Merge branch 'linux-3.17' of git://anongit.freedesktop.org/git/nouveau/linux-2.6...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <linux/vgaarb.h>
34 #include <drm/i915_powerwell.h>
35 #include <linux/pm_runtime.h>
36
37 /**
38 * RC6 is a special power stage which allows the GPU to enter an very
39 * low-voltage mode when idle, using down to 0V while at this stage. This
40 * stage is entered automatically when the GPU is idle when RC6 support is
41 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42 *
43 * There are different RC6 modes available in Intel GPU, which differentiate
44 * among each other with the latency required to enter and leave RC6 and
45 * voltage consumed by the GPU in different states.
46 *
47 * The combination of the following flags define which states GPU is allowed
48 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49 * RC6pp is deepest RC6. Their support by hardware varies according to the
50 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51 * which brings the most power savings; deeper states save more power, but
52 * require higher latency to switch to and wake up.
53 */
54 #define INTEL_RC6_ENABLE (1<<0)
55 #define INTEL_RC6p_ENABLE (1<<1)
56 #define INTEL_RC6pp_ENABLE (1<<2)
57
58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
59 * framebuffer contents in-memory, aiming at reducing the required bandwidth
60 * during in-memory transfers and, therefore, reduce the power packet.
61 *
62 * The benefits of FBC are mostly visible with solid backgrounds and
63 * variation-less patterns.
64 *
65 * FBC-related functionality can be enabled by the means of the
66 * i915.i915_enable_fbc parameter
67 */
68
69 static void i8xx_disable_fbc(struct drm_device *dev)
70 {
71 struct drm_i915_private *dev_priv = dev->dev_private;
72 u32 fbc_ctl;
73
74 /* Disable compression */
75 fbc_ctl = I915_READ(FBC_CONTROL);
76 if ((fbc_ctl & FBC_CTL_EN) == 0)
77 return;
78
79 fbc_ctl &= ~FBC_CTL_EN;
80 I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82 /* Wait for compressing bit to clear */
83 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84 DRM_DEBUG_KMS("FBC idle timed out\n");
85 return;
86 }
87
88 DRM_DEBUG_KMS("disabled FBC\n");
89 }
90
91 static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 {
93 struct drm_device *dev = crtc->dev;
94 struct drm_i915_private *dev_priv = dev->dev_private;
95 struct drm_framebuffer *fb = crtc->primary->fb;
96 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
97 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
98 int cfb_pitch;
99 int i;
100 u32 fbc_ctl;
101
102 cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
103 if (fb->pitches[0] < cfb_pitch)
104 cfb_pitch = fb->pitches[0];
105
106 /* FBC_CTL wants 32B or 64B units */
107 if (IS_GEN2(dev))
108 cfb_pitch = (cfb_pitch / 32) - 1;
109 else
110 cfb_pitch = (cfb_pitch / 64) - 1;
111
112 /* Clear old tags */
113 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
114 I915_WRITE(FBC_TAG + (i * 4), 0);
115
116 if (IS_GEN4(dev)) {
117 u32 fbc_ctl2;
118
119 /* Set it up... */
120 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
121 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
122 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
123 I915_WRITE(FBC_FENCE_OFF, crtc->y);
124 }
125
126 /* enable it... */
127 fbc_ctl = I915_READ(FBC_CONTROL);
128 fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
129 fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
130 if (IS_I945GM(dev))
131 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
132 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
133 fbc_ctl |= obj->fence_reg;
134 I915_WRITE(FBC_CONTROL, fbc_ctl);
135
136 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
137 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
138 }
139
140 static bool i8xx_fbc_enabled(struct drm_device *dev)
141 {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143
144 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
145 }
146
147 static void g4x_enable_fbc(struct drm_crtc *crtc)
148 {
149 struct drm_device *dev = crtc->dev;
150 struct drm_i915_private *dev_priv = dev->dev_private;
151 struct drm_framebuffer *fb = crtc->primary->fb;
152 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
153 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
154 u32 dpfc_ctl;
155
156 dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
157 if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
158 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
159 else
160 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
161 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
162
163 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
164
165 /* enable it... */
166 I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
167
168 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
169 }
170
171 static void g4x_disable_fbc(struct drm_device *dev)
172 {
173 struct drm_i915_private *dev_priv = dev->dev_private;
174 u32 dpfc_ctl;
175
176 /* Disable compression */
177 dpfc_ctl = I915_READ(DPFC_CONTROL);
178 if (dpfc_ctl & DPFC_CTL_EN) {
179 dpfc_ctl &= ~DPFC_CTL_EN;
180 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
181
182 DRM_DEBUG_KMS("disabled FBC\n");
183 }
184 }
185
186 static bool g4x_fbc_enabled(struct drm_device *dev)
187 {
188 struct drm_i915_private *dev_priv = dev->dev_private;
189
190 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
191 }
192
193 static void sandybridge_blit_fbc_update(struct drm_device *dev)
194 {
195 struct drm_i915_private *dev_priv = dev->dev_private;
196 u32 blt_ecoskpd;
197
198 /* Make sure blitter notifies FBC of writes */
199
200 /* Blitter is part of Media powerwell on VLV. No impact of
201 * his param in other platforms for now */
202 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
203
204 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
205 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
206 GEN6_BLITTER_LOCK_SHIFT;
207 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
208 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
209 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
211 GEN6_BLITTER_LOCK_SHIFT);
212 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
213 POSTING_READ(GEN6_BLITTER_ECOSKPD);
214
215 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
216 }
217
218 static void ironlake_enable_fbc(struct drm_crtc *crtc)
219 {
220 struct drm_device *dev = crtc->dev;
221 struct drm_i915_private *dev_priv = dev->dev_private;
222 struct drm_framebuffer *fb = crtc->primary->fb;
223 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
224 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
225 u32 dpfc_ctl;
226
227 dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
228 if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
229 dev_priv->fbc.threshold++;
230
231 switch (dev_priv->fbc.threshold) {
232 case 4:
233 case 3:
234 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
235 break;
236 case 2:
237 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
238 break;
239 case 1:
240 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
241 break;
242 }
243 dpfc_ctl |= DPFC_CTL_FENCE_EN;
244 if (IS_GEN5(dev))
245 dpfc_ctl |= obj->fence_reg;
246
247 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
248 I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
249 /* enable it... */
250 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
251
252 if (IS_GEN6(dev)) {
253 I915_WRITE(SNB_DPFC_CTL_SA,
254 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
255 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
256 sandybridge_blit_fbc_update(dev);
257 }
258
259 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
260 }
261
262 static void ironlake_disable_fbc(struct drm_device *dev)
263 {
264 struct drm_i915_private *dev_priv = dev->dev_private;
265 u32 dpfc_ctl;
266
267 /* Disable compression */
268 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
269 if (dpfc_ctl & DPFC_CTL_EN) {
270 dpfc_ctl &= ~DPFC_CTL_EN;
271 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
272
273 DRM_DEBUG_KMS("disabled FBC\n");
274 }
275 }
276
277 static bool ironlake_fbc_enabled(struct drm_device *dev)
278 {
279 struct drm_i915_private *dev_priv = dev->dev_private;
280
281 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
282 }
283
284 static void gen7_enable_fbc(struct drm_crtc *crtc)
285 {
286 struct drm_device *dev = crtc->dev;
287 struct drm_i915_private *dev_priv = dev->dev_private;
288 struct drm_framebuffer *fb = crtc->primary->fb;
289 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
290 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
291 u32 dpfc_ctl;
292
293 dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
294 if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
295 dev_priv->fbc.threshold++;
296
297 switch (dev_priv->fbc.threshold) {
298 case 4:
299 case 3:
300 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
301 break;
302 case 2:
303 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
304 break;
305 case 1:
306 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
307 break;
308 }
309
310 dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
311
312 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
313
314 if (IS_IVYBRIDGE(dev)) {
315 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
316 I915_WRITE(ILK_DISPLAY_CHICKEN1,
317 I915_READ(ILK_DISPLAY_CHICKEN1) |
318 ILK_FBCQ_DIS);
319 } else {
320 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
321 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
322 I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
323 HSW_FBCQ_DIS);
324 }
325
326 I915_WRITE(SNB_DPFC_CTL_SA,
327 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
328 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
329
330 sandybridge_blit_fbc_update(dev);
331
332 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
333 }
334
335 bool intel_fbc_enabled(struct drm_device *dev)
336 {
337 struct drm_i915_private *dev_priv = dev->dev_private;
338
339 if (!dev_priv->display.fbc_enabled)
340 return false;
341
342 return dev_priv->display.fbc_enabled(dev);
343 }
344
345 static void intel_fbc_work_fn(struct work_struct *__work)
346 {
347 struct intel_fbc_work *work =
348 container_of(to_delayed_work(__work),
349 struct intel_fbc_work, work);
350 struct drm_device *dev = work->crtc->dev;
351 struct drm_i915_private *dev_priv = dev->dev_private;
352
353 mutex_lock(&dev->struct_mutex);
354 if (work == dev_priv->fbc.fbc_work) {
355 /* Double check that we haven't switched fb without cancelling
356 * the prior work.
357 */
358 if (work->crtc->primary->fb == work->fb) {
359 dev_priv->display.enable_fbc(work->crtc);
360
361 dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
362 dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
363 dev_priv->fbc.y = work->crtc->y;
364 }
365
366 dev_priv->fbc.fbc_work = NULL;
367 }
368 mutex_unlock(&dev->struct_mutex);
369
370 kfree(work);
371 }
372
373 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
374 {
375 if (dev_priv->fbc.fbc_work == NULL)
376 return;
377
378 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
379
380 /* Synchronisation is provided by struct_mutex and checking of
381 * dev_priv->fbc.fbc_work, so we can perform the cancellation
382 * entirely asynchronously.
383 */
384 if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
385 /* tasklet was killed before being run, clean up */
386 kfree(dev_priv->fbc.fbc_work);
387
388 /* Mark the work as no longer wanted so that if it does
389 * wake-up (because the work was already running and waiting
390 * for our mutex), it will discover that is no longer
391 * necessary to run.
392 */
393 dev_priv->fbc.fbc_work = NULL;
394 }
395
396 static void intel_enable_fbc(struct drm_crtc *crtc)
397 {
398 struct intel_fbc_work *work;
399 struct drm_device *dev = crtc->dev;
400 struct drm_i915_private *dev_priv = dev->dev_private;
401
402 if (!dev_priv->display.enable_fbc)
403 return;
404
405 intel_cancel_fbc_work(dev_priv);
406
407 work = kzalloc(sizeof(*work), GFP_KERNEL);
408 if (work == NULL) {
409 DRM_ERROR("Failed to allocate FBC work structure\n");
410 dev_priv->display.enable_fbc(crtc);
411 return;
412 }
413
414 work->crtc = crtc;
415 work->fb = crtc->primary->fb;
416 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
417
418 dev_priv->fbc.fbc_work = work;
419
420 /* Delay the actual enabling to let pageflipping cease and the
421 * display to settle before starting the compression. Note that
422 * this delay also serves a second purpose: it allows for a
423 * vblank to pass after disabling the FBC before we attempt
424 * to modify the control registers.
425 *
426 * A more complicated solution would involve tracking vblanks
427 * following the termination of the page-flipping sequence
428 * and indeed performing the enable as a co-routine and not
429 * waiting synchronously upon the vblank.
430 *
431 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
432 */
433 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
434 }
435
436 void intel_disable_fbc(struct drm_device *dev)
437 {
438 struct drm_i915_private *dev_priv = dev->dev_private;
439
440 intel_cancel_fbc_work(dev_priv);
441
442 if (!dev_priv->display.disable_fbc)
443 return;
444
445 dev_priv->display.disable_fbc(dev);
446 dev_priv->fbc.plane = -1;
447 }
448
449 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
450 enum no_fbc_reason reason)
451 {
452 if (dev_priv->fbc.no_fbc_reason == reason)
453 return false;
454
455 dev_priv->fbc.no_fbc_reason = reason;
456 return true;
457 }
458
459 /**
460 * intel_update_fbc - enable/disable FBC as needed
461 * @dev: the drm_device
462 *
463 * Set up the framebuffer compression hardware at mode set time. We
464 * enable it if possible:
465 * - plane A only (on pre-965)
466 * - no pixel mulitply/line duplication
467 * - no alpha buffer discard
468 * - no dual wide
469 * - framebuffer <= max_hdisplay in width, max_vdisplay in height
470 *
471 * We can't assume that any compression will take place (worst case),
472 * so the compressed buffer has to be the same size as the uncompressed
473 * one. It also must reside (along with the line length buffer) in
474 * stolen memory.
475 *
476 * We need to enable/disable FBC on a global basis.
477 */
478 void intel_update_fbc(struct drm_device *dev)
479 {
480 struct drm_i915_private *dev_priv = dev->dev_private;
481 struct drm_crtc *crtc = NULL, *tmp_crtc;
482 struct intel_crtc *intel_crtc;
483 struct drm_framebuffer *fb;
484 struct drm_i915_gem_object *obj;
485 const struct drm_display_mode *adjusted_mode;
486 unsigned int max_width, max_height;
487
488 if (!HAS_FBC(dev)) {
489 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
490 return;
491 }
492
493 if (!i915.powersave) {
494 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
495 DRM_DEBUG_KMS("fbc disabled per module param\n");
496 return;
497 }
498
499 /*
500 * If FBC is already on, we just have to verify that we can
501 * keep it that way...
502 * Need to disable if:
503 * - more than one pipe is active
504 * - changing FBC params (stride, fence, mode)
505 * - new fb is too large to fit in compressed buffer
506 * - going to an unsupported config (interlace, pixel multiply, etc.)
507 */
508 for_each_crtc(dev, tmp_crtc) {
509 if (intel_crtc_active(tmp_crtc) &&
510 to_intel_crtc(tmp_crtc)->primary_enabled) {
511 if (crtc) {
512 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
513 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
514 goto out_disable;
515 }
516 crtc = tmp_crtc;
517 }
518 }
519
520 if (!crtc || crtc->primary->fb == NULL) {
521 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
522 DRM_DEBUG_KMS("no output, disabling\n");
523 goto out_disable;
524 }
525
526 intel_crtc = to_intel_crtc(crtc);
527 fb = crtc->primary->fb;
528 obj = intel_fb_obj(fb);
529 adjusted_mode = &intel_crtc->config.adjusted_mode;
530
531 if (i915.enable_fbc < 0) {
532 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
533 DRM_DEBUG_KMS("disabled per chip default\n");
534 goto out_disable;
535 }
536 if (!i915.enable_fbc) {
537 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
538 DRM_DEBUG_KMS("fbc disabled per module param\n");
539 goto out_disable;
540 }
541 if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
542 (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
543 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
544 DRM_DEBUG_KMS("mode incompatible with compression, "
545 "disabling\n");
546 goto out_disable;
547 }
548
549 if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
550 max_width = 4096;
551 max_height = 4096;
552 } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
553 max_width = 4096;
554 max_height = 2048;
555 } else {
556 max_width = 2048;
557 max_height = 1536;
558 }
559 if (intel_crtc->config.pipe_src_w > max_width ||
560 intel_crtc->config.pipe_src_h > max_height) {
561 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
562 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
563 goto out_disable;
564 }
565 if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
566 intel_crtc->plane != PLANE_A) {
567 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
568 DRM_DEBUG_KMS("plane not A, disabling compression\n");
569 goto out_disable;
570 }
571
572 /* The use of a CPU fence is mandatory in order to detect writes
573 * by the CPU to the scanout and trigger updates to the FBC.
574 */
575 if (obj->tiling_mode != I915_TILING_X ||
576 obj->fence_reg == I915_FENCE_REG_NONE) {
577 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
578 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
579 goto out_disable;
580 }
581
582 /* If the kernel debugger is active, always disable compression */
583 if (in_dbg_master())
584 goto out_disable;
585
586 if (i915_gem_stolen_setup_compression(dev, obj->base.size,
587 drm_format_plane_cpp(fb->pixel_format, 0))) {
588 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
589 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
590 goto out_disable;
591 }
592
593 /* If the scanout has not changed, don't modify the FBC settings.
594 * Note that we make the fundamental assumption that the fb->obj
595 * cannot be unpinned (and have its GTT offset and fence revoked)
596 * without first being decoupled from the scanout and FBC disabled.
597 */
598 if (dev_priv->fbc.plane == intel_crtc->plane &&
599 dev_priv->fbc.fb_id == fb->base.id &&
600 dev_priv->fbc.y == crtc->y)
601 return;
602
603 if (intel_fbc_enabled(dev)) {
604 /* We update FBC along two paths, after changing fb/crtc
605 * configuration (modeswitching) and after page-flipping
606 * finishes. For the latter, we know that not only did
607 * we disable the FBC at the start of the page-flip
608 * sequence, but also more than one vblank has passed.
609 *
610 * For the former case of modeswitching, it is possible
611 * to switch between two FBC valid configurations
612 * instantaneously so we do need to disable the FBC
613 * before we can modify its control registers. We also
614 * have to wait for the next vblank for that to take
615 * effect. However, since we delay enabling FBC we can
616 * assume that a vblank has passed since disabling and
617 * that we can safely alter the registers in the deferred
618 * callback.
619 *
620 * In the scenario that we go from a valid to invalid
621 * and then back to valid FBC configuration we have
622 * no strict enforcement that a vblank occurred since
623 * disabling the FBC. However, along all current pipe
624 * disabling paths we do need to wait for a vblank at
625 * some point. And we wait before enabling FBC anyway.
626 */
627 DRM_DEBUG_KMS("disabling active FBC for update\n");
628 intel_disable_fbc(dev);
629 }
630
631 intel_enable_fbc(crtc);
632 dev_priv->fbc.no_fbc_reason = FBC_OK;
633 return;
634
635 out_disable:
636 /* Multiple disables should be harmless */
637 if (intel_fbc_enabled(dev)) {
638 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
639 intel_disable_fbc(dev);
640 }
641 i915_gem_stolen_cleanup_compression(dev);
642 }
643
644 static void i915_pineview_get_mem_freq(struct drm_device *dev)
645 {
646 struct drm_i915_private *dev_priv = dev->dev_private;
647 u32 tmp;
648
649 tmp = I915_READ(CLKCFG);
650
651 switch (tmp & CLKCFG_FSB_MASK) {
652 case CLKCFG_FSB_533:
653 dev_priv->fsb_freq = 533; /* 133*4 */
654 break;
655 case CLKCFG_FSB_800:
656 dev_priv->fsb_freq = 800; /* 200*4 */
657 break;
658 case CLKCFG_FSB_667:
659 dev_priv->fsb_freq = 667; /* 167*4 */
660 break;
661 case CLKCFG_FSB_400:
662 dev_priv->fsb_freq = 400; /* 100*4 */
663 break;
664 }
665
666 switch (tmp & CLKCFG_MEM_MASK) {
667 case CLKCFG_MEM_533:
668 dev_priv->mem_freq = 533;
669 break;
670 case CLKCFG_MEM_667:
671 dev_priv->mem_freq = 667;
672 break;
673 case CLKCFG_MEM_800:
674 dev_priv->mem_freq = 800;
675 break;
676 }
677
678 /* detect pineview DDR3 setting */
679 tmp = I915_READ(CSHRDDR3CTL);
680 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
681 }
682
683 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
684 {
685 struct drm_i915_private *dev_priv = dev->dev_private;
686 u16 ddrpll, csipll;
687
688 ddrpll = I915_READ16(DDRMPLL1);
689 csipll = I915_READ16(CSIPLL0);
690
691 switch (ddrpll & 0xff) {
692 case 0xc:
693 dev_priv->mem_freq = 800;
694 break;
695 case 0x10:
696 dev_priv->mem_freq = 1066;
697 break;
698 case 0x14:
699 dev_priv->mem_freq = 1333;
700 break;
701 case 0x18:
702 dev_priv->mem_freq = 1600;
703 break;
704 default:
705 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
706 ddrpll & 0xff);
707 dev_priv->mem_freq = 0;
708 break;
709 }
710
711 dev_priv->ips.r_t = dev_priv->mem_freq;
712
713 switch (csipll & 0x3ff) {
714 case 0x00c:
715 dev_priv->fsb_freq = 3200;
716 break;
717 case 0x00e:
718 dev_priv->fsb_freq = 3733;
719 break;
720 case 0x010:
721 dev_priv->fsb_freq = 4266;
722 break;
723 case 0x012:
724 dev_priv->fsb_freq = 4800;
725 break;
726 case 0x014:
727 dev_priv->fsb_freq = 5333;
728 break;
729 case 0x016:
730 dev_priv->fsb_freq = 5866;
731 break;
732 case 0x018:
733 dev_priv->fsb_freq = 6400;
734 break;
735 default:
736 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
737 csipll & 0x3ff);
738 dev_priv->fsb_freq = 0;
739 break;
740 }
741
742 if (dev_priv->fsb_freq == 3200) {
743 dev_priv->ips.c_m = 0;
744 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
745 dev_priv->ips.c_m = 1;
746 } else {
747 dev_priv->ips.c_m = 2;
748 }
749 }
750
751 static const struct cxsr_latency cxsr_latency_table[] = {
752 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
753 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
754 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
755 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
756 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
757
758 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
759 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
760 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
761 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
762 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
763
764 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
765 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
766 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
767 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
768 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
769
770 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
771 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
772 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
773 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
774 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
775
776 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
777 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
778 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
779 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
780 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
781
782 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
783 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
784 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
785 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
786 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
787 };
788
789 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
790 int is_ddr3,
791 int fsb,
792 int mem)
793 {
794 const struct cxsr_latency *latency;
795 int i;
796
797 if (fsb == 0 || mem == 0)
798 return NULL;
799
800 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
801 latency = &cxsr_latency_table[i];
802 if (is_desktop == latency->is_desktop &&
803 is_ddr3 == latency->is_ddr3 &&
804 fsb == latency->fsb_freq && mem == latency->mem_freq)
805 return latency;
806 }
807
808 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
809
810 return NULL;
811 }
812
813 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
814 {
815 struct drm_device *dev = dev_priv->dev;
816 u32 val;
817
818 if (IS_VALLEYVIEW(dev)) {
819 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
820 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
821 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
822 } else if (IS_PINEVIEW(dev)) {
823 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
824 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
825 I915_WRITE(DSPFW3, val);
826 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
827 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
828 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
829 I915_WRITE(FW_BLC_SELF, val);
830 } else if (IS_I915GM(dev)) {
831 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
832 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
833 I915_WRITE(INSTPM, val);
834 } else {
835 return;
836 }
837
838 DRM_DEBUG_KMS("memory self-refresh is %s\n",
839 enable ? "enabled" : "disabled");
840 }
841
842 /*
843 * Latency for FIFO fetches is dependent on several factors:
844 * - memory configuration (speed, channels)
845 * - chipset
846 * - current MCH state
847 * It can be fairly high in some situations, so here we assume a fairly
848 * pessimal value. It's a tradeoff between extra memory fetches (if we
849 * set this value too high, the FIFO will fetch frequently to stay full)
850 * and power consumption (set it too low to save power and we might see
851 * FIFO underruns and display "flicker").
852 *
853 * A value of 5us seems to be a good balance; safe for very low end
854 * platforms but not overly aggressive on lower latency configs.
