_WM,
926 I965_CURSOR_DFT_WM,
927 2,
928 G4X_FIFO_LINE_SIZE,
929 };
930 static const struct intel_watermark_params i965_cursor_wm_info = {
931 I965_CURSOR_FIFO,
932 I965_CURSOR_MAX_WM,
933 I965_CURSOR_DFT_WM,
934 2,
935 I915_FIFO_LINE_SIZE,
936 };
937 static const struct intel_watermark_params i945_wm_info = {
938 I945_FIFO_SIZE,
939 I915_MAX_WM,
940 1,
941 2,
942 I915_FIFO_LINE_SIZE
943 };
944 static const struct intel_watermark_params i915_wm_info = {
945 I915_FIFO_SIZE,
946 I915_MAX_WM,
947 1,
948 2,
949 I915_FIFO_LINE_SIZE
950 };
951 static const struct intel_watermark_params i855_wm_info = {
952 I855GM_FIFO_SIZE,
953 I915_MAX_WM,
954 1,
955 2,
956 I830_FIFO_LINE_SIZE
957 };
958 static const struct intel_watermark_params i830_wm_info = {
959 I830_FIFO_SIZE,
960 I915_MAX_WM,
961 1,
962 2,
963 I830_FIFO_LINE_SIZE
964 };
965
966 static const struct intel_watermark_params ironlake_display_wm_info = {
967 ILK_DISPLAY_FIFO,
968 ILK_DISPLAY_MAXWM,
969 ILK_DISPLAY_DFTWM,
970 2,
971 ILK_FIFO_LINE_SIZE
972 };
973 static const struct intel_watermark_params ironlake_cursor_wm_info = {
974 ILK_CURSOR_FIFO,
975 ILK_CURSOR_MAXWM,
976 ILK_CURSOR_DFTWM,
977 2,
978 ILK_FIFO_LINE_SIZE
979 };
980 static const struct intel_watermark_params ironlake_display_srwm_info = {
981 ILK_DISPLAY_SR_FIFO,
982 ILK_DISPLAY_MAX_SRWM,
983 ILK_DISPLAY_DFT_SRWM,
984 2,
985 ILK_FIFO_LINE_SIZE
986 };
987 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
988 ILK_CURSOR_SR_FIFO,
989 ILK_CURSOR_MAX_SRWM,
990 ILK_CURSOR_DFT_SRWM,
991 2,
992 ILK_FIFO_LINE_SIZE
993 };
994
995 static const struct intel_watermark_params sandybridge_display_wm_info = {
996 SNB_DISPLAY_FIFO,
997 SNB_DISPLAY_MAXWM,
998 SNB_DISPLAY_DFTWM,
999 2,
1000 SNB_FIFO_LINE_SIZE
1001 };
1002 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
1003 SNB_CURSOR_FIFO,
1004 SNB_CURSOR_MAXWM,
1005 SNB_CURSOR_DFTWM,
1006 2,
1007 SNB_FIFO_LINE_SIZE
1008 };
1009 static const struct intel_watermark_params sandybridge_display_srwm_info = {
1010 SNB_DISPLAY_SR_FIFO,
1011 SNB_DISPLAY_MAX_SRWM,
1012 SNB_DISPLAY_DFT_SRWM,
1013 2,
1014 SNB_FIFO_LINE_SIZE
1015 };
1016 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1017 SNB_CURSOR_SR_FIFO,
1018 SNB_CURSOR_MAX_SRWM,
1019 SNB_CURSOR_DFT_SRWM,
1020 2,
1021 SNB_FIFO_LINE_SIZE
1022 };
1023
1024
1025 /**
1026 * intel_calculate_wm - calculate watermark level
1027 * @clock_in_khz: pixel clock
1028 * @wm: chip FIFO params
1029 * @pixel_size: display pixel size
1030 * @latency_ns: memory latency for the platform
1031 *
1032 * Calculate the watermark level (the level at which the display plane will
1033 * start fetching from memory again). Each chip has a different display
1034 * FIFO size and allocation, so the caller needs to figure that out and pass
1035 * in the correct intel_watermark_params structure.
1036 *
1037 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1038 * on the pixel size. When it reaches the watermark level, it'll start
1039 * fetching FIFO line sized based chunks from memory until the FIFO fills
1040 * past the watermark point. If the FIFO drains completely, a FIFO underrun
1041 * will occur, and a display engine hang could result.
1042 */
1043 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1044 const struct intel_watermark_params *wm,
1045 int fifo_size,
1046 int pixel_size,
1047 unsigned long latency_ns)
1048 {
1049 long entries_required, wm_size;
1050
1051 /*
1052 * Note: we need to make sure we don't overflow for various clock &
1053 * latency values.
1054 * clocks go from a few thousand to several hundred thousand.
1055 * latency is usually a few thousand
1056 */
1057 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1058 1000;
1059 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1060
1061 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1062
1063 wm_size = fifo_size - (entries_required + wm->guard_size);
1064
1065 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1066
1067 /* Don't promote wm_size to unsigned... */
1068 if (wm_size > (long)wm->max_wm)
1069 wm_size = wm->max_wm;
1070 if (wm_size <= 0)
1071 wm_size = wm->default_wm;
1072 return wm_size;
1073 }
1074
1075 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1076 {
1077 struct drm_crtc *crtc, *enabled = NULL;
1078
1079 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1080 if (intel_crtc_active(crtc)) {
1081 if (enabled)
1082 return NULL;
1083 enabled = crtc;
1084 }
1085 }
1086
1087 return enabled;
1088 }
1089
1090 static void pineview_update_wm(struct drm_device *dev)
1091 {
1092 struct drm_i915_private *dev_priv = dev->dev_private;
1093 struct drm_crtc *crtc;
1094 const struct cxsr_latency *latency;
1095 u32 reg;
1096 unsigned long wm;
1097
1098 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1099 dev_priv->fsb_freq, dev_priv->mem_freq);
1100 if (!latency) {
1101 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1102 pineview_disable_cxsr(dev);
1103 return;
1104 }
1105
1106 crtc = single_enabled_crtc(dev);
1107 if (crtc) {
1108 int clock = crtc->mode.clock;
1109 int pixel_size = crtc->fb->bits_per_pixel / 8;
1110
1111 /* Display SR */
1112 wm = intel_calculate_wm(clock, &pineview_display_wm,
1113 pineview_display_wm.fifo_size,
1114 pixel_size, latency->display_sr);
1115 reg = I915_READ(DSPFW1);
1116 reg &= ~DSPFW_SR_MASK;
1117 reg |= wm << DSPFW_SR_SHIFT;
1118 I915_WRITE(DSPFW1, reg);
1119 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1120
1121 /* cursor SR */
1122 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1123 pineview_display_wm.fifo_size,
1124 pixel_size, latency->cursor_sr);
1125 reg = I915_READ(DSPFW3);
1126 reg &= ~DSPFW_CURSOR_SR_MASK;
1127 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1128 I915_WRITE(DSPFW3, reg);
1129
1130 /* Display HPLL off SR */
1131 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1132 pineview_display_hplloff_wm.fifo_size,
1133 pixel_size, latency->display_hpll_disable);
1134 reg = I915_READ(DSPFW3);
1135 reg &= ~DSPFW_HPLL_SR_MASK;
1136 reg |= wm & DSPFW_HPLL_SR_MASK;
1137 I915_WRITE(DSPFW3, reg);
1138
1139 /* cursor HPLL off SR */
1140 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1141 pineview_display_hplloff_wm.fifo_size,
1142 pixel_size, latency->cursor_hpll_disable);
1143 reg = I915_READ(DSPFW3);
1144 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1145 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1146 I915_WRITE(DSPFW3, reg);
1147 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1148
1149 /* activate cxsr */
1150 I915_WRITE(DSPFW3,
1151 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1152 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1153 } else {
1154 pineview_disable_cxsr(dev);
1155 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1156 }
1157 }
1158
1159 static bool g4x_compute_wm0(struct drm_device *dev,
1160 int plane,
1161 const struct intel_watermark_params *display,
1162 int display_latency_ns,
1163 const struct intel_watermark_params *cursor,
1164 int cursor_latency_ns,
1165 int *plane_wm,
1166 int *cursor_wm)
1167 {
1168 struct drm_crtc *crtc;
1169 int htotal, hdisplay, clock, pixel_size;
1170 int line_time_us, line_count;
1171 int entries, tlb_miss;
1172
1173 crtc = intel_get_crtc_for_plane(dev, plane);
1174 if (!intel_crtc_active(crtc)) {
1175 *cursor_wm = cursor->guard_size;
1176 *plane_wm = display->guard_size;
1177 return false;
1178 }
1179
1180 htotal = crtc->mode.htotal;
1181 hdisplay = crtc->mode.hdisplay;
1182 clock = crtc->mode.clock;
1183 pixel_size = crtc->fb->bits_per_pixel / 8;
1184
1185 /* Use the small buffer method to calculate plane watermark */
1186 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1187 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1188 if (tlb_miss > 0)
1189 entries += tlb_miss;
1190 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1191 *plane_wm = entries + display->guard_size;
1192 if (*plane_wm > (int)display->max_wm)
1193 *plane_wm = display->max_wm;
1194
1195 /* Use the large buffer method to calculate cursor watermark */
1196 line_time_us = ((htotal * 1000) / clock);
1197 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1198 entries = line_count * 64 * pixel_size;
1199 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1200 if (tlb_miss > 0)
1201 entries += tlb_miss;
1202 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1203 *cursor_wm = entries + cursor->guard_size;
1204 if (*cursor_wm > (int)cursor->max_wm)
1205 *cursor_wm = (int)cursor->max_wm;
1206
1207 return true;
1208 }
1209
1210 /*
1211 * Check the wm result.
1212 *
1213 * If any calculated watermark values is larger than the maximum value that
1214 * can be programmed into the associated watermark register, that watermark
1215 * must be disabled.
1216 */
1217 static bool g4x_check_srwm(struct drm_device *dev,
1218 int display_wm, int cursor_wm,
1219 const struct intel_watermark_params *display,
1220 const struct intel_watermark_params *cursor)
1221 {
1222 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1223 display_wm, cursor_wm);
1224
1225 if (display_wm > display->max_wm) {
1226 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1227 display_wm, display->max_wm);
1228 return false;
1229 }
1230
1231 if (cursor_wm > cursor->max_wm) {
1232 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1233 cursor_wm, cursor->max_wm);
1234 return false;
1235 }
1236
1237 if (!(display_wm || cursor_wm)) {
1238 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1239 return false;
1240 }
1241
1242 return true;
1243 }
1244
1245 static bool g4x_compute_srwm(struct drm_device *dev,
1246 int plane,
1247 int latency_ns,
1248 const struct intel_watermark_params *display,
1249 const struct intel_watermark_params *cursor,
1250 int *display_wm, int *cursor_wm)
1251 {
1252 struct drm_crtc *crtc;
1253 int hdisplay, htotal, pixel_size, clock;
1254 unsigned long line_time_us;
1255 int line_count, line_size;
1256 int small, large;
1257 int entries;
1258
1259 if (!latency_ns) {
1260 *display_wm = *cursor_wm = 0;
1261 return false;
1262 }
1263
1264 crtc = intel_get_crtc_for_plane(dev, plane);
1265 hdisplay = crtc->mode.hdisplay;
1266 htotal = crtc->mode.htotal;
1267 clock = crtc->mode.clock;
1268 pixel_size = crtc->fb->bits_per_pixel / 8;
1269
1270 line_time_us = (htotal * 1000) / clock;
1271 line_count = (latency_ns / line_time_us + 1000) / 1000;
1272 line_size = hdisplay * pixel_size;
1273
1274 /* Use the minimum of the small and large buffer method for primary */
1275 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1276 large = line_count * line_size;
1277
1278 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1279 *display_wm = entries + display->guard_size;
1280
1281 /* calculate the self-refresh watermark for display cursor */
1282 entries = line_count * pixel_size * 64;
1283 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1284 *cursor_wm = entries + cursor->guard_size;
1285
1286 return g4x_check_srwm(dev,
1287 *display_wm, *cursor_wm,
1288 display, cursor);
1289 }
1290
1291 static bool vlv_compute_drain_latency(struct drm_device *dev,
1292 int plane,
1293 int *plane_prec_mult,
1294 int *plane_dl,
1295 int *cursor_prec_mult,
1296 int *cursor_dl)
1297 {
1298 struct drm_crtc *crtc;
1299 int clock, pixel_size;
1300 int entries;
1301
1302 crtc = intel_get_crtc_for_plane(dev, plane);
1303 if (!intel_crtc_active(crtc))
1304 return false;
1305
1306 clock = crtc->mode.clock; /* VESA DOT Clock */
1307 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
1308
1309 entries = (clock / 1000) * pixel_size;
1310 *plane_prec_mult = (entries > 256) ?
1311 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1312 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1313 pixel_size);
1314
1315 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1316 *cursor_prec_mult = (entries > 256) ?
1317 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1318 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1319
1320 return true;
1321 }
1322
1323 /*
1324 * Update drain latency registers of memory arbiter
1325 *
1326 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1327 * to be programmed. Each plane has a drain latency multiplier and a drain
1328 * latency value.
1329 */
1330
1331 static void vlv_update_drain_latency(struct drm_device *dev)
1332 {
1333 struct drm_i915_private *dev_priv = dev->dev_private;
1334 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1335 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1336 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1337 either 16 or 32 */
1338
1339 /* For plane A, Cursor A */
1340 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1341 &cursor_prec_mult, &cursora_dl)) {
1342 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1343 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1344 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1345 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1346
1347 I915_WRITE(VLV_DDL1, cursora_prec |
1348 (cursora_dl << DDL_CURSORA_SHIFT) |
1349 planea_prec | planea_dl);
1350 }
1351
1352 /* For plane B, Cursor B */
1353 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1354 &cursor_prec_mult, &cursorb_dl)) {
1355 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1356 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1357 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1358 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1359
1360 I915_WRITE(VLV_DDL2, cursorb_prec |
1361 (cursorb_dl << DDL_CURSORB_SHIFT) |
1362 planeb_prec | planeb_dl);
1363 }
1364 }
1365
1366 #define single_plane_enabled(mask) is_power_of_2(mask)
1367
1368 static void valleyview_update_wm(struct drm_device *dev)
1369 {
1370 static const int sr_latency_ns = 12000;
1371 struct drm_i915_private *dev_priv = dev->dev_private;
1372 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1373 int plane_sr, cursor_sr;
1374 int ignore_plane_sr, ignore_cursor_sr;
1375 unsigned int enabled = 0;
1376
1377 vlv_update_drain_latency(dev);
1378
1379 if (g4x_compute_wm0(dev, PIPE_A,
1380 &valleyview_wm_info, latency_ns,
1381 &valleyview_cursor_wm_info, latency_ns,
1382 &planea_wm, &cursora_wm))
1383 enabled |= 1 << PIPE_A;
1384
1385 if (g4x_compute_wm0(dev, PIPE_B,
1386 &valleyview_wm_info, latency_ns,
1387 &valleyview_cursor_wm_info, latency_ns,
1388 &planeb_wm, &cursorb_wm))
1389 enabled |= 1 << PIPE_B;
1390
1391 if (single_plane_enabled(enabled) &&
1392 g4x_compute_srwm(dev, ffs(enabled) - 1,
1393 sr_latency_ns,
1394 &valleyview_wm_info,
1395 &valleyview_cursor_wm_info,
1396 &plane_sr, &ignore_cursor_sr) &&
1397 g4x_compute_srwm(dev, ffs(enabled) - 1,
1398 2*sr_latency_ns,
1399 &valleyview_wm_info,
1400 &valleyview_cursor_wm_info,
1401 &ignore_plane_sr, &cursor_sr)) {
1402 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1403 } else {
1404 I915_WRITE(FW_BLC_SELF_VLV,
1405 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1406 plane_sr = cursor_sr = 0;
1407 }
1408
1409 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1410 planea_wm, cursora_wm,
1411 planeb_wm, cursorb_wm,
1412 plane_sr, cursor_sr);
1413
1414 I915_WRITE(DSPFW1,
1415 (plane_sr << DSPFW_SR_SHIFT) |
1416 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1417 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1418 planea_wm);
1419 I915_WRITE(DSPFW2,
1420 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1421 (cursora_wm << DSPFW_CURSORA_SHIFT));
1422 I915_WRITE(DSPFW3,
1423 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1424 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1425 }
1426
1427 static void g4x_update_wm(struct drm_device *dev)
1428 {
1429 static const int sr_latency_ns = 12000;
1430 struct drm_i915_private *dev_priv = dev->dev_private;
1431 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1432 int plane_sr, cursor_sr;
1433 unsigned int enabled = 0;
1434
1435 if (g4x_compute_wm0(dev, PIPE_A,
1436 &g4x_wm_info, latency_ns,
1437 &g4x_cursor_wm_info, latency_ns,
1438 &planea_wm, &cursora_wm))
1439 enabled |= 1 << PIPE_A;
1440
1441 if (g4x_compute_wm0(dev, PIPE_B,
1442 &g4x_wm_info, latency_ns,
1443 &g4x_cursor_wm_info, latency_ns,
1444 &planeb_wm, &cursorb_wm))
1445 enabled |= 1 << PIPE_B;
1446
1447 if (single_plane_enabled(enabled) &&
1448 g4x_compute_srwm(dev, ffs(enabled) - 1,
1449 sr_latency_ns,
1450 &g4x_wm_info,
1451 &g4x_cursor_wm_info,
1452 &plane_sr, &cursor_sr)) {
1453 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1454 } else {
1455 I915_WRITE(FW_BLC_SELF,
1456 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1457 plane_sr = cursor_sr = 0;
1458 }
1459
1460 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1461 planea_wm, cursora_wm,
1462 planeb_wm, cursorb_wm,
1463 plane_sr, cursor_sr);
1464
1465 I915_WRITE(DSPFW1,
1466 (plane_sr << DSPFW_SR_SHIFT) |
1467 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1468 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1469 planea_wm);
1470 I915_WRITE(DSPFW2,
1471 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1472 (cursora_wm << DSPFW_CURSORA_SHIFT));
1473 /* HPLL off in SR has some issues on G4x... disable it */
1474 I915_WRITE(DSPFW3,
1475 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1476 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1477 }
1478
1479 static void i965_update_wm(struct drm_device *dev)
1480 {
1481 struct drm_i915_private *dev_priv = dev->dev_private;
1482 struct drm_crtc *crtc;
1483 int srwm = 1;
1484 int cursor_sr = 16;
1485
1486 /* Calc sr entries for one plane configs */
1487 crtc = single_enabled_crtc(dev);
1488 if (crtc) {
1489 /* self-refresh has much higher latency */
1490 static const int sr_latency_ns = 12000;
1491 int clock = crtc->mode.clock;
1492 int htotal = crtc->mode.htotal;
1493 int hdisplay = crtc->mode.hdisplay;
1494 int pixel_size = crtc->fb->bits_per_pixel / 8;
1495 unsigned long line_time_us;
1496 int entries;
1497
1498 line_time_us = ((htotal * 1000) / clock);
1499
1500 /* Use ns/us then divide to preserve precision */
1501 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1502 pixel_size * hdisplay;
1503 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1504 srwm = I965_FIFO_SIZE - entries;
1505 if (srwm < 0)
1506 srwm = 1;
1507 srwm &= 0x1ff;
1508 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1509 entries, srwm);
1510
1511 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1512 pixel_size * 64;
1513 entries = DIV_ROUND_UP(entries,
1514 i965_cursor_wm_info.cacheline_size);
1515 cursor_sr = i965_cursor_wm_info.fifo_size -
1516 (entries + i965_cursor_wm_info.guard_size);
1517
1518 if (cursor_sr > i965_cursor_wm_info.max_wm)
1519 cursor_sr = i965_cursor_wm_info.max_wm;
1520
1521 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1522 "cursor %d\n", srwm, cursor_sr);
1523
1524 if (IS_CRESTLINE(dev))
1525 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1526 } else {
1527 /* Turn off self refresh if both pipes are enabled */
1528 if (IS_CRESTLINE(dev))
1529 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1530 & ~FW_BLC_SELF_EN);
1531 }
1532
1533 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1534 srwm);
1535
1536 /* 965 has limitations... */
1537 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1538 (8 << 16) | (8 << 8) | (8 << 0));
1539 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1540 /* update cursor SR watermark */
1541 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1542 }
1543
1544 static void i9xx_update_wm(struct drm_device *dev)
1545 {
1546 struct drm_i915_private *dev_priv = dev->dev_private;
1547 const struct intel_watermark_params *wm_info;
1548 uint32_t fwater_lo;
1549 uint32_t fwater_hi;
1550 int cwm, srwm = 1;
1551 int fifo_size;
1552 int planea_wm, planeb_wm;
1553 struct drm_crtc *crtc, *enabled = NULL;
1554
1555 if (IS_I945GM(dev))
1556 wm_info = &i945_wm_info;
1557 else if (!IS_GEN2(dev))
1558 wm_info = &i915_wm_info;
1559 else
1560 wm_info = &i855_wm_info;
1561
1562 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1563 crtc = intel_get_crtc_for_plane(dev, 0);
1564 if (intel_crtc_active(crtc)) {
1565 int cpp = crtc->fb->bits_per_pixel / 8;
1566 if (IS_GEN2(dev))
1567 cpp = 4;
1568
1569 planea_wm = intel_calculate_wm(crtc->mode.clock,
1570 wm_info, fifo_size, cpp,
1571 latency_ns);
1572 enabled = crtc;
1573 } else
1574 planea_wm = fifo_size - wm_info->guard_size;
1575
1576 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1577 crtc = intel_get_crtc_for_plane(dev, 1);
1578 if (intel_crtc_active(crtc)) {
1579 int cpp = crtc->fb->bits_per_pixel / 8;
1580 if (IS_GEN2(dev))
1581 cpp = 4;
1582
1583 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1584 wm_info, fifo_size, cpp,
1585 latency_ns);
1586 if (enabled == NULL)
1587 enabled = crtc;
1588 else
1589 enabled = NULL;
1590 } else
1591 planeb_wm = fifo_size - wm_info->guard_size;
1592
1593 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1594
1595 /*
1596 * Overlay gets an aggressive default since video jitter is bad.
