Merge branch 'acpi-hotplug'
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <drm/i915_powerwell.h>
34
35 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
36 * framebuffer contents in-memory, aiming at reducing the required bandwidth
37 * during in-memory transfers and, therefore, reduce the power packet.
38 *
39 * The benefits of FBC are mostly visible with solid backgrounds and
40 * variation-less patterns.
41 *
42 * FBC-related functionality can be enabled by the means of the
43 * i915.i915_enable_fbc parameter
44 */
45
46 static bool intel_crtc_active(struct drm_crtc *crtc)
47 {
48 /* Be paranoid as we can arrive here with only partial
49 * state retrieved from the hardware during setup.
50 */
51 return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
52 }
53
54 static void i8xx_disable_fbc(struct drm_device *dev)
55 {
56 struct drm_i915_private *dev_priv = dev->dev_private;
57 u32 fbc_ctl;
58
59 /* Disable compression */
60 fbc_ctl = I915_READ(FBC_CONTROL);
61 if ((fbc_ctl & FBC_CTL_EN) == 0)
62 return;
63
64 fbc_ctl &= ~FBC_CTL_EN;
65 I915_WRITE(FBC_CONTROL, fbc_ctl);
66
67 /* Wait for compressing bit to clear */
68 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
69 DRM_DEBUG_KMS("FBC idle timed out\n");
70 return;
71 }
72
73 DRM_DEBUG_KMS("disabled FBC\n");
74 }
75
76 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
77 {
78 struct drm_device *dev = crtc->dev;
79 struct drm_i915_private *dev_priv = dev->dev_private;
80 struct drm_framebuffer *fb = crtc->fb;
81 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
82 struct drm_i915_gem_object *obj = intel_fb->obj;
83 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84 int cfb_pitch;
85 int plane, i;
86 u32 fbc_ctl, fbc_ctl2;
87
88 cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
89 if (fb->pitches[0] < cfb_pitch)
90 cfb_pitch = fb->pitches[0];
91
92 /* FBC_CTL wants 64B units */
93 cfb_pitch = (cfb_pitch / 64) - 1;
94 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
95
96 /* Clear old tags */
97 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
98 I915_WRITE(FBC_TAG + (i * 4), 0);
99
100 /* Set it up... */
101 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
102 fbc_ctl2 |= plane;
103 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
104 I915_WRITE(FBC_FENCE_OFF, crtc->y);
105
106 /* enable it... */
107 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
108 if (IS_I945GM(dev))
109 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
110 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
111 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
112 fbc_ctl |= obj->fence_reg;
113 I915_WRITE(FBC_CONTROL, fbc_ctl);
114
115 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
116 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
117 }
118
119 static bool i8xx_fbc_enabled(struct drm_device *dev)
120 {
121 struct drm_i915_private *dev_priv = dev->dev_private;
122
123 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
124 }
125
126 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
127 {
128 struct drm_device *dev = crtc->dev;
129 struct drm_i915_private *dev_priv = dev->dev_private;
130 struct drm_framebuffer *fb = crtc->fb;
131 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
132 struct drm_i915_gem_object *obj = intel_fb->obj;
133 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
134 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
135 unsigned long stall_watermark = 200;
136 u32 dpfc_ctl;
137
138 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
139 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
140 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
141
142 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
143 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
144 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
145 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
146
147 /* enable it... */
148 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
149
150 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
151 }
152
153 static void g4x_disable_fbc(struct drm_device *dev)
154 {
155 struct drm_i915_private *dev_priv = dev->dev_private;
156 u32 dpfc_ctl;
157
158 /* Disable compression */
159 dpfc_ctl = I915_READ(DPFC_CONTROL);
160 if (dpfc_ctl & DPFC_CTL_EN) {
161 dpfc_ctl &= ~DPFC_CTL_EN;
162 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
163
164 DRM_DEBUG_KMS("disabled FBC\n");
165 }
166 }
167
168 static bool g4x_fbc_enabled(struct drm_device *dev)
169 {
170 struct drm_i915_private *dev_priv = dev->dev_private;
171
172 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
173 }
174
175 static void sandybridge_blit_fbc_update(struct drm_device *dev)
176 {
177 struct drm_i915_private *dev_priv = dev->dev_private;
178 u32 blt_ecoskpd;
179
180 /* Make sure blitter notifies FBC of writes */
181 gen6_gt_force_wake_get(dev_priv);
182 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
183 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
184 GEN6_BLITTER_LOCK_SHIFT;
185 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
186 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
187 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
188 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
189 GEN6_BLITTER_LOCK_SHIFT);
190 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
191 POSTING_READ(GEN6_BLITTER_ECOSKPD);
192 gen6_gt_force_wake_put(dev_priv);
193 }
194
195 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
196 {
197 struct drm_device *dev = crtc->dev;
198 struct drm_i915_private *dev_priv = dev->dev_private;
199 struct drm_framebuffer *fb = crtc->fb;
200 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
201 struct drm_i915_gem_object *obj = intel_fb->obj;
202 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
203 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
204 unsigned long stall_watermark = 200;
205 u32 dpfc_ctl;
206
207 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
208 dpfc_ctl &= DPFC_RESERVED;
209 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
210 /* Set persistent mode for front-buffer rendering, ala X. */
211 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
212 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
213 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
214
215 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
216 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
217 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
218 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
219 I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
220 /* enable it... */
221 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
222
223 if (IS_GEN6(dev)) {
224 I915_WRITE(SNB_DPFC_CTL_SA,
225 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
226 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
227 sandybridge_blit_fbc_update(dev);
228 }
229
230 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
231 }
232
233 static void ironlake_disable_fbc(struct drm_device *dev)
234 {
235 struct drm_i915_private *dev_priv = dev->dev_private;
236 u32 dpfc_ctl;
237
238 /* Disable compression */
239 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
240 if (dpfc_ctl & DPFC_CTL_EN) {
241 dpfc_ctl &= ~DPFC_CTL_EN;
242 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
243
244 if (IS_IVYBRIDGE(dev))
245 /* WaFbcDisableDpfcClockGating:ivb */
246 I915_WRITE(ILK_DSPCLK_GATE_D,
247 I915_READ(ILK_DSPCLK_GATE_D) &
248 ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
249
250 if (IS_HASWELL(dev))
251 /* WaFbcDisableDpfcClockGating:hsw */
252 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
253 I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
254 ~HSW_DPFC_GATING_DISABLE);
255
256 DRM_DEBUG_KMS("disabled FBC\n");
257 }
258 }
259
260 static bool ironlake_fbc_enabled(struct drm_device *dev)
261 {
262 struct drm_i915_private *dev_priv = dev->dev_private;
263
264 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
265 }
266
267 static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
268 {
269 struct drm_device *dev = crtc->dev;
270 struct drm_i915_private *dev_priv = dev->dev_private;
271 struct drm_framebuffer *fb = crtc->fb;
272 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
273 struct drm_i915_gem_object *obj = intel_fb->obj;
274 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
275
276 I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
277
278 I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
279 IVB_DPFC_CTL_FENCE_EN |
280 intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
281
282 if (IS_IVYBRIDGE(dev)) {
283 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
284 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
285 /* WaFbcDisableDpfcClockGating:ivb */
286 I915_WRITE(ILK_DSPCLK_GATE_D,
287 I915_READ(ILK_DSPCLK_GATE_D) |
288 ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
289 } else {
290 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
291 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
292 HSW_BYPASS_FBC_QUEUE);
293 /* WaFbcDisableDpfcClockGating:hsw */
294 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
295 I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
296 HSW_DPFC_GATING_DISABLE);
297 }
298
299 I915_WRITE(SNB_DPFC_CTL_SA,
300 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
301 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
302
303 sandybridge_blit_fbc_update(dev);
304
305 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
306 }
307
308 bool intel_fbc_enabled(struct drm_device *dev)
309 {
310 struct drm_i915_private *dev_priv = dev->dev_private;
311
312 if (!dev_priv->display.fbc_enabled)
313 return false;
314
315 return dev_priv->display.fbc_enabled(dev);
316 }
317
318 static void intel_fbc_work_fn(struct work_struct *__work)
319 {
320 struct intel_fbc_work *work =
321 container_of(to_delayed_work(__work),
322 struct intel_fbc_work, work);
323 struct drm_device *dev = work->crtc->dev;
324 struct drm_i915_private *dev_priv = dev->dev_private;
325
326 mutex_lock(&dev->struct_mutex);
327 if (work == dev_priv->fbc.fbc_work) {
328 /* Double check that we haven't switched fb without cancelling
329 * the prior work.
330 */
331 if (work->crtc->fb == work->fb) {
332 dev_priv->display.enable_fbc(work->crtc,
333 work->interval);
334
335 dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
336 dev_priv->fbc.fb_id = work->crtc->fb->base.id;
337 dev_priv->fbc.y = work->crtc->y;
338 }
339
340 dev_priv->fbc.fbc_work = NULL;
341 }
342 mutex_unlock(&dev->struct_mutex);
343
344 kfree(work);
345 }
346
347 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
348 {
349 if (dev_priv->fbc.fbc_work == NULL)
350 return;
351
352 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
353
354 /* Synchronisation is provided by struct_mutex and checking of
355 * dev_priv->fbc.fbc_work, so we can perform the cancellation
356 * entirely asynchronously.
357 */
358 if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
359 /* tasklet was killed before being run, clean up */
360 kfree(dev_priv->fbc.fbc_work);
361
362 /* Mark the work as no longer wanted so that if it does
363 * wake-up (because the work was already running and waiting
364 * for our mutex), it will discover that is no longer
365 * necessary to run.
366 */
367 dev_priv->fbc.fbc_work = NULL;
368 }
369
370 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
371 {
372 struct intel_fbc_work *work;
373 struct drm_device *dev = crtc->dev;
374 struct drm_i915_private *dev_priv = dev->dev_private;
375
376 if (!dev_priv->display.enable_fbc)
377 return;
378
379 intel_cancel_fbc_work(dev_priv);
380
381 work = kzalloc(sizeof *work, GFP_KERNEL);
382 if (work == NULL) {
383 DRM_ERROR("Failed to allocate FBC work structure\n");
384 dev_priv->display.enable_fbc(crtc, interval);
385 return;
386 }
387
388 work->crtc = crtc;
389 work->fb = crtc->fb;
390 work->interval = interval;
391 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
392
393 dev_priv->fbc.fbc_work = work;
394
395 /* Delay the actual enabling to let pageflipping cease and the
396 * display to settle before starting the compression. Note that
397 * this delay also serves a second purpose: it allows for a
398 * vblank to pass after disabling the FBC before we attempt
399 * to modify the control registers.
400 *
401 * A more complicated solution would involve tracking vblanks
402 * following the termination of the page-flipping sequence
403 * and indeed performing the enable as a co-routine and not
404 * waiting synchronously upon the vblank.
405 *
406 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
407 */
408 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
409 }
410
411 void intel_disable_fbc(struct drm_device *dev)
412 {
413 struct drm_i915_private *dev_priv = dev->dev_private;
414
415 intel_cancel_fbc_work(dev_priv);
416
417 if (!dev_priv->display.disable_fbc)
418 return;
419
420 dev_priv->display.disable_fbc(dev);
421 dev_priv->fbc.plane = -1;
422 }
423
424 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
425 enum no_fbc_reason reason)
426 {
427 if (dev_priv->fbc.no_fbc_reason == reason)
428 return false;
429
430 dev_priv->fbc.no_fbc_reason = reason;
431 return true;
432 }
433
434 /**
435 * intel_update_fbc - enable/disable FBC as needed
436 * @dev: the drm_device
437 *
438 * Set up the framebuffer compression hardware at mode set time. We
439 * enable it if possible:
440 * - plane A only (on pre-965)
441 * - no pixel mulitply/line duplication
442 * - no alpha buffer discard
443 * - no dual wide
444 * - framebuffer <= max_hdisplay in width, max_vdisplay in height
445 *
446 * We can't assume that any compression will take place (worst case),
447 * so the compressed buffer has to be the same size as the uncompressed
448 * one. It also must reside (along with the line length buffer) in
449 * stolen memory.
450 *
451 * We need to enable/disable FBC on a global basis.
452 */
453 void intel_update_fbc(struct drm_device *dev)
454 {
455 struct drm_i915_private *dev_priv = dev->dev_private;
456 struct drm_crtc *crtc = NULL, *tmp_crtc;
457 struct intel_crtc *intel_crtc;
458 struct drm_framebuffer *fb;
459 struct intel_framebuffer *intel_fb;
460 struct drm_i915_gem_object *obj;
461 unsigned int max_hdisplay, max_vdisplay;
462
463 if (!I915_HAS_FBC(dev)) {
464 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
465 return;
466 }
467
468 if (!i915_powersave) {
469 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
470 DRM_DEBUG_KMS("fbc disabled per module param\n");
471 return;
472 }
473
474 /*
475 * If FBC is already on, we just have to verify that we can
476 * keep it that way...
477 * Need to disable if:
478 * - more than one pipe is active
479 * - changing FBC params (stride, fence, mode)
480 * - new fb is too large to fit in compressed buffer
481 * - going to an unsupported config (interlace, pixel multiply, etc.)
482 */
483 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
484 if (intel_crtc_active(tmp_crtc) &&
485 !to_intel_crtc(tmp_crtc)->primary_disabled) {
486 if (crtc) {
487 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
488 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
489 goto out_disable;
490 }
491 crtc = tmp_crtc;
492 }
493 }
494
495 if (!crtc || crtc->fb == NULL) {
496 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
497 DRM_DEBUG_KMS("no output, disabling\n");
498 goto out_disable;
499 }
500
501 intel_crtc = to_intel_crtc(crtc);
502 fb = crtc->fb;
503 intel_fb = to_intel_framebuffer(fb);
504 obj = intel_fb->obj;
505
506 if (i915_enable_fbc < 0 &&
507 INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
508 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
509 DRM_DEBUG_KMS("disabled per chip default\n");
510 goto out_disable;
511 }
512 if (!i915_enable_fbc) {
513 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
514 DRM_DEBUG_KMS("fbc disabled per module param\n");
515 goto out_disable;
516 }
517 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
518 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
519 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
520 DRM_DEBUG_KMS("mode incompatible with compression, "
521 "disabling\n");
522 goto out_disable;
523 }
524
525 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
526 max_hdisplay = 4096;
527 max_vdisplay = 2048;
528 } else {
529 max_hdisplay = 2048;
530 max_vdisplay = 1536;
531 }
532 if ((crtc->mode.hdisplay > max_hdisplay) ||
533 (crtc->mode.vdisplay > max_vdisplay)) {
534 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
535 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
536 goto out_disable;
537 }
538 if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
539 intel_crtc->plane != 0) {
540 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
541 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
542 goto out_disable;
543 }
544
545 /* The use of a CPU fence is mandatory in order to detect writes
546 * by the CPU to the scanout and trigger updates to the FBC.
547 */
548 if (obj->tiling_mode != I915_TILING_X ||
549 obj->fence_reg == I915_FENCE_REG_NONE) {
550 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
551 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
552 goto out_disable;
553 }
554
555 /* If the kernel debugger is active, always disable compression */
556 if (in_dbg_master())
557 goto out_disable;
558
559 if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
560 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
561 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
562 goto out_disable;
563 }
564
565 /* If the scanout has not changed, don't modify the FBC settings.
566 * Note that we make the fundamental assumption that the fb->obj
567 * cannot be unpinned (and have its GTT offset and fence revoked)
568 * without first being decoupled from the scanout and FBC disabled.
569 */
570 if (dev_priv->fbc.plane == intel_crtc->plane &&
571 dev_priv->fbc.fb_id == fb->base.id &&
572 dev_priv->fbc.y == crtc->y)
573 return;
574
575 if (intel_fbc_enabled(dev)) {
576 /* We update FBC along two paths, after changing fb/crtc
577 * configuration (modeswitching) and after page-flipping
578 * finishes. For the latter, we know that not only did
579 * we disable the FBC at the start of the page-flip
580 * sequence, but also more than one vblank has passed.
581 *
582 * For the former case of modeswitching, it is possible
583 * to switch between two FBC valid configurations
584 * instantaneously so we do need to disable the FBC
585 * before we can modify its control registers. We also
586 * have to wait for the next vblank for that to take
587 * effect. However, since we delay enabling FBC we can
588 * assume that a vblank has passed since disabling and
589 * that we can safely alter the registers in the deferred
590 * callback.
591 *
592 * In the scenario that we go from a valid to invalid
593 * and then back to valid FBC configuration we have
594 * no strict enforcement that a vblank occurred since
595 * disabling the FBC. However, along all current pipe
596 * disabling paths we do need to wait for a vblank at
597 * some point. And we wait before enabling FBC anyway.
598 */
599 DRM_DEBUG_KMS("disabling active FBC for update\n");
600 intel_disable_fbc(dev);
601 }
602
603 intel_enable_fbc(crtc, 500);
604 dev_priv->fbc.no_fbc_reason = FBC_OK;
605 return;
606
607 out_disable:
608 /* Multiple disables should be harmless */
609 if (intel_fbc_enabled(dev)) {
610 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
611 intel_disable_fbc(dev);
612 }
613 i915_gem_stolen_cleanup_compression(dev);
614 }
615
616 static void i915_pineview_get_mem_freq(struct drm_device *dev)
617 {
618 drm_i915_private_t *dev_priv = dev->dev_private;
619 u32 tmp;
620
621 tmp = I915_READ(CLKCFG);
622
623 switch (tmp & CLKCFG_FSB_MASK) {
624 case CLKCFG_FSB_533:
625 dev_priv->fsb_freq = 533; /* 133*4 */
626 break;
627 case CLKCFG_FSB_800:
628 dev_priv->fsb_freq = 800; /* 200*4 */
629 break;
630 case CLKCFG_FSB_667:
631 dev_priv->fsb_freq = 667; /* 167*4 */
632 break;
633 case CLKCFG_FSB_400:
634 dev_priv->fsb_freq = 400; /* 100*4 */
635 break;
636 }
637
638 switch (tmp & CLKCFG_MEM_MASK) {
639 case CLKCFG_MEM_533:
640 dev_priv->mem_freq = 533;
641 break;
642 case CLKCFG_MEM_667:
643 dev_priv->mem_freq = 667;
644 break;
645 case CLKCFG_MEM_800:
646 dev_priv->mem_freq = 800;
647 break;
648 }
649
650 /* detect pineview DDR3 setting */
651 tmp = I915_READ(CSHRDDR3CTL);
652 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
653 }
654
655 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
656 {
657 drm_i915_private_t *dev_priv = dev->dev_private;
658 u16 ddrpll, csipll;
659
660 ddrpll = I915_READ16(DDRMPLL1);
661 csipll = I915_READ16(CSIPLL0);
662
663 switch (ddrpll & 0xff) {
664 case 0xc:
665 dev_priv->mem_freq = 800;
666 break;
667 case 0x10:
668 dev_priv->mem_freq = 1066;
669 break;
670 case 0x14:
671 dev_priv->mem_freq = 1333;
672 break;
673 case 0x18:
674 dev_priv->mem_freq = 1600;
675 break;
676 default:
677 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
678 ddrpll & 0xff);
679 dev_priv->mem_freq = 0;
680 break;
681 }
682
683 dev_priv->ips.r_t = dev_priv->mem_freq;
684
685 switch (csipll & 0x3ff) {
686 case 0x00c:
687 dev_priv->fsb_freq = 3200;
688 break;
689 case 0x00e:
690 dev_priv->fsb_freq = 3733;
691 break;
692 case 0x010:
693 dev_priv->fsb_freq = 4266;
694 break;
695 case 0x012:
696 dev_priv->fsb_freq = 4800;
697 break;
698 case 0x014:
699 dev_priv->fsb_freq = 5333;
700 break;
701 case 0x016:
702 dev_priv->fsb_freq = 5866;
703 break;
704 case 0x018:
705 dev_priv->fsb_freq = 6400;
706 break;
707 default:
708 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
709 csipll & 0x3ff);
710 dev_priv->fsb_freq = 0;
711 break;
712 }
713
714 if (dev_priv->fsb_freq == 3200) {
715 dev_priv->ips.c_m = 0;
716 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
717 dev_priv->ips.c_m = 1;
718 } else {
719 dev_priv->ips.c_m = 2;
720 }
721 }
722
723 static const struct cxsr_latency cxsr_latency_table[] = {
724 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
725 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
726 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
727 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
728 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
729
730 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
731 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
732 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
733 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
734 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
735
736 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
737 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
738 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
739 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
740 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
741
742 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
743 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
744 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
745 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
746 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
747
748 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
749 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
750 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
751 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
752 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
753
754 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
755 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
756 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
757 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
758 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
759 };
760
761 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
762 int is_ddr3,
763 int fsb,
764 int mem)
765 {
766 const struct cxsr_latency *latency;
767 int i;
768
769 if (fsb == 0 || mem == 0)
770 return NULL;
771
772 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
773 latency = &cxsr_latency_table[i];
774 if (is_desktop == latency->is_desktop &&
775 is_ddr3 == latency->is_ddr3 &&
776 fsb == latency->fsb_freq && mem == latency->mem_freq)
777 return latency;
778 }
779
780 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
781
782 return NULL;
783 }
784
785 static void pineview_disable_cxsr(struct drm_device *dev)
786 {
787 struct drm_i915_private *dev_priv = dev->dev_private;
788
789 /* deactivate cxsr */
790 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
791 }
792
793 /*
794 * Latency for FIFO fetches is dependent on several factors:
795 * - memory configuration (speed, channels)
796 * - chipset
797 * - current MCH state
798 * It can be fairly high in some situations, so here we assume a fairly
799 * pessimal value. It's a tradeoff between extra memory fetches (if we
800 * set this value too high, the FIFO will fetch frequently to stay full)
801 * and power consumption (set it too low to save power and we might see
802 * FIFO underruns and display "flicker").
803 *
804 * A value of 5us seems to be a good balance; safe for very low end
805 * platforms but not overly aggressive on lower latency configs.