855 */
856 static const int latency_ns = 5000;
857
858 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
859 {
860 struct drm_i915_private *dev_priv = dev->dev_private;
861 uint32_t dsparb = I915_READ(DSPARB);
862 int size;
863
864 size = dsparb & 0x7f;
865 if (plane)
866 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
867
868 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
869 plane ? "B" : "A", size);
870
871 return size;
872 }
873
874 static int i830_get_fifo_size(struct drm_device *dev, int plane)
875 {
876 struct drm_i915_private *dev_priv = dev->dev_private;
877 uint32_t dsparb = I915_READ(DSPARB);
878 int size;
879
880 size = dsparb & 0x1ff;
881 if (plane)
882 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
883 size >>= 1; /* Convert to cachelines */
884
885 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
886 plane ? "B" : "A", size);
887
888 return size;
889 }
890
891 static int i845_get_fifo_size(struct drm_device *dev, int plane)
892 {
893 struct drm_i915_private *dev_priv = dev->dev_private;
894 uint32_t dsparb = I915_READ(DSPARB);
895 int size;
896
897 size = dsparb & 0x7f;
898 size >>= 2; /* Convert to cachelines */
899
900 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
901 plane ? "B" : "A",
902 size);
903
904 return size;
905 }
906
907 /* Pineview has different values for various configs */
908 static const struct intel_watermark_params pineview_display_wm = {
909 .fifo_size = PINEVIEW_DISPLAY_FIFO,
910 .max_wm = PINEVIEW_MAX_WM,
911 .default_wm = PINEVIEW_DFT_WM,
912 .guard_size = PINEVIEW_GUARD_WM,
913 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
914 };
915 static const struct intel_watermark_params pineview_display_hplloff_wm = {
916 .fifo_size = PINEVIEW_DISPLAY_FIFO,
917 .max_wm = PINEVIEW_MAX_WM,
918 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
919 .guard_size = PINEVIEW_GUARD_WM,
920 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
921 };
922 static const struct intel_watermark_params pineview_cursor_wm = {
923 .fifo_size = PINEVIEW_CURSOR_FIFO,
924 .max_wm = PINEVIEW_CURSOR_MAX_WM,
925 .default_wm = PINEVIEW_CURSOR_DFT_WM,
926 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
927 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
928 };
929 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
930 .fifo_size = PINEVIEW_CURSOR_FIFO,
931 .max_wm = PINEVIEW_CURSOR_MAX_WM,
932 .default_wm = PINEVIEW_CURSOR_DFT_WM,
933 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
934 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
935 };
936 static const struct intel_watermark_params g4x_wm_info = {
937 .fifo_size = G4X_FIFO_SIZE,
938 .max_wm = G4X_MAX_WM,
939 .default_wm = G4X_MAX_WM,
940 .guard_size = 2,
941 .cacheline_size = G4X_FIFO_LINE_SIZE,
942 };
943 static const struct intel_watermark_params g4x_cursor_wm_info = {
944 .fifo_size = I965_CURSOR_FIFO,
945 .max_wm = I965_CURSOR_MAX_WM,
946 .default_wm = I965_CURSOR_DFT_WM,
947 .guard_size = 2,
948 .cacheline_size = G4X_FIFO_LINE_SIZE,
949 };
950 static const struct intel_watermark_params valleyview_wm_info = {
951 .fifo_size = VALLEYVIEW_FIFO_SIZE,
952 .max_wm = VALLEYVIEW_MAX_WM,
953 .default_wm = VALLEYVIEW_MAX_WM,
954 .guard_size = 2,
955 .cacheline_size = G4X_FIFO_LINE_SIZE,
956 };
957 static const struct intel_watermark_params valleyview_cursor_wm_info = {
958 .fifo_size = I965_CURSOR_FIFO,
959 .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
960 .default_wm = I965_CURSOR_DFT_WM,
961 .guard_size = 2,
962 .cacheline_size = G4X_FIFO_LINE_SIZE,
963 };
964 static const struct intel_watermark_params i965_cursor_wm_info = {
965 .fifo_size = I965_CURSOR_FIFO,
966 .max_wm = I965_CURSOR_MAX_WM,
967 .default_wm = I965_CURSOR_DFT_WM,
968 .guard_size = 2,
969 .cacheline_size = I915_FIFO_LINE_SIZE,
970 };
971 static const struct intel_watermark_params i945_wm_info = {
972 .fifo_size = I945_FIFO_SIZE,
973 .max_wm = I915_MAX_WM,
974 .default_wm = 1,
975 .guard_size = 2,
976 .cacheline_size = I915_FIFO_LINE_SIZE,
977 };
978 static const struct intel_watermark_params i915_wm_info = {
979 .fifo_size = I915_FIFO_SIZE,
980 .max_wm = I915_MAX_WM,
981 .default_wm = 1,
982 .guard_size = 2,
983 .cacheline_size = I915_FIFO_LINE_SIZE,
984 };
985 static const struct intel_watermark_params i830_wm_info = {
986 .fifo_size = I855GM_FIFO_SIZE,
987 .max_wm = I915_MAX_WM,
988 .default_wm = 1,
989 .guard_size = 2,
990 .cacheline_size = I830_FIFO_LINE_SIZE,
991 };
992 static const struct intel_watermark_params i845_wm_info = {
993 .fifo_size = I830_FIFO_SIZE,
994 .max_wm = I915_MAX_WM,
995 .default_wm = 1,
996 .guard_size = 2,
997 .cacheline_size = I830_FIFO_LINE_SIZE,
998 };
999
1000 /**
1001 * intel_calculate_wm - calculate watermark level
1002 * @clock_in_khz: pixel clock
1003 * @wm: chip FIFO params
1004 * @pixel_size: display pixel size
1005 * @latency_ns: memory latency for the platform
1006 *
1007 * Calculate the watermark level (the level at which the display plane will
1008 * start fetching from memory again). Each chip has a different display
1009 * FIFO size and allocation, so the caller needs to figure that out and pass
1010 * in the correct intel_watermark_params structure.
1011 *
1012 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1013 * on the pixel size. When it reaches the watermark level, it'll start
1014 * fetching FIFO line sized based chunks from memory until the FIFO fills
1015 * past the watermark point. If the FIFO drains completely, a FIFO underrun
1016 * will occur, and a display engine hang could result.
1017 */
1018 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1019 const struct intel_watermark_params *wm,
1020 int fifo_size,
1021 int pixel_size,
1022 unsigned long latency_ns)
1023 {
1024 long entries_required, wm_size;
1025
1026 /*
1027 * Note: we need to make sure we don't overflow for various clock &
1028 * latency values.
1029 * clocks go from a few thousand to several hundred thousand.
1030 * latency is usually a few thousand
1031 */
1032 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1033 1000;
1034 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1035
1036 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1037
1038 wm_size = fifo_size - (entries_required + wm->guard_size);
1039
1040 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1041
1042 /* Don't promote wm_size to unsigned... */
1043 if (wm_size > (long)wm->max_wm)
1044 wm_size = wm->max_wm;
1045 if (wm_size <= 0)
1046 wm_size = wm->default_wm;
1047 return wm_size;
1048 }
1049
1050 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1051 {
1052 struct drm_crtc *crtc, *enabled = NULL;
1053
1054 for_each_crtc(dev, crtc) {
1055 if (intel_crtc_active(crtc)) {
1056 if (enabled)
1057 return NULL;
1058 enabled = crtc;
1059 }
1060 }
1061
1062 return enabled;
1063 }
1064
1065 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1066 {
1067 struct drm_device *dev = unused_crtc->dev;
1068 struct drm_i915_private *dev_priv = dev->dev_private;
1069 struct drm_crtc *crtc;
1070 const struct cxsr_latency *latency;
1071 u32 reg;
1072 unsigned long wm;
1073
1074 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1075 dev_priv->fsb_freq, dev_priv->mem_freq);
1076 if (!latency) {
1077 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1078 intel_set_memory_cxsr(dev_priv, false);
1079 return;
1080 }
1081
1082 crtc = single_enabled_crtc(dev);
1083 if (crtc) {
1084 const struct drm_display_mode *adjusted_mode;
1085 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1086 int clock;
1087
1088 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1089 clock = adjusted_mode->crtc_clock;
1090
1091 /* Display SR */
1092 wm = intel_calculate_wm(clock, &pineview_display_wm,
1093 pineview_display_wm.fifo_size,
1094 pixel_size, latency->display_sr);
1095 reg = I915_READ(DSPFW1);
1096 reg &= ~DSPFW_SR_MASK;
1097 reg |= wm << DSPFW_SR_SHIFT;
1098 I915_WRITE(DSPFW1, reg);
1099 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1100
1101 /* cursor SR */
1102 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1103 pineview_display_wm.fifo_size,
1104 pixel_size, latency->cursor_sr);
1105 reg = I915_READ(DSPFW3);
1106 reg &= ~DSPFW_CURSOR_SR_MASK;
1107 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1108 I915_WRITE(DSPFW3, reg);
1109
1110 /* Display HPLL off SR */
1111 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1112 pineview_display_hplloff_wm.fifo_size,
1113 pixel_size, latency->display_hpll_disable);
1114 reg = I915_READ(DSPFW3);
1115 reg &= ~DSPFW_HPLL_SR_MASK;
1116 reg |= wm & DSPFW_HPLL_SR_MASK;
1117 I915_WRITE(DSPFW3, reg);
1118
1119 /* cursor HPLL off SR */
1120 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1121 pineview_display_hplloff_wm.fifo_size,
1122 pixel_size, latency->cursor_hpll_disable);
1123 reg = I915_READ(DSPFW3);
1124 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1125 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1126 I915_WRITE(DSPFW3, reg);
1127 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1128
1129 intel_set_memory_cxsr(dev_priv, true);
1130 } else {
1131 intel_set_memory_cxsr(dev_priv, false);
1132 }
1133 }
1134
1135 static bool g4x_compute_wm0(struct drm_device *dev,
1136 int plane,
1137 const struct intel_watermark_params *display,
1138 int display_latency_ns,
1139 const struct intel_watermark_params *cursor,
1140 int cursor_latency_ns,
1141 int *plane_wm,
1142 int *cursor_wm)
1143 {
1144 struct drm_crtc *crtc;
1145 const struct drm_display_mode *adjusted_mode;
1146 int htotal, hdisplay, clock, pixel_size;
1147 int line_time_us, line_count;
1148 int entries, tlb_miss;
1149
1150 crtc = intel_get_crtc_for_plane(dev, plane);
1151 if (!intel_crtc_active(crtc)) {
1152 *cursor_wm = cursor->guard_size;
1153 *plane_wm = display->guard_size;
1154 return false;
1155 }
1156
1157 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1158 clock = adjusted_mode->crtc_clock;
1159 htotal = adjusted_mode->crtc_htotal;
1160 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1161 pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1162
1163 /* Use the small buffer method to calculate plane watermark */
1164 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1165 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1166 if (tlb_miss > 0)
1167 entries += tlb_miss;
1168 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1169 *plane_wm = entries + display->guard_size;
1170 if (*plane_wm > (int)display->max_wm)
1171 *plane_wm = display->max_wm;
1172
1173 /* Use the large buffer method to calculate cursor watermark */
1174 line_time_us = max(htotal * 1000 / clock, 1);
1175 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1176 entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1177 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1178 if (tlb_miss > 0)
1179 entries += tlb_miss;
1180 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1181 *cursor_wm = entries + cursor->guard_size;
1182 if (*cursor_wm > (int)cursor->max_wm)
1183 *cursor_wm = (int)cursor->max_wm;
1184
1185 return true;
1186 }
1187
1188 /*
1189 * Check the wm result.
1190 *
1191 * If any calculated watermark values is larger than the maximum value that
1192 * can be programmed into the associated watermark register, that watermark
1193 * must be disabled.
1194 */
1195 static bool g4x_check_srwm(struct drm_device *dev,
1196 int display_wm, int cursor_wm,
1197 const struct intel_watermark_params *display,
1198 const struct intel_watermark_params *cursor)
1199 {
1200 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1201 display_wm, cursor_wm);
1202
1203 if (display_wm > display->max_wm) {
1204 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1205 display_wm, display->max_wm);
1206 return false;
1207 }
1208
1209 if (cursor_wm > cursor->max_wm) {
1210 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1211 cursor_wm, cursor->max_wm);
1212 return false;
1213 }
1214
1215 if (!(display_wm || cursor_wm)) {
1216 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1217 return false;
1218 }
1219
1220 return true;
1221 }
1222
1223 static bool g4x_compute_srwm(struct drm_device *dev,
1224 int plane,
1225 int latency_ns,
1226 const struct intel_watermark_params *display,
1227 const struct intel_watermark_params *cursor,
1228 int *display_wm, int *cursor_wm)
1229 {
1230 struct drm_crtc *crtc;
1231 const struct drm_display_mode *adjusted_mode;
1232 int hdisplay, htotal, pixel_size, clock;
1233 unsigned long line_time_us;
1234 int line_count, line_size;
1235 int small, large;
1236 int entries;
1237
1238 if (!latency_ns) {
1239 *display_wm = *cursor_wm = 0;
1240 return false;
1241 }
1242
1243 crtc = intel_get_crtc_for_plane(dev, plane);
1244 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1245 clock = adjusted_mode->crtc_clock;
1246 htotal = adjusted_mode->crtc_htotal;
1247 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1248 pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1249
1250 line_time_us = max(htotal * 1000 / clock, 1);
1251 line_count = (latency_ns / line_time_us + 1000) / 1000;
1252 line_size = hdisplay * pixel_size;
1253
1254 /* Use the minimum of the small and large buffer method for primary */
1255 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1256 large = line_count * line_size;
1257
1258 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1259 *display_wm = entries + display->guard_size;
1260
1261 /* calculate the self-refresh watermark for display cursor */
1262 entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1263 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1264 *cursor_wm = entries + cursor->guard_size;
1265
1266 return g4x_check_srwm(dev,
1267 *display_wm, *cursor_wm,
1268 display, cursor);
1269 }
1270
1271 static bool vlv_compute_drain_latency(struct drm_device *dev,
1272 int plane,
1273 int *plane_prec_mult,
1274 int *plane_dl,
1275 int *cursor_prec_mult,
1276 int *cursor_dl)
1277 {
1278 struct drm_crtc *crtc;
1279 int clock, pixel_size;
1280 int entries;
1281
1282 crtc = intel_get_crtc_for_plane(dev, plane);
1283 if (!intel_crtc_active(crtc))
1284 return false;
1285
1286 clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1287 pixel_size = crtc->primary->fb->bits_per_pixel / 8; /* BPP */
1288
1289 entries = (clock / 1000) * pixel_size;
1290 *plane_prec_mult = (entries > 128) ?
1291 DRAIN_LATENCY_PRECISION_64 : DRAIN_LATENCY_PRECISION_32;
1292 *plane_dl = (64 * (*plane_prec_mult) * 4) / entries;
1293
1294 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1295 *cursor_prec_mult = (entries > 128) ?
1296 DRAIN_LATENCY_PRECISION_64 : DRAIN_LATENCY_PRECISION_32;
1297 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / entries;
1298
1299 return true;
1300 }
1301
1302 /*
1303 * Update drain latency registers of memory arbiter
1304 *
1305 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1306 * to be programmed. Each plane has a drain latency multiplier and a drain
1307 * latency value.
1308 */
1309
1310 static void vlv_update_drain_latency(struct drm_device *dev)
1311 {
1312 struct drm_i915_private *dev_priv = dev->dev_private;
1313 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1314 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1315 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1316 either 16 or 32 */
1317
1318 /* For plane A, Cursor A */
1319 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1320 &cursor_prec_mult, &cursora_dl)) {
1321 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1322 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_64;
1323 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1324 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_64;
1325
1326 I915_WRITE(VLV_DDL1, cursora_prec |
1327 (cursora_dl << DDL_CURSORA_SHIFT) |
1328 planea_prec | planea_dl);
1329 }
1330
1331 /* For plane B, Cursor B */
1332 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1333 &cursor_prec_mult, &cursorb_dl)) {
1334 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1335 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_64;
1336 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1337 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_64;
1338
1339 I915_WRITE(VLV_DDL2, cursorb_prec |
1340 (cursorb_dl << DDL_CURSORB_SHIFT) |
1341 planeb_prec | planeb_dl);
1342 }
1343 }
1344
1345 #define single_plane_enabled(mask) is_power_of_2(mask)
1346
1347 static void valleyview_update_wm(struct drm_crtc *crtc)
1348 {
1349 struct drm_device *dev = crtc->dev;
1350 static const int sr_latency_ns = 12000;
1351 struct drm_i915_private *dev_priv = dev->dev_private;
1352 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1353 int plane_sr, cursor_sr;
1354 int ignore_plane_sr, ignore_cursor_sr;
1355 unsigned int enabled = 0;
1356 bool cxsr_enabled;
1357
1358 vlv_update_drain_latency(dev);
1359
1360 if (g4x_compute_wm0(dev, PIPE_A,
1361 &valleyview_wm_info, latency_ns,
1362 &valleyview_cursor_wm_info, latency_ns,
1363 &planea_wm, &cursora_wm))
1364 enabled |= 1 << PIPE_A;
1365
1366 if (g4x_compute_wm0(dev, PIPE_B,
1367 &valleyview_wm_info, latency_ns,
1368 &valleyview_cursor_wm_info, latency_ns,
1369 &planeb_wm, &cursorb_wm))
1370 enabled |= 1 << PIPE_B;
1371
1372 if (single_plane_enabled(enabled) &&
1373 g4x_compute_srwm(dev, ffs(enabled) - 1,
1374 sr_latency_ns,
1375 &valleyview_wm_info,
1376 &valleyview_cursor_wm_info,
1377 &plane_sr, &ignore_cursor_sr) &&
1378 g4x_compute_srwm(dev, ffs(enabled) - 1,
1379 2*sr_latency_ns,
1380 &valleyview_wm_info,
1381 &valleyview_cursor_wm_info,
1382 &ignore_plane_sr, &cursor_sr)) {
1383 cxsr_enabled = true;
1384 } else {
1385 cxsr_enabled = false;
1386 intel_set_memory_cxsr(dev_priv, false);
1387 plane_sr = cursor_sr = 0;
1388 }
1389
1390 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1391 planea_wm, cursora_wm,
1392 planeb_wm, cursorb_wm,
1393 plane_sr, cursor_sr);
1394
1395 I915_WRITE(DSPFW1,
1396 (plane_sr << DSPFW_SR_SHIFT) |
1397 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1398 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1399 planea_wm);
1400 I915_WRITE(DSPFW2,
1401 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1402 (cursora_wm << DSPFW_CURSORA_SHIFT));
1403 I915_WRITE(DSPFW3,
1404 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1405 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1406
1407 if (cxsr_enabled)
1408 intel_set_memory_cxsr(dev_priv, true);
1409 }
1410
1411 static void g4x_update_wm(struct drm_crtc *crtc)
1412 {
1413 struct drm_device *dev = crtc->dev;
1414 static const int sr_latency_ns = 12000;
1415 struct drm_i915_private *dev_priv = dev->dev_private;
1416 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1417 int plane_sr, cursor_sr;
1418 unsigned int enabled = 0;
1419 bool cxsr_enabled;
1420
1421 if (g4x_compute_wm0(dev, PIPE_A,
1422 &g4x_wm_info, latency_ns,
1423 &g4x_cursor_wm_info, latency_ns,
1424 &planea_wm, &cursora_wm))
1425 enabled |= 1 << PIPE_A;
1426
1427 if (g4x_compute_wm0(dev, PIPE_B,
1428 &g4x_wm_info, latency_ns,
1429 &g4x_cursor_wm_info, latency_ns,
1430 &planeb_wm, &cursorb_wm))
1431 enabled |= 1 << PIPE_B;
1432
1433 if (single_plane_enabled(enabled) &&
1434 g4x_compute_srwm(dev, ffs(enabled) - 1,
1435 sr_latency_ns,
1436 &g4x_wm_info,
1437 &g4x_cursor_wm_info,
1438 &plane_sr, &cursor_sr)) {
1439 cxsr_enabled = true;
1440 } else {
1441 cxsr_enabled = false;
1442 intel_set_memory_cxsr(dev_priv, false);
1443 plane_sr = cursor_sr = 0;
1444 }
1445
1446 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1447 planea_wm, cursora_wm,
1448 planeb_wm, cursorb_wm,
1449 plane_sr, cursor_sr);
1450
1451 I915_WRITE(DSPFW1,
1452 (plane_sr << DSPFW_SR_SHIFT) |
1453 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1454 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1455 planea_wm);
1456 I915_WRITE(DSPFW2,
1457 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1458 (cursora_wm << DSPFW_CURSORA_SHIFT));
1459 /* HPLL off in SR has some issues on G4x... disable it */
1460 I915_WRITE(DSPFW3,
1461 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1462 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1463
1464 if (cxsr_enabled)
1465 intel_set_memory_cxsr(dev_priv, true);
1466 }
1467
1468 static void i965_update_wm(struct drm_crtc *unused_crtc)
1469 {
1470 struct drm_device *dev = unused_crtc->dev;
1471 struct drm_i915_private *dev_priv = dev->dev_private;
1472 struct drm_crtc *crtc;
1473 int srwm = 1;
1474 int cursor_sr = 16;
1475 bool cxsr_enabled;
1476
1477 /* Calc sr entries for one plane configs */
1478 crtc = single_enabled_crtc(dev);
1479 if (crtc) {
1480 /* self-refresh has much higher latency */
1481 static const int sr_latency_ns = 12000;
1482 const struct drm_display_mode *adjusted_mode =
1483 &to_intel_crtc(crtc)->config.adjusted_mode;
1484 int clock = adjusted_mode->crtc_clock;
1485 int htotal = adjusted_mode->crtc_htotal;
1486 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1487 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1488 unsigned long line_time_us;
1489 int entries;
1490
1491 line_time_us = max(htotal * 1000 / clock, 1);
1492
1493 /* Use ns/us then divide to preserve precision */
1494 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1495 pixel_size * hdisplay;
1496 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1497 srwm = I965_FIFO_SIZE - entries;
1498 if (srwm < 0)
1499 srwm = 1;
1500 srwm &= 0x1ff;
1501 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1502 entries, srwm);
1503
1504 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1505 pixel_size * to_intel_crtc(crtc)->cursor_width;
1506 entries = DIV_ROUND_UP(entries,
1507 i965_cursor_wm_info.cacheline_size);
1508 cursor_sr = i965_cursor_wm_info.fifo_size -
1509 (entries + i965_cursor_wm_info.guard_size);
1510
1511 if (cursor_sr > i965_cursor_wm_info.max_wm)
1512 cursor_sr = i965_cursor_wm_info.max_wm;
1513
1514 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1515 "cursor %d\n", srwm, cursor_sr);
1516
1517 cxsr_enabled = true;
1518 } else {
1519 cxsr_enabled = false;
1520 /* Turn off self refresh if both pipes are enabled */
1521 intel_set_memory_cxsr(dev_priv, false);
1522 }
1523
1524 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1525 srwm);
1526
1527 /* 965 has limitations... */
1528 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1529 (8 << 16) | (8 << 8) | (8 << 0));
1530 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1531 /* update cursor SR watermark */
1532 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1533
1534 if (cxsr_enabled)
1535 intel_set_memory_cxsr(dev_priv, true);
1536 }
1537
1538 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1539 {
1540 struct drm_device *dev = unused_crtc->dev;
1541 struct drm_i915_private *dev_priv = dev->dev_private;
1542 const struct intel_watermark_params *wm_info;
1543 uint32_t fwater_lo;
1544 uint32_t fwater_hi;
1545 int cwm, srwm = 1;
1546 int fifo_size;
1547 int planea_wm, planeb_wm;
1548 struct drm_crtc *crtc, *enabled = NULL;
1549
1550 if (IS_I945GM(dev))
1551 wm_info = &i945_wm_info;
1552 else if (!IS_GEN2(dev))
1553 wm_info = &i915_wm_info;
1554 else
1555 wm_info = &i830_wm_info;
1556
1557 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1558 crtc = intel_get_crtc_for_plane(dev, 0);
1559 if (intel_crtc_active(crtc)) {
1560 const struct drm_display_mode *adjusted_mode;
1561 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1562 if (IS_GEN2(dev))
1563 cpp = 4;
1564
1565 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1566 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1567 wm_info, fifo_size, cpp,
1568 latency_ns);
1569 enabled = crtc;
1570 } else
1571 planea_wm = fifo_size - wm_info->guard_size;
1572
1573 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1574 crtc = intel_get_crtc_for_plane(dev, 1);
1575 if (intel_crtc_active(crtc)) {
1576 const struct drm_display_mode *adjusted_mode;
1577 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1578 if (IS_GEN2(dev))
1579 cpp = 4;
1580
1581 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1582 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1583 wm_info, fifo_size, cpp,
1584 latency_ns);
1585 if (enabled == NULL)
1586 enabled = crtc;
1587 else
1588 enabled = NULL;
1589 } else
1590 planeb_wm = fifo_size - wm_info->guard_size;
1591
1592 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1593
1594 if (IS_I915GM(dev) && enabled) {
1595 struct drm_i915_gem_object *obj;
1596
1597 obj = intel_fb_obj(enabled->primary->fb);
1598
1599 /* self-refresh seems busted with untiled */
1600 if (obj->tiling_mode == I915_TILING_NONE)
1601 enabled = NULL;
1602 }
1603
1604 /*
1605 * Overlay gets an aggressive default since video jitter is bad.
1606 */
1607 cwm = 2;
1608
1609 /* Play safe and disable self-refresh before adjusting watermarks. */
1610 intel_set_memory_cxsr(dev_priv, false);
1611
1612 /* Calc sr entries for one plane configs */
1613 if (HAS_FW_BLC(dev) && enabled) {
1614 /* self-refresh has much higher latency */
1615 static const int sr_latency_ns = 6000;
1616 const struct drm_display_mode *adjusted_mode =
1617 &to_intel_crtc(enabled)->config.adjusted_mode;
1618 int clock = adjusted_mode->crtc_clock;
1619 int htotal = adjusted_mode->crtc_htotal;
1620 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1621 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1622 unsigned long line_time_us;
1623 int entries;
1624
1625 line_time_us = max(htotal * 1000 / clock, 1);
1626
1627 /* Use ns/us then divide to preserve precision */
1628 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1629 pixel_size * hdisplay;
1630 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1631 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1632 srwm = wm_info->fifo_size - entries;
1633 if (srwm < 0)
1634 srwm = 1;
1635
1636 if (IS_I945G(dev) || IS_I945GM(dev))
1637 I915_WRITE(FW_BLC_SELF,
1638 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1639 else if (IS_I915GM(dev))
1640 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1641 }
1642
1643 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1644 planea_wm, planeb_wm, cwm, srwm);
1645
1646 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1647 fwater_hi = (cwm & 0x1f);
1648
1649 /* Set request length to 8 cachelines per fetch */
1650 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1651 fwater_hi = fwater_hi | (1 << 8);
1652
1653 I915_WRITE(FW_BLC, fwater_lo);
1654 I915_WRITE(FW_BLC2, fwater_hi);
1655
1656 if (enabled)
1657 intel_set_memory_cxsr(dev_priv, true);
1658 }
1659
1660 static void i845_update_wm(struct drm_crtc *unused_crtc)
1661 {
1662 struct drm_device *dev = unused_crtc->dev;
1663 struct drm_i915_private *dev_priv = dev->dev_private;
1664 struct drm_crtc *crtc;
1665 const struct drm_display_mode *adjusted_mode;
1666 uint32_t fwater_lo;
1667 int planea_wm;
1668
1669 crtc = single_enabled_crtc(dev);
1670 if (crtc == NULL)
1671 return;
1672
1673 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1674 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1675 &i845_wm_info,
1676 dev_priv->display.get_fifo_size(dev, 0),
1677 4, latency_ns);
1678 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1679 fwater_lo |= (3<<8) | planea_wm;
1680
1681 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1682
1683 I915_WRITE(FW_BLC, fwater_lo);
1684 }
1685
1686 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1687 struct drm_crtc *crtc)
1688 {
1689 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1690 uint32_t pixel_rate;
1691
1692 pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1693
1694 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1695 * adjust the pixel_rate here. */
1696
1697 if (intel_crtc->config.pch_pfit.enabled) {
1698 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1699 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1700
1701 pipe_w = intel_crtc->config.pipe_src_w;
1702 pipe_h = intel_crtc->config.pipe_src_h;
1703 pfit_w = (pfit_size >> 16) & 0xFFFF;
1704 pfit_h = pfit_size & 0xFFFF;
1705 if (pipe_w < pfit_w)
1706 pipe_w = pfit_w;
1707 if (pipe_h < pfit_h)
1708 pipe_h = pfit_h;
1709
1710 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1711 pfit_w * pfit_h);
1712 }
1713
1714 return pixel_rate;
1715 }
1716
1717 /* latency must be in 0.1us units. */
1718 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1719 uint32_t latency)
1720 {
1721 uint64_t ret;
1722
1723 if (WARN(latency == 0, "Latency value missing\n"))
1724 return UINT_MAX;
1725
1726 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1727 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1728
1729 return ret;
1730 }
1731
1732 /* latency must be in 0.1us units. */
1733 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1734 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1735 uint32_t latency)
1736 {
1737 uint32_t ret;
1738
1739 if (WARN(latency == 0, "Latency value missing\n"))
1740 return UINT_MAX;
1741
1742 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1743 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1744 ret = DIV_ROUND_UP(ret, 64) + 2;
1745 return ret;
1746 }
1747
1748 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1749 uint8_t bytes_per_pixel)
1750 {
1751 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1752 }
1753
1754 struct ilk_pipe_wm_parameters {
1755 bool active;
1756 uint32_t pipe_htotal;
1757 uint32_t pixel_rate;
1758 struct intel_plane_wm_parameters pri;
1759 struct intel_plane_wm_parameters spr;
1760 struct intel_plane_wm_parameters cur;
1761 };
1762
1763 struct ilk_wm_maximums {
1764 uint16_t pri;
1765 uint16_t spr;
1766 uint16_t cur;
1767 uint16_t fbc;
1768 };
1769
1770 /* used in computing the new watermarks state */
1771 struct intel_wm_config {
1772 unsigned int num_pipes_active;
1773 bool sprites_enabled;
1774 bool sprites_scaled;
1775 };
1776
1777 /*
1778 * For both WM_PIPE and WM_LP.