1597 */
1598 cwm = 2;
1599
1600 /* Play safe and disable self-refresh before adjusting watermarks. */
1601 if (IS_I945G(dev) || IS_I945GM(dev))
1602 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1603 else if (IS_I915GM(dev))
1604 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1605
1606 /* Calc sr entries for one plane configs */
1607 if (HAS_FW_BLC(dev) && enabled) {
1608 /* self-refresh has much higher latency */
1609 static const int sr_latency_ns = 6000;
1610 int clock = enabled->mode.clock;
1611 int htotal = enabled->mode.htotal;
1612 int hdisplay = enabled->mode.hdisplay;
1613 int pixel_size = enabled->fb->bits_per_pixel / 8;
1614 unsigned long line_time_us;
1615 int entries;
1616
1617 line_time_us = (htotal * 1000) / clock;
1618
1619 /* Use ns/us then divide to preserve precision */
1620 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1621 pixel_size * hdisplay;
1622 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1623 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1624 srwm = wm_info->fifo_size - entries;
1625 if (srwm < 0)
1626 srwm = 1;
1627
1628 if (IS_I945G(dev) || IS_I945GM(dev))
1629 I915_WRITE(FW_BLC_SELF,
1630 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1631 else if (IS_I915GM(dev))
1632 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1633 }
1634
1635 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1636 planea_wm, planeb_wm, cwm, srwm);
1637
1638 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1639 fwater_hi = (cwm & 0x1f);
1640
1641 /* Set request length to 8 cachelines per fetch */
1642 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1643 fwater_hi = fwater_hi | (1 << 8);
1644
1645 I915_WRITE(FW_BLC, fwater_lo);
1646 I915_WRITE(FW_BLC2, fwater_hi);
1647
1648 if (HAS_FW_BLC(dev)) {
1649 if (enabled) {
1650 if (IS_I945G(dev) || IS_I945GM(dev))
1651 I915_WRITE(FW_BLC_SELF,
1652 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1653 else if (IS_I915GM(dev))
1654 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1655 DRM_DEBUG_KMS("memory self refresh enabled\n");
1656 } else
1657 DRM_DEBUG_KMS("memory self refresh disabled\n");
1658 }
1659 }
1660
1661 static void i830_update_wm(struct drm_device *dev)
1662 {
1663 struct drm_i915_private *dev_priv = dev->dev_private;
1664 struct drm_crtc *crtc;
1665 uint32_t fwater_lo;
1666 int planea_wm;
1667
1668 crtc = single_enabled_crtc(dev);
1669 if (crtc == NULL)
1670 return;
1671
1672 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1673 dev_priv->display.get_fifo_size(dev, 0),
1674 4, latency_ns);
1675 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1676 fwater_lo |= (3<<8) | planea_wm;
1677
1678 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1679
1680 I915_WRITE(FW_BLC, fwater_lo);
1681 }
1682
1683 #define ILK_LP0_PLANE_LATENCY 700
1684 #define ILK_LP0_CURSOR_LATENCY 1300
1685
1686 /*
1687 * Check the wm result.
1688 *
1689 * If any calculated watermark values is larger than the maximum value that
1690 * can be programmed into the associated watermark register, that watermark
1691 * must be disabled.
1692 */
1693 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1694 int fbc_wm, int display_wm, int cursor_wm,
1695 const struct intel_watermark_params *display,
1696 const struct intel_watermark_params *cursor)
1697 {
1698 struct drm_i915_private *dev_priv = dev->dev_private;
1699
1700 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1701 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1702
1703 if (fbc_wm > SNB_FBC_MAX_SRWM) {
1704 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1705 fbc_wm, SNB_FBC_MAX_SRWM, level);
1706
1707 /* fbc has it's own way to disable FBC WM */
1708 I915_WRITE(DISP_ARB_CTL,
1709 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1710 return false;
1711 } else if (INTEL_INFO(dev)->gen >= 6) {
1712 /* enable FBC WM (except on ILK, where it must remain off) */
1713 I915_WRITE(DISP_ARB_CTL,
1714 I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1715 }
1716
1717 if (display_wm > display->max_wm) {
1718 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1719 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1720 return false;
1721 }
1722
1723 if (cursor_wm > cursor->max_wm) {
1724 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1725 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1726 return false;
1727 }
1728
1729 if (!(fbc_wm || display_wm || cursor_wm)) {
1730 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1731 return false;
1732 }
1733
1734 return true;
1735 }
1736
1737 /*
1738 * Compute watermark values of WM[1-3],
1739 */
1740 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1741 int latency_ns,
1742 const struct intel_watermark_params *display,
1743 const struct intel_watermark_params *cursor,
1744 int *fbc_wm, int *display_wm, int *cursor_wm)
1745 {
1746 struct drm_crtc *crtc;
1747 unsigned long line_time_us;
1748 int hdisplay, htotal, pixel_size, clock;
1749 int line_count, line_size;
1750 int small, large;
1751 int entries;
1752
1753 if (!latency_ns) {
1754 *fbc_wm = *display_wm = *cursor_wm = 0;
1755 return false;
1756 }
1757
1758 crtc = intel_get_crtc_for_plane(dev, plane);
1759 hdisplay = crtc->mode.hdisplay;
1760 htotal = crtc->mode.htotal;
1761 clock = crtc->mode.clock;
1762 pixel_size = crtc->fb->bits_per_pixel / 8;
1763
1764 line_time_us = (htotal * 1000) / clock;
1765 line_count = (latency_ns / line_time_us + 1000) / 1000;
1766 line_size = hdisplay * pixel_size;
1767
1768 /* Use the minimum of the small and large buffer method for primary */
1769 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1770 large = line_count * line_size;
1771
1772 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1773 *display_wm = entries + display->guard_size;
1774
1775 /*
1776 * Spec says:
1777 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1778 */
1779 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1780
1781 /* calculate the self-refresh watermark for display cursor */
1782 entries = line_count * pixel_size * 64;
1783 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1784 *cursor_wm = entries + cursor->guard_size;
1785
1786 return ironlake_check_srwm(dev, level,
1787 *fbc_wm, *display_wm, *cursor_wm,
1788 display, cursor);
1789 }
1790
1791 static void ironlake_update_wm(struct drm_device *dev)
1792 {
1793 struct drm_i915_private *dev_priv = dev->dev_private;
1794 int fbc_wm, plane_wm, cursor_wm;
1795 unsigned int enabled;
1796
1797 enabled = 0;
1798 if (g4x_compute_wm0(dev, PIPE_A,
1799 &ironlake_display_wm_info,
1800 ILK_LP0_PLANE_LATENCY,
1801 &ironlake_cursor_wm_info,
1802 ILK_LP0_CURSOR_LATENCY,
1803 &plane_wm, &cursor_wm)) {
1804 I915_WRITE(WM0_PIPEA_ILK,
1805 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1806 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1807 " plane %d, " "cursor: %d\n",
1808 plane_wm, cursor_wm);
1809 enabled |= 1 << PIPE_A;
1810 }
1811
1812 if (g4x_compute_wm0(dev, PIPE_B,
1813 &ironlake_display_wm_info,
1814 ILK_LP0_PLANE_LATENCY,
1815 &ironlake_cursor_wm_info,
1816 ILK_LP0_CURSOR_LATENCY,
1817 &plane_wm, &cursor_wm)) {
1818 I915_WRITE(WM0_PIPEB_ILK,
1819 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1820 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1821 " plane %d, cursor: %d\n",
1822 plane_wm, cursor_wm);
1823 enabled |= 1 << PIPE_B;
1824 }
1825
1826 /*
1827 * Calculate and update the self-refresh watermark only when one
1828 * display plane is used.
1829 */
1830 I915_WRITE(WM3_LP_ILK, 0);
1831 I915_WRITE(WM2_LP_ILK, 0);
1832 I915_WRITE(WM1_LP_ILK, 0);
1833
1834 if (!single_plane_enabled(enabled))
1835 return;
1836 enabled = ffs(enabled) - 1;
1837
1838 /* WM1 */
1839 if (!ironlake_compute_srwm(dev, 1, enabled,
1840 ILK_READ_WM1_LATENCY() * 500,
1841 &ironlake_display_srwm_info,
1842 &ironlake_cursor_srwm_info,
1843 &fbc_wm, &plane_wm, &cursor_wm))
1844 return;
1845
1846 I915_WRITE(WM1_LP_ILK,
1847 WM1_LP_SR_EN |
1848 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1849 (fbc_wm << WM1_LP_FBC_SHIFT) |
1850 (plane_wm << WM1_LP_SR_SHIFT) |
1851 cursor_wm);
1852
1853 /* WM2 */
1854 if (!ironlake_compute_srwm(dev, 2, enabled,
1855 ILK_READ_WM2_LATENCY() * 500,
1856 &ironlake_display_srwm_info,
1857 &ironlake_cursor_srwm_info,
1858 &fbc_wm, &plane_wm, &cursor_wm))
1859 return;
1860
1861 I915_WRITE(WM2_LP_ILK,
1862 WM2_LP_EN |
1863 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1864 (fbc_wm << WM1_LP_FBC_SHIFT) |
1865 (plane_wm << WM1_LP_SR_SHIFT) |
1866 cursor_wm);
1867
1868 /*
1869 * WM3 is unsupported on ILK, probably because we don't have latency
1870 * data for that power state
1871 */
1872 }
1873
1874 static void sandybridge_update_wm(struct drm_device *dev)
1875 {
1876 struct drm_i915_private *dev_priv = dev->dev_private;
1877 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1878 u32 val;
1879 int fbc_wm, plane_wm, cursor_wm;
1880 unsigned int enabled;
1881
1882 enabled = 0;
1883 if (g4x_compute_wm0(dev, PIPE_A,
1884 &sandybridge_display_wm_info, latency,
1885 &sandybridge_cursor_wm_info, latency,
1886 &plane_wm, &cursor_wm)) {
1887 val = I915_READ(WM0_PIPEA_ILK);
1888 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1889 I915_WRITE(WM0_PIPEA_ILK, val |
1890 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1891 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1892 " plane %d, " "cursor: %d\n",
1893 plane_wm, cursor_wm);
1894 enabled |= 1 << PIPE_A;
1895 }
1896
1897 if (g4x_compute_wm0(dev, PIPE_B,
1898 &sandybridge_display_wm_info, latency,
1899 &sandybridge_cursor_wm_info, latency,
1900 &plane_wm, &cursor_wm)) {
1901 val = I915_READ(WM0_PIPEB_ILK);
1902 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1903 I915_WRITE(WM0_PIPEB_ILK, val |
1904 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1905 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1906 " plane %d, cursor: %d\n",
1907 plane_wm, cursor_wm);
1908 enabled |= 1 << PIPE_B;
1909 }
1910
1911 /*
1912 * Calculate and update the self-refresh watermark only when one
1913 * display plane is used.
1914 *
1915 * SNB support 3 levels of watermark.
1916 *
1917 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1918 * and disabled in the descending order
1919 *
1920 */
1921 I915_WRITE(WM3_LP_ILK, 0);
1922 I915_WRITE(WM2_LP_ILK, 0);
1923 I915_WRITE(WM1_LP_ILK, 0);
1924
1925 if (!single_plane_enabled(enabled) ||
1926 dev_priv->sprite_scaling_enabled)
1927 return;
1928 enabled = ffs(enabled) - 1;
1929
1930 /* WM1 */
1931 if (!ironlake_compute_srwm(dev, 1, enabled,
1932 SNB_READ_WM1_LATENCY() * 500,
1933 &sandybridge_display_srwm_info,
1934 &sandybridge_cursor_srwm_info,
1935 &fbc_wm, &plane_wm, &cursor_wm))
1936 return;
1937
1938 I915_WRITE(WM1_LP_ILK,
1939 WM1_LP_SR_EN |
1940 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1941 (fbc_wm << WM1_LP_FBC_SHIFT) |
1942 (plane_wm << WM1_LP_SR_SHIFT) |
1943 cursor_wm);
1944
1945 /* WM2 */
1946 if (!ironlake_compute_srwm(dev, 2, enabled,
1947 SNB_READ_WM2_LATENCY() * 500,
1948 &sandybridge_display_srwm_info,
1949 &sandybridge_cursor_srwm_info,
1950 &fbc_wm, &plane_wm, &cursor_wm))
1951 return;
1952
1953 I915_WRITE(WM2_LP_ILK,
1954 WM2_LP_EN |
1955 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1956 (fbc_wm << WM1_LP_FBC_SHIFT) |
1957 (plane_wm << WM1_LP_SR_SHIFT) |
1958 cursor_wm);
1959
1960 /* WM3 */
1961 if (!ironlake_compute_srwm(dev, 3, enabled,
1962 SNB_READ_WM3_LATENCY() * 500,
1963 &sandybridge_display_srwm_info,
1964 &sandybridge_cursor_srwm_info,
1965 &fbc_wm, &plane_wm, &cursor_wm))
1966 return;
1967
1968 I915_WRITE(WM3_LP_ILK,
1969 WM3_LP_EN |
1970 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1971 (fbc_wm << WM1_LP_FBC_SHIFT) |
1972 (plane_wm << WM1_LP_SR_SHIFT) |
1973 cursor_wm);
1974 }
1975
1976 static void ivybridge_update_wm(struct drm_device *dev)
1977 {
1978 struct drm_i915_private *dev_priv = dev->dev_private;
1979 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1980 u32 val;
1981 int fbc_wm, plane_wm, cursor_wm;
1982 int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1983 unsigned int enabled;
1984
1985 enabled = 0;
1986 if (g4x_compute_wm0(dev, PIPE_A,
1987 &sandybridge_display_wm_info, latency,
1988 &sandybridge_cursor_wm_info, latency,
1989 &plane_wm, &cursor_wm)) {
1990 val = I915_READ(WM0_PIPEA_ILK);
1991 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1992 I915_WRITE(WM0_PIPEA_ILK, val |
1993 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1994 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1995 " plane %d, " "cursor: %d\n",
1996 plane_wm, cursor_wm);
1997 enabled |= 1 << PIPE_A;
1998 }
1999
2000 if (g4x_compute_wm0(dev, PIPE_B,
2001 &sandybridge_display_wm_info, latency,
2002 &sandybridge_cursor_wm_info, latency,
2003 &plane_wm, &cursor_wm)) {
2004 val = I915_READ(WM0_PIPEB_ILK);
2005 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2006 I915_WRITE(WM0_PIPEB_ILK, val |
2007 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2008 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
2009 " plane %d, cursor: %d\n",
2010 plane_wm, cursor_wm);
2011 enabled |= 1 << PIPE_B;
2012 }
2013
2014 if (g4x_compute_wm0(dev, PIPE_C,
2015 &sandybridge_display_wm_info, latency,
2016 &sandybridge_cursor_wm_info, latency,
2017 &plane_wm, &cursor_wm)) {
2018 val = I915_READ(WM0_PIPEC_IVB);
2019 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2020 I915_WRITE(WM0_PIPEC_IVB, val |
2021 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2022 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2023 " plane %d, cursor: %d\n",
2024 plane_wm, cursor_wm);
2025 enabled |= 1 << PIPE_C;
2026 }
2027
2028 /*
2029 * Calculate and update the self-refresh watermark only when one
2030 * display plane is used.