806 */
807 static const int latency_ns = 5000;
808
809 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
810 {
811 struct drm_i915_private *dev_priv = dev->dev_private;
812 uint32_t dsparb = I915_READ(DSPARB);
813 int size;
814
815 size = dsparb & 0x7f;
816 if (plane)
817 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
818
819 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
820 plane ? "B" : "A", size);
821
822 return size;
823 }
824
825 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
826 {
827 struct drm_i915_private *dev_priv = dev->dev_private;
828 uint32_t dsparb = I915_READ(DSPARB);
829 int size;
830
831 size = dsparb & 0x1ff;
832 if (plane)
833 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
834 size >>= 1; /* Convert to cachelines */
835
836 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
837 plane ? "B" : "A", size);
838
839 return size;
840 }
841
842 static int i845_get_fifo_size(struct drm_device *dev, int plane)
843 {
844 struct drm_i915_private *dev_priv = dev->dev_private;
845 uint32_t dsparb = I915_READ(DSPARB);
846 int size;
847
848 size = dsparb & 0x7f;
849 size >>= 2; /* Convert to cachelines */
850
851 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
852 plane ? "B" : "A",
853 size);
854
855 return size;
856 }
857
858 static int i830_get_fifo_size(struct drm_device *dev, int plane)
859 {
860 struct drm_i915_private *dev_priv = dev->dev_private;
861 uint32_t dsparb = I915_READ(DSPARB);
862 int size;
863
864 size = dsparb & 0x7f;
865 size >>= 1; /* Convert to cachelines */
866
867 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
868 plane ? "B" : "A", size);
869
870 return size;
871 }
872
873 /* Pineview has different values for various configs */
874 static const struct intel_watermark_params pineview_display_wm = {
875 PINEVIEW_DISPLAY_FIFO,
876 PINEVIEW_MAX_WM,
877 PINEVIEW_DFT_WM,
878 PINEVIEW_GUARD_WM,
879 PINEVIEW_FIFO_LINE_SIZE
880 };
881 static const struct intel_watermark_params pineview_display_hplloff_wm = {
882 PINEVIEW_DISPLAY_FIFO,
883 PINEVIEW_MAX_WM,
884 PINEVIEW_DFT_HPLLOFF_WM,
885 PINEVIEW_GUARD_WM,
886 PINEVIEW_FIFO_LINE_SIZE
887 };
888 static const struct intel_watermark_params pineview_cursor_wm = {
889 PINEVIEW_CURSOR_FIFO,
890 PINEVIEW_CURSOR_MAX_WM,
891 PINEVIEW_CURSOR_DFT_WM,
892 PINEVIEW_CURSOR_GUARD_WM,
893 PINEVIEW_FIFO_LINE_SIZE,
894 };
895 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
896 PINEVIEW_CURSOR_FIFO,
897 PINEVIEW_CURSOR_MAX_WM,
898 PINEVIEW_CURSOR_DFT_WM,
899 PINEVIEW_CURSOR_GUARD_WM,
900 PINEVIEW_FIFO_LINE_SIZE
901 };
902 static const struct intel_watermark_params g4x_wm_info = {
903 G4X_FIFO_SIZE,
904 G4X_MAX_WM,
905 G4X_MAX_WM,
906 2,
907 G4X_FIFO_LINE_SIZE,
908 };
909 static const struct intel_watermark_params g4x_cursor_wm_info = {
910 I965_CURSOR_FIFO,
911 I965_CURSOR_MAX_WM,
912 I965_CURSOR_DFT_WM,
913 2,
914 G4X_FIFO_LINE_SIZE,
915 };
916 static const struct intel_watermark_params valleyview_wm_info = {
917 VALLEYVIEW_FIFO_SIZE,
918 VALLEYVIEW_MAX_WM,
919 VALLEYVIEW_MAX_WM,
920 2,
921 G4X_FIFO_LINE_SIZE,
922 };
923 static const struct intel_watermark_params valleyview_cursor_wm_info = {
924 I965_CURSOR_FIFO,
925 VALLEYVIEW_CURSOR_MAX_WM,
926 I965_CURSOR_DFT_WM,
927 2,
928 G4X_FIFO_LINE_SIZE,
929 };
930 static const struct intel_watermark_params i965_cursor_wm_info = {
931 I965_CURSOR_FIFO,
932 I965_CURSOR_MAX_WM,
933 I965_CURSOR_DFT_WM,
934 2,
935 I915_FIFO_LINE_SIZE,
936 };
937 static const struct intel_watermark_params i945_wm_info = {
938 I945_FIFO_SIZE,
939 I915_MAX_WM,
940 1,
941 2,
942 I915_FIFO_LINE_SIZE
943 };
944 static const struct intel_watermark_params i915_wm_info = {
945 I915_FIFO_SIZE,
946 I915_MAX_WM,
947 1,
948 2,
949 I915_FIFO_LINE_SIZE
950 };
951 static const struct intel_watermark_params i855_wm_info = {
952 I855GM_FIFO_SIZE,
953 I915_MAX_WM,
954 1,
955 2,
956 I830_FIFO_LINE_SIZE
957 };
958 static const struct intel_watermark_params i830_wm_info = {
959 I830_FIFO_SIZE,
960 I915_MAX_WM,
961 1,
962 2,
963 I830_FIFO_LINE_SIZE
964 };
965
966 static const struct intel_watermark_params ironlake_display_wm_info = {
967 ILK_DISPLAY_FIFO,
968 ILK_DISPLAY_MAXWM,
969 ILK_DISPLAY_DFTWM,
970 2,
971 ILK_FIFO_LINE_SIZE
972 };
973 static const struct intel_watermark_params ironlake_cursor_wm_info = {
974 ILK_CURSOR_FIFO,
975 ILK_CURSOR_MAXWM,
976 ILK_CURSOR_DFTWM,
977 2,
978 ILK_FIFO_LINE_SIZE
979 };
980 static const struct intel_watermark_params ironlake_display_srwm_info = {
981 ILK_DISPLAY_SR_FIFO,
982 ILK_DISPLAY_MAX_SRWM,
983 ILK_DISPLAY_DFT_SRWM,
984 2,
985 ILK_FIFO_LINE_SIZE
986 };
987 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
988 ILK_CURSOR_SR_FIFO,
989 ILK_CURSOR_MAX_SRWM,
990 ILK_CURSOR_DFT_SRWM,
991 2,
992 ILK_FIFO_LINE_SIZE
993 };
994
995 static const struct intel_watermark_params sandybridge_display_wm_info = {
996 SNB_DISPLAY_FIFO,
997 SNB_DISPLAY_MAXWM,
998 SNB_DISPLAY_DFTWM,
999 2,
1000 SNB_FIFO_LINE_SIZE
1001 };
1002 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
1003 SNB_CURSOR_FIFO,
1004 SNB_CURSOR_MAXWM,
1005 SNB_CURSOR_DFTWM,
1006 2,
1007 SNB_FIFO_LINE_SIZE
1008 };
1009 static const struct intel_watermark_params sandybridge_display_srwm_info = {
1010 SNB_DISPLAY_SR_FIFO,
1011 SNB_DISPLAY_MAX_SRWM,
1012 SNB_DISPLAY_DFT_SRWM,
1013 2,
1014 SNB_FIFO_LINE_SIZE
1015 };
1016 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1017 SNB_CURSOR_SR_FIFO,
1018 SNB_CURSOR_MAX_SRWM,
1019 SNB_CURSOR_DFT_SRWM,
1020 2,
1021 SNB_FIFO_LINE_SIZE
1022 };
1023
1024
1025 /**
1026 * intel_calculate_wm - calculate watermark level
1027 * @clock_in_khz: pixel clock
1028 * @wm: chip FIFO params
1029 * @pixel_size: display pixel size
1030 * @latency_ns: memory latency for the platform
1031 *
1032 * Calculate the watermark level (the level at which the display plane will
1033 * start fetching from memory again). Each chip has a different display
1034 * FIFO size and allocation, so the caller needs to figure that out and pass
1035 * in the correct intel_watermark_params structure.
1036 *
1037 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1038 * on the pixel size. When it reaches the watermark level, it'll start
1039 * fetching FIFO line sized based chunks from memory until the FIFO fills
1040 * past the watermark point. If the FIFO drains completely, a FIFO underrun
1041 * will occur, and a display engine hang could result.
1042 */
1043 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1044 const struct intel_watermark_params *wm,
1045 int fifo_size,
1046 int pixel_size,
1047 unsigned long latency_ns)
1048 {
1049 long entries_required, wm_size;
1050
1051 /*
1052 * Note: we need to make sure we don't overflow for various clock &
1053 * latency values.
1054 * clocks go from a few thousand to several hundred thousand.
1055 * latency is usually a few thousand
1056 */
1057 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1058 1000;
1059 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1060
1061 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1062
1063 wm_size = fifo_size - (entries_required + wm->guard_size);
1064
1065 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1066
1067 /* Don't promote wm_size to unsigned... */
1068 if (wm_size > (long)wm->max_wm)
1069 wm_size = wm->max_wm;
1070 if (wm_size <= 0)
1071 wm_size = wm->default_wm;
1072 return wm_size;
1073 }
1074
1075 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1076 {
1077 struct drm_crtc *crtc, *enabled = NULL;
1078
1079 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1080 if (intel_crtc_active(crtc)) {
1081 if (enabled)
1082 return NULL;
1083 enabled = crtc;
1084 }
1085 }
1086
1087 return enabled;
1088 }
1089
1090 static void pineview_update_wm(struct drm_device *dev)
1091 {
1092 struct drm_i915_private *dev_priv = dev->dev_private;
1093 struct drm_crtc *crtc;
1094 const struct cxsr_latency *latency;
1095 u32 reg;
1096 unsigned long wm;
1097
1098 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1099 dev_priv->fsb_freq, dev_priv->mem_freq);
1100 if (!latency) {
1101 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1102 pineview_disable_cxsr(dev);
1103 return;
1104 }
1105
1106 crtc = single_enabled_crtc(dev);
1107 if (crtc) {
1108 int clock = crtc->mode.clock;
1109 int pixel_size = crtc->fb->bits_per_pixel / 8;
1110
1111 /* Display SR */
1112 wm = intel_calculate_wm(clock, &pineview_display_wm,
1113 pineview_display_wm.fifo_size,
1114 pixel_size, latency->display_sr);
1115 reg = I915_READ(DSPFW1);
1116 reg &= ~DSPFW_SR_MASK;
1117 reg |= wm << DSPFW_SR_SHIFT;
1118 I915_WRITE(DSPFW1, reg);
1119 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1120
1121 /* cursor SR */
1122 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1123 pineview_display_wm.fifo_size,
1124 pixel_size, latency->cursor_sr);
1125 reg = I915_READ(DSPFW3);
1126 reg &= ~DSPFW_CURSOR_SR_MASK;
1127 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1128 I915_WRITE(DSPFW3, reg);
1129
1130 /* Display HPLL off SR */
1131 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1132 pineview_display_hplloff_wm.fifo_size,
1133 pixel_size, latency->display_hpll_disable);
1134 reg = I915_READ(DSPFW3);
1135 reg &= ~DSPFW_HPLL_SR_MASK;
1136 reg |= wm & DSPFW_HPLL_SR_MASK;
1137 I915_WRITE(DSPFW3, reg);
1138
1139 /* cursor HPLL off SR */
1140 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1141 pineview_display_hplloff_wm.fifo_size,
1142 pixel_size, latency->cursor_hpll_disable);
1143 reg = I915_READ(DSPFW3);
1144 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1145 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1146 I915_WRITE(DSPFW3, reg);
1147 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1148
1149 /* activate cxsr */
1150 I915_WRITE(DSPFW3,
1151 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1152 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1153 } else {
1154 pineview_disable_cxsr(dev);
1155 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1156 }
1157 }
1158
1159 static bool g4x_compute_wm0(struct drm_device *dev,
1160 int plane,
1161 const struct intel_watermark_params *display,
1162 int display_latency_ns,
1163 const struct intel_watermark_params *cursor,
1164 int cursor_latency_ns,
1165 int *plane_wm,
1166 int *cursor_wm)
1167 {
1168 struct drm_crtc *crtc;
1169 int htotal, hdisplay, clock, pixel_size;
1170 int line_time_us, line_count;
1171 int entries, tlb_miss;
1172
1173 crtc = intel_get_crtc_for_plane(dev, plane);
1174 if (!intel_crtc_active(crtc)) {
1175 *cursor_wm = cursor->guard_size;
1176 *plane_wm = display->guard_size;
1177 return false;
1178 }
1179
1180 htotal = crtc->mode.htotal;
1181 hdisplay = crtc->mode.hdisplay;
1182 clock = crtc->mode.clock;
1183 pixel_size = crtc->fb->bits_per_pixel / 8;
1184
1185 /* Use the small buffer method to calculate plane watermark */
1186 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1187 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1188 if (tlb_miss > 0)
1189 entries += tlb_miss;
1190 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1191 *plane_wm = entries + display->guard_size;
1192 if (*plane_wm > (int)display->max_wm)
1193 *plane_wm = display->max_wm;
1194
1195 /* Use the large buffer method to calculate cursor watermark */
1196 line_time_us = ((htotal * 1000) / clock);
1197 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1198 entries = line_count * 64 * pixel_size;
1199 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1200 if (tlb_miss > 0)
1201 entries += tlb_miss;
1202 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1203 *cursor_wm = entries + cursor->guard_size;
1204 if (*cursor_wm > (int)cursor->max_wm)
1205 *cursor_wm = (int)cursor->max_wm;
1206
1207 return true;
1208 }
1209
1210 /*
1211 * Check the wm result.
1212 *
1213 * If any calculated watermark values is larger than the maximum value that
1214 * can be programmed into the associated watermark register, that watermark
1215 * must be disabled.
1216 */
1217 static bool g4x_check_srwm(struct drm_device *dev,
1218 int display_wm, int cursor_wm,
1219 const struct intel_watermark_params *display,
1220 const struct intel_watermark_params *cursor)
1221 {
1222 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1223 display_wm, cursor_wm);
1224
1225 if (display_wm > display->max_wm) {
1226 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1227 display_wm, display->max_wm);
1228 return false;
1229 }
1230
1231 if (cursor_wm > cursor->max_wm) {
1232 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1233 cursor_wm, cursor->max_wm);
1234 return false;
1235 }
1236
1237 if (!(display_wm || cursor_wm)) {
1238 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1239 return false;
1240 }
1241
1242 return true;
1243 }
1244
1245 static bool g4x_compute_srwm(struct drm_device *dev,
1246 int plane,
1247 int latency_ns,
1248 const struct intel_watermark_params *display,
1249 const struct intel_watermark_params *cursor,
1250 int *display_wm, int *cursor_wm)
1251 {
1252 struct drm_crtc *crtc;
1253 int hdisplay, htotal, pixel_size, clock;
1254 unsigned long line_time_us;
1255 int line_count, line_size;
1256 int small, large;
1257 int entries;
1258
1259 if (!latency_ns) {
1260 *display_wm = *cursor_wm = 0;
1261 return false;
1262 }
1263
1264 crtc = intel_get_crtc_for_plane(dev, plane);
1265 hdisplay = crtc->mode.hdisplay;
1266 htotal = crtc->mode.htotal;
1267 clock = crtc->mode.clock;
1268 pixel_size = crtc->fb->bits_per_pixel / 8;
1269
1270 line_time_us = (htotal * 1000) / clock;
1271 line_count = (latency_ns / line_time_us + 1000) / 1000;
1272 line_size = hdisplay * pixel_size;
1273
1274 /* Use the minimum of the small and large buffer method for primary */
1275 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1276 large = line_count * line_size;
1277
1278 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1279 *display_wm = entries + display->guard_size;
1280
1281 /* calculate the self-refresh watermark for display cursor */
1282 entries = line_count * pixel_size * 64;
1283 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1284 *cursor_wm = entries + cursor->guard_size;
1285
1286 return g4x_check_srwm(dev,
1287 *display_wm, *cursor_wm,
1288 display, cursor);
1289 }
1290
1291 static bool vlv_compute_drain_latency(struct drm_device *dev,
1292 int plane,
1293 int *plane_prec_mult,
1294 int *plane_dl,
1295 int *cursor_prec_mult,
1296 int *cursor_dl)
1297 {
1298 struct drm_crtc *crtc;
1299 int clock, pixel_size;
1300 int entries;
1301
1302 crtc = intel_get_crtc_for_plane(dev, plane);
1303 if (!intel_crtc_active(crtc))
1304 return false;
1305
1306 clock = crtc->mode.clock; /* VESA DOT Clock */
1307 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
1308
1309 entries = (clock / 1000) * pixel_size;
1310 *plane_prec_mult = (entries > 256) ?
1311 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1312 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1313 pixel_size);
1314
1315 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1316 *cursor_prec_mult = (entries > 256) ?
1317 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1318 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1319
1320 return true;
1321 }
1322
1323 /*
1324 * Update drain latency registers of memory arbiter
1325 *
1326 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1327 * to be programmed. Each plane has a drain latency multiplier and a drain
1328 * latency value.
1329 */
1330
1331 static void vlv_update_drain_latency(struct drm_device *dev)
1332 {
1333 struct drm_i915_private *dev_priv = dev->dev_private;
1334 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1335 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1336 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1337 either 16 or 32 */
1338
1339 /* For plane A, Cursor A */
1340 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1341 &cursor_prec_mult, &cursora_dl)) {
1342 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1343 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1344 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1345 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1346
1347 I915_WRITE(VLV_DDL1, cursora_prec |
1348 (cursora_dl << DDL_CURSORA_SHIFT) |
1349 planea_prec | planea_dl);
1350 }
1351
1352 /* For plane B, Cursor B */
1353 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1354 &cursor_prec_mult, &cursorb_dl)) {
1355 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1356 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1357 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1358 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1359
1360 I915_WRITE(VLV_DDL2, cursorb_prec |
1361 (cursorb_dl << DDL_CURSORB_SHIFT) |
1362 planeb_prec | planeb_dl);
1363 }
1364 }
1365
1366 #define single_plane_enabled(mask) is_power_of_2(mask)
1367
1368 static void valleyview_update_wm(struct drm_device *dev)
1369 {
1370 static const int sr_latency_ns = 12000;
1371 struct drm_i915_private *dev_priv = dev->dev_private;
1372 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1373 int plane_sr, cursor_sr;
1374 int ignore_plane_sr, ignore_cursor_sr;
1375 unsigned int enabled = 0;
1376
1377 vlv_update_drain_latency(dev);
1378
1379 if (g4x_compute_wm0(dev, PIPE_A,
1380 &valleyview_wm_info, latency_ns,
1381 &valleyview_cursor_wm_info, latency_ns,
1382 &planea_wm, &cursora_wm))
1383 enabled |= 1 << PIPE_A;
1384
1385 if (g4x_compute_wm0(dev, PIPE_B,
1386 &valleyview_wm_info, latency_ns,
1387 &valleyview_cursor_wm_info, latency_ns,
1388 &planeb_wm, &cursorb_wm))
1389 enabled |= 1 << PIPE_B;
1390
1391 if (single_plane_enabled(enabled) &&
1392 g4x_compute_srwm(dev, ffs(enabled) - 1,
1393 sr_latency_ns,
1394 &valleyview_wm_info,
1395 &valleyview_cursor_wm_info,
1396 &plane_sr, &ignore_cursor_sr) &&
1397 g4x_compute_srwm(dev, ffs(enabled) - 1,
1398 2*sr_latency_ns,
1399 &valleyview_wm_info,
1400 &valleyview_cursor_wm_info,
1401 &ignore_plane_sr, &cursor_sr)) {
1402 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1403 } else {
1404 I915_WRITE(FW_BLC_SELF_VLV,
1405 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1406 plane_sr = cursor_sr = 0;
1407 }
1408
1409 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1410 planea_wm, cursora_wm,
1411 planeb_wm, cursorb_wm,
1412 plane_sr, cursor_sr);
1413
1414 I915_WRITE(DSPFW1,
1415 (plane_sr << DSPFW_SR_SHIFT) |
1416 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1417 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1418 planea_wm);
1419 I915_WRITE(DSPFW2,
1420 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1421 (cursora_wm << DSPFW_CURSORA_SHIFT));
1422 I915_WRITE(DSPFW3,
1423 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1424 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1425 }
1426
1427 static void g4x_update_wm(struct drm_device *dev)
1428 {
1429 static const int sr_latency_ns = 12000;
1430 struct drm_i915_private *dev_priv = dev->dev_private;
1431 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1432 int plane_sr, cursor_sr;
1433 unsigned int enabled = 0;
1434
1435 if (g4x_compute_wm0(dev, PIPE_A,
1436 &g4x_wm_info, latency_ns,
1437 &g4x_cursor_wm_info, latency_ns,
1438 &planea_wm, &cursora_wm))
1439 enabled |= 1 << PIPE_A;
1440
1441 if (g4x_compute_wm0(dev, PIPE_B,
1442 &g4x_wm_info, latency_ns,
1443 &g4x_cursor_wm_info, latency_ns,
1444 &planeb_wm, &cursorb_wm))
1445 enabled |= 1 << PIPE_B;
1446
1447 if (single_plane_enabled(enabled) &&
1448 g4x_compute_srwm(dev, ffs(enabled) - 1,
1449 sr_latency_ns,
1450 &g4x_wm_info,
1451 &g4x_cursor_wm_info,
1452 &plane_sr, &cursor_sr)) {
1453 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1454 } else {
1455 I915_WRITE(FW_BLC_SELF,
1456 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1457 plane_sr = cursor_sr = 0;
1458 }
1459
1460 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1461 planea_wm, cursora_wm,
1462 planeb_wm, cursorb_wm,
1463 plane_sr, cursor_sr);
1464
1465 I915_WRITE(DSPFW1,
1466 (plane_sr << DSPFW_SR_SHIFT) |
1467 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1468 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1469 planea_wm);
1470 I915_WRITE(DSPFW2,
1471 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1472 (cursora_wm << DSPFW_CURSORA_SHIFT));
1473 /* HPLL off in SR has some issues on G4x... disable it */
1474 I915_WRITE(DSPFW3,
1475 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1476 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1477 }
1478
1479 static void i965_update_wm(struct drm_device *dev)
1480 {
1481 struct drm_i915_private *dev_priv = dev->dev_private;
1482 struct drm_crtc *crtc;
1483 int srwm = 1;
1484 int cursor_sr = 16;
1485
1486 /* Calc sr entries for one plane configs */
1487 crtc = single_enabled_crtc(dev);
1488 if (crtc) {
1489 /* self-refresh has much higher latency */
1490 static const int sr_latency_ns = 12000;
1491 int clock = crtc->mode.clock;
1492 int htotal = crtc->mode.htotal;
1493 int hdisplay = crtc->mode.hdisplay;
1494 int pixel_size = crtc->fb->bits_per_pixel / 8;
1495 unsigned long line_time_us;
1496 int entries;
1497
1498 line_time_us = ((htotal * 1000) / clock);
1499
1500 /* Use ns/us then divide to preserve precision */
1501 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1502 pixel_size * hdisplay;
1503 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1504 srwm = I965_FIFO_SIZE - entries;
1505 if (srwm < 0)
1506 srwm = 1;
1507 srwm &= 0x1ff;
1508 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1509 entries, srwm);
1510
1511 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1512 pixel_size * 64;
1513 entries = DIV_ROUND_UP(entries,
1514 i965_cursor_wm_info.cacheline_size);
1515 cursor_sr = i965_cursor_wm_info.fifo_size -
1516 (entries + i965_cursor_wm_info.guard_size);
1517
1518 if (cursor_sr > i965_cursor_wm_info.max_wm)
1519 cursor_sr = i965_cursor_wm_info.max_wm;
1520
1521 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1522 "cursor %d\n", srwm, cursor_sr);
1523
1524 if (IS_CRESTLINE(dev))
1525 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1526 } else {
1527 /* Turn off self refresh if both pipes are enabled */
1528 if (IS_CRESTLINE(dev))
1529 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1530 & ~FW_BLC_SELF_EN);
1531 }
1532
1533 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1534 srwm);
1535
1536 /* 965 has limitations... */
1537 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1538 (8 << 16) | (8 << 8) | (8 << 0));
1539 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1540 /* update cursor SR watermark */
1541 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1542 }
1543
1544 static void i9xx_update_wm(struct drm_device *dev)
1545 {
1546 struct drm_i915_private *dev_priv = dev->dev_private;
1547 const struct intel_watermark_params *wm_info;
1548 uint32_t fwater_lo;
1549 uint32_t fwater_hi;
1550 int cwm, srwm = 1;
1551 int fifo_size;
1552 int planea_wm, planeb_wm;
1553 struct drm_crtc *crtc, *enabled = NULL;
1554
1555 if (IS_I945GM(dev))
1556 wm_info = &i945_wm_info;
1557 else if (!IS_GEN2(dev))
1558 wm_info = &i915_wm_info;
1559 else
1560 wm_info = &i855_wm_info;
1561
1562 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1563 crtc = intel_get_crtc_for_plane(dev, 0);
1564 if (intel_crtc_active(crtc)) {
1565 int cpp = crtc->fb->bits_per_pixel / 8;
1566 if (IS_GEN2(dev))
1567 cpp = 4;
1568
1569 planea_wm = intel_calculate_wm(crtc->mode.clock,
1570 wm_info, fifo_size, cpp,
1571 latency_ns);
1572 enabled = crtc;
1573 } else
1574 planea_wm = fifo_size - wm_info->guard_size;
1575
1576 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1577 crtc = intel_get_crtc_for_plane(dev, 1);
1578 if (intel_crtc_active(crtc)) {
1579 int cpp = crtc->fb->bits_per_pixel / 8;
1580 if (IS_GEN2(dev))
1581 cpp = 4;
1582
1583 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1584 wm_info, fifo_size, cpp,
1585 latency_ns);
1586 if (enabled == NULL)
1587 enabled = crtc;
1588 else
1589 enabled = NULL;
1590 } else
1591 planeb_wm = fifo_size - wm_info->guard_size;
1592
1593 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1594
1595 /*
1596 * Overlay gets an aggressive default since video jitter is bad.