1779 * mem_value must be in 0.1us units.
1780 */
1781 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1782 uint32_t mem_value,
1783 bool is_lp)
1784 {
1785 uint32_t method1, method2;
1786
1787 if (!params->active || !params->pri.enabled)
1788 return 0;
1789
1790 method1 = ilk_wm_method1(params->pixel_rate,
1791 params->pri.bytes_per_pixel,
1792 mem_value);
1793
1794 if (!is_lp)
1795 return method1;
1796
1797 method2 = ilk_wm_method2(params->pixel_rate,
1798 params->pipe_htotal,
1799 params->pri.horiz_pixels,
1800 params->pri.bytes_per_pixel,
1801 mem_value);
1802
1803 return min(method1, method2);
1804 }
1805
1806 /*
1807 * For both WM_PIPE and WM_LP.
1808 * mem_value must be in 0.1us units.
1809 */
1810 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1811 uint32_t mem_value)
1812 {
1813 uint32_t method1, method2;
1814
1815 if (!params->active || !params->spr.enabled)
1816 return 0;
1817
1818 method1 = ilk_wm_method1(params->pixel_rate,
1819 params->spr.bytes_per_pixel,
1820 mem_value);
1821 method2 = ilk_wm_method2(params->pixel_rate,
1822 params->pipe_htotal,
1823 params->spr.horiz_pixels,
1824 params->spr.bytes_per_pixel,
1825 mem_value);
1826 return min(method1, method2);
1827 }
1828
1829 /*
1830 * For both WM_PIPE and WM_LP.
1831 * mem_value must be in 0.1us units.
1832 */
1833 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1834 uint32_t mem_value)
1835 {
1836 if (!params->active || !params->cur.enabled)
1837 return 0;
1838
1839 return ilk_wm_method2(params->pixel_rate,
1840 params->pipe_htotal,
1841 params->cur.horiz_pixels,
1842 params->cur.bytes_per_pixel,
1843 mem_value);
1844 }
1845
1846 /* Only for WM_LP. */
1847 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1848 uint32_t pri_val)
1849 {
1850 if (!params->active || !params->pri.enabled)
1851 return 0;
1852
1853 return ilk_wm_fbc(pri_val,
1854 params->pri.horiz_pixels,
1855 params->pri.bytes_per_pixel);
1856 }
1857
1858 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1859 {
1860 if (INTEL_INFO(dev)->gen >= 8)
1861 return 3072;
1862 else if (INTEL_INFO(dev)->gen >= 7)
1863 return 768;
1864 else
1865 return 512;
1866 }
1867
1868 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1869 int level, bool is_sprite)
1870 {
1871 if (INTEL_INFO(dev)->gen >= 8)
1872 /* BDW primary/sprite plane watermarks */
1873 return level == 0 ? 255 : 2047;
1874 else if (INTEL_INFO(dev)->gen >= 7)
1875 /* IVB/HSW primary/sprite plane watermarks */
1876 return level == 0 ? 127 : 1023;
1877 else if (!is_sprite)
1878 /* ILK/SNB primary plane watermarks */
1879 return level == 0 ? 127 : 511;
1880 else
1881 /* ILK/SNB sprite plane watermarks */
1882 return level == 0 ? 63 : 255;
1883 }
1884
1885 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1886 int level)
1887 {
1888 if (INTEL_INFO(dev)->gen >= 7)
1889 return level == 0 ? 63 : 255;
1890 else
1891 return level == 0 ? 31 : 63;
1892 }
1893
1894 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1895 {
1896 if (INTEL_INFO(dev)->gen >= 8)
1897 return 31;
1898 else
1899 return 15;
1900 }
1901
1902 /* Calculate the maximum primary/sprite plane watermark */
1903 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1904 int level,
1905 const struct intel_wm_config *config,
1906 enum intel_ddb_partitioning ddb_partitioning,
1907 bool is_sprite)
1908 {
1909 unsigned int fifo_size = ilk_display_fifo_size(dev);
1910
1911 /* if sprites aren't enabled, sprites get nothing */
1912 if (is_sprite && !config->sprites_enabled)
1913 return 0;
1914
1915 /* HSW allows LP1+ watermarks even with multiple pipes */
1916 if (level == 0 || config->num_pipes_active > 1) {
1917 fifo_size /= INTEL_INFO(dev)->num_pipes;
1918
1919 /*
1920 * For some reason the non self refresh
1921 * FIFO size is only half of the self
1922 * refresh FIFO size on ILK/SNB.
1923 */
1924 if (INTEL_INFO(dev)->gen <= 6)
1925 fifo_size /= 2;
1926 }
1927
1928 if (config->sprites_enabled) {
1929 /* level 0 is always calculated with 1:1 split */
1930 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1931 if (is_sprite)
1932 fifo_size *= 5;
1933 fifo_size /= 6;
1934 } else {
1935 fifo_size /= 2;
1936 }
1937 }
1938
1939 /* clamp to max that the registers can hold */
1940 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1941 }
1942
1943 /* Calculate the maximum cursor plane watermark */
1944 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1945 int level,
1946 const struct intel_wm_config *config)
1947 {
1948 /* HSW LP1+ watermarks w/ multiple pipes */
1949 if (level > 0 && config->num_pipes_active > 1)
1950 return 64;
1951
1952 /* otherwise just report max that registers can hold */
1953 return ilk_cursor_wm_reg_max(dev, level);
1954 }
1955
1956 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1957 int level,
1958 const struct intel_wm_config *config,
1959 enum intel_ddb_partitioning ddb_partitioning,
1960 struct ilk_wm_maximums *max)
1961 {
1962 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1963 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1964 max->cur = ilk_cursor_wm_max(dev, level, config);
1965 max->fbc = ilk_fbc_wm_reg_max(dev);
1966 }
1967
1968 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1969 int level,
1970 struct ilk_wm_maximums *max)
1971 {
1972 max->pri = ilk_plane_wm_reg_max(dev, level, false);
1973 max->spr = ilk_plane_wm_reg_max(dev, level, true);
1974 max->cur = ilk_cursor_wm_reg_max(dev, level);
1975 max->fbc = ilk_fbc_wm_reg_max(dev);
1976 }
1977
1978 static bool ilk_validate_wm_level(int level,
1979 const struct ilk_wm_maximums *max,
1980 struct intel_wm_level *result)
1981 {
1982 bool ret;
1983
1984 /* already determined to be invalid? */
1985 if (!result->enable)
1986 return false;
1987
1988 result->enable = result->pri_val <= max->pri &&
1989 result->spr_val <= max->spr &&
1990 result->cur_val <= max->cur;
1991
1992 ret = result->enable;
1993
1994 /*
1995 * HACK until we can pre-compute everything,
1996 * and thus fail gracefully if LP0 watermarks
1997 * are exceeded...
1998 */
1999 if (level == 0 && !result->enable) {
2000 if (result->pri_val > max->pri)
2001 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2002 level, result->pri_val, max->pri);
2003 if (result->spr_val > max->spr)
2004 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2005 level, result->spr_val, max->spr);
2006 if (result->cur_val > max->cur)
2007 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2008 level, result->cur_val, max->cur);
2009
2010 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2011 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2012 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2013 result->enable = true;
2014 }
2015
2016 return ret;
2017 }
2018
2019 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2020 int level,
2021 const struct ilk_pipe_wm_parameters *p,
2022 struct intel_wm_level *result)
2023 {
2024 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2025 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2026 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2027
2028 /* WM1+ latency values stored in 0.5us units */
2029 if (level > 0) {
2030 pri_latency *= 5;
2031 spr_latency *= 5;
2032 cur_latency *= 5;
2033 }
2034
2035 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2036 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2037 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2038 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2039 result->enable = true;
2040 }
2041
2042 static uint32_t
2043 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2044 {
2045 struct drm_i915_private *dev_priv = dev->dev_private;
2046 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2047 struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2048 u32 linetime, ips_linetime;
2049
2050 if (!intel_crtc_active(crtc))
2051 return 0;
2052
2053 /* The WM are computed with base on how long it takes to fill a single
2054 * row at the given clock rate, multiplied by 8.
2055 * */
2056 linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2057 mode->crtc_clock);
2058 ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2059 intel_ddi_get_cdclk_freq(dev_priv));
2060
2061 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2062 PIPE_WM_LINETIME_TIME(linetime);
2063 }
2064
2065 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2066 {
2067 struct drm_i915_private *dev_priv = dev->dev_private;
2068
2069 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2070 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2071
2072 wm[0] = (sskpd >> 56) & 0xFF;
2073 if (wm[0] == 0)
2074 wm[0] = sskpd & 0xF;
2075 wm[1] = (sskpd >> 4) & 0xFF;
2076 wm[2] = (sskpd >> 12) & 0xFF;
2077 wm[3] = (sskpd >> 20) & 0x1FF;
2078 wm[4] = (sskpd >> 32) & 0x1FF;
2079 } else if (INTEL_INFO(dev)->gen >= 6) {
2080 uint32_t sskpd = I915_READ(MCH_SSKPD);
2081
2082 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2083 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2084 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2085 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2086 } else if (INTEL_INFO(dev)->gen >= 5) {
2087 uint32_t mltr = I915_READ(MLTR_ILK);
2088
2089 /* ILK primary LP0 latency is 700 ns */
2090 wm[0] = 7;
2091 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2092 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2093 }
2094 }
2095
2096 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2097 {
2098 /* ILK sprite LP0 latency is 1300 ns */
2099 if (INTEL_INFO(dev)->gen == 5)
2100 wm[0] = 13;
2101 }
2102
2103 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2104 {
2105 /* ILK cursor LP0 latency is 1300 ns */
2106 if (INTEL_INFO(dev)->gen == 5)
2107 wm[0] = 13;
2108
2109 /* WaDoubleCursorLP3Latency:ivb */
2110 if (IS_IVYBRIDGE(dev))
2111 wm[3] *= 2;
2112 }
2113
2114 int ilk_wm_max_level(const struct drm_device *dev)
2115 {
2116 /* how many WM levels are we expecting */
2117 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2118 return 4;
2119 else if (INTEL_INFO(dev)->gen >= 6)
2120 return 3;
2121 else
2122 return 2;
2123 }
2124
2125 static void intel_print_wm_latency(struct drm_device *dev,
2126 const char *name,
2127 const uint16_t wm[5])
2128 {
2129 int level, max_level = ilk_wm_max_level(dev);
2130
2131 for (level = 0; level <= max_level; level++) {
2132 unsigned int latency = wm[level];
2133
2134 if (latency == 0) {
2135 DRM_ERROR("%s WM%d latency not provided\n",
2136 name, level);
2137 continue;
2138 }
2139
2140 /* WM1+ latency values in 0.5us units */
2141 if (level > 0)
2142 latency *= 5;
2143
2144 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2145 name, level, wm[level],
2146 latency / 10, latency % 10);
2147 }
2148 }
2149
2150 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2151 uint16_t wm[5], uint16_t min)
2152 {
2153 int level, max_level = ilk_wm_max_level(dev_priv->dev);
2154
2155 if (wm[0] >= min)
2156 return false;
2157
2158 wm[0] = max(wm[0], min);
2159 for (level = 1; level <= max_level; level++)
2160 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2161
2162 return true;
2163 }
2164
2165 static void snb_wm_latency_quirk(struct drm_device *dev)
2166 {
2167 struct drm_i915_private *dev_priv = dev->dev_private;
2168 bool changed;
2169
2170 /*
2171 * The BIOS provided WM memory latency values are often
2172 * inadequate for high resolution displays. Adjust them.
2173 */
2174 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2175 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2176 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2177
2178 if (!changed)
2179 return;
2180
2181 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2182 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2183 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2184 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2185 }
2186
2187 static void ilk_setup_wm_latency(struct drm_device *dev)
2188 {
2189 struct drm_i915_private *dev_priv = dev->dev_private;
2190
2191 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2192
2193 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2194 sizeof(dev_priv->wm.pri_latency));
2195 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2196 sizeof(dev_priv->wm.pri_latency));
2197
2198 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2199 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2200
2201 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2202 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2203 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2204
2205 if (IS_GEN6(dev))
2206 snb_wm_latency_quirk(dev);
2207 }
2208
2209 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2210 struct ilk_pipe_wm_parameters *p)
2211 {
2212 struct drm_device *dev = crtc->dev;
2213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2214 enum pipe pipe = intel_crtc->pipe;
2215 struct drm_plane *plane;
2216
2217 if (!intel_crtc_active(crtc))
2218 return;
2219
2220 p->active = true;
2221 p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2222 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2223 p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2224 p->cur.bytes_per_pixel = 4;
2225 p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2226 p->cur.horiz_pixels = intel_crtc->cursor_width;
2227 /* TODO: for now, assume primary and cursor planes are always enabled. */
2228 p->pri.enabled = true;
2229 p->cur.enabled = true;
2230
2231 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2232 struct intel_plane *intel_plane = to_intel_plane(plane);
2233
2234 if (intel_plane->pipe == pipe) {
2235 p->spr = intel_plane->wm;
2236 break;
2237 }
2238 }
2239 }
2240
2241 static void ilk_compute_wm_config(struct drm_device *dev,
2242 struct intel_wm_config *config)
2243 {
2244 struct intel_crtc *intel_crtc;
2245
2246 /* Compute the currently _active_ config */
2247 for_each_intel_crtc(dev, intel_crtc) {
2248 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2249
2250 if (!wm->pipe_enabled)
2251 continue;
2252
2253 config->sprites_enabled |= wm->sprites_enabled;
2254 config->sprites_scaled |= wm->sprites_scaled;
2255 config->num_pipes_active++;
2256 }
2257 }
2258
2259 /* Compute new watermarks for the pipe */
2260 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2261 const struct ilk_pipe_wm_parameters *params,
2262 struct intel_pipe_wm *pipe_wm)
2263 {
2264 struct drm_device *dev = crtc->dev;
2265 const struct drm_i915_private *dev_priv = dev->dev_private;
2266 int level, max_level = ilk_wm_max_level(dev);
2267 /* LP0 watermark maximums depend on this pipe alone */
2268 struct intel_wm_config config = {
2269 .num_pipes_active = 1,
2270 .sprites_enabled = params->spr.enabled,
2271 .sprites_scaled = params->spr.scaled,
2272 };
2273 struct ilk_wm_maximums max;
2274
2275 pipe_wm->pipe_enabled = params->active;
2276 pipe_wm->sprites_enabled = params->spr.enabled;
2277 pipe_wm->sprites_scaled = params->spr.scaled;
2278
2279 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2280 if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2281 max_level = 1;
2282
2283 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2284 if (params->spr.scaled)
2285 max_level = 0;
2286
2287 ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2288
2289 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2290 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2291
2292 /* LP0 watermarks always use 1/2 DDB partitioning */
2293 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2294
2295 /* At least LP0 must be valid */
2296 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2297 return false;
2298
2299 ilk_compute_wm_reg_maximums(dev, 1, &max);
2300
2301 for (level = 1; level <= max_level; level++) {
2302 struct intel_wm_level wm = {};
2303
2304 ilk_compute_wm_level(dev_priv, level, params, &wm);
2305
2306 /*
2307 * Disable any watermark level that exceeds the
2308 * register maximums since such watermarks are
2309 * always invalid.
2310 */
2311 if (!ilk_validate_wm_level(level, &max, &wm))
2312 break;
2313
2314 pipe_wm->wm[level] = wm;
2315 }
2316
2317 return true;
2318 }
2319
2320 /*
2321 * Merge the watermarks from all active pipes for a specific level.
2322 */
2323 static void ilk_merge_wm_level(struct drm_device *dev,
2324 int level,
2325 struct intel_wm_level *ret_wm)
2326 {
2327 const struct intel_crtc *intel_crtc;
2328
2329 ret_wm->enable = true;
2330
2331 for_each_intel_crtc(dev, intel_crtc) {
2332 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2333 const struct intel_wm_level *wm = &active->wm[level];
2334
2335 if (!active->pipe_enabled)
2336 continue;
2337
2338 /*
2339 * The watermark values may have been used in the past,
2340 * so we must maintain them in the registers for some
2341 * time even if the level is now disabled.
2342 */
2343 if (!wm->enable)
2344 ret_wm->enable = false;
2345
2346 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2347 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2348 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2349 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2350 }
2351 }
2352
2353 /*
2354 * Merge all low power watermarks for all active pipes.
2355 */
2356 static void ilk_wm_merge(struct drm_device *dev,
2357 const struct intel_wm_config *config,
2358 const struct ilk_wm_maximums *max,
2359 struct intel_pipe_wm *merged)
2360 {
2361 int level, max_level = ilk_wm_max_level(dev);
2362 int last_enabled_level = max_level;
2363
2364 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2365 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2366 config->num_pipes_active > 1)
2367 return;
2368
2369 /* ILK: FBC WM must be disabled always */
2370 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2371
2372 /* merge each WM1+ level */
2373 for (level = 1; level <= max_level; level++) {
2374 struct intel_wm_level *wm = &merged->wm[level];
2375
2376 ilk_merge_wm_level(dev, level, wm);
2377
2378 if (level > last_enabled_level)
2379 wm->enable = false;
2380 else if (!ilk_validate_wm_level(level, max, wm))
2381 /* make sure all following levels get disabled */
2382 last_enabled_level = level - 1;
2383
2384 /*
2385 * The spec says it is preferred to disable
2386 * FBC WMs instead of disabling a WM level.
2387 */
2388 if (wm->fbc_val > max->fbc) {
2389 if (wm->enable)
2390 merged->fbc_wm_enabled = false;
2391 wm->fbc_val = 0;
2392 }
2393 }
2394
2395 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2396 /*
2397 * FIXME this is racy. FBC might get enabled later.
2398 * What we should check here is whether FBC can be
2399 * enabled sometime later.
2400 */
2401 if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2402 for (level = 2; level <= max_level; level++) {
2403 struct intel_wm_level *wm = &merged->wm[level];
2404
2405 wm->enable = false;
2406 }
2407 }
2408 }
2409
2410 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2411 {
2412 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2413 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2414 }
2415
2416 /* The value we need to program into the WM_LPx latency field */
2417 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2418 {
2419 struct drm_i915_private *dev_priv = dev->dev_private;
2420
2421 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2422 return 2 * level;
2423 else
2424 return dev_priv->wm.pri_latency[level];
2425 }
2426
2427 static void ilk_compute_wm_results(struct drm_device *dev,
2428 const struct intel_pipe_wm *merged,
2429 enum intel_ddb_partitioning partitioning,
2430 struct ilk_wm_values *results)
2431 {
2432 struct intel_crtc *intel_crtc;
2433 int level, wm_lp;
2434
2435 results->enable_fbc_wm = merged->fbc_wm_enabled;
2436 results->partitioning = partitioning;
2437
2438 /* LP1+ register values */
2439 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2440 const struct intel_wm_level *r;
2441
2442 level = ilk_wm_lp_to_level(wm_lp, merged);
2443
2444 r = &merged->wm[level];
2445
2446 /*
2447 * Maintain the watermark values even if the level is
2448 * disabled. Doing otherwise could cause underruns.
2449 */
2450 results->wm_lp[wm_lp - 1] =
2451 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2452 (r->pri_val << WM1_LP_SR_SHIFT) |
2453 r->cur_val;
2454
2455 if (r->enable)
2456 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2457
2458 if (INTEL_INFO(dev)->gen >= 8)
2459 results->wm_lp[wm_lp - 1] |=
2460 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2461 else
2462 results->wm_lp[wm_lp - 1] |=
2463 r->fbc_val << WM1_LP_FBC_SHIFT;
2464
2465 /*
2466 * Always set WM1S_LP_EN when spr_val != 0, even if the
2467 * level is disabled. Doing otherwise could cause underruns.
2468 */
2469 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2470 WARN_ON(wm_lp != 1);
2471 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2472 } else
2473 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2474 }
2475
2476 /* LP0 register values */
2477 for_each_intel_crtc(dev, intel_crtc) {
2478 enum pipe pipe = intel_crtc->pipe;
2479 const struct intel_wm_level *r =
2480 &intel_crtc->wm.active.wm[0];
2481
2482 if (WARN_ON(!r->enable))
2483 continue;
2484
2485 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2486
2487 results->wm_pipe[pipe] =
2488 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2489 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2490 r->cur_val;
2491 }
2492 }
2493
2494 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2495 * case both are at the same level. Prefer r1 in case they're the same. */
2496 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2497 struct intel_pipe_wm *r1,
2498 struct intel_pipe_wm *r2)
2499 {
2500 int level, max_level = ilk_wm_max_level(dev);
2501 int level1 = 0, level2 = 0;
2502
2503 for (level = 1; level <= max_level; level++) {
2504 if (r1->wm[level].enable)
2505 level1 = level;
2506 if (r2->wm[level].enable)
2507 level2 = level;
2508 }
2509
2510 if (level1 == level2) {
2511 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2512 return r2;
2513 else
2514 return r1;
2515 } else if (level1 > level2) {
2516 return r1;
2517 } else {
2518 return r2;
2519 }
2520 }
2521
2522 /* dirty bits used to track which watermarks need changes */
2523 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2524 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2525 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2526 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2527 #define WM_DIRTY_FBC (1 << 24)
2528 #define WM_DIRTY_DDB (1 << 25)
2529
2530 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2531 const struct ilk_wm_values *old,
2532 const struct ilk_wm_values *new)
2533 {
2534 unsigned int dirty = 0;
2535 enum pipe pipe;
2536 int wm_lp;
2537
2538 for_each_pipe(pipe) {
2539 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2540 dirty |= WM_DIRTY_LINETIME(pipe);
2541 /* Must disable LP1+ watermarks too */
2542 dirty |= WM_DIRTY_LP_ALL;
2543 }
2544
2545 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2546 dirty |= WM_DIRTY_PIPE(pipe);
2547 /* Must disable LP1+ watermarks too */
2548 dirty |= WM_DIRTY_LP_ALL;
2549 }
2550 }
2551
2552 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2553 dirty |= WM_DIRTY_FBC;
2554 /* Must disable LP1+ watermarks too */
2555 dirty |= WM_DIRTY_LP_ALL;
2556 }
2557
2558 if (old->partitioning != new->partitioning) {
2559 dirty |= WM_DIRTY_DDB;
2560 /* Must disable LP1+ watermarks too */
2561 dirty |= WM_DIRTY_LP_ALL;
2562 }
2563
2564 /* LP1+ watermarks already deemed dirty, no need to continue */
2565 if (dirty & WM_DIRTY_LP_ALL)
2566 return dirty;
2567
2568 /* Find the lowest numbered LP1+ watermark in need of an update... */
2569 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2570 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2571 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2572 break;
2573 }
2574
2575 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2576 for (; wm_lp <= 3; wm_lp++)
2577 dirty |= WM_DIRTY_LP(wm_lp);
2578
2579 return dirty;
2580 }
2581
2582 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2583 unsigned int dirty)
2584 {
2585 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2586 bool changed = false;
2587
2588 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2589 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2590 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2591 changed = true;
2592 }
2593 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2594 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2595 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2596 changed = true;
2597 }
2598 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2599 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2600 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2601 changed = true;
2602 }
2603
2604 /*
2605 * Don't touch WM1S_LP_EN here.
2606 * Doing so could cause underruns.
2607 */
2608
2609 return changed;
2610 }
2611
2612 /*
2613 * The spec says we shouldn't write when we don't need, because every write
2614 * causes WMs to be re-evaluated, expending some power.
