drm/i915/bdw: BDW Software Turbo
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <linux/vgaarb.h>
34 #include <drm/i915_powerwell.h>
35 #include <linux/pm_runtime.h>
36
37 /**
38 * RC6 is a special power stage which allows the GPU to enter an very
39 * low-voltage mode when idle, using down to 0V while at this stage. This
40 * stage is entered automatically when the GPU is idle when RC6 support is
41 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42 *
43 * There are different RC6 modes available in Intel GPU, which differentiate
44 * among each other with the latency required to enter and leave RC6 and
45 * voltage consumed by the GPU in different states.
46 *
47 * The combination of the following flags define which states GPU is allowed
48 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49 * RC6pp is deepest RC6. Their support by hardware varies according to the
50 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51 * which brings the most power savings; deeper states save more power, but
52 * require higher latency to switch to and wake up.
53 */
54 #define INTEL_RC6_ENABLE (1<<0)
55 #define INTEL_RC6p_ENABLE (1<<1)
56 #define INTEL_RC6pp_ENABLE (1<<2)
57
58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
59 * framebuffer contents in-memory, aiming at reducing the required bandwidth
60 * during in-memory transfers and, therefore, reduce the power packet.
61 *
62 * The benefits of FBC are mostly visible with solid backgrounds and
63 * variation-less patterns.
64 *
65 * FBC-related functionality can be enabled by the means of the
66 * i915.i915_enable_fbc parameter
67 */
68
69 static void i8xx_disable_fbc(struct drm_device *dev)
70 {
71 struct drm_i915_private *dev_priv = dev->dev_private;
72 u32 fbc_ctl;
73
74 /* Disable compression */
75 fbc_ctl = I915_READ(FBC_CONTROL);
76 if ((fbc_ctl & FBC_CTL_EN) == 0)
77 return;
78
79 fbc_ctl &= ~FBC_CTL_EN;
80 I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82 /* Wait for compressing bit to clear */
83 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84 DRM_DEBUG_KMS("FBC idle timed out\n");
85 return;
86 }
87
88 DRM_DEBUG_KMS("disabled FBC\n");
89 }
90
91 static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 {
93 struct drm_device *dev = crtc->dev;
94 struct drm_i915_private *dev_priv = dev->dev_private;
95 struct drm_framebuffer *fb = crtc->primary->fb;
96 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
97 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
98 int cfb_pitch;
99 int i;
100 u32 fbc_ctl;
101
102 cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
103 if (fb->pitches[0] < cfb_pitch)
104 cfb_pitch = fb->pitches[0];
105
106 /* FBC_CTL wants 32B or 64B units */
107 if (IS_GEN2(dev))
108 cfb_pitch = (cfb_pitch / 32) - 1;
109 else
110 cfb_pitch = (cfb_pitch / 64) - 1;
111
112 /* Clear old tags */
113 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
114 I915_WRITE(FBC_TAG + (i * 4), 0);
115
116 if (IS_GEN4(dev)) {
117 u32 fbc_ctl2;
118
119 /* Set it up... */
120 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
121 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
122 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
123 I915_WRITE(FBC_FENCE_OFF, crtc->y);
124 }
125
126 /* enable it... */
127 fbc_ctl = I915_READ(FBC_CONTROL);
128 fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
129 fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
130 if (IS_I945GM(dev))
131 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
132 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
133 fbc_ctl |= obj->fence_reg;
134 I915_WRITE(FBC_CONTROL, fbc_ctl);
135
136 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
137 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
138 }
139
140 static bool i8xx_fbc_enabled(struct drm_device *dev)
141 {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143
144 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
145 }
146
147 static void g4x_enable_fbc(struct drm_crtc *crtc)
148 {
149 struct drm_device *dev = crtc->dev;
150 struct drm_i915_private *dev_priv = dev->dev_private;
151 struct drm_framebuffer *fb = crtc->primary->fb;
152 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
153 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
154 u32 dpfc_ctl;
155
156 dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
157 if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
158 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
159 else
160 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
161 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
162
163 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
164
165 /* enable it... */
166 I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
167
168 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
169 }
170
171 static void g4x_disable_fbc(struct drm_device *dev)
172 {
173 struct drm_i915_private *dev_priv = dev->dev_private;
174 u32 dpfc_ctl;
175
176 /* Disable compression */
177 dpfc_ctl = I915_READ(DPFC_CONTROL);
178 if (dpfc_ctl & DPFC_CTL_EN) {
179 dpfc_ctl &= ~DPFC_CTL_EN;
180 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
181
182 DRM_DEBUG_KMS("disabled FBC\n");
183 }
184 }
185
186 static bool g4x_fbc_enabled(struct drm_device *dev)
187 {
188 struct drm_i915_private *dev_priv = dev->dev_private;
189
190 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
191 }
192
193 static void sandybridge_blit_fbc_update(struct drm_device *dev)
194 {
195 struct drm_i915_private *dev_priv = dev->dev_private;
196 u32 blt_ecoskpd;
197
198 /* Make sure blitter notifies FBC of writes */
199
200 /* Blitter is part of Media powerwell on VLV. No impact of
201 * his param in other platforms for now */
202 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
203
204 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
205 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
206 GEN6_BLITTER_LOCK_SHIFT;
207 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
208 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
209 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
211 GEN6_BLITTER_LOCK_SHIFT);
212 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
213 POSTING_READ(GEN6_BLITTER_ECOSKPD);
214
215 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
216 }
217
218 static void ironlake_enable_fbc(struct drm_crtc *crtc)
219 {
220 struct drm_device *dev = crtc->dev;
221 struct drm_i915_private *dev_priv = dev->dev_private;
222 struct drm_framebuffer *fb = crtc->primary->fb;
223 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
224 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
225 u32 dpfc_ctl;
226
227 dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
228 if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
229 dev_priv->fbc.threshold++;
230
231 switch (dev_priv->fbc.threshold) {
232 case 4:
233 case 3:
234 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
235 break;
236 case 2:
237 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
238 break;
239 case 1:
240 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
241 break;
242 }
243 dpfc_ctl |= DPFC_CTL_FENCE_EN;
244 if (IS_GEN5(dev))
245 dpfc_ctl |= obj->fence_reg;
246
247 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
248 I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
249 /* enable it... */
250 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
251
252 if (IS_GEN6(dev)) {
253 I915_WRITE(SNB_DPFC_CTL_SA,
254 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
255 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
256 sandybridge_blit_fbc_update(dev);
257 }
258
259 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
260 }
261
262 static void ironlake_disable_fbc(struct drm_device *dev)
263 {
264 struct drm_i915_private *dev_priv = dev->dev_private;
265 u32 dpfc_ctl;
266
267 /* Disable compression */
268 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
269 if (dpfc_ctl & DPFC_CTL_EN) {
270 dpfc_ctl &= ~DPFC_CTL_EN;
271 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
272
273 DRM_DEBUG_KMS("disabled FBC\n");
274 }
275 }
276
277 static bool ironlake_fbc_enabled(struct drm_device *dev)
278 {
279 struct drm_i915_private *dev_priv = dev->dev_private;
280
281 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
282 }
283
284 static void gen7_enable_fbc(struct drm_crtc *crtc)
285 {
286 struct drm_device *dev = crtc->dev;
287 struct drm_i915_private *dev_priv = dev->dev_private;
288 struct drm_framebuffer *fb = crtc->primary->fb;
289 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
290 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
291 u32 dpfc_ctl;
292
293 dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
294 if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
295 dev_priv->fbc.threshold++;
296
297 switch (dev_priv->fbc.threshold) {
298 case 4:
299 case 3:
300 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
301 break;
302 case 2:
303 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
304 break;
305 case 1:
306 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
307 break;
308 }
309
310 dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
311
312 if (dev_priv->fbc.false_color)
313 dpfc_ctl |= FBC_CTL_FALSE_COLOR;
314
315 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
316
317 if (IS_IVYBRIDGE(dev)) {
318 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
319 I915_WRITE(ILK_DISPLAY_CHICKEN1,
320 I915_READ(ILK_DISPLAY_CHICKEN1) |
321 ILK_FBCQ_DIS);
322 } else {
323 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
324 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
325 I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
326 HSW_FBCQ_DIS);
327 }
328
329 I915_WRITE(SNB_DPFC_CTL_SA,
330 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
331 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
332
333 sandybridge_blit_fbc_update(dev);
334
335 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
336 }
337
338 bool intel_fbc_enabled(struct drm_device *dev)
339 {
340 struct drm_i915_private *dev_priv = dev->dev_private;
341
342 if (!dev_priv->display.fbc_enabled)
343 return false;
344
345 return dev_priv->display.fbc_enabled(dev);
346 }
347
348 void gen8_fbc_sw_flush(struct drm_device *dev, u32 value)
349 {
350 struct drm_i915_private *dev_priv = dev->dev_private;
351
352 if (!IS_GEN8(dev))
353 return;
354
355 I915_WRITE(MSG_FBC_REND_STATE, value);
356 }
357
358 static void intel_fbc_work_fn(struct work_struct *__work)
359 {
360 struct intel_fbc_work *work =
361 container_of(to_delayed_work(__work),
362 struct intel_fbc_work, work);
363 struct drm_device *dev = work->crtc->dev;
364 struct drm_i915_private *dev_priv = dev->dev_private;
365
366 mutex_lock(&dev->struct_mutex);
367 if (work == dev_priv->fbc.fbc_work) {
368 /* Double check that we haven't switched fb without cancelling
369 * the prior work.
370 */
371 if (work->crtc->primary->fb == work->fb) {
372 dev_priv->display.enable_fbc(work->crtc);
373
374 dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
375 dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
376 dev_priv->fbc.y = work->crtc->y;
377 }
378
379 dev_priv->fbc.fbc_work = NULL;
380 }
381 mutex_unlock(&dev->struct_mutex);
382
383 kfree(work);
384 }
385
386 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
387 {
388 if (dev_priv->fbc.fbc_work == NULL)
389 return;
390
391 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
392
393 /* Synchronisation is provided by struct_mutex and checking of
394 * dev_priv->fbc.fbc_work, so we can perform the cancellation
395 * entirely asynchronously.
396 */
397 if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
398 /* tasklet was killed before being run, clean up */
399 kfree(dev_priv->fbc.fbc_work);
400
401 /* Mark the work as no longer wanted so that if it does
402 * wake-up (because the work was already running and waiting
403 * for our mutex), it will discover that is no longer
404 * necessary to run.
405 */
406 dev_priv->fbc.fbc_work = NULL;
407 }
408
409 static void intel_enable_fbc(struct drm_crtc *crtc)
410 {
411 struct intel_fbc_work *work;
412 struct drm_device *dev = crtc->dev;
413 struct drm_i915_private *dev_priv = dev->dev_private;
414
415 if (!dev_priv->display.enable_fbc)
416 return;
417
418 intel_cancel_fbc_work(dev_priv);
419
420 work = kzalloc(sizeof(*work), GFP_KERNEL);
421 if (work == NULL) {
422 DRM_ERROR("Failed to allocate FBC work structure\n");
423 dev_priv->display.enable_fbc(crtc);
424 return;
425 }
426
427 work->crtc = crtc;
428 work->fb = crtc->primary->fb;
429 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
430
431 dev_priv->fbc.fbc_work = work;
432
433 /* Delay the actual enabling to let pageflipping cease and the
434 * display to settle before starting the compression. Note that
435 * this delay also serves a second purpose: it allows for a
436 * vblank to pass after disabling the FBC before we attempt
437 * to modify the control registers.
438 *
439 * A more complicated solution would involve tracking vblanks
440 * following the termination of the page-flipping sequence
441 * and indeed performing the enable as a co-routine and not
442 * waiting synchronously upon the vblank.
443 *
444 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
445 */
446 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
447 }
448
449 void intel_disable_fbc(struct drm_device *dev)
450 {
451 struct drm_i915_private *dev_priv = dev->dev_private;
452
453 intel_cancel_fbc_work(dev_priv);
454
455 if (!dev_priv->display.disable_fbc)
456 return;
457
458 dev_priv->display.disable_fbc(dev);
459 dev_priv->fbc.plane = -1;
460 }
461
462 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
463 enum no_fbc_reason reason)
464 {
465 if (dev_priv->fbc.no_fbc_reason == reason)
466 return false;
467
468 dev_priv->fbc.no_fbc_reason = reason;
469 return true;
470 }
471
472 /**
473 * intel_update_fbc - enable/disable FBC as needed
474 * @dev: the drm_device
475 *
476 * Set up the framebuffer compression hardware at mode set time. We
477 * enable it if possible:
478 * - plane A only (on pre-965)
479 * - no pixel mulitply/line duplication
480 * - no alpha buffer discard
481 * - no dual wide
482 * - framebuffer <= max_hdisplay in width, max_vdisplay in height
483 *
484 * We can't assume that any compression will take place (worst case),
485 * so the compressed buffer has to be the same size as the uncompressed
486 * one. It also must reside (along with the line length buffer) in
487 * stolen memory.
488 *
489 * We need to enable/disable FBC on a global basis.