1597 */
1598 cwm = 2;
1599
1600 /* Play safe and disable self-refresh before adjusting watermarks. */
1601 if (IS_I945G(dev) || IS_I945GM(dev))
1602 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1603 else if (IS_I915GM(dev))
1604 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1605
1606 /* Calc sr entries for one plane configs */
1607 if (HAS_FW_BLC(dev) && enabled) {
1608 /* self-refresh has much higher latency */
1609 static const int sr_latency_ns = 6000;
1610 int clock = enabled->mode.clock;
1611 int htotal = enabled->mode.htotal;
1612 int hdisplay = enabled->mode.hdisplay;
1613 int pixel_size = enabled->fb->bits_per_pixel / 8;
1614 unsigned long line_time_us;
1615 int entries;
1616
1617 line_time_us = (htotal * 1000) / clock;
1618
1619 /* Use ns/us then divide to preserve precision */
1620 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1621 pixel_size * hdisplay;
1622 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1623 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1624 srwm = wm_info->fifo_size - entries;
1625 if (srwm < 0)
1626 srwm = 1;
1627
1628 if (IS_I945G(dev) || IS_I945GM(dev))
1629 I915_WRITE(FW_BLC_SELF,
1630 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1631 else if (IS_I915GM(dev))
1632 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1633 }
1634
1635 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1636 planea_wm, planeb_wm, cwm, srwm);
1637
1638 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1639 fwater_hi = (cwm & 0x1f);
1640
1641 /* Set request length to 8 cachelines per fetch */
1642 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1643 fwater_hi = fwater_hi | (1 << 8);
1644
1645 I915_WRITE(FW_BLC, fwater_lo);
1646 I915_WRITE(FW_BLC2, fwater_hi);
1647
1648 if (HAS_FW_BLC(dev)) {
1649 if (enabled) {
1650 if (IS_I945G(dev) || IS_I945GM(dev))
1651 I915_WRITE(FW_BLC_SELF,
1652 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1653 else if (IS_I915GM(dev))
1654 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1655 DRM_DEBUG_KMS("memory self refresh enabled\n");
1656 } else
1657 DRM_DEBUG_KMS("memory self refresh disabled\n");
1658 }
1659 }
1660
1661 static void i830_update_wm(struct drm_device *dev)
1662 {
1663 struct drm_i915_private *dev_priv = dev->dev_private;
1664 struct drm_crtc *crtc;
1665 uint32_t fwater_lo;
1666 int planea_wm;
1667
1668 crtc = single_enabled_crtc(dev);
1669 if (crtc == NULL)
1670 return;
1671
1672 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1673 dev_priv->display.get_fifo_size(dev, 0),
1674 4, latency_ns);
1675 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1676 fwater_lo |= (3<<8) | planea_wm;
1677
1678 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1679
1680 I915_WRITE(FW_BLC, fwater_lo);
1681 }
1682
1683 /*
1684 * Check the wm result.
1685 *
1686 * If any calculated watermark values is larger than the maximum value that
1687 * can be programmed into the associated watermark register, that watermark
1688 * must be disabled.
1689 */
1690 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1691 int fbc_wm, int display_wm, int cursor_wm,
1692 const struct intel_watermark_params *display,
1693 const struct intel_watermark_params *cursor)
1694 {
1695 struct drm_i915_private *dev_priv = dev->dev_private;
1696
1697 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1698 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1699
1700 if (fbc_wm > SNB_FBC_MAX_SRWM) {
1701 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1702 fbc_wm, SNB_FBC_MAX_SRWM, level);
1703
1704 /* fbc has it's own way to disable FBC WM */
1705 I915_WRITE(DISP_ARB_CTL,
1706 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1707 return false;
1708 } else if (INTEL_INFO(dev)->gen >= 6) {
1709 /* enable FBC WM (except on ILK, where it must remain off) */
1710 I915_WRITE(DISP_ARB_CTL,
1711 I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1712 }
1713
1714 if (display_wm > display->max_wm) {
1715 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1716 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1717 return false;
1718 }
1719
1720 if (cursor_wm > cursor->max_wm) {
1721 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1722 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1723 return false;
1724 }
1725
1726 if (!(fbc_wm || display_wm || cursor_wm)) {
1727 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1728 return false;
1729 }
1730
1731 return true;
1732 }
1733
1734 /*
1735 * Compute watermark values of WM[1-3],
1736 */
1737 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1738 int latency_ns,
1739 const struct intel_watermark_params *display,
1740 const struct intel_watermark_params *cursor,
1741 int *fbc_wm, int *display_wm, int *cursor_wm)
1742 {
1743 struct drm_crtc *crtc;
1744 unsigned long line_time_us;
1745 int hdisplay, htotal, pixel_size, clock;
1746 int line_count, line_size;
1747 int small, large;
1748 int entries;
1749
1750 if (!latency_ns) {
1751 *fbc_wm = *display_wm = *cursor_wm = 0;
1752 return false;
1753 }
1754
1755 crtc = intel_get_crtc_for_plane(dev, plane);
1756 hdisplay = crtc->mode.hdisplay;
1757 htotal = crtc->mode.htotal;
1758 clock = crtc->mode.clock;
1759 pixel_size = crtc->fb->bits_per_pixel / 8;
1760
1761 line_time_us = (htotal * 1000) / clock;
1762 line_count = (latency_ns / line_time_us + 1000) / 1000;
1763 line_size = hdisplay * pixel_size;
1764
1765 /* Use the minimum of the small and large buffer method for primary */
1766 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1767 large = line_count * line_size;
1768
1769 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1770 *display_wm = entries + display->guard_size;
1771
1772 /*
1773 * Spec says:
1774 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1775 */
1776 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1777
1778 /* calculate the self-refresh watermark for display cursor */
1779 entries = line_count * pixel_size * 64;
1780 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1781 *cursor_wm = entries + cursor->guard_size;
1782
1783 return ironlake_check_srwm(dev, level,
1784 *fbc_wm, *display_wm, *cursor_wm,
1785 display, cursor);
1786 }
1787
1788 static void ironlake_update_wm(struct drm_device *dev)
1789 {
1790 struct drm_i915_private *dev_priv = dev->dev_private;
1791 int fbc_wm, plane_wm, cursor_wm;
1792 unsigned int enabled;
1793
1794 enabled = 0;
1795 if (g4x_compute_wm0(dev, PIPE_A,
1796 &ironlake_display_wm_info,
1797 dev_priv->wm.pri_latency[0] * 100,
1798 &ironlake_cursor_wm_info,
1799 dev_priv->wm.cur_latency[0] * 100,
1800 &plane_wm, &cursor_wm)) {
1801 I915_WRITE(WM0_PIPEA_ILK,
1802 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1803 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1804 " plane %d, " "cursor: %d\n",
1805 plane_wm, cursor_wm);
1806 enabled |= 1 << PIPE_A;
1807 }
1808
1809 if (g4x_compute_wm0(dev, PIPE_B,
1810 &ironlake_display_wm_info,
1811 dev_priv->wm.pri_latency[0] * 100,
1812 &ironlake_cursor_wm_info,
1813 dev_priv->wm.cur_latency[0] * 100,
1814 &plane_wm, &cursor_wm)) {
1815 I915_WRITE(WM0_PIPEB_ILK,
1816 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1817 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1818 " plane %d, cursor: %d\n",
1819 plane_wm, cursor_wm);
1820 enabled |= 1 << PIPE_B;
1821 }
1822
1823 /*
1824 * Calculate and update the self-refresh watermark only when one
1825 * display plane is used.
1826 */
1827 I915_WRITE(WM3_LP_ILK, 0);
1828 I915_WRITE(WM2_LP_ILK, 0);
1829 I915_WRITE(WM1_LP_ILK, 0);
1830
1831 if (!single_plane_enabled(enabled))
1832 return;
1833 enabled = ffs(enabled) - 1;
1834
1835 /* WM1 */
1836 if (!ironlake_compute_srwm(dev, 1, enabled,
1837 dev_priv->wm.pri_latency[1] * 500,
1838 &ironlake_display_srwm_info,
1839 &ironlake_cursor_srwm_info,
1840 &fbc_wm, &plane_wm, &cursor_wm))
1841 return;
1842
1843 I915_WRITE(WM1_LP_ILK,
1844 WM1_LP_SR_EN |
1845 (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1846 (fbc_wm << WM1_LP_FBC_SHIFT) |
1847 (plane_wm << WM1_LP_SR_SHIFT) |
1848 cursor_wm);
1849
1850 /* WM2 */
1851 if (!ironlake_compute_srwm(dev, 2, enabled,
1852 dev_priv->wm.pri_latency[2] * 500,
1853 &ironlake_display_srwm_info,
1854 &ironlake_cursor_srwm_info,
1855 &fbc_wm, &plane_wm, &cursor_wm))
1856 return;
1857
1858 I915_WRITE(WM2_LP_ILK,
1859 WM2_LP_EN |
1860 (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1861 (fbc_wm << WM1_LP_FBC_SHIFT) |
1862 (plane_wm << WM1_LP_SR_SHIFT) |
1863 cursor_wm);
1864
1865 /*
1866 * WM3 is unsupported on ILK, probably because we don't have latency
1867 * data for that power state
1868 */
1869 }
1870
1871 static void sandybridge_update_wm(struct drm_device *dev)
1872 {
1873 struct drm_i915_private *dev_priv = dev->dev_private;
1874 int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
1875 u32 val;
1876 int fbc_wm, plane_wm, cursor_wm;
1877 unsigned int enabled;
1878
1879 enabled = 0;
1880 if (g4x_compute_wm0(dev, PIPE_A,
1881 &sandybridge_display_wm_info, latency,
1882 &sandybridge_cursor_wm_info, latency,
1883 &plane_wm, &cursor_wm)) {
1884 val = I915_READ(WM0_PIPEA_ILK);
1885 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1886 I915_WRITE(WM0_PIPEA_ILK, val |
1887 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1888 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1889 " plane %d, " "cursor: %d\n",
1890 plane_wm, cursor_wm);
1891 enabled |= 1 << PIPE_A;
1892 }
1893
1894 if (g4x_compute_wm0(dev, PIPE_B,
1895 &sandybridge_display_wm_info, latency,
1896 &sandybridge_cursor_wm_info, latency,
1897 &plane_wm, &cursor_wm)) {
1898 val = I915_READ(WM0_PIPEB_ILK);
1899 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1900 I915_WRITE(WM0_PIPEB_ILK, val |
1901 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1902 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1903 " plane %d, cursor: %d\n",
1904 plane_wm, cursor_wm);
1905 enabled |= 1 << PIPE_B;
1906 }
1907
1908 /*
1909 * Calculate and update the self-refresh watermark only when one
1910 * display plane is used.
1911 *
1912 * SNB support 3 levels of watermark.
1913 *
1914 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1915 * and disabled in the descending order
1916 *
1917 */
1918 I915_WRITE(WM3_LP_ILK, 0);
1919 I915_WRITE(WM2_LP_ILK, 0);
1920 I915_WRITE(WM1_LP_ILK, 0);
1921
1922 if (!single_plane_enabled(enabled) ||
1923 dev_priv->sprite_scaling_enabled)
1924 return;
1925 enabled = ffs(enabled) - 1;
1926
1927 /* WM1 */
1928 if (!ironlake_compute_srwm(dev, 1, enabled,
1929 dev_priv->wm.pri_latency[1] * 500,
1930 &sandybridge_display_srwm_info,
1931 &sandybridge_cursor_srwm_info,
1932 &fbc_wm, &plane_wm, &cursor_wm))
1933 return;
1934
1935 I915_WRITE(WM1_LP_ILK,
1936 WM1_LP_SR_EN |
1937 (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1938 (fbc_wm << WM1_LP_FBC_SHIFT) |
1939 (plane_wm << WM1_LP_SR_SHIFT) |
1940 cursor_wm);
1941
1942 /* WM2 */
1943 if (!ironlake_compute_srwm(dev, 2, enabled,
1944 dev_priv->wm.pri_latency[2] * 500,
1945 &sandybridge_display_srwm_info,
1946 &sandybridge_cursor_srwm_info,
1947 &fbc_wm, &plane_wm, &cursor_wm))
1948 return;
1949
1950 I915_WRITE(WM2_LP_ILK,
1951 WM2_LP_EN |
1952 (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1953 (fbc_wm << WM1_LP_FBC_SHIFT) |
1954 (plane_wm << WM1_LP_SR_SHIFT) |
1955 cursor_wm);
1956
1957 /* WM3 */
1958 if (!ironlake_compute_srwm(dev, 3, enabled,
1959 dev_priv->wm.pri_latency[3] * 500,
1960 &sandybridge_display_srwm_info,
1961 &sandybridge_cursor_srwm_info,
1962 &fbc_wm, &plane_wm, &cursor_wm))
1963 return;
1964
1965 I915_WRITE(WM3_LP_ILK,
1966 WM3_LP_EN |
1967 (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
1968 (fbc_wm << WM1_LP_FBC_SHIFT) |
1969 (plane_wm << WM1_LP_SR_SHIFT) |
1970 cursor_wm);
1971 }
1972
1973 static void ivybridge_update_wm(struct drm_device *dev)
1974 {
1975 struct drm_i915_private *dev_priv = dev->dev_private;
1976 int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
1977 u32 val;
1978 int fbc_wm, plane_wm, cursor_wm;
1979 int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1980 unsigned int enabled;
1981
1982 enabled = 0;
1983 if (g4x_compute_wm0(dev, PIPE_A,
1984 &sandybridge_display_wm_info, latency,
1985 &sandybridge_cursor_wm_info, latency,
1986 &plane_wm, &cursor_wm)) {
1987 val = I915_READ(WM0_PIPEA_ILK);
1988 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1989 I915_WRITE(WM0_PIPEA_ILK, val |
1990 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1991 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1992 " plane %d, " "cursor: %d\n",
1993 plane_wm, cursor_wm);
1994 enabled |= 1 << PIPE_A;
1995 }
1996
1997 if (g4x_compute_wm0(dev, PIPE_B,
1998 &sandybridge_display_wm_info, latency,
1999 &sandybridge_cursor_wm_info, latency,
2000 &plane_wm, &cursor_wm)) {
2001 val = I915_READ(WM0_PIPEB_ILK);
2002 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2003 I915_WRITE(WM0_PIPEB_ILK, val |
2004 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2005 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
2006 " plane %d, cursor: %d\n",
2007 plane_wm, cursor_wm);
2008 enabled |= 1 << PIPE_B;
2009 }
2010
2011 if (g4x_compute_wm0(dev, PIPE_C,
2012 &sandybridge_display_wm_info, latency,
2013 &sandybridge_cursor_wm_info, latency,
2014 &plane_wm, &cursor_wm)) {
2015 val = I915_READ(WM0_PIPEC_IVB);
2016 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2017 I915_WRITE(WM0_PIPEC_IVB, val |
2018 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2019 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2020 " plane %d, cursor: %d\n",
2021 plane_wm, cursor_wm);
2022 enabled |= 1 << PIPE_C;
2023 }
2024
2025 /*
2026 * Calculate and update the self-refresh watermark only when one
2027 * display plane is used.
2028 *
2029 * SNB support 3 levels of watermark.
2030 *
2031 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2032 * and disabled in the descending order
2033 *
2034 */
2035 I915_WRITE(WM3_LP_ILK, 0);
2036 I915_WRITE(WM2_LP_ILK, 0);
2037 I915_WRITE(WM1_LP_ILK, 0);
2038
2039 if (!single_plane_enabled(enabled) ||
2040 dev_priv->sprite_scaling_enabled)
2041 return;
2042 enabled = ffs(enabled) - 1;
2043
2044 /* WM1 */
2045 if (!ironlake_compute_srwm(dev, 1, enabled,
2046 dev_priv->wm.pri_latency[1] * 500,
2047 &sandybridge_display_srwm_info,
2048 &sandybridge_cursor_srwm_info,
2049 &fbc_wm, &plane_wm, &cursor_wm))
2050 return;
2051
2052 I915_WRITE(WM1_LP_ILK,
2053 WM1_LP_SR_EN |
2054 (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
2055 (fbc_wm << WM1_LP_FBC_SHIFT) |
2056 (plane_wm << WM1_LP_SR_SHIFT) |
2057 cursor_wm);
2058
2059 /* WM2 */
2060 if (!ironlake_compute_srwm(dev, 2, enabled,
2061 dev_priv->wm.pri_latency[2] * 500,
2062 &sandybridge_display_srwm_info,
2063 &sandybridge_cursor_srwm_info,
2064 &fbc_wm, &plane_wm, &cursor_wm))
2065 return;
2066
2067 I915_WRITE(WM2_LP_ILK,
2068 WM2_LP_EN |
2069 (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
2070 (fbc_wm << WM1_LP_FBC_SHIFT) |
2071 (plane_wm << WM1_LP_SR_SHIFT) |
2072 cursor_wm);
2073
2074 /* WM3, note we have to correct the cursor latency */
2075 if (!ironlake_compute_srwm(dev, 3, enabled,
2076 dev_priv->wm.pri_latency[3] * 500,
2077 &sandybridge_display_srwm_info,
2078 &sandybridge_cursor_srwm_info,
2079 &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2080 !ironlake_compute_srwm(dev, 3, enabled,
2081 dev_priv->wm.cur_latency[3] * 500,
2082 &sandybridge_display_srwm_info,
2083 &sandybridge_cursor_srwm_info,
2084 &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2085 return;
2086
2087 I915_WRITE(WM3_LP_ILK,
2088 WM3_LP_EN |
2089 (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
2090 (fbc_wm << WM1_LP_FBC_SHIFT) |
2091 (plane_wm << WM1_LP_SR_SHIFT) |
2092 cursor_wm);
2093 }
2094
2095 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
2096 struct drm_crtc *crtc)
2097 {
2098 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2099 uint32_t pixel_rate;
2100
2101 pixel_rate = intel_crtc->config.adjusted_mode.clock;
2102
2103 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
2104 * adjust the pixel_rate here. */
2105
2106 if (intel_crtc->config.pch_pfit.enabled) {
2107 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2108 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
2109
2110 pipe_w = intel_crtc->config.requested_mode.hdisplay;
2111 pipe_h = intel_crtc->config.requested_mode.vdisplay;
2112 pfit_w = (pfit_size >> 16) & 0xFFFF;
2113 pfit_h = pfit_size & 0xFFFF;
2114 if (pipe_w < pfit_w)
2115 pipe_w = pfit_w;
2116 if (pipe_h < pfit_h)
2117 pipe_h = pfit_h;
2118
2119 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
2120 pfit_w * pfit_h);
2121 }
2122
2123 return pixel_rate;
2124 }
2125
2126 /* latency must be in 0.1us units. */
2127 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2128 uint32_t latency)
2129 {
2130 uint64_t ret;
2131
2132 if (WARN(latency == 0, "Latency value missing\n"))
2133 return UINT_MAX;
2134
2135 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
2136 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
2137
2138 return ret;
2139 }
2140
2141 /* latency must be in 0.1us units. */
2142 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2143 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2144 uint32_t latency)
2145 {
2146 uint32_t ret;
2147
2148 if (WARN(latency == 0, "Latency value missing\n"))
2149 return UINT_MAX;
2150
2151 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
2152 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
2153 ret = DIV_ROUND_UP(ret, 64) + 2;
2154 return ret;
2155 }
2156
2157 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2158 uint8_t bytes_per_pixel)
2159 {
2160 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
2161 }
2162
2163 struct hsw_pipe_wm_parameters {
2164 bool active;
2165 uint32_t pipe_htotal;
2166 uint32_t pixel_rate;
2167 struct intel_plane_wm_parameters pri;
2168 struct intel_plane_wm_parameters spr;
2169 struct intel_plane_wm_parameters cur;
2170 };
2171
2172 struct hsw_wm_maximums {
2173 uint16_t pri;
2174 uint16_t spr;
2175 uint16_t cur;
2176 uint16_t fbc;
2177 };
2178
2179 struct hsw_wm_values {
2180 uint32_t wm_pipe[3];
2181 uint32_t wm_lp[3];
2182 uint32_t wm_lp_spr[3];
2183 uint32_t wm_linetime[3];
2184 bool enable_fbc_wm;
2185 };
2186
2187 /* used in computing the new watermarks state */
2188 struct intel_wm_config {
2189 unsigned int num_pipes_active;
2190 bool sprites_enabled;
2191 bool sprites_scaled;
2192 bool fbc_wm_enabled;
2193 };
2194
2195 /*
2196 * For both WM_PIPE and WM_LP.