2615 */
2616 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2617 struct ilk_wm_values *results)
2618 {
2619 struct drm_device *dev = dev_priv->dev;
2620 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2621 unsigned int dirty;
2622 uint32_t val;
2623
2624 dirty = ilk_compute_wm_dirty(dev, previous, results);
2625 if (!dirty)
2626 return;
2627
2628 _ilk_disable_lp_wm(dev_priv, dirty);
2629
2630 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2631 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2632 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2633 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2634 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2635 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2636
2637 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2638 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2639 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2640 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2641 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2642 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2643
2644 if (dirty & WM_DIRTY_DDB) {
2645 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2646 val = I915_READ(WM_MISC);
2647 if (results->partitioning == INTEL_DDB_PART_1_2)
2648 val &= ~WM_MISC_DATA_PARTITION_5_6;
2649 else
2650 val |= WM_MISC_DATA_PARTITION_5_6;
2651 I915_WRITE(WM_MISC, val);
2652 } else {
2653 val = I915_READ(DISP_ARB_CTL2);
2654 if (results->partitioning == INTEL_DDB_PART_1_2)
2655 val &= ~DISP_DATA_PARTITION_5_6;
2656 else
2657 val |= DISP_DATA_PARTITION_5_6;
2658 I915_WRITE(DISP_ARB_CTL2, val);
2659 }
2660 }
2661
2662 if (dirty & WM_DIRTY_FBC) {
2663 val = I915_READ(DISP_ARB_CTL);
2664 if (results->enable_fbc_wm)
2665 val &= ~DISP_FBC_WM_DIS;
2666 else
2667 val |= DISP_FBC_WM_DIS;
2668 I915_WRITE(DISP_ARB_CTL, val);
2669 }
2670
2671 if (dirty & WM_DIRTY_LP(1) &&
2672 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2673 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2674
2675 if (INTEL_INFO(dev)->gen >= 7) {
2676 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2677 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2678 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2679 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2680 }
2681
2682 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2683 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2684 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2685 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2686 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2687 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2688
2689 dev_priv->wm.hw = *results;
2690 }
2691
2692 static bool ilk_disable_lp_wm(struct drm_device *dev)
2693 {
2694 struct drm_i915_private *dev_priv = dev->dev_private;
2695
2696 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2697 }
2698
2699 static void ilk_update_wm(struct drm_crtc *crtc)
2700 {
2701 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2702 struct drm_device *dev = crtc->dev;
2703 struct drm_i915_private *dev_priv = dev->dev_private;
2704 struct ilk_wm_maximums max;
2705 struct ilk_pipe_wm_parameters params = {};
2706 struct ilk_wm_values results = {};
2707 enum intel_ddb_partitioning partitioning;
2708 struct intel_pipe_wm pipe_wm = {};
2709 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2710 struct intel_wm_config config = {};
2711
2712 ilk_compute_wm_parameters(crtc, &params);
2713
2714 intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2715
2716 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2717 return;
2718
2719 intel_crtc->wm.active = pipe_wm;
2720
2721 ilk_compute_wm_config(dev, &config);
2722
2723 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2724 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2725
2726 /* 5/6 split only in single pipe config on IVB+ */
2727 if (INTEL_INFO(dev)->gen >= 7 &&
2728 config.num_pipes_active == 1 && config.sprites_enabled) {
2729 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2730 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2731
2732 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2733 } else {
2734 best_lp_wm = &lp_wm_1_2;
2735 }
2736
2737 partitioning = (best_lp_wm == &lp_wm_1_2) ?
2738 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2739
2740 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2741
2742 ilk_write_wm_values(dev_priv, &results);
2743 }
2744
2745 static void
2746 ilk_update_sprite_wm(struct drm_plane *plane,
2747 struct drm_crtc *crtc,
2748 uint32_t sprite_width, uint32_t sprite_height,
2749 int pixel_size, bool enabled, bool scaled)
2750 {
2751 struct drm_device *dev = plane->dev;
2752 struct intel_plane *intel_plane = to_intel_plane(plane);
2753
2754 intel_plane->wm.enabled = enabled;
2755 intel_plane->wm.scaled = scaled;
2756 intel_plane->wm.horiz_pixels = sprite_width;
2757 intel_plane->wm.vert_pixels = sprite_width;
2758 intel_plane->wm.bytes_per_pixel = pixel_size;
2759
2760 /*
2761 * IVB workaround: must disable low power watermarks for at least
2762 * one frame before enabling scaling. LP watermarks can be re-enabled
2763 * when scaling is disabled.
2764 *
2765 * WaCxSRDisabledForSpriteScaling:ivb
2766 */
2767 if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2768 intel_wait_for_vblank(dev, intel_plane->pipe);
2769
2770 ilk_update_wm(crtc);
2771 }
2772
2773 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2774 {
2775 struct drm_device *dev = crtc->dev;
2776 struct drm_i915_private *dev_priv = dev->dev_private;
2777 struct ilk_wm_values *hw = &dev_priv->wm.hw;
2778 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2779 struct intel_pipe_wm *active = &intel_crtc->wm.active;
2780 enum pipe pipe = intel_crtc->pipe;
2781 static const unsigned int wm0_pipe_reg[] = {
2782 [PIPE_A] = WM0_PIPEA_ILK,
2783 [PIPE_B] = WM0_PIPEB_ILK,
2784 [PIPE_C] = WM0_PIPEC_IVB,
2785 };
2786
2787 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2788 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2789 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2790
2791 active->pipe_enabled = intel_crtc_active(crtc);
2792
2793 if (active->pipe_enabled) {
2794 u32 tmp = hw->wm_pipe[pipe];
2795
2796 /*
2797 * For active pipes LP0 watermark is marked as
2798 * enabled, and LP1+ watermaks as disabled since
2799 * we can't really reverse compute them in case
2800 * multiple pipes are active.
2801 */
2802 active->wm[0].enable = true;
2803 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2804 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2805 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2806 active->linetime = hw->wm_linetime[pipe];
2807 } else {
2808 int level, max_level = ilk_wm_max_level(dev);
2809
2810 /*
2811 * For inactive pipes, all watermark levels
2812 * should be marked as enabled but zeroed,
2813 * which is what we'd compute them to.
2814 */
2815 for (level = 0; level <= max_level; level++)
2816 active->wm[level].enable = true;
2817 }
2818 }
2819
2820 void ilk_wm_get_hw_state(struct drm_device *dev)
2821 {
2822 struct drm_i915_private *dev_priv = dev->dev_private;
2823 struct ilk_wm_values *hw = &dev_priv->wm.hw;
2824 struct drm_crtc *crtc;
2825
2826 for_each_crtc(dev, crtc)
2827 ilk_pipe_wm_get_hw_state(crtc);
2828
2829 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2830 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2831 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2832
2833 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2834 if (INTEL_INFO(dev)->gen >= 7) {
2835 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2836 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2837 }
2838
2839 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2840 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2841 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2842 else if (IS_IVYBRIDGE(dev))
2843 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2844 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2845
2846 hw->enable_fbc_wm =
2847 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2848 }
2849
2850 /**
2851 * intel_update_watermarks - update FIFO watermark values based on current modes
2852 *
2853 * Calculate watermark values for the various WM regs based on current mode
2854 * and plane configuration.
2855 *
2856 * There are several cases to deal with here:
2857 * - normal (i.e. non-self-refresh)
2858 * - self-refresh (SR) mode
2859 * - lines are large relative to FIFO size (buffer can hold up to 2)
2860 * - lines are small relative to FIFO size (buffer can hold more than 2
2861 * lines), so need to account for TLB latency
2862 *
2863 * The normal calculation is:
2864 * watermark = dotclock * bytes per pixel * latency
2865 * where latency is platform & configuration dependent (we assume pessimal
2866 * values here).
2867 *
2868 * The SR calculation is:
2869 * watermark = (trunc(latency/line time)+1) * surface width *
2870 * bytes per pixel
2871 * where
2872 * line time = htotal / dotclock
2873 * surface width = hdisplay for normal plane and 64 for cursor
2874 * and latency is assumed to be high, as above.
2875 *
2876 * The final value programmed to the register should always be rounded up,
2877 * and include an extra 2 entries to account for clock crossings.
2878 *
2879 * We don't use the sprite, so we can ignore that. And on Crestline we have
2880 * to set the non-SR watermarks to 8.
2881 */
2882 void intel_update_watermarks(struct drm_crtc *crtc)
2883 {
2884 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2885
2886 if (dev_priv->display.update_wm)
2887 dev_priv->display.update_wm(crtc);
2888 }
2889
2890 void intel_update_sprite_watermarks(struct drm_plane *plane,
2891 struct drm_crtc *crtc,
2892 uint32_t sprite_width,
2893 uint32_t sprite_height,
2894 int pixel_size,
2895 bool enabled, bool scaled)
2896 {
2897 struct drm_i915_private *dev_priv = plane->dev->dev_private;
2898
2899 if (dev_priv->display.update_sprite_wm)
2900 dev_priv->display.update_sprite_wm(plane, crtc,
2901 sprite_width, sprite_height,
2902 pixel_size, enabled, scaled);
2903 }
2904
2905 static struct drm_i915_gem_object *
2906 intel_alloc_context_page(struct drm_device *dev)
2907 {
2908 struct drm_i915_gem_object *ctx;
2909 int ret;
2910
2911 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2912
2913 ctx = i915_gem_alloc_object(dev, 4096);
2914 if (!ctx) {
2915 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2916 return NULL;
2917 }
2918
2919 ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
2920 if (ret) {
2921 DRM_ERROR("failed to pin power context: %d\n", ret);
2922 goto err_unref;
2923 }
2924
2925 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2926 if (ret) {
2927 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2928 goto err_unpin;
2929 }
2930
2931 return ctx;
2932
2933 err_unpin:
2934 i915_gem_object_ggtt_unpin(ctx);
2935 err_unref:
2936 drm_gem_object_unreference(&ctx->base);
2937 return NULL;
2938 }
2939
2940 /**
2941 * Lock protecting IPS related data structures
2942 */
2943 DEFINE_SPINLOCK(mchdev_lock);
2944
2945 /* Global for IPS driver to get at the current i915 device. Protected by
2946 * mchdev_lock. */
2947 static struct drm_i915_private *i915_mch_dev;
2948
2949 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2950 {
2951 struct drm_i915_private *dev_priv = dev->dev_private;
2952 u16 rgvswctl;
2953
2954 assert_spin_locked(&mchdev_lock);
2955
2956 rgvswctl = I915_READ16(MEMSWCTL);
2957 if (rgvswctl & MEMCTL_CMD_STS) {
2958 DRM_DEBUG("gpu busy, RCS change rejected\n");
2959 return false; /* still busy with another command */
2960 }
2961
2962 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2963 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2964 I915_WRITE16(MEMSWCTL, rgvswctl);
2965 POSTING_READ16(MEMSWCTL);
2966
2967 rgvswctl |= MEMCTL_CMD_STS;
2968 I915_WRITE16(MEMSWCTL, rgvswctl);
2969
2970 return true;
2971 }
2972
2973 static void ironlake_enable_drps(struct drm_device *dev)
2974 {
2975 struct drm_i915_private *dev_priv = dev->dev_private;
2976 u32 rgvmodectl = I915_READ(MEMMODECTL);
2977 u8 fmax, fmin, fstart, vstart;
2978
2979 spin_lock_irq(&mchdev_lock);
2980
2981 /* Enable temp reporting */
2982 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2983 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2984
2985 /* 100ms RC evaluation intervals */
2986 I915_WRITE(RCUPEI, 100000);
2987 I915_WRITE(RCDNEI, 100000);
2988
2989 /* Set max/min thresholds to 90ms and 80ms respectively */
2990 I915_WRITE(RCBMAXAVG, 90000);
2991 I915_WRITE(RCBMINAVG, 80000);
2992
2993 I915_WRITE(MEMIHYST, 1);
2994
2995 /* Set up min, max, and cur for interrupt handling */
2996 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2997 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2998 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2999 MEMMODE_FSTART_SHIFT;
3000
3001 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3002 PXVFREQ_PX_SHIFT;
3003
3004 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3005 dev_priv->ips.fstart = fstart;
3006
3007 dev_priv->ips.max_delay = fstart;
3008 dev_priv->ips.min_delay = fmin;
3009 dev_priv->ips.cur_delay = fstart;
3010
3011 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3012 fmax, fmin, fstart);
3013
3014 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3015
3016 /*
3017 * Interrupts will be enabled in ironlake_irq_postinstall
3018 */
3019
3020 I915_WRITE(VIDSTART, vstart);
3021 POSTING_READ(VIDSTART);
3022
3023 rgvmodectl |= MEMMODE_SWMODE_EN;
3024 I915_WRITE(MEMMODECTL, rgvmodectl);
3025
3026 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3027 DRM_ERROR("stuck trying to change perf mode\n");
3028 mdelay(1);
3029
3030 ironlake_set_drps(dev, fstart);
3031
3032 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3033 I915_READ(0x112e0);
3034 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3035 dev_priv->ips.last_count2 = I915_READ(0x112f4);
3036 dev_priv->ips.last_time2 = ktime_get_raw_ns();
3037
3038 spin_unlock_irq(&mchdev_lock);
3039 }
3040
3041 static void ironlake_disable_drps(struct drm_device *dev)
3042 {
3043 struct drm_i915_private *dev_priv = dev->dev_private;
3044 u16 rgvswctl;
3045
3046 spin_lock_irq(&mchdev_lock);
3047
3048 rgvswctl = I915_READ16(MEMSWCTL);
3049
3050 /* Ack interrupts, disable EFC interrupt */
3051 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3052 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3053 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3054 I915_WRITE(DEIIR, DE_PCU_EVENT);
3055 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3056
3057 /* Go back to the starting frequency */
3058 ironlake_set_drps(dev, dev_priv->ips.fstart);
3059 mdelay(1);
3060 rgvswctl |= MEMCTL_CMD_STS;
3061 I915_WRITE(MEMSWCTL, rgvswctl);
3062 mdelay(1);
3063
3064 spin_unlock_irq(&mchdev_lock);
3065 }
3066
3067 /* There's a funny hw issue where the hw returns all 0 when reading from
3068 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3069 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3070 * all limits and the gpu stuck at whatever frequency it is at atm).
3071 */
3072 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3073 {
3074 u32 limits;
3075
3076 /* Only set the down limit when we've reached the lowest level to avoid
3077 * getting more interrupts, otherwise leave this clear. This prevents a
3078 * race in the hw when coming out of rc6: There's a tiny window where
3079 * the hw runs at the minimal clock before selecting the desired
3080 * frequency, if the down threshold expires in that window we will not
3081 * receive a down interrupt. */
3082 limits = dev_priv->rps.max_freq_softlimit << 24;
3083 if (val <= dev_priv->rps.min_freq_softlimit)
3084 limits |= dev_priv->rps.min_freq_softlimit << 16;
3085
3086 return limits;
3087 }
3088
3089 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3090 {
3091 int new_power;
3092
3093 new_power = dev_priv->rps.power;
3094 switch (dev_priv->rps.power) {
3095 case LOW_POWER:
3096 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3097 new_power = BETWEEN;
3098 break;
3099
3100 case BETWEEN:
3101 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3102 new_power = LOW_POWER;
3103 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3104 new_power = HIGH_POWER;
3105 break;
3106
3107 case HIGH_POWER:
3108 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3109 new_power = BETWEEN;
3110 break;
3111 }
3112 /* Max/min bins are special */
3113 if (val == dev_priv->rps.min_freq_softlimit)
3114 new_power = LOW_POWER;
3115 if (val == dev_priv->rps.max_freq_softlimit)
3116 new_power = HIGH_POWER;
3117 if (new_power == dev_priv->rps.power)
3118 return;
3119
3120 /* Note the units here are not exactly 1us, but 1280ns. */
3121 switch (new_power) {
3122 case LOW_POWER:
3123 /* Upclock if more than 95% busy over 16ms */
3124 I915_WRITE(GEN6_RP_UP_EI, 12500);
3125 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3126
3127 /* Downclock if less than 85% busy over 32ms */
3128 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3129 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3130
3131 I915_WRITE(GEN6_RP_CONTROL,
3132 GEN6_RP_MEDIA_TURBO |
3133 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3134 GEN6_RP_MEDIA_IS_GFX |
3135 GEN6_RP_ENABLE |
3136 GEN6_RP_UP_BUSY_AVG |
3137 GEN6_RP_DOWN_IDLE_AVG);
3138 break;
3139
3140 case BETWEEN:
3141 /* Upclock if more than 90% busy over 13ms */
3142 I915_WRITE(GEN6_RP_UP_EI, 10250);
3143 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3144
3145 /* Downclock if less than 75% busy over 32ms */
3146 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3147 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3148
3149 I915_WRITE(GEN6_RP_CONTROL,
3150 GEN6_RP_MEDIA_TURBO |
3151 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3152 GEN6_RP_MEDIA_IS_GFX |
3153 GEN6_RP_ENABLE |
3154 GEN6_RP_UP_BUSY_AVG |
3155 GEN6_RP_DOWN_IDLE_AVG);
3156 break;
3157
3158 case HIGH_POWER:
3159 /* Upclock if more than 85% busy over 10ms */
3160 I915_WRITE(GEN6_RP_UP_EI, 8000);
3161 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3162
3163 /* Downclock if less than 60% busy over 32ms */
3164 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3165 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3166
3167 I915_WRITE(GEN6_RP_CONTROL,
3168 GEN6_RP_MEDIA_TURBO |
3169 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3170 GEN6_RP_MEDIA_IS_GFX |
3171 GEN6_RP_ENABLE |
3172 GEN6_RP_UP_BUSY_AVG |
3173 GEN6_RP_DOWN_IDLE_AVG);
3174 break;
3175 }
3176
3177 dev_priv->rps.power = new_power;
3178 dev_priv->rps.last_adj = 0;
3179 }
3180
3181 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3182 {
3183 u32 mask = 0;
3184
3185 if (val > dev_priv->rps.min_freq_softlimit)
3186 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3187 if (val < dev_priv->rps.max_freq_softlimit)
3188 mask |= GEN6_PM_RP_UP_THRESHOLD;
3189
3190 mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
3191 mask &= dev_priv->pm_rps_events;
3192
3193 /* IVB and SNB hard hangs on looping batchbuffer
3194 * if GEN6_PM_UP_EI_EXPIRED is masked.
3195 */
3196 if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3197 mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3198
3199 if (IS_GEN8(dev_priv->dev))
3200 mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
3201
3202 return ~mask;
3203 }
3204
3205 /* gen6_set_rps is called to update the frequency request, but should also be
3206 * called when the range (min_delay and max_delay) is modified so that we can
3207 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3208 void gen6_set_rps(struct drm_device *dev, u8 val)
3209 {
3210 struct drm_i915_private *dev_priv = dev->dev_private;
3211
3212 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3213 WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3214 WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3215
3216 /* min/max delay may still have been modified so be sure to
3217 * write the limits value.
3218 */
3219 if (val != dev_priv->rps.cur_freq) {
3220 gen6_set_rps_thresholds(dev_priv, val);
3221
3222 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3223 I915_WRITE(GEN6_RPNSWREQ,
3224 HSW_FREQUENCY(val));
3225 else
3226 I915_WRITE(GEN6_RPNSWREQ,
3227 GEN6_FREQUENCY(val) |
3228 GEN6_OFFSET(0) |
3229 GEN6_AGGRESSIVE_TURBO);
3230 }
3231
3232 /* Make sure we continue to get interrupts
3233 * until we hit the minimum or maximum frequencies.
3234 */
3235 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3236 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3237
3238 POSTING_READ(GEN6_RPNSWREQ);
3239
3240 dev_priv->rps.cur_freq = val;
3241 trace_intel_gpu_freq_change(val * 50);
3242 }
3243
3244 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3245 *
3246 * * If Gfx is Idle, then
3247 * 1. Mask Turbo interrupts
3248 * 2. Bring up Gfx clock
3249 * 3. Change the freq to Rpn and wait till P-Unit updates freq
3250 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3251 * 5. Unmask Turbo interrupts
3252 */
3253 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3254 {
3255 struct drm_device *dev = dev_priv->dev;
3256
3257 /* Latest VLV doesn't need to force the gfx clock */
3258 if (dev->pdev->revision >= 0xd) {
3259 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3260 return;
3261 }
3262
3263 /*
3264 * When we are idle. Drop to min voltage state.
3265 */
3266
3267 if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3268 return;
3269
3270 /* Mask turbo interrupt so that they will not come in between */
3271 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3272
3273 vlv_force_gfx_clock(dev_priv, true);
3274
3275 dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3276
3277 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3278 dev_priv->rps.min_freq_softlimit);
3279
3280 if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3281 & GENFREQSTATUS) == 0, 5))
3282 DRM_ERROR("timed out waiting for Punit\n");
3283
3284 vlv_force_gfx_clock(dev_priv, false);
3285
3286 I915_WRITE(GEN6_PMINTRMSK,
3287 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3288 }
3289
3290 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3291 {
3292 struct drm_device *dev = dev_priv->dev;
3293
3294 mutex_lock(&dev_priv->rps.hw_lock);
3295 if (dev_priv->rps.enabled) {
3296 if (IS_CHERRYVIEW(dev))
3297 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3298 else if (IS_VALLEYVIEW(dev))
3299 vlv_set_rps_idle(dev_priv);
3300 else
3301 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3302 dev_priv->rps.last_adj = 0;
3303 }
3304 mutex_unlock(&dev_priv->rps.hw_lock);
3305 }
3306
3307 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3308 {
3309 struct drm_device *dev = dev_priv->dev;
3310
3311 mutex_lock(&dev_priv->rps.hw_lock);
3312 if (dev_priv->rps.enabled) {
3313 if (IS_VALLEYVIEW(dev))
3314 valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3315 else
3316 gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3317 dev_priv->rps.last_adj = 0;
3318 }
3319 mutex_unlock(&dev_priv->rps.hw_lock);
3320 }
3321
3322 void valleyview_set_rps(struct drm_device *dev, u8 val)
3323 {
3324 struct drm_i915_private *dev_priv = dev->dev_private;
3325
3326 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3327 WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3328 WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3329
3330 DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3331 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3332 dev_priv->rps.cur_freq,
3333 vlv_gpu_freq(dev_priv, val), val);
3334
3335 if (val != dev_priv->rps.cur_freq)
3336 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3337
3338 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3339
3340 dev_priv->rps.cur_freq = val;
3341 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3342 }
3343
3344 static void gen8_disable_rps_interrupts(struct drm_device *dev)
3345 {
3346 struct drm_i915_private *dev_priv = dev->dev_private;
3347
3348 I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
3349 I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
3350 ~dev_priv->pm_rps_events);
3351 /* Complete PM interrupt masking here doesn't race with the rps work
3352 * item again unmasking PM interrupts because that is using a different
3353 * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
3354 * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
3355 * gen8_enable_rps will clean up. */
3356
3357 spin_lock_irq(&dev_priv->irq_lock);
3358 dev_priv->rps.pm_iir = 0;
3359 spin_unlock_irq(&dev_priv->irq_lock);
3360
3361 I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3362 }
3363
3364 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3365 {
3366 struct drm_i915_private *dev_priv = dev->dev_private;
3367
3368 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3369 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3370 ~dev_priv->pm_rps_events);
3371 /* Complete PM interrupt masking here doesn't race with the rps work
3372 * item again unmasking PM interrupts because that is using a different
3373 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3374 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3375
3376 spin_lock_irq(&dev_priv->irq_lock);
3377 dev_priv->rps.pm_iir = 0;
3378 spin_unlock_irq(&dev_priv->irq_lock);
3379
3380 I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3381 }
3382
3383 static void gen6_disable_rps(struct drm_device *dev)
3384 {
3385 struct drm_i915_private *dev_priv = dev->dev_private;
3386
3387 I915_WRITE(GEN6_RC_CONTROL, 0);
3388 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3389
3390 if (IS_BROADWELL(dev))
3391 gen8_disable_rps_interrupts(dev);
3392 else
3393 gen6_disable_rps_interrupts(dev);
3394 }
3395
3396 static void cherryview_disable_rps(struct drm_device *dev)
3397 {
3398 struct drm_i915_private *dev_priv = dev->dev_private;
3399
3400 I915_WRITE(GEN6_RC_CONTROL, 0);
3401
3402 gen8_disable_rps_interrupts(dev);
3403 }
3404
3405 static void valleyview_disable_rps(struct drm_device *dev)
3406 {
3407 struct drm_i915_private *dev_priv = dev->dev_private;
3408
3409 I915_WRITE(GEN6_RC_CONTROL, 0);
3410
3411 gen6_disable_rps_interrupts(dev);
3412 }
3413
3414 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3415 {
3416 if (IS_VALLEYVIEW(dev)) {
3417 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3418 mode = GEN6_RC_CTL_RC6_ENABLE;
3419 else
3420 mode = 0;
3421 }
3422 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3423 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3424 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3425 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3426 }
3427
3428 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3429 {
3430 /* No RC6 before Ironlake */
3431 if (INTEL_INFO(dev)->gen < 5)
3432 return 0;
3433
3434 /* RC6 is only on Ironlake mobile not on desktop */
3435 if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3436 return 0;
3437
3438 /* Respect the kernel parameter if it is set */
3439 if (enable_rc6 >= 0) {
3440 int mask;
3441
3442 if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
3443 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3444 INTEL_RC6pp_ENABLE;
3445 else
3446 mask = INTEL_RC6_ENABLE;
3447
3448 if ((enable_rc6 & mask) != enable_rc6)
3449 DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3450 enable_rc6 & mask, enable_rc6, mask);
3451
3452 return enable_rc6 & mask;
3453 }
3454
3455 /* Disable RC6 on Ironlake */
3456 if (INTEL_INFO(dev)->gen == 5)
3457 return 0;
3458
3459 if (IS_IVYBRIDGE(dev))
3460 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3461
3462 return INTEL_RC6_ENABLE;
3463 }
3464
3465 int intel_enable_rc6(const struct drm_device *dev)
3466 {
3467 return i915.enable_rc6;
3468 }
3469
3470 static void gen8_enable_rps_interrupts(struct drm_device *dev)
3471 {
3472 struct drm_i915_private *dev_priv = dev->dev_private;
3473
3474 spin_lock_irq(&dev_priv->irq_lock);
3475 WARN_ON(dev_priv->rps.pm_iir);
3476 gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3477 I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3478 spin_unlock_irq(&dev_priv->irq_lock);
3479 }
3480
3481 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3482 {
3483 struct drm_i915_private *dev_priv = dev->dev_private;
3484
3485 spin_lock_irq(&dev_priv->irq_lock);
3486 WARN_ON(dev_priv->rps.pm_iir);
3487 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3488 I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3489 spin_unlock_irq(&dev_priv->irq_lock);
3490 }
3491
3492 static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
3493 {
3494 /* All of these values are in units of 50MHz */
3495 dev_priv->rps.cur_freq = 0;
3496 /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3497 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
3498 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
3499 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
3500 /* XXX: only BYT has a special efficient freq */
3501 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
3502 /* hw_max = RP0 until we check for overclocking */
3503 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
3504
3505 /* Preserve min/max settings in case of re-init */
3506 if (dev_priv->rps.max_freq_softlimit == 0)
3507 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3508
3509 if (dev_priv->rps.min_freq_softlimit == 0)
3510 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3511 }
3512
3513 static void gen8_enable_rps(struct drm_device *dev)
3514 {
3515 struct drm_i915_private *dev_priv = dev->dev_private;
3516 struct intel_engine_cs *ring;
3517 uint32_t rc6_mask = 0, rp_state_cap;
3518 int unused;
3519
3520 /* 1a: Software RC state - RC0 */
3521 I915_WRITE(GEN6_RC_STATE, 0);
3522
3523 /* 1c & 1d: Get forcewake during program sequence. Although the driver
3524 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3525 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3526
3527 /* 2a: Disable RC states. */
3528 I915_WRITE(GEN6_RC_CONTROL, 0);
3529
3530 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3531 parse_rp_state_cap(dev_priv, rp_state_cap);
3532
3533 /* 2b: Program RC6 thresholds.*/
3534 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3535 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3536 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3537 for_each_ring(ring, dev_priv, unused)
3538 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3539 I915_WRITE(GEN6_RC_SLEEP, 0);
3540 if (IS_BROADWELL(dev))
3541 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
3542 else
3543 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3544
3545 /* 3: Enable RC6 */
3546 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3547 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3548 intel_print_rc6_info(dev, rc6_mask);
3549 if (IS_BROADWELL(dev))
3550 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3551 GEN7_RC_CTL_TO_MODE |
3552 rc6_mask);
3553 else
3554 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3555 GEN6_RC_CTL_EI_MODE(1) |
3556 rc6_mask);
3557
3558 /* 4 Program defaults and thresholds for RPS*/
3559 I915_WRITE(GEN6_RPNSWREQ,
3560 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3561 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3562 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3563 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3564 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3565
3566 /* Docs recommend 900MHz, and 300 MHz respectively */
3567 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3568 dev_priv->rps.max_freq_softlimit << 24 |
3569 dev_priv->rps.min_freq_softlimit << 16);
3570
3571 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3572 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3573 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3574 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3575
3576 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3577
3578 /* 5: Enable RPS */
3579 I915_WRITE(GEN6_RP_CONTROL,
3580 GEN6_RP_MEDIA_TURBO |
3581 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3582 GEN6_RP_MEDIA_IS_GFX |
3583 GEN6_RP_ENABLE |
3584 GEN6_RP_UP_BUSY_AVG |
3585 GEN6_RP_DOWN_IDLE_AVG);
3586
3587 /* 6: Ring frequency + overclocking (our driver does this later */
3588
3589 gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3590
3591 gen8_enable_rps_interrupts(dev);
3592
3593 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3594 }
3595
3596 static void gen6_enable_rps(struct drm_device *dev)
3597 {
3598 struct drm_i915_private *dev_priv = dev->dev_private;
3599 struct intel_engine_cs *ring;
3600 u32 rp_state_cap;
3601 u32 gt_perf_status;
3602 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3603 u32 gtfifodbg;
3604 int rc6_mode;
3605 int i, ret;
3606
3607 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3608
3609 /* Here begins a magic sequence of register writes to enable
3610 * auto-downclocking.