490 */
491 void intel_update_fbc(struct drm_device *dev)
492 {
493 struct drm_i915_private *dev_priv = dev->dev_private;
494 struct drm_crtc *crtc = NULL, *tmp_crtc;
495 struct intel_crtc *intel_crtc;
496 struct drm_framebuffer *fb;
497 struct drm_i915_gem_object *obj;
498 const struct drm_display_mode *adjusted_mode;
499 unsigned int max_width, max_height;
500
501 if (!HAS_FBC(dev)) {
502 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
503 return;
504 }
505
506 if (!i915.powersave) {
507 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
508 DRM_DEBUG_KMS("fbc disabled per module param\n");
509 return;
510 }
511
512 /*
513 * If FBC is already on, we just have to verify that we can
514 * keep it that way...
515 * Need to disable if:
516 * - more than one pipe is active
517 * - changing FBC params (stride, fence, mode)
518 * - new fb is too large to fit in compressed buffer
519 * - going to an unsupported config (interlace, pixel multiply, etc.)
520 */
521 for_each_crtc(dev, tmp_crtc) {
522 if (intel_crtc_active(tmp_crtc) &&
523 to_intel_crtc(tmp_crtc)->primary_enabled) {
524 if (crtc) {
525 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
526 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
527 goto out_disable;
528 }
529 crtc = tmp_crtc;
530 }
531 }
532
533 if (!crtc || crtc->primary->fb == NULL) {
534 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
535 DRM_DEBUG_KMS("no output, disabling\n");
536 goto out_disable;
537 }
538
539 intel_crtc = to_intel_crtc(crtc);
540 fb = crtc->primary->fb;
541 obj = intel_fb_obj(fb);
542 adjusted_mode = &intel_crtc->config.adjusted_mode;
543
544 if (i915.enable_fbc < 0) {
545 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
546 DRM_DEBUG_KMS("disabled per chip default\n");
547 goto out_disable;
548 }
549 if (!i915.enable_fbc) {
550 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
551 DRM_DEBUG_KMS("fbc disabled per module param\n");
552 goto out_disable;
553 }
554 if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
555 (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
556 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
557 DRM_DEBUG_KMS("mode incompatible with compression, "
558 "disabling\n");
559 goto out_disable;
560 }
561
562 if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
563 max_width = 4096;
564 max_height = 4096;
565 } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
566 max_width = 4096;
567 max_height = 2048;
568 } else {
569 max_width = 2048;
570 max_height = 1536;
571 }
572 if (intel_crtc->config.pipe_src_w > max_width ||
573 intel_crtc->config.pipe_src_h > max_height) {
574 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
575 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
576 goto out_disable;
577 }
578 if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
579 intel_crtc->plane != PLANE_A) {
580 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
581 DRM_DEBUG_KMS("plane not A, disabling compression\n");
582 goto out_disable;
583 }
584
585 /* The use of a CPU fence is mandatory in order to detect writes
586 * by the CPU to the scanout and trigger updates to the FBC.
587 */
588 if (obj->tiling_mode != I915_TILING_X ||
589 obj->fence_reg == I915_FENCE_REG_NONE) {
590 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
591 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
592 goto out_disable;
593 }
594 if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
595 to_intel_plane(crtc->primary)->rotation != BIT(DRM_ROTATE_0)) {
596 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
597 DRM_DEBUG_KMS("Rotation unsupported, disabling\n");
598 goto out_disable;
599 }
600
601 /* If the kernel debugger is active, always disable compression */
602 if (in_dbg_master())
603 goto out_disable;
604
605 if (i915_gem_stolen_setup_compression(dev, obj->base.size,
606 drm_format_plane_cpp(fb->pixel_format, 0))) {
607 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
608 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
609 goto out_disable;
610 }
611
612 /* If the scanout has not changed, don't modify the FBC settings.
613 * Note that we make the fundamental assumption that the fb->obj
614 * cannot be unpinned (and have its GTT offset and fence revoked)
615 * without first being decoupled from the scanout and FBC disabled.
616 */
617 if (dev_priv->fbc.plane == intel_crtc->plane &&
618 dev_priv->fbc.fb_id == fb->base.id &&
619 dev_priv->fbc.y == crtc->y)
620 return;
621
622 if (intel_fbc_enabled(dev)) {
623 /* We update FBC along two paths, after changing fb/crtc
624 * configuration (modeswitching) and after page-flipping
625 * finishes. For the latter, we know that not only did
626 * we disable the FBC at the start of the page-flip
627 * sequence, but also more than one vblank has passed.
628 *
629 * For the former case of modeswitching, it is possible
630 * to switch between two FBC valid configurations
631 * instantaneously so we do need to disable the FBC
632 * before we can modify its control registers. We also
633 * have to wait for the next vblank for that to take
634 * effect. However, since we delay enabling FBC we can
635 * assume that a vblank has passed since disabling and
636 * that we can safely alter the registers in the deferred
637 * callback.
638 *
639 * In the scenario that we go from a valid to invalid
640 * and then back to valid FBC configuration we have
641 * no strict enforcement that a vblank occurred since
642 * disabling the FBC. However, along all current pipe
643 * disabling paths we do need to wait for a vblank at
644 * some point. And we wait before enabling FBC anyway.
645 */
646 DRM_DEBUG_KMS("disabling active FBC for update\n");
647 intel_disable_fbc(dev);
648 }
649
650 intel_enable_fbc(crtc);
651 dev_priv->fbc.no_fbc_reason = FBC_OK;
652 return;
653
654 out_disable:
655 /* Multiple disables should be harmless */
656 if (intel_fbc_enabled(dev)) {
657 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
658 intel_disable_fbc(dev);
659 }
660 i915_gem_stolen_cleanup_compression(dev);
661 }
662
663 static void i915_pineview_get_mem_freq(struct drm_device *dev)
664 {
665 struct drm_i915_private *dev_priv = dev->dev_private;
666 u32 tmp;
667
668 tmp = I915_READ(CLKCFG);
669
670 switch (tmp & CLKCFG_FSB_MASK) {
671 case CLKCFG_FSB_533:
672 dev_priv->fsb_freq = 533; /* 133*4 */
673 break;
674 case CLKCFG_FSB_800:
675 dev_priv->fsb_freq = 800; /* 200*4 */
676 break;
677 case CLKCFG_FSB_667:
678 dev_priv->fsb_freq = 667; /* 167*4 */
679 break;
680 case CLKCFG_FSB_400:
681 dev_priv->fsb_freq = 400; /* 100*4 */
682 break;
683 }
684
685 switch (tmp & CLKCFG_MEM_MASK) {
686 case CLKCFG_MEM_533:
687 dev_priv->mem_freq = 533;
688 break;
689 case CLKCFG_MEM_667:
690 dev_priv->mem_freq = 667;
691 break;
692 case CLKCFG_MEM_800:
693 dev_priv->mem_freq = 800;
694 break;
695 }
696
697 /* detect pineview DDR3 setting */
698 tmp = I915_READ(CSHRDDR3CTL);
699 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
700 }
701
702 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
703 {
704 struct drm_i915_private *dev_priv = dev->dev_private;
705 u16 ddrpll, csipll;
706
707 ddrpll = I915_READ16(DDRMPLL1);
708 csipll = I915_READ16(CSIPLL0);
709
710 switch (ddrpll & 0xff) {
711 case 0xc:
712 dev_priv->mem_freq = 800;
713 break;
714 case 0x10:
715 dev_priv->mem_freq = 1066;
716 break;
717 case 0x14:
718 dev_priv->mem_freq = 1333;
719 break;
720 case 0x18:
721 dev_priv->mem_freq = 1600;
722 break;
723 default:
724 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
725 ddrpll & 0xff);
726 dev_priv->mem_freq = 0;
727 break;
728 }
729
730 dev_priv->ips.r_t = dev_priv->mem_freq;
731
732 switch (csipll & 0x3ff) {
733 case 0x00c:
734 dev_priv->fsb_freq = 3200;
735 break;
736 case 0x00e:
737 dev_priv->fsb_freq = 3733;
738 break;
739 case 0x010:
740 dev_priv->fsb_freq = 4266;
741 break;
742 case 0x012:
743 dev_priv->fsb_freq = 4800;
744 break;
745 case 0x014:
746 dev_priv->fsb_freq = 5333;
747 break;
748 case 0x016:
749 dev_priv->fsb_freq = 5866;
750 break;
751 case 0x018:
752 dev_priv->fsb_freq = 6400;
753 break;
754 default:
755 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
756 csipll & 0x3ff);
757 dev_priv->fsb_freq = 0;
758 break;
759 }
760
761 if (dev_priv->fsb_freq == 3200) {
762 dev_priv->ips.c_m = 0;
763 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
764 dev_priv->ips.c_m = 1;
765 } else {
766 dev_priv->ips.c_m = 2;
767 }
768 }
769
770 static const struct cxsr_latency cxsr_latency_table[] = {
771 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
772 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
773 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
774 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
775 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
776
777 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
778 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
779 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
780 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
781 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
782
783 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
784 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
785 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
786 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
787 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
788
789 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
790 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
791 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
792 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
793 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
794
795 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
796 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
797 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
798 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
799 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
800
801 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
802 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
803 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
804 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
805 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
806 };
807
808 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
809 int is_ddr3,
810 int fsb,
811 int mem)
812 {
813 const struct cxsr_latency *latency;
814 int i;
815
816 if (fsb == 0 || mem == 0)
817 return NULL;
818
819 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
820 latency = &cxsr_latency_table[i];
821 if (is_desktop == latency->is_desktop &&
822 is_ddr3 == latency->is_ddr3 &&
823 fsb == latency->fsb_freq && mem == latency->mem_freq)
824 return latency;
825 }
826
827 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
828
829 return NULL;
830 }
831
832 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
833 {
834 struct drm_device *dev = dev_priv->dev;
835 u32 val;
836
837 if (IS_VALLEYVIEW(dev)) {
838 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
839 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
840 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
841 } else if (IS_PINEVIEW(dev)) {
842 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
843 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
844 I915_WRITE(DSPFW3, val);
845 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
846 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
847 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
848 I915_WRITE(FW_BLC_SELF, val);
849 } else if (IS_I915GM(dev)) {
850 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
851 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
852 I915_WRITE(INSTPM, val);
853 } else {
854 return;
855 }
856
857 DRM_DEBUG_KMS("memory self-refresh is %s\n",
858 enable ? "enabled" : "disabled");
859 }
860
861 /*
862 * Latency for FIFO fetches is dependent on several factors:
863 * - memory configuration (speed, channels)
864 * - chipset
865 * - current MCH state
866 * It can be fairly high in some situations, so here we assume a fairly
867 * pessimal value. It's a tradeoff between extra memory fetches (if we
868 * set this value too high, the FIFO will fetch frequently to stay full)
869 * and power consumption (set it too low to save power and we might see
870 * FIFO underruns and display "flicker").
871 *
872 * A value of 5us seems to be a good balance; safe for very low end
873 * platforms but not overly aggressive on lower latency configs.