2197 * mem_value must be in 0.1us units.
2198 */
2199 static uint32_t ilk_compute_pri_wm(struct hsw_pipe_wm_parameters *params,
2200 uint32_t mem_value,
2201 bool is_lp)
2202 {
2203 uint32_t method1, method2;
2204
2205 if (!params->active || !params->pri.enabled)
2206 return 0;
2207
2208 method1 = ilk_wm_method1(params->pixel_rate,
2209 params->pri.bytes_per_pixel,
2210 mem_value);
2211
2212 if (!is_lp)
2213 return method1;
2214
2215 method2 = ilk_wm_method2(params->pixel_rate,
2216 params->pipe_htotal,
2217 params->pri.horiz_pixels,
2218 params->pri.bytes_per_pixel,
2219 mem_value);
2220
2221 return min(method1, method2);
2222 }
2223
2224 /*
2225 * For both WM_PIPE and WM_LP.
2226 * mem_value must be in 0.1us units.
2227 */
2228 static uint32_t ilk_compute_spr_wm(struct hsw_pipe_wm_parameters *params,
2229 uint32_t mem_value)
2230 {
2231 uint32_t method1, method2;
2232
2233 if (!params->active || !params->spr.enabled)
2234 return 0;
2235
2236 method1 = ilk_wm_method1(params->pixel_rate,
2237 params->spr.bytes_per_pixel,
2238 mem_value);
2239 method2 = ilk_wm_method2(params->pixel_rate,
2240 params->pipe_htotal,
2241 params->spr.horiz_pixels,
2242 params->spr.bytes_per_pixel,
2243 mem_value);
2244 return min(method1, method2);
2245 }
2246
2247 /*
2248 * For both WM_PIPE and WM_LP.
2249 * mem_value must be in 0.1us units.
2250 */
2251 static uint32_t ilk_compute_cur_wm(struct hsw_pipe_wm_parameters *params,
2252 uint32_t mem_value)
2253 {
2254 if (!params->active || !params->cur.enabled)
2255 return 0;
2256
2257 return ilk_wm_method2(params->pixel_rate,
2258 params->pipe_htotal,
2259 params->cur.horiz_pixels,
2260 params->cur.bytes_per_pixel,
2261 mem_value);
2262 }
2263
2264 /* Only for WM_LP. */
2265 static uint32_t ilk_compute_fbc_wm(struct hsw_pipe_wm_parameters *params,
2266 uint32_t pri_val)
2267 {
2268 if (!params->active || !params->pri.enabled)
2269 return 0;
2270
2271 return ilk_wm_fbc(pri_val,
2272 params->pri.horiz_pixels,
2273 params->pri.bytes_per_pixel);
2274 }
2275
2276 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
2277 {
2278 if (INTEL_INFO(dev)->gen >= 7)
2279 return 768;
2280 else
2281 return 512;
2282 }
2283
2284 /* Calculate the maximum primary/sprite plane watermark */
2285 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2286 int level,
2287 const struct intel_wm_config *config,
2288 enum intel_ddb_partitioning ddb_partitioning,
2289 bool is_sprite)
2290 {
2291 unsigned int fifo_size = ilk_display_fifo_size(dev);
2292 unsigned int max;
2293
2294 /* if sprites aren't enabled, sprites get nothing */
2295 if (is_sprite && !config->sprites_enabled)
2296 return 0;
2297
2298 /* HSW allows LP1+ watermarks even with multiple pipes */
2299 if (level == 0 || config->num_pipes_active > 1) {
2300 fifo_size /= INTEL_INFO(dev)->num_pipes;
2301
2302 /*
2303 * For some reason the non self refresh
2304 * FIFO size is only half of the self
2305 * refresh FIFO size on ILK/SNB.
2306 */
2307 if (INTEL_INFO(dev)->gen <= 6)
2308 fifo_size /= 2;
2309 }
2310
2311 if (config->sprites_enabled) {
2312 /* level 0 is always calculated with 1:1 split */
2313 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2314 if (is_sprite)
2315 fifo_size *= 5;
2316 fifo_size /= 6;
2317 } else {
2318 fifo_size /= 2;
2319 }
2320 }
2321
2322 /* clamp to max that the registers can hold */
2323 if (INTEL_INFO(dev)->gen >= 7)
2324 /* IVB/HSW primary/sprite plane watermarks */
2325 max = level == 0 ? 127 : 1023;
2326 else if (!is_sprite)
2327 /* ILK/SNB primary plane watermarks */
2328 max = level == 0 ? 127 : 511;
2329 else
2330 /* ILK/SNB sprite plane watermarks */
2331 max = level == 0 ? 63 : 255;
2332
2333 return min(fifo_size, max);
2334 }
2335
2336 /* Calculate the maximum cursor plane watermark */
2337 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2338 int level,
2339 const struct intel_wm_config *config)
2340 {
2341 /* HSW LP1+ watermarks w/ multiple pipes */
2342 if (level > 0 && config->num_pipes_active > 1)
2343 return 64;
2344
2345 /* otherwise just report max that registers can hold */
2346 if (INTEL_INFO(dev)->gen >= 7)
2347 return level == 0 ? 63 : 255;
2348 else
2349 return level == 0 ? 31 : 63;
2350 }
2351
2352 /* Calculate the maximum FBC watermark */
2353 static unsigned int ilk_fbc_wm_max(void)
2354 {
2355 /* max that registers can hold */
2356 return 15;
2357 }
2358
2359 static void ilk_wm_max(struct drm_device *dev,
2360 int level,
2361 const struct intel_wm_config *config,
2362 enum intel_ddb_partitioning ddb_partitioning,
2363 struct hsw_wm_maximums *max)
2364 {
2365 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2366 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2367 max->cur = ilk_cursor_wm_max(dev, level, config);
2368 max->fbc = ilk_fbc_wm_max();
2369 }
2370
2371 static bool ilk_check_wm(int level,
2372 const struct hsw_wm_maximums *max,
2373 struct intel_wm_level *result)
2374 {
2375 bool ret;
2376
2377 /* already determined to be invalid? */
2378 if (!result->enable)
2379 return false;
2380
2381 result->enable = result->pri_val <= max->pri &&
2382 result->spr_val <= max->spr &&
2383 result->cur_val <= max->cur;
2384
2385 ret = result->enable;
2386
2387 /*
2388 * HACK until we can pre-compute everything,
2389 * and thus fail gracefully if LP0 watermarks
2390 * are exceeded...
2391 */
2392 if (level == 0 && !result->enable) {
2393 if (result->pri_val > max->pri)
2394 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2395 level, result->pri_val, max->pri);
2396 if (result->spr_val > max->spr)
2397 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2398 level, result->spr_val, max->spr);
2399 if (result->cur_val > max->cur)
2400 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2401 level, result->cur_val, max->cur);
2402
2403 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2404 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2405 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2406 result->enable = true;
2407 }
2408
2409 DRM_DEBUG_KMS("WM%d: %sabled\n", level, result->enable ? "en" : "dis");
2410
2411 return ret;
2412 }
2413
2414 static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
2415 int level,
2416 struct hsw_pipe_wm_parameters *p,
2417 struct intel_wm_level *result)
2418 {
2419 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2420 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2421 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2422
2423 /* WM1+ latency values stored in 0.5us units */
2424 if (level > 0) {
2425 pri_latency *= 5;
2426 spr_latency *= 5;
2427 cur_latency *= 5;
2428 }
2429
2430 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2431 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2432 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2433 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2434 result->enable = true;
2435 }
2436
2437 static bool hsw_compute_lp_wm(struct drm_i915_private *dev_priv,
2438 int level, struct hsw_wm_maximums *max,
2439 struct hsw_pipe_wm_parameters *params,
2440 struct intel_wm_level *result)
2441 {
2442 enum pipe pipe;
2443 struct intel_wm_level res[3];
2444
2445 for (pipe = PIPE_A; pipe <= PIPE_C; pipe++)
2446 ilk_compute_wm_level(dev_priv, level, &params[pipe], &res[pipe]);
2447
2448 result->pri_val = max3(res[0].pri_val, res[1].pri_val, res[2].pri_val);
2449 result->spr_val = max3(res[0].spr_val, res[1].spr_val, res[2].spr_val);
2450 result->cur_val = max3(res[0].cur_val, res[1].cur_val, res[2].cur_val);
2451 result->fbc_val = max3(res[0].fbc_val, res[1].fbc_val, res[2].fbc_val);
2452 result->enable = true;
2453
2454 return ilk_check_wm(level, max, result);
2455 }
2456
2457 static uint32_t hsw_compute_wm_pipe(struct drm_i915_private *dev_priv,
2458 enum pipe pipe,
2459 struct hsw_pipe_wm_parameters *params)
2460 {
2461 uint32_t pri_val, cur_val, spr_val;
2462 /* WM0 latency values stored in 0.1us units */
2463 uint16_t pri_latency = dev_priv->wm.pri_latency[0];
2464 uint16_t spr_latency = dev_priv->wm.spr_latency[0];
2465 uint16_t cur_latency = dev_priv->wm.cur_latency[0];
2466
2467 pri_val = ilk_compute_pri_wm(params, pri_latency, false);
2468 spr_val = ilk_compute_spr_wm(params, spr_latency);
2469 cur_val = ilk_compute_cur_wm(params, cur_latency);
2470
2471 WARN(pri_val > 127,
2472 "Primary WM error, mode not supported for pipe %c\n",
2473 pipe_name(pipe));
2474 WARN(spr_val > 127,
2475 "Sprite WM error, mode not supported for pipe %c\n",
2476 pipe_name(pipe));
2477 WARN(cur_val > 63,
2478 "Cursor WM error, mode not supported for pipe %c\n",
2479 pipe_name(pipe));
2480
2481 return (pri_val << WM0_PIPE_PLANE_SHIFT) |
2482 (spr_val << WM0_PIPE_SPRITE_SHIFT) |
2483 cur_val;
2484 }
2485
2486 static uint32_t
2487 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2488 {
2489 struct drm_i915_private *dev_priv = dev->dev_private;
2490 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2491 struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2492 u32 linetime, ips_linetime;
2493
2494 if (!intel_crtc_active(crtc))
2495 return 0;
2496
2497 /* The WM are computed with base on how long it takes to fill a single
2498 * row at the given clock rate, multiplied by 8.
2499 * */
2500 linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
2501 ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
2502 intel_ddi_get_cdclk_freq(dev_priv));
2503
2504 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2505 PIPE_WM_LINETIME_TIME(linetime);
2506 }
2507
2508 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2509 {
2510 struct drm_i915_private *dev_priv = dev->dev_private;
2511
2512 if (IS_HASWELL(dev)) {
2513 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2514
2515 wm[0] = (sskpd >> 56) & 0xFF;
2516 if (wm[0] == 0)
2517 wm[0] = sskpd & 0xF;
2518 wm[1] = (sskpd >> 4) & 0xFF;
2519 wm[2] = (sskpd >> 12) & 0xFF;
2520 wm[3] = (sskpd >> 20) & 0x1FF;
2521 wm[4] = (sskpd >> 32) & 0x1FF;
2522 } else if (INTEL_INFO(dev)->gen >= 6) {
2523 uint32_t sskpd = I915_READ(MCH_SSKPD);
2524
2525 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2526 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2527 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2528 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2529 } else if (INTEL_INFO(dev)->gen >= 5) {
2530 uint32_t mltr = I915_READ(MLTR_ILK);
2531
2532 /* ILK primary LP0 latency is 700 ns */
2533 wm[0] = 7;
2534 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2535 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2536 }
2537 }
2538
2539 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2540 {
2541 /* ILK sprite LP0 latency is 1300 ns */
2542 if (INTEL_INFO(dev)->gen == 5)
2543 wm[0] = 13;
2544 }
2545
2546 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2547 {
2548 /* ILK cursor LP0 latency is 1300 ns */
2549 if (INTEL_INFO(dev)->gen == 5)
2550 wm[0] = 13;
2551
2552 /* WaDoubleCursorLP3Latency:ivb */
2553 if (IS_IVYBRIDGE(dev))
2554 wm[3] *= 2;
2555 }
2556
2557 static void intel_print_wm_latency(struct drm_device *dev,
2558 const char *name,
2559 const uint16_t wm[5])
2560 {
2561 int level, max_level;
2562
2563 /* how many WM levels are we expecting */
2564 if (IS_HASWELL(dev))
2565 max_level = 4;
2566 else if (INTEL_INFO(dev)->gen >= 6)
2567 max_level = 3;
2568 else
2569 max_level = 2;
2570
2571 for (level = 0; level <= max_level; level++) {
2572 unsigned int latency = wm[level];
2573
2574 if (latency == 0) {
2575 DRM_ERROR("%s WM%d latency not provided\n",
2576 name, level);
2577 continue;
2578 }
2579
2580 /* WM1+ latency values in 0.5us units */
2581 if (level > 0)
2582 latency *= 5;
2583
2584 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2585 name, level, wm[level],
2586 latency / 10, latency % 10);
2587 }
2588 }
2589
2590 static void intel_setup_wm_latency(struct drm_device *dev)
2591 {
2592 struct drm_i915_private *dev_priv = dev->dev_private;
2593
2594 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2595
2596 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2597 sizeof(dev_priv->wm.pri_latency));
2598 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2599 sizeof(dev_priv->wm.pri_latency));
2600
2601 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2602 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2603
2604 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2605 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2606 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2607 }
2608
2609 static void hsw_compute_wm_parameters(struct drm_device *dev,
2610 struct hsw_pipe_wm_parameters *params,
2611 struct hsw_wm_maximums *lp_max_1_2,
2612 struct hsw_wm_maximums *lp_max_5_6)
2613 {
2614 struct drm_crtc *crtc;
2615 struct drm_plane *plane;
2616 enum pipe pipe;
2617 struct intel_wm_config config = {};
2618
2619 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2620 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2621 struct hsw_pipe_wm_parameters *p;
2622
2623 pipe = intel_crtc->pipe;
2624 p = &params[pipe];
2625
2626 p->active = intel_crtc_active(crtc);
2627 if (!p->active)
2628 continue;
2629
2630 config.num_pipes_active++;
2631
2632 p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2633 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2634 p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2635 p->cur.bytes_per_pixel = 4;
2636 p->pri.horiz_pixels =
2637 intel_crtc->config.requested_mode.hdisplay;
2638 p->cur.horiz_pixels = 64;
2639 /* TODO: for now, assume primary and cursor planes are always enabled. */
2640 p->pri.enabled = true;
2641 p->cur.enabled = true;
2642 }
2643
2644 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2645 struct intel_plane *intel_plane = to_intel_plane(plane);
2646 struct hsw_pipe_wm_parameters *p;
2647
2648 pipe = intel_plane->pipe;
2649 p = &params[pipe];
2650
2651 p->spr = intel_plane->wm;
2652
2653 config.sprites_enabled |= p->spr.enabled;
2654 config.sprites_scaled |= p->spr.scaled;
2655 }
2656
2657 ilk_wm_max(dev, 1, &config, INTEL_DDB_PART_1_2, lp_max_1_2);
2658
2659 /* 5/6 split only in single pipe config on IVB+ */
2660 if (INTEL_INFO(dev)->gen >= 7 && config.num_pipes_active <= 1)
2661 ilk_wm_max(dev, 1, &config, INTEL_DDB_PART_5_6, lp_max_5_6);
2662 else
2663 *lp_max_5_6 = *lp_max_1_2;
2664 }
2665
2666 static void hsw_compute_wm_results(struct drm_device *dev,
2667 struct hsw_pipe_wm_parameters *params,
2668 struct hsw_wm_maximums *lp_maximums,
2669 struct hsw_wm_values *results)
2670 {
2671 struct drm_i915_private *dev_priv = dev->dev_private;
2672 struct drm_crtc *crtc;
2673 struct intel_wm_level lp_results[4] = {};
2674 enum pipe pipe;
2675 int level, max_level, wm_lp;
2676
2677 for (level = 1; level <= 4; level++)
2678 if (!hsw_compute_lp_wm(dev_priv, level,
2679 lp_maximums, params,
2680 &lp_results[level - 1]))
2681 break;
2682 max_level = level - 1;
2683
2684 memset(results, 0, sizeof(*results));
2685
2686 /* The spec says it is preferred to disable FBC WMs instead of disabling
2687 * a WM level. */
2688 results->enable_fbc_wm = true;
2689 for (level = 1; level <= max_level; level++) {
2690 if (lp_results[level - 1].fbc_val > lp_maximums->fbc) {
2691 results->enable_fbc_wm = false;
2692 lp_results[level - 1].fbc_val = 0;
2693 }
2694 }
2695
2696 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2697 const struct intel_wm_level *r;
2698
2699 level = (max_level == 4 && wm_lp > 1) ? wm_lp + 1 : wm_lp;
2700 if (level > max_level)
2701 break;
2702
2703 r = &lp_results[level - 1];
2704 results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
2705 r->fbc_val,
2706 r->pri_val,
2707 r->cur_val);
2708 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2709 }
2710
2711 for_each_pipe(pipe)
2712 results->wm_pipe[pipe] = hsw_compute_wm_pipe(dev_priv, pipe,
2713 &params[pipe]);
2714
2715 for_each_pipe(pipe) {
2716 crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2717 results->wm_linetime[pipe] = hsw_compute_linetime_wm(dev, crtc);
2718 }
2719 }
2720
2721 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2722 * case both are at the same level. Prefer r1 in case they're the same. */
2723 static struct hsw_wm_values *hsw_find_best_result(struct hsw_wm_values *r1,
2724 struct hsw_wm_values *r2)
2725 {
2726 int i, val_r1 = 0, val_r2 = 0;
2727
2728 for (i = 0; i < 3; i++) {
2729 if (r1->wm_lp[i] & WM3_LP_EN)
2730 val_r1 = r1->wm_lp[i] & WM1_LP_LATENCY_MASK;
2731 if (r2->wm_lp[i] & WM3_LP_EN)
2732 val_r2 = r2->wm_lp[i] & WM1_LP_LATENCY_MASK;
2733 }
2734
2735 if (val_r1 == val_r2) {
2736 if (r2->enable_fbc_wm && !r1->enable_fbc_wm)
2737 return r2;
2738 else
2739 return r1;
2740 } else if (val_r1 > val_r2) {
2741 return r1;
2742 } else {
2743 return r2;
2744 }
2745 }
2746
2747 /*
2748 * The spec says we shouldn't write when we don't need, because every write
2749 * causes WMs to be re-evaluated, expending some power.
2750 */
2751 static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2752 struct hsw_wm_values *results,
2753 enum intel_ddb_partitioning partitioning)
2754 {
2755 struct hsw_wm_values previous;
2756 uint32_t val;
2757 enum intel_ddb_partitioning prev_partitioning;
2758 bool prev_enable_fbc_wm;
2759
2760 previous.wm_pipe[0] = I915_READ(WM0_PIPEA_ILK);
2761 previous.wm_pipe[1] = I915_READ(WM0_PIPEB_ILK);
2762 previous.wm_pipe[2] = I915_READ(WM0_PIPEC_IVB);
2763 previous.wm_lp[0] = I915_READ(WM1_LP_ILK);
2764 previous.wm_lp[1] = I915_READ(WM2_LP_ILK);
2765 previous.wm_lp[2] = I915_READ(WM3_LP_ILK);
2766 previous.wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2767 previous.wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2768 previous.wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2769 previous.wm_linetime[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A));
2770 previous.wm_linetime[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B));
2771 previous.wm_linetime[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C));
2772
2773 prev_partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2774 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2775
2776 prev_enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2777
2778 if (memcmp(results->wm_pipe, previous.wm_pipe,
2779 sizeof(results->wm_pipe)) == 0 &&
2780 memcmp(results->wm_lp, previous.wm_lp,
2781 sizeof(results->wm_lp)) == 0 &&
2782 memcmp(results->wm_lp_spr, previous.wm_lp_spr,
2783 sizeof(results->wm_lp_spr)) == 0 &&
2784 memcmp(results->wm_linetime, previous.wm_linetime,
2785 sizeof(results->wm_linetime)) == 0 &&
2786 partitioning == prev_partitioning &&
2787 results->enable_fbc_wm == prev_enable_fbc_wm)
2788 return;
2789
2790 if (previous.wm_lp[2] != 0)
2791 I915_WRITE(WM3_LP_ILK, 0);
2792 if (previous.wm_lp[1] != 0)
2793 I915_WRITE(WM2_LP_ILK, 0);
2794 if (previous.wm_lp[0] != 0)
2795 I915_WRITE(WM1_LP_ILK, 0);
2796
2797 if (previous.wm_pipe[0] != results->wm_pipe[0])
2798 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2799 if (previous.wm_pipe[1] != results->wm_pipe[1])
2800 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2801 if (previous.wm_pipe[2] != results->wm_pipe[2])
2802 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2803
2804 if (previous.wm_linetime[0] != results->wm_linetime[0])
2805 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2806 if (previous.wm_linetime[1] != results->wm_linetime[1])
2807 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2808 if (previous.wm_linetime[2] != results->wm_linetime[2])
2809 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2810
2811 if (prev_partitioning != partitioning) {
2812 val = I915_READ(WM_MISC);
2813 if (partitioning == INTEL_DDB_PART_1_2)
2814 val &= ~WM_MISC_DATA_PARTITION_5_6;
2815 else
2816 val |= WM_MISC_DATA_PARTITION_5_6;
2817 I915_WRITE(WM_MISC, val);
2818 }
2819
2820 if (prev_enable_fbc_wm != results->enable_fbc_wm) {
2821 val = I915_READ(DISP_ARB_CTL);
2822 if (results->enable_fbc_wm)
2823 val &= ~DISP_FBC_WM_DIS;
2824 else
2825 val |= DISP_FBC_WM_DIS;
2826 I915_WRITE(DISP_ARB_CTL, val);
2827 }
2828
2829 if (previous.wm_lp_spr[0] != results->wm_lp_spr[0])
2830 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2831 if (previous.wm_lp_spr[1] != results->wm_lp_spr[1])
2832 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2833 if (previous.wm_lp_spr[2] != results->wm_lp_spr[2])
2834 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2835
2836 if (results->wm_lp[0] != 0)
2837 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2838 if (results->wm_lp[1] != 0)
2839 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2840 if (results->wm_lp[2] != 0)
2841 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2842 }
2843
2844 static void haswell_update_wm(struct drm_device *dev)
2845 {
2846 struct drm_i915_private *dev_priv = dev->dev_private;
2847 struct hsw_wm_maximums lp_max_1_2, lp_max_5_6;
2848 struct hsw_pipe_wm_parameters params[3];
2849 struct hsw_wm_values results_1_2, results_5_6, *best_results;
2850 enum intel_ddb_partitioning partitioning;
2851
2852 hsw_compute_wm_parameters(dev, params, &lp_max_1_2, &lp_max_5_6);
2853
2854 hsw_compute_wm_results(dev, params,
2855 &lp_max_1_2, &results_1_2);
2856 if (lp_max_1_2.pri != lp_max_5_6.pri) {
2857 hsw_compute_wm_results(dev, params,
2858 &lp_max_5_6, &results_5_6);
2859 best_results = hsw_find_best_result(&results_1_2, &results_5_6);
2860 } else {
2861 best_results = &results_1_2;
2862 }
2863
2864 partitioning = (best_results == &results_1_2) ?