2031 *
2032 * SNB support 3 levels of watermark.
2033 *
2034 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2035 * and disabled in the descending order
2036 *
2037 */
2038 I915_WRITE(WM3_LP_ILK, 0);
2039 I915_WRITE(WM2_LP_ILK, 0);
2040 I915_WRITE(WM1_LP_ILK, 0);
2041
2042 if (!single_plane_enabled(enabled) ||
2043 dev_priv->sprite_scaling_enabled)
2044 return;
2045 enabled = ffs(enabled) - 1;
2046
2047 /* WM1 */
2048 if (!ironlake_compute_srwm(dev, 1, enabled,
2049 SNB_READ_WM1_LATENCY() * 500,
2050 &sandybridge_display_srwm_info,
2051 &sandybridge_cursor_srwm_info,
2052 &fbc_wm, &plane_wm, &cursor_wm))
2053 return;
2054
2055 I915_WRITE(WM1_LP_ILK,
2056 WM1_LP_SR_EN |
2057 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2058 (fbc_wm << WM1_LP_FBC_SHIFT) |
2059 (plane_wm << WM1_LP_SR_SHIFT) |
2060 cursor_wm);
2061
2062 /* WM2 */
2063 if (!ironlake_compute_srwm(dev, 2, enabled,
2064 SNB_READ_WM2_LATENCY() * 500,
2065 &sandybridge_display_srwm_info,
2066 &sandybridge_cursor_srwm_info,
2067 &fbc_wm, &plane_wm, &cursor_wm))
2068 return;
2069
2070 I915_WRITE(WM2_LP_ILK,
2071 WM2_LP_EN |
2072 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2073 (fbc_wm << WM1_LP_FBC_SHIFT) |
2074 (plane_wm << WM1_LP_SR_SHIFT) |
2075 cursor_wm);
2076
2077 /* WM3, note we have to correct the cursor latency */
2078 if (!ironlake_compute_srwm(dev, 3, enabled,
2079 SNB_READ_WM3_LATENCY() * 500,
2080 &sandybridge_display_srwm_info,
2081 &sandybridge_cursor_srwm_info,
2082 &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2083 !ironlake_compute_srwm(dev, 3, enabled,
2084 2 * SNB_READ_WM3_LATENCY() * 500,
2085 &sandybridge_display_srwm_info,
2086 &sandybridge_cursor_srwm_info,
2087 &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2088 return;
2089
2090 I915_WRITE(WM3_LP_ILK,
2091 WM3_LP_EN |
2092 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2093 (fbc_wm << WM1_LP_FBC_SHIFT) |
2094 (plane_wm << WM1_LP_SR_SHIFT) |
2095 cursor_wm);
2096 }
2097
2098 static uint32_t hsw_wm_get_pixel_rate(struct drm_device *dev,
2099 struct drm_crtc *crtc)
2100 {
2101 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2102 uint32_t pixel_rate, pfit_size;
2103
2104 pixel_rate = intel_crtc->config.adjusted_mode.clock;
2105
2106 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
2107 * adjust the pixel_rate here. */
2108
2109 pfit_size = intel_crtc->config.pch_pfit.size;
2110 if (pfit_size) {
2111 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2112
2113 pipe_w = intel_crtc->config.requested_mode.hdisplay;
2114 pipe_h = intel_crtc->config.requested_mode.vdisplay;
2115 pfit_w = (pfit_size >> 16) & 0xFFFF;
2116 pfit_h = pfit_size & 0xFFFF;
2117 if (pipe_w < pfit_w)
2118 pipe_w = pfit_w;
2119 if (pipe_h < pfit_h)
2120 pipe_h = pfit_h;
2121
2122 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
2123 pfit_w * pfit_h);
2124 }
2125
2126 return pixel_rate;
2127 }
2128
2129 static uint32_t hsw_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2130 uint32_t latency)
2131 {
2132 uint64_t ret;
2133
2134 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
2135 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
2136
2137 return ret;
2138 }
2139
2140 static uint32_t hsw_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2141 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2142 uint32_t latency)
2143 {
2144 uint32_t ret;
2145
2146 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
2147 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
2148 ret = DIV_ROUND_UP(ret, 64) + 2;
2149 return ret;
2150 }
2151
2152 static uint32_t hsw_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2153 uint8_t bytes_per_pixel)
2154 {
2155 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
2156 }
2157
2158 struct hsw_pipe_wm_parameters {
2159 bool active;
2160 bool sprite_enabled;
2161 uint8_t pri_bytes_per_pixel;
2162 uint8_t spr_bytes_per_pixel;
2163 uint8_t cur_bytes_per_pixel;
2164 uint32_t pri_horiz_pixels;
2165 uint32_t spr_horiz_pixels;
2166 uint32_t cur_horiz_pixels;
2167 uint32_t pipe_htotal;
2168 uint32_t pixel_rate;
2169 };
2170
2171 struct hsw_wm_maximums {
2172 uint16_t pri;
2173 uint16_t spr;
2174 uint16_t cur;
2175 uint16_t fbc;
2176 };
2177
2178 struct hsw_lp_wm_result {
2179 bool enable;
2180 bool fbc_enable;
2181 uint32_t pri_val;
2182 uint32_t spr_val;
2183 uint32_t cur_val;
2184 uint32_t fbc_val;
2185 };
2186
2187 struct hsw_wm_values {
2188 uint32_t wm_pipe[3];
2189 uint32_t wm_lp[3];
2190 uint32_t wm_lp_spr[3];
2191 uint32_t wm_linetime[3];
2192 bool enable_fbc_wm;
2193 };
2194
2195 enum hsw_data_buf_partitioning {
2196 HSW_DATA_BUF_PART_1_2,
2197 HSW_DATA_BUF_PART_5_6,
2198 };
2199
2200 /* For both WM_PIPE and WM_LP. */
2201 static uint32_t hsw_compute_pri_wm(struct hsw_pipe_wm_parameters *params,
2202 uint32_t mem_value,
2203 bool is_lp)
2204 {
2205 uint32_t method1, method2;
2206
2207 /* TODO: for now, assume the primary plane is always enabled. */
2208 if (!params->active)
2209 return 0;
2210
2211 method1 = hsw_wm_method1(params->pixel_rate,
2212 params->pri_bytes_per_pixel,
2213 mem_value);
2214
2215 if (!is_lp)
2216 return method1;
2217
2218 method2 = hsw_wm_method2(params->pixel_rate,
2219 params->pipe_htotal,
2220 params->pri_horiz_pixels,
2221 params->pri_bytes_per_pixel,
2222 mem_value);
2223
2224 return min(method1, method2);
2225 }
2226
2227 /* For both WM_PIPE and WM_LP. */
2228 static uint32_t hsw_compute_spr_wm(struct hsw_pipe_wm_parameters *params,
2229 uint32_t mem_value)
2230 {
2231 uint32_t method1, method2;
2232
2233 if (!params->active || !params->sprite_enabled)
2234 return 0;
2235
2236 method1 = hsw_wm_method1(params->pixel_rate,
2237 params->spr_bytes_per_pixel,
2238 mem_value);
2239 method2 = hsw_wm_method2(params->pixel_rate,
2240 params->pipe_htotal,
2241 params->spr_horiz_pixels,
2242 params->spr_bytes_per_pixel,
2243 mem_value);
2244 return min(method1, method2);
2245 }
2246
2247 /* For both WM_PIPE and WM_LP. */
2248 static uint32_t hsw_compute_cur_wm(struct hsw_pipe_wm_parameters *params,
2249 uint32_t mem_value)
2250 {
2251 if (!params->active)
2252 return 0;
2253
2254 return hsw_wm_method2(params->pixel_rate,
2255 params->pipe_htotal,
2256 params->cur_horiz_pixels,
2257 params->cur_bytes_per_pixel,
2258 mem_value);
2259 }
2260
2261 /* Only for WM_LP. */
2262 static uint32_t hsw_compute_fbc_wm(struct hsw_pipe_wm_parameters *params,
2263 uint32_t pri_val,
2264 uint32_t mem_value)
2265 {
2266 if (!params->active)
2267 return 0;
2268
2269 return hsw_wm_fbc(pri_val,
2270 params->pri_horiz_pixels,
2271 params->pri_bytes_per_pixel);
2272 }
2273
2274 static bool hsw_compute_lp_wm(uint32_t mem_value, struct hsw_wm_maximums *max,
2275 struct hsw_pipe_wm_parameters *params,
2276 struct hsw_lp_wm_result *result)
2277 {
2278 enum pipe pipe;
2279 uint32_t pri_val[3], spr_val[3], cur_val[3], fbc_val[3];
2280
2281 for (pipe = PIPE_A; pipe <= PIPE_C; pipe++) {
2282 struct hsw_pipe_wm_parameters *p = &params[pipe];
2283
2284 pri_val[pipe] = hsw_compute_pri_wm(p, mem_value, true);
2285 spr_val[pipe] = hsw_compute_spr_wm(p, mem_value);
2286 cur_val[pipe] = hsw_compute_cur_wm(p, mem_value);
2287 fbc_val[pipe] = hsw_compute_fbc_wm(p, pri_val[pipe], mem_value);
2288 }
2289
2290 result->pri_val = max3(pri_val[0], pri_val[1], pri_val[2]);
2291 result->spr_val = max3(spr_val[0], spr_val[1], spr_val[2]);
2292 result->cur_val = max3(cur_val[0], cur_val[1], cur_val[2]);
2293 result->fbc_val = max3(fbc_val[0], fbc_val[1], fbc_val[2]);
2294
2295 if (result->fbc_val > max->fbc) {
2296 result->fbc_enable = false;
2297 result->fbc_val = 0;
2298 } else {
2299 result->fbc_enable = true;
2300 }
2301
2302 result->enable = result->pri_val <= max->pri &&
2303 result->spr_val <= max->spr &&
2304 result->cur_val <= max->cur;
2305 return result->enable;
2306 }
2307
2308 static uint32_t hsw_compute_wm_pipe(struct drm_i915_private *dev_priv,
2309 uint32_t mem_value, enum pipe pipe,
2310 struct hsw_pipe_wm_parameters *params)
2311 {
2312 uint32_t pri_val, cur_val, spr_val;
2313
2314 pri_val = hsw_compute_pri_wm(params, mem_value, false);
2315 spr_val = hsw_compute_spr_wm(params, mem_value);
2316 cur_val = hsw_compute_cur_wm(params, mem_value);
2317
2318 WARN(pri_val > 127,
2319 "Primary WM error, mode not supported for pipe %c\n",
2320 pipe_name(pipe));
2321 WARN(spr_val > 127,
2322 "Sprite WM error, mode not supported for pipe %c\n",
2323 pipe_name(pipe));
2324 WARN(cur_val > 63,
2325 "Cursor WM error, mode not supported for pipe %c\n",
2326 pipe_name(pipe));
2327
2328 return (pri_val << WM0_PIPE_PLANE_SHIFT) |
2329 (spr_val << WM0_PIPE_SPRITE_SHIFT) |
2330 cur_val;
2331 }
2332
2333 static uint32_t
2334 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2335 {
2336 struct drm_i915_private *dev_priv = dev->dev_private;
2337 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2338 struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2339 u32 linetime, ips_linetime;
2340
2341 if (!intel_crtc_active(crtc))
2342 return 0;
2343
2344 /* The WM are computed with base on how long it takes to fill a single
2345 * row at the given clock rate, multiplied by 8.
2346 * */
2347 linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
2348 ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
2349 intel_ddi_get_cdclk_freq(dev_priv));
2350
2351 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2352 PIPE_WM_LINETIME_TIME(linetime);
2353 }
2354
2355 static void hsw_compute_wm_parameters(struct drm_device *dev,
2356 struct hsw_pipe_wm_parameters *params,
2357 uint32_t *wm,
2358 struct hsw_wm_maximums *lp_max_1_2,
2359 struct hsw_wm_maximums *lp_max_5_6)
2360 {
2361 struct drm_i915_private *dev_priv = dev->dev_private;
2362 struct drm_crtc *crtc;
2363 struct drm_plane *plane;
2364 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2365 enum pipe pipe;
2366 int pipes_active = 0, sprites_enabled = 0;
2367
2368 if ((sskpd >> 56) & 0xFF)
2369 wm[0] = (sskpd >> 56) & 0xFF;
2370 else
2371 wm[0] = sskpd & 0xF;
2372 wm[1] = ((sskpd >> 4) & 0xFF) * 5;
2373 wm[2] = ((sskpd >> 12) & 0xFF) * 5;
2374 wm[3] = ((sskpd >> 20) & 0x1FF) * 5;
2375 wm[4] = ((sskpd >> 32) & 0x1FF) * 5;
2376
2377 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2378 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2379 struct hsw_pipe_wm_parameters *p;
2380
2381 pipe = intel_crtc->pipe;
2382 p = &params[pipe];
2383
2384 p->active = intel_crtc_active(crtc);
2385 if (!p->active)
2386 continue;
2387
2388 pipes_active++;
2389
2390 p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2391 p->pixel_rate = hsw_wm_get_pixel_rate(dev, crtc);
2392 p->pri_bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2393 p->cur_bytes_per_pixel = 4;
2394 p->pri_horiz_pixels =
2395 intel_crtc->config.requested_mode.hdisplay;
2396 p->cur_horiz_pixels = 64;
2397 }
2398
2399 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2400 struct intel_plane *intel_plane = to_intel_plane(plane);
2401 struct hsw_pipe_wm_parameters *p;
2402
2403 pipe = intel_plane->pipe;
2404 p = &params[pipe];
2405
2406 p->sprite_enabled = intel_plane->wm.enabled;
2407 p->spr_bytes_per_pixel = intel_plane->wm.bytes_per_pixel;
2408 p->spr_horiz_pixels = intel_plane->wm.horiz_pixels;
2409
2410 if (p->sprite_enabled)
2411 sprites_enabled++;
2412 }
2413
2414 if (pipes_active > 1) {
2415 lp_max_1_2->pri = lp_max_5_6->pri = sprites_enabled ? 128 : 256;
2416 lp_max_1_2->spr = lp_max_5_6->spr = 128;
2417 lp_max_1_2->cur = lp_max_5_6->cur = 64;
2418 } else {
2419 lp_max_1_2->pri = sprites_enabled ? 384 : 768;
2420 lp_max_5_6->pri = sprites_enabled ? 128 : 768;
2421 lp_max_1_2->spr = 384;
2422 lp_max_5_6->spr = 640;
2423 lp_max_1_2->cur = lp_max_5_6->cur = 255;
2424 }
2425 lp_max_1_2->fbc = lp_max_5_6->fbc = 15;
2426 }
2427
2428 static void hsw_compute_wm_results(struct drm_device *dev,
2429 struct hsw_pipe_wm_parameters *params,
2430 uint32_t *wm,
2431 struct hsw_wm_maximums *lp_maximums,
2432 struct hsw_wm_values *results)
2433 {
2434 struct drm_i915_private *dev_priv = dev->dev_private;
2435 struct drm_crtc *crtc;
2436 struct hsw_lp_wm_result lp_results[4] = {};
2437 enum pipe pipe;
2438 int level, max_level, wm_lp;
2439
2440 for (level = 1; level <= 4; level++)
2441 if (!hsw_compute_lp_wm(wm[level], lp_maximums, params,
2442 &lp_results[level - 1]))
2443 break;
2444 max_level = level - 1;
2445
2446 /* The spec says it is preferred to disable FBC WMs instead of disabling
2447 * a WM level. */
2448 results->enable_fbc_wm = true;
2449 for (level = 1; level <= max_level; level++) {
2450 if (!lp_results[level - 1].fbc_enable) {
2451 results->enable_fbc_wm = false;
2452 break;
2453 }
2454 }
2455
2456 memset(results, 0, sizeof(*results));
2457 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2458 const struct hsw_lp_wm_result *r;
2459
2460 level = (max_level == 4 && wm_lp > 1) ? wm_lp + 1 : wm_lp;
2461 if (level > max_level)
2462 break;
2463
2464 r = &lp_results[level - 1];
2465 results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
2466 r->fbc_val,
2467 r->pri_val,
2468 r->cur_val);
2469 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2470 }
2471
2472 for_each_pipe(pipe)
2473 results->wm_pipe[pipe] = hsw_compute_wm_pipe(dev_priv, wm[0],
2474 pipe,
2475 &params[pipe]);
2476
2477 for_each_pipe(pipe) {
2478 crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2479 results->wm_linetime[pipe] = hsw_compute_linetime_wm(dev, crtc);
2480 }
2481 }
2482
2483 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2484 * case both are at the same level. Prefer r1 in case they're the same. */
2485 static struct hsw_wm_values *hsw_find_best_result(struct hsw_wm_values *r1,
2486 struct hsw_wm_values *r2)
2487 {
2488 int i, val_r1 = 0, val_r2 = 0;
2489
2490 for (i = 0; i < 3; i++) {
2491 if (r1->wm_lp[i] & WM3_LP_EN)
2492 val_r1 = r1->wm_lp[i] & WM1_LP_LATENCY_MASK;
2493 if (r2->wm_lp[i] & WM3_LP_EN)
2494 val_r2 = r2->wm_lp[i] & WM1_LP_LATENCY_MASK;
2495 }
2496
2497 if (val_r1 == val_r2) {
2498 if (r2->enable_fbc_wm && !r1->enable_fbc_wm)
2499 return r2;
2500 else
2501 return r1;
2502 } else if (val_r1 > val_r2) {
2503 return r1;
2504 } else {
2505 return r2;
2506 }
2507 }
2508
2509 /*
2510 * The spec says we shouldn't write when we don't need, because every write
2511 * causes WMs to be re-evaluated, expending some power.