874 */
875 static const int latency_ns = 5000;
876
877 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
878 {
879 struct drm_i915_private *dev_priv = dev->dev_private;
880 uint32_t dsparb = I915_READ(DSPARB);
881 int size;
882
883 size = dsparb & 0x7f;
884 if (plane)
885 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
886
887 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
888 plane ? "B" : "A", size);
889
890 return size;
891 }
892
893 static int i830_get_fifo_size(struct drm_device *dev, int plane)
894 {
895 struct drm_i915_private *dev_priv = dev->dev_private;
896 uint32_t dsparb = I915_READ(DSPARB);
897 int size;
898
899 size = dsparb & 0x1ff;
900 if (plane)
901 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
902 size >>= 1; /* Convert to cachelines */
903
904 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
905 plane ? "B" : "A", size);
906
907 return size;
908 }
909
910 static int i845_get_fifo_size(struct drm_device *dev, int plane)
911 {
912 struct drm_i915_private *dev_priv = dev->dev_private;
913 uint32_t dsparb = I915_READ(DSPARB);
914 int size;
915
916 size = dsparb & 0x7f;
917 size >>= 2; /* Convert to cachelines */
918
919 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
920 plane ? "B" : "A",
921 size);
922
923 return size;
924 }
925
926 /* Pineview has different values for various configs */
927 static const struct intel_watermark_params pineview_display_wm = {
928 .fifo_size = PINEVIEW_DISPLAY_FIFO,
929 .max_wm = PINEVIEW_MAX_WM,
930 .default_wm = PINEVIEW_DFT_WM,
931 .guard_size = PINEVIEW_GUARD_WM,
932 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
933 };
934 static const struct intel_watermark_params pineview_display_hplloff_wm = {
935 .fifo_size = PINEVIEW_DISPLAY_FIFO,
936 .max_wm = PINEVIEW_MAX_WM,
937 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
938 .guard_size = PINEVIEW_GUARD_WM,
939 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
940 };
941 static const struct intel_watermark_params pineview_cursor_wm = {
942 .fifo_size = PINEVIEW_CURSOR_FIFO,
943 .max_wm = PINEVIEW_CURSOR_MAX_WM,
944 .default_wm = PINEVIEW_CURSOR_DFT_WM,
945 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
946 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
947 };
948 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
949 .fifo_size = PINEVIEW_CURSOR_FIFO,
950 .max_wm = PINEVIEW_CURSOR_MAX_WM,
951 .default_wm = PINEVIEW_CURSOR_DFT_WM,
952 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
953 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
954 };
955 static const struct intel_watermark_params g4x_wm_info = {
956 .fifo_size = G4X_FIFO_SIZE,
957 .max_wm = G4X_MAX_WM,
958 .default_wm = G4X_MAX_WM,
959 .guard_size = 2,
960 .cacheline_size = G4X_FIFO_LINE_SIZE,
961 };
962 static const struct intel_watermark_params g4x_cursor_wm_info = {
963 .fifo_size = I965_CURSOR_FIFO,
964 .max_wm = I965_CURSOR_MAX_WM,
965 .default_wm = I965_CURSOR_DFT_WM,
966 .guard_size = 2,
967 .cacheline_size = G4X_FIFO_LINE_SIZE,
968 };
969 static const struct intel_watermark_params valleyview_wm_info = {
970 .fifo_size = VALLEYVIEW_FIFO_SIZE,
971 .max_wm = VALLEYVIEW_MAX_WM,
972 .default_wm = VALLEYVIEW_MAX_WM,
973 .guard_size = 2,
974 .cacheline_size = G4X_FIFO_LINE_SIZE,
975 };
976 static const struct intel_watermark_params valleyview_cursor_wm_info = {
977 .fifo_size = I965_CURSOR_FIFO,
978 .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
979 .default_wm = I965_CURSOR_DFT_WM,
980 .guard_size = 2,
981 .cacheline_size = G4X_FIFO_LINE_SIZE,
982 };
983 static const struct intel_watermark_params i965_cursor_wm_info = {
984 .fifo_size = I965_CURSOR_FIFO,
985 .max_wm = I965_CURSOR_MAX_WM,
986 .default_wm = I965_CURSOR_DFT_WM,
987 .guard_size = 2,
988 .cacheline_size = I915_FIFO_LINE_SIZE,
989 };
990 static const struct intel_watermark_params i945_wm_info = {
991 .fifo_size = I945_FIFO_SIZE,
992 .max_wm = I915_MAX_WM,
993 .default_wm = 1,
994 .guard_size = 2,
995 .cacheline_size = I915_FIFO_LINE_SIZE,
996 };
997 static const struct intel_watermark_params i915_wm_info = {
998 .fifo_size = I915_FIFO_SIZE,
999 .max_wm = I915_MAX_WM,
1000 .default_wm = 1,
1001 .guard_size = 2,
1002 .cacheline_size = I915_FIFO_LINE_SIZE,
1003 };
1004 static const struct intel_watermark_params i830_wm_info = {
1005 .fifo_size = I855GM_FIFO_SIZE,
1006 .max_wm = I915_MAX_WM,
1007 .default_wm = 1,
1008 .guard_size = 2,
1009 .cacheline_size = I830_FIFO_LINE_SIZE,
1010 };
1011 static const struct intel_watermark_params i845_wm_info = {
1012 .fifo_size = I830_FIFO_SIZE,
1013 .max_wm = I915_MAX_WM,
1014 .default_wm = 1,
1015 .guard_size = 2,
1016 .cacheline_size = I830_FIFO_LINE_SIZE,
1017 };
1018
1019 /**
1020 * intel_calculate_wm - calculate watermark level
1021 * @clock_in_khz: pixel clock
1022 * @wm: chip FIFO params
1023 * @pixel_size: display pixel size
1024 * @latency_ns: memory latency for the platform
1025 *
1026 * Calculate the watermark level (the level at which the display plane will
1027 * start fetching from memory again). Each chip has a different display
1028 * FIFO size and allocation, so the caller needs to figure that out and pass
1029 * in the correct intel_watermark_params structure.
1030 *
1031 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1032 * on the pixel size. When it reaches the watermark level, it'll start
1033 * fetching FIFO line sized based chunks from memory until the FIFO fills
1034 * past the watermark point. If the FIFO drains completely, a FIFO underrun
1035 * will occur, and a display engine hang could result.
1036 */
1037 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1038 const struct intel_watermark_params *wm,
1039 int fifo_size,
1040 int pixel_size,
1041 unsigned long latency_ns)
1042 {
1043 long entries_required, wm_size;
1044
1045 /*
1046 * Note: we need to make sure we don't overflow for various clock &
1047 * latency values.
1048 * clocks go from a few thousand to several hundred thousand.
1049 * latency is usually a few thousand
1050 */
1051 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1052 1000;
1053 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1054
1055 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1056
1057 wm_size = fifo_size - (entries_required + wm->guard_size);
1058
1059 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1060
1061 /* Don't promote wm_size to unsigned... */
1062 if (wm_size > (long)wm->max_wm)
1063 wm_size = wm->max_wm;
1064 if (wm_size <= 0)
1065 wm_size = wm->default_wm;
1066 return wm_size;
1067 }
1068
1069 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1070 {
1071 struct drm_crtc *crtc, *enabled = NULL;
1072
1073 for_each_crtc(dev, crtc) {
1074 if (intel_crtc_active(crtc)) {
1075 if (enabled)
1076 return NULL;
1077 enabled = crtc;
1078 }
1079 }
1080
1081 return enabled;
1082 }
1083
1084 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1085 {
1086 struct drm_device *dev = unused_crtc->dev;
1087 struct drm_i915_private *dev_priv = dev->dev_private;
1088 struct drm_crtc *crtc;
1089 const struct cxsr_latency *latency;
1090 u32 reg;
1091 unsigned long wm;
1092
1093 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1094 dev_priv->fsb_freq, dev_priv->mem_freq);
1095 if (!latency) {
1096 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1097 intel_set_memory_cxsr(dev_priv, false);
1098 return;
1099 }
1100
1101 crtc = single_enabled_crtc(dev);
1102 if (crtc) {
1103 const struct drm_display_mode *adjusted_mode;
1104 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1105 int clock;
1106
1107 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1108 clock = adjusted_mode->crtc_clock;
1109
1110 /* Display SR */
1111 wm = intel_calculate_wm(clock, &pineview_display_wm,
1112 pineview_display_wm.fifo_size,
1113 pixel_size, latency->display_sr);
1114 reg = I915_READ(DSPFW1);
1115 reg &= ~DSPFW_SR_MASK;
1116 reg |= wm << DSPFW_SR_SHIFT;
1117 I915_WRITE(DSPFW1, reg);
1118 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1119
1120 /* cursor SR */
1121 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1122 pineview_display_wm.fifo_size,
1123 pixel_size, latency->cursor_sr);
1124 reg = I915_READ(DSPFW3);
1125 reg &= ~DSPFW_CURSOR_SR_MASK;
1126 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1127 I915_WRITE(DSPFW3, reg);
1128
1129 /* Display HPLL off SR */
1130 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1131 pineview_display_hplloff_wm.fifo_size,
1132 pixel_size, latency->display_hpll_disable);
1133 reg = I915_READ(DSPFW3);
1134 reg &= ~DSPFW_HPLL_SR_MASK;
1135 reg |= wm & DSPFW_HPLL_SR_MASK;
1136 I915_WRITE(DSPFW3, reg);
1137
1138 /* cursor HPLL off SR */
1139 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1140 pineview_display_hplloff_wm.fifo_size,
1141 pixel_size, latency->cursor_hpll_disable);
1142 reg = I915_READ(DSPFW3);
1143 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1144 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1145 I915_WRITE(DSPFW3, reg);
1146 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1147
1148 intel_set_memory_cxsr(dev_priv, true);
1149 } else {
1150 intel_set_memory_cxsr(dev_priv, false);
1151 }
1152 }
1153
1154 static bool g4x_compute_wm0(struct drm_device *dev,
1155 int plane,
1156 const struct intel_watermark_params *display,
1157 int display_latency_ns,
1158 const struct intel_watermark_params *cursor,
1159 int cursor_latency_ns,
1160 int *plane_wm,
1161 int *cursor_wm)
1162 {
1163 struct drm_crtc *crtc;
1164 const struct drm_display_mode *adjusted_mode;
1165 int htotal, hdisplay, clock, pixel_size;
1166 int line_time_us, line_count;
1167 int entries, tlb_miss;
1168
1169 crtc = intel_get_crtc_for_plane(dev, plane);
1170 if (!intel_crtc_active(crtc)) {
1171 *cursor_wm = cursor->guard_size;
1172 *plane_wm = display->guard_size;
1173 return false;
1174 }
1175
1176 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1177 clock = adjusted_mode->crtc_clock;
1178 htotal = adjusted_mode->crtc_htotal;
1179 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1180 pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1181
1182 /* Use the small buffer method to calculate plane watermark */
1183 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1184 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1185 if (tlb_miss > 0)
1186 entries += tlb_miss;
1187 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1188 *plane_wm = entries + display->guard_size;
1189 if (*plane_wm > (int)display->max_wm)
1190 *plane_wm = display->max_wm;
1191
1192 /* Use the large buffer method to calculate cursor watermark */
1193 line_time_us = max(htotal * 1000 / clock, 1);
1194 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1195 entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1196 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1197 if (tlb_miss > 0)
1198 entries += tlb_miss;
1199 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1200 *cursor_wm = entries + cursor->guard_size;
1201 if (*cursor_wm > (int)cursor->max_wm)
1202 *cursor_wm = (int)cursor->max_wm;
1203
1204 return true;
1205 }
1206
1207 /*
1208 * Check the wm result.
1209 *
1210 * If any calculated watermark values is larger than the maximum value that
1211 * can be programmed into the associated watermark register, that watermark
1212 * must be disabled.
1213 */
1214 static bool g4x_check_srwm(struct drm_device *dev,
1215 int display_wm, int cursor_wm,
1216 const struct intel_watermark_params *display,
1217 const struct intel_watermark_params *cursor)
1218 {
1219 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1220 display_wm, cursor_wm);
1221
1222 if (display_wm > display->max_wm) {
1223 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1224 display_wm, display->max_wm);
1225 return false;
1226 }
1227
1228 if (cursor_wm > cursor->max_wm) {
1229 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1230 cursor_wm, cursor->max_wm);
1231 return false;
1232 }
1233
1234 if (!(display_wm || cursor_wm)) {
1235 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1236 return false;
1237 }
1238
1239 return true;
1240 }
1241
1242 static bool g4x_compute_srwm(struct drm_device *dev,
1243 int plane,
1244 int latency_ns,
1245 const struct intel_watermark_params *display,
1246 const struct intel_watermark_params *cursor,
1247 int *display_wm, int *cursor_wm)
1248 {
1249 struct drm_crtc *crtc;
1250 const struct drm_display_mode *adjusted_mode;
1251 int hdisplay, htotal, pixel_size, clock;
1252 unsigned long line_time_us;
1253 int line_count, line_size;
1254 int small, large;
1255 int entries;
1256
1257 if (!latency_ns) {
1258 *display_wm = *cursor_wm = 0;
1259 return false;
1260 }
1261
1262 crtc = intel_get_crtc_for_plane(dev, plane);
1263 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1264 clock = adjusted_mode->crtc_clock;
1265 htotal = adjusted_mode->crtc_htotal;
1266 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1267 pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1268
1269 line_time_us = max(htotal * 1000 / clock, 1);
1270 line_count = (latency_ns / line_time_us + 1000) / 1000;
1271 line_size = hdisplay * pixel_size;
1272
1273 /* Use the minimum of the small and large buffer method for primary */
1274 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1275 large = line_count * line_size;
1276
1277 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1278 *display_wm = entries + display->guard_size;
1279
1280 /* calculate the self-refresh watermark for display cursor */
1281 entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1282 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1283 *cursor_wm = entries + cursor->guard_size;
1284
1285 return g4x_check_srwm(dev,
1286 *display_wm, *cursor_wm,
1287 display, cursor);
1288 }
1289
1290 static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
1291 int pixel_size,
1292 int *prec_mult,
1293 int *drain_latency)
1294 {
1295 int entries;
1296 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1297
1298 if (WARN(clock == 0, "Pixel clock is zero!\n"))
1299 return false;
1300
1301 if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
1302 return false;
1303
1304 entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
1305 *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
1306 DRAIN_LATENCY_PRECISION_32;
1307 *drain_latency = (64 * (*prec_mult) * 4) / entries;
1308
1309 if (*drain_latency > DRAIN_LATENCY_MASK)
1310 *drain_latency = DRAIN_LATENCY_MASK;
1311
1312 return true;
1313 }
1314
1315 /*
1316 * Update drain latency registers of memory arbiter
1317 *
1318 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1319 * to be programmed. Each plane has a drain latency multiplier and a drain
1320 * latency value.