3611 *
3612 * Perhaps there might be some value in exposing these to
3613 * userspace...
3614 */
3615 I915_WRITE(GEN6_RC_STATE, 0);
3616
3617 /* Clear the DBG now so we don't confuse earlier errors */
3618 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3619 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3620 I915_WRITE(GTFIFODBG, gtfifodbg);
3621 }
3622
3623 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3624
3625 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3626 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3627
3628 parse_rp_state_cap(dev_priv, rp_state_cap);
3629
3630 /* disable the counters and set deterministic thresholds */
3631 I915_WRITE(GEN6_RC_CONTROL, 0);
3632
3633 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3634 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3635 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3636 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3637 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3638
3639 for_each_ring(ring, dev_priv, i)
3640 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3641
3642 I915_WRITE(GEN6_RC_SLEEP, 0);
3643 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3644 if (IS_IVYBRIDGE(dev))
3645 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3646 else
3647 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3648 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3649 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3650
3651 /* Check if we are enabling RC6 */
3652 rc6_mode = intel_enable_rc6(dev_priv->dev);
3653 if (rc6_mode & INTEL_RC6_ENABLE)
3654 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3655
3656 /* We don't use those on Haswell */
3657 if (!IS_HASWELL(dev)) {
3658 if (rc6_mode & INTEL_RC6p_ENABLE)
3659 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3660
3661 if (rc6_mode & INTEL_RC6pp_ENABLE)
3662 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3663 }
3664
3665 intel_print_rc6_info(dev, rc6_mask);
3666
3667 I915_WRITE(GEN6_RC_CONTROL,
3668 rc6_mask |
3669 GEN6_RC_CTL_EI_MODE(1) |
3670 GEN6_RC_CTL_HW_ENABLE);
3671
3672 /* Power down if completely idle for over 50ms */
3673 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3674 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3675
3676 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3677 if (ret)
3678 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3679
3680 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3681 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3682 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3683 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3684 (pcu_mbox & 0xff) * 50);
3685 dev_priv->rps.max_freq = pcu_mbox & 0xff;
3686 }
3687
3688 dev_priv->rps.power = HIGH_POWER; /* force a reset */
3689 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3690
3691 gen6_enable_rps_interrupts(dev);
3692
3693 rc6vids = 0;
3694 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3695 if (IS_GEN6(dev) && ret) {
3696 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3697 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3698 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3699 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3700 rc6vids &= 0xffff00;
3701 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3702 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3703 if (ret)
3704 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3705 }
3706
3707 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3708 }
3709
3710 static void __gen6_update_ring_freq(struct drm_device *dev)
3711 {
3712 struct drm_i915_private *dev_priv = dev->dev_private;
3713 int min_freq = 15;
3714 unsigned int gpu_freq;
3715 unsigned int max_ia_freq, min_ring_freq;
3716 int scaling_factor = 180;
3717 struct cpufreq_policy *policy;
3718
3719 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3720
3721 policy = cpufreq_cpu_get(0);
3722 if (policy) {
3723 max_ia_freq = policy->cpuinfo.max_freq;
3724 cpufreq_cpu_put(policy);
3725 } else {
3726 /*
3727 * Default to measured freq if none found, PCU will ensure we
3728 * don't go over
3729 */
3730 max_ia_freq = tsc_khz;
3731 }
3732
3733 /* Convert from kHz to MHz */
3734 max_ia_freq /= 1000;
3735
3736 min_ring_freq = I915_READ(DCLK) & 0xf;
3737 /* convert DDR frequency from units of 266.6MHz to bandwidth */
3738 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3739
3740 /*
3741 * For each potential GPU frequency, load a ring frequency we'd like
3742 * to use for memory access. We do this by specifying the IA frequency
3743 * the PCU should use as a reference to determine the ring frequency.
3744 */
3745 for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3746 gpu_freq--) {
3747 int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3748 unsigned int ia_freq = 0, ring_freq = 0;
3749
3750 if (INTEL_INFO(dev)->gen >= 8) {
3751 /* max(2 * GT, DDR). NB: GT is 50MHz units */
3752 ring_freq = max(min_ring_freq, gpu_freq);
3753 } else if (IS_HASWELL(dev)) {
3754 ring_freq = mult_frac(gpu_freq, 5, 4);
3755 ring_freq = max(min_ring_freq, ring_freq);
3756 /* leave ia_freq as the default, chosen by cpufreq */
3757 } else {
3758 /* On older processors, there is no separate ring
3759 * clock domain, so in order to boost the bandwidth
3760 * of the ring, we need to upclock the CPU (ia_freq).
3761 *
3762 * For GPU frequencies less than 750MHz,
3763 * just use the lowest ring freq.
3764 */
3765 if (gpu_freq < min_freq)
3766 ia_freq = 800;
3767 else
3768 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3769 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3770 }
3771
3772 sandybridge_pcode_write(dev_priv,
3773 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3774 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3775 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3776 gpu_freq);
3777 }
3778 }
3779
3780 void gen6_update_ring_freq(struct drm_device *dev)
3781 {
3782 struct drm_i915_private *dev_priv = dev->dev_private;
3783
3784 if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
3785 return;
3786
3787 mutex_lock(&dev_priv->rps.hw_lock);
3788 __gen6_update_ring_freq(dev);
3789 mutex_unlock(&dev_priv->rps.hw_lock);
3790 }
3791
3792 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
3793 {
3794 u32 val, rp0;
3795
3796 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
3797 rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
3798
3799 return rp0;
3800 }
3801
3802 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3803 {
3804 u32 val, rpe;
3805
3806 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
3807 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
3808
3809 return rpe;
3810 }
3811
3812 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
3813 {
3814 u32 val, rp1;
3815
3816 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3817 rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
3818
3819 return rp1;
3820 }
3821
3822 static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
3823 {
3824 u32 val, rpn;
3825
3826 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
3827 rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
3828 return rpn;
3829 }
3830
3831 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
3832 {
3833 u32 val, rp1;
3834
3835 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3836
3837 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
3838
3839 return rp1;
3840 }
3841
3842 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3843 {
3844 u32 val, rp0;
3845
3846 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3847
3848 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3849 /* Clamp to max */
3850 rp0 = min_t(u32, rp0, 0xea);
3851
3852 return rp0;
3853 }
3854
3855 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3856 {
3857 u32 val, rpe;
3858
3859 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3860 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3861 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3862 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3863
3864 return rpe;
3865 }
3866
3867 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3868 {
3869 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3870 }
3871
3872 /* Check that the pctx buffer wasn't move under us. */
3873 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
3874 {
3875 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3876
3877 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
3878 dev_priv->vlv_pctx->stolen->start);
3879 }
3880
3881
3882 /* Check that the pcbr address is not empty. */
3883 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
3884 {
3885 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3886
3887 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
3888 }
3889
3890 static void cherryview_setup_pctx(struct drm_device *dev)
3891 {
3892 struct drm_i915_private *dev_priv = dev->dev_private;
3893 unsigned long pctx_paddr, paddr;
3894 struct i915_gtt *gtt = &dev_priv->gtt;
3895 u32 pcbr;
3896 int pctx_size = 32*1024;
3897
3898 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3899
3900 pcbr = I915_READ(VLV_PCBR);
3901 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
3902 paddr = (dev_priv->mm.stolen_base +
3903 (gtt->stolen_size - pctx_size));
3904
3905 pctx_paddr = (paddr & (~4095));
3906 I915_WRITE(VLV_PCBR, pctx_paddr);
3907 }
3908 }
3909
3910 static void valleyview_setup_pctx(struct drm_device *dev)
3911 {
3912 struct drm_i915_private *dev_priv = dev->dev_private;
3913 struct drm_i915_gem_object *pctx;
3914 unsigned long pctx_paddr;
3915 u32 pcbr;
3916 int pctx_size = 24*1024;
3917
3918 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3919
3920 pcbr = I915_READ(VLV_PCBR);
3921 if (pcbr) {
3922 /* BIOS set it up already, grab the pre-alloc'd space */
3923 int pcbr_offset;
3924
3925 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3926 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3927 pcbr_offset,
3928 I915_GTT_OFFSET_NONE,
3929 pctx_size);
3930 goto out;
3931 }
3932
3933 /*
3934 * From the Gunit register HAS:
3935 * The Gfx driver is expected to program this register and ensure
3936 * proper allocation within Gfx stolen memory. For example, this
3937 * register should be programmed such than the PCBR range does not
3938 * overlap with other ranges, such as the frame buffer, protected
3939 * memory, or any other relevant ranges.
3940 */
3941 pctx = i915_gem_object_create_stolen(dev, pctx_size);
3942 if (!pctx) {
3943 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3944 return;
3945 }
3946
3947 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3948 I915_WRITE(VLV_PCBR, pctx_paddr);
3949
3950 out:
3951 dev_priv->vlv_pctx = pctx;
3952 }
3953
3954 static void valleyview_cleanup_pctx(struct drm_device *dev)
3955 {
3956 struct drm_i915_private *dev_priv = dev->dev_private;
3957
3958 if (WARN_ON(!dev_priv->vlv_pctx))
3959 return;
3960
3961 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3962 dev_priv->vlv_pctx = NULL;
3963 }
3964
3965 static void valleyview_init_gt_powersave(struct drm_device *dev)
3966 {
3967 struct drm_i915_private *dev_priv = dev->dev_private;
3968
3969 valleyview_setup_pctx(dev);
3970
3971 mutex_lock(&dev_priv->rps.hw_lock);
3972
3973 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
3974 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
3975 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3976 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
3977 dev_priv->rps.max_freq);
3978
3979 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
3980 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3981 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3982 dev_priv->rps.efficient_freq);
3983
3984 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
3985 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
3986 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
3987 dev_priv->rps.rp1_freq);
3988
3989 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
3990 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3991 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
3992 dev_priv->rps.min_freq);
3993
3994 /* Preserve min/max settings in case of re-init */
3995 if (dev_priv->rps.max_freq_softlimit == 0)
3996 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3997
3998 if (dev_priv->rps.min_freq_softlimit == 0)
3999 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4000
4001 mutex_unlock(&dev_priv->rps.hw_lock);
4002 }
4003
4004 static void cherryview_init_gt_powersave(struct drm_device *dev)
4005 {
4006 struct drm_i915_private *dev_priv = dev->dev_private;
4007
4008 cherryview_setup_pctx(dev);
4009
4010 mutex_lock(&dev_priv->rps.hw_lock);
4011
4012 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4013 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4014 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4015 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4016 dev_priv->rps.max_freq);
4017
4018 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
4019 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4020 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4021 dev_priv->rps.efficient_freq);
4022
4023 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
4024 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4025 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4026 dev_priv->rps.rp1_freq);
4027
4028 dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
4029 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4030 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4031 dev_priv->rps.min_freq);
4032
4033 /* Preserve min/max settings in case of re-init */
4034 if (dev_priv->rps.max_freq_softlimit == 0)
4035 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4036
4037 if (dev_priv->rps.min_freq_softlimit == 0)
4038 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4039
4040 mutex_unlock(&dev_priv->rps.hw_lock);
4041 }
4042
4043 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
4044 {
4045 valleyview_cleanup_pctx(dev);
4046 }
4047
4048 static void cherryview_enable_rps(struct drm_device *dev)
4049 {
4050 struct drm_i915_private *dev_priv = dev->dev_private;
4051 struct intel_engine_cs *ring;
4052 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4053 int i;
4054
4055 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4056
4057 gtfifodbg = I915_READ(GTFIFODBG);
4058 if (gtfifodbg) {
4059 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4060 gtfifodbg);
4061 I915_WRITE(GTFIFODBG, gtfifodbg);
4062 }
4063
4064 cherryview_check_pctx(dev_priv);
4065
4066 /* 1a & 1b: Get forcewake during program sequence. Although the driver
4067 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4068 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4069
4070 /* 2a: Program RC6 thresholds.*/
4071 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4072 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4073 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4074
4075 for_each_ring(ring, dev_priv, i)
4076 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4077 I915_WRITE(GEN6_RC_SLEEP, 0);
4078
4079 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4080
4081 /* allows RC6 residency counter to work */
4082 I915_WRITE(VLV_COUNTER_CONTROL,
4083 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4084 VLV_MEDIA_RC6_COUNT_EN |
4085 VLV_RENDER_RC6_COUNT_EN));
4086
4087 /* For now we assume BIOS is allocating and populating the PCBR */
4088 pcbr = I915_READ(VLV_PCBR);
4089
4090 DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);
4091
4092 /* 3: Enable RC6 */
4093 if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
4094 (pcbr >> VLV_PCBR_ADDR_SHIFT))
4095 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
4096
4097 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4098
4099 /* 4 Program defaults and thresholds for RPS*/
4100 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4101 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4102 I915_WRITE(GEN6_RP_UP_EI, 66000);
4103 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4104
4105 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4106
4107 /* WaDisablePwrmtrEvent:chv (pre-production hw) */
4108 I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
4109 I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
4110
4111 /* 5: Enable RPS */
4112 I915_WRITE(GEN6_RP_CONTROL,
4113 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4114 GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
4115 GEN6_RP_ENABLE |
4116 GEN6_RP_UP_BUSY_AVG |
4117 GEN6_RP_DOWN_IDLE_AVG);
4118
4119 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4120
4121 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4122 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4123
4124 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4125 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4126 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4127 dev_priv->rps.cur_freq);
4128
4129 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4130 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4131 dev_priv->rps.efficient_freq);
4132
4133 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4134
4135 gen8_enable_rps_interrupts(dev);
4136
4137 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4138 }
4139
4140 static void valleyview_enable_rps(struct drm_device *dev)
4141 {
4142 struct drm_i915_private *dev_priv = dev->dev_private;
4143 struct intel_engine_cs *ring;
4144 u32 gtfifodbg, val, rc6_mode = 0;
4145 int i;
4146
4147 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4148
4149 valleyview_check_pctx(dev_priv);
4150
4151 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4152 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4153 gtfifodbg);
4154 I915_WRITE(GTFIFODBG, gtfifodbg);
4155 }
4156
4157 /* If VLV, Forcewake all wells, else re-direct to regular path */
4158 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4159
4160 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4161 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4162 I915_WRITE(GEN6_RP_UP_EI, 66000);
4163 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4164
4165 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4166 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4167
4168 I915_WRITE(GEN6_RP_CONTROL,
4169 GEN6_RP_MEDIA_TURBO |
4170 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4171 GEN6_RP_MEDIA_IS_GFX |
4172 GEN6_RP_ENABLE |
4173 GEN6_RP_UP_BUSY_AVG |
4174 GEN6_RP_DOWN_IDLE_CONT);
4175
4176 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4177 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4178 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4179
4180 for_each_ring(ring, dev_priv, i)
4181 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4182
4183 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4184
4185 /* allows RC6 residency counter to work */
4186 I915_WRITE(VLV_COUNTER_CONTROL,
4187 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
4188 VLV_RENDER_RC0_COUNT_EN |
4189 VLV_MEDIA_RC6_COUNT_EN |
4190 VLV_RENDER_RC6_COUNT_EN));
4191
4192 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4193 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4194
4195 intel_print_rc6_info(dev, rc6_mode);
4196
4197 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4198
4199 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4200
4201 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4202 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4203
4204 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4205 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4206 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4207 dev_priv->rps.cur_freq);
4208
4209 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4210 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4211 dev_priv->rps.efficient_freq);
4212
4213 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4214
4215 gen6_enable_rps_interrupts(dev);
4216
4217 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4218 }
4219
4220 void ironlake_teardown_rc6(struct drm_device *dev)
4221 {
4222 struct drm_i915_private *dev_priv = dev->dev_private;
4223
4224 if (dev_priv->ips.renderctx) {
4225 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4226 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4227 dev_priv->ips.renderctx = NULL;
4228 }
4229
4230 if (dev_priv->ips.pwrctx) {
4231 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4232 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4233 dev_priv->ips.pwrctx = NULL;
4234 }
4235 }
4236
4237 static void ironlake_disable_rc6(struct drm_device *dev)
4238 {
4239 struct drm_i915_private *dev_priv = dev->dev_private;
4240
4241 if (I915_READ(PWRCTXA)) {
4242 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4243 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4244 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4245 50);
4246
4247 I915_WRITE(PWRCTXA, 0);
4248 POSTING_READ(PWRCTXA);
4249
4250 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4251 POSTING_READ(RSTDBYCTL);
4252 }
4253 }
4254
4255 static int ironlake_setup_rc6(struct drm_device *dev)
4256 {
4257 struct drm_i915_private *dev_priv = dev->dev_private;
4258
4259 if (dev_priv->ips.renderctx == NULL)
4260 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4261 if (!dev_priv->ips.renderctx)
4262 return -ENOMEM;
4263
4264 if (dev_priv->ips.pwrctx == NULL)
4265 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4266 if (!dev_priv->ips.pwrctx) {
4267 ironlake_teardown_rc6(dev);
4268 return -ENOMEM;
4269 }
4270
4271 return 0;
4272 }
4273
4274 static void ironlake_enable_rc6(struct drm_device *dev)
4275 {
4276 struct drm_i915_private *dev_priv = dev->dev_private;
4277 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4278 bool was_interruptible;
4279 int ret;
4280
4281 /* rc6 disabled by default due to repeated reports of hanging during
4282 * boot and resume.
4283 */
4284 if (!intel_enable_rc6(dev))
4285 return;
4286
4287 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4288
4289 ret = ironlake_setup_rc6(dev);
4290 if (ret)
4291 return;
4292
4293 was_interruptible = dev_priv->mm.interruptible;
4294 dev_priv->mm.interruptible = false;
4295
4296 /*
4297 * GPU can automatically power down the render unit if given a page
4298 * to save state.
4299 */
4300 ret = intel_ring_begin(ring, 6);
4301 if (ret) {
4302 ironlake_teardown_rc6(dev);
4303 dev_priv->mm.interruptible = was_interruptible;
4304 return;
4305 }
4306
4307 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4308 intel_ring_emit(ring, MI_SET_CONTEXT);
4309 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4310 MI_MM_SPACE_GTT |
4311 MI_SAVE_EXT_STATE_EN |
4312 MI_RESTORE_EXT_STATE_EN |
4313 MI_RESTORE_INHIBIT);
4314 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4315 intel_ring_emit(ring, MI_NOOP);
4316 intel_ring_emit(ring, MI_FLUSH);
4317 intel_ring_advance(ring);
4318
4319 /*
4320 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4321 * does an implicit flush, combined with MI_FLUSH above, it should be
4322 * safe to assume that renderctx is valid
4323 */
4324 ret = intel_ring_idle(ring);
4325 dev_priv->mm.interruptible = was_interruptible;
4326 if (ret) {
4327 DRM_ERROR("failed to enable ironlake power savings\n");
4328 ironlake_teardown_rc6(dev);
4329 return;
4330 }
4331
4332 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4333 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4334
4335 intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4336 }
4337
4338 static unsigned long intel_pxfreq(u32 vidfreq)
4339 {
4340 unsigned long freq;
4341 int div = (vidfreq & 0x3f0000) >> 16;
4342 int post = (vidfreq & 0x3000) >> 12;
4343 int pre = (vidfreq & 0x7);
4344
4345 if (!pre)
4346 return 0;
4347
4348 freq = ((div * 133333) / ((1<<post) * pre));
4349
4350 return freq;
4351 }
4352
4353 static const struct cparams {
4354 u16 i;
4355 u16 t;
4356 u16 m;
4357 u16 c;
4358 } cparams[] = {
4359 { 1, 1333, 301, 28664 },
4360 { 1, 1066, 294, 24460 },
4361 { 1, 800, 294, 25192 },
4362 { 0, 1333, 276, 27605 },
4363 { 0, 1066, 276, 27605 },
4364 { 0, 800, 231, 23784 },
4365 };
4366
4367 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4368 {
4369 u64 total_count, diff, ret;
4370 u32 count1, count2, count3, m = 0, c = 0;
4371 unsigned long now = jiffies_to_msecs(jiffies), diff1;
4372 int i;
4373
4374 assert_spin_locked(&mchdev_lock);
4375
4376 diff1 = now - dev_priv->ips.last_time1;
4377
4378 /* Prevent division-by-zero if we are asking too fast.
4379 * Also, we don't get interesting results if we are polling
4380 * faster than once in 10ms, so just return the saved value
4381 * in such cases.