2512 */
2513 static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2514 struct hsw_wm_values *results,
2515 enum hsw_data_buf_partitioning partitioning)
2516 {
2517 struct hsw_wm_values previous;
2518 uint32_t val;
2519 enum hsw_data_buf_partitioning prev_partitioning;
2520 bool prev_enable_fbc_wm;
2521
2522 previous.wm_pipe[0] = I915_READ(WM0_PIPEA_ILK);
2523 previous.wm_pipe[1] = I915_READ(WM0_PIPEB_ILK);
2524 previous.wm_pipe[2] = I915_READ(WM0_PIPEC_IVB);
2525 previous.wm_lp[0] = I915_READ(WM1_LP_ILK);
2526 previous.wm_lp[1] = I915_READ(WM2_LP_ILK);
2527 previous.wm_lp[2] = I915_READ(WM3_LP_ILK);
2528 previous.wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2529 previous.wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2530 previous.wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2531 previous.wm_linetime[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A));
2532 previous.wm_linetime[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B));
2533 previous.wm_linetime[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C));
2534
2535 prev_partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2536 HSW_DATA_BUF_PART_5_6 : HSW_DATA_BUF_PART_1_2;
2537
2538 prev_enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2539
2540 if (memcmp(results->wm_pipe, previous.wm_pipe,
2541 sizeof(results->wm_pipe)) == 0 &&
2542 memcmp(results->wm_lp, previous.wm_lp,
2543 sizeof(results->wm_lp)) == 0 &&
2544 memcmp(results->wm_lp_spr, previous.wm_lp_spr,
2545 sizeof(results->wm_lp_spr)) == 0 &&
2546 memcmp(results->wm_linetime, previous.wm_linetime,
2547 sizeof(results->wm_linetime)) == 0 &&
2548 partitioning == prev_partitioning &&
2549 results->enable_fbc_wm == prev_enable_fbc_wm)
2550 return;
2551
2552 if (previous.wm_lp[2] != 0)
2553 I915_WRITE(WM3_LP_ILK, 0);
2554 if (previous.wm_lp[1] != 0)
2555 I915_WRITE(WM2_LP_ILK, 0);
2556 if (previous.wm_lp[0] != 0)
2557 I915_WRITE(WM1_LP_ILK, 0);
2558
2559 if (previous.wm_pipe[0] != results->wm_pipe[0])
2560 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2561 if (previous.wm_pipe[1] != results->wm_pipe[1])
2562 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2563 if (previous.wm_pipe[2] != results->wm_pipe[2])
2564 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2565
2566 if (previous.wm_linetime[0] != results->wm_linetime[0])
2567 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2568 if (previous.wm_linetime[1] != results->wm_linetime[1])
2569 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2570 if (previous.wm_linetime[2] != results->wm_linetime[2])
2571 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2572
2573 if (prev_partitioning != partitioning) {
2574 val = I915_READ(WM_MISC);
2575 if (partitioning == HSW_DATA_BUF_PART_1_2)
2576 val &= ~WM_MISC_DATA_PARTITION_5_6;
2577 else
2578 val |= WM_MISC_DATA_PARTITION_5_6;
2579 I915_WRITE(WM_MISC, val);
2580 }
2581
2582 if (prev_enable_fbc_wm != results->enable_fbc_wm) {
2583 val = I915_READ(DISP_ARB_CTL);
2584 if (results->enable_fbc_wm)
2585 val &= ~DISP_FBC_WM_DIS;
2586 else
2587 val |= DISP_FBC_WM_DIS;
2588 I915_WRITE(DISP_ARB_CTL, val);
2589 }
2590
2591 if (previous.wm_lp_spr[0] != results->wm_lp_spr[0])
2592 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2593 if (previous.wm_lp_spr[1] != results->wm_lp_spr[1])
2594 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2595 if (previous.wm_lp_spr[2] != results->wm_lp_spr[2])
2596 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2597
2598 if (results->wm_lp[0] != 0)
2599 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2600 if (results->wm_lp[1] != 0)
2601 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2602 if (results->wm_lp[2] != 0)
2603 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2604 }
2605
2606 static void haswell_update_wm(struct drm_device *dev)
2607 {
2608 struct drm_i915_private *dev_priv = dev->dev_private;
2609 struct hsw_wm_maximums lp_max_1_2, lp_max_5_6;
2610 struct hsw_pipe_wm_parameters params[3];
2611 struct hsw_wm_values results_1_2, results_5_6, *best_results;
2612 uint32_t wm[5];
2613 enum hsw_data_buf_partitioning partitioning;
2614
2615 hsw_compute_wm_parameters(dev, params, wm, &lp_max_1_2, &lp_max_5_6);
2616
2617 hsw_compute_wm_results(dev, params, wm, &lp_max_1_2, &results_1_2);
2618 if (lp_max_1_2.pri != lp_max_5_6.pri) {
2619 hsw_compute_wm_results(dev, params, wm, &lp_max_5_6,
2620 &results_5_6);
2621 best_results = hsw_find_best_result(&results_1_2, &results_5_6);
2622 } else {
2623 best_results = &results_1_2;
2624 }
2625
2626 partitioning = (best_results == &results_1_2) ?
2627 HSW_DATA_BUF_PART_1_2 : HSW_DATA_BUF_PART_5_6;
2628
2629 hsw_write_wm_values(dev_priv, best_results, partitioning);
2630 }
2631
2632 static void haswell_update_sprite_wm(struct drm_device *dev, int pipe,
2633 uint32_t sprite_width, int pixel_size,
2634 bool enabled, bool scaled)
2635 {
2636 struct drm_plane *plane;
2637
2638 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2639 struct intel_plane *intel_plane = to_intel_plane(plane);
2640
2641 if (intel_plane->pipe == pipe) {
2642 intel_plane->wm.enabled = enabled;
2643 intel_plane->wm.scaled = scaled;
2644 intel_plane->wm.horiz_pixels = sprite_width + 1;
2645 intel_plane->wm.bytes_per_pixel = pixel_size;
2646 break;
2647 }
2648 }
2649
2650 haswell_update_wm(dev);
2651 }
2652
2653 static bool
2654 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2655 uint32_t sprite_width, int pixel_size,
2656 const struct intel_watermark_params *display,
2657 int display_latency_ns, int *sprite_wm)
2658 {
2659 struct drm_crtc *crtc;
2660 int clock;
2661 int entries, tlb_miss;
2662
2663 crtc = intel_get_crtc_for_plane(dev, plane);
2664 if (!intel_crtc_active(crtc)) {
2665 *sprite_wm = display->guard_size;
2666 return false;
2667 }
2668
2669 clock = crtc->mode.clock;
2670
2671 /* Use the small buffer method to calculate the sprite watermark */
2672 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2673 tlb_miss = display->fifo_size*display->cacheline_size -
2674 sprite_width * 8;
2675 if (tlb_miss > 0)
2676 entries += tlb_miss;
2677 entries = DIV_ROUND_UP(entries, display->cacheline_size);
2678 *sprite_wm = entries + display->guard_size;
2679 if (*sprite_wm > (int)display->max_wm)
2680 *sprite_wm = display->max_wm;
2681
2682 return true;
2683 }
2684
2685 static bool
2686 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2687 uint32_t sprite_width, int pixel_size,
2688 const struct intel_watermark_params *display,
2689 int latency_ns, int *sprite_wm)
2690 {
2691 struct drm_crtc *crtc;
2692 unsigned long line_time_us;
2693 int clock;
2694 int line_count, line_size;
2695 int small, large;
2696 int entries;
2697
2698 if (!latency_ns) {
2699 *sprite_wm = 0;
2700 return false;
2701 }
2702
2703 crtc = intel_get_crtc_for_plane(dev, plane);
2704 clock = crtc->mode.clock;
2705 if (!clock) {
2706 *sprite_wm = 0;
2707 return false;
2708 }
2709
2710 line_time_us = (sprite_width * 1000) / clock;
2711 if (!line_time_us) {
2712 *sprite_wm = 0;
2713 return false;
2714 }
2715
2716 line_count = (latency_ns / line_time_us + 1000) / 1000;
2717 line_size = sprite_width * pixel_size;
2718
2719 /* Use the minimum of the small and large buffer method for primary */
2720 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2721 large = line_count * line_size;
2722
2723 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2724 *sprite_wm = entries + display->guard_size;
2725
2726 return *sprite_wm > 0x3ff ? false : true;
2727 }
2728
2729 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2730 uint32_t sprite_width, int pixel_size,
2731 bool enable, bool scaled)
2732 {
2733 struct drm_i915_private *dev_priv = dev->dev_private;
2734 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
2735 u32 val;
2736 int sprite_wm, reg;
2737 int ret;
2738
2739 if (!enable)
2740 return;
2741
2742 switch (pipe) {
2743 case 0:
2744 reg = WM0_PIPEA_ILK;
2745 break;
2746 case 1:
2747 reg = WM0_PIPEB_ILK;
2748 break;
2749 case 2:
2750 reg = WM0_PIPEC_IVB;
2751 break;
2752 default:
2753 return; /* bad pipe */
2754 }
2755
2756 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2757 &sandybridge_display_wm_info,
2758 latency, &sprite_wm);
2759 if (!ret) {
2760 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
2761 pipe_name(pipe));
2762 return;
2763 }
2764
2765 val = I915_READ(reg);
2766 val &= ~WM0_PIPE_SPRITE_MASK;
2767 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2768 DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
2769
2770
2771 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2772 pixel_size,
2773 &sandybridge_display_srwm_info,
2774 SNB_READ_WM1_LATENCY() * 500,
2775 &sprite_wm);
2776 if (!ret) {
2777 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
2778 pipe_name(pipe));
2779 return;
2780 }
2781 I915_WRITE(WM1S_LP_ILK, sprite_wm);
2782
2783 /* Only IVB has two more LP watermarks for sprite */
2784 if (!IS_IVYBRIDGE(dev))
2785 return;
2786
2787 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2788 pixel_size,
2789 &sandybridge_display_srwm_info,
2790 SNB_READ_WM2_LATENCY() * 500,
2791 &sprite_wm);
2792 if (!ret) {
2793 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
2794 pipe_name(pipe));
2795 return;
2796 }
2797 I915_WRITE(WM2S_LP_IVB, sprite_wm);
2798
2799 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2800 pixel_size,
2801 &sandybridge_display_srwm_info,
2802 SNB_READ_WM3_LATENCY() * 500,
2803 &sprite_wm);
2804 if (!ret) {
2805 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
2806 pipe_name(pipe));
2807 return;
2808 }
2809 I915_WRITE(WM3S_LP_IVB, sprite_wm);
2810 }
2811
2812 /**
2813 * intel_update_watermarks - update FIFO watermark values based on current modes
2814 *
2815 * Calculate watermark values for the various WM regs based on current mode
2816 * and plane configuration.
2817 *
2818 * There are several cases to deal with here:
2819 * - normal (i.e. non-self-refresh)
2820 * - self-refresh (SR) mode
2821 * - lines are large relative to FIFO size (buffer can hold up to 2)
2822 * - lines are small relative to FIFO size (buffer can hold more than 2
2823 * lines), so need to account for TLB latency
2824 *
2825 * The normal calculation is:
2826 * watermark = dotclock * bytes per pixel * latency
2827 * where latency is platform & configuration dependent (we assume pessimal
2828 * values here).
2829 *
2830 * The SR calculation is:
2831 * watermark = (trunc(latency/line time)+1) * surface width *
2832 * bytes per pixel
2833 * where
2834 * line time = htotal / dotclock
2835 * surface width = hdisplay for normal plane and 64 for cursor
2836 * and latency is assumed to be high, as above.
2837 *
2838 * The final value programmed to the register should always be rounded up,
2839 * and include an extra 2 entries to account for clock crossings.
2840 *
2841 * We don't use the sprite, so we can ignore that. And on Crestline we have
2842 * to set the non-SR watermarks to 8.
2843 */
2844 void intel_update_watermarks(struct drm_device *dev)
2845 {
2846 struct drm_i915_private *dev_priv = dev->dev_private;
2847
2848 if (dev_priv->display.update_wm)
2849 dev_priv->display.update_wm(dev);
2850 }
2851
2852 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2853 uint32_t sprite_width, int pixel_size,
2854 bool enable, bool scaled)
2855 {
2856 struct drm_i915_private *dev_priv = dev->dev_private;
2857
2858 if (dev_priv->display.update_sprite_wm)
2859 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2860 pixel_size, enable, scaled);
2861 }
2862
2863 static struct drm_i915_gem_object *
2864 intel_alloc_context_page(struct drm_device *dev)
2865 {
2866 struct drm_i915_gem_object *ctx;
2867 int ret;
2868
2869 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2870
2871 ctx = i915_gem_alloc_object(dev, 4096);
2872 if (!ctx) {
2873 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2874 return NULL;
2875 }
2876
2877 ret = i915_gem_object_pin(ctx, 4096, true, false);
2878 if (ret) {
2879 DRM_ERROR("failed to pin power context: %d\n", ret);
2880 goto err_unref;
2881 }
2882
2883 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2884 if (ret) {
2885 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2886 goto err_unpin;
2887 }
2888
2889 return ctx;
2890
2891 err_unpin:
2892 i915_gem_object_unpin(ctx);
2893 err_unref:
2894 drm_gem_object_unreference(&ctx->base);
2895 return NULL;
2896 }
2897
2898 /**
2899 * Lock protecting IPS related data structures
2900 */
2901 DEFINE_SPINLOCK(mchdev_lock);
2902
2903 /* Global for IPS driver to get at the current i915 device. Protected by
2904 * mchdev_lock. */
2905 static struct drm_i915_private *i915_mch_dev;
2906
2907 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2908 {
2909 struct drm_i915_private *dev_priv = dev->dev_private;
2910 u16 rgvswctl;
2911
2912 assert_spin_locked(&mchdev_lock);
2913
2914 rgvswctl = I915_READ16(MEMSWCTL);
2915 if (rgvswctl & MEMCTL_CMD_STS) {
2916 DRM_DEBUG("gpu busy, RCS change rejected\n");
2917 return false; /* still busy with another command */
2918 }
2919
2920 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2921 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2922 I915_WRITE16(MEMSWCTL, rgvswctl);
2923 POSTING_READ16(MEMSWCTL);
2924
2925 rgvswctl |= MEMCTL_CMD_STS;
2926 I915_WRITE16(MEMSWCTL, rgvswctl);
2927
2928 return true;
2929 }
2930
2931 static void ironlake_enable_drps(struct drm_device *dev)
2932 {
2933 struct drm_i915_private *dev_priv = dev->dev_private;
2934 u32 rgvmodectl = I915_READ(MEMMODECTL);
2935 u8 fmax, fmin, fstart, vstart;
2936
2937 spin_lock_irq(&mchdev_lock);
2938
2939 /* Enable temp reporting */
2940 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2941 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2942
2943 /* 100ms RC evaluation intervals */
2944 I915_WRITE(RCUPEI, 100000);
2945 I915_WRITE(RCDNEI, 100000);
2946
2947 /* Set max/min thresholds to 90ms and 80ms respectively */
2948 I915_WRITE(RCBMAXAVG, 90000);
2949 I915_WRITE(RCBMINAVG, 80000);
2950
2951 I915_WRITE(MEMIHYST, 1);
2952
2953 /* Set up min, max, and cur for interrupt handling */
2954 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2955 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2956 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2957 MEMMODE_FSTART_SHIFT;
2958
2959 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2960 PXVFREQ_PX_SHIFT;
2961
2962 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2963 dev_priv->ips.fstart = fstart;
2964
2965 dev_priv->ips.max_delay = fstart;
2966 dev_priv->ips.min_delay = fmin;
2967 dev_priv->ips.cur_delay = fstart;
2968
2969 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2970 fmax, fmin, fstart);
2971
2972 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2973
2974 /*
2975 * Interrupts will be enabled in ironlake_irq_postinstall
2976 */
2977
2978 I915_WRITE(VIDSTART, vstart);
2979 POSTING_READ(VIDSTART);
2980
2981 rgvmodectl |= MEMMODE_SWMODE_EN;
2982 I915_WRITE(MEMMODECTL, rgvmodectl);
2983
2984 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2985 DRM_ERROR("stuck trying to change perf mode\n");
2986 mdelay(1);
2987
2988 ironlake_set_drps(dev, fstart);
2989
2990 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2991 I915_READ(0x112e0);
2992 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2993 dev_priv->ips.last_count2 = I915_READ(0x112f4);
2994 getrawmonotonic(&dev_priv->ips.last_time2);
2995
2996 spin_unlock_irq(&mchdev_lock);
2997 }
2998
2999 static void ironlake_disable_drps(struct drm_device *dev)
3000 {
3001 struct drm_i915_private *dev_priv = dev->dev_private;
3002 u16 rgvswctl;
3003
3004 spin_lock_irq(&mchdev_lock);
3005
3006 rgvswctl = I915_READ16(MEMSWCTL);
3007
3008 /* Ack interrupts, disable EFC interrupt */
3009 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3010 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3011 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3012 I915_WRITE(DEIIR, DE_PCU_EVENT);
3013 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3014
3015 /* Go back to the starting frequency */
3016 ironlake_set_drps(dev, dev_priv->ips.fstart);
3017 mdelay(1);
3018 rgvswctl |= MEMCTL_CMD_STS;
3019 I915_WRITE(MEMSWCTL, rgvswctl);
3020 mdelay(1);
3021
3022 spin_unlock_irq(&mchdev_lock);
3023 }
3024
3025 /* There's a funny hw issue where the hw returns all 0 when reading from
3026 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3027 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3028 * all limits and the gpu stuck at whatever frequency it is at atm).