1321 */
1322
1323 static void vlv_update_drain_latency(struct drm_crtc *crtc)
1324 {
1325 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1326 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1327 int pixel_size;
1328 int drain_latency;
1329 enum pipe pipe = intel_crtc->pipe;
1330 int plane_prec, prec_mult, plane_dl;
1331
1332 plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_64 |
1333 DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_64 |
1334 (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));
1335
1336 if (!intel_crtc_active(crtc)) {
1337 I915_WRITE(VLV_DDL(pipe), plane_dl);
1338 return;
1339 }
1340
1341 /* Primary plane Drain Latency */
1342 pixel_size = crtc->primary->fb->bits_per_pixel / 8; /* BPP */
1343 if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
1344 plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
1345 DDL_PLANE_PRECISION_64 :
1346 DDL_PLANE_PRECISION_32;
1347 plane_dl |= plane_prec | drain_latency;
1348 }
1349
1350 /* Cursor Drain Latency
1351 * BPP is always 4 for cursor
1352 */
1353 pixel_size = 4;
1354
1355 /* Program cursor DL only if it is enabled */
1356 if (intel_crtc->cursor_base &&
1357 vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
1358 plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
1359 DDL_CURSOR_PRECISION_64 :
1360 DDL_CURSOR_PRECISION_32;
1361 plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
1362 }
1363
1364 I915_WRITE(VLV_DDL(pipe), plane_dl);
1365 }
1366
1367 #define single_plane_enabled(mask) is_power_of_2(mask)
1368
1369 static void valleyview_update_wm(struct drm_crtc *crtc)
1370 {
1371 struct drm_device *dev = crtc->dev;
1372 static const int sr_latency_ns = 12000;
1373 struct drm_i915_private *dev_priv = dev->dev_private;
1374 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1375 int plane_sr, cursor_sr;
1376 int ignore_plane_sr, ignore_cursor_sr;
1377 unsigned int enabled = 0;
1378 bool cxsr_enabled;
1379
1380 vlv_update_drain_latency(crtc);
1381
1382 if (g4x_compute_wm0(dev, PIPE_A,
1383 &valleyview_wm_info, latency_ns,
1384 &valleyview_cursor_wm_info, latency_ns,
1385 &planea_wm, &cursora_wm))
1386 enabled |= 1 << PIPE_A;
1387
1388 if (g4x_compute_wm0(dev, PIPE_B,
1389 &valleyview_wm_info, latency_ns,
1390 &valleyview_cursor_wm_info, latency_ns,
1391 &planeb_wm, &cursorb_wm))
1392 enabled |= 1 << PIPE_B;
1393
1394 if (single_plane_enabled(enabled) &&
1395 g4x_compute_srwm(dev, ffs(enabled) - 1,
1396 sr_latency_ns,
1397 &valleyview_wm_info,
1398 &valleyview_cursor_wm_info,
1399 &plane_sr, &ignore_cursor_sr) &&
1400 g4x_compute_srwm(dev, ffs(enabled) - 1,
1401 2*sr_latency_ns,
1402 &valleyview_wm_info,
1403 &valleyview_cursor_wm_info,
1404 &ignore_plane_sr, &cursor_sr)) {
1405 cxsr_enabled = true;
1406 } else {
1407 cxsr_enabled = false;
1408 intel_set_memory_cxsr(dev_priv, false);
1409 plane_sr = cursor_sr = 0;
1410 }
1411
1412 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1413 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1414 planea_wm, cursora_wm,
1415 planeb_wm, cursorb_wm,
1416 plane_sr, cursor_sr);
1417
1418 I915_WRITE(DSPFW1,
1419 (plane_sr << DSPFW_SR_SHIFT) |
1420 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1421 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1422 (planea_wm << DSPFW_PLANEA_SHIFT));
1423 I915_WRITE(DSPFW2,
1424 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1425 (cursora_wm << DSPFW_CURSORA_SHIFT));
1426 I915_WRITE(DSPFW3,
1427 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1428 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1429
1430 if (cxsr_enabled)
1431 intel_set_memory_cxsr(dev_priv, true);
1432 }
1433
1434 static void cherryview_update_wm(struct drm_crtc *crtc)
1435 {
1436 struct drm_device *dev = crtc->dev;
1437 static const int sr_latency_ns = 12000;
1438 struct drm_i915_private *dev_priv = dev->dev_private;
1439 int planea_wm, planeb_wm, planec_wm;
1440 int cursora_wm, cursorb_wm, cursorc_wm;
1441 int plane_sr, cursor_sr;
1442 int ignore_plane_sr, ignore_cursor_sr;
1443 unsigned int enabled = 0;
1444 bool cxsr_enabled;
1445
1446 vlv_update_drain_latency(crtc);
1447
1448 if (g4x_compute_wm0(dev, PIPE_A,
1449 &valleyview_wm_info, latency_ns,
1450 &valleyview_cursor_wm_info, latency_ns,
1451 &planea_wm, &cursora_wm))
1452 enabled |= 1 << PIPE_A;
1453
1454 if (g4x_compute_wm0(dev, PIPE_B,
1455 &valleyview_wm_info, latency_ns,
1456 &valleyview_cursor_wm_info, latency_ns,
1457 &planeb_wm, &cursorb_wm))
1458 enabled |= 1 << PIPE_B;
1459
1460 if (g4x_compute_wm0(dev, PIPE_C,
1461 &valleyview_wm_info, latency_ns,
1462 &valleyview_cursor_wm_info, latency_ns,
1463 &planec_wm, &cursorc_wm))
1464 enabled |= 1 << PIPE_C;
1465
1466 if (single_plane_enabled(enabled) &&
1467 g4x_compute_srwm(dev, ffs(enabled) - 1,
1468 sr_latency_ns,
1469 &valleyview_wm_info,
1470 &valleyview_cursor_wm_info,
1471 &plane_sr, &ignore_cursor_sr) &&
1472 g4x_compute_srwm(dev, ffs(enabled) - 1,
1473 2*sr_latency_ns,
1474 &valleyview_wm_info,
1475 &valleyview_cursor_wm_info,
1476 &ignore_plane_sr, &cursor_sr)) {
1477 cxsr_enabled = true;
1478 } else {
1479 cxsr_enabled = false;
1480 intel_set_memory_cxsr(dev_priv, false);
1481 plane_sr = cursor_sr = 0;
1482 }
1483
1484 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1485 "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
1486 "SR: plane=%d, cursor=%d\n",
1487 planea_wm, cursora_wm,
1488 planeb_wm, cursorb_wm,
1489 planec_wm, cursorc_wm,
1490 plane_sr, cursor_sr);
1491
1492 I915_WRITE(DSPFW1,
1493 (plane_sr << DSPFW_SR_SHIFT) |
1494 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1495 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1496 (planea_wm << DSPFW_PLANEA_SHIFT));
1497 I915_WRITE(DSPFW2,
1498 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1499 (cursora_wm << DSPFW_CURSORA_SHIFT));
1500 I915_WRITE(DSPFW3,
1501 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1502 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1503 I915_WRITE(DSPFW9_CHV,
1504 (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
1505 DSPFW_CURSORC_MASK)) |
1506 (planec_wm << DSPFW_PLANEC_SHIFT) |
1507 (cursorc_wm << DSPFW_CURSORC_SHIFT));
1508
1509 if (cxsr_enabled)
1510 intel_set_memory_cxsr(dev_priv, true);
1511 }
1512
1513 static void valleyview_update_sprite_wm(struct drm_plane *plane,
1514 struct drm_crtc *crtc,
1515 uint32_t sprite_width,
1516 uint32_t sprite_height,
1517 int pixel_size,
1518 bool enabled, bool scaled)
1519 {
1520 struct drm_device *dev = crtc->dev;
1521 struct drm_i915_private *dev_priv = dev->dev_private;
1522 int pipe = to_intel_plane(plane)->pipe;
1523 int sprite = to_intel_plane(plane)->plane;
1524 int drain_latency;
1525 int plane_prec;
1526 int sprite_dl;
1527 int prec_mult;
1528
1529 sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_64(sprite) |
1530 (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));
1531
1532 if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
1533 &drain_latency)) {
1534 plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
1535 DDL_SPRITE_PRECISION_64(sprite) :
1536 DDL_SPRITE_PRECISION_32(sprite);
1537 sprite_dl |= plane_prec |
1538 (drain_latency << DDL_SPRITE_SHIFT(sprite));
1539 }
1540
1541 I915_WRITE(VLV_DDL(pipe), sprite_dl);
1542 }
1543
1544 static void g4x_update_wm(struct drm_crtc *crtc)
1545 {
1546 struct drm_device *dev = crtc->dev;
1547 static const int sr_latency_ns = 12000;
1548 struct drm_i915_private *dev_priv = dev->dev_private;
1549 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1550 int plane_sr, cursor_sr;
1551 unsigned int enabled = 0;
1552 bool cxsr_enabled;
1553
1554 if (g4x_compute_wm0(dev, PIPE_A,
1555 &g4x_wm_info, latency_ns,
1556 &g4x_cursor_wm_info, latency_ns,
1557 &planea_wm, &cursora_wm))
1558 enabled |= 1 << PIPE_A;
1559
1560 if (g4x_compute_wm0(dev, PIPE_B,
1561 &g4x_wm_info, latency_ns,
1562 &g4x_cursor_wm_info, latency_ns,
1563 &planeb_wm, &cursorb_wm))
1564 enabled |= 1 << PIPE_B;
1565
1566 if (single_plane_enabled(enabled) &&
1567 g4x_compute_srwm(dev, ffs(enabled) - 1,
1568 sr_latency_ns,
1569 &g4x_wm_info,
1570 &g4x_cursor_wm_info,
1571 &plane_sr, &cursor_sr)) {
1572 cxsr_enabled = true;
1573 } else {
1574 cxsr_enabled = false;
1575 intel_set_memory_cxsr(dev_priv, false);
1576 plane_sr = cursor_sr = 0;
1577 }
1578
1579 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1580 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1581 planea_wm, cursora_wm,
1582 planeb_wm, cursorb_wm,
1583 plane_sr, cursor_sr);
1584
1585 I915_WRITE(DSPFW1,
1586 (plane_sr << DSPFW_SR_SHIFT) |
1587 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1588 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1589 (planea_wm << DSPFW_PLANEA_SHIFT));
1590 I915_WRITE(DSPFW2,
1591 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1592 (cursora_wm << DSPFW_CURSORA_SHIFT));
1593 /* HPLL off in SR has some issues on G4x... disable it */
1594 I915_WRITE(DSPFW3,
1595 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1596 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1597
1598 if (cxsr_enabled)
1599 intel_set_memory_cxsr(dev_priv, true);
1600 }
1601
1602 static void i965_update_wm(struct drm_crtc *unused_crtc)
1603 {
1604 struct drm_device *dev = unused_crtc->dev;
1605 struct drm_i915_private *dev_priv = dev->dev_private;
1606 struct drm_crtc *crtc;
1607 int srwm = 1;
1608 int cursor_sr = 16;
1609 bool cxsr_enabled;
1610
1611 /* Calc sr entries for one plane configs */
1612 crtc = single_enabled_crtc(dev);
1613 if (crtc) {
1614 /* self-refresh has much higher latency */
1615 static const int sr_latency_ns = 12000;
1616 const struct drm_display_mode *adjusted_mode =
1617 &to_intel_crtc(crtc)->config.adjusted_mode;
1618 int clock = adjusted_mode->crtc_clock;
1619 int htotal = adjusted_mode->crtc_htotal;
1620 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1621 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1622 unsigned long line_time_us;
1623 int entries;
1624
1625 line_time_us = max(htotal * 1000 / clock, 1);
1626
1627 /* Use ns/us then divide to preserve precision */
1628 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1629 pixel_size * hdisplay;
1630 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1631 srwm = I965_FIFO_SIZE - entries;
1632 if (srwm < 0)
1633 srwm = 1;
1634 srwm &= 0x1ff;
1635 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1636 entries, srwm);
1637
1638 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1639 pixel_size * to_intel_crtc(crtc)->cursor_width;
1640 entries = DIV_ROUND_UP(entries,
1641 i965_cursor_wm_info.cacheline_size);
1642 cursor_sr = i965_cursor_wm_info.fifo_size -
1643 (entries + i965_cursor_wm_info.guard_size);
1644
1645 if (cursor_sr > i965_cursor_wm_info.max_wm)
1646 cursor_sr = i965_cursor_wm_info.max_wm;
1647
1648 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1649 "cursor %d\n", srwm, cursor_sr);
1650
1651 cxsr_enabled = true;
1652 } else {
1653 cxsr_enabled = false;
1654 /* Turn off self refresh if both pipes are enabled */
1655 intel_set_memory_cxsr(dev_priv, false);
1656 }
1657
1658 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1659 srwm);
1660
1661 /* 965 has limitations... */
1662 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1663 (8 << DSPFW_CURSORB_SHIFT) |
1664 (8 << DSPFW_PLANEB_SHIFT) |
1665 (8 << DSPFW_PLANEA_SHIFT));
1666 I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
1667 (8 << DSPFW_PLANEC_SHIFT_OLD));
1668 /* update cursor SR watermark */
1669 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1670
1671 if (cxsr_enabled)
1672 intel_set_memory_cxsr(dev_priv, true);
1673 }
1674
1675 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1676 {
1677 struct drm_device *dev = unused_crtc->dev;
1678 struct drm_i915_private *dev_priv = dev->dev_private;
1679 const struct intel_watermark_params *wm_info;
1680 uint32_t fwater_lo;
1681 uint32_t fwater_hi;
1682 int cwm, srwm = 1;
1683 int fifo_size;
1684 int planea_wm, planeb_wm;
1685 struct drm_crtc *crtc, *enabled = NULL;
1686
1687 if (IS_I945GM(dev))
1688 wm_info = &i945_wm_info;
1689 else if (!IS_GEN2(dev))
1690 wm_info = &i915_wm_info;
1691 else
1692 wm_info = &i830_wm_info;
1693
1694 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1695 crtc = intel_get_crtc_for_plane(dev, 0);
1696 if (intel_crtc_active(crtc)) {
1697 const struct drm_display_mode *adjusted_mode;
1698 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1699 if (IS_GEN2(dev))
1700 cpp = 4;
1701
1702 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1703 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1704 wm_info, fifo_size, cpp,
1705 latency_ns);
1706 enabled = crtc;
1707 } else
1708 planea_wm = fifo_size - wm_info->guard_size;
1709
1710 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1711 crtc = intel_get_crtc_for_plane(dev, 1);
1712 if (intel_crtc_active(crtc)) {
1713 const struct drm_display_mode *adjusted_mode;
1714 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1715 if (IS_GEN2(dev))
1716 cpp = 4;
1717
1718 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1719 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1720 wm_info, fifo_size, cpp,
1721 latency_ns);
1722 if (enabled == NULL)
1723 enabled = crtc;
1724 else
1725 enabled = NULL;
1726 } else
1727 planeb_wm = fifo_size - wm_info->guard_size;
1728
1729 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1730
1731 if (IS_I915GM(dev) && enabled) {
1732 struct drm_i915_gem_object *obj;
1733
1734 obj = intel_fb_obj(enabled->primary->fb);
1735
1736 /* self-refresh seems busted with untiled */
1737 if (obj->tiling_mode == I915_TILING_NONE)
1738 enabled = NULL;
1739 }
1740
1741 /*
1742 * Overlay gets an aggressive default since video jitter is bad.