2865 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2866
2867 hsw_write_wm_values(dev_priv, best_results, partitioning);
2868 }
2869
2870 static void haswell_update_sprite_wm(struct drm_plane *plane,
2871 struct drm_crtc *crtc,
2872 uint32_t sprite_width, int pixel_size,
2873 bool enabled, bool scaled)
2874 {
2875 struct intel_plane *intel_plane = to_intel_plane(plane);
2876
2877 intel_plane->wm.enabled = enabled;
2878 intel_plane->wm.scaled = scaled;
2879 intel_plane->wm.horiz_pixels = sprite_width;
2880 intel_plane->wm.bytes_per_pixel = pixel_size;
2881
2882 haswell_update_wm(plane->dev);
2883 }
2884
2885 static bool
2886 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2887 uint32_t sprite_width, int pixel_size,
2888 const struct intel_watermark_params *display,
2889 int display_latency_ns, int *sprite_wm)
2890 {
2891 struct drm_crtc *crtc;
2892 int clock;
2893 int entries, tlb_miss;
2894
2895 crtc = intel_get_crtc_for_plane(dev, plane);
2896 if (!intel_crtc_active(crtc)) {
2897 *sprite_wm = display->guard_size;
2898 return false;
2899 }
2900
2901 clock = crtc->mode.clock;
2902
2903 /* Use the small buffer method to calculate the sprite watermark */
2904 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2905 tlb_miss = display->fifo_size*display->cacheline_size -
2906 sprite_width * 8;
2907 if (tlb_miss > 0)
2908 entries += tlb_miss;
2909 entries = DIV_ROUND_UP(entries, display->cacheline_size);
2910 *sprite_wm = entries + display->guard_size;
2911 if (*sprite_wm > (int)display->max_wm)
2912 *sprite_wm = display->max_wm;
2913
2914 return true;
2915 }
2916
2917 static bool
2918 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2919 uint32_t sprite_width, int pixel_size,
2920 const struct intel_watermark_params *display,
2921 int latency_ns, int *sprite_wm)
2922 {
2923 struct drm_crtc *crtc;
2924 unsigned long line_time_us;
2925 int clock;
2926 int line_count, line_size;
2927 int small, large;
2928 int entries;
2929
2930 if (!latency_ns) {
2931 *sprite_wm = 0;
2932 return false;
2933 }
2934
2935 crtc = intel_get_crtc_for_plane(dev, plane);
2936 clock = crtc->mode.clock;
2937 if (!clock) {
2938 *sprite_wm = 0;
2939 return false;
2940 }
2941
2942 line_time_us = (sprite_width * 1000) / clock;
2943 if (!line_time_us) {
2944 *sprite_wm = 0;
2945 return false;
2946 }
2947
2948 line_count = (latency_ns / line_time_us + 1000) / 1000;
2949 line_size = sprite_width * pixel_size;
2950
2951 /* Use the minimum of the small and large buffer method for primary */
2952 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2953 large = line_count * line_size;
2954
2955 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2956 *sprite_wm = entries + display->guard_size;
2957
2958 return *sprite_wm > 0x3ff ? false : true;
2959 }
2960
2961 static void sandybridge_update_sprite_wm(struct drm_plane *plane,
2962 struct drm_crtc *crtc,
2963 uint32_t sprite_width, int pixel_size,
2964 bool enabled, bool scaled)
2965 {
2966 struct drm_device *dev = plane->dev;
2967 struct drm_i915_private *dev_priv = dev->dev_private;
2968 int pipe = to_intel_plane(plane)->pipe;
2969 int latency = dev_priv->wm.spr_latency[0] * 100; /* In unit 0.1us */
2970 u32 val;
2971 int sprite_wm, reg;
2972 int ret;
2973
2974 if (!enabled)
2975 return;
2976
2977 switch (pipe) {
2978 case 0:
2979 reg = WM0_PIPEA_ILK;
2980 break;
2981 case 1:
2982 reg = WM0_PIPEB_ILK;
2983 break;
2984 case 2:
2985 reg = WM0_PIPEC_IVB;
2986 break;
2987 default:
2988 return; /* bad pipe */
2989 }
2990
2991 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2992 &sandybridge_display_wm_info,
2993 latency, &sprite_wm);
2994 if (!ret) {
2995 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
2996 pipe_name(pipe));
2997 return;
2998 }
2999
3000 val = I915_READ(reg);
3001 val &= ~WM0_PIPE_SPRITE_MASK;
3002 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
3003 DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
3004
3005
3006 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3007 pixel_size,
3008 &sandybridge_display_srwm_info,
3009 dev_priv->wm.spr_latency[1] * 500,
3010 &sprite_wm);
3011 if (!ret) {
3012 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
3013 pipe_name(pipe));
3014 return;
3015 }
3016 I915_WRITE(WM1S_LP_ILK, sprite_wm);
3017
3018 /* Only IVB has two more LP watermarks for sprite */
3019 if (!IS_IVYBRIDGE(dev))
3020 return;
3021
3022 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3023 pixel_size,
3024 &sandybridge_display_srwm_info,
3025 dev_priv->wm.spr_latency[2] * 500,
3026 &sprite_wm);
3027 if (!ret) {
3028 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
3029 pipe_name(pipe));
3030 return;
3031 }
3032 I915_WRITE(WM2S_LP_IVB, sprite_wm);
3033
3034 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3035 pixel_size,
3036 &sandybridge_display_srwm_info,
3037 dev_priv->wm.spr_latency[3] * 500,
3038 &sprite_wm);
3039 if (!ret) {
3040 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
3041 pipe_name(pipe));
3042 return;
3043 }
3044 I915_WRITE(WM3S_LP_IVB, sprite_wm);
3045 }
3046
3047 /**
3048 * intel_update_watermarks - update FIFO watermark values based on current modes
3049 *
3050 * Calculate watermark values for the various WM regs based on current mode
3051 * and plane configuration.
3052 *
3053 * There are several cases to deal with here:
3054 * - normal (i.e. non-self-refresh)
3055 * - self-refresh (SR) mode
3056 * - lines are large relative to FIFO size (buffer can hold up to 2)
3057 * - lines are small relative to FIFO size (buffer can hold more than 2
3058 * lines), so need to account for TLB latency
3059 *
3060 * The normal calculation is:
3061 * watermark = dotclock * bytes per pixel * latency
3062 * where latency is platform & configuration dependent (we assume pessimal
3063 * values here).
3064 *
3065 * The SR calculation is:
3066 * watermark = (trunc(latency/line time)+1) * surface width *
3067 * bytes per pixel
3068 * where
3069 * line time = htotal / dotclock
3070 * surface width = hdisplay for normal plane and 64 for cursor
3071 * and latency is assumed to be high, as above.
3072 *
3073 * The final value programmed to the register should always be rounded up,
3074 * and include an extra 2 entries to account for clock crossings.
3075 *
3076 * We don't use the sprite, so we can ignore that. And on Crestline we have
3077 * to set the non-SR watermarks to 8.
3078 */
3079 void intel_update_watermarks(struct drm_device *dev)
3080 {
3081 struct drm_i915_private *dev_priv = dev->dev_private;
3082
3083 if (dev_priv->display.update_wm)
3084 dev_priv->display.update_wm(dev);
3085 }
3086
3087 void intel_update_sprite_watermarks(struct drm_plane *plane,
3088 struct drm_crtc *crtc,
3089 uint32_t sprite_width, int pixel_size,
3090 bool enabled, bool scaled)
3091 {
3092 struct drm_i915_private *dev_priv = plane->dev->dev_private;
3093
3094 if (dev_priv->display.update_sprite_wm)
3095 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
3096 pixel_size, enabled, scaled);
3097 }
3098
3099 static struct drm_i915_gem_object *
3100 intel_alloc_context_page(struct drm_device *dev)
3101 {
3102 struct drm_i915_gem_object *ctx;
3103 int ret;
3104
3105 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3106
3107 ctx = i915_gem_alloc_object(dev, 4096);
3108 if (!ctx) {
3109 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3110 return NULL;
3111 }
3112
3113 ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
3114 if (ret) {
3115 DRM_ERROR("failed to pin power context: %d\n", ret);
3116 goto err_unref;
3117 }
3118
3119 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3120 if (ret) {
3121 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3122 goto err_unpin;
3123 }
3124
3125 return ctx;
3126
3127 err_unpin:
3128 i915_gem_object_unpin(ctx);
3129 err_unref:
3130 drm_gem_object_unreference(&ctx->base);
3131 return NULL;
3132 }
3133
3134 /**
3135 * Lock protecting IPS related data structures
3136 */
3137 DEFINE_SPINLOCK(mchdev_lock);
3138
3139 /* Global for IPS driver to get at the current i915 device. Protected by
3140 * mchdev_lock. */
3141 static struct drm_i915_private *i915_mch_dev;
3142
3143 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3144 {
3145 struct drm_i915_private *dev_priv = dev->dev_private;
3146 u16 rgvswctl;
3147
3148 assert_spin_locked(&mchdev_lock);
3149
3150 rgvswctl = I915_READ16(MEMSWCTL);
3151 if (rgvswctl & MEMCTL_CMD_STS) {
3152 DRM_DEBUG("gpu busy, RCS change rejected\n");
3153 return false; /* still busy with another command */
3154 }
3155
3156 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3157 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3158 I915_WRITE16(MEMSWCTL, rgvswctl);
3159 POSTING_READ16(MEMSWCTL);
3160
3161 rgvswctl |= MEMCTL_CMD_STS;
3162 I915_WRITE16(MEMSWCTL, rgvswctl);
3163
3164 return true;
3165 }
3166
3167 static void ironlake_enable_drps(struct drm_device *dev)
3168 {
3169 struct drm_i915_private *dev_priv = dev->dev_private;
3170 u32 rgvmodectl = I915_READ(MEMMODECTL);
3171 u8 fmax, fmin, fstart, vstart;
3172
3173 spin_lock_irq(&mchdev_lock);
3174
3175 /* Enable temp reporting */
3176 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3177 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3178
3179 /* 100ms RC evaluation intervals */
3180 I915_WRITE(RCUPEI, 100000);
3181 I915_WRITE(RCDNEI, 100000);
3182
3183 /* Set max/min thresholds to 90ms and 80ms respectively */
3184 I915_WRITE(RCBMAXAVG, 90000);
3185 I915_WRITE(RCBMINAVG, 80000);
3186
3187 I915_WRITE(MEMIHYST, 1);
3188
3189 /* Set up min, max, and cur for interrupt handling */
3190 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3191 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3192 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3193 MEMMODE_FSTART_SHIFT;
3194
3195 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3196 PXVFREQ_PX_SHIFT;
3197
3198 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3199 dev_priv->ips.fstart = fstart;
3200
3201 dev_priv->ips.max_delay = fstart;
3202 dev_priv->ips.min_delay = fmin;
3203 dev_priv->ips.cur_delay = fstart;
3204
3205 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3206 fmax, fmin, fstart);
3207
3208 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3209
3210 /*
3211 * Interrupts will be enabled in ironlake_irq_postinstall
3212 */
3213
3214 I915_WRITE(VIDSTART, vstart);
3215 POSTING_READ(VIDSTART);
3216
3217 rgvmodectl |= MEMMODE_SWMODE_EN;
3218 I915_WRITE(MEMMODECTL, rgvmodectl);
3219
3220 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3221 DRM_ERROR("stuck trying to change perf mode\n");
3222 mdelay(1);
3223
3224 ironlake_set_drps(dev, fstart);
3225
3226 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3227 I915_READ(0x112e0);
3228 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3229 dev_priv->ips.last_count2 = I915_READ(0x112f4);
3230 getrawmonotonic(&dev_priv->ips.last_time2);
3231
3232 spin_unlock_irq(&mchdev_lock);
3233 }
3234
3235 static void ironlake_disable_drps(struct drm_device *dev)
3236 {
3237 struct drm_i915_private *dev_priv = dev->dev_private;
3238 u16 rgvswctl;
3239
3240 spin_lock_irq(&mchdev_lock);
3241
3242 rgvswctl = I915_READ16(MEMSWCTL);
3243
3244 /* Ack interrupts, disable EFC interrupt */
3245 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3246 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3247 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3248 I915_WRITE(DEIIR, DE_PCU_EVENT);
3249 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3250
3251 /* Go back to the starting frequency */
3252 ironlake_set_drps(dev, dev_priv->ips.fstart);
3253 mdelay(1);
3254 rgvswctl |= MEMCTL_CMD_STS;
3255 I915_WRITE(MEMSWCTL, rgvswctl);
3256 mdelay(1);
3257
3258 spin_unlock_irq(&mchdev_lock);
3259 }
3260
3261 /* There's a funny hw issue where the hw returns all 0 when reading from
3262 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3263 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3264 * all limits and the gpu stuck at whatever frequency it is at atm).
3265 */
3266 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
3267 {
3268 u32 limits;
3269
3270 limits = 0;
3271
3272 if (*val >= dev_priv->rps.max_delay)
3273 *val = dev_priv->rps.max_delay;
3274 limits |= dev_priv->rps.max_delay << 24;
3275
3276 /* Only set the down limit when we've reached the lowest level to avoid
3277 * getting more interrupts, otherwise leave this clear. This prevents a
3278 * race in the hw when coming out of rc6: There's a tiny window where
3279 * the hw runs at the minimal clock before selecting the desired
3280 * frequency, if the down threshold expires in that window we will not
3281 * receive a down interrupt. */
3282 if (*val <= dev_priv->rps.min_delay) {
3283 *val = dev_priv->rps.min_delay;
3284 limits |= dev_priv->rps.min_delay << 16;
3285 }
3286
3287 return limits;
3288 }
3289
3290 void gen6_set_rps(struct drm_device *dev, u8 val)
3291 {
3292 struct drm_i915_private *dev_priv = dev->dev_private;
3293 u32 limits = gen6_rps_limits(dev_priv, &val);
3294
3295 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3296 WARN_ON(val > dev_priv->rps.max_delay);
3297 WARN_ON(val < dev_priv->rps.min_delay);
3298
3299 if (val == dev_priv->rps.cur_delay)
3300 return;
3301
3302 if (IS_HASWELL(dev))
3303 I915_WRITE(GEN6_RPNSWREQ,
3304 HSW_FREQUENCY(val));
3305 else
3306 I915_WRITE(GEN6_RPNSWREQ,
3307 GEN6_FREQUENCY(val) |
3308 GEN6_OFFSET(0) |
3309 GEN6_AGGRESSIVE_TURBO);
3310
3311 /* Make sure we continue to get interrupts
3312 * until we hit the minimum or maximum frequencies.
3313 */
3314 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3315
3316 POSTING_READ(GEN6_RPNSWREQ);
3317
3318 dev_priv->rps.cur_delay = val;
3319
3320 trace_intel_gpu_freq_change(val * 50);
3321 }
3322
3323 /*
3324 * Wait until the previous freq change has completed,
3325 * or the timeout elapsed, and then update our notion
3326 * of the current GPU frequency.
3327 */
3328 static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
3329 {
3330 u32 pval;
3331
3332 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3333
3334 if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
3335 DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
3336
3337 pval >>= 8;
3338
3339 if (pval != dev_priv->rps.cur_delay)
3340 DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
3341 vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
3342 dev_priv->rps.cur_delay,
3343 vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
3344
3345 dev_priv->rps.cur_delay = pval;
3346 }
3347
3348 void valleyview_set_rps(struct drm_device *dev, u8 val)
3349 {
3350 struct drm_i915_private *dev_priv = dev->dev_private;
3351
3352 gen6_rps_limits(dev_priv, &val);
3353
3354 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3355 WARN_ON(val > dev_priv->rps.max_delay);
3356 WARN_ON(val < dev_priv->rps.min_delay);
3357
3358 vlv_update_rps_cur_delay(dev_priv);
3359
3360 DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3361 vlv_gpu_freq(dev_priv->mem_freq,
3362 dev_priv->rps.cur_delay),
3363 dev_priv->rps.cur_delay,
3364 vlv_gpu_freq(dev_priv->mem_freq, val), val);
3365
3366 if (val == dev_priv->rps.cur_delay)
3367 return;
3368
3369 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3370
3371 dev_priv->rps.cur_delay = val;
3372
3373 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
3374 }
3375
3376 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3377 {
3378 struct drm_i915_private *dev_priv = dev->dev_private;
3379
3380 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3381 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3382 /* Complete PM interrupt masking here doesn't race with the rps work
3383 * item again unmasking PM interrupts because that is using a different
3384 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3385 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3386
3387 spin_lock_irq(&dev_priv->irq_lock);
3388 dev_priv->rps.pm_iir = 0;
3389 spin_unlock_irq(&dev_priv->irq_lock);
3390
3391 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3392 }
3393
3394 static void gen6_disable_rps(struct drm_device *dev)
3395 {
3396 struct drm_i915_private *dev_priv = dev->dev_private;
3397
3398 I915_WRITE(GEN6_RC_CONTROL, 0);
3399 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3400
3401 gen6_disable_rps_interrupts(dev);
3402 }
3403
3404 static void valleyview_disable_rps(struct drm_device *dev)
3405 {
3406 struct drm_i915_private *dev_priv = dev->dev_private;
3407
3408 I915_WRITE(GEN6_RC_CONTROL, 0);
3409
3410 gen6_disable_rps_interrupts(dev);
3411
3412 if (dev_priv->vlv_pctx) {
3413 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3414 dev_priv->vlv_pctx = NULL;
3415 }
3416 }
3417
3418 int intel_enable_rc6(const struct drm_device *dev)
3419 {
3420 /* No RC6 before Ironlake */
3421 if (INTEL_INFO(dev)->gen < 5)
3422 return 0;
3423
3424 /* Respect the kernel parameter if it is set */
3425 if (i915_enable_rc6 >= 0)
3426 return i915_enable_rc6;
3427
3428 /* Disable RC6 on Ironlake */
3429 if (INTEL_INFO(dev)->gen == 5)
3430 return 0;
3431
3432 if (IS_HASWELL(dev)) {
3433 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3434 return INTEL_RC6_ENABLE;
3435 }
3436
3437 /* snb/ivb have more than one rc6 state. */
3438 if (INTEL_INFO(dev)->gen == 6) {
3439 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3440 return INTEL_RC6_ENABLE;
3441 }
3442
3443 DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
3444 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3445 }
3446
3447 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3448 {
3449 struct drm_i915_private *dev_priv = dev->dev_private;
3450 u32 enabled_intrs;
3451
3452 spin_lock_irq(&dev_priv->irq_lock);
3453 WARN_ON(dev_priv->rps.pm_iir);
3454 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
3455 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3456 spin_unlock_irq(&dev_priv->irq_lock);
3457
3458 /* only unmask PM interrupts we need. Mask all others. */
3459 enabled_intrs = GEN6_PM_RPS_EVENTS;
3460
3461 /* IVB and SNB hard hangs on looping batchbuffer
3462 * if GEN6_PM_UP_EI_EXPIRED is masked.
3463 */
3464 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
3465 enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
3466
3467 I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
3468 }
3469
3470 static void gen6_enable_rps(struct drm_device *dev)
3471 {
3472 struct drm_i915_private *dev_priv = dev->dev_private;
3473 struct intel_ring_buffer *ring;
3474 u32 rp_state_cap;
3475 u32 gt_perf_status;
3476 u32 rc6vids, pcu_mbox, rc6_mask = 0;
3477 u32 gtfifodbg;
3478 int rc6_mode;
3479 int i, ret;
3480
3481 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3482
3483 /* Here begins a magic sequence of register writes to enable
3484 * auto-downclocking.
3485 *
3486 * Perhaps there might be some value in exposing these to
3487 * userspace...