3029 */
3030 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
3031 {
3032 u32 limits;
3033
3034 limits = 0;
3035
3036 if (*val >= dev_priv->rps.max_delay)
3037 *val = dev_priv->rps.max_delay;
3038 limits |= dev_priv->rps.max_delay << 24;
3039
3040 /* Only set the down limit when we've reached the lowest level to avoid
3041 * getting more interrupts, otherwise leave this clear. This prevents a
3042 * race in the hw when coming out of rc6: There's a tiny window where
3043 * the hw runs at the minimal clock before selecting the desired
3044 * frequency, if the down threshold expires in that window we will not
3045 * receive a down interrupt. */
3046 if (*val <= dev_priv->rps.min_delay) {
3047 *val = dev_priv->rps.min_delay;
3048 limits |= dev_priv->rps.min_delay << 16;
3049 }
3050
3051 return limits;
3052 }
3053
3054 void gen6_set_rps(struct drm_device *dev, u8 val)
3055 {
3056 struct drm_i915_private *dev_priv = dev->dev_private;
3057 u32 limits = gen6_rps_limits(dev_priv, &val);
3058
3059 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3060 WARN_ON(val > dev_priv->rps.max_delay);
3061 WARN_ON(val < dev_priv->rps.min_delay);
3062
3063 if (val == dev_priv->rps.cur_delay)
3064 return;
3065
3066 if (IS_HASWELL(dev))
3067 I915_WRITE(GEN6_RPNSWREQ,
3068 HSW_FREQUENCY(val));
3069 else
3070 I915_WRITE(GEN6_RPNSWREQ,
3071 GEN6_FREQUENCY(val) |
3072 GEN6_OFFSET(0) |
3073 GEN6_AGGRESSIVE_TURBO);
3074
3075 /* Make sure we continue to get interrupts
3076 * until we hit the minimum or maximum frequencies.
3077 */
3078 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3079
3080 POSTING_READ(GEN6_RPNSWREQ);
3081
3082 dev_priv->rps.cur_delay = val;
3083
3084 trace_intel_gpu_freq_change(val * 50);
3085 }
3086
3087 /*
3088 * Wait until the previous freq change has completed,
3089 * or the timeout elapsed, and then update our notion
3090 * of the current GPU frequency.
3091 */
3092 static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
3093 {
3094 u32 pval;
3095
3096 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3097
3098 if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
3099 DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
3100
3101 pval >>= 8;
3102
3103 if (pval != dev_priv->rps.cur_delay)
3104 DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
3105 vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
3106 dev_priv->rps.cur_delay,
3107 vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
3108
3109 dev_priv->rps.cur_delay = pval;
3110 }
3111
3112 void valleyview_set_rps(struct drm_device *dev, u8 val)
3113 {
3114 struct drm_i915_private *dev_priv = dev->dev_private;
3115
3116 gen6_rps_limits(dev_priv, &val);
3117
3118 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3119 WARN_ON(val > dev_priv->rps.max_delay);
3120 WARN_ON(val < dev_priv->rps.min_delay);
3121
3122 vlv_update_rps_cur_delay(dev_priv);
3123
3124 DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3125 vlv_gpu_freq(dev_priv->mem_freq,
3126 dev_priv->rps.cur_delay),
3127 dev_priv->rps.cur_delay,
3128 vlv_gpu_freq(dev_priv->mem_freq, val), val);
3129
3130 if (val == dev_priv->rps.cur_delay)
3131 return;
3132
3133 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3134
3135 dev_priv->rps.cur_delay = val;
3136
3137 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
3138 }
3139
3140 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3141 {
3142 struct drm_i915_private *dev_priv = dev->dev_private;
3143
3144 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3145 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3146 /* Complete PM interrupt masking here doesn't race with the rps work
3147 * item again unmasking PM interrupts because that is using a different
3148 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3149 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3150
3151 spin_lock_irq(&dev_priv->irq_lock);
3152 dev_priv->rps.pm_iir = 0;
3153 spin_unlock_irq(&dev_priv->irq_lock);
3154
3155 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3156 }
3157
3158 static void gen6_disable_rps(struct drm_device *dev)
3159 {
3160 struct drm_i915_private *dev_priv = dev->dev_private;
3161
3162 I915_WRITE(GEN6_RC_CONTROL, 0);
3163 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3164
3165 gen6_disable_rps_interrupts(dev);
3166 }
3167
3168 static void valleyview_disable_rps(struct drm_device *dev)
3169 {
3170 struct drm_i915_private *dev_priv = dev->dev_private;
3171
3172 I915_WRITE(GEN6_RC_CONTROL, 0);
3173
3174 gen6_disable_rps_interrupts(dev);
3175
3176 if (dev_priv->vlv_pctx) {
3177 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3178 dev_priv->vlv_pctx = NULL;
3179 }
3180 }
3181
3182 int intel_enable_rc6(const struct drm_device *dev)
3183 {
3184 /* No RC6 before Ironlake */
3185 if (INTEL_INFO(dev)->gen < 5)
3186 return 0;
3187
3188 /* Respect the kernel parameter if it is set */
3189 if (i915_enable_rc6 >= 0)
3190 return i915_enable_rc6;
3191
3192 /* Disable RC6 on Ironlake */
3193 if (INTEL_INFO(dev)->gen == 5)
3194 return 0;
3195
3196 if (IS_HASWELL(dev)) {
3197 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3198 return INTEL_RC6_ENABLE;
3199 }
3200
3201 /* snb/ivb have more than one rc6 state. */
3202 if (INTEL_INFO(dev)->gen == 6) {
3203 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3204 return INTEL_RC6_ENABLE;
3205 }
3206
3207 DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
3208 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3209 }
3210
3211 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3212 {
3213 struct drm_i915_private *dev_priv = dev->dev_private;
3214
3215 spin_lock_irq(&dev_priv->irq_lock);
3216 WARN_ON(dev_priv->rps.pm_iir);
3217 I915_WRITE(GEN6_PMIMR, I915_READ(GEN6_PMIMR) & ~GEN6_PM_RPS_EVENTS);
3218 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3219 spin_unlock_irq(&dev_priv->irq_lock);
3220 /* unmask all PM interrupts */
3221 I915_WRITE(GEN6_PMINTRMSK, 0);
3222 }
3223
3224 static void gen6_enable_rps(struct drm_device *dev)
3225 {
3226 struct drm_i915_private *dev_priv = dev->dev_private;
3227 struct intel_ring_buffer *ring;
3228 u32 rp_state_cap;
3229 u32 gt_perf_status;
3230 u32 rc6vids, pcu_mbox, rc6_mask = 0;
3231 u32 gtfifodbg;
3232 int rc6_mode;
3233 int i, ret;
3234
3235 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3236
3237 /* Here begins a magic sequence of register writes to enable
3238 * auto-downclocking.
3239 *
3240 * Perhaps there might be some value in exposing these to
3241 * userspace...
3242 */
3243 I915_WRITE(GEN6_RC_STATE, 0);
3244
3245 /* Clear the DBG now so we don't confuse earlier errors */
3246 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3247 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3248 I915_WRITE(GTFIFODBG, gtfifodbg);
3249 }
3250
3251 gen6_gt_force_wake_get(dev_priv);
3252
3253 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3254 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3255
3256 /* In units of 50MHz */
3257 dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3258 dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
3259 dev_priv->rps.cur_delay = 0;
3260
3261 /* disable the counters and set deterministic thresholds */
3262 I915_WRITE(GEN6_RC_CONTROL, 0);
3263
3264 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3265 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3266 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3267 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3268 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3269
3270 for_each_ring(ring, dev_priv, i)
3271 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3272
3273 I915_WRITE(GEN6_RC_SLEEP, 0);
3274 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3275 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3276 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3277 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3278
3279 /* Check if we are enabling RC6 */
3280 rc6_mode = intel_enable_rc6(dev_priv->dev);
3281 if (rc6_mode & INTEL_RC6_ENABLE)
3282 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3283
3284 /* We don't use those on Haswell */
3285 if (!IS_HASWELL(dev)) {
3286 if (rc6_mode & INTEL_RC6p_ENABLE)
3287 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3288
3289 if (rc6_mode & INTEL_RC6pp_ENABLE)
3290 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3291 }
3292
3293 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3294 (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3295 (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3296 (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3297
3298 I915_WRITE(GEN6_RC_CONTROL,
3299 rc6_mask |
3300 GEN6_RC_CTL_EI_MODE(1) |
3301 GEN6_RC_CTL_HW_ENABLE);
3302
3303 if (IS_HASWELL(dev)) {
3304 I915_WRITE(GEN6_RPNSWREQ,
3305 HSW_FREQUENCY(10));
3306 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3307 HSW_FREQUENCY(12));
3308 } else {
3309 I915_WRITE(GEN6_RPNSWREQ,
3310 GEN6_FREQUENCY(10) |
3311 GEN6_OFFSET(0) |
3312 GEN6_AGGRESSIVE_TURBO);
3313 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3314 GEN6_FREQUENCY(12));
3315 }
3316
3317 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
3318 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3319 dev_priv->rps.max_delay << 24 |
3320 dev_priv->rps.min_delay << 16);
3321
3322 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3323 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3324 I915_WRITE(GEN6_RP_UP_EI, 66000);
3325 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3326
3327 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3328 I915_WRITE(GEN6_RP_CONTROL,
3329 GEN6_RP_MEDIA_TURBO |
3330 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3331 GEN6_RP_MEDIA_IS_GFX |
3332 GEN6_RP_ENABLE |
3333 GEN6_RP_UP_BUSY_AVG |
3334 (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
3335
3336 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3337 if (!ret) {
3338 pcu_mbox = 0;
3339 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3340 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3341 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3342 (dev_priv->rps.max_delay & 0xff) * 50,
3343 (pcu_mbox & 0xff) * 50);
3344 dev_priv->rps.hw_max = pcu_mbox & 0xff;
3345 }
3346 } else {
3347 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3348 }
3349
3350 gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
3351
3352 gen6_enable_rps_interrupts(dev);
3353
3354 rc6vids = 0;
3355 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3356 if (IS_GEN6(dev) && ret) {
3357 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3358 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3359 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3360 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3361 rc6vids &= 0xffff00;
3362 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3363 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3364 if (ret)
3365 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3366 }
3367
3368 gen6_gt_force_wake_put(dev_priv);
3369 }
3370
3371 static void gen6_update_ring_freq(struct drm_device *dev)
3372 {
3373 struct drm_i915_private *dev_priv = dev->dev_private;
3374 int min_freq = 15;
3375 unsigned int gpu_freq;
3376 unsigned int max_ia_freq, min_ring_freq;
3377 int scaling_factor = 180;
3378
3379 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3380
3381 max_ia_freq = cpufreq_quick_get_max(0);
3382 /*
3383 * Default to measured freq if none found, PCU will ensure we don't go
3384 * over
3385 */
3386 if (!max_ia_freq)
3387 max_ia_freq = tsc_khz;
3388
3389 /* Convert from kHz to MHz */
3390 max_ia_freq /= 1000;
3391
3392 min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
3393 /* convert DDR frequency from units of 133.3MHz to bandwidth */
3394 min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
3395
3396 /*
3397 * For each potential GPU frequency, load a ring frequency we'd like
3398 * to use for memory access. We do this by specifying the IA frequency
3399 * the PCU should use as a reference to determine the ring frequency.
3400 */
3401 for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3402 gpu_freq--) {
3403 int diff = dev_priv->rps.max_delay - gpu_freq;
3404 unsigned int ia_freq = 0, ring_freq = 0;
3405
3406 if (IS_HASWELL(dev)) {
3407 ring_freq = (gpu_freq * 5 + 3) / 4;
3408 ring_freq = max(min_ring_freq, ring_freq);
3409 /* leave ia_freq as the default, chosen by cpufreq */
3410 } else {
3411 /* On older processors, there is no separate ring
3412 * clock domain, so in order to boost the bandwidth
3413 * of the ring, we need to upclock the CPU (ia_freq).
3414 *
3415 * For GPU frequencies less than 750MHz,
3416 * just use the lowest ring freq.
3417 */
3418 if (gpu_freq < min_freq)
3419 ia_freq = 800;
3420 else
3421 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3422 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3423 }
3424
3425 sandybridge_pcode_write(dev_priv,
3426 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3427 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3428 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3429 gpu_freq);
3430 }
3431 }
3432
3433 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3434 {
3435 u32 val, rp0;
3436
3437 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3438
3439 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3440 /* Clamp to max */
3441 rp0 = min_t(u32, rp0, 0xea);
3442
3443 return rp0;
3444 }
3445
3446 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3447 {
3448 u32 val, rpe;
3449
3450 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3451 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3452 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3453 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3454
3455 return rpe;
3456 }
3457
3458 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3459 {
3460 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3461 }
3462
3463 static void vlv_rps_timer_work(struct work_struct *work)
3464 {
3465 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3466 rps.vlv_work.work);
3467
3468 /*
3469 * Timer fired, we must be idle. Drop to min voltage state.
3470 * Note: we use RPe here since it should match the
3471 * Vmin we were shooting for. That should give us better
3472 * perf when we come back out of RC6 than if we used the
3473 * min freq available.
3474 */
3475 mutex_lock(&dev_priv->rps.hw_lock);
3476 if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
3477 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3478 mutex_unlock(&dev_priv->rps.hw_lock);
3479 }
3480
3481 static void valleyview_setup_pctx(struct drm_device *dev)
3482 {
3483 struct drm_i915_private *dev_priv = dev->dev_private;
3484 struct drm_i915_gem_object *pctx;
3485 unsigned long pctx_paddr;
3486 u32 pcbr;
3487 int pctx_size = 24*1024;
3488
3489 pcbr = I915_READ(VLV_PCBR);
3490 if (pcbr) {
3491 /* BIOS set it up already, grab the pre-alloc'd space */
3492 int pcbr_offset;
3493
3494 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3495 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3496 pcbr_offset,
3497 I915_GTT_OFFSET_NONE,
3498 pctx_size);
3499 goto out;
3500 }
3501
3502 /*
3503 * From the Gunit register HAS:
3504 * The Gfx driver is expected to program this register and ensure
3505 * proper allocation within Gfx stolen memory. For example, this
3506 * register should be programmed such than the PCBR range does not
3507 * overlap with other ranges, such as the frame buffer, protected
3508 * memory, or any other relevant ranges.
3509 */
3510 pctx = i915_gem_object_create_stolen(dev, pctx_size);
3511 if (!pctx) {
3512 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3513 return;
3514 }
3515
3516 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3517 I915_WRITE(VLV_PCBR, pctx_paddr);
3518
3519 out:
3520 dev_priv->vlv_pctx = pctx;
3521 }
3522
3523 static void valleyview_enable_rps(struct drm_device *dev)
3524 {
3525 struct drm_i915_private *dev_priv = dev->dev_private;
3526 struct intel_ring_buffer *ring;
3527 u32 gtfifodbg, val;
3528 int i;
3529
3530 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3531
3532 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3533 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3534 I915_WRITE(GTFIFODBG, gtfifodbg);
3535 }
3536
3537 valleyview_setup_pctx(dev);
3538
3539 gen6_gt_force_wake_get(dev_priv);
3540
3541 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3542 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3543 I915_WRITE(GEN6_RP_UP_EI, 66000);
3544 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3545
3546 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3547
3548 I915_WRITE(GEN6_RP_CONTROL,
3549 GEN6_RP_MEDIA_TURBO |
3550 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3551 GEN6_RP_MEDIA_IS_GFX |
3552 GEN6_RP_ENABLE |
3553 GEN6_RP_UP_BUSY_AVG |
3554 GEN6_RP_DOWN_IDLE_CONT);
3555
3556 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3557 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3558 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3559
3560 for_each_ring(ring, dev_priv, i)
3561 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3562
3563 I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
3564
3565 /* allows RC6 residency counter to work */
3566 I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
3567 I915_WRITE(GEN6_RC_CONTROL,
3568 GEN7_RC_CTL_TO_MODE);
3569
3570 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3571 switch ((val >> 6) & 3) {
3572 case 0:
3573 case 1:
3574 dev_priv->mem_freq = 800;
3575 break;
3576 case 2:
3577 dev_priv->mem_freq = 1066;
3578 break;
3579 case 3:
3580 dev_priv->mem_freq = 1333;
3581 break;
3582 }
3583 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
3584
3585 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3586 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3587
3588 dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3589 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3590 vlv_gpu_freq(dev_priv->mem_freq,
3591 dev_priv->rps.cur_delay),
3592 dev_priv->rps.cur_delay);
3593
3594 dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
3595 dev_priv->rps.hw_max = dev_priv->rps.max_delay;
3596 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3597 vlv_gpu_freq(dev_priv->mem_freq,
3598 dev_priv->rps.max_delay),
3599 dev_priv->rps.max_delay);
3600
3601 dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
3602 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3603 vlv_gpu_freq(dev_priv->mem_freq,
3604 dev_priv->rps.rpe_delay),
3605 dev_priv->rps.rpe_delay);
3606
3607 dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
3608 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3609 vlv_gpu_freq(dev_priv->mem_freq,
3610 dev_priv->rps.min_delay),
3611 dev_priv->rps.min_delay);
3612
3613 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3614 vlv_gpu_freq(dev_priv->mem_freq,
3615 dev_priv->rps.rpe_delay),
3616 dev_priv->rps.rpe_delay);
3617
3618 INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);
3619
3620 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3621
3622 gen6_enable_rps_interrupts(dev);
3623
3624 gen6_gt_force_wake_put(dev_priv);
3625 }
3626
3627 void ironlake_teardown_rc6(struct drm_device *dev)
3628 {
3629 struct drm_i915_private *dev_priv = dev->dev_private;
3630
3631 if (dev_priv->ips.renderctx) {
3632 i915_gem_object_unpin(dev_priv->ips.renderctx);
3633 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3634 dev_priv->ips.renderctx = NULL;
3635 }
3636
3637 if (dev_priv->ips.pwrctx) {
3638 i915_gem_object_unpin(dev_priv->ips.pwrctx);
3639 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3640 dev_priv->ips.pwrctx = NULL;
3641 }
3642 }
3643
3644 static void ironlake_disable_rc6(struct drm_device *dev)
3645 {
3646 struct drm_i915_private *dev_priv = dev->dev_private;
3647
3648 if (I915_READ(PWRCTXA)) {
3649 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3650 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3651 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3652 50);
3653
3654 I915_WRITE(PWRCTXA, 0);
3655 POSTING_READ(PWRCTXA);
3656
3657 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3658 POSTING_READ(RSTDBYCTL);
3659 }
3660 }
3661
3662 static int ironlake_setup_rc6(struct drm_device *dev)
3663 {
3664 struct drm_i915_private *dev_priv = dev->dev_private;
3665
3666 if (dev_priv->ips.renderctx == NULL)
3667 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3668 if (!dev_priv->ips.renderctx)
3669 return -ENOMEM;
3670
3671 if (dev_priv->ips.pwrctx == NULL)
3672 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3673 if (!dev_priv->ips.pwrctx) {
3674 ironlake_teardown_rc6(dev);
3675 return -ENOMEM;
3676 }
3677
3678 return 0;
3679 }
3680
3681 static void ironlake_enable_rc6(struct drm_device *dev)
3682 {
3683 struct drm_i915_private *dev_priv = dev->dev_private;
3684 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3685 bool was_interruptible;
3686 int ret;
3687
3688 /* rc6 disabled by default due to repeated reports of hanging during
3689 * boot and resume.