1743 */
1744 cwm = 2;
1745
1746 /* Play safe and disable self-refresh before adjusting watermarks. */
1747 intel_set_memory_cxsr(dev_priv, false);
1748
1749 /* Calc sr entries for one plane configs */
1750 if (HAS_FW_BLC(dev) && enabled) {
1751 /* self-refresh has much higher latency */
1752 static const int sr_latency_ns = 6000;
1753 const struct drm_display_mode *adjusted_mode =
1754 &to_intel_crtc(enabled)->config.adjusted_mode;
1755 int clock = adjusted_mode->crtc_clock;
1756 int htotal = adjusted_mode->crtc_htotal;
1757 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1758 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1759 unsigned long line_time_us;
1760 int entries;
1761
1762 line_time_us = max(htotal * 1000 / clock, 1);
1763
1764 /* Use ns/us then divide to preserve precision */
1765 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1766 pixel_size * hdisplay;
1767 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1768 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1769 srwm = wm_info->fifo_size - entries;
1770 if (srwm < 0)
1771 srwm = 1;
1772
1773 if (IS_I945G(dev) || IS_I945GM(dev))
1774 I915_WRITE(FW_BLC_SELF,
1775 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1776 else if (IS_I915GM(dev))
1777 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1778 }
1779
1780 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1781 planea_wm, planeb_wm, cwm, srwm);
1782
1783 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1784 fwater_hi = (cwm & 0x1f);
1785
1786 /* Set request length to 8 cachelines per fetch */
1787 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1788 fwater_hi = fwater_hi | (1 << 8);
1789
1790 I915_WRITE(FW_BLC, fwater_lo);
1791 I915_WRITE(FW_BLC2, fwater_hi);
1792
1793 if (enabled)
1794 intel_set_memory_cxsr(dev_priv, true);
1795 }
1796
1797 static void i845_update_wm(struct drm_crtc *unused_crtc)
1798 {
1799 struct drm_device *dev = unused_crtc->dev;
1800 struct drm_i915_private *dev_priv = dev->dev_private;
1801 struct drm_crtc *crtc;
1802 const struct drm_display_mode *adjusted_mode;
1803 uint32_t fwater_lo;
1804 int planea_wm;
1805
1806 crtc = single_enabled_crtc(dev);
1807 if (crtc == NULL)
1808 return;
1809
1810 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1811 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1812 &i845_wm_info,
1813 dev_priv->display.get_fifo_size(dev, 0),
1814 4, latency_ns);
1815 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1816 fwater_lo |= (3<<8) | planea_wm;
1817
1818 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1819
1820 I915_WRITE(FW_BLC, fwater_lo);
1821 }
1822
1823 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1824 struct drm_crtc *crtc)
1825 {
1826 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1827 uint32_t pixel_rate;
1828
1829 pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1830
1831 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1832 * adjust the pixel_rate here. */
1833
1834 if (intel_crtc->config.pch_pfit.enabled) {
1835 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1836 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1837
1838 pipe_w = intel_crtc->config.pipe_src_w;
1839 pipe_h = intel_crtc->config.pipe_src_h;
1840 pfit_w = (pfit_size >> 16) & 0xFFFF;
1841 pfit_h = pfit_size & 0xFFFF;
1842 if (pipe_w < pfit_w)
1843 pipe_w = pfit_w;
1844 if (pipe_h < pfit_h)
1845 pipe_h = pfit_h;
1846
1847 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1848 pfit_w * pfit_h);
1849 }
1850
1851 return pixel_rate;
1852 }
1853
1854 /* latency must be in 0.1us units. */
1855 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1856 uint32_t latency)
1857 {
1858 uint64_t ret;
1859
1860 if (WARN(latency == 0, "Latency value missing\n"))
1861 return UINT_MAX;
1862
1863 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1864 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1865
1866 return ret;
1867 }
1868
1869 /* latency must be in 0.1us units. */
1870 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1871 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1872 uint32_t latency)
1873 {
1874 uint32_t ret;
1875
1876 if (WARN(latency == 0, "Latency value missing\n"))
1877 return UINT_MAX;
1878
1879 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1880 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1881 ret = DIV_ROUND_UP(ret, 64) + 2;
1882 return ret;
1883 }
1884
1885 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1886 uint8_t bytes_per_pixel)
1887 {
1888 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1889 }
1890
1891 struct ilk_pipe_wm_parameters {
1892 bool active;
1893 uint32_t pipe_htotal;
1894 uint32_t pixel_rate;
1895 struct intel_plane_wm_parameters pri;
1896 struct intel_plane_wm_parameters spr;
1897 struct intel_plane_wm_parameters cur;
1898 };
1899
1900 struct ilk_wm_maximums {
1901 uint16_t pri;
1902 uint16_t spr;
1903 uint16_t cur;
1904 uint16_t fbc;
1905 };
1906
1907 /* used in computing the new watermarks state */
1908 struct intel_wm_config {
1909 unsigned int num_pipes_active;
1910 bool sprites_enabled;
1911 bool sprites_scaled;
1912 };
1913
1914 /*
1915 * For both WM_PIPE and WM_LP.
1916 * mem_value must be in 0.1us units.
1917 */
1918 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1919 uint32_t mem_value,
1920 bool is_lp)
1921 {
1922 uint32_t method1, method2;
1923
1924 if (!params->active || !params->pri.enabled)
1925 return 0;
1926
1927 method1 = ilk_wm_method1(params->pixel_rate,
1928 params->pri.bytes_per_pixel,
1929 mem_value);
1930
1931 if (!is_lp)
1932 return method1;
1933
1934 method2 = ilk_wm_method2(params->pixel_rate,
1935 params->pipe_htotal,
1936 params->pri.horiz_pixels,
1937 params->pri.bytes_per_pixel,
1938 mem_value);
1939
1940 return min(method1, method2);
1941 }
1942
1943 /*
1944 * For both WM_PIPE and WM_LP.
1945 * mem_value must be in 0.1us units.
1946 */
1947 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1948 uint32_t mem_value)
1949 {
1950 uint32_t method1, method2;
1951
1952 if (!params->active || !params->spr.enabled)
1953 return 0;
1954
1955 method1 = ilk_wm_method1(params->pixel_rate,
1956 params->spr.bytes_per_pixel,
1957 mem_value);
1958 method2 = ilk_wm_method2(params->pixel_rate,
1959 params->pipe_htotal,
1960 params->spr.horiz_pixels,
1961 params->spr.bytes_per_pixel,
1962 mem_value);
1963 return min(method1, method2);
1964 }
1965
1966 /*
1967 * For both WM_PIPE and WM_LP.
1968 * mem_value must be in 0.1us units.
1969 */
1970 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1971 uint32_t mem_value)
1972 {
1973 if (!params->active || !params->cur.enabled)
1974 return 0;
1975
1976 return ilk_wm_method2(params->pixel_rate,
1977 params->pipe_htotal,
1978 params->cur.horiz_pixels,
1979 params->cur.bytes_per_pixel,
1980 mem_value);
1981 }
1982
1983 /* Only for WM_LP. */
1984 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1985 uint32_t pri_val)
1986 {
1987 if (!params->active || !params->pri.enabled)
1988 return 0;
1989
1990 return ilk_wm_fbc(pri_val,
1991 params->pri.horiz_pixels,
1992 params->pri.bytes_per_pixel);
1993 }
1994
1995 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1996 {
1997 if (INTEL_INFO(dev)->gen >= 8)
1998 return 3072;
1999 else if (INTEL_INFO(dev)->gen >= 7)
2000 return 768;
2001 else
2002 return 512;
2003 }
2004
2005 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
2006 int level, bool is_sprite)
2007 {
2008 if (INTEL_INFO(dev)->gen >= 8)
2009 /* BDW primary/sprite plane watermarks */
2010 return level == 0 ? 255 : 2047;
2011 else if (INTEL_INFO(dev)->gen >= 7)
2012 /* IVB/HSW primary/sprite plane watermarks */
2013 return level == 0 ? 127 : 1023;
2014 else if (!is_sprite)
2015 /* ILK/SNB primary plane watermarks */
2016 return level == 0 ? 127 : 511;
2017 else
2018 /* ILK/SNB sprite plane watermarks */
2019 return level == 0 ? 63 : 255;
2020 }
2021
2022 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
2023 int level)
2024 {
2025 if (INTEL_INFO(dev)->gen >= 7)
2026 return level == 0 ? 63 : 255;
2027 else
2028 return level == 0 ? 31 : 63;
2029 }
2030
2031 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
2032 {
2033 if (INTEL_INFO(dev)->gen >= 8)
2034 return 31;
2035 else
2036 return 15;
2037 }
2038
2039 /* Calculate the maximum primary/sprite plane watermark */
2040 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2041 int level,
2042 const struct intel_wm_config *config,
2043 enum intel_ddb_partitioning ddb_partitioning,
2044 bool is_sprite)
2045 {
2046 unsigned int fifo_size = ilk_display_fifo_size(dev);
2047
2048 /* if sprites aren't enabled, sprites get nothing */
2049 if (is_sprite && !config->sprites_enabled)
2050 return 0;
2051
2052 /* HSW allows LP1+ watermarks even with multiple pipes */
2053 if (level == 0 || config->num_pipes_active > 1) {
2054 fifo_size /= INTEL_INFO(dev)->num_pipes;
2055
2056 /*
2057 * For some reason the non self refresh
2058 * FIFO size is only half of the self
2059 * refresh FIFO size on ILK/SNB.
2060 */
2061 if (INTEL_INFO(dev)->gen <= 6)
2062 fifo_size /= 2;
2063 }
2064
2065 if (config->sprites_enabled) {
2066 /* level 0 is always calculated with 1:1 split */
2067 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2068 if (is_sprite)
2069 fifo_size *= 5;
2070 fifo_size /= 6;
2071 } else {
2072 fifo_size /= 2;
2073 }
2074 }
2075
2076 /* clamp to max that the registers can hold */
2077 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
2078 }
2079
2080 /* Calculate the maximum cursor plane watermark */
2081 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2082 int level,
2083 const struct intel_wm_config *config)
2084 {
2085 /* HSW LP1+ watermarks w/ multiple pipes */
2086 if (level > 0 && config->num_pipes_active > 1)
2087 return 64;
2088
2089 /* otherwise just report max that registers can hold */
2090 return ilk_cursor_wm_reg_max(dev, level);
2091 }
2092
2093 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2094 int level,
2095 const struct intel_wm_config *config,
2096 enum intel_ddb_partitioning ddb_partitioning,
2097 struct ilk_wm_maximums *max)
2098 {
2099 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2100 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2101 max->cur = ilk_cursor_wm_max(dev, level, config);
2102 max->fbc = ilk_fbc_wm_reg_max(dev);
2103 }
2104
2105 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
2106 int level,
2107 struct ilk_wm_maximums *max)
2108 {
2109 max->pri = ilk_plane_wm_reg_max(dev, level, false);
2110 max->spr = ilk_plane_wm_reg_max(dev, level, true);
2111 max->cur = ilk_cursor_wm_reg_max(dev, level);
2112 max->fbc = ilk_fbc_wm_reg_max(dev);
2113 }
2114
2115 static bool ilk_validate_wm_level(int level,
2116 const struct ilk_wm_maximums *max,
2117 struct intel_wm_level *result)
2118 {
2119 bool ret;
2120
2121 /* already determined to be invalid? */
2122 if (!result->enable)
2123 return false;
2124
2125 result->enable = result->pri_val <= max->pri &&
2126 result->spr_val <= max->spr &&
2127 result->cur_val <= max->cur;
2128
2129 ret = result->enable;
2130
2131 /*
2132 * HACK until we can pre-compute everything,
2133 * and thus fail gracefully if LP0 watermarks
2134 * are exceeded...