4382 */
4383 if (diff1 <= 10)
4384 return dev_priv->ips.chipset_power;
4385
4386 count1 = I915_READ(DMIEC);
4387 count2 = I915_READ(DDREC);
4388 count3 = I915_READ(CSIEC);
4389
4390 total_count = count1 + count2 + count3;
4391
4392 /* FIXME: handle per-counter overflow */
4393 if (total_count < dev_priv->ips.last_count1) {
4394 diff = ~0UL - dev_priv->ips.last_count1;
4395 diff += total_count;
4396 } else {
4397 diff = total_count - dev_priv->ips.last_count1;
4398 }
4399
4400 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4401 if (cparams[i].i == dev_priv->ips.c_m &&
4402 cparams[i].t == dev_priv->ips.r_t) {
4403 m = cparams[i].m;
4404 c = cparams[i].c;
4405 break;
4406 }
4407 }
4408
4409 diff = div_u64(diff, diff1);
4410 ret = ((m * diff) + c);
4411 ret = div_u64(ret, 10);
4412
4413 dev_priv->ips.last_count1 = total_count;
4414 dev_priv->ips.last_time1 = now;
4415
4416 dev_priv->ips.chipset_power = ret;
4417
4418 return ret;
4419 }
4420
4421 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4422 {
4423 struct drm_device *dev = dev_priv->dev;
4424 unsigned long val;
4425
4426 if (INTEL_INFO(dev)->gen != 5)
4427 return 0;
4428
4429 spin_lock_irq(&mchdev_lock);
4430
4431 val = __i915_chipset_val(dev_priv);
4432
4433 spin_unlock_irq(&mchdev_lock);
4434
4435 return val;
4436 }
4437
4438 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4439 {
4440 unsigned long m, x, b;
4441 u32 tsfs;
4442
4443 tsfs = I915_READ(TSFS);
4444
4445 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4446 x = I915_READ8(TR1);
4447
4448 b = tsfs & TSFS_INTR_MASK;
4449
4450 return ((m * x) / 127) - b;
4451 }
4452
4453 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4454 {
4455 struct drm_device *dev = dev_priv->dev;
4456 static const struct v_table {
4457 u16 vd; /* in .1 mil */
4458 u16 vm; /* in .1 mil */
4459 } v_table[] = {
4460 { 0, 0, },
4461 { 375, 0, },
4462 { 500, 0, },
4463 { 625, 0, },
4464 { 750, 0, },
4465 { 875, 0, },
4466 { 1000, 0, },
4467 { 1125, 0, },
4468 { 4125, 3000, },
4469 { 4125, 3000, },
4470 { 4125, 3000, },
4471 { 4125, 3000, },
4472 { 4125, 3000, },
4473 { 4125, 3000, },
4474 { 4125, 3000, },
4475 { 4125, 3000, },
4476 { 4125, 3000, },
4477 { 4125, 3000, },
4478 { 4125, 3000, },
4479 { 4125, 3000, },
4480 { 4125, 3000, },
4481 { 4125, 3000, },
4482 { 4125, 3000, },
4483 { 4125, 3000, },
4484 { 4125, 3000, },
4485 { 4125, 3000, },
4486 { 4125, 3000, },
4487 { 4125, 3000, },
4488 { 4125, 3000, },
4489 { 4125, 3000, },
4490 { 4125, 3000, },
4491 { 4125, 3000, },
4492 { 4250, 3125, },
4493 { 4375, 3250, },
4494 { 4500, 3375, },
4495 { 4625, 3500, },
4496 { 4750, 3625, },
4497 { 4875, 3750, },
4498 { 5000, 3875, },
4499 { 5125, 4000, },
4500 { 5250, 4125, },
4501 { 5375, 4250, },
4502 { 5500, 4375, },
4503 { 5625, 4500, },
4504 { 5750, 4625, },
4505 { 5875, 4750, },
4506 { 6000, 4875, },
4507 { 6125, 5000, },
4508 { 6250, 5125, },
4509 { 6375, 5250, },
4510 { 6500, 5375, },
4511 { 6625, 5500, },
4512 { 6750, 5625, },
4513 { 6875, 5750, },
4514 { 7000, 5875, },
4515 { 7125, 6000, },
4516 { 7250, 6125, },
4517 { 7375, 6250, },
4518 { 7500, 6375, },
4519 { 7625, 6500, },
4520 { 7750, 6625, },
4521 { 7875, 6750, },
4522 { 8000, 6875, },
4523 { 8125, 7000, },
4524 { 8250, 7125, },
4525 { 8375, 7250, },
4526 { 8500, 7375, },
4527 { 8625, 7500, },
4528 { 8750, 7625, },
4529 { 8875, 7750, },
4530 { 9000, 7875, },
4531 { 9125, 8000, },
4532 { 9250, 8125, },
4533 { 9375, 8250, },
4534 { 9500, 8375, },
4535 { 9625, 8500, },
4536 { 9750, 8625, },
4537 { 9875, 8750, },
4538 { 10000, 8875, },
4539 { 10125, 9000, },
4540 { 10250, 9125, },
4541 { 10375, 9250, },
4542 { 10500, 9375, },
4543 { 10625, 9500, },
4544 { 10750, 9625, },
4545 { 10875, 9750, },
4546 { 11000, 9875, },
4547 { 11125, 10000, },
4548 { 11250, 10125, },
4549 { 11375, 10250, },
4550 { 11500, 10375, },
4551 { 11625, 10500, },
4552 { 11750, 10625, },
4553 { 11875, 10750, },
4554 { 12000, 10875, },
4555 { 12125, 11000, },
4556 { 12250, 11125, },
4557 { 12375, 11250, },
4558 { 12500, 11375, },
4559 { 12625, 11500, },
4560 { 12750, 11625, },
4561 { 12875, 11750, },
4562 { 13000, 11875, },
4563 { 13125, 12000, },
4564 { 13250, 12125, },
4565 { 13375, 12250, },
4566 { 13500, 12375, },
4567 { 13625, 12500, },
4568 { 13750, 12625, },
4569 { 13875, 12750, },
4570 { 14000, 12875, },
4571 { 14125, 13000, },
4572 { 14250, 13125, },
4573 { 14375, 13250, },
4574 { 14500, 13375, },
4575 { 14625, 13500, },
4576 { 14750, 13625, },
4577 { 14875, 13750, },
4578 { 15000, 13875, },
4579 { 15125, 14000, },
4580 { 15250, 14125, },
4581 { 15375, 14250, },
4582 { 15500, 14375, },
4583 { 15625, 14500, },
4584 { 15750, 14625, },
4585 { 15875, 14750, },
4586 { 16000, 14875, },
4587 { 16125, 15000, },
4588 };
4589 if (INTEL_INFO(dev)->is_mobile)
4590 return v_table[pxvid].vm;
4591 else
4592 return v_table[pxvid].vd;
4593 }
4594
4595 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4596 {
4597 u64 now, diff, diffms;
4598 u32 count;
4599
4600 assert_spin_locked(&mchdev_lock);
4601
4602 now = ktime_get_raw_ns();
4603 diffms = now - dev_priv->ips.last_time2;
4604 do_div(diffms, NSEC_PER_MSEC);
4605
4606 /* Don't divide by 0 */
4607 if (!diffms)
4608 return;
4609
4610 count = I915_READ(GFXEC);
4611
4612 if (count < dev_priv->ips.last_count2) {
4613 diff = ~0UL - dev_priv->ips.last_count2;
4614 diff += count;
4615 } else {
4616 diff = count - dev_priv->ips.last_count2;
4617 }
4618
4619 dev_priv->ips.last_count2 = count;
4620 dev_priv->ips.last_time2 = now;
4621
4622 /* More magic constants... */
4623 diff = diff * 1181;
4624 diff = div_u64(diff, diffms * 10);
4625 dev_priv->ips.gfx_power = diff;
4626 }
4627
4628 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4629 {
4630 struct drm_device *dev = dev_priv->dev;
4631
4632 if (INTEL_INFO(dev)->gen != 5)
4633 return;
4634
4635 spin_lock_irq(&mchdev_lock);
4636
4637 __i915_update_gfx_val(dev_priv);
4638
4639 spin_unlock_irq(&mchdev_lock);
4640 }
4641
4642 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4643 {
4644 unsigned long t, corr, state1, corr2, state2;
4645 u32 pxvid, ext_v;
4646
4647 assert_spin_locked(&mchdev_lock);
4648
4649 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4650 pxvid = (pxvid >> 24) & 0x7f;
4651 ext_v = pvid_to_extvid(dev_priv, pxvid);
4652
4653 state1 = ext_v;
4654
4655 t = i915_mch_val(dev_priv);
4656
4657 /* Revel in the empirically derived constants */
4658
4659 /* Correction factor in 1/100000 units */
4660 if (t > 80)
4661 corr = ((t * 2349) + 135940);
4662 else if (t >= 50)
4663 corr = ((t * 964) + 29317);
4664 else /* < 50 */
4665 corr = ((t * 301) + 1004);
4666
4667 corr = corr * ((150142 * state1) / 10000 - 78642);
4668 corr /= 100000;
4669 corr2 = (corr * dev_priv->ips.corr);
4670
4671 state2 = (corr2 * state1) / 10000;
4672 state2 /= 100; /* convert to mW */
4673
4674 __i915_update_gfx_val(dev_priv);
4675
4676 return dev_priv->ips.gfx_power + state2;
4677 }
4678
4679 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4680 {
4681 struct drm_device *dev = dev_priv->dev;
4682 unsigned long val;
4683
4684 if (INTEL_INFO(dev)->gen != 5)
4685 return 0;
4686
4687 spin_lock_irq(&mchdev_lock);
4688
4689 val = __i915_gfx_val(dev_priv);
4690
4691 spin_unlock_irq(&mchdev_lock);
4692
4693 return val;
4694 }
4695
4696 /**
4697 * i915_read_mch_val - return value for IPS use
4698 *
4699 * Calculate and return a value for the IPS driver to use when deciding whether
4700 * we have thermal and power headroom to increase CPU or GPU power budget.
4701 */
4702 unsigned long i915_read_mch_val(void)
4703 {
4704 struct drm_i915_private *dev_priv;
4705 unsigned long chipset_val, graphics_val, ret = 0;
4706
4707 spin_lock_irq(&mchdev_lock);
4708 if (!i915_mch_dev)
4709 goto out_unlock;
4710 dev_priv = i915_mch_dev;
4711
4712 chipset_val = __i915_chipset_val(dev_priv);
4713 graphics_val = __i915_gfx_val(dev_priv);
4714
4715 ret = chipset_val + graphics_val;
4716
4717 out_unlock:
4718 spin_unlock_irq(&mchdev_lock);
4719
4720 return ret;
4721 }
4722 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4723
4724 /**
4725 * i915_gpu_raise - raise GPU frequency limit
4726 *
4727 * Raise the limit; IPS indicates we have thermal headroom.
4728 */
4729 bool i915_gpu_raise(void)
4730 {
4731 struct drm_i915_private *dev_priv;
4732 bool ret = true;
4733
4734 spin_lock_irq(&mchdev_lock);
4735 if (!i915_mch_dev) {
4736 ret = false;
4737 goto out_unlock;
4738 }
4739 dev_priv = i915_mch_dev;
4740
4741 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4742 dev_priv->ips.max_delay--;
4743
4744 out_unlock:
4745 spin_unlock_irq(&mchdev_lock);
4746
4747 return ret;
4748 }
4749 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4750
4751 /**
4752 * i915_gpu_lower - lower GPU frequency limit
4753 *
4754 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4755 * frequency maximum.
4756 */
4757 bool i915_gpu_lower(void)
4758 {
4759 struct drm_i915_private *dev_priv;
4760 bool ret = true;
4761
4762 spin_lock_irq(&mchdev_lock);
4763 if (!i915_mch_dev) {
4764 ret = false;
4765 goto out_unlock;
4766 }
4767 dev_priv = i915_mch_dev;
4768
4769 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4770 dev_priv->ips.max_delay++;
4771
4772 out_unlock:
4773 spin_unlock_irq(&mchdev_lock);
4774
4775 return ret;
4776 }
4777 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4778
4779 /**
4780 * i915_gpu_busy - indicate GPU business to IPS
4781 *
4782 * Tell the IPS driver whether or not the GPU is busy.
4783 */
4784 bool i915_gpu_busy(void)
4785 {
4786 struct drm_i915_private *dev_priv;
4787 struct intel_engine_cs *ring;
4788 bool ret = false;
4789 int i;
4790
4791 spin_lock_irq(&mchdev_lock);
4792 if (!i915_mch_dev)
4793 goto out_unlock;
4794 dev_priv = i915_mch_dev;
4795
4796 for_each_ring(ring, dev_priv, i)
4797 ret |= !list_empty(&ring->request_list);
4798
4799 out_unlock:
4800 spin_unlock_irq(&mchdev_lock);
4801
4802 return ret;
4803 }
4804 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4805
4806 /**
4807 * i915_gpu_turbo_disable - disable graphics turbo
4808 *
4809 * Disable graphics turbo by resetting the max frequency and setting the
4810 * current frequency to the default.
4811 */
4812 bool i915_gpu_turbo_disable(void)
4813 {
4814 struct drm_i915_private *dev_priv;
4815 bool ret = true;
4816
4817 spin_lock_irq(&mchdev_lock);
4818 if (!i915_mch_dev) {
4819 ret = false;
4820 goto out_unlock;
4821 }
4822 dev_priv = i915_mch_dev;
4823
4824 dev_priv->ips.max_delay = dev_priv->ips.fstart;
4825
4826 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4827 ret = false;
4828
4829 out_unlock:
4830 spin_unlock_irq(&mchdev_lock);
4831
4832 return ret;
4833 }
4834 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4835
4836 /**
4837 * Tells the intel_ips driver that the i915 driver is now loaded, if
4838 * IPS got loaded first.
4839 *
4840 * This awkward dance is so that neither module has to depend on the
4841 * other in order for IPS to do the appropriate communication of
4842 * GPU turbo limits to i915.
4843 */
4844 static void
4845 ips_ping_for_i915_load(void)
4846 {
4847 void (*link)(void);
4848
4849 link = symbol_get(ips_link_to_i915_driver);
4850 if (link) {
4851 link();
4852 symbol_put(ips_link_to_i915_driver);
4853 }
4854 }
4855
4856 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4857 {
4858 /* We only register the i915 ips part with intel-ips once everything is
4859 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4860 spin_lock_irq(&mchdev_lock);
4861 i915_mch_dev = dev_priv;
4862 spin_unlock_irq(&mchdev_lock);
4863
4864 ips_ping_for_i915_load();
4865 }
4866
4867 void intel_gpu_ips_teardown(void)
4868 {
4869 spin_lock_irq(&mchdev_lock);
4870 i915_mch_dev = NULL;
4871 spin_unlock_irq(&mchdev_lock);
4872 }
4873
4874 static void intel_init_emon(struct drm_device *dev)
4875 {
4876 struct drm_i915_private *dev_priv = dev->dev_private;
4877 u32 lcfuse;
4878 u8 pxw[16];
4879 int i;
4880
4881 /* Disable to program */
4882 I915_WRITE(ECR, 0);
4883 POSTING_READ(ECR);
4884
4885 /* Program energy weights for various events */
4886 I915_WRITE(SDEW, 0x15040d00);
4887 I915_WRITE(CSIEW0, 0x007f0000);
4888 I915_WRITE(CSIEW1, 0x1e220004);
4889 I915_WRITE(CSIEW2, 0x04000004);
4890
4891 for (i = 0; i < 5; i++)
4892 I915_WRITE(PEW + (i * 4), 0);
4893 for (i = 0; i < 3; i++)
4894 I915_WRITE(DEW + (i * 4), 0);
4895
4896 /* Program P-state weights to account for frequency power adjustment */
4897 for (i = 0; i < 16; i++) {
4898 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4899 unsigned long freq = intel_pxfreq(pxvidfreq);
4900 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4901 PXVFREQ_PX_SHIFT;
4902 unsigned long val;
4903
4904 val = vid * vid;
4905 val *= (freq / 1000);
4906 val *= 255;
4907 val /= (127*127*900);
4908 if (val > 0xff)
4909 DRM_ERROR("bad pxval: %ld\n", val);
4910 pxw[i] = val;
4911 }
4912 /* Render standby states get 0 weight */
4913 pxw[14] = 0;
4914 pxw[15] = 0;
4915
4916 for (i = 0; i < 4; i++) {
4917 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4918 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4919 I915_WRITE(PXW + (i * 4), val);
4920 }
4921
4922 /* Adjust magic regs to magic values (more experimental results) */
4923 I915_WRITE(OGW0, 0);
4924 I915_WRITE(OGW1, 0);
4925 I915_WRITE(EG0, 0x00007f00);
4926 I915_WRITE(EG1, 0x0000000e);
4927 I915_WRITE(EG2, 0x000e0000);
4928 I915_WRITE(EG3, 0x68000300);
4929 I915_WRITE(EG4, 0x42000000);
4930 I915_WRITE(EG5, 0x00140031);
4931 I915_WRITE(EG6, 0);
4932 I915_WRITE(EG7, 0);
4933
4934 for (i = 0; i < 8; i++)
4935 I915_WRITE(PXWL + (i * 4), 0);
4936
4937 /* Enable PMON + select events */
4938 I915_WRITE(ECR, 0x80000019);
4939
4940 lcfuse = I915_READ(LCFUSE02);
4941
4942 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4943 }
4944
4945 void intel_init_gt_powersave(struct drm_device *dev)
4946 {
4947 i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
4948
4949 if (IS_CHERRYVIEW(dev))
4950 cherryview_init_gt_powersave(dev);
4951 else if (IS_VALLEYVIEW(dev))
4952 valleyview_init_gt_powersave(dev);
4953 }
4954
4955 void intel_cleanup_gt_powersave(struct drm_device *dev)
4956 {
4957 if (IS_CHERRYVIEW(dev))
4958 return;
4959 else if (IS_VALLEYVIEW(dev))
4960 valleyview_cleanup_gt_powersave(dev);
4961 }
4962
4963 /**
4964 * intel_suspend_gt_powersave - suspend PM work and helper threads
4965 * @dev: drm device
4966 *
4967 * We don't want to disable RC6 or other features here, we just want
4968 * to make sure any work we've queued has finished and won't bother
4969 * us while we're suspended.
4970 */
4971 void intel_suspend_gt_powersave(struct drm_device *dev)
4972 {
4973 struct drm_i915_private *dev_priv = dev->dev_private;
4974
4975 /* Interrupts should be disabled already to avoid re-arming. */
4976 WARN_ON(intel_irqs_enabled(dev_priv));
4977
4978 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4979
4980 cancel_work_sync(&dev_priv->rps.work);
4981
4982 /* Force GPU to min freq during suspend */
4983 gen6_rps_idle(dev_priv);
4984 }
4985
4986 void intel_disable_gt_powersave(struct drm_device *dev)
4987 {
4988 struct drm_i915_private *dev_priv = dev->dev_private;
4989
4990 /* Interrupts should be disabled already to avoid re-arming. */
4991 WARN_ON(intel_irqs_enabled(dev_priv));
4992
4993 if (IS_IRONLAKE_M(dev)) {
4994 ironlake_disable_drps(dev);
4995 ironlake_disable_rc6(dev);
4996 } else if (INTEL_INFO(dev)->gen >= 6) {
4997 intel_suspend_gt_powersave(dev);
4998
4999 mutex_lock(&dev_priv->rps.hw_lock);
5000 if (IS_CHERRYVIEW(dev))
5001 cherryview_disable_rps(dev);
5002 else if (IS_VALLEYVIEW(dev))
5003 valleyview_disable_rps(dev);
5004 else
5005 gen6_disable_rps(dev);
5006 dev_priv->rps.enabled = false;
5007 mutex_unlock(&dev_priv->rps.hw_lock);
5008 }
5009 }
5010
5011 static void intel_gen6_powersave_work(struct work_struct *work)
5012 {
5013 struct drm_i915_private *dev_priv =
5014 container_of(work, struct drm_i915_private,
5015 rps.delayed_resume_work.work);
5016 struct drm_device *dev = dev_priv->dev;
5017
5018 mutex_lock(&dev_priv->rps.hw_lock);
5019
5020 if (IS_CHERRYVIEW(dev)) {
5021 cherryview_enable_rps(dev);
5022 } else if (IS_VALLEYVIEW(dev)) {
5023 valleyview_enable_rps(dev);
5024 } else if (IS_BROADWELL(dev)) {
5025 gen8_enable_rps(dev);
5026 __gen6_update_ring_freq(dev);
5027 } else {
5028 gen6_enable_rps(dev);
5029 __gen6_update_ring_freq(dev);
5030 }
5031 dev_priv->rps.enabled = true;
5032 mutex_unlock(&dev_priv->rps.hw_lock);
5033
5034 intel_runtime_pm_put(dev_priv);
5035 }
5036
5037 void intel_enable_gt_powersave(struct drm_device *dev)
5038 {
5039 struct drm_i915_private *dev_priv = dev->dev_private;
5040
5041 if (IS_IRONLAKE_M(dev)) {
5042 mutex_lock(&dev->struct_mutex);
5043 ironlake_enable_drps(dev);
5044 ironlake_enable_rc6(dev);
5045 intel_init_emon(dev);
5046 mutex_unlock(&dev->struct_mutex);
5047 } else if (INTEL_INFO(dev)->gen >= 6) {
5048 /*
5049 * PCU communication is slow and this doesn't need to be
5050 * done at any specific time, so do this out of our fast path
5051 * to make resume and init faster.
5052 *
5053 * We depend on the HW RC6 power context save/restore
5054 * mechanism when entering D3 through runtime PM suspend. So
5055 * disable RPM until RPS/RC6 is properly setup. We can only
5056 * get here via the driver load/system resume/runtime resume
5057 * paths, so the _noresume version is enough (and in case of
5058 * runtime resume it's necessary).
5059 */
5060 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5061 round_jiffies_up_relative(HZ)))
5062 intel_runtime_pm_get_noresume(dev_priv);
5063 }
5064 }
5065
5066 void intel_reset_gt_powersave(struct drm_device *dev)
5067 {
5068 struct drm_i915_private *dev_priv = dev->dev_private;
5069
5070 dev_priv->rps.enabled = false;
5071 intel_enable_gt_powersave(dev);
5072 }
5073
5074 static void ibx_init_clock_gating(struct drm_device *dev)
5075 {
5076 struct drm_i915_private *dev_priv = dev->dev_private;
5077
5078 /*
5079 * On Ibex Peak and Cougar Point, we need to disable clock
5080 * gating for the panel power sequencer or it will fail to
5081 * start up when no ports are active.
5082 */
5083 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5084 }
5085
5086 static void g4x_disable_trickle_feed(struct drm_device *dev)
5087 {
5088 struct drm_i915_private *dev_priv = dev->dev_private;
5089 int pipe;
5090
5091 for_each_pipe(pipe) {
5092 I915_WRITE(DSPCNTR(pipe),
5093 I915_READ(DSPCNTR(pipe)) |
5094 DISPPLANE_TRICKLE_FEED_DISABLE);
5095 intel_flush_primary_plane(dev_priv, pipe);
5096 }
5097 }
5098
5099 static void ilk_init_lp_watermarks(struct drm_device *dev)
5100 {
5101 struct drm_i915_private *dev_priv = dev->dev_private;
5102
5103 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5104 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5105 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5106
5107 /*
5108 * Don't touch WM1S_LP_EN here.
5109 * Doing so could cause underruns.
5110 */
5111 }
5112
5113 static void ironlake_init_clock_gating(struct drm_device *dev)
5114 {
5115 struct drm_i915_private *dev_priv = dev->dev_private;
5116 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5117
5118 /*
5119 * Required for FBC
5120 * WaFbcDisableDpfcClockGating:ilk
5121 */
5122 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5123 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5124 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5125
5126 I915_WRITE(PCH_3DCGDIS0,
5127 MARIUNIT_CLOCK_GATE_DISABLE |
5128 SVSMUNIT_CLOCK_GATE_DISABLE);
5129 I915_WRITE(PCH_3DCGDIS1,
5130 VFMUNIT_CLOCK_GATE_DISABLE);
5131
5132 /*
5133 * According to the spec the following bits should be set in
5134 * order to enable memory self-refresh
5135 * The bit 22/21 of 0x42004
5136 * The bit 5 of 0x42020
5137 * The bit 15 of 0x45000
5138 */
5139 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5140 (I915_READ(ILK_DISPLAY_CHICKEN2) |
5141 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5142 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5143 I915_WRITE(DISP_ARB_CTL,
5144 (I915_READ(DISP_ARB_CTL) |
5145 DISP_FBC_WM_DIS));
5146
5147 ilk_init_lp_watermarks(dev);
5148
5149 /*
5150 * Based on the document from hardware guys the following bits
5151 * should be set unconditionally in order to enable FBC.
5152 * The bit 22 of 0x42000
5153 * The bit 22 of 0x42004
5154 * The bit 7,8,9 of 0x42020.
5155 */
5156 if (IS_IRONLAKE_M(dev)) {
5157 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5158 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5159 I915_READ(ILK_DISPLAY_CHICKEN1) |
5160 ILK_FBCQ_DIS);
5161 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5162 I915_READ(ILK_DISPLAY_CHICKEN2) |
5163 ILK_DPARB_GATE);
5164 }
5165
5166 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5167
5168 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5169 I915_READ(ILK_DISPLAY_CHICKEN2) |
5170 ILK_ELPIN_409_SELECT);
5171 I915_WRITE(_3D_CHICKEN2,
5172 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5173 _3D_CHICKEN2_WM_READ_PIPELINED);
5174
5175 /* WaDisableRenderCachePipelinedFlush:ilk */
5176 I915_WRITE(CACHE_MODE_0,
5177 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5178
5179 /* WaDisable_RenderCache_OperationalFlush:ilk */
5180 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5181
5182 g4x_disable_trickle_feed(dev);
5183
5184 ibx_init_clock_gating(dev);
5185 }
5186
5187 static void cpt_init_clock_gating(struct drm_device *dev)
5188 {
5189 struct drm_i915_private *dev_priv = dev->dev_private;
5190 int pipe;
5191 uint32_t val;
5192
5193 /*
5194 * On Ibex Peak and Cougar Point, we need to disable clock
5195 * gating for the panel power sequencer or it will fail to
5196 * start up when no ports are active.
5197 */
5198 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5199 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5200 PCH_CPUNIT_CLOCK_GATE_DISABLE);
5201 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5202 DPLS_EDP_PPS_FIX_DIS);
5203 /* The below fixes the weird display corruption, a few pixels shifted
5204 * downward, on (only) LVDS of some HP laptops with IVY.
5205 */
5206 for_each_pipe(pipe) {
5207 val = I915_READ(TRANS_CHICKEN2(pipe));
5208 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5209 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5210 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5211 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5212 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5213 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5214 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5215 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5216 }
5217 /* WADP0ClockGatingDisable */
5218 for_each_pipe(pipe) {
5219 I915_WRITE(TRANS_CHICKEN1(pipe),
5220 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5221 }
5222 }
5223
5224 static void gen6_check_mch_setup(struct drm_device *dev)
5225 {
5226 struct drm_i915_private *dev_priv = dev->dev_private;
5227 uint32_t tmp;
5228
5229 tmp = I915_READ(MCH_SSKPD);
5230 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
5231 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
5232 tmp);
5233 }
5234
5235 static void gen6_init_clock_gating(struct drm_device *dev)
5236 {
5237 struct drm_i915_private *dev_priv = dev->dev_private;
5238 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5239
5240 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5241
5242 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5243 I915_READ(ILK_DISPLAY_CHICKEN2) |
5244 ILK_ELPIN_409_SELECT);
5245
5246 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5247 I915_WRITE(_3D_CHICKEN,
5248 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5249
5250 /* WaSetupGtModeTdRowDispatch:snb */
5251 if (IS_SNB_GT1(dev))
5252 I915_WRITE(GEN6_GT_MODE,
5253 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
5254
5255 /* WaDisable_RenderCache_OperationalFlush:snb */
5256 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5257
5258 /*
5259 * BSpec recoomends 8x4 when MSAA is used,
5260 * however in practice 16x4 seems fastest.
5261 *
5262 * Note that PS/WM thread counts depend on the WIZ hashing
5263 * disable bit, which we don't touch here, but it's good
5264 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5265 */
5266 I915_WRITE(GEN6_GT_MODE,
5267 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5268
5269 ilk_init_lp_watermarks(dev);
5270
5271 I915_WRITE(CACHE_MODE_0,
5272 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5273
5274 I915_WRITE(GEN6_UCGCTL1,
5275 I915_READ(GEN6_UCGCTL1) |
5276 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5277 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5278
5279 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5280 * gating disable must be set. Failure to set it results in
5281 * flickering pixels due to Z write ordering failures after
5282 * some amount of runtime in the Mesa "fire" demo, and Unigine
5283 * Sanctuary and Tropics, and apparently anything else with
5284 * alpha test or pixel discard.