3488 */
3489 I915_WRITE(GEN6_RC_STATE, 0);
3490
3491 /* Clear the DBG now so we don't confuse earlier errors */
3492 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3493 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3494 I915_WRITE(GTFIFODBG, gtfifodbg);
3495 }
3496
3497 gen6_gt_force_wake_get(dev_priv);
3498
3499 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3500 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3501
3502 /* In units of 50MHz */
3503 dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3504 dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
3505 dev_priv->rps.cur_delay = 0;
3506
3507 /* disable the counters and set deterministic thresholds */
3508 I915_WRITE(GEN6_RC_CONTROL, 0);
3509
3510 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3511 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3512 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3513 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3514 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3515
3516 for_each_ring(ring, dev_priv, i)
3517 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3518
3519 I915_WRITE(GEN6_RC_SLEEP, 0);
3520 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3521 if (INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev))
3522 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3523 else
3524 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3525 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3526 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3527
3528 /* Check if we are enabling RC6 */
3529 rc6_mode = intel_enable_rc6(dev_priv->dev);
3530 if (rc6_mode & INTEL_RC6_ENABLE)
3531 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3532
3533 /* We don't use those on Haswell */
3534 if (!IS_HASWELL(dev)) {
3535 if (rc6_mode & INTEL_RC6p_ENABLE)
3536 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3537
3538 if (rc6_mode & INTEL_RC6pp_ENABLE)
3539 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3540 }
3541
3542 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3543 (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3544 (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3545 (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3546
3547 I915_WRITE(GEN6_RC_CONTROL,
3548 rc6_mask |
3549 GEN6_RC_CTL_EI_MODE(1) |
3550 GEN6_RC_CTL_HW_ENABLE);
3551
3552 if (IS_HASWELL(dev)) {
3553 I915_WRITE(GEN6_RPNSWREQ,
3554 HSW_FREQUENCY(10));
3555 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3556 HSW_FREQUENCY(12));
3557 } else {
3558 I915_WRITE(GEN6_RPNSWREQ,
3559 GEN6_FREQUENCY(10) |
3560 GEN6_OFFSET(0) |
3561 GEN6_AGGRESSIVE_TURBO);
3562 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3563 GEN6_FREQUENCY(12));
3564 }
3565
3566 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
3567 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3568 dev_priv->rps.max_delay << 24 |
3569 dev_priv->rps.min_delay << 16);
3570
3571 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3572 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3573 I915_WRITE(GEN6_RP_UP_EI, 66000);
3574 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3575
3576 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3577 I915_WRITE(GEN6_RP_CONTROL,
3578 GEN6_RP_MEDIA_TURBO |
3579 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3580 GEN6_RP_MEDIA_IS_GFX |
3581 GEN6_RP_ENABLE |
3582 GEN6_RP_UP_BUSY_AVG |
3583 (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
3584
3585 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3586 if (!ret) {
3587 pcu_mbox = 0;
3588 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3589 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3590 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3591 (dev_priv->rps.max_delay & 0xff) * 50,
3592 (pcu_mbox & 0xff) * 50);
3593 dev_priv->rps.hw_max = pcu_mbox & 0xff;
3594 }
3595 } else {
3596 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3597 }
3598
3599 gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
3600
3601 gen6_enable_rps_interrupts(dev);
3602
3603 rc6vids = 0;
3604 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3605 if (IS_GEN6(dev) && ret) {
3606 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3607 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3608 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3609 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3610 rc6vids &= 0xffff00;
3611 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3612 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3613 if (ret)
3614 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3615 }
3616
3617 gen6_gt_force_wake_put(dev_priv);
3618 }
3619
3620 void gen6_update_ring_freq(struct drm_device *dev)
3621 {
3622 struct drm_i915_private *dev_priv = dev->dev_private;
3623 int min_freq = 15;
3624 unsigned int gpu_freq;
3625 unsigned int max_ia_freq, min_ring_freq;
3626 int scaling_factor = 180;
3627
3628 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3629
3630 max_ia_freq = cpufreq_quick_get_max(0);
3631 /*
3632 * Default to measured freq if none found, PCU will ensure we don't go
3633 * over
3634 */
3635 if (!max_ia_freq)
3636 max_ia_freq = tsc_khz;
3637
3638 /* Convert from kHz to MHz */
3639 max_ia_freq /= 1000;
3640
3641 min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
3642 /* convert DDR frequency from units of 133.3MHz to bandwidth */
3643 min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
3644
3645 /*
3646 * For each potential GPU frequency, load a ring frequency we'd like
3647 * to use for memory access. We do this by specifying the IA frequency
3648 * the PCU should use as a reference to determine the ring frequency.
3649 */
3650 for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3651 gpu_freq--) {
3652 int diff = dev_priv->rps.max_delay - gpu_freq;
3653 unsigned int ia_freq = 0, ring_freq = 0;
3654
3655 if (IS_HASWELL(dev)) {
3656 ring_freq = (gpu_freq * 5 + 3) / 4;
3657 ring_freq = max(min_ring_freq, ring_freq);
3658 /* leave ia_freq as the default, chosen by cpufreq */
3659 } else {
3660 /* On older processors, there is no separate ring
3661 * clock domain, so in order to boost the bandwidth
3662 * of the ring, we need to upclock the CPU (ia_freq).
3663 *
3664 * For GPU frequencies less than 750MHz,
3665 * just use the lowest ring freq.
3666 */
3667 if (gpu_freq < min_freq)
3668 ia_freq = 800;
3669 else
3670 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3671 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3672 }
3673
3674 sandybridge_pcode_write(dev_priv,
3675 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3676 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3677 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3678 gpu_freq);
3679 }
3680 }
3681
3682 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3683 {
3684 u32 val, rp0;
3685
3686 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3687
3688 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3689 /* Clamp to max */
3690 rp0 = min_t(u32, rp0, 0xea);
3691
3692 return rp0;
3693 }
3694
3695 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3696 {
3697 u32 val, rpe;
3698
3699 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3700 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3701 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3702 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3703
3704 return rpe;
3705 }
3706
3707 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3708 {
3709 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3710 }
3711
3712 static void vlv_rps_timer_work(struct work_struct *work)
3713 {
3714 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3715 rps.vlv_work.work);
3716
3717 /*
3718 * Timer fired, we must be idle. Drop to min voltage state.
3719 * Note: we use RPe here since it should match the
3720 * Vmin we were shooting for. That should give us better
3721 * perf when we come back out of RC6 than if we used the
3722 * min freq available.
3723 */
3724 mutex_lock(&dev_priv->rps.hw_lock);
3725 if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
3726 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3727 mutex_unlock(&dev_priv->rps.hw_lock);
3728 }
3729
3730 static void valleyview_setup_pctx(struct drm_device *dev)
3731 {
3732 struct drm_i915_private *dev_priv = dev->dev_private;
3733 struct drm_i915_gem_object *pctx;
3734 unsigned long pctx_paddr;
3735 u32 pcbr;
3736 int pctx_size = 24*1024;
3737
3738 pcbr = I915_READ(VLV_PCBR);
3739 if (pcbr) {
3740 /* BIOS set it up already, grab the pre-alloc'd space */
3741 int pcbr_offset;
3742
3743 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3744 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3745 pcbr_offset,
3746 I915_GTT_OFFSET_NONE,
3747 pctx_size);
3748 goto out;
3749 }
3750
3751 /*
3752 * From the Gunit register HAS:
3753 * The Gfx driver is expected to program this register and ensure
3754 * proper allocation within Gfx stolen memory. For example, this
3755 * register should be programmed such than the PCBR range does not
3756 * overlap with other ranges, such as the frame buffer, protected
3757 * memory, or any other relevant ranges.
3758 */
3759 pctx = i915_gem_object_create_stolen(dev, pctx_size);
3760 if (!pctx) {
3761 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3762 return;
3763 }
3764
3765 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3766 I915_WRITE(VLV_PCBR, pctx_paddr);
3767
3768 out:
3769 dev_priv->vlv_pctx = pctx;
3770 }
3771
3772 static void valleyview_enable_rps(struct drm_device *dev)
3773 {
3774 struct drm_i915_private *dev_priv = dev->dev_private;
3775 struct intel_ring_buffer *ring;
3776 u32 gtfifodbg, val;
3777 int i;
3778
3779 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3780
3781 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3782 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3783 I915_WRITE(GTFIFODBG, gtfifodbg);
3784 }
3785
3786 valleyview_setup_pctx(dev);
3787
3788 gen6_gt_force_wake_get(dev_priv);
3789
3790 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3791 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3792 I915_WRITE(GEN6_RP_UP_EI, 66000);
3793 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3794
3795 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3796
3797 I915_WRITE(GEN6_RP_CONTROL,
3798 GEN6_RP_MEDIA_TURBO |
3799 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3800 GEN6_RP_MEDIA_IS_GFX |
3801 GEN6_RP_ENABLE |
3802 GEN6_RP_UP_BUSY_AVG |
3803 GEN6_RP_DOWN_IDLE_CONT);
3804
3805 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3806 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3807 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3808
3809 for_each_ring(ring, dev_priv, i)
3810 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3811
3812 I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
3813
3814 /* allows RC6 residency counter to work */
3815 I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
3816 I915_WRITE(GEN6_RC_CONTROL,
3817 GEN7_RC_CTL_TO_MODE);
3818
3819 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3820 switch ((val >> 6) & 3) {
3821 case 0:
3822 case 1:
3823 dev_priv->mem_freq = 800;
3824 break;
3825 case 2:
3826 dev_priv->mem_freq = 1066;
3827 break;
3828 case 3:
3829 dev_priv->mem_freq = 1333;
3830 break;
3831 }
3832 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
3833
3834 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3835 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3836
3837 dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3838 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3839 vlv_gpu_freq(dev_priv->mem_freq,
3840 dev_priv->rps.cur_delay),
3841 dev_priv->rps.cur_delay);
3842
3843 dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
3844 dev_priv->rps.hw_max = dev_priv->rps.max_delay;
3845 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3846 vlv_gpu_freq(dev_priv->mem_freq,
3847 dev_priv->rps.max_delay),
3848 dev_priv->rps.max_delay);
3849
3850 dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
3851 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3852 vlv_gpu_freq(dev_priv->mem_freq,
3853 dev_priv->rps.rpe_delay),
3854 dev_priv->rps.rpe_delay);
3855
3856 dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
3857 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3858 vlv_gpu_freq(dev_priv->mem_freq,
3859 dev_priv->rps.min_delay),
3860 dev_priv->rps.min_delay);
3861
3862 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3863 vlv_gpu_freq(dev_priv->mem_freq,
3864 dev_priv->rps.rpe_delay),
3865 dev_priv->rps.rpe_delay);
3866
3867 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3868
3869 gen6_enable_rps_interrupts(dev);
3870
3871 gen6_gt_force_wake_put(dev_priv);
3872 }
3873
3874 void ironlake_teardown_rc6(struct drm_device *dev)
3875 {
3876 struct drm_i915_private *dev_priv = dev->dev_private;
3877
3878 if (dev_priv->ips.renderctx) {
3879 i915_gem_object_unpin(dev_priv->ips.renderctx);
3880 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3881 dev_priv->ips.renderctx = NULL;
3882 }
3883
3884 if (dev_priv->ips.pwrctx) {
3885 i915_gem_object_unpin(dev_priv->ips.pwrctx);
3886 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3887 dev_priv->ips.pwrctx = NULL;
3888 }
3889 }
3890
3891 static void ironlake_disable_rc6(struct drm_device *dev)
3892 {
3893 struct drm_i915_private *dev_priv = dev->dev_private;
3894
3895 if (I915_READ(PWRCTXA)) {
3896 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3897 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3898 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3899 50);
3900
3901 I915_WRITE(PWRCTXA, 0);
3902 POSTING_READ(PWRCTXA);
3903
3904 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3905 POSTING_READ(RSTDBYCTL);
3906 }
3907 }
3908
3909 static int ironlake_setup_rc6(struct drm_device *dev)
3910 {
3911 struct drm_i915_private *dev_priv = dev->dev_private;
3912
3913 if (dev_priv->ips.renderctx == NULL)
3914 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3915 if (!dev_priv->ips.renderctx)
3916 return -ENOMEM;
3917
3918 if (dev_priv->ips.pwrctx == NULL)
3919 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3920 if (!dev_priv->ips.pwrctx) {
3921 ironlake_teardown_rc6(dev);
3922 return -ENOMEM;
3923 }
3924
3925 return 0;
3926 }
3927
3928 static void ironlake_enable_rc6(struct drm_device *dev)
3929 {
3930 struct drm_i915_private *dev_priv = dev->dev_private;
3931 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3932 bool was_interruptible;
3933 int ret;
3934
3935 /* rc6 disabled by default due to repeated reports of hanging during
3936 * boot and resume.
3937 */
3938 if (!intel_enable_rc6(dev))
3939 return;
3940
3941 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3942
3943 ret = ironlake_setup_rc6(dev);
3944 if (ret)
3945 return;
3946
3947 was_interruptible = dev_priv->mm.interruptible;
3948 dev_priv->mm.interruptible = false;
3949
3950 /*
3951 * GPU can automatically power down the render unit if given a page
3952 * to save state.
3953 */
3954 ret = intel_ring_begin(ring, 6);
3955 if (ret) {
3956 ironlake_teardown_rc6(dev);
3957 dev_priv->mm.interruptible = was_interruptible;
3958 return;
3959 }
3960
3961 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3962 intel_ring_emit(ring, MI_SET_CONTEXT);
3963 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3964 MI_MM_SPACE_GTT |
3965 MI_SAVE_EXT_STATE_EN |
3966 MI_RESTORE_EXT_STATE_EN |
3967 MI_RESTORE_INHIBIT);
3968 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3969 intel_ring_emit(ring, MI_NOOP);
3970 intel_ring_emit(ring, MI_FLUSH);
3971 intel_ring_advance(ring);
3972
3973 /*
3974 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3975 * does an implicit flush, combined with MI_FLUSH above, it should be
3976 * safe to assume that renderctx is valid
3977 */
3978 ret = intel_ring_idle(ring);
3979 dev_priv->mm.interruptible = was_interruptible;
3980 if (ret) {
3981 DRM_ERROR("failed to enable ironlake power savings\n");
3982 ironlake_teardown_rc6(dev);
3983 return;
3984 }
3985
3986 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
3987 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3988 }
3989
3990 static unsigned long intel_pxfreq(u32 vidfreq)
3991 {
3992 unsigned long freq;
3993 int div = (vidfreq & 0x3f0000) >> 16;
3994 int post = (vidfreq & 0x3000) >> 12;
3995 int pre = (vidfreq & 0x7);
3996
3997 if (!pre)
3998 return 0;
3999
4000 freq = ((div * 133333) / ((1<<post) * pre));
4001
4002 return freq;
4003 }
4004
4005 static const struct cparams {
4006 u16 i;
4007 u16 t;
4008 u16 m;
4009 u16 c;
4010 } cparams[] = {
4011 { 1, 1333, 301, 28664 },
4012 { 1, 1066, 294, 24460 },
4013 { 1, 800, 294, 25192 },
4014 { 0, 1333, 276, 27605 },
4015 { 0, 1066, 276, 27605 },
4016 { 0, 800, 231, 23784 },
4017 };
4018
4019 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4020 {
4021 u64 total_count, diff, ret;
4022 u32 count1, count2, count3, m = 0, c = 0;
4023 unsigned long now = jiffies_to_msecs(jiffies), diff1;
4024 int i;
4025
4026 assert_spin_locked(&mchdev_lock);
4027
4028 diff1 = now - dev_priv->ips.last_time1;
4029
4030 /* Prevent division-by-zero if we are asking too fast.
4031 * Also, we don't get interesting results if we are polling
4032 * faster than once in 10ms, so just return the saved value
4033 * in such cases.
4034 */
4035 if (diff1 <= 10)
4036 return dev_priv->ips.chipset_power;
4037
4038 count1 = I915_READ(DMIEC);
4039 count2 = I915_READ(DDREC);
4040 count3 = I915_READ(CSIEC);
4041
4042 total_count = count1 + count2 + count3;
4043
4044 /* FIXME: handle per-counter overflow */
4045 if (total_count < dev_priv->ips.last_count1) {
4046 diff = ~0UL - dev_priv->ips.last_count1;
4047 diff += total_count;
4048 } else {
4049 diff = total_count - dev_priv->ips.last_count1;
4050 }
4051
4052 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4053 if (cparams[i].i == dev_priv->ips.c_m &&
4054 cparams[i].t == dev_priv->ips.r_t) {
4055 m = cparams[i].m;
4056 c = cparams[i].c;
4057 break;
4058 }
4059 }
4060
4061 diff = div_u64(diff, diff1);
4062 ret = ((m * diff) + c);
4063 ret = div_u64(ret, 10);
4064
4065 dev_priv->ips.last_count1 = total_count;
4066 dev_priv->ips.last_time1 = now;
4067
4068 dev_priv->ips.chipset_power = ret;
4069
4070 return ret;
4071 }
4072
4073 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4074 {
4075 unsigned long val;
4076
4077 if (dev_priv->info->gen != 5)
4078 return 0;
4079
4080 spin_lock_irq(&mchdev_lock);
4081
4082 val = __i915_chipset_val(dev_priv);
4083
4084 spin_unlock_irq(&mchdev_lock);
4085
4086 return val;
4087 }
4088
4089 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4090 {
4091 unsigned long m, x, b;
4092 u32 tsfs;
4093
4094 tsfs = I915_READ(TSFS);
4095
4096 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4097 x = I915_READ8(TR1);
4098
4099 b = tsfs & TSFS_INTR_MASK;
4100
4101 return ((m * x) / 127) - b;
4102 }
4103
4104 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4105 {
4106 static const struct v_table {
4107 u16 vd; /* in .1 mil */
4108 u16 vm; /* in .1 mil */
4109 } v_table[] = {
4110 { 0, 0, },
4111 { 375, 0, },
4112 { 500, 0, },
4113 { 625, 0, },
4114 { 750, 0, },
4115 { 875, 0, },
4116 { 1000, 0, },
4117 { 1125, 0, },
4118 { 4125, 3000, },
4119 { 4125, 3000, },
4120 { 4125, 3000, },
4121 { 4125, 3000, },
4122 { 4125, 3000, },
4123 { 4125, 3000, },
4124 { 4125, 3000, },
4125 { 4125, 3000, },
4126 { 4125, 3000, },
4127 { 4125, 3000, },
4128 { 4125, 3000, },
4129 { 4125, 3000, },
4130 { 4125, 3000, },
4131 { 4125, 3000, },
4132 { 4125, 3000, },
4133 { 4125, 3000, },
4134 { 4125, 3000, },
4135 { 4125, 3000, },
4136 { 4125, 3000, },
4137 { 4125, 3000, },
4138 { 4125, 3000, },
4139 { 4125, 3000, },
4140 { 4125, 3000, },
4141 { 4125, 3000, },
4142 { 4250, 3125, },
4143 { 4375, 3250, },
4144 { 4500, 3375, },
4145 { 4625, 3500, },
4146 { 4750, 3625, },
4147 { 4875, 3750, },
4148 { 5000, 3875, },
4149 { 5125, 4000, },
4150 { 5250, 4125, },
4151 { 5375, 4250, },
4152 { 5500, 4375, },
4153 { 5625, 4500, },
4154 { 5750, 4625, },
4155 { 5875, 4750, },
4156 { 6000, 4875, },
4157 { 6125, 5000, },
4158 { 6250, 5125, },
4159 { 6375, 5250, },
4160 { 6500, 5375, },
4161 { 6625, 5500, },
4162 { 6750, 5625, },
4163 { 6875, 5750, },
4164 { 7000, 5875, },
4165 { 7125, 6000, },
4166 { 7250, 6125, },
4167 { 7375, 6250, },
4168 { 7500, 6375, },
4169 { 7625, 6500, },
4170 { 7750, 6625, },
4171 { 7875, 6750, },
4172 { 8000, 6875, },
4173 { 8125, 7000, },
4174 { 8250, 7125, },
4175 { 8375, 7250, },
4176 { 8500, 7375, },
4177 { 8625, 7500, },
4178 { 8750, 7625, },
4179 { 8875, 7750, },
4180 { 9000, 7875, },
4181 { 9125, 8000, },
4182 { 9250, 8125, },
4183 { 9375, 8250, },
4184 { 9500, 8375, },
4185 { 9625, 8500, },
4186 { 9750, 8625, },
4187 { 9875, 8750, },
4188 { 10000, 8875, },
4189 { 10125, 9000, },
4190 { 10250, 9125, },
4191 { 10375, 9250, },
4192 { 10500, 9375, },
4193 { 10625, 9500, },
4194 { 10750, 9625, },
4195 { 10875, 9750, },
4196 { 11000, 9875, },
4197 { 11125, 10000, },
4198 { 11250, 10125, },
4199 { 11375, 10250, },
4200 { 11500, 10375, },
4201 { 11625, 10500, },
4202 { 11750, 10625, },
4203 { 11875, 10750, },
4204 { 12000, 10875, },
4205 { 12125, 11000, },
4206 { 12250, 11125, },
4207 { 12375, 11250, },
4208 { 12500, 11375, },
4209 { 12625, 11500, },
4210 { 12750, 11625, },
4211 { 12875, 11750, },
4212 { 13000, 11875, },
4213 { 13125, 12000, },
4214 { 13250, 12125, },
4215 { 13375, 12250, },
4216 { 13500, 12375, },
4217 { 13625, 12500, },
4218 { 13750, 12625, },
4219 { 13875, 12750, },
4220 { 14000, 12875, },
4221 { 14125, 13000, },
4222 { 14250, 13125, },
4223 { 14375, 13250, },
4224 { 14500, 13375, },
4225 { 14625, 13500, },
4226 { 14750, 13625, },
4227 { 14875, 13750, },
4228 { 15000, 13875, },
4229 { 15125, 14000, },
4230 { 15250, 14125, },
4231 { 15375, 14250, },
4232 { 15500, 14375, },
4233 { 15625, 14500, },
4234 { 15750, 14625, },
4235 { 15875, 14750, },
4236 { 16000, 14875, },
4237 { 16125, 15000, },
4238 };
4239 if (dev_priv->info->is_mobile)
4240 return v_table[pxvid].vm;
4241 else
4242 return v_table[pxvid].vd;
4243 }
4244
4245 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4246 {
4247 struct timespec now, diff1;
4248 u64 diff;
4249 unsigned long diffms;
4250 u32 count;
4251
4252 assert_spin_locked(&mchdev_lock);
4253
4254 getrawmonotonic(&now);
4255 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4256
4257 /* Don't divide by 0 */
4258 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4259 if (!diffms)
4260 return;
4261
4262 count = I915_READ(GFXEC);
4263
4264 if (count < dev_priv->ips.last_count2) {
4265 diff = ~0UL - dev_priv->ips.last_count2;
4266 diff += count;
4267 } else {
4268 diff = count - dev_priv->ips.last_count2;
4269 }
4270
4271 dev_priv->ips.last_count2 = count;
4272 dev_priv->ips.last_time2 = now;
4273
4274 /* More magic constants... */
4275 diff = diff * 1181;
4276 diff = div_u64(diff, diffms * 10);
4277 dev_priv->ips.gfx_power = diff;
4278 }
4279
4280 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4281 {
4282 if (dev_priv->info->gen != 5)
4283 return;
4284
4285 spin_lock_irq(&mchdev_lock);
4286
4287 __i915_update_gfx_val(dev_priv);
4288
4289 spin_unlock_irq(&mchdev_lock);
4290 }
4291
4292 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4293 {
4294 unsigned long t, corr, state1, corr2, state2;
4295 u32 pxvid, ext_v;
4296
4297 assert_spin_locked(&mchdev_lock);
4298
4299 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4300 pxvid = (pxvid >> 24) & 0x7f;
4301 ext_v = pvid_to_extvid(dev_priv, pxvid);
4302
4303 state1 = ext_v;
4304
4305 t = i915_mch_val(dev_priv);
4306
4307 /* Revel in the empirically derived constants */
4308
4309 /* Correction factor in 1/100000 units */
4310 if (t > 80)
4311 corr = ((t * 2349) + 135940);
4312 else if (t >= 50)
4313 corr = ((t * 964) + 29317);
4314 else /* < 50 */
4315 corr = ((t * 301) + 1004);
4316
4317 corr = corr * ((150142 * state1) / 10000 - 78642);
4318 corr /= 100000;
4319 corr2 = (corr * dev_priv->ips.corr);
4320
4321 state2 = (corr2 * state1) / 10000;
4322 state2 /= 100; /* convert to mW */
4323
4324 __i915_update_gfx_val(dev_priv);
4325
4326 return dev_priv->ips.gfx_power + state2;
4327 }
4328
4329 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4330 {
4331 unsigned long val;
4332
4333 if (dev_priv->info->gen != 5)
4334 return 0;
4335
4336 spin_lock_irq(&mchdev_lock);
4337
4338 val = __i915_gfx_val(dev_priv);
4339
4340 spin_unlock_irq(&mchdev_lock);
4341
4342 return val;
4343 }
4344
4345 /**
4346 * i915_read_mch_val - return value for IPS use
4347 *
4348 * Calculate and return a value for the IPS driver to use when deciding whether
4349 * we have thermal and power headroom to increase CPU or GPU power budget.