2135 */
2136 if (level == 0 && !result->enable) {
2137 if (result->pri_val > max->pri)
2138 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2139 level, result->pri_val, max->pri);
2140 if (result->spr_val > max->spr)
2141 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2142 level, result->spr_val, max->spr);
2143 if (result->cur_val > max->cur)
2144 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2145 level, result->cur_val, max->cur);
2146
2147 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2148 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2149 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2150 result->enable = true;
2151 }
2152
2153 return ret;
2154 }
2155
2156 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2157 int level,
2158 const struct ilk_pipe_wm_parameters *p,
2159 struct intel_wm_level *result)
2160 {
2161 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2162 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2163 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2164
2165 /* WM1+ latency values stored in 0.5us units */
2166 if (level > 0) {
2167 pri_latency *= 5;
2168 spr_latency *= 5;
2169 cur_latency *= 5;
2170 }
2171
2172 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2173 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2174 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2175 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2176 result->enable = true;
2177 }
2178
2179 static uint32_t
2180 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2181 {
2182 struct drm_i915_private *dev_priv = dev->dev_private;
2183 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2184 struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2185 u32 linetime, ips_linetime;
2186
2187 if (!intel_crtc_active(crtc))
2188 return 0;
2189
2190 /* The WM are computed with base on how long it takes to fill a single
2191 * row at the given clock rate, multiplied by 8.
2192 * */
2193 linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2194 mode->crtc_clock);
2195 ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2196 intel_ddi_get_cdclk_freq(dev_priv));
2197
2198 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2199 PIPE_WM_LINETIME_TIME(linetime);
2200 }
2201
2202 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2203 {
2204 struct drm_i915_private *dev_priv = dev->dev_private;
2205
2206 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2207 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2208
2209 wm[0] = (sskpd >> 56) & 0xFF;
2210 if (wm[0] == 0)
2211 wm[0] = sskpd & 0xF;
2212 wm[1] = (sskpd >> 4) & 0xFF;
2213 wm[2] = (sskpd >> 12) & 0xFF;
2214 wm[3] = (sskpd >> 20) & 0x1FF;
2215 wm[4] = (sskpd >> 32) & 0x1FF;
2216 } else if (INTEL_INFO(dev)->gen >= 6) {
2217 uint32_t sskpd = I915_READ(MCH_SSKPD);
2218
2219 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2220 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2221 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2222 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2223 } else if (INTEL_INFO(dev)->gen >= 5) {
2224 uint32_t mltr = I915_READ(MLTR_ILK);
2225
2226 /* ILK primary LP0 latency is 700 ns */
2227 wm[0] = 7;
2228 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2229 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2230 }
2231 }
2232
2233 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2234 {
2235 /* ILK sprite LP0 latency is 1300 ns */
2236 if (INTEL_INFO(dev)->gen == 5)
2237 wm[0] = 13;
2238 }
2239
2240 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2241 {
2242 /* ILK cursor LP0 latency is 1300 ns */
2243 if (INTEL_INFO(dev)->gen == 5)
2244 wm[0] = 13;
2245
2246 /* WaDoubleCursorLP3Latency:ivb */
2247 if (IS_IVYBRIDGE(dev))
2248 wm[3] *= 2;
2249 }
2250
2251 int ilk_wm_max_level(const struct drm_device *dev)
2252 {
2253 /* how many WM levels are we expecting */
2254 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2255 return 4;
2256 else if (INTEL_INFO(dev)->gen >= 6)
2257 return 3;
2258 else
2259 return 2;
2260 }
2261 static void intel_print_wm_latency(struct drm_device *dev,
2262 const char *name,
2263 const uint16_t wm[5])
2264 {
2265 int level, max_level = ilk_wm_max_level(dev);
2266
2267 for (level = 0; level <= max_level; level++) {
2268 unsigned int latency = wm[level];
2269
2270 if (latency == 0) {
2271 DRM_ERROR("%s WM%d latency not provided\n",
2272 name, level);
2273 continue;
2274 }
2275
2276 /* WM1+ latency values in 0.5us units */
2277 if (level > 0)
2278 latency *= 5;
2279
2280 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2281 name, level, wm[level],
2282 latency / 10, latency % 10);
2283 }
2284 }
2285
2286 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2287 uint16_t wm[5], uint16_t min)
2288 {
2289 int level, max_level = ilk_wm_max_level(dev_priv->dev);
2290
2291 if (wm[0] >= min)
2292 return false;
2293
2294 wm[0] = max(wm[0], min);
2295 for (level = 1; level <= max_level; level++)
2296 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2297
2298 return true;
2299 }
2300
2301 static void snb_wm_latency_quirk(struct drm_device *dev)
2302 {
2303 struct drm_i915_private *dev_priv = dev->dev_private;
2304 bool changed;
2305
2306 /*
2307 * The BIOS provided WM memory latency values are often
2308 * inadequate for high resolution displays. Adjust them.
2309 */
2310 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2311 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2312 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2313
2314 if (!changed)
2315 return;
2316
2317 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2318 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2319 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2320 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2321 }
2322
2323 static void ilk_setup_wm_latency(struct drm_device *dev)
2324 {
2325 struct drm_i915_private *dev_priv = dev->dev_private;
2326
2327 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2328
2329 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2330 sizeof(dev_priv->wm.pri_latency));
2331 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2332 sizeof(dev_priv->wm.pri_latency));
2333
2334 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2335 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2336
2337 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2338 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2339 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2340
2341 if (IS_GEN6(dev))
2342 snb_wm_latency_quirk(dev);
2343 }
2344
2345 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2346 struct ilk_pipe_wm_parameters *p)
2347 {
2348 struct drm_device *dev = crtc->dev;
2349 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2350 enum pipe pipe = intel_crtc->pipe;
2351 struct drm_plane *plane;
2352
2353 if (!intel_crtc_active(crtc))
2354 return;
2355
2356 p->active = true;
2357 p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2358 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2359 p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2360 p->cur.bytes_per_pixel = 4;
2361 p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2362 p->cur.horiz_pixels = intel_crtc->cursor_width;
2363 /* TODO: for now, assume primary and cursor planes are always enabled. */
2364 p->pri.enabled = true;
2365 p->cur.enabled = true;
2366
2367 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2368 struct intel_plane *intel_plane = to_intel_plane(plane);
2369
2370 if (intel_plane->pipe == pipe) {
2371 p->spr = intel_plane->wm;
2372 break;
2373 }
2374 }
2375 }
2376
2377 static void ilk_compute_wm_config(struct drm_device *dev,
2378 struct intel_wm_config *config)
2379 {
2380 struct intel_crtc *intel_crtc;
2381
2382 /* Compute the currently _active_ config */
2383 for_each_intel_crtc(dev, intel_crtc) {
2384 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2385
2386 if (!wm->pipe_enabled)
2387 continue;
2388
2389 config->sprites_enabled |= wm->sprites_enabled;
2390 config->sprites_scaled |= wm->sprites_scaled;
2391 config->num_pipes_active++;
2392 }
2393 }
2394
2395 /* Compute new watermarks for the pipe */
2396 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2397 const struct ilk_pipe_wm_parameters *params,
2398 struct intel_pipe_wm *pipe_wm)
2399 {
2400 struct drm_device *dev = crtc->dev;
2401 const struct drm_i915_private *dev_priv = dev->dev_private;
2402 int level, max_level = ilk_wm_max_level(dev);
2403 /* LP0 watermark maximums depend on this pipe alone */
2404 struct intel_wm_config config = {
2405 .num_pipes_active = 1,
2406 .sprites_enabled = params->spr.enabled,
2407 .sprites_scaled = params->spr.scaled,
2408 };
2409 struct ilk_wm_maximums max;
2410
2411 pipe_wm->pipe_enabled = params->active;
2412 pipe_wm->sprites_enabled = params->spr.enabled;
2413 pipe_wm->sprites_scaled = params->spr.scaled;
2414
2415 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2416 if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2417 max_level = 1;
2418
2419 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2420 if (params->spr.scaled)
2421 max_level = 0;
2422
2423 ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2424
2425 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2426 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2427
2428 /* LP0 watermarks always use 1/2 DDB partitioning */
2429 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2430
2431 /* At least LP0 must be valid */
2432 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2433 return false;
2434
2435 ilk_compute_wm_reg_maximums(dev, 1, &max);
2436
2437 for (level = 1; level <= max_level; level++) {
2438 struct intel_wm_level wm = {};
2439
2440 ilk_compute_wm_level(dev_priv, level, params, &wm);
2441
2442 /*
2443 * Disable any watermark level that exceeds the
2444 * register maximums since such watermarks are
2445 * always invalid.
2446 */
2447 if (!ilk_validate_wm_level(level, &max, &wm))
2448 break;
2449
2450 pipe_wm->wm[level] = wm;
2451 }
2452
2453 return true;
2454 }
2455
2456 /*
2457 * Merge the watermarks from all active pipes for a specific level.
2458 */
2459 static void ilk_merge_wm_level(struct drm_device *dev,
2460 int level,
2461 struct intel_wm_level *ret_wm)
2462 {
2463 const struct intel_crtc *intel_crtc;
2464
2465 ret_wm->enable = true;
2466
2467 for_each_intel_crtc(dev, intel_crtc) {
2468 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2469 const struct intel_wm_level *wm = &active->wm[level];
2470
2471 if (!active->pipe_enabled)
2472 continue;
2473
2474 /*
2475 * The watermark values may have been used in the past,
2476 * so we must maintain them in the registers for some
2477 * time even if the level is now disabled.
2478 */
2479 if (!wm->enable)
2480 ret_wm->enable = false;
2481
2482 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2483 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2484 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2485 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2486 }
2487 }
2488
2489 /*
2490 * Merge all low power watermarks for all active pipes.
2491 */
2492 static void ilk_wm_merge(struct drm_device *dev,
2493 const struct intel_wm_config *config,
2494 const struct ilk_wm_maximums *max,
2495 struct intel_pipe_wm *merged)
2496 {
2497 int level, max_level = ilk_wm_max_level(dev);
2498 int last_enabled_level = max_level;
2499
2500 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2501 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2502 config->num_pipes_active > 1)
2503 return;
2504
2505 /* ILK: FBC WM must be disabled always */
2506 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2507
2508 /* merge each WM1+ level */
2509 for (level = 1; level <= max_level; level++) {
2510 struct intel_wm_level *wm = &merged->wm[level];
2511
2512 ilk_merge_wm_level(dev, level, wm);
2513
2514 if (level > last_enabled_level)
2515 wm->enable = false;
2516 else if (!ilk_validate_wm_level(level, max, wm))
2517 /* make sure all following levels get disabled */
2518 last_enabled_level = level - 1;
2519
2520 /*
2521 * The spec says it is preferred to disable
2522 * FBC WMs instead of disabling a WM level.
2523 */
2524 if (wm->fbc_val > max->fbc) {
2525 if (wm->enable)
2526 merged->fbc_wm_enabled = false;
2527 wm->fbc_val = 0;
2528 }
2529 }
2530
2531 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2532 /*
2533 * FIXME this is racy. FBC might get enabled later.
2534 * What we should check here is whether FBC can be
2535 * enabled sometime later.
2536 */
2537 if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2538 for (level = 2; level <= max_level; level++) {
2539 struct intel_wm_level *wm = &merged->wm[level];
2540
2541 wm->enable = false;
2542 }
2543 }
2544 }
2545
2546 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2547 {
2548 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2549 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2550 }
2551
2552 /* The value we need to program into the WM_LPx latency field */
2553 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2554 {
2555 struct drm_i915_private *dev_priv = dev->dev_private;
2556
2557 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2558 return 2 * level;
2559 else
2560 return dev_priv->wm.pri_latency[level];
2561 }
2562
2563 static void ilk_compute_wm_results(struct drm_device *dev,
2564 const struct intel_pipe_wm *merged,
2565 enum intel_ddb_partitioning partitioning,
2566 struct ilk_wm_values *results)
2567 {
2568 struct intel_crtc *intel_crtc;
2569 int level, wm_lp;
2570
2571 results->enable_fbc_wm = merged->fbc_wm_enabled;
2572 results->partitioning = partitioning;
2573
2574 /* LP1+ register values */
2575 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2576 const struct intel_wm_level *r;
2577
2578 level = ilk_wm_lp_to_level(wm_lp, merged);
2579
2580 r = &merged->wm[level];
2581
2582 /*
2583 * Maintain the watermark values even if the level is
2584 * disabled. Doing otherwise could cause underruns.