5285 *
5286 * According to the spec, bit 11 (RCCUNIT) must also be set,
5287 * but we didn't debug actual testcases to find it out.
5288 *
5289 * WaDisableRCCUnitClockGating:snb
5290 * WaDisableRCPBUnitClockGating:snb
5291 */
5292 I915_WRITE(GEN6_UCGCTL2,
5293 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5294 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5295
5296 /* WaStripsFansDisableFastClipPerformanceFix:snb */
5297 I915_WRITE(_3D_CHICKEN3,
5298 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5299
5300 /*
5301 * Bspec says:
5302 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
5303 * 3DSTATE_SF number of SF output attributes is more than 16."
5304 */
5305 I915_WRITE(_3D_CHICKEN3,
5306 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
5307
5308 /*
5309 * According to the spec the following bits should be
5310 * set in order to enable memory self-refresh and fbc:
5311 * The bit21 and bit22 of 0x42000
5312 * The bit21 and bit22 of 0x42004
5313 * The bit5 and bit7 of 0x42020
5314 * The bit14 of 0x70180
5315 * The bit14 of 0x71180
5316 *
5317 * WaFbcAsynchFlipDisableFbcQueue:snb
5318 */
5319 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5320 I915_READ(ILK_DISPLAY_CHICKEN1) |
5321 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5322 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5323 I915_READ(ILK_DISPLAY_CHICKEN2) |
5324 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5325 I915_WRITE(ILK_DSPCLK_GATE_D,
5326 I915_READ(ILK_DSPCLK_GATE_D) |
5327 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
5328 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5329
5330 g4x_disable_trickle_feed(dev);
5331
5332 cpt_init_clock_gating(dev);
5333
5334 gen6_check_mch_setup(dev);
5335 }
5336
5337 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5338 {
5339 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5340
5341 /*
5342 * WaVSThreadDispatchOverride:ivb,vlv
5343 *
5344 * This actually overrides the dispatch
5345 * mode for all thread types.
5346 */
5347 reg &= ~GEN7_FF_SCHED_MASK;
5348 reg |= GEN7_FF_TS_SCHED_HW;
5349 reg |= GEN7_FF_VS_SCHED_HW;
5350 reg |= GEN7_FF_DS_SCHED_HW;
5351
5352 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5353 }
5354
5355 static void lpt_init_clock_gating(struct drm_device *dev)
5356 {
5357 struct drm_i915_private *dev_priv = dev->dev_private;
5358
5359 /*
5360 * TODO: this bit should only be enabled when really needed, then
5361 * disabled when not needed anymore in order to save power.
5362 */
5363 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5364 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5365 I915_READ(SOUTH_DSPCLK_GATE_D) |
5366 PCH_LP_PARTITION_LEVEL_DISABLE);
5367
5368 /* WADPOClockGatingDisable:hsw */
5369 I915_WRITE(_TRANSA_CHICKEN1,
5370 I915_READ(_TRANSA_CHICKEN1) |
5371 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5372 }
5373
5374 static void lpt_suspend_hw(struct drm_device *dev)
5375 {
5376 struct drm_i915_private *dev_priv = dev->dev_private;
5377
5378 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5379 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5380
5381 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5382 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5383 }
5384 }
5385
5386 static void gen8_init_clock_gating(struct drm_device *dev)
5387 {
5388 struct drm_i915_private *dev_priv = dev->dev_private;
5389 enum pipe pipe;
5390
5391 I915_WRITE(WM3_LP_ILK, 0);
5392 I915_WRITE(WM2_LP_ILK, 0);
5393 I915_WRITE(WM1_LP_ILK, 0);
5394
5395 /* FIXME(BDW): Check all the w/a, some might only apply to
5396 * pre-production hw. */
5397
5398 /* WaDisablePartialInstShootdown:bdw */
5399 I915_WRITE(GEN8_ROW_CHICKEN,
5400 _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5401
5402 /* WaDisableThreadStallDopClockGating:bdw */
5403 /* FIXME: Unclear whether we really need this on production bdw. */
5404 I915_WRITE(GEN8_ROW_CHICKEN,
5405 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5406
5407 /*
5408 * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
5409 * pre-production hardware
5410 */
5411 I915_WRITE(HALF_SLICE_CHICKEN3,
5412 _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
5413 I915_WRITE(HALF_SLICE_CHICKEN3,
5414 _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5415 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
5416
5417 I915_WRITE(_3D_CHICKEN3,
5418 _MASKED_BIT_ENABLE(_3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2)));
5419
5420 I915_WRITE(COMMON_SLICE_CHICKEN2,
5421 _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
5422
5423 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5424 _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
5425
5426 /* WaDisableDopClockGating:bdw May not be needed for production */
5427 I915_WRITE(GEN7_ROW_CHICKEN2,
5428 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5429
5430 /* WaSwitchSolVfFArbitrationPriority:bdw */
5431 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5432
5433 /* WaPsrDPAMaskVBlankInSRD:bdw */
5434 I915_WRITE(CHICKEN_PAR1_1,
5435 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5436
5437 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5438 for_each_pipe(pipe) {
5439 I915_WRITE(CHICKEN_PIPESL_1(pipe),
5440 I915_READ(CHICKEN_PIPESL_1(pipe)) |
5441 BDW_DPRS_MASK_VBLANK_SRD);
5442 }
5443
5444 /* Use Force Non-Coherent whenever executing a 3D context. This is a
5445 * workaround for for a possible hang in the unlikely event a TLB
5446 * invalidation occurs during a PSD flush.
5447 */
5448 I915_WRITE(HDC_CHICKEN0,
5449 I915_READ(HDC_CHICKEN0) |
5450 _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
5451
5452 /* WaVSRefCountFullforceMissDisable:bdw */
5453 /* WaDSRefCountFullforceMissDisable:bdw */
5454 I915_WRITE(GEN7_FF_THREAD_MODE,
5455 I915_READ(GEN7_FF_THREAD_MODE) &
5456 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5457
5458 /*
5459 * BSpec recommends 8x4 when MSAA is used,
5460 * however in practice 16x4 seems fastest.
5461 *
5462 * Note that PS/WM thread counts depend on the WIZ hashing
5463 * disable bit, which we don't touch here, but it's good
5464 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5465 */
5466 I915_WRITE(GEN7_GT_MODE,
5467 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5468
5469 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5470 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5471
5472 /* WaDisableSDEUnitClockGating:bdw */
5473 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5474 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5475
5476 /* Wa4x4STCOptimizationDisable:bdw */
5477 I915_WRITE(CACHE_MODE_1,
5478 _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
5479 }
5480
5481 static void haswell_init_clock_gating(struct drm_device *dev)
5482 {
5483 struct drm_i915_private *dev_priv = dev->dev_private;
5484
5485 ilk_init_lp_watermarks(dev);
5486
5487 /* L3 caching of data atomics doesn't work -- disable it. */
5488 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5489 I915_WRITE(HSW_ROW_CHICKEN3,
5490 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5491
5492 /* This is required by WaCatErrorRejectionIssue:hsw */
5493 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5494 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5495 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5496
5497 /* WaVSRefCountFullforceMissDisable:hsw */
5498 I915_WRITE(GEN7_FF_THREAD_MODE,
5499 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5500
5501 /* WaDisable_RenderCache_OperationalFlush:hsw */
5502 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5503
5504 /* enable HiZ Raw Stall Optimization */
5505 I915_WRITE(CACHE_MODE_0_GEN7,
5506 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5507
5508 /* WaDisable4x2SubspanOptimization:hsw */
5509 I915_WRITE(CACHE_MODE_1,
5510 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5511
5512 /*
5513 * BSpec recommends 8x4 when MSAA is used,
5514 * however in practice 16x4 seems fastest.
5515 *
5516 * Note that PS/WM thread counts depend on the WIZ hashing
5517 * disable bit, which we don't touch here, but it's good
5518 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5519 */
5520 I915_WRITE(GEN7_GT_MODE,
5521 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5522
5523 /* WaSwitchSolVfFArbitrationPriority:hsw */
5524 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5525
5526 /* WaRsPkgCStateDisplayPMReq:hsw */
5527 I915_WRITE(CHICKEN_PAR1_1,
5528 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5529
5530 lpt_init_clock_gating(dev);
5531 }
5532
5533 static void ivybridge_init_clock_gating(struct drm_device *dev)
5534 {
5535 struct drm_i915_private *dev_priv = dev->dev_private;
5536 uint32_t snpcr;
5537
5538 ilk_init_lp_watermarks(dev);
5539
5540 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5541
5542 /* WaDisableEarlyCull:ivb */
5543 I915_WRITE(_3D_CHICKEN3,
5544 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5545
5546 /* WaDisableBackToBackFlipFix:ivb */
5547 I915_WRITE(IVB_CHICKEN3,
5548 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5549 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5550
5551 /* WaDisablePSDDualDispatchEnable:ivb */
5552 if (IS_IVB_GT1(dev))
5553 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5554 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5555
5556 /* WaDisable_RenderCache_OperationalFlush:ivb */
5557 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5558
5559 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5560 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5561 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5562
5563 /* WaApplyL3ControlAndL3ChickenMode:ivb */
5564 I915_WRITE(GEN7_L3CNTLREG1,
5565 GEN7_WA_FOR_GEN7_L3_CONTROL);
5566 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5567 GEN7_WA_L3_CHICKEN_MODE);
5568 if (IS_IVB_GT1(dev))
5569 I915_WRITE(GEN7_ROW_CHICKEN2,
5570 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5571 else {
5572 /* must write both registers */
5573 I915_WRITE(GEN7_ROW_CHICKEN2,
5574 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5575 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5576 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5577 }
5578
5579 /* WaForceL3Serialization:ivb */
5580 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5581 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5582
5583 /*
5584 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5585 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5586 */
5587 I915_WRITE(GEN6_UCGCTL2,
5588 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5589
5590 /* This is required by WaCatErrorRejectionIssue:ivb */
5591 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5592 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5593 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5594
5595 g4x_disable_trickle_feed(dev);
5596
5597 gen7_setup_fixed_func_scheduler(dev_priv);
5598
5599 if (0) { /* causes HiZ corruption on ivb:gt1 */
5600 /* enable HiZ Raw Stall Optimization */
5601 I915_WRITE(CACHE_MODE_0_GEN7,
5602 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5603 }
5604
5605 /* WaDisable4x2SubspanOptimization:ivb */
5606 I915_WRITE(CACHE_MODE_1,
5607 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5608
5609 /*
5610 * BSpec recommends 8x4 when MSAA is used,
5611 * however in practice 16x4 seems fastest.
5612 *
5613 * Note that PS/WM thread counts depend on the WIZ hashing
5614 * disable bit, which we don't touch here, but it's good
5615 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5616 */
5617 I915_WRITE(GEN7_GT_MODE,
5618 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5619
5620 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5621 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5622 snpcr |= GEN6_MBC_SNPCR_MED;
5623 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5624
5625 if (!HAS_PCH_NOP(dev))
5626 cpt_init_clock_gating(dev);
5627
5628 gen6_check_mch_setup(dev);
5629 }
5630
5631 static void valleyview_init_clock_gating(struct drm_device *dev)
5632 {
5633 struct drm_i915_private *dev_priv = dev->dev_private;
5634 u32 val;
5635
5636 mutex_lock(&dev_priv->rps.hw_lock);
5637 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5638 mutex_unlock(&dev_priv->rps.hw_lock);
5639 switch ((val >> 6) & 3) {
5640 case 0:
5641 case 1:
5642 dev_priv->mem_freq = 800;
5643 break;
5644 case 2:
5645 dev_priv->mem_freq = 1066;
5646 break;
5647 case 3:
5648 dev_priv->mem_freq = 1333;
5649 break;
5650 }
5651 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5652
5653 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5654
5655 /* WaDisableEarlyCull:vlv */
5656 I915_WRITE(_3D_CHICKEN3,
5657 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5658
5659 /* WaDisableBackToBackFlipFix:vlv */
5660 I915_WRITE(IVB_CHICKEN3,
5661 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5662 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5663
5664 /* WaPsdDispatchEnable:vlv */
5665 /* WaDisablePSDDualDispatchEnable:vlv */
5666 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5667 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5668 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5669
5670 /* WaDisable_RenderCache_OperationalFlush:vlv */
5671 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5672
5673 /* WaForceL3Serialization:vlv */
5674 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5675 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5676
5677 /* WaDisableDopClockGating:vlv */
5678 I915_WRITE(GEN7_ROW_CHICKEN2,
5679 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5680
5681 /* This is required by WaCatErrorRejectionIssue:vlv */
5682 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5683 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5684 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5685
5686 gen7_setup_fixed_func_scheduler(dev_priv);
5687
5688 /*
5689 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5690 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5691 */
5692 I915_WRITE(GEN6_UCGCTL2,
5693 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5694
5695 /* WaDisableL3Bank2xClockGate:vlv
5696 * Disabling L3 clock gating- MMIO 940c[25] = 1
5697 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
5698 I915_WRITE(GEN7_UCGCTL4,
5699 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5700
5701 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5702
5703 /*
5704 * BSpec says this must be set, even though
5705 * WaDisable4x2SubspanOptimization isn't listed for VLV.
5706 */
5707 I915_WRITE(CACHE_MODE_1,
5708 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5709
5710 /*
5711 * WaIncreaseL3CreditsForVLVB0:vlv
5712 * This is the hardware default actually.
5713 */
5714 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5715
5716 /*
5717 * WaDisableVLVClockGating_VBIIssue:vlv
5718 * Disable clock gating on th GCFG unit to prevent a delay
5719 * in the reporting of vblank events.
5720 */
5721 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5722 }
5723
5724 static void cherryview_init_clock_gating(struct drm_device *dev)
5725 {
5726 struct drm_i915_private *dev_priv = dev->dev_private;
5727 u32 val;
5728
5729 mutex_lock(&dev_priv->rps.hw_lock);
5730 val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
5731 mutex_unlock(&dev_priv->rps.hw_lock);
5732 switch ((val >> 2) & 0x7) {
5733 case 0:
5734 case 1:
5735 dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_200;
5736 dev_priv->mem_freq = 1600;
5737 break;
5738 case 2:
5739 dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_267;
5740 dev_priv->mem_freq = 1600;
5741 break;
5742 case 3:
5743 dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_333;
5744 dev_priv->mem_freq = 2000;
5745 break;
5746 case 4:
5747 dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_320;
5748 dev_priv->mem_freq = 1600;
5749 break;
5750 case 5:
5751 dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_400;
5752 dev_priv->mem_freq = 1600;
5753 break;
5754 }
5755 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5756
5757 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5758
5759 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5760
5761 /* WaDisablePartialInstShootdown:chv */
5762 I915_WRITE(GEN8_ROW_CHICKEN,
5763 _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5764
5765 /* WaDisableThreadStallDopClockGating:chv */
5766 I915_WRITE(GEN8_ROW_CHICKEN,
5767 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5768
5769 /* WaVSRefCountFullforceMissDisable:chv */
5770 /* WaDSRefCountFullforceMissDisable:chv */
5771 I915_WRITE(GEN7_FF_THREAD_MODE,
5772 I915_READ(GEN7_FF_THREAD_MODE) &
5773 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5774
5775 /* WaDisableSemaphoreAndSyncFlipWait:chv */
5776 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5777 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5778
5779 /* WaDisableCSUnitClockGating:chv */
5780 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5781 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5782
5783 /* WaDisableSDEUnitClockGating:chv */
5784 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5785 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5786
5787 /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
5788 I915_WRITE(HALF_SLICE_CHICKEN3,
5789 _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5790
5791 /* WaDisableGunitClockGating:chv (pre-production hw) */
5792 I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
5793 GINT_DIS);
5794
5795 /* WaDisableFfDopClockGating:chv (pre-production hw) */
5796 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5797 _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
5798
5799 /* WaDisableDopClockGating:chv (pre-production hw) */
5800 I915_WRITE(GEN7_ROW_CHICKEN2,
5801 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5802 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5803 GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
5804 }
5805
5806 static void g4x_init_clock_gating(struct drm_device *dev)
5807 {
5808 struct drm_i915_private *dev_priv = dev->dev_private;
5809 uint32_t dspclk_gate;
5810
5811 I915_WRITE(RENCLK_GATE_D1, 0);
5812 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5813 GS_UNIT_CLOCK_GATE_DISABLE |
5814 CL_UNIT_CLOCK_GATE_DISABLE);
5815 I915_WRITE(RAMCLK_GATE_D, 0);
5816 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5817 OVRUNIT_CLOCK_GATE_DISABLE |
5818 OVCUNIT_CLOCK_GATE_DISABLE;
5819 if (IS_GM45(dev))
5820 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5821 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5822
5823 /* WaDisableRenderCachePipelinedFlush */
5824 I915_WRITE(CACHE_MODE_0,
5825 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5826
5827 /* WaDisable_RenderCache_OperationalFlush:g4x */
5828 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5829
5830 g4x_disable_trickle_feed(dev);
5831 }
5832
5833 static void crestline_init_clock_gating(struct drm_device *dev)
5834 {
5835 struct drm_i915_private *dev_priv = dev->dev_private;
5836
5837 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5838 I915_WRITE(RENCLK_GATE_D2, 0);
5839 I915_WRITE(DSPCLK_GATE_D, 0);
5840 I915_WRITE(RAMCLK_GATE_D, 0);
5841 I915_WRITE16(DEUC, 0);
5842 I915_WRITE(MI_ARB_STATE,
5843 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5844
5845 /* WaDisable_RenderCache_OperationalFlush:gen4 */
5846 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5847 }
5848
5849 static void broadwater_init_clock_gating(struct drm_device *dev)
5850 {
5851 struct drm_i915_private *dev_priv = dev->dev_private;
5852
5853 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5854 I965_RCC_CLOCK_GATE_DISABLE |
5855 I965_RCPB_CLOCK_GATE_DISABLE |
5856 I965_ISC_CLOCK_GATE_DISABLE |
5857 I965_FBC_CLOCK_GATE_DISABLE);
5858 I915_WRITE(RENCLK_GATE_D2, 0);
5859 I915_WRITE(MI_ARB_STATE,
5860 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5861
5862 /* WaDisable_RenderCache_OperationalFlush:gen4 */
5863 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5864 }
5865
5866 static void gen3_init_clock_gating(struct drm_device *dev)
5867 {
5868 struct drm_i915_private *dev_priv = dev->dev_private;
5869 u32 dstate = I915_READ(D_STATE);
5870
5871 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5872 DSTATE_DOT_CLOCK_GATING;
5873 I915_WRITE(D_STATE, dstate);
5874
5875 if (IS_PINEVIEW(dev))
5876 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5877
5878 /* IIR "flip pending" means done if this bit is set */
5879 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5880
5881 /* interrupts should cause a wake up from C3 */
5882 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
5883
5884 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5885 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5886 }
5887
5888 static void i85x_init_clock_gating(struct drm_device *dev)
5889 {
5890 struct drm_i915_private *dev_priv = dev->dev_private;
5891
5892 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5893
5894 /* interrupts should cause a wake up from C3 */
5895 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
5896 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
5897 }
5898
5899 static void i830_init_clock_gating(struct drm_device *dev)
5900 {
5901 struct drm_i915_private *dev_priv = dev->dev_private;
5902
5903 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5904 }
5905
5906 void intel_init_clock_gating(struct drm_device *dev)
5907 {
5908 struct drm_i915_private *dev_priv = dev->dev_private;
5909
5910 dev_priv->display.init_clock_gating(dev);
5911 }
5912
5913 void intel_suspend_hw(struct drm_device *dev)
5914 {
5915 if (HAS_PCH_LPT(dev))
5916 lpt_suspend_hw(dev);
5917 }
5918
5919 #define for_each_power_well(i, power_well, domain_mask, power_domains) \
5920 for (i = 0; \
5921 i < (power_domains)->power_well_count && \
5922 ((power_well) = &(power_domains)->power_wells[i]); \
5923 i++) \
5924 if ((power_well)->domains & (domain_mask))
5925
5926 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5927 for (i = (power_domains)->power_well_count - 1; \
5928 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5929 i--) \
5930 if ((power_well)->domains & (domain_mask))
5931
5932 /**
5933 * We should only use the power well if we explicitly asked the hardware to
5934 * enable it, so check if it's enabled and also check if we've requested it to
5935 * be enabled.
5936 */
5937 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
5938 struct i915_power_well *power_well)
5939 {
5940 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5941 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5942 }
5943
5944 bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
5945 enum intel_display_power_domain domain)
5946 {
5947 struct i915_power_domains *power_domains;
5948 struct i915_power_well *power_well;
5949 bool is_enabled;
5950 int i;
5951
5952 if (dev_priv->pm.suspended)
5953 return false;
5954
5955 power_domains = &dev_priv->power_domains;
5956
5957 is_enabled = true;
5958
5959 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5960 if (power_well->always_on)
5961 continue;
5962
5963 if (!power_well->hw_enabled) {
5964 is_enabled = false;
5965 break;
5966 }
5967 }
5968
5969 return is_enabled;
5970 }
5971
5972 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
5973 enum intel_display_power_domain domain)
5974 {
5975 struct i915_power_domains *power_domains;
5976 bool ret;
5977
5978 power_domains = &dev_priv->power_domains;
5979
5980 mutex_lock(&power_domains->lock);
5981 ret = intel_display_power_enabled_unlocked(dev_priv, domain);
5982 mutex_unlock(&power_domains->lock);
5983
5984 return ret;
5985 }
5986
5987 /*
5988 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5989 * when not needed anymore. We have 4 registers that can request the power well
5990 * to be enabled, and it will only be disabled if none of the registers is
5991 * requesting it to be enabled.
5992 */
5993 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
5994 {
5995 struct drm_device *dev = dev_priv->dev;
5996
5997 /*
5998 * After we re-enable the power well, if we touch VGA register 0x3d5
5999 * we'll get unclaimed register interrupts. This stops after we write
6000 * anything to the VGA MSR register. The vgacon module uses this
6001 * register all the time, so if we unbind our driver and, as a
6002 * consequence, bind vgacon, we'll get stuck in an infinite loop at
6003 * console_unlock(). So make here we touch the VGA MSR register, making
6004 * sure vgacon can keep working normally without triggering interrupts
6005 * and error messages.
6006 */
6007 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6008 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
6009 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6010
6011 if (IS_BROADWELL(dev))
6012 gen8_irq_power_well_post_enable(dev_priv);
6013 }
6014
6015 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
6016 struct i915_power_well *power_well, bool enable)
6017 {
6018 bool is_enabled, enable_requested;
6019 uint32_t tmp;
6020
6021 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
6022 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
6023 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
6024
6025 if (enable) {
6026 if (!enable_requested)
6027 I915_WRITE(HSW_PWR_WELL_DRIVER,
6028 HSW_PWR_WELL_ENABLE_REQUEST);
6029
6030 if (!is_enabled) {
6031 DRM_DEBUG_KMS("Enabling power well\n");
6032 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
6033 HSW_PWR_WELL_STATE_ENABLED), 20))
6034 DRM_ERROR("Timeout enabling power well\n");
6035 }
6036
6037 hsw_power_well_post_enable(dev_priv);
6038 } else {
6039 if (enable_requested) {
6040 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
6041 POSTING_READ(HSW_PWR_WELL_DRIVER);
6042 DRM_DEBUG_KMS("Requesting to disable the power well\n");
6043 }
6044 }
6045 }
6046
6047 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
6048 struct i915_power_well *power_well)
6049 {
6050 hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
6051
6052 /*
6053 * We're taking over the BIOS, so clear any requests made by it since
6054 * the driver is in charge now.
6055 */
6056 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
6057 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
6058 }
6059
6060 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
6061 struct i915_power_well *power_well)
6062 {
6063 hsw_set_power_well(dev_priv, power_well, true);
6064 }
6065
6066 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
6067 struct i915_power_well *power_well)
6068 {
6069 hsw_set_power_well(dev_priv, power_well, false);
6070 }
6071
6072 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
6073 struct i915_power_well *power_well)
6074 {
6075 }
6076
6077 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
6078 struct i915_power_well *power_well)
6079 {
6080 return true;
6081 }
6082
6083 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
6084 struct i915_power_well *power_well, bool enable)
6085 {
6086 enum punit_power_well power_well_id = power_well->data;
6087 u32 mask;
6088 u32 state;
6089 u32 ctrl;
6090
6091 mask = PUNIT_PWRGT_MASK(power_well_id);
6092 state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
6093 PUNIT_PWRGT_PWR_GATE(power_well_id);
6094
6095 mutex_lock(&dev_priv->rps.hw_lock);
6096
6097 #define COND \
6098 ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
6099
6100 if (COND)
6101 goto out;
6102
6103 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
6104 ctrl &= ~mask;
6105 ctrl |= state;
6106 vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
6107
6108 if (wait_for(COND, 100))
6109 DRM_ERROR("timout setting power well state %08x (%08x)\n",
6110 state,
6111 vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
6112
6113 #undef COND
6114
6115 out:
6116 mutex_unlock(&dev_priv->rps.hw_lock);
6117 }
6118
6119 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
6120 struct i915_power_well *power_well)
6121 {
6122 vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
6123 }
6124
6125 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
6126 struct i915_power_well *power_well)
6127 {
6128 vlv_set_power_well(dev_priv, power_well, true);
6129 }
6130
6131 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
6132 struct i915_power_well *power_well)
6133 {
6134 vlv_set_power_well(dev_priv, power_well, false);
6135 }
6136
6137 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
6138 struct i915_power_well *power_well)
6139 {
6140 int power_well_id = power_well->data;
6141 bool enabled = false;
6142 u32 mask;
6143 u32 state;
6144 u32 ctrl;
6145
6146 mask = PUNIT_PWRGT_MASK(power_well_id);
6147 ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
6148
6149 mutex_lock(&dev_priv->rps.hw_lock);
6150
6151 state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
6152 /*
6153 * We only ever set the power-on and power-gate states, anything
6154 * else is unexpected.