4350 */
4351 unsigned long i915_read_mch_val(void)
4352 {
4353 struct drm_i915_private *dev_priv;
4354 unsigned long chipset_val, graphics_val, ret = 0;
4355
4356 spin_lock_irq(&mchdev_lock);
4357 if (!i915_mch_dev)
4358 goto out_unlock;
4359 dev_priv = i915_mch_dev;
4360
4361 chipset_val = __i915_chipset_val(dev_priv);
4362 graphics_val = __i915_gfx_val(dev_priv);
4363
4364 ret = chipset_val + graphics_val;
4365
4366 out_unlock:
4367 spin_unlock_irq(&mchdev_lock);
4368
4369 return ret;
4370 }
4371 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4372
4373 /**
4374 * i915_gpu_raise - raise GPU frequency limit
4375 *
4376 * Raise the limit; IPS indicates we have thermal headroom.
4377 */
4378 bool i915_gpu_raise(void)
4379 {
4380 struct drm_i915_private *dev_priv;
4381 bool ret = true;
4382
4383 spin_lock_irq(&mchdev_lock);
4384 if (!i915_mch_dev) {
4385 ret = false;
4386 goto out_unlock;
4387 }
4388 dev_priv = i915_mch_dev;
4389
4390 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4391 dev_priv->ips.max_delay--;
4392
4393 out_unlock:
4394 spin_unlock_irq(&mchdev_lock);
4395
4396 return ret;
4397 }
4398 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4399
4400 /**
4401 * i915_gpu_lower - lower GPU frequency limit
4402 *
4403 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4404 * frequency maximum.
4405 */
4406 bool i915_gpu_lower(void)
4407 {
4408 struct drm_i915_private *dev_priv;
4409 bool ret = true;
4410
4411 spin_lock_irq(&mchdev_lock);
4412 if (!i915_mch_dev) {
4413 ret = false;
4414 goto out_unlock;
4415 }
4416 dev_priv = i915_mch_dev;
4417
4418 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4419 dev_priv->ips.max_delay++;
4420
4421 out_unlock:
4422 spin_unlock_irq(&mchdev_lock);
4423
4424 return ret;
4425 }
4426 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4427
4428 /**
4429 * i915_gpu_busy - indicate GPU business to IPS
4430 *
4431 * Tell the IPS driver whether or not the GPU is busy.
4432 */
4433 bool i915_gpu_busy(void)
4434 {
4435 struct drm_i915_private *dev_priv;
4436 struct intel_ring_buffer *ring;
4437 bool ret = false;
4438 int i;
4439
4440 spin_lock_irq(&mchdev_lock);
4441 if (!i915_mch_dev)
4442 goto out_unlock;
4443 dev_priv = i915_mch_dev;
4444
4445 for_each_ring(ring, dev_priv, i)
4446 ret |= !list_empty(&ring->request_list);
4447
4448 out_unlock:
4449 spin_unlock_irq(&mchdev_lock);
4450
4451 return ret;
4452 }
4453 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4454
4455 /**
4456 * i915_gpu_turbo_disable - disable graphics turbo
4457 *
4458 * Disable graphics turbo by resetting the max frequency and setting the
4459 * current frequency to the default.
4460 */
4461 bool i915_gpu_turbo_disable(void)
4462 {
4463 struct drm_i915_private *dev_priv;
4464 bool ret = true;
4465
4466 spin_lock_irq(&mchdev_lock);
4467 if (!i915_mch_dev) {
4468 ret = false;
4469 goto out_unlock;
4470 }
4471 dev_priv = i915_mch_dev;
4472
4473 dev_priv->ips.max_delay = dev_priv->ips.fstart;
4474
4475 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4476 ret = false;
4477
4478 out_unlock:
4479 spin_unlock_irq(&mchdev_lock);
4480
4481 return ret;
4482 }
4483 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4484
4485 /**
4486 * Tells the intel_ips driver that the i915 driver is now loaded, if
4487 * IPS got loaded first.
4488 *
4489 * This awkward dance is so that neither module has to depend on the
4490 * other in order for IPS to do the appropriate communication of
4491 * GPU turbo limits to i915.
4492 */
4493 static void
4494 ips_ping_for_i915_load(void)
4495 {
4496 void (*link)(void);
4497
4498 link = symbol_get(ips_link_to_i915_driver);
4499 if (link) {
4500 link();
4501 symbol_put(ips_link_to_i915_driver);
4502 }
4503 }
4504
4505 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4506 {
4507 /* We only register the i915 ips part with intel-ips once everything is
4508 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4509 spin_lock_irq(&mchdev_lock);
4510 i915_mch_dev = dev_priv;
4511 spin_unlock_irq(&mchdev_lock);
4512
4513 ips_ping_for_i915_load();
4514 }
4515
4516 void intel_gpu_ips_teardown(void)
4517 {
4518 spin_lock_irq(&mchdev_lock);
4519 i915_mch_dev = NULL;
4520 spin_unlock_irq(&mchdev_lock);
4521 }
4522 static void intel_init_emon(struct drm_device *dev)
4523 {
4524 struct drm_i915_private *dev_priv = dev->dev_private;
4525 u32 lcfuse;
4526 u8 pxw[16];
4527 int i;
4528
4529 /* Disable to program */
4530 I915_WRITE(ECR, 0);
4531 POSTING_READ(ECR);
4532
4533 /* Program energy weights for various events */
4534 I915_WRITE(SDEW, 0x15040d00);
4535 I915_WRITE(CSIEW0, 0x007f0000);
4536 I915_WRITE(CSIEW1, 0x1e220004);
4537 I915_WRITE(CSIEW2, 0x04000004);
4538
4539 for (i = 0; i < 5; i++)
4540 I915_WRITE(PEW + (i * 4), 0);
4541 for (i = 0; i < 3; i++)
4542 I915_WRITE(DEW + (i * 4), 0);
4543
4544 /* Program P-state weights to account for frequency power adjustment */
4545 for (i = 0; i < 16; i++) {
4546 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4547 unsigned long freq = intel_pxfreq(pxvidfreq);
4548 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4549 PXVFREQ_PX_SHIFT;
4550 unsigned long val;
4551
4552 val = vid * vid;
4553 val *= (freq / 1000);
4554 val *= 255;
4555 val /= (127*127*900);
4556 if (val > 0xff)
4557 DRM_ERROR("bad pxval: %ld\n", val);
4558 pxw[i] = val;
4559 }
4560 /* Render standby states get 0 weight */
4561 pxw[14] = 0;
4562 pxw[15] = 0;
4563
4564 for (i = 0; i < 4; i++) {
4565 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4566 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4567 I915_WRITE(PXW + (i * 4), val);
4568 }
4569
4570 /* Adjust magic regs to magic values (more experimental results) */
4571 I915_WRITE(OGW0, 0);
4572 I915_WRITE(OGW1, 0);
4573 I915_WRITE(EG0, 0x00007f00);
4574 I915_WRITE(EG1, 0x0000000e);
4575 I915_WRITE(EG2, 0x000e0000);
4576 I915_WRITE(EG3, 0x68000300);
4577 I915_WRITE(EG4, 0x42000000);
4578 I915_WRITE(EG5, 0x00140031);
4579 I915_WRITE(EG6, 0);
4580 I915_WRITE(EG7, 0);
4581
4582 for (i = 0; i < 8; i++)
4583 I915_WRITE(PXWL + (i * 4), 0);
4584
4585 /* Enable PMON + select events */
4586 I915_WRITE(ECR, 0x80000019);
4587
4588 lcfuse = I915_READ(LCFUSE02);
4589
4590 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4591 }
4592
4593 void intel_disable_gt_powersave(struct drm_device *dev)
4594 {
4595 struct drm_i915_private *dev_priv = dev->dev_private;
4596
4597 /* Interrupts should be disabled already to avoid re-arming. */
4598 WARN_ON(dev->irq_enabled);
4599
4600 if (IS_IRONLAKE_M(dev)) {
4601 ironlake_disable_drps(dev);
4602 ironlake_disable_rc6(dev);
4603 } else if (INTEL_INFO(dev)->gen >= 6) {
4604 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4605 cancel_work_sync(&dev_priv->rps.work);
4606 if (IS_VALLEYVIEW(dev))
4607 cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
4608 mutex_lock(&dev_priv->rps.hw_lock);
4609 if (IS_VALLEYVIEW(dev))
4610 valleyview_disable_rps(dev);
4611 else
4612 gen6_disable_rps(dev);
4613 mutex_unlock(&dev_priv->rps.hw_lock);
4614 }
4615 }
4616
4617 static void intel_gen6_powersave_work(struct work_struct *work)
4618 {
4619 struct drm_i915_private *dev_priv =
4620 container_of(work, struct drm_i915_private,
4621 rps.delayed_resume_work.work);
4622 struct drm_device *dev = dev_priv->dev;
4623
4624 mutex_lock(&dev_priv->rps.hw_lock);
4625
4626 if (IS_VALLEYVIEW(dev)) {
4627 valleyview_enable_rps(dev);
4628 } else {
4629 gen6_enable_rps(dev);
4630 gen6_update_ring_freq(dev);
4631 }
4632 mutex_unlock(&dev_priv->rps.hw_lock);
4633 }
4634
4635 void intel_enable_gt_powersave(struct drm_device *dev)
4636 {
4637 struct drm_i915_private *dev_priv = dev->dev_private;
4638
4639 if (IS_IRONLAKE_M(dev)) {
4640 ironlake_enable_drps(dev);
4641 ironlake_enable_rc6(dev);
4642 intel_init_emon(dev);
4643 } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4644 /*
4645 * PCU communication is slow and this doesn't need to be
4646 * done at any specific time, so do this out of our fast path
4647 * to make resume and init faster.
4648 */
4649 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4650 round_jiffies_up_relative(HZ));
4651 }
4652 }
4653
4654 static void ibx_init_clock_gating(struct drm_device *dev)
4655 {
4656 struct drm_i915_private *dev_priv = dev->dev_private;
4657
4658 /*
4659 * On Ibex Peak and Cougar Point, we need to disable clock
4660 * gating for the panel power sequencer or it will fail to
4661 * start up when no ports are active.
4662 */
4663 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4664 }
4665
4666 static void g4x_disable_trickle_feed(struct drm_device *dev)
4667 {
4668 struct drm_i915_private *dev_priv = dev->dev_private;
4669 int pipe;
4670
4671 for_each_pipe(pipe) {
4672 I915_WRITE(DSPCNTR(pipe),
4673 I915_READ(DSPCNTR(pipe)) |
4674 DISPPLANE_TRICKLE_FEED_DISABLE);
4675 intel_flush_display_plane(dev_priv, pipe);
4676 }
4677 }
4678
4679 static void ironlake_init_clock_gating(struct drm_device *dev)
4680 {
4681 struct drm_i915_private *dev_priv = dev->dev_private;
4682 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4683
4684 /*
4685 * Required for FBC
4686 * WaFbcDisableDpfcClockGating:ilk
4687 */
4688 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4689 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4690 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4691
4692 I915_WRITE(PCH_3DCGDIS0,
4693 MARIUNIT_CLOCK_GATE_DISABLE |
4694 SVSMUNIT_CLOCK_GATE_DISABLE);
4695 I915_WRITE(PCH_3DCGDIS1,
4696 VFMUNIT_CLOCK_GATE_DISABLE);
4697
4698 /*
4699 * According to the spec the following bits should be set in
4700 * order to enable memory self-refresh
4701 * The bit 22/21 of 0x42004
4702 * The bit 5 of 0x42020
4703 * The bit 15 of 0x45000
4704 */
4705 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4706 (I915_READ(ILK_DISPLAY_CHICKEN2) |
4707 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4708 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4709 I915_WRITE(DISP_ARB_CTL,
4710 (I915_READ(DISP_ARB_CTL) |
4711 DISP_FBC_WM_DIS));
4712 I915_WRITE(WM3_LP_ILK, 0);
4713 I915_WRITE(WM2_LP_ILK, 0);
4714 I915_WRITE(WM1_LP_ILK, 0);
4715
4716 /*
4717 * Based on the document from hardware guys the following bits
4718 * should be set unconditionally in order to enable FBC.
4719 * The bit 22 of 0x42000
4720 * The bit 22 of 0x42004
4721 * The bit 7,8,9 of 0x42020.
4722 */
4723 if (IS_IRONLAKE_M(dev)) {
4724 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4725 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4726 I915_READ(ILK_DISPLAY_CHICKEN1) |
4727 ILK_FBCQ_DIS);
4728 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4729 I915_READ(ILK_DISPLAY_CHICKEN2) |
4730 ILK_DPARB_GATE);
4731 }
4732
4733 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4734
4735 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4736 I915_READ(ILK_DISPLAY_CHICKEN2) |
4737 ILK_ELPIN_409_SELECT);
4738 I915_WRITE(_3D_CHICKEN2,
4739 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4740 _3D_CHICKEN2_WM_READ_PIPELINED);
4741
4742 /* WaDisableRenderCachePipelinedFlush:ilk */
4743 I915_WRITE(CACHE_MODE_0,
4744 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4745
4746 g4x_disable_trickle_feed(dev);
4747
4748 ibx_init_clock_gating(dev);
4749 }
4750
4751 static void cpt_init_clock_gating(struct drm_device *dev)
4752 {
4753 struct drm_i915_private *dev_priv = dev->dev_private;
4754 int pipe;
4755 uint32_t val;
4756
4757 /*
4758 * On Ibex Peak and Cougar Point, we need to disable clock
4759 * gating for the panel power sequencer or it will fail to
4760 * start up when no ports are active.
4761 */
4762 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
4763 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
4764 PCH_CPUNIT_CLOCK_GATE_DISABLE);
4765 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4766 DPLS_EDP_PPS_FIX_DIS);
4767 /* The below fixes the weird display corruption, a few pixels shifted
4768 * downward, on (only) LVDS of some HP laptops with IVY.
4769 */
4770 for_each_pipe(pipe) {
4771 val = I915_READ(TRANS_CHICKEN2(pipe));
4772 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4773 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4774 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4775 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4776 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4777 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4778 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4779 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4780 }
4781 /* WADP0ClockGatingDisable */
4782 for_each_pipe(pipe) {
4783 I915_WRITE(TRANS_CHICKEN1(pipe),
4784 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4785 }
4786 }
4787
4788 static void gen6_check_mch_setup(struct drm_device *dev)
4789 {
4790 struct drm_i915_private *dev_priv = dev->dev_private;
4791 uint32_t tmp;
4792
4793 tmp = I915_READ(MCH_SSKPD);
4794 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4795 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4796 DRM_INFO("This can cause pipe underruns and display issues.\n");
4797 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4798 }
4799 }
4800
4801 static void gen6_init_clock_gating(struct drm_device *dev)
4802 {
4803 struct drm_i915_private *dev_priv = dev->dev_private;
4804 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4805
4806 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4807
4808 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4809 I915_READ(ILK_DISPLAY_CHICKEN2) |
4810 ILK_ELPIN_409_SELECT);
4811
4812 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4813 I915_WRITE(_3D_CHICKEN,
4814 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4815
4816 /* WaSetupGtModeTdRowDispatch:snb */
4817 if (IS_SNB_GT1(dev))
4818 I915_WRITE(GEN6_GT_MODE,
4819 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4820
4821 I915_WRITE(WM3_LP_ILK, 0);
4822 I915_WRITE(WM2_LP_ILK, 0);
4823 I915_WRITE(WM1_LP_ILK, 0);
4824
4825 I915_WRITE(CACHE_MODE_0,
4826 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4827
4828 I915_WRITE(GEN6_UCGCTL1,
4829 I915_READ(GEN6_UCGCTL1) |
4830 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4831 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4832
4833 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4834 * gating disable must be set. Failure to set it results in
4835 * flickering pixels due to Z write ordering failures after
4836 * some amount of runtime in the Mesa "fire" demo, and Unigine
4837 * Sanctuary and Tropics, and apparently anything else with
4838 * alpha test or pixel discard.
4839 *
4840 * According to the spec, bit 11 (RCCUNIT) must also be set,
4841 * but we didn't debug actual testcases to find it out.
4842 *
4843 * Also apply WaDisableVDSUnitClockGating:snb and
4844 * WaDisableRCPBUnitClockGating:snb.
4845 */
4846 I915_WRITE(GEN6_UCGCTL2,
4847 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4848 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4849 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4850
4851 /* Bspec says we need to always set all mask bits. */
4852 I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4853 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
4854
4855 /*
4856 * According to the spec the following bits should be
4857 * set in order to enable memory self-refresh and fbc:
4858 * The bit21 and bit22 of 0x42000
4859 * The bit21 and bit22 of 0x42004
4860 * The bit5 and bit7 of 0x42020
4861 * The bit14 of 0x70180
4862 * The bit14 of 0x71180
4863 *
4864 * WaFbcAsynchFlipDisableFbcQueue:snb
4865 */
4866 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4867 I915_READ(ILK_DISPLAY_CHICKEN1) |
4868 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4869 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4870 I915_READ(ILK_DISPLAY_CHICKEN2) |
4871 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4872 I915_WRITE(ILK_DSPCLK_GATE_D,
4873 I915_READ(ILK_DSPCLK_GATE_D) |
4874 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
4875 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4876
4877 g4x_disable_trickle_feed(dev);
4878
4879 /* The default value should be 0x200 according to docs, but the two
4880 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4881 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4882 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
4883
4884 cpt_init_clock_gating(dev);
4885
4886 gen6_check_mch_setup(dev);
4887 }
4888
4889 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4890 {
4891 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4892
4893 reg &= ~GEN7_FF_SCHED_MASK;
4894 reg |= GEN7_FF_TS_SCHED_HW;
4895 reg |= GEN7_FF_VS_SCHED_HW;
4896 reg |= GEN7_FF_DS_SCHED_HW;
4897
4898 if (IS_HASWELL(dev_priv->dev))
4899 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
4900
4901 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4902 }
4903
4904 static void lpt_init_clock_gating(struct drm_device *dev)
4905 {
4906 struct drm_i915_private *dev_priv = dev->dev_private;
4907
4908 /*
4909 * TODO: this bit should only be enabled when really needed, then
4910 * disabled when not needed anymore in order to save power.
4911 */
4912 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4913 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4914 I915_READ(SOUTH_DSPCLK_GATE_D) |
4915 PCH_LP_PARTITION_LEVEL_DISABLE);
4916
4917 /* WADPOClockGatingDisable:hsw */
4918 I915_WRITE(_TRANSA_CHICKEN1,
4919 I915_READ(_TRANSA_CHICKEN1) |
4920 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4921 }
4922
4923 static void lpt_suspend_hw(struct drm_device *dev)
4924 {
4925 struct drm_i915_private *dev_priv = dev->dev_private;
4926
4927 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4928 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4929
4930 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4931 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4932 }
4933 }
4934
4935 static void haswell_init_clock_gating(struct drm_device *dev)
4936 {
4937 struct drm_i915_private *dev_priv = dev->dev_private;
4938
4939 I915_WRITE(WM3_LP_ILK, 0);
4940 I915_WRITE(WM2_LP_ILK, 0);
4941 I915_WRITE(WM1_LP_ILK, 0);
4942
4943 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4944 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
4945 */
4946 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4947
4948 /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
4949 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4950 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4951
4952 /* WaApplyL3ControlAndL3ChickenMode:hsw */
4953 I915_WRITE(GEN7_L3CNTLREG1,
4954 GEN7_WA_FOR_GEN7_L3_CONTROL);
4955 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4956 GEN7_WA_L3_CHICKEN_MODE);
4957
4958 /* L3 caching of data atomics doesn't work -- disable it. */
4959 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
4960 I915_WRITE(HSW_ROW_CHICKEN3,
4961 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
4962
4963 /* This is required by WaCatErrorRejectionIssue:hsw */
4964 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4965 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4966 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4967
4968 /* WaVSRefCountFullforceMissDisable:hsw */
4969 gen7_setup_fixed_func_scheduler(dev_priv);
4970
4971 /* WaDisable4x2SubspanOptimization:hsw */
4972 I915_WRITE(CACHE_MODE_1,
4973 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4974
4975 /* WaSwitchSolVfFArbitrationPriority:hsw */
4976 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4977
4978 /* WaRsPkgCStateDisplayPMReq:hsw */
4979 I915_WRITE(CHICKEN_PAR1_1,
4980 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
4981
4982 lpt_init_clock_gating(dev);
4983 }
4984
4985 static void ivybridge_init_clock_gating(struct drm_device *dev)
4986 {
4987 struct drm_i915_private *dev_priv = dev->dev_private;
4988 uint32_t snpcr;
4989
4990 I915_WRITE(WM3_LP_ILK, 0);
4991 I915_WRITE(WM2_LP_ILK, 0);
4992 I915_WRITE(WM1_LP_ILK, 0);
4993
4994 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4995
4996 /* WaDisableEarlyCull:ivb */
4997 I915_WRITE(_3D_CHICKEN3,
4998 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4999
5000 /* WaDisableBackToBackFlipFix:ivb */
5001 I915_WRITE(IVB_CHICKEN3,
5002 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5003 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5004
5005 /* WaDisablePSDDualDispatchEnable:ivb */
5006 if (IS_IVB_GT1(dev))
5007 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5008 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5009 else
5010 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
5011 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5012
5013 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5014 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5015 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5016
5017 /* WaApplyL3ControlAndL3ChickenMode:ivb */
5018 I915_WRITE(GEN7_L3CNTLREG1,
5019 GEN7_WA_FOR_GEN7_L3_CONTROL);
5020 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5021 GEN7_WA_L3_CHICKEN_MODE);
5022 if (IS_IVB_GT1(dev))
5023 I915_WRITE(GEN7_ROW_CHICKEN2,
5024 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5025 else
5026 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5027 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5028
5029
5030 /* WaForceL3Serialization:ivb */
5031 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5032 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5033
5034 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5035 * gating disable must be set. Failure to set it results in
5036 * flickering pixels due to Z write ordering failures after
5037 * some amount of runtime in the Mesa "fire" demo, and Unigine
5038 * Sanctuary and Tropics, and apparently anything else with
5039 * alpha test or pixel discard.