2585 */
2586 results->wm_lp[wm_lp - 1] =
2587 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2588 (r->pri_val << WM1_LP_SR_SHIFT) |
2589 r->cur_val;
2590
2591 if (r->enable)
2592 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2593
2594 if (INTEL_INFO(dev)->gen >= 8)
2595 results->wm_lp[wm_lp - 1] |=
2596 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2597 else
2598 results->wm_lp[wm_lp - 1] |=
2599 r->fbc_val << WM1_LP_FBC_SHIFT;
2600
2601 /*
2602 * Always set WM1S_LP_EN when spr_val != 0, even if the
2603 * level is disabled. Doing otherwise could cause underruns.
2604 */
2605 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2606 WARN_ON(wm_lp != 1);
2607 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2608 } else
2609 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2610 }
2611
2612 /* LP0 register values */
2613 for_each_intel_crtc(dev, intel_crtc) {
2614 enum pipe pipe = intel_crtc->pipe;
2615 const struct intel_wm_level *r =
2616 &intel_crtc->wm.active.wm[0];
2617
2618 if (WARN_ON(!r->enable))
2619 continue;
2620
2621 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2622
2623 results->wm_pipe[pipe] =
2624 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2625 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2626 r->cur_val;
2627 }
2628 }
2629
2630 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2631 * case both are at the same level. Prefer r1 in case they're the same. */
2632 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2633 struct intel_pipe_wm *r1,
2634 struct intel_pipe_wm *r2)
2635 {
2636 int level, max_level = ilk_wm_max_level(dev);
2637 int level1 = 0, level2 = 0;
2638
2639 for (level = 1; level <= max_level; level++) {
2640 if (r1->wm[level].enable)
2641 level1 = level;
2642 if (r2->wm[level].enable)
2643 level2 = level;
2644 }
2645
2646 if (level1 == level2) {
2647 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2648 return r2;
2649 else
2650 return r1;
2651 } else if (level1 > level2) {
2652 return r1;
2653 } else {
2654 return r2;
2655 }
2656 }
2657
2658 /* dirty bits used to track which watermarks need changes */
2659 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2660 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2661 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2662 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2663 #define WM_DIRTY_FBC (1 << 24)
2664 #define WM_DIRTY_DDB (1 << 25)
2665
2666 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2667 const struct ilk_wm_values *old,
2668 const struct ilk_wm_values *new)
2669 {
2670 unsigned int dirty = 0;
2671 enum pipe pipe;
2672 int wm_lp;
2673
2674 for_each_pipe(dev_priv, pipe) {
2675 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2676 dirty |= WM_DIRTY_LINETIME(pipe);
2677 /* Must disable LP1+ watermarks too */
2678 dirty |= WM_DIRTY_LP_ALL;
2679 }
2680
2681 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2682 dirty |= WM_DIRTY_PIPE(pipe);
2683 /* Must disable LP1+ watermarks too */
2684 dirty |= WM_DIRTY_LP_ALL;
2685 }
2686 }
2687
2688 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2689 dirty |= WM_DIRTY_FBC;
2690 /* Must disable LP1+ watermarks too */
2691 dirty |= WM_DIRTY_LP_ALL;
2692 }
2693
2694 if (old->partitioning != new->partitioning) {
2695 dirty |= WM_DIRTY_DDB;
2696 /* Must disable LP1+ watermarks too */
2697 dirty |= WM_DIRTY_LP_ALL;
2698 }
2699
2700 /* LP1+ watermarks already deemed dirty, no need to continue */
2701 if (dirty & WM_DIRTY_LP_ALL)
2702 return dirty;
2703
2704 /* Find the lowest numbered LP1+ watermark in need of an update... */
2705 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2706 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2707 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2708 break;
2709 }
2710
2711 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2712 for (; wm_lp <= 3; wm_lp++)
2713 dirty |= WM_DIRTY_LP(wm_lp);
2714
2715 return dirty;
2716 }
2717
2718 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2719 unsigned int dirty)
2720 {
2721 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2722 bool changed = false;
2723
2724 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2725 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2726 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2727 changed = true;
2728 }
2729 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2730 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2731 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2732 changed = true;
2733 }
2734 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2735 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2736 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2737 changed = true;
2738 }
2739
2740 /*
2741 * Don't touch WM1S_LP_EN here.
2742 * Doing so could cause underruns.
2743 */
2744
2745 return changed;
2746 }
2747
2748 /*
2749 * The spec says we shouldn't write when we don't need, because every write
2750 * causes WMs to be re-evaluated, expending some power.
2751 */
2752 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2753 struct ilk_wm_values *results)
2754 {
2755 struct drm_device *dev = dev_priv->dev;
2756 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2757 unsigned int dirty;
2758 uint32_t val;
2759
2760 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2761 if (!dirty)
2762 return;
2763
2764 _ilk_disable_lp_wm(dev_priv, dirty);
2765
2766 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2767 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2768 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2769 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2770 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2771 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2772
2773 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2774 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2775 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2776 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2777 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2778 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2779
2780 if (dirty & WM_DIRTY_DDB) {
2781 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2782 val = I915_READ(WM_MISC);
2783 if (results->partitioning == INTEL_DDB_PART_1_2)
2784 val &= ~WM_MISC_DATA_PARTITION_5_6;
2785 else
2786 val |= WM_MISC_DATA_PARTITION_5_6;
2787 I915_WRITE(WM_MISC, val);
2788 } else {
2789 val = I915_READ(DISP_ARB_CTL2);
2790 if (results->partitioning == INTEL_DDB_PART_1_2)
2791 val &= ~DISP_DATA_PARTITION_5_6;
2792 else
2793 val |= DISP_DATA_PARTITION_5_6;
2794 I915_WRITE(DISP_ARB_CTL2, val);
2795 }
2796 }
2797
2798 if (dirty & WM_DIRTY_FBC) {
2799 val = I915_READ(DISP_ARB_CTL);
2800 if (results->enable_fbc_wm)
2801 val &= ~DISP_FBC_WM_DIS;
2802 else
2803 val |= DISP_FBC_WM_DIS;
2804 I915_WRITE(DISP_ARB_CTL, val);
2805 }
2806
2807 if (dirty & WM_DIRTY_LP(1) &&
2808 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2809 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2810
2811 if (INTEL_INFO(dev)->gen >= 7) {
2812 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2813 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2814 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2815 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2816 }
2817
2818 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2819 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2820 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2821 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2822 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2823 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2824
2825 dev_priv->wm.hw = *results;
2826 }
2827
2828 static bool ilk_disable_lp_wm(struct drm_device *dev)
2829 {
2830 struct drm_i915_private *dev_priv = dev->dev_private;
2831
2832 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2833 }
2834
2835 static void ilk_update_wm(struct drm_crtc *crtc)
2836 {
2837 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2838 struct drm_device *dev = crtc->dev;
2839 struct drm_i915_private *dev_priv = dev->dev_private;
2840 struct ilk_wm_maximums max;
2841 struct ilk_pipe_wm_parameters params = {};
2842 struct ilk_wm_values results = {};
2843 enum intel_ddb_partitioning partitioning;
2844 struct intel_pipe_wm pipe_wm = {};
2845 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2846 struct intel_wm_config config = {};
2847
2848 ilk_compute_wm_parameters(crtc, &params);
2849
2850 intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2851
2852 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2853 return;
2854
2855 intel_crtc->wm.active = pipe_wm;
2856
2857 ilk_compute_wm_config(dev, &config);
2858
2859 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2860 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2861
2862 /* 5/6 split only in single pipe config on IVB+ */
2863 if (INTEL_INFO(dev)->gen >= 7 &&
2864 config.num_pipes_active == 1 && config.sprites_enabled) {
2865 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2866 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2867
2868 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2869 } else {
2870 best_lp_wm = &lp_wm_1_2;
2871 }
2872
2873 partitioning = (best_lp_wm == &lp_wm_1_2) ?
2874 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2875
2876 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2877
2878 ilk_write_wm_values(dev_priv, &results);
2879 }
2880
2881 static void
2882 ilk_update_sprite_wm(struct drm_plane *plane,
2883 struct drm_crtc *crtc,
2884 uint32_t sprite_width, uint32_t sprite_height,
2885 int pixel_size, bool enabled, bool scaled)
2886 {
2887 struct drm_device *dev = plane->dev;
2888 struct intel_plane *intel_plane = to_intel_plane(plane);
2889
2890 intel_plane->wm.enabled = enabled;
2891 intel_plane->wm.scaled = scaled;
2892 intel_plane->wm.horiz_pixels = sprite_width;
2893 intel_plane->wm.vert_pixels = sprite_width;
2894 intel_plane->wm.bytes_per_pixel = pixel_size;
2895
2896 /*
2897 * IVB workaround: must disable low power watermarks for at least
2898 * one frame before enabling scaling. LP watermarks can be re-enabled
2899 * when scaling is disabled.
2900 *
2901 * WaCxSRDisabledForSpriteScaling:ivb
2902 */
2903 if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2904 intel_wait_for_vblank(dev, intel_plane->pipe);
2905
2906 ilk_update_wm(crtc);
2907 }
2908
2909 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2910 {
2911 struct drm_device *dev = crtc->dev;
2912 struct drm_i915_private *dev_priv = dev->dev_private;
2913 struct ilk_wm_values *hw = &dev_priv->wm.hw;
2914 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2915 struct intel_pipe_wm *active = &intel_crtc->wm.active;
2916 enum pipe pipe = intel_crtc->pipe;
2917 static const unsigned int wm0_pipe_reg[] = {
2918 [PIPE_A] = WM0_PIPEA_ILK,
2919 [PIPE_B] = WM0_PIPEB_ILK,
2920 [PIPE_C] = WM0_PIPEC_IVB,
2921 };
2922
2923 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2924 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2925 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2926
2927 active->pipe_enabled = intel_crtc_active(crtc);
2928
2929 if (active->pipe_enabled) {
2930 u32 tmp = hw->wm_pipe[pipe];
2931
2932 /*
2933 * For active pipes LP0 watermark is marked as
2934 * enabled, and LP1+ watermaks as disabled since
2935 * we can't really reverse compute them in case
2936 * multiple pipes are active.
2937 */
2938 active->wm[0].enable = true;
2939 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2940 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2941 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2942 active->linetime = hw->wm_linetime[pipe];
2943 } else {
2944 int level, max_level = ilk_wm_max_level(dev);
2945
2946 /*
2947 * For inactive pipes, all watermark levels
2948 * should be marked as enabled but zeroed,
2949 * which is what we'd compute them to.
2950 */
2951 for (level = 0; level <= max_level; level++)
2952 active->wm[level].enable = true;
2953 }
2954 }
2955
2956 void ilk_wm_get_hw_state(struct drm_device *dev)
2957 {
2958 struct drm_i915_private *dev_priv = dev->dev_private;
2959 struct ilk_wm_values *hw = &dev_priv->wm.hw;
2960 struct drm_crtc *crtc;
2961
2962 for_each_crtc(dev, crtc)
2963 ilk_pipe_wm_get_hw_state(crtc);
2964
2965 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2966 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2967 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2968
2969 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2970 if (INTEL_INFO(dev)->gen >= 7) {
2971 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2972 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2973 }
2974
2975 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2976 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2977 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2978 else if (IS_IVYBRIDGE(dev))
2979 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2980 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2981
2982 hw->enable_fbc_wm =
2983 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2984 }
2985
2986 /**
2987 * intel_update_watermarks - update FIFO watermark values based on current modes
2988 *
2989 * Calculate watermark values for the various WM regs based on current mode
2990 * and plane configuration.
2991 *
2992 * There are several cases to deal with here:
2993 * - normal (i.e. non-self-refresh)
2994 * - self-refresh (SR) mode
2995 * - lines are large relative to FIFO size (buffer can hold up to 2)
2996 * - lines are small relative to FIFO size (buffer can hold more than 2
2997 * lines), so need to account for TLB latency
2998 *
2999 * The normal calculation is:
3000 * watermark = dotclock * bytes per pixel * latency
3001 * where latency is platform & configuration dependent (we assume pessimal
3002 * values here).
3003 *
3004 * The SR calculation is:
3005 * watermark = (trunc(latency/line time)+1) * surface width *
3006 * bytes per pixel
3007 * where
3008 * line time = htotal / dotclock
3009 * surface width = hdisplay for normal plane and 64 for cursor
3010 * and latency is assumed to be high, as above.
3011 *
3012 * The final value programmed to the register should always be rounded up,
3013 * and include an extra 2 entries to account for clock crossings.
3014 *
3015 * We don't use the sprite, so we can ignore that. And on Crestline we have
3016 * to set the non-SR watermarks to 8.