3690 */
3691 if (!intel_enable_rc6(dev))
3692 return;
3693
3694 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3695
3696 ret = ironlake_setup_rc6(dev);
3697 if (ret)
3698 return;
3699
3700 was_interruptible = dev_priv->mm.interruptible;
3701 dev_priv->mm.interruptible = false;
3702
3703 /*
3704 * GPU can automatically power down the render unit if given a page
3705 * to save state.
3706 */
3707 ret = intel_ring_begin(ring, 6);
3708 if (ret) {
3709 ironlake_teardown_rc6(dev);
3710 dev_priv->mm.interruptible = was_interruptible;
3711 return;
3712 }
3713
3714 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3715 intel_ring_emit(ring, MI_SET_CONTEXT);
3716 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3717 MI_MM_SPACE_GTT |
3718 MI_SAVE_EXT_STATE_EN |
3719 MI_RESTORE_EXT_STATE_EN |
3720 MI_RESTORE_INHIBIT);
3721 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3722 intel_ring_emit(ring, MI_NOOP);
3723 intel_ring_emit(ring, MI_FLUSH);
3724 intel_ring_advance(ring);
3725
3726 /*
3727 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3728 * does an implicit flush, combined with MI_FLUSH above, it should be
3729 * safe to assume that renderctx is valid
3730 */
3731 ret = intel_ring_idle(ring);
3732 dev_priv->mm.interruptible = was_interruptible;
3733 if (ret) {
3734 DRM_ERROR("failed to enable ironlake power savings\n");
3735 ironlake_teardown_rc6(dev);
3736 return;
3737 }
3738
3739 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
3740 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3741 }
3742
3743 static unsigned long intel_pxfreq(u32 vidfreq)
3744 {
3745 unsigned long freq;
3746 int div = (vidfreq & 0x3f0000) >> 16;
3747 int post = (vidfreq & 0x3000) >> 12;
3748 int pre = (vidfreq & 0x7);
3749
3750 if (!pre)
3751 return 0;
3752
3753 freq = ((div * 133333) / ((1<<post) * pre));
3754
3755 return freq;
3756 }
3757
3758 static const struct cparams {
3759 u16 i;
3760 u16 t;
3761 u16 m;
3762 u16 c;
3763 } cparams[] = {
3764 { 1, 1333, 301, 28664 },
3765 { 1, 1066, 294, 24460 },
3766 { 1, 800, 294, 25192 },
3767 { 0, 1333, 276, 27605 },
3768 { 0, 1066, 276, 27605 },
3769 { 0, 800, 231, 23784 },
3770 };
3771
3772 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3773 {
3774 u64 total_count, diff, ret;
3775 u32 count1, count2, count3, m = 0, c = 0;
3776 unsigned long now = jiffies_to_msecs(jiffies), diff1;
3777 int i;
3778
3779 assert_spin_locked(&mchdev_lock);
3780
3781 diff1 = now - dev_priv->ips.last_time1;
3782
3783 /* Prevent division-by-zero if we are asking too fast.
3784 * Also, we don't get interesting results if we are polling
3785 * faster than once in 10ms, so just return the saved value
3786 * in such cases.
3787 */
3788 if (diff1 <= 10)
3789 return dev_priv->ips.chipset_power;
3790
3791 count1 = I915_READ(DMIEC);
3792 count2 = I915_READ(DDREC);
3793 count3 = I915_READ(CSIEC);
3794
3795 total_count = count1 + count2 + count3;
3796
3797 /* FIXME: handle per-counter overflow */
3798 if (total_count < dev_priv->ips.last_count1) {
3799 diff = ~0UL - dev_priv->ips.last_count1;
3800 diff += total_count;
3801 } else {
3802 diff = total_count - dev_priv->ips.last_count1;
3803 }
3804
3805 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3806 if (cparams[i].i == dev_priv->ips.c_m &&
3807 cparams[i].t == dev_priv->ips.r_t) {
3808 m = cparams[i].m;
3809 c = cparams[i].c;
3810 break;
3811 }
3812 }
3813
3814 diff = div_u64(diff, diff1);
3815 ret = ((m * diff) + c);
3816 ret = div_u64(ret, 10);
3817
3818 dev_priv->ips.last_count1 = total_count;
3819 dev_priv->ips.last_time1 = now;
3820
3821 dev_priv->ips.chipset_power = ret;
3822
3823 return ret;
3824 }
3825
3826 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3827 {
3828 unsigned long val;
3829
3830 if (dev_priv->info->gen != 5)
3831 return 0;
3832
3833 spin_lock_irq(&mchdev_lock);
3834
3835 val = __i915_chipset_val(dev_priv);
3836
3837 spin_unlock_irq(&mchdev_lock);
3838
3839 return val;
3840 }
3841
3842 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3843 {
3844 unsigned long m, x, b;
3845 u32 tsfs;
3846
3847 tsfs = I915_READ(TSFS);
3848
3849 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3850 x = I915_READ8(TR1);
3851
3852 b = tsfs & TSFS_INTR_MASK;
3853
3854 return ((m * x) / 127) - b;
3855 }
3856
3857 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3858 {
3859 static const struct v_table {
3860 u16 vd; /* in .1 mil */
3861 u16 vm; /* in .1 mil */
3862 } v_table[] = {
3863 { 0, 0, },
3864 { 375, 0, },
3865 { 500, 0, },
3866 { 625, 0, },
3867 { 750, 0, },
3868 { 875, 0, },
3869 { 1000, 0, },
3870 { 1125, 0, },
3871 { 4125, 3000, },
3872 { 4125, 3000, },
3873 { 4125, 3000, },
3874 { 4125, 3000, },
3875 { 4125, 3000, },
3876 { 4125, 3000, },
3877 { 4125, 3000, },
3878 { 4125, 3000, },
3879 { 4125, 3000, },
3880 { 4125, 3000, },
3881 { 4125, 3000, },
3882 { 4125, 3000, },
3883 { 4125, 3000, },
3884 { 4125, 3000, },
3885 { 4125, 3000, },
3886 { 4125, 3000, },
3887 { 4125, 3000, },
3888 { 4125, 3000, },
3889 { 4125, 3000, },
3890 { 4125, 3000, },
3891 { 4125, 3000, },
3892 { 4125, 3000, },
3893 { 4125, 3000, },
3894 { 4125, 3000, },
3895 { 4250, 3125, },
3896 { 4375, 3250, },
3897 { 4500, 3375, },
3898 { 4625, 3500, },
3899 { 4750, 3625, },
3900 { 4875, 3750, },
3901 { 5000, 3875, },
3902 { 5125, 4000, },
3903 { 5250, 4125, },
3904 { 5375, 4250, },
3905 { 5500, 4375, },
3906 { 5625, 4500, },
3907 { 5750, 4625, },
3908 { 5875, 4750, },
3909 { 6000, 4875, },
3910 { 6125, 5000, },
3911 { 6250, 5125, },
3912 { 6375, 5250, },
3913 { 6500, 5375, },
3914 { 6625, 5500, },
3915 { 6750, 5625, },
3916 { 6875, 5750, },
3917 { 7000, 5875, },
3918 { 7125, 6000, },
3919 { 7250, 6125, },
3920 { 7375, 6250, },
3921 { 7500, 6375, },
3922 { 7625, 6500, },
3923 { 7750, 6625, },
3924 { 7875, 6750, },
3925 { 8000, 6875, },
3926 { 8125, 7000, },
3927 { 8250, 7125, },
3928 { 8375, 7250, },
3929 { 8500, 7375, },
3930 { 8625, 7500, },
3931 { 8750, 7625, },
3932 { 8875, 7750, },
3933 { 9000, 7875, },
3934 { 9125, 8000, },
3935 { 9250, 8125, },
3936 { 9375, 8250, },
3937 { 9500, 8375, },
3938 { 9625, 8500, },
3939 { 9750, 8625, },
3940 { 9875, 8750, },
3941 { 10000, 8875, },
3942 { 10125, 9000, },
3943 { 10250, 9125, },
3944 { 10375, 9250, },
3945 { 10500, 9375, },
3946 { 10625, 9500, },
3947 { 10750, 9625, },
3948 { 10875, 9750, },
3949 { 11000, 9875, },
3950 { 11125, 10000, },
3951 { 11250, 10125, },
3952 { 11375, 10250, },
3953 { 11500, 10375, },
3954 { 11625, 10500, },
3955 { 11750, 10625, },
3956 { 11875, 10750, },
3957 { 12000, 10875, },
3958 { 12125, 11000, },
3959 { 12250, 11125, },
3960 { 12375, 11250, },
3961 { 12500, 11375, },
3962 { 12625, 11500, },
3963 { 12750, 11625, },
3964 { 12875, 11750, },
3965 { 13000, 11875, },
3966 { 13125, 12000, },
3967 { 13250, 12125, },
3968 { 13375, 12250, },
3969 { 13500, 12375, },
3970 { 13625, 12500, },
3971 { 13750, 12625, },
3972 { 13875, 12750, },
3973 { 14000, 12875, },
3974 { 14125, 13000, },
3975 { 14250, 13125, },
3976 { 14375, 13250, },
3977 { 14500, 13375, },
3978 { 14625, 13500, },
3979 { 14750, 13625, },
3980 { 14875, 13750, },
3981 { 15000, 13875, },
3982 { 15125, 14000, },
3983 { 15250, 14125, },
3984 { 15375, 14250, },
3985 { 15500, 14375, },
3986 { 15625, 14500, },
3987 { 15750, 14625, },
3988 { 15875, 14750, },
3989 { 16000, 14875, },
3990 { 16125, 15000, },
3991 };
3992 if (dev_priv->info->is_mobile)
3993 return v_table[pxvid].vm;
3994 else
3995 return v_table[pxvid].vd;
3996 }
3997
3998 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3999 {
4000 struct timespec now, diff1;
4001 u64 diff;
4002 unsigned long diffms;
4003 u32 count;
4004
4005 assert_spin_locked(&mchdev_lock);
4006
4007 getrawmonotonic(&now);
4008 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4009
4010 /* Don't divide by 0 */
4011 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4012 if (!diffms)
4013 return;
4014
4015 count = I915_READ(GFXEC);
4016
4017 if (count < dev_priv->ips.last_count2) {
4018 diff = ~0UL - dev_priv->ips.last_count2;
4019 diff += count;
4020 } else {
4021 diff = count - dev_priv->ips.last_count2;
4022 }
4023
4024 dev_priv->ips.last_count2 = count;
4025 dev_priv->ips.last_time2 = now;
4026
4027 /* More magic constants... */
4028 diff = diff * 1181;
4029 diff = div_u64(diff, diffms * 10);
4030 dev_priv->ips.gfx_power = diff;
4031 }
4032
4033 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4034 {
4035 if (dev_priv->info->gen != 5)
4036 return;
4037
4038 spin_lock_irq(&mchdev_lock);
4039
4040 __i915_update_gfx_val(dev_priv);
4041
4042 spin_unlock_irq(&mchdev_lock);
4043 }
4044
4045 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4046 {
4047 unsigned long t, corr, state1, corr2, state2;
4048 u32 pxvid, ext_v;
4049
4050 assert_spin_locked(&mchdev_lock);
4051
4052 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4053 pxvid = (pxvid >> 24) & 0x7f;
4054 ext_v = pvid_to_extvid(dev_priv, pxvid);
4055
4056 state1 = ext_v;
4057
4058 t = i915_mch_val(dev_priv);
4059
4060 /* Revel in the empirically derived constants */
4061
4062 /* Correction factor in 1/100000 units */
4063 if (t > 80)
4064 corr = ((t * 2349) + 135940);
4065 else if (t >= 50)
4066 corr = ((t * 964) + 29317);
4067 else /* < 50 */
4068 corr = ((t * 301) + 1004);
4069
4070 corr = corr * ((150142 * state1) / 10000 - 78642);
4071 corr /= 100000;
4072 corr2 = (corr * dev_priv->ips.corr);
4073
4074 state2 = (corr2 * state1) / 10000;
4075 state2 /= 100; /* convert to mW */
4076
4077 __i915_update_gfx_val(dev_priv);
4078
4079 return dev_priv->ips.gfx_power + state2;
4080 }
4081
4082 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4083 {
4084 unsigned long val;
4085
4086 if (dev_priv->info->gen != 5)
4087 return 0;
4088
4089 spin_lock_irq(&mchdev_lock);
4090
4091 val = __i915_gfx_val(dev_priv);
4092
4093 spin_unlock_irq(&mchdev_lock);
4094
4095 return val;
4096 }
4097
4098 /**
4099 * i915_read_mch_val - return value for IPS use
4100 *
4101 * Calculate and return a value for the IPS driver to use when deciding whether
4102 * we have thermal and power headroom to increase CPU or GPU power budget.
4103 */
4104 unsigned long i915_read_mch_val(void)
4105 {
4106 struct drm_i915_private *dev_priv;
4107 unsigned long chipset_val, graphics_val, ret = 0;
4108
4109 spin_lock_irq(&mchdev_lock);
4110 if (!i915_mch_dev)
4111 goto out_unlock;
4112 dev_priv = i915_mch_dev;
4113
4114 chipset_val = __i915_chipset_val(dev_priv);
4115 graphics_val = __i915_gfx_val(dev_priv);
4116
4117 ret = chipset_val + graphics_val;
4118
4119 out_unlock:
4120 spin_unlock_irq(&mchdev_lock);
4121
4122 return ret;
4123 }
4124 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4125
4126 /**
4127 * i915_gpu_raise - raise GPU frequency limit
4128 *
4129 * Raise the limit; IPS indicates we have thermal headroom.
4130 */
4131 bool i915_gpu_raise(void)
4132 {
4133 struct drm_i915_private *dev_priv;
4134 bool ret = true;
4135
4136 spin_lock_irq(&mchdev_lock);
4137 if (!i915_mch_dev) {
4138 ret = false;
4139 goto out_unlock;
4140 }
4141 dev_priv = i915_mch_dev;
4142
4143 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4144 dev_priv->ips.max_delay--;
4145
4146 out_unlock:
4147 spin_unlock_irq(&mchdev_lock);
4148
4149 return ret;
4150 }
4151 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4152
4153 /**
4154 * i915_gpu_lower - lower GPU frequency limit
4155 *
4156 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4157 * frequency maximum.
4158 */
4159 bool i915_gpu_lower(void)
4160 {
4161 struct drm_i915_private *dev_priv;
4162 bool ret = true;
4163
4164 spin_lock_irq(&mchdev_lock);
4165 if (!i915_mch_dev) {
4166 ret = false;
4167 goto out_unlock;
4168 }
4169 dev_priv = i915_mch_dev;
4170
4171 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4172 dev_priv->ips.max_delay++;
4173
4174 out_unlock:
4175 spin_unlock_irq(&mchdev_lock);
4176
4177 return ret;
4178 }
4179 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4180
4181 /**
4182 * i915_gpu_busy - indicate GPU business to IPS
4183 *
4184 * Tell the IPS driver whether or not the GPU is busy.
4185 */
4186 bool i915_gpu_busy(void)
4187 {
4188 struct drm_i915_private *dev_priv;
4189 struct intel_ring_buffer *ring;
4190 bool ret = false;
4191 int i;
4192
4193 spin_lock_irq(&mchdev_lock);
4194 if (!i915_mch_dev)
4195 goto out_unlock;
4196 dev_priv = i915_mch_dev;
4197
4198 for_each_ring(ring, dev_priv, i)
4199 ret |= !list_empty(&ring->request_list);
4200
4201 out_unlock:
4202 spin_unlock_irq(&mchdev_lock);
4203
4204 return ret;
4205 }
4206 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4207
4208 /**
4209 * i915_gpu_turbo_disable - disable graphics turbo
4210 *
4211 * Disable graphics turbo by resetting the max frequency and setting the
4212 * current frequency to the default.
4213 */
4214 bool i915_gpu_turbo_disable(void)
4215 {
4216 struct drm_i915_private *dev_priv;
4217 bool ret = true;
4218
4219 spin_lock_irq(&mchdev_lock);
4220 if (!i915_mch_dev) {
4221 ret = false;
4222 goto out_unlock;
4223 }
4224 dev_priv = i915_mch_dev;
4225
4226 dev_priv->ips.max_delay = dev_priv->ips.fstart;
4227
4228 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4229 ret = false;
4230
4231 out_unlock:
4232 spin_unlock_irq(&mchdev_lock);
4233
4234 return ret;
4235 }
4236 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4237
4238 /**
4239 * Tells the intel_ips driver that the i915 driver is now loaded, if
4240 * IPS got loaded first.
4241 *
4242 * This awkward dance is so that neither module has to depend on the
4243 * other in order for IPS to do the appropriate communication of
4244 * GPU turbo limits to i915.