6155 */
6156 WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
6157 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
6158 if (state == ctrl)
6159 enabled = true;
6160
6161 /*
6162 * A transient state at this point would mean some unexpected party
6163 * is poking at the power controls too.
6164 */
6165 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
6166 WARN_ON(ctrl != state);
6167
6168 mutex_unlock(&dev_priv->rps.hw_lock);
6169
6170 return enabled;
6171 }
6172
6173 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
6174 struct i915_power_well *power_well)
6175 {
6176 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6177
6178 vlv_set_power_well(dev_priv, power_well, true);
6179
6180 spin_lock_irq(&dev_priv->irq_lock);
6181 valleyview_enable_display_irqs(dev_priv);
6182 spin_unlock_irq(&dev_priv->irq_lock);
6183
6184 /*
6185 * During driver initialization/resume we can avoid restoring the
6186 * part of the HW/SW state that will be inited anyway explicitly.
6187 */
6188 if (dev_priv->power_domains.initializing)
6189 return;
6190
6191 intel_hpd_init(dev_priv->dev);
6192
6193 i915_redisable_vga_power_on(dev_priv->dev);
6194 }
6195
6196 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
6197 struct i915_power_well *power_well)
6198 {
6199 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6200
6201 spin_lock_irq(&dev_priv->irq_lock);
6202 valleyview_disable_display_irqs(dev_priv);
6203 spin_unlock_irq(&dev_priv->irq_lock);
6204
6205 vlv_set_power_well(dev_priv, power_well, false);
6206 }
6207
6208 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
6209 struct i915_power_well *power_well)
6210 {
6211 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6212
6213 /*
6214 * Enable the CRI clock source so we can get at the
6215 * display and the reference clock for VGA
6216 * hotplug / manual detection.
6217 */
6218 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6219 DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6220 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
6221
6222 vlv_set_power_well(dev_priv, power_well, true);
6223
6224 /*
6225 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
6226 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
6227 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
6228 * b. The other bits such as sfr settings / modesel may all
6229 * be set to 0.
6230 *
6231 * This should only be done on init and resume from S3 with
6232 * both PLLs disabled, or we risk losing DPIO and PLL
6233 * synchronization.
6234 */
6235 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
6236 }
6237
6238 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
6239 struct i915_power_well *power_well)
6240 {
6241 struct drm_device *dev = dev_priv->dev;
6242 enum pipe pipe;
6243
6244 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6245
6246 for_each_pipe(pipe)
6247 assert_pll_disabled(dev_priv, pipe);
6248
6249 /* Assert common reset */
6250 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
6251
6252 vlv_set_power_well(dev_priv, power_well, false);
6253 }
6254
6255 static void check_power_well_state(struct drm_i915_private *dev_priv,
6256 struct i915_power_well *power_well)
6257 {
6258 bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
6259
6260 if (power_well->always_on || !i915.disable_power_well) {
6261 if (!enabled)
6262 goto mismatch;
6263
6264 return;
6265 }
6266
6267 if (enabled != (power_well->count > 0))
6268 goto mismatch;
6269
6270 return;
6271
6272 mismatch:
6273 WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
6274 power_well->name, power_well->always_on, enabled,
6275 power_well->count, i915.disable_power_well);
6276 }
6277
6278 void intel_display_power_get(struct drm_i915_private *dev_priv,
6279 enum intel_display_power_domain domain)
6280 {
6281 struct i915_power_domains *power_domains;
6282 struct i915_power_well *power_well;
6283 int i;
6284
6285 intel_runtime_pm_get(dev_priv);
6286
6287 power_domains = &dev_priv->power_domains;
6288
6289 mutex_lock(&power_domains->lock);
6290
6291 for_each_power_well(i, power_well, BIT(domain), power_domains) {
6292 if (!power_well->count++) {
6293 DRM_DEBUG_KMS("enabling %s\n", power_well->name);
6294 power_well->ops->enable(dev_priv, power_well);
6295 power_well->hw_enabled = true;
6296 }
6297
6298 check_power_well_state(dev_priv, power_well);
6299 }
6300
6301 power_domains->domain_use_count[domain]++;
6302
6303 mutex_unlock(&power_domains->lock);
6304 }
6305
6306 void intel_display_power_put(struct drm_i915_private *dev_priv,
6307 enum intel_display_power_domain domain)
6308 {
6309 struct i915_power_domains *power_domains;
6310 struct i915_power_well *power_well;
6311 int i;
6312
6313 power_domains = &dev_priv->power_domains;
6314
6315 mutex_lock(&power_domains->lock);
6316
6317 WARN_ON(!power_domains->domain_use_count[domain]);
6318 power_domains->domain_use_count[domain]--;
6319
6320 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6321 WARN_ON(!power_well->count);
6322
6323 if (!--power_well->count && i915.disable_power_well) {
6324 DRM_DEBUG_KMS("disabling %s\n", power_well->name);
6325 power_well->hw_enabled = false;
6326 power_well->ops->disable(dev_priv, power_well);
6327 }
6328
6329 check_power_well_state(dev_priv, power_well);
6330 }
6331
6332 mutex_unlock(&power_domains->lock);
6333
6334 intel_runtime_pm_put(dev_priv);
6335 }
6336
6337 static struct i915_power_domains *hsw_pwr;
6338
6339 /* Display audio driver power well request */
6340 int i915_request_power_well(void)
6341 {
6342 struct drm_i915_private *dev_priv;
6343
6344 if (!hsw_pwr)
6345 return -ENODEV;
6346
6347 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6348 power_domains);
6349 intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
6350 return 0;
6351 }
6352 EXPORT_SYMBOL_GPL(i915_request_power_well);
6353
6354 /* Display audio driver power well release */
6355 int i915_release_power_well(void)
6356 {
6357 struct drm_i915_private *dev_priv;
6358
6359 if (!hsw_pwr)
6360 return -ENODEV;
6361
6362 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6363 power_domains);
6364 intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
6365 return 0;
6366 }
6367 EXPORT_SYMBOL_GPL(i915_release_power_well);
6368
6369 /*
6370 * Private interface for the audio driver to get CDCLK in kHz.
6371 *
6372 * Caller must request power well using i915_request_power_well() prior to
6373 * making the call.
6374 */
6375 int i915_get_cdclk_freq(void)
6376 {
6377 struct drm_i915_private *dev_priv;
6378
6379 if (!hsw_pwr)
6380 return -ENODEV;
6381
6382 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6383 power_domains);
6384
6385 return intel_ddi_get_cdclk_freq(dev_priv);
6386 }
6387 EXPORT_SYMBOL_GPL(i915_get_cdclk_freq);
6388
6389
6390 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
6391
6392 #define HSW_ALWAYS_ON_POWER_DOMAINS ( \
6393 BIT(POWER_DOMAIN_PIPE_A) | \
6394 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
6395 BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
6396 BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
6397 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
6398 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
6399 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
6400 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
6401 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
6402 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
6403 BIT(POWER_DOMAIN_PORT_CRT) | \
6404 BIT(POWER_DOMAIN_PLLS) | \
6405 BIT(POWER_DOMAIN_INIT))
6406 #define HSW_DISPLAY_POWER_DOMAINS ( \
6407 (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
6408 BIT(POWER_DOMAIN_INIT))
6409
6410 #define BDW_ALWAYS_ON_POWER_DOMAINS ( \
6411 HSW_ALWAYS_ON_POWER_DOMAINS | \
6412 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
6413 #define BDW_DISPLAY_POWER_DOMAINS ( \
6414 (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
6415 BIT(POWER_DOMAIN_INIT))
6416
6417 #define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
6418 #define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
6419
6420 #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
6421 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
6422 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
6423 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
6424 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
6425 BIT(POWER_DOMAIN_PORT_CRT) | \
6426 BIT(POWER_DOMAIN_INIT))
6427
6428 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
6429 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
6430 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
6431 BIT(POWER_DOMAIN_INIT))
6432
6433 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
6434 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
6435 BIT(POWER_DOMAIN_INIT))
6436
6437 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
6438 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
6439 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
6440 BIT(POWER_DOMAIN_INIT))
6441
6442 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
6443 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
6444 BIT(POWER_DOMAIN_INIT))
6445
6446 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
6447 .sync_hw = i9xx_always_on_power_well_noop,
6448 .enable = i9xx_always_on_power_well_noop,
6449 .disable = i9xx_always_on_power_well_noop,
6450 .is_enabled = i9xx_always_on_power_well_enabled,
6451 };
6452
6453 static struct i915_power_well i9xx_always_on_power_well[] = {
6454 {
6455 .name = "always-on",
6456 .always_on = 1,
6457 .domains = POWER_DOMAIN_MASK,
6458 .ops = &i9xx_always_on_power_well_ops,
6459 },
6460 };
6461
6462 static const struct i915_power_well_ops hsw_power_well_ops = {
6463 .sync_hw = hsw_power_well_sync_hw,
6464 .enable = hsw_power_well_enable,
6465 .disable = hsw_power_well_disable,
6466 .is_enabled = hsw_power_well_enabled,
6467 };
6468
6469 static struct i915_power_well hsw_power_wells[] = {
6470 {
6471 .name = "always-on",
6472 .always_on = 1,
6473 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
6474 .ops = &i9xx_always_on_power_well_ops,
6475 },
6476 {
6477 .name = "display",
6478 .domains = HSW_DISPLAY_POWER_DOMAINS,
6479 .ops = &hsw_power_well_ops,
6480 },
6481 };
6482
6483 static struct i915_power_well bdw_power_wells[] = {
6484 {
6485 .name = "always-on",
6486 .always_on = 1,
6487 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
6488 .ops = &i9xx_always_on_power_well_ops,
6489 },
6490 {
6491 .name = "display",
6492 .domains = BDW_DISPLAY_POWER_DOMAINS,
6493 .ops = &hsw_power_well_ops,
6494 },
6495 };
6496
6497 static const struct i915_power_well_ops vlv_display_power_well_ops = {
6498 .sync_hw = vlv_power_well_sync_hw,
6499 .enable = vlv_display_power_well_enable,
6500 .disable = vlv_display_power_well_disable,
6501 .is_enabled = vlv_power_well_enabled,
6502 };
6503
6504 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
6505 .sync_hw = vlv_power_well_sync_hw,
6506 .enable = vlv_dpio_cmn_power_well_enable,
6507 .disable = vlv_dpio_cmn_power_well_disable,
6508 .is_enabled = vlv_power_well_enabled,
6509 };
6510
6511 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
6512 .sync_hw = vlv_power_well_sync_hw,
6513 .enable = vlv_power_well_enable,
6514 .disable = vlv_power_well_disable,
6515 .is_enabled = vlv_power_well_enabled,
6516 };
6517
6518 static struct i915_power_well vlv_power_wells[] = {
6519 {
6520 .name = "always-on",
6521 .always_on = 1,
6522 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
6523 .ops = &i9xx_always_on_power_well_ops,
6524 },
6525 {
6526 .name = "display",
6527 .domains = VLV_DISPLAY_POWER_DOMAINS,
6528 .data = PUNIT_POWER_WELL_DISP2D,
6529 .ops = &vlv_display_power_well_ops,
6530 },
6531 {
6532 .name = "dpio-tx-b-01",
6533 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6534 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6535 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6536 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6537 .ops = &vlv_dpio_power_well_ops,
6538 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
6539 },
6540 {
6541 .name = "dpio-tx-b-23",
6542 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6543 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6544 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6545 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6546 .ops = &vlv_dpio_power_well_ops,
6547 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
6548 },
6549 {
6550 .name = "dpio-tx-c-01",
6551 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6552 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6553 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6554 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6555 .ops = &vlv_dpio_power_well_ops,
6556 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
6557 },
6558 {
6559 .name = "dpio-tx-c-23",
6560 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6561 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6562 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6563 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6564 .ops = &vlv_dpio_power_well_ops,
6565 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
6566 },
6567 {
6568 .name = "dpio-common",
6569 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
6570 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
6571 .ops = &vlv_dpio_cmn_power_well_ops,
6572 },
6573 };
6574
6575 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
6576 enum punit_power_well power_well_id)
6577 {
6578 struct i915_power_domains *power_domains = &dev_priv->power_domains;
6579 struct i915_power_well *power_well;
6580 int i;
6581
6582 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
6583 if (power_well->data == power_well_id)
6584 return power_well;
6585 }
6586
6587 return NULL;
6588 }
6589
6590 #define set_power_wells(power_domains, __power_wells) ({ \
6591 (power_domains)->power_wells = (__power_wells); \
6592 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
6593 })
6594
6595 int intel_power_domains_init(struct drm_i915_private *dev_priv)
6596 {
6597 struct i915_power_domains *power_domains = &dev_priv->power_domains;
6598
6599 mutex_init(&power_domains->lock);
6600
6601 /*
6602 * The enabling order will be from lower to higher indexed wells,
6603 * the disabling order is reversed.
6604 */
6605 if (IS_HASWELL(dev_priv->dev)) {
6606 set_power_wells(power_domains, hsw_power_wells);
6607 hsw_pwr = power_domains;
6608 } else if (IS_BROADWELL(dev_priv->dev)) {
6609 set_power_wells(power_domains, bdw_power_wells);
6610 hsw_pwr = power_domains;
6611 } else if (IS_VALLEYVIEW(dev_priv->dev)) {
6612 set_power_wells(power_domains, vlv_power_wells);
6613 } else {
6614 set_power_wells(power_domains, i9xx_always_on_power_well);
6615 }
6616
6617 return 0;
6618 }
6619
6620 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
6621 {
6622 hsw_pwr = NULL;
6623 }
6624
6625 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
6626 {
6627 struct i915_power_domains *power_domains = &dev_priv->power_domains;
6628 struct i915_power_well *power_well;
6629 int i;
6630
6631 mutex_lock(&power_domains->lock);
6632 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
6633 power_well->ops->sync_hw(dev_priv, power_well);
6634 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
6635 power_well);
6636 }
6637 mutex_unlock(&power_domains->lock);
6638 }
6639
6640 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
6641 {
6642 struct i915_power_well *cmn =
6643 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
6644 struct i915_power_well *disp2d =
6645 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
6646
6647 /* nothing to do if common lane is already off */
6648 if (!cmn->ops->is_enabled(dev_priv, cmn))
6649 return;
6650
6651 /* If the display might be already active skip this */
6652 if (disp2d->ops->is_enabled(dev_priv, disp2d) &&
6653 I915_READ(DPIO_CTL) & DPIO_CMNRST)
6654 return;
6655
6656 DRM_DEBUG_KMS("toggling display PHY side reset\n");
6657
6658 /* cmnlane needs DPLL registers */
6659 disp2d->ops->enable(dev_priv, disp2d);
6660
6661 /*
6662 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
6663 * Need to assert and de-assert PHY SB reset by gating the
6664 * common lane power, then un-gating it.
6665 * Simply ungating isn't enough to reset the PHY enough to get
6666 * ports and lanes running.
6667 */
6668 cmn->ops->disable(dev_priv, cmn);
6669 }
6670
6671 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
6672 {
6673 struct drm_device *dev = dev_priv->dev;
6674 struct i915_power_domains *power_domains = &dev_priv->power_domains;
6675
6676 power_domains->initializing = true;
6677
6678 if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
6679 mutex_lock(&power_domains->lock);
6680 vlv_cmnlane_wa(dev_priv);
6681 mutex_unlock(&power_domains->lock);
6682 }
6683
6684 /* For now, we need the power well to be always enabled. */
6685 intel_display_set_init_power(dev_priv, true);
6686 intel_power_domains_resume(dev_priv);
6687 power_domains->initializing = false;
6688 }
6689
6690 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
6691 {
6692 intel_runtime_pm_get(dev_priv);
6693 }
6694
6695 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
6696 {
6697 intel_runtime_pm_put(dev_priv);
6698 }
6699
6700 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
6701 {
6702 struct drm_device *dev = dev_priv->dev;
6703 struct device *device = &dev->pdev->dev;
6704
6705 if (!HAS_RUNTIME_PM(dev))
6706 return;
6707
6708 pm_runtime_get_sync(device);
6709 WARN(dev_priv->pm.suspended, "Device still suspended.\n");
6710 }
6711
6712 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
6713 {
6714 struct drm_device *dev = dev_priv->dev;
6715 struct device *device = &dev->pdev->dev;
6716
6717 if (!HAS_RUNTIME_PM(dev))
6718 return;
6719
6720 WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
6721 pm_runtime_get_noresume(device);
6722 }
6723
6724 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
6725 {
6726 struct drm_device *dev = dev_priv->dev;
6727 struct device *device = &dev->pdev->dev;
6728
6729 if (!HAS_RUNTIME_PM(dev))
6730 return;
6731
6732 pm_runtime_mark_last_busy(device);
6733 pm_runtime_put_autosuspend(device);
6734 }
6735
6736 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
6737 {
6738 struct drm_device *dev = dev_priv->dev;
6739 struct device *device = &dev->pdev->dev;
6740
6741 if (!HAS_RUNTIME_PM(dev))
6742 return;
6743
6744 pm_runtime_set_active(device);
6745
6746 /*
6747 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6748 * requirement.
6749 */
6750 if (!intel_enable_rc6(dev)) {
6751 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6752 return;
6753 }
6754
6755 pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
6756 pm_runtime_mark_last_busy(device);
6757 pm_runtime_use_autosuspend(device);
6758
6759 pm_runtime_put_autosuspend(device);
6760 }
6761
6762 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
6763 {
6764 struct drm_device *dev = dev_priv->dev;
6765 struct device *device = &dev->pdev->dev;
6766
6767 if (!HAS_RUNTIME_PM(dev))
6768 return;
6769
6770 if (!intel_enable_rc6(dev))
6771 return;
6772
6773 /* Make sure we're not suspended first. */
6774 pm_runtime_get_sync(device);
6775 pm_runtime_disable(device);
6776 }
6777
6778 /* Set up chip specific power management-related functions */
6779 void intel_init_pm(struct drm_device *dev)
6780 {
6781 struct drm_i915_private *dev_priv = dev->dev_private;
6782
6783 if (HAS_FBC(dev)) {
6784 if (INTEL_INFO(dev)->gen >= 7) {
6785 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6786 dev_priv->display.enable_fbc = gen7_enable_fbc;
6787 dev_priv->display.disable_fbc = ironlake_disable_fbc;
6788 } else if (INTEL_INFO(dev)->gen >= 5) {
6789 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6790 dev_priv->display.enable_fbc = ironlake_enable_fbc;
6791 dev_priv->display.disable_fbc = ironlake_disable_fbc;
6792 } else if (IS_GM45(dev)) {
6793 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
6794 dev_priv->display.enable_fbc = g4x_enable_fbc;
6795 dev_priv->display.disable_fbc = g4x_disable_fbc;
6796 } else {
6797 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
6798 dev_priv->display.enable_fbc = i8xx_enable_fbc;
6799 dev_priv->display.disable_fbc = i8xx_disable_fbc;
6800
6801 /* This value was pulled out of someone's hat */
6802 I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
6803 }
6804 }
6805
6806 /* For cxsr */
6807 if (IS_PINEVIEW(dev))
6808 i915_pineview_get_mem_freq(dev);
6809 else if (IS_GEN5(dev))
6810 i915_ironlake_get_mem_freq(dev);
6811
6812 /* For FIFO watermark updates */
6813 if (HAS_PCH_SPLIT(dev)) {
6814 ilk_setup_wm_latency(dev);
6815
6816 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6817 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6818 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6819 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6820 dev_priv->display.update_wm = ilk_update_wm;
6821 dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6822 } else {
6823 DRM_DEBUG_KMS("Failed to read display plane latency. "
6824 "Disable CxSR\n");
6825 }
6826
6827 if (IS_GEN5(dev))
6828 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6829 else if (IS_GEN6(dev))
6830 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6831 else if (IS_IVYBRIDGE(dev))
6832 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6833 else if (IS_HASWELL(dev))
6834 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6835 else if (INTEL_INFO(dev)->gen == 8)
6836 dev_priv->display.init_clock_gating = gen8_init_clock_gating;
6837 } else if (IS_CHERRYVIEW(dev)) {
6838 dev_priv->display.update_wm = valleyview_update_wm;
6839 dev_priv->display.init_clock_gating =
6840 cherryview_init_clock_gating;
6841 } else if (IS_VALLEYVIEW(dev)) {
6842 dev_priv->display.update_wm = valleyview_update_wm;
6843 dev_priv->display.init_clock_gating =
6844 valleyview_init_clock_gating;
6845 } else if (IS_PINEVIEW(dev)) {
6846 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6847 dev_priv->is_ddr3,
6848 dev_priv->fsb_freq,
6849 dev_priv->mem_freq)) {
6850 DRM_INFO("failed to find known CxSR latency "
6851 "(found ddr%s fsb freq %d, mem freq %d), "
6852 "disabling CxSR\n",
6853 (dev_priv->is_ddr3 == 1) ? "3" : "2",
6854 dev_priv->fsb_freq, dev_priv->mem_freq);
6855 /* Disable CxSR and never update its watermark again */
6856 intel_set_memory_cxsr(dev_priv, false);
6857 dev_priv->display.update_wm = NULL;
6858 } else
6859 dev_priv->display.update_wm = pineview_update_wm;
6860 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6861 } else if (IS_G4X(dev)) {
6862 dev_priv->display.update_wm = g4x_update_wm;
6863 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6864 } else if (IS_GEN4(dev)) {
6865 dev_priv->display.update_wm = i965_update_wm;
6866 if (IS_CRESTLINE(dev))
6867 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6868 else if (IS_BROADWATER(dev))
6869 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6870 } else if (IS_GEN3(dev)) {
6871 dev_priv->display.update_wm = i9xx_update_wm;
6872 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6873 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6874 } else if (IS_GEN2(dev)) {
6875 if (INTEL_INFO(dev)->num_pipes == 1) {
6876 dev_priv->display.update_wm = i845_update_wm;
6877 dev_priv->display.get_fifo_size = i845_get_fifo_size;
6878 } else {
6879 dev_priv->display.update_wm = i9xx_update_wm;
6880 dev_priv->display.get_fifo_size = i830_get_fifo_size;
6881 }
6882
6883 if (IS_I85X(dev) || IS_I865G(dev))
6884 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6885 else
6886 dev_priv->display.init_clock_gating = i830_init_clock_gating;
6887 } else {
6888 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6889 }
6890 }
6891
6892 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
6893 {
6894 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6895
6896 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6897 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6898 return -EAGAIN;
6899 }
6900
6901 I915_WRITE(GEN6_PCODE_DATA, *val);
6902 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6903
6904 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6905 500)) {
6906 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6907 return -ETIMEDOUT;
6908 }
6909
6910 *val = I915_READ(GEN6_PCODE_DATA);
6911 I915_WRITE(GEN6_PCODE_DATA, 0);
6912
6913 return 0;
6914 }
6915
6916 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
6917 {
6918 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6919
6920 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6921 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6922 return -EAGAIN;
6923 }
6924
6925 I915_WRITE(GEN6_PCODE_DATA, val);
6926 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6927
6928 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6929 500)) {
6930 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6931 return -ETIMEDOUT;
6932 }
6933
6934 I915_WRITE(GEN6_PCODE_DATA, 0);
6935
6936 return 0;
6937 }
6938
6939 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
6940 {
6941 int div;
6942
6943 /* 4 x czclk */
6944 switch (dev_priv->mem_freq) {
6945 case 800:
6946 div = 10;
6947 break;
6948 case 1066:
6949 div = 12;
6950 break;
6951 case 1333:
6952 div = 16;
6953 break;
6954 default:
6955 return -1;
6956 }
6957
6958 return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6959 }
6960
6961 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6962 {
6963 int mul;
6964
6965 /* 4 x czclk */
6966 switch (dev_priv->mem_freq) {
6967 case 800:
6968 mul = 10;
6969 break;
6970 case 1066:
6971 mul = 12;
6972 break;
6973 case 1333:
6974 mul = 16;
6975 break;
6976 default:
6977 return -1;
6978 }
6979
6980 return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
6981 }
6982
6983 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6984 {
6985 int div, freq;
6986
6987 switch (dev_priv->rps.cz_freq) {
6988 case 200:
6989 div = 5;
6990 break;
6991 case 267:
6992 div = 6;
6993 break;
6994 case 320:
6995 case 333:
6996 case 400:
6997 div = 8;
6998 break;
6999 default:
7000 return -1;
7001 }
7002
7003 freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);
7004
7005 return freq;
7006 }
7007
7008 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7009 {
7010 int mul, opcode;
7011
7012 switch (dev_priv->rps.cz_freq) {
7013 case 200:
7014 mul = 5;
7015 break;
7016 case 267:
7017 mul = 6;
7018 break;
7019 case 320:
7020 case 333:
7021 case 400:
7022 mul = 8;
7023 break;
7024 default:
7025 return -1;
7026 }
7027
7028 opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);
7029
7030 return opcode;
7031 }
7032
7033 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7034 {
7035 int ret = -1;
7036
7037 if (IS_CHERRYVIEW(dev_priv->dev))
7038 ret = chv_gpu_freq(dev_priv, val);
7039 else if (IS_VALLEYVIEW(dev_priv->dev))
7040 ret = byt_gpu_freq(dev_priv, val);
7041
7042 return ret;
7043 }
7044
7045 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7046 {
7047 int ret = -1;
7048
7049 if (IS_CHERRYVIEW(dev_priv->dev))
7050 ret = chv_freq_opcode(dev_priv, val);
7051 else if (IS_VALLEYVIEW(dev_priv->dev))
7052 ret = byt_freq_opcode(dev_priv, val);
7053
7054 return ret;
7055 }
7056
7057 void intel_pm_setup(struct drm_device *dev)
7058 {
7059 struct drm_i915_private *dev_priv = dev->dev_private;
7060
7061 mutex_init(&dev_priv->rps.hw_lock);
7062
7063 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7064 intel_gen6_powersave_work);
7065
7066 dev_priv->pm.suspended = false;
7067 dev_priv->pm._irqs_disabled = false;
7068 }
This page took 0.171191 seconds and 6 git commands to generate.