5040 *
5041 * According to the spec, bit 11 (RCCUNIT) must also be set,
5042 * but we didn't debug actual testcases to find it out.
5043 *
5044 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5045 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5046 */
5047 I915_WRITE(GEN6_UCGCTL2,
5048 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5049 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5050
5051 /* This is required by WaCatErrorRejectionIssue:ivb */
5052 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5053 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5054 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5055
5056 g4x_disable_trickle_feed(dev);
5057
5058 /* WaVSRefCountFullforceMissDisable:ivb */
5059 gen7_setup_fixed_func_scheduler(dev_priv);
5060
5061 /* WaDisable4x2SubspanOptimization:ivb */
5062 I915_WRITE(CACHE_MODE_1,
5063 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5064
5065 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5066 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5067 snpcr |= GEN6_MBC_SNPCR_MED;
5068 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5069
5070 if (!HAS_PCH_NOP(dev))
5071 cpt_init_clock_gating(dev);
5072
5073 gen6_check_mch_setup(dev);
5074 }
5075
5076 static void valleyview_init_clock_gating(struct drm_device *dev)
5077 {
5078 struct drm_i915_private *dev_priv = dev->dev_private;
5079
5080 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5081
5082 /* WaDisableEarlyCull:vlv */
5083 I915_WRITE(_3D_CHICKEN3,
5084 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5085
5086 /* WaDisableBackToBackFlipFix:vlv */
5087 I915_WRITE(IVB_CHICKEN3,
5088 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5089 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5090
5091 /* WaDisablePSDDualDispatchEnable:vlv */
5092 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5093 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5094 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5095
5096 /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
5097 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5098 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5099
5100 /* WaApplyL3ControlAndL3ChickenMode:vlv */
5101 I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
5102 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
5103
5104 /* WaForceL3Serialization:vlv */
5105 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5106 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5107
5108 /* WaDisableDopClockGating:vlv */
5109 I915_WRITE(GEN7_ROW_CHICKEN2,
5110 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5111
5112 /* This is required by WaCatErrorRejectionIssue:vlv */
5113 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5114 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5115 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5116
5117 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5118 * gating disable must be set. Failure to set it results in
5119 * flickering pixels due to Z write ordering failures after
5120 * some amount of runtime in the Mesa "fire" demo, and Unigine
5121 * Sanctuary and Tropics, and apparently anything else with
5122 * alpha test or pixel discard.
5123 *
5124 * According to the spec, bit 11 (RCCUNIT) must also be set,
5125 * but we didn't debug actual testcases to find it out.
5126 *
5127 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5128 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5129 *
5130 * Also apply WaDisableVDSUnitClockGating:vlv and
5131 * WaDisableRCPBUnitClockGating:vlv.
5132 */
5133 I915_WRITE(GEN6_UCGCTL2,
5134 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
5135 GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
5136 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5137 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5138 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5139
5140 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5141
5142 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5143
5144 I915_WRITE(CACHE_MODE_1,
5145 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5146
5147 /*
5148 * WaDisableVLVClockGating_VBIIssue:vlv
5149 * Disable clock gating on th GCFG unit to prevent a delay
5150 * in the reporting of vblank events.
5151 */
5152 I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
5153
5154 /* Conservative clock gating settings for now */
5155 I915_WRITE(0x9400, 0xffffffff);
5156 I915_WRITE(0x9404, 0xffffffff);
5157 I915_WRITE(0x9408, 0xffffffff);
5158 I915_WRITE(0x940c, 0xffffffff);
5159 I915_WRITE(0x9410, 0xffffffff);
5160 I915_WRITE(0x9414, 0xffffffff);
5161 I915_WRITE(0x9418, 0xffffffff);
5162 }
5163
5164 static void g4x_init_clock_gating(struct drm_device *dev)
5165 {
5166 struct drm_i915_private *dev_priv = dev->dev_private;
5167 uint32_t dspclk_gate;
5168
5169 I915_WRITE(RENCLK_GATE_D1, 0);
5170 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5171 GS_UNIT_CLOCK_GATE_DISABLE |
5172 CL_UNIT_CLOCK_GATE_DISABLE);
5173 I915_WRITE(RAMCLK_GATE_D, 0);
5174 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5175 OVRUNIT_CLOCK_GATE_DISABLE |
5176 OVCUNIT_CLOCK_GATE_DISABLE;
5177 if (IS_GM45(dev))
5178 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5179 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5180
5181 /* WaDisableRenderCachePipelinedFlush */
5182 I915_WRITE(CACHE_MODE_0,
5183 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5184
5185 g4x_disable_trickle_feed(dev);
5186 }
5187
5188 static void crestline_init_clock_gating(struct drm_device *dev)
5189 {
5190 struct drm_i915_private *dev_priv = dev->dev_private;
5191
5192 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5193 I915_WRITE(RENCLK_GATE_D2, 0);
5194 I915_WRITE(DSPCLK_GATE_D, 0);
5195 I915_WRITE(RAMCLK_GATE_D, 0);
5196 I915_WRITE16(DEUC, 0);
5197 I915_WRITE(MI_ARB_STATE,
5198 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5199 }
5200
5201 static void broadwater_init_clock_gating(struct drm_device *dev)
5202 {
5203 struct drm_i915_private *dev_priv = dev->dev_private;
5204
5205 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5206 I965_RCC_CLOCK_GATE_DISABLE |
5207 I965_RCPB_CLOCK_GATE_DISABLE |
5208 I965_ISC_CLOCK_GATE_DISABLE |
5209 I965_FBC_CLOCK_GATE_DISABLE);
5210 I915_WRITE(RENCLK_GATE_D2, 0);
5211 I915_WRITE(MI_ARB_STATE,
5212 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5213 }
5214
5215 static void gen3_init_clock_gating(struct drm_device *dev)
5216 {
5217 struct drm_i915_private *dev_priv = dev->dev_private;
5218 u32 dstate = I915_READ(D_STATE);
5219
5220 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5221 DSTATE_DOT_CLOCK_GATING;
5222 I915_WRITE(D_STATE, dstate);
5223
5224 if (IS_PINEVIEW(dev))
5225 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5226
5227 /* IIR "flip pending" means done if this bit is set */
5228 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5229 }
5230
5231 static void i85x_init_clock_gating(struct drm_device *dev)
5232 {
5233 struct drm_i915_private *dev_priv = dev->dev_private;
5234
5235 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5236 }
5237
5238 static void i830_init_clock_gating(struct drm_device *dev)
5239 {
5240 struct drm_i915_private *dev_priv = dev->dev_private;
5241
5242 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5243 }
5244
5245 void intel_init_clock_gating(struct drm_device *dev)
5246 {
5247 struct drm_i915_private *dev_priv = dev->dev_private;
5248
5249 dev_priv->display.init_clock_gating(dev);
5250 }
5251
5252 void intel_suspend_hw(struct drm_device *dev)
5253 {
5254 if (HAS_PCH_LPT(dev))
5255 lpt_suspend_hw(dev);
5256 }
5257
5258 /**
5259 * We should only use the power well if we explicitly asked the hardware to
5260 * enable it, so check if it's enabled and also check if we've requested it to
5261 * be enabled.
5262 */
5263 bool intel_display_power_enabled(struct drm_device *dev,
5264 enum intel_display_power_domain domain)
5265 {
5266 struct drm_i915_private *dev_priv = dev->dev_private;
5267
5268 if (!HAS_POWER_WELL(dev))
5269 return true;
5270
5271 switch (domain) {
5272 case POWER_DOMAIN_PIPE_A:
5273 case POWER_DOMAIN_TRANSCODER_EDP:
5274 return true;
5275 case POWER_DOMAIN_PIPE_B:
5276 case POWER_DOMAIN_PIPE_C:
5277 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
5278 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
5279 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
5280 case POWER_DOMAIN_TRANSCODER_A:
5281 case POWER_DOMAIN_TRANSCODER_B:
5282 case POWER_DOMAIN_TRANSCODER_C:
5283 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5284 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5285 default:
5286 BUG();
5287 }
5288 }
5289
5290 static void __intel_set_power_well(struct drm_device *dev, bool enable)
5291 {
5292 struct drm_i915_private *dev_priv = dev->dev_private;
5293 bool is_enabled, enable_requested;
5294 uint32_t tmp;
5295
5296 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5297 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5298 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5299
5300 if (enable) {
5301 if (!enable_requested)
5302 I915_WRITE(HSW_PWR_WELL_DRIVER,
5303 HSW_PWR_WELL_ENABLE_REQUEST);
5304
5305 if (!is_enabled) {
5306 DRM_DEBUG_KMS("Enabling power well\n");
5307 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5308 HSW_PWR_WELL_STATE_ENABLED), 20))
5309 DRM_ERROR("Timeout enabling power well\n");
5310 }
5311 } else {
5312 if (enable_requested) {
5313 unsigned long irqflags;
5314 enum pipe p;
5315
5316 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5317 POSTING_READ(HSW_PWR_WELL_DRIVER);
5318 DRM_DEBUG_KMS("Requesting to disable the power well\n");
5319
5320 /*
5321 * After this, the registers on the pipes that are part
5322 * of the power well will become zero, so we have to
5323 * adjust our counters according to that.
5324 *
5325 * FIXME: Should we do this in general in
5326 * drm_vblank_post_modeset?
5327 */
5328 spin_lock_irqsave(&dev->vbl_lock, irqflags);
5329 for_each_pipe(p)
5330 if (p != PIPE_A)
5331 dev->last_vblank[p] = 0;
5332 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5333 }
5334 }
5335 }
5336
5337 static struct i915_power_well *hsw_pwr;
5338
5339 /* Display audio driver power well request */
5340 void i915_request_power_well(void)
5341 {
5342 if (WARN_ON(!hsw_pwr))
5343 return;
5344
5345 spin_lock_irq(&hsw_pwr->lock);
5346 if (!hsw_pwr->count++ &&
5347 !hsw_pwr->i915_request)
5348 __intel_set_power_well(hsw_pwr->device, true);
5349 spin_unlock_irq(&hsw_pwr->lock);
5350 }
5351 EXPORT_SYMBOL_GPL(i915_request_power_well);
5352
5353 /* Display audio driver power well release */
5354 void i915_release_power_well(void)
5355 {
5356 if (WARN_ON(!hsw_pwr))
5357 return;
5358
5359 spin_lock_irq(&hsw_pwr->lock);
5360 WARN_ON(!hsw_pwr->count);
5361 if (!--hsw_pwr->count &&
5362 !hsw_pwr->i915_request)
5363 __intel_set_power_well(hsw_pwr->device, false);
5364 spin_unlock_irq(&hsw_pwr->lock);
5365 }
5366 EXPORT_SYMBOL_GPL(i915_release_power_well);
5367
5368 int i915_init_power_well(struct drm_device *dev)
5369 {
5370 struct drm_i915_private *dev_priv = dev->dev_private;
5371
5372 hsw_pwr = &dev_priv->power_well;
5373
5374 hsw_pwr->device = dev;
5375 spin_lock_init(&hsw_pwr->lock);
5376 hsw_pwr->count = 0;
5377
5378 return 0;
5379 }
5380
5381 void i915_remove_power_well(struct drm_device *dev)
5382 {
5383 hsw_pwr = NULL;
5384 }
5385
5386 void intel_set_power_well(struct drm_device *dev, bool enable)
5387 {
5388 struct drm_i915_private *dev_priv = dev->dev_private;
5389 struct i915_power_well *power_well = &dev_priv->power_well;
5390
5391 if (!HAS_POWER_WELL(dev))
5392 return;
5393
5394 if (!i915_disable_power_well && !enable)
5395 return;
5396
5397 spin_lock_irq(&power_well->lock);
5398 power_well->i915_request = enable;
5399
5400 /* only reject "disable" power well request */
5401 if (power_well->count && !enable) {
5402 spin_unlock_irq(&power_well->lock);
5403 return;
5404 }
5405
5406 __intel_set_power_well(dev, enable);
5407 spin_unlock_irq(&power_well->lock);
5408 }
5409
5410 /*
5411 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5412 * when not needed anymore. We have 4 registers that can request the power well
5413 * to be enabled, and it will only be disabled if none of the registers is
5414 * requesting it to be enabled.
5415 */
5416 void intel_init_power_well(struct drm_device *dev)
5417 {
5418 struct drm_i915_private *dev_priv = dev->dev_private;
5419
5420 if (!HAS_POWER_WELL(dev))
5421 return;
5422
5423 /* For now, we need the power well to be always enabled. */
5424 intel_set_power_well(dev, true);
5425
5426 /* We're taking over the BIOS, so clear any requests made by it since
5427 * the driver is in charge now. */
5428 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5429 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5430 }
5431
5432 /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
5433 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5434 {
5435 hsw_disable_package_c8(dev_priv);
5436 }
5437
5438 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
5439 {
5440 hsw_enable_package_c8(dev_priv);
5441 }
5442
5443 /* Set up chip specific power management-related functions */
5444 void intel_init_pm(struct drm_device *dev)
5445 {
5446 struct drm_i915_private *dev_priv = dev->dev_private;
5447
5448 if (I915_HAS_FBC(dev)) {
5449 if (HAS_PCH_SPLIT(dev)) {
5450 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5451 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5452 dev_priv->display.enable_fbc =
5453 gen7_enable_fbc;
5454 else
5455 dev_priv->display.enable_fbc =
5456 ironlake_enable_fbc;
5457 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5458 } else if (IS_GM45(dev)) {
5459 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5460 dev_priv->display.enable_fbc = g4x_enable_fbc;
5461 dev_priv->display.disable_fbc = g4x_disable_fbc;
5462 } else if (IS_CRESTLINE(dev)) {
5463 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5464 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5465 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5466 }
5467 /* 855GM needs testing */
5468 }
5469
5470 /* For cxsr */
5471 if (IS_PINEVIEW(dev))
5472 i915_pineview_get_mem_freq(dev);
5473 else if (IS_GEN5(dev))
5474 i915_ironlake_get_mem_freq(dev);
5475
5476 /* For FIFO watermark updates */
5477 if (HAS_PCH_SPLIT(dev)) {
5478 intel_setup_wm_latency(dev);
5479
5480 if (IS_GEN5(dev)) {
5481 if (dev_priv->wm.pri_latency[1] &&
5482 dev_priv->wm.spr_latency[1] &&
5483 dev_priv->wm.cur_latency[1])
5484 dev_priv->display.update_wm = ironlake_update_wm;
5485 else {
5486 DRM_DEBUG_KMS("Failed to get proper latency. "
5487 "Disable CxSR\n");
5488 dev_priv->display.update_wm = NULL;
5489 }
5490 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5491 } else if (IS_GEN6(dev)) {
5492 if (dev_priv->wm.pri_latency[0] &&
5493 dev_priv->wm.spr_latency[0] &&
5494 dev_priv->wm.cur_latency[0]) {
5495 dev_priv->display.update_wm = sandybridge_update_wm;
5496 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5497 } else {
5498 DRM_DEBUG_KMS("Failed to read display plane latency. "
5499 "Disable CxSR\n");
5500 dev_priv->display.update_wm = NULL;
5501 }
5502 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
5503 } else if (IS_IVYBRIDGE(dev)) {
5504 if (dev_priv->wm.pri_latency[0] &&
5505 dev_priv->wm.spr_latency[0] &&
5506 dev_priv->wm.cur_latency[0]) {
5507 dev_priv->display.update_wm = ivybridge_update_wm;
5508 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5509 } else {
5510 DRM_DEBUG_KMS("Failed to read display plane latency. "
5511 "Disable CxSR\n");
5512 dev_priv->display.update_wm = NULL;
5513 }
5514 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
5515 } else if (IS_HASWELL(dev)) {
5516 if (dev_priv->wm.pri_latency[0] &&
5517 dev_priv->wm.spr_latency[0] &&
5518 dev_priv->wm.cur_latency[0]) {
5519 dev_priv->display.update_wm = haswell_update_wm;
5520 dev_priv->display.update_sprite_wm =
5521 haswell_update_sprite_wm;
5522 } else {
5523 DRM_DEBUG_KMS("Failed to read display plane latency. "
5524 "Disable CxSR\n");
5525 dev_priv->display.update_wm = NULL;
5526 }
5527 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
5528 } else
5529 dev_priv->display.update_wm = NULL;
5530 } else if (IS_VALLEYVIEW(dev)) {
5531 dev_priv->display.update_wm = valleyview_update_wm;
5532 dev_priv->display.init_clock_gating =
5533 valleyview_init_clock_gating;
5534 } else if (IS_PINEVIEW(dev)) {
5535 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5536 dev_priv->is_ddr3,
5537 dev_priv->fsb_freq,
5538 dev_priv->mem_freq)) {
5539 DRM_INFO("failed to find known CxSR latency "
5540 "(found ddr%s fsb freq %d, mem freq %d), "
5541 "disabling CxSR\n",
5542 (dev_priv->is_ddr3 == 1) ? "3" : "2",
5543 dev_priv->fsb_freq, dev_priv->mem_freq);
5544 /* Disable CxSR and never update its watermark again */
5545 pineview_disable_cxsr(dev);
5546 dev_priv->display.update_wm = NULL;
5547 } else
5548 dev_priv->display.update_wm = pineview_update_wm;
5549 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5550 } else if (IS_G4X(dev)) {
5551 dev_priv->display.update_wm = g4x_update_wm;
5552 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5553 } else if (IS_GEN4(dev)) {
5554 dev_priv->display.update_wm = i965_update_wm;
5555 if (IS_CRESTLINE(dev))
5556 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5557 else if (IS_BROADWATER(dev))
5558 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5559 } else if (IS_GEN3(dev)) {
5560 dev_priv->display.update_wm = i9xx_update_wm;
5561 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5562 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5563 } else if (IS_I865G(dev)) {
5564 dev_priv->display.update_wm = i830_update_wm;
5565 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5566 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5567 } else if (IS_I85X(dev)) {
5568 dev_priv->display.update_wm = i9xx_update_wm;
5569 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5570 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5571 } else {
5572 dev_priv->display.update_wm = i830_update_wm;
5573 dev_priv->display.init_clock_gating = i830_init_clock_gating;
5574 if (IS_845G(dev))
5575 dev_priv->display.get_fifo_size = i845_get_fifo_size;
5576 else
5577 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5578 }
5579 }
5580
5581 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5582 {
5583 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5584
5585 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5586 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5587 return -EAGAIN;
5588 }
5589
5590 I915_WRITE(GEN6_PCODE_DATA, *val);
5591 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5592
5593 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5594 500)) {
5595 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5596 return -ETIMEDOUT;
5597 }
5598
5599 *val = I915_READ(GEN6_PCODE_DATA);
5600 I915_WRITE(GEN6_PCODE_DATA, 0);
5601
5602 return 0;
5603 }
5604
5605 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5606 {
5607 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5608
5609 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5610 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5611 return -EAGAIN;
5612 }
5613
5614 I915_WRITE(GEN6_PCODE_DATA, val);
5615 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5616
5617 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5618 500)) {
5619 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5620 return -ETIMEDOUT;
5621 }
5622
5623 I915_WRITE(GEN6_PCODE_DATA, 0);
5624
5625 return 0;
5626 }
5627
5628 int vlv_gpu_freq(int ddr_freq, int val)
5629 {
5630 int mult, base;
5631
5632 switch (ddr_freq) {
5633 case 800:
5634 mult = 20;
5635 base = 120;
5636 break;
5637 case 1066:
5638 mult = 22;
5639 base = 133;
5640 break;
5641 case 1333:
5642 mult = 21;
5643 base = 125;
5644 break;
5645 default:
5646 return -1;
5647 }
5648
5649 return ((val - 0xbd) * mult) + base;
5650 }
5651
5652 int vlv_freq_opcode(int ddr_freq, int val)
5653 {
5654 int mult, base;
5655
5656 switch (ddr_freq) {
5657 case 800:
5658 mult = 20;
5659 base = 120;
5660 break;
5661 case 1066:
5662 mult = 22;
5663 base = 133;
5664 break;
5665 case 1333:
5666 mult = 21;
5667 base = 125;
5668 break;
5669 default:
5670 return -1;
5671 }
5672
5673 val /= mult;
5674 val -= base / mult;
5675 val += 0xbd;
5676
5677 if (val > 0xea)
5678 val = 0xea;
5679
5680 return val;
5681 }
5682
5683 void intel_pm_init(struct drm_device *dev)
5684 {
5685 struct drm_i915_private *dev_priv = dev->dev_private;
5686
5687 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
5688 intel_gen6_powersave_work);
5689
5690 INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);
5691 }
5692
This page took 0.148304 seconds and 6 git commands to generate.