4245 */
4246 static void
4247 ips_ping_for_i915_load(void)
4248 {
4249 void (*link)(void);
4250
4251 link = symbol_get(ips_link_to_i915_driver);
4252 if (link) {
4253 link();
4254 symbol_put(ips_link_to_i915_driver);
4255 }
4256 }
4257
4258 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4259 {
4260 /* We only register the i915 ips part with intel-ips once everything is
4261 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4262 spin_lock_irq(&mchdev_lock);
4263 i915_mch_dev = dev_priv;
4264 spin_unlock_irq(&mchdev_lock);
4265
4266 ips_ping_for_i915_load();
4267 }
4268
4269 void intel_gpu_ips_teardown(void)
4270 {
4271 spin_lock_irq(&mchdev_lock);
4272 i915_mch_dev = NULL;
4273 spin_unlock_irq(&mchdev_lock);
4274 }
4275 static void intel_init_emon(struct drm_device *dev)
4276 {
4277 struct drm_i915_private *dev_priv = dev->dev_private;
4278 u32 lcfuse;
4279 u8 pxw[16];
4280 int i;
4281
4282 /* Disable to program */
4283 I915_WRITE(ECR, 0);
4284 POSTING_READ(ECR);
4285
4286 /* Program energy weights for various events */
4287 I915_WRITE(SDEW, 0x15040d00);
4288 I915_WRITE(CSIEW0, 0x007f0000);
4289 I915_WRITE(CSIEW1, 0x1e220004);
4290 I915_WRITE(CSIEW2, 0x04000004);
4291
4292 for (i = 0; i < 5; i++)
4293 I915_WRITE(PEW + (i * 4), 0);
4294 for (i = 0; i < 3; i++)
4295 I915_WRITE(DEW + (i * 4), 0);
4296
4297 /* Program P-state weights to account for frequency power adjustment */
4298 for (i = 0; i < 16; i++) {
4299 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4300 unsigned long freq = intel_pxfreq(pxvidfreq);
4301 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4302 PXVFREQ_PX_SHIFT;
4303 unsigned long val;
4304
4305 val = vid * vid;
4306 val *= (freq / 1000);
4307 val *= 255;
4308 val /= (127*127*900);
4309 if (val > 0xff)
4310 DRM_ERROR("bad pxval: %ld\n", val);
4311 pxw[i] = val;
4312 }
4313 /* Render standby states get 0 weight */
4314 pxw[14] = 0;
4315 pxw[15] = 0;
4316
4317 for (i = 0; i < 4; i++) {
4318 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4319 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4320 I915_WRITE(PXW + (i * 4), val);
4321 }
4322
4323 /* Adjust magic regs to magic values (more experimental results) */
4324 I915_WRITE(OGW0, 0);
4325 I915_WRITE(OGW1, 0);
4326 I915_WRITE(EG0, 0x00007f00);
4327 I915_WRITE(EG1, 0x0000000e);
4328 I915_WRITE(EG2, 0x000e0000);
4329 I915_WRITE(EG3, 0x68000300);
4330 I915_WRITE(EG4, 0x42000000);
4331 I915_WRITE(EG5, 0x00140031);
4332 I915_WRITE(EG6, 0);
4333 I915_WRITE(EG7, 0);
4334
4335 for (i = 0; i < 8; i++)
4336 I915_WRITE(PXWL + (i * 4), 0);
4337
4338 /* Enable PMON + select events */
4339 I915_WRITE(ECR, 0x80000019);
4340
4341 lcfuse = I915_READ(LCFUSE02);
4342
4343 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4344 }
4345
4346 void intel_disable_gt_powersave(struct drm_device *dev)
4347 {
4348 struct drm_i915_private *dev_priv = dev->dev_private;
4349
4350 /* Interrupts should be disabled already to avoid re-arming. */
4351 WARN_ON(dev->irq_enabled);
4352
4353 if (IS_IRONLAKE_M(dev)) {
4354 ironlake_disable_drps(dev);
4355 ironlake_disable_rc6(dev);
4356 } else if (INTEL_INFO(dev)->gen >= 6) {
4357 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4358 cancel_work_sync(&dev_priv->rps.work);
4359 if (IS_VALLEYVIEW(dev))
4360 cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
4361 mutex_lock(&dev_priv->rps.hw_lock);
4362 if (IS_VALLEYVIEW(dev))
4363 valleyview_disable_rps(dev);
4364 else
4365 gen6_disable_rps(dev);
4366 mutex_unlock(&dev_priv->rps.hw_lock);
4367 }
4368 }
4369
4370 static void intel_gen6_powersave_work(struct work_struct *work)
4371 {
4372 struct drm_i915_private *dev_priv =
4373 container_of(work, struct drm_i915_private,
4374 rps.delayed_resume_work.work);
4375 struct drm_device *dev = dev_priv->dev;
4376
4377 mutex_lock(&dev_priv->rps.hw_lock);
4378
4379 if (IS_VALLEYVIEW(dev)) {
4380 valleyview_enable_rps(dev);
4381 } else {
4382 gen6_enable_rps(dev);
4383 gen6_update_ring_freq(dev);
4384 }
4385 mutex_unlock(&dev_priv->rps.hw_lock);
4386 }
4387
4388 void intel_enable_gt_powersave(struct drm_device *dev)
4389 {
4390 struct drm_i915_private *dev_priv = dev->dev_private;
4391
4392 if (IS_IRONLAKE_M(dev)) {
4393 ironlake_enable_drps(dev);
4394 ironlake_enable_rc6(dev);
4395 intel_init_emon(dev);
4396 } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4397 /*
4398 * PCU communication is slow and this doesn't need to be
4399 * done at any specific time, so do this out of our fast path
4400 * to make resume and init faster.
4401 */
4402 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4403 round_jiffies_up_relative(HZ));
4404 }
4405 }
4406
4407 static void ibx_init_clock_gating(struct drm_device *dev)
4408 {
4409 struct drm_i915_private *dev_priv = dev->dev_private;
4410
4411 /*
4412 * On Ibex Peak and Cougar Point, we need to disable clock
4413 * gating for the panel power sequencer or it will fail to
4414 * start up when no ports are active.
4415 */
4416 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4417 }
4418
4419 static void g4x_disable_trickle_feed(struct drm_device *dev)
4420 {
4421 struct drm_i915_private *dev_priv = dev->dev_private;
4422 int pipe;
4423
4424 for_each_pipe(pipe) {
4425 I915_WRITE(DSPCNTR(pipe),
4426 I915_READ(DSPCNTR(pipe)) |
4427 DISPPLANE_TRICKLE_FEED_DISABLE);
4428 intel_flush_display_plane(dev_priv, pipe);
4429 }
4430 }
4431
4432 static void ironlake_init_clock_gating(struct drm_device *dev)
4433 {
4434 struct drm_i915_private *dev_priv = dev->dev_private;
4435 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4436
4437 /*
4438 * Required for FBC
4439 * WaFbcDisableDpfcClockGating:ilk
4440 */
4441 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4442 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4443 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4444
4445 I915_WRITE(PCH_3DCGDIS0,
4446 MARIUNIT_CLOCK_GATE_DISABLE |
4447 SVSMUNIT_CLOCK_GATE_DISABLE);
4448 I915_WRITE(PCH_3DCGDIS1,
4449 VFMUNIT_CLOCK_GATE_DISABLE);
4450
4451 /*
4452 * According to the spec the following bits should be set in
4453 * order to enable memory self-refresh
4454 * The bit 22/21 of 0x42004
4455 * The bit 5 of 0x42020
4456 * The bit 15 of 0x45000
4457 */
4458 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4459 (I915_READ(ILK_DISPLAY_CHICKEN2) |
4460 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4461 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4462 I915_WRITE(DISP_ARB_CTL,
4463 (I915_READ(DISP_ARB_CTL) |
4464 DISP_FBC_WM_DIS));
4465 I915_WRITE(WM3_LP_ILK, 0);
4466 I915_WRITE(WM2_LP_ILK, 0);
4467 I915_WRITE(WM1_LP_ILK, 0);
4468
4469 /*
4470 * Based on the document from hardware guys the following bits
4471 * should be set unconditionally in order to enable FBC.
4472 * The bit 22 of 0x42000
4473 * The bit 22 of 0x42004
4474 * The bit 7,8,9 of 0x42020.
4475 */
4476 if (IS_IRONLAKE_M(dev)) {
4477 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4478 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4479 I915_READ(ILK_DISPLAY_CHICKEN1) |
4480 ILK_FBCQ_DIS);
4481 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4482 I915_READ(ILK_DISPLAY_CHICKEN2) |
4483 ILK_DPARB_GATE);
4484 }
4485
4486 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4487
4488 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4489 I915_READ(ILK_DISPLAY_CHICKEN2) |
4490 ILK_ELPIN_409_SELECT);
4491 I915_WRITE(_3D_CHICKEN2,
4492 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4493 _3D_CHICKEN2_WM_READ_PIPELINED);
4494
4495 /* WaDisableRenderCachePipelinedFlush:ilk */
4496 I915_WRITE(CACHE_MODE_0,
4497 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4498
4499 g4x_disable_trickle_feed(dev);
4500
4501 ibx_init_clock_gating(dev);
4502 }
4503
4504 static void cpt_init_clock_gating(struct drm_device *dev)
4505 {
4506 struct drm_i915_private *dev_priv = dev->dev_private;
4507 int pipe;
4508 uint32_t val;
4509
4510 /*
4511 * On Ibex Peak and Cougar Point, we need to disable clock
4512 * gating for the panel power sequencer or it will fail to
4513 * start up when no ports are active.
4514 */
4515 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4516 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4517 DPLS_EDP_PPS_FIX_DIS);
4518 /* The below fixes the weird display corruption, a few pixels shifted
4519 * downward, on (only) LVDS of some HP laptops with IVY.
4520 */
4521 for_each_pipe(pipe) {
4522 val = I915_READ(TRANS_CHICKEN2(pipe));
4523 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4524 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4525 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4526 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4527 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4528 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4529 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4530 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4531 }
4532 /* WADP0ClockGatingDisable */
4533 for_each_pipe(pipe) {
4534 I915_WRITE(TRANS_CHICKEN1(pipe),
4535 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4536 }
4537 }
4538
4539 static void gen6_check_mch_setup(struct drm_device *dev)
4540 {
4541 struct drm_i915_private *dev_priv = dev->dev_private;
4542 uint32_t tmp;
4543
4544 tmp = I915_READ(MCH_SSKPD);
4545 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4546 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4547 DRM_INFO("This can cause pipe underruns and display issues.\n");
4548 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4549 }
4550 }
4551
4552 static void gen6_init_clock_gating(struct drm_device *dev)
4553 {
4554 struct drm_i915_private *dev_priv = dev->dev_private;
4555 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4556
4557 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4558
4559 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4560 I915_READ(ILK_DISPLAY_CHICKEN2) |
4561 ILK_ELPIN_409_SELECT);
4562
4563 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4564 I915_WRITE(_3D_CHICKEN,
4565 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4566
4567 /* WaSetupGtModeTdRowDispatch:snb */
4568 if (IS_SNB_GT1(dev))
4569 I915_WRITE(GEN6_GT_MODE,
4570 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4571
4572 I915_WRITE(WM3_LP_ILK, 0);
4573 I915_WRITE(WM2_LP_ILK, 0);
4574 I915_WRITE(WM1_LP_ILK, 0);
4575
4576 I915_WRITE(CACHE_MODE_0,
4577 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4578
4579 I915_WRITE(GEN6_UCGCTL1,
4580 I915_READ(GEN6_UCGCTL1) |
4581 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4582 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4583
4584 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4585 * gating disable must be set. Failure to set it results in
4586 * flickering pixels due to Z write ordering failures after
4587 * some amount of runtime in the Mesa "fire" demo, and Unigine
4588 * Sanctuary and Tropics, and apparently anything else with
4589 * alpha test or pixel discard.
4590 *
4591 * According to the spec, bit 11 (RCCUNIT) must also be set,
4592 * but we didn't debug actual testcases to find it out.
4593 *
4594 * Also apply WaDisableVDSUnitClockGating:snb and
4595 * WaDisableRCPBUnitClockGating:snb.
4596 */
4597 I915_WRITE(GEN6_UCGCTL2,
4598 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4599 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4600 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4601
4602 /* Bspec says we need to always set all mask bits. */
4603 I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4604 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
4605
4606 /*
4607 * According to the spec the following bits should be
4608 * set in order to enable memory self-refresh and fbc:
4609 * The bit21 and bit22 of 0x42000
4610 * The bit21 and bit22 of 0x42004
4611 * The bit5 and bit7 of 0x42020
4612 * The bit14 of 0x70180
4613 * The bit14 of 0x71180
4614 *
4615 * WaFbcAsynchFlipDisableFbcQueue:snb
4616 */
4617 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4618 I915_READ(ILK_DISPLAY_CHICKEN1) |
4619 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4620 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4621 I915_READ(ILK_DISPLAY_CHICKEN2) |
4622 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4623 I915_WRITE(ILK_DSPCLK_GATE_D,
4624 I915_READ(ILK_DSPCLK_GATE_D) |
4625 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
4626 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4627
4628 /* WaMbcDriverBootEnable:snb */
4629 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4630 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4631
4632 g4x_disable_trickle_feed(dev);
4633
4634 /* The default value should be 0x200 according to docs, but the two
4635 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4636 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4637 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
4638
4639 cpt_init_clock_gating(dev);
4640
4641 gen6_check_mch_setup(dev);
4642 }
4643
4644 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4645 {
4646 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4647
4648 reg &= ~GEN7_FF_SCHED_MASK;
4649 reg |= GEN7_FF_TS_SCHED_HW;
4650 reg |= GEN7_FF_VS_SCHED_HW;
4651 reg |= GEN7_FF_DS_SCHED_HW;
4652
4653 if (IS_HASWELL(dev_priv->dev))
4654 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
4655
4656 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4657 }
4658
4659 static void lpt_init_clock_gating(struct drm_device *dev)
4660 {
4661 struct drm_i915_private *dev_priv = dev->dev_private;
4662
4663 /*
4664 * TODO: this bit should only be enabled when really needed, then
4665 * disabled when not needed anymore in order to save power.
4666 */
4667 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4668 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4669 I915_READ(SOUTH_DSPCLK_GATE_D) |
4670 PCH_LP_PARTITION_LEVEL_DISABLE);
4671
4672 /* WADPOClockGatingDisable:hsw */
4673 I915_WRITE(_TRANSA_CHICKEN1,
4674 I915_READ(_TRANSA_CHICKEN1) |
4675 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4676 }
4677
4678 static void lpt_suspend_hw(struct drm_device *dev)
4679 {
4680 struct drm_i915_private *dev_priv = dev->dev_private;
4681
4682 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4683 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4684
4685 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4686 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4687 }
4688 }
4689
4690 static void haswell_init_clock_gating(struct drm_device *dev)
4691 {
4692 struct drm_i915_private *dev_priv = dev->dev_private;
4693
4694 I915_WRITE(WM3_LP_ILK, 0);
4695 I915_WRITE(WM2_LP_ILK, 0);
4696 I915_WRITE(WM1_LP_ILK, 0);
4697
4698 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4699 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
4700 */
4701 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4702
4703 /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
4704 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4705 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4706
4707 /* WaApplyL3ControlAndL3ChickenMode:hsw */
4708 I915_WRITE(GEN7_L3CNTLREG1,
4709 GEN7_WA_FOR_GEN7_L3_CONTROL);
4710 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4711 GEN7_WA_L3_CHICKEN_MODE);
4712
4713 /* This is required by WaCatErrorRejectionIssue:hsw */
4714 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4715 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4716 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4717
4718 g4x_disable_trickle_feed(dev);
4719
4720 /* WaVSRefCountFullforceMissDisable:hsw */
4721 gen7_setup_fixed_func_scheduler(dev_priv);
4722
4723 /* WaDisable4x2SubspanOptimization:hsw */
4724 I915_WRITE(CACHE_MODE_1,
4725 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4726
4727 /* WaMbcDriverBootEnable:hsw */
4728 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4729 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4730
4731 /* WaSwitchSolVfFArbitrationPriority:hsw */
4732 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4733
4734 /* WaRsPkgCStateDisplayPMReq:hsw */
4735 I915_WRITE(CHICKEN_PAR1_1,
4736 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
4737
4738 lpt_init_clock_gating(dev);
4739 }
4740
4741 static void ivybridge_init_clock_gating(struct drm_device *dev)
4742 {
4743 struct drm_i915_private *dev_priv = dev->dev_private;
4744 uint32_t snpcr;
4745
4746 I915_WRITE(WM3_LP_ILK, 0);
4747 I915_WRITE(WM2_LP_ILK, 0);
4748 I915_WRITE(WM1_LP_ILK, 0);
4749
4750 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4751
4752 /* WaDisableEarlyCull:ivb */
4753 I915_WRITE(_3D_CHICKEN3,
4754 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4755
4756 /* WaDisableBackToBackFlipFix:ivb */
4757 I915_WRITE(IVB_CHICKEN3,
4758 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4759 CHICKEN3_DGMG_DONE_FIX_DISABLE);
4760
4761 /* WaDisablePSDDualDispatchEnable:ivb */
4762 if (IS_IVB_GT1(dev))
4763 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4764 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4765 else
4766 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
4767 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4768
4769 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
4770 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4771 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4772
4773 /* WaApplyL3ControlAndL3ChickenMode:ivb */
4774 I915_WRITE(GEN7_L3CNTLREG1,
4775 GEN7_WA_FOR_GEN7_L3_CONTROL);
4776 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4777 GEN7_WA_L3_CHICKEN_MODE);
4778 if (IS_IVB_GT1(dev))
4779 I915_WRITE(GEN7_ROW_CHICKEN2,
4780 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4781 else
4782 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
4783 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4784
4785
4786 /* WaForceL3Serialization:ivb */
4787 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4788 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4789
4790 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4791 * gating disable must be set. Failure to set it results in
4792 * flickering pixels due to Z write ordering failures after
4793 * some amount of runtime in the Mesa "fire" demo, and Unigine
4794 * Sanctuary and Tropics, and apparently anything else with
4795 * alpha test or pixel discard.
4796 *
4797 * According to the spec, bit 11 (RCCUNIT) must also be set,
4798 * but we didn't debug actual testcases to find it out.
4799 *
4800 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4801 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
4802 */
4803 I915_WRITE(GEN6_UCGCTL2,
4804 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4805 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4806
4807 /* This is required by WaCatErrorRejectionIssue:ivb */
4808 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4809 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4810 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4811
4812 g4x_disable_trickle_feed(dev);
4813
4814 /* WaMbcDriverBootEnable:ivb */
4815 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4816 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4817
4818 /* WaVSRefCountFullforceMissDisable:ivb */
4819 gen7_setup_fixed_func_scheduler(dev_priv);
4820
4821 /* WaDisable4x2SubspanOptimization:ivb */
4822 I915_WRITE(CACHE_MODE_1,
4823 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4824
4825 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4826 snpcr &= ~GEN6_MBC_SNPCR_MASK;
4827 snpcr |= GEN6_MBC_SNPCR_MED;
4828 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4829
4830 if (!HAS_PCH_NOP(dev))
4831 cpt_init_clock_gating(dev);
4832
4833 gen6_check_mch_setup(dev);
4834 }
4835
4836 static void valleyview_init_clock_gating(struct drm_device *dev)
4837 {
4838 struct drm_i915_private *dev_priv = dev->dev_private;
4839
4840 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
4841
4842 /* WaDisableEarlyCull:vlv */
4843 I915_WRITE(_3D_CHICKEN3,
4844 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4845
4846 /* WaDisableBackToBackFlipFix:vlv */
4847 I915_WRITE(IVB_CHICKEN3,
4848 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4849 CHICKEN3_DGMG_DONE_FIX_DISABLE);
4850
4851 /* WaDisablePSDDualDispatchEnable:vlv */
4852 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4853 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
4854 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4855
4856 /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
4857 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4858 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4859
4860 /* WaApplyL3ControlAndL3ChickenMode:vlv */
4861 I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
4862 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
4863
4864 /* WaForceL3Serialization:vlv */
4865 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4866 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4867
4868 /* WaDisableDopClockGating:vlv */
4869 I915_WRITE(GEN7_ROW_CHICKEN2,
4870 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4871
4872 /* This is required by WaCatErrorRejectionIssue:vlv */
4873 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4874 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4875 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4876
4877 /* WaMbcDriverBootEnable:vlv */
4878 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4879 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4880
4881
4882 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4883 * gating disable must be set. Failure to set it results in
4884 * flickering pixels due to Z write ordering failures after
4885 * some amount of runtime in the Mesa "fire" demo, and Unigine
4886 * Sanctuary and Tropics, and apparently anything else with
4887 * alpha test or pixel discard.
4888 *
4889 * According to the spec, bit 11 (RCCUNIT) must also be set,
4890 * but we didn't debug actual testcases to find it out.
4891 *
4892 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4893 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
4894 *
4895 * Also apply WaDisableVDSUnitClockGating:vlv and
4896 * WaDisableRCPBUnitClockGating:vlv.
4897 */
4898 I915_WRITE(GEN6_UCGCTL2,
4899 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4900 GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
4901 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4902 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4903 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4904
4905 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
4906
4907 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
4908
4909 I915_WRITE(CACHE_MODE_1,
4910 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4911
4912 /*
4913 * WaDisableVLVClockGating_VBIIssue:vlv
4914 * Disable clock gating on th GCFG unit to prevent a delay
4915 * in the reporting of vblank events.
4916 */
4917 I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
4918
4919 /* Conservative clock gating settings for now */
4920 I915_WRITE(0x9400, 0xffffffff);
4921 I915_WRITE(0x9404, 0xffffffff);
4922 I915_WRITE(0x9408, 0xffffffff);
4923 I915_WRITE(0x940c, 0xffffffff);
4924 I915_WRITE(0x9410, 0xffffffff);
4925 I915_WRITE(0x9414, 0xffffffff);
4926 I915_WRITE(0x9418, 0xffffffff);
4927 }
4928
4929 static void g4x_init_clock_gating(struct drm_device *dev)
4930 {
4931 struct drm_i915_private *dev_priv = dev->dev_private;
4932 uint32_t dspclk_gate;
4933
4934 I915_WRITE(RENCLK_GATE_D1, 0);
4935 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4936 GS_UNIT_CLOCK_GATE_DISABLE |
4937 CL_UNIT_CLOCK_GATE_DISABLE);
4938 I915_WRITE(RAMCLK_GATE_D, 0);
4939 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4940 OVRUNIT_CLOCK_GATE_DISABLE |
4941 OVCUNIT_CLOCK_GATE_DISABLE;
4942 if (IS_GM45(dev))
4943 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4944 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4945
4946 /* WaDisableRenderCachePipelinedFlush */
4947 I915_WRITE(CACHE_MODE_0,
4948 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4949
4950 g4x_disable_trickle_feed(dev);
4951 }
4952
4953 static void crestline_init_clock_gating(struct drm_device *dev)
4954 {
4955 struct drm_i915_private *dev_priv = dev->dev_private;
4956
4957 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4958 I915_WRITE(RENCLK_GATE_D2, 0);
4959 I915_WRITE(DSPCLK_GATE_D, 0);
4960 I915_WRITE(RAMCLK_GATE_D, 0);
4961 I915_WRITE16(DEUC, 0);
4962 I915_WRITE(MI_ARB_STATE,
4963 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
4964 }
4965
4966 static void broadwater_init_clock_gating(struct drm_device *dev)
4967 {
4968 struct drm_i915_private *dev_priv = dev->dev_private;
4969
4970 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4971 I965_RCC_CLOCK_GATE_DISABLE |
4972 I965_RCPB_CLOCK_GATE_DISABLE |
4973 I965_ISC_CLOCK_GATE_DISABLE |
4974 I965_FBC_CLOCK_GATE_DISABLE);
4975 I915_WRITE(RENCLK_GATE_D2, 0);
4976 I915_WRITE(MI_ARB_STATE,
4977 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
4978 }
4979
4980 static void gen3_init_clock_gating(struct drm_device *dev)
4981 {
4982 struct drm_i915_private *dev_priv = dev->dev_private;
4983 u32 dstate = I915_READ(D_STATE);
4984
4985 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4986 DSTATE_DOT_CLOCK_GATING;
4987 I915_WRITE(D_STATE, dstate);
4988
4989 if (IS_PINEVIEW(dev))
4990 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4991
4992 /* IIR "flip pending" means done if this bit is set */
4993 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4994 }
4995
4996 static void i85x_init_clock_gating(struct drm_device *dev)
4997 {
4998 struct drm_i915_private *dev_priv = dev->dev_private;
4999
5000 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5001 }
5002
5003 static void i830_init_clock_gating(struct drm_device *dev)
5004 {
5005 struct drm_i915_private *dev_priv = dev->dev_private;
5006
5007 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5008 }
5009
5010 void intel_init_clock_gating(struct drm_device *dev)
5011 {
5012 struct drm_i915_private *dev_priv = dev->dev_private;
5013
5014 dev_priv->display.init_clock_gating(dev);
5015 }
5016
5017 void intel_suspend_hw(struct drm_device *dev)
5018 {
5019 if (HAS_PCH_LPT(dev))
5020 lpt_suspend_hw(dev);
5021 }
5022
5023 /**
5024 * We should only use the power well if we explicitly asked the hardware to
5025 * enable it, so check if it's enabled and also check if we've requested it to
5026 * be enabled.
5027 */
5028 bool intel_display_power_enabled(struct drm_device *dev,
5029 enum intel_display_power_domain domain)
5030 {
5031 struct drm_i915_private *dev_priv = dev->dev_private;
5032
5033 if (!HAS_POWER_WELL(dev))
5034 return true;
5035
5036 switch (domain) {
5037 case POWER_DOMAIN_PIPE_A:
5038 case POWER_DOMAIN_TRANSCODER_EDP:
5039 return true;
5040 case POWER_DOMAIN_PIPE_B:
5041 case POWER_DOMAIN_PIPE_C:
5042 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
5043 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
5044 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
5045 case POWER_DOMAIN_TRANSCODER_A:
5046 case POWER_DOMAIN_TRANSCODER_B:
5047 case POWER_DOMAIN_TRANSCODER_C:
5048 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5049 (HSW_PWR_WELL_ENABLE | HSW_PWR_WELL_STATE);
5050 default:
5051 BUG();
5052 }
5053 }
5054
5055 static void __intel_set_power_well(struct drm_device *dev, bool enable)
5056 {
5057 struct drm_i915_private *dev_priv = dev->dev_private;
5058 bool is_enabled, enable_requested;
5059 uint32_t tmp;
5060
5061 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5062 is_enabled = tmp & HSW_PWR_WELL_STATE;
5063 enable_requested = tmp & HSW_PWR_WELL_ENABLE;
5064
5065 if (enable) {
5066 if (!enable_requested)
5067 I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
5068
5069 if (!is_enabled) {
5070 DRM_DEBUG_KMS("Enabling power well\n");
5071 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5072 HSW_PWR_WELL_STATE), 20))
5073 DRM_ERROR("Timeout enabling power well\n");
5074 }
5075 } else {
5076 if (enable_requested) {
5077 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5078 DRM_DEBUG_KMS("Requesting to disable the power well\n");
5079 }
5080 }
5081 }
5082
5083 static struct i915_power_well *hsw_pwr;
5084
5085 /* Display audio driver power well request */
5086 void i915_request_power_well(void)
5087 {
5088 if (WARN_ON(!hsw_pwr))
5089 return;
5090
5091 spin_lock_irq(&hsw_pwr->lock);
5092 if (!hsw_pwr->count++ &&
5093 !hsw_pwr->i915_request)
5094 __intel_set_power_well(hsw_pwr->device, true);
5095 spin_unlock_irq(&hsw_pwr->lock);
5096 }
5097 EXPORT_SYMBOL_GPL(i915_request_power_well);
5098
5099 /* Display audio driver power well release */
5100 void i915_release_power_well(void)
5101 {
5102 if (WARN_ON(!hsw_pwr))
5103 return;
5104
5105 spin_lock_irq(&hsw_pwr->lock);
5106 WARN_ON(!hsw_pwr->count);
5107 if (!--hsw_pwr->count &&
5108 !hsw_pwr->i915_request)
5109 __intel_set_power_well(hsw_pwr->device, false);
5110 spin_unlock_irq(&hsw_pwr->lock);
5111 }
5112 EXPORT_SYMBOL_GPL(i915_release_power_well);
5113
5114 int i915_init_power_well(struct drm_device *dev)
5115 {
5116 struct drm_i915_private *dev_priv = dev->dev_private;
5117
5118 hsw_pwr = &dev_priv->power_well;
5119
5120 hsw_pwr->device = dev;
5121 spin_lock_init(&hsw_pwr->lock);
5122 hsw_pwr->count = 0;
5123
5124 return 0;
5125 }
5126
5127 void i915_remove_power_well(struct drm_device *dev)
5128 {
5129 hsw_pwr = NULL;
5130 }
5131
5132 void intel_set_power_well(struct drm_device *dev, bool enable)
5133 {
5134 struct drm_i915_private *dev_priv = dev->dev_private;
5135 struct i915_power_well *power_well = &dev_priv->power_well;
5136
5137 if (!HAS_POWER_WELL(dev))
5138 return;
5139
5140 if (!i915_disable_power_well && !enable)
5141 return;
5142
5143 spin_lock_irq(&power_well->lock);
5144 power_well->i915_request = enable;
5145
5146 /* only reject "disable" power well request */
5147 if (power_well->count && !enable) {
5148 spin_unlock_irq(&power_well->lock);
5149 return;
5150 }
5151
5152 __intel_set_power_well(dev, enable);
5153 spin_unlock_irq(&power_well->lock);
5154 }
5155
5156 /*
5157 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5158 * when not needed anymore. We have 4 registers that can request the power well
5159 * to be enabled, and it will only be disabled if none of the registers is
5160 * requesting it to be enabled.
5161 */
5162 void intel_init_power_well(struct drm_device *dev)
5163 {
5164 struct drm_i915_private *dev_priv = dev->dev_private;
5165
5166 if (!HAS_POWER_WELL(dev))
5167 return;
5168
5169 /* For now, we need the power well to be always enabled. */
5170 intel_set_power_well(dev, true);
5171
5172 /* We're taking over the BIOS, so clear any requests made by it since
5173 * the driver is in charge now. */
5174 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
5175 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5176 }
5177
5178 /* Set up chip specific power management-related functions */
5179 void intel_init_pm(struct drm_device *dev)
5180 {
5181 struct drm_i915_private *dev_priv = dev->dev_private;
5182
5183 if (I915_HAS_FBC(dev)) {
5184 if (HAS_PCH_SPLIT(dev)) {
5185 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5186 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5187 dev_priv->display.enable_fbc =
5188 gen7_enable_fbc;
5189 else
5190 dev_priv->display.enable_fbc =
5191 ironlake_enable_fbc;
5192 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5193 } else if (IS_GM45(dev)) {
5194 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5195 dev_priv->display.enable_fbc = g4x_enable_fbc;
5196 dev_priv->display.disable_fbc = g4x_disable_fbc;
5197 } else if (IS_CRESTLINE(dev)) {
5198 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5199 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5200 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5201 }
5202 /* 855GM needs testing */
5203 }
5204
5205 /* For cxsr */
5206 if (IS_PINEVIEW(dev))
5207 i915_pineview_get_mem_freq(dev);
5208 else if (IS_GEN5(dev))
5209 i915_ironlake_get_mem_freq(dev);
5210
5211 /* For FIFO watermark updates */
5212 if (HAS_PCH_SPLIT(dev)) {
5213 if (IS_GEN5(dev)) {
5214 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5215 dev_priv->display.update_wm = ironlake_update_wm;
5216 else {
5217 DRM_DEBUG_KMS("Failed to get proper latency. "
5218 "Disable CxSR\n");
5219 dev_priv->display.update_wm = NULL;
5220 }
5221 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5222 } else if (IS_GEN6(dev)) {
5223 if (SNB_READ_WM0_LATENCY()) {
5224 dev_priv->display.update_wm = sandybridge_update_wm;
5225 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5226 } else {
5227 DRM_DEBUG_KMS("Failed to read display plane latency. "
5228 "Disable CxSR\n");
5229 dev_priv->display.update_wm = NULL;
5230 }
5231 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
5232 } else if (IS_IVYBRIDGE(dev)) {
5233 if (SNB_READ_WM0_LATENCY()) {
5234 dev_priv->display.update_wm = ivybridge_update_wm;
5235 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5236 } else {
5237 DRM_DEBUG_KMS("Failed to read display plane latency. "
5238 "Disable CxSR\n");
5239 dev_priv->display.update_wm = NULL;
5240 }
5241 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
5242 } else if (IS_HASWELL(dev)) {
5243 if (I915_READ64(MCH_SSKPD)) {
5244 dev_priv->display.update_wm = haswell_update_wm;
5245 dev_priv->display.update_sprite_wm =
5246 haswell_update_sprite_wm;
5247 } else {
5248 DRM_DEBUG_KMS("Failed to read display plane latency. "
5249 "Disable CxSR\n");
5250 dev_priv->display.update_wm = NULL;
5251 }
5252 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
5253 } else
5254 dev_priv->display.update_wm = NULL;
5255 } else if (IS_VALLEYVIEW(dev)) {
5256 dev_priv->display.update_wm = valleyview_update_wm;
5257 dev_priv->display.init_clock_gating =
5258 valleyview_init_clock_gating;
5259 } else if (IS_PINEVIEW(dev)) {
5260 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5261 dev_priv->is_ddr3,
5262 dev_priv->fsb_freq,
5263 dev_priv->mem_freq)) {
5264 DRM_INFO("failed to find known CxSR latency "
5265 "(found ddr%s fsb freq %d, mem freq %d), "
5266 "disabling CxSR\n",
5267 (dev_priv->is_ddr3 == 1) ? "3" : "2",
5268 dev_priv->fsb_freq, dev_priv->mem_freq);
5269 /* Disable CxSR and never update its watermark again */
5270 pineview_disable_cxsr(dev);
5271 dev_priv->display.update_wm = NULL;
5272 } else
5273 dev_priv->display.update_wm = pineview_update_wm;
5274 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5275 } else if (IS_G4X(dev)) {
5276 dev_priv->display.update_wm = g4x_update_wm;
5277 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5278 } else if (IS_GEN4(dev)) {
5279 dev_priv->display.update_wm = i965_update_wm;
5280 if (IS_CRESTLINE(dev))
5281 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5282 else if (IS_BROADWATER(dev))
5283 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5284 } else if (IS_GEN3(dev)) {
5285 dev_priv->display.update_wm = i9xx_update_wm;
5286 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5287 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5288 } else if (IS_I865G(dev)) {
5289 dev_priv->display.update_wm = i830_update_wm;
5290 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5291 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5292 } else if (IS_I85X(dev)) {
5293 dev_priv->display.update_wm = i9xx_update_wm;
5294 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5295 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5296 } else {
5297 dev_priv->display.update_wm = i830_update_wm;
5298 dev_priv->display.init_clock_gating = i830_init_clock_gating;
5299 if (IS_845G(dev))
5300 dev_priv->display.get_fifo_size = i845_get_fifo_size;
5301 else
5302 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5303 }
5304 }
5305
5306 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5307 {
5308 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5309
5310 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5311 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5312 return -EAGAIN;
5313 }
5314
5315 I915_WRITE(GEN6_PCODE_DATA, *val);
5316 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5317
5318 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5319 500)) {
5320 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5321 return -ETIMEDOUT;
5322 }
5323
5324 *val = I915_READ(GEN6_PCODE_DATA);
5325 I915_WRITE(GEN6_PCODE_DATA, 0);
5326
5327 return 0;
5328 }
5329
5330 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5331 {
5332 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5333
5334 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5335 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5336 return -EAGAIN;
5337 }
5338
5339 I915_WRITE(GEN6_PCODE_DATA, val);
5340 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5341
5342 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5343 500)) {
5344 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5345 return -ETIMEDOUT;
5346 }
5347
5348 I915_WRITE(GEN6_PCODE_DATA, 0);
5349
5350 return 0;
5351 }
5352
5353 int vlv_gpu_freq(int ddr_freq, int val)
5354 {
5355 int mult, base;
5356
5357 switch (ddr_freq) {
5358 case 800:
5359 mult = 20;
5360 base = 120;
5361 break;
5362 case 1066:
5363 mult = 22;
5364 base = 133;
5365 break;
5366 case 1333:
5367 mult = 21;
5368 base = 125;
5369 break;
5370 default:
5371 return -1;
5372 }
5373
5374 return ((val - 0xbd) * mult) + base;
5375 }
5376
5377 int vlv_freq_opcode(int ddr_freq, int val)
5378 {
5379 int mult, base;
5380
5381 switch (ddr_freq) {
5382 case 800:
5383 mult = 20;
5384 base = 120;
5385 break;
5386 case 1066:
5387 mult = 22;
5388 base = 133;
5389 break;
5390 case 1333:
5391 mult = 21;
5392 base = 125;
5393 break;
5394 default:
5395 return -1;
5396 }
5397
5398 val /= mult;
5399 val -= base / mult;
5400 val += 0xbd;
5401
5402 if (val > 0xea)
5403 val = 0xea;
5404
5405 return val;
5406 }
5407
5408 void intel_pm_init(struct drm_device *dev)
5409 {
5410 struct drm_i915_private *dev_priv = dev->dev_private;
5411
5412 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
5413 intel_gen6_powersave_work);
5414 }
5415
This page took 0.176991 seconds and 5 git commands to generate.