3017 */
3018 void intel_update_watermarks(struct drm_crtc *crtc)
3019 {
3020 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3021
3022 if (dev_priv->display.update_wm)
3023 dev_priv->display.update_wm(crtc);
3024 }
3025
3026 void intel_update_sprite_watermarks(struct drm_plane *plane,
3027 struct drm_crtc *crtc,
3028 uint32_t sprite_width,
3029 uint32_t sprite_height,
3030 int pixel_size,
3031 bool enabled, bool scaled)
3032 {
3033 struct drm_i915_private *dev_priv = plane->dev->dev_private;
3034
3035 if (dev_priv->display.update_sprite_wm)
3036 dev_priv->display.update_sprite_wm(plane, crtc,
3037 sprite_width, sprite_height,
3038 pixel_size, enabled, scaled);
3039 }
3040
3041 static struct drm_i915_gem_object *
3042 intel_alloc_context_page(struct drm_device *dev)
3043 {
3044 struct drm_i915_gem_object *ctx;
3045 int ret;
3046
3047 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3048
3049 ctx = i915_gem_alloc_object(dev, 4096);
3050 if (!ctx) {
3051 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3052 return NULL;
3053 }
3054
3055 ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
3056 if (ret) {
3057 DRM_ERROR("failed to pin power context: %d\n", ret);
3058 goto err_unref;
3059 }
3060
3061 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3062 if (ret) {
3063 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3064 goto err_unpin;
3065 }
3066
3067 return ctx;
3068
3069 err_unpin:
3070 i915_gem_object_ggtt_unpin(ctx);
3071 err_unref:
3072 drm_gem_object_unreference(&ctx->base);
3073 return NULL;
3074 }
3075
3076 /**
3077 * Lock protecting IPS related data structures
3078 */
3079 DEFINE_SPINLOCK(mchdev_lock);
3080
3081 /* Global for IPS driver to get at the current i915 device. Protected by
3082 * mchdev_lock. */
3083 static struct drm_i915_private *i915_mch_dev;
3084
3085 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3086 {
3087 struct drm_i915_private *dev_priv = dev->dev_private;
3088 u16 rgvswctl;
3089
3090 assert_spin_locked(&mchdev_lock);
3091
3092 rgvswctl = I915_READ16(MEMSWCTL);
3093 if (rgvswctl & MEMCTL_CMD_STS) {
3094 DRM_DEBUG("gpu busy, RCS change rejected\n");
3095 return false; /* still busy with another command */
3096 }
3097
3098 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3099 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3100 I915_WRITE16(MEMSWCTL, rgvswctl);
3101 POSTING_READ16(MEMSWCTL);
3102
3103 rgvswctl |= MEMCTL_CMD_STS;
3104 I915_WRITE16(MEMSWCTL, rgvswctl);
3105
3106 return true;
3107 }
3108
3109 static void ironlake_enable_drps(struct drm_device *dev)
3110 {
3111 struct drm_i915_private *dev_priv = dev->dev_private;
3112 u32 rgvmodectl = I915_READ(MEMMODECTL);
3113 u8 fmax, fmin, fstart, vstart;
3114
3115 spin_lock_irq(&mchdev_lock);
3116
3117 /* Enable temp reporting */
3118 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3119 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3120
3121 /* 100ms RC evaluation intervals */
3122 I915_WRITE(RCUPEI, 100000);
3123 I915_WRITE(RCDNEI, 100000);
3124
3125 /* Set max/min thresholds to 90ms and 80ms respectively */
3126 I915_WRITE(RCBMAXAVG, 90000);
3127 I915_WRITE(RCBMINAVG, 80000);
3128
3129 I915_WRITE(MEMIHYST, 1);
3130
3131 /* Set up min, max, and cur for interrupt handling */
3132 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3133 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3134 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3135 MEMMODE_FSTART_SHIFT;
3136
3137 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3138 PXVFREQ_PX_SHIFT;
3139
3140 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3141 dev_priv->ips.fstart = fstart;
3142
3143 dev_priv->ips.max_delay = fstart;
3144 dev_priv->ips.min_delay = fmin;
3145 dev_priv->ips.cur_delay = fstart;
3146
3147 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3148 fmax, fmin, fstart);
3149
3150 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3151
3152 /*
3153 * Interrupts will be enabled in ironlake_irq_postinstall
3154 */
3155
3156 I915_WRITE(VIDSTART, vstart);
3157 POSTING_READ(VIDSTART);
3158
3159 rgvmodectl |= MEMMODE_SWMODE_EN;
3160 I915_WRITE(MEMMODECTL, rgvmodectl);
3161
3162 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3163 DRM_ERROR("stuck trying to change perf mode\n");
3164 mdelay(1);
3165
3166 ironlake_set_drps(dev, fstart);
3167
3168 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3169 I915_READ(0x112e0);
3170 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3171 dev_priv->ips.last_count2 = I915_READ(0x112f4);
3172 dev_priv->ips.last_time2 = ktime_get_raw_ns();
3173
3174 spin_unlock_irq(&mchdev_lock);
3175 }
3176
3177 static void ironlake_disable_drps(struct drm_device *dev)
3178 {
3179 struct drm_i915_private *dev_priv = dev->dev_private;
3180 u16 rgvswctl;
3181
3182 spin_lock_irq(&mchdev_lock);
3183
3184 rgvswctl = I915_READ16(MEMSWCTL);
3185
3186 /* Ack interrupts, disable EFC interrupt */
3187 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3188 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3189 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3190 I915_WRITE(DEIIR, DE_PCU_EVENT);
3191 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3192
3193 /* Go back to the starting frequency */
3194 ironlake_set_drps(dev, dev_priv->ips.fstart);
3195 mdelay(1);
3196 rgvswctl |= MEMCTL_CMD_STS;
3197 I915_WRITE(MEMSWCTL, rgvswctl);
3198 mdelay(1);
3199
3200 spin_unlock_irq(&mchdev_lock);
3201 }
3202
3203 /* There's a funny hw issue where the hw returns all 0 when reading from
3204 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3205 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3206 * all limits and the gpu stuck at whatever frequency it is at atm).
3207 */
3208 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3209 {
3210 u32 limits;
3211
3212 /* Only set the down limit when we've reached the lowest level to avoid
3213 * getting more interrupts, otherwise leave this clear. This prevents a
3214 * race in the hw when coming out of rc6: There's a tiny window where
3215 * the hw runs at the minimal clock before selecting the desired
3216 * frequency, if the down threshold expires in that window we will not
3217 * receive a down interrupt. */
3218 limits = dev_priv->rps.max_freq_softlimit << 24;
3219 if (val <= dev_priv->rps.min_freq_softlimit)
3220 limits |= dev_priv->rps.min_freq_softlimit << 16;
3221
3222 return limits;
3223 }
3224
3225 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3226 {
3227 int new_power;
3228
3229 if (dev_priv->rps.is_bdw_sw_turbo)
3230 return;
3231
3232 new_power = dev_priv->rps.power;
3233 switch (dev_priv->rps.power) {
3234 case LOW_POWER:
3235 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3236 new_power = BETWEEN;
3237 break;
3238
3239 case BETWEEN:
3240 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3241 new_power = LOW_POWER;
3242 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3243 new_power = HIGH_POWER;
3244 break;
3245
3246 case HIGH_POWER:
3247 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3248 new_power = BETWEEN;
3249 break;
3250 }
3251 /* Max/min bins are special */
3252 if (val == dev_priv->rps.min_freq_softlimit)
3253 new_power = LOW_POWER;
3254 if (val == dev_priv->rps.max_freq_softlimit)
3255 new_power = HIGH_POWER;
3256 if (new_power == dev_priv->rps.power)
3257 return;
3258
3259 /* Note the units here are not exactly 1us, but 1280ns. */
3260 switch (new_power) {
3261 case LOW_POWER:
3262 /* Upclock if more than 95% busy over 16ms */
3263 I915_WRITE(GEN6_RP_UP_EI, 12500);
3264 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3265
3266 /* Downclock if less than 85% busy over 32ms */
3267 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3268 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3269
3270 I915_WRITE(GEN6_RP_CONTROL,
3271 GEN6_RP_MEDIA_TURBO |
3272 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3273 GEN6_RP_MEDIA_IS_GFX |
3274 GEN6_RP_ENABLE |
3275 GEN6_RP_UP_BUSY_AVG |
3276 GEN6_RP_DOWN_IDLE_AVG);
3277 break;
3278
3279 case BETWEEN:
3280 /* Upclock if more than 90% busy over 13ms */
3281 I915_WRITE(GEN6_RP_UP_EI, 10250);
3282 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3283
3284 /* Downclock if less than 75% busy over 32ms */
3285 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3286 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3287
3288 I915_WRITE(GEN6_RP_CONTROL,
3289 GEN6_RP_MEDIA_TURBO |
3290 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3291 GEN6_RP_MEDIA_IS_GFX |
3292 GEN6_RP_ENABLE |
3293 GEN6_RP_UP_BUSY_AVG |
3294 GEN6_RP_DOWN_IDLE_AVG);
3295 break;
3296
3297 case HIGH_POWER:
3298 /* Upclock if more than 85% busy over 10ms */
3299 I915_WRITE(GEN6_RP_UP_EI, 8000);
3300 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3301
3302 /* Downclock if less than 60% busy over 32ms */
3303 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3304 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3305
3306 I915_WRITE(GEN6_RP_CONTROL,
3307 GEN6_RP_MEDIA_TURBO |
3308 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3309 GEN6_RP_MEDIA_IS_GFX |
3310 GEN6_RP_ENABLE |
3311 GEN6_RP_UP_BUSY_AVG |
3312 GEN6_RP_DOWN_IDLE_AVG);
3313 break;
3314 }
3315
3316 dev_priv->rps.power = new_power;
3317 dev_priv->rps.last_adj = 0;
3318 }
3319
3320 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3321 {
3322 u32 mask = 0;
3323
3324 if (val > dev_priv->rps.min_freq_softlimit)
3325 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3326 if (val < dev_priv->rps.max_freq_softlimit)
3327 mask |= GEN6_PM_RP_UP_THRESHOLD;
3328
3329 mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
3330 mask &= dev_priv->pm_rps_events;
3331
3332 /* IVB and SNB hard hangs on looping batchbuffer
3333 * if GEN6_PM_UP_EI_EXPIRED is masked.
3334 */
3335 if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3336 mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3337
3338 if (IS_GEN8(dev_priv->dev))
3339 mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
3340
3341 return ~mask;
3342 }
3343
3344 /* gen6_set_rps is called to update the frequency request, but should also be
3345 * called when the range (min_delay and max_delay) is modified so that we can
3346 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3347 void gen6_set_rps(struct drm_device *dev, u8 val)
3348 {
3349 struct drm_i915_private *dev_priv = dev->dev_private;
3350
3351 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3352 WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3353 WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3354
3355 /* min/max delay may still have been modified so be sure to
3356 * write the limits value.
3357 */
3358 if (val != dev_priv->rps.cur_freq) {
3359 gen6_set_rps_thresholds(dev_priv, val);
3360
3361 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3362 I915_WRITE(GEN6_RPNSWREQ,
3363 HSW_FREQUENCY(val));
3364 else
3365 I915_WRITE(GEN6_RPNSWREQ,
3366 GEN6_FREQUENCY(val) |
3367 GEN6_OFFSET(0) |
3368 GEN6_AGGRESSIVE_TURBO);
3369 }
3370
3371 /* Make sure we continue to get interrupts
3372 * until we hit the minimum or maximum frequencies.
3373 */
3374 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3375 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3376
3377 POSTING_READ(GEN6_RPNSWREQ);
3378
3379 dev_priv->rps.cur_freq = val;
3380 trace_intel_gpu_freq_change(val * 50);
3381 }
3382
3383 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3384 *
3385 * * If Gfx is Idle, then
3386 * 1. Mask Turbo interrupts
3387 * 2. Bring up Gfx clock
3388 * 3. Change the freq to Rpn and wait till P-Unit updates freq
3389 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3390 * 5. Unmask Turbo interrupts
3391 */
3392 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3393 {
3394 struct drm_device *dev = dev_priv->dev;
3395
3396 /* Latest VLV doesn't need to force the gfx clock */
3397 if (dev->pdev->revision >= 0xd) {
3398 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3399 return;
3400 }
3401
3402 /*
3403 * When we are idle. Drop to min voltage state.
3404 */
3405
3406 if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3407 return;
3408
3409 /* Mask turbo interrupt so that they will not come in between */
3410 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3411
3412 vlv_force_gfx_clock(dev_priv, true);
3413
3414 dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3415
3416 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3417 dev_priv->rps.min_freq_softlimit);
3418
3419 if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3420 & GENFREQSTATUS) == 0, 5))
3421 DRM_ERROR("timed out waiting for Punit\n");
3422
3423 vlv_force_gfx_clock(dev_priv, false);
3424
3425 I915_WRITE(GEN6_PMINTRMSK,
3426 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3427 }
3428
3429 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3430 {
3431 struct drm_device *dev = dev_priv->dev;
3432
3433 mutex_lock(&dev_priv->rps.hw_lock);
3434 if (dev_priv->rps.enabled) {
3435 if (IS_CHERRYVIEW(dev))
3436 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3437 else if (IS_VALLEYVIEW(dev))
3438 vlv_set_rps_idle(dev_priv);
3439 else if (!dev_priv->rps.is_bdw_sw_turbo
3440 || atomic_read(&dev_priv->rps.sw_turbo.flip_received)){
3441 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3442 }
3443
3444 dev_priv->rps.last_adj = 0;
3445 }
3446 mutex_unlock(&dev_priv->rps.hw_lock);
3447 }
3448
3449 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3450 {
3451 struct drm_device *dev = dev_priv->dev;
3452
3453 mutex_lock(&dev_priv->rps.hw_lock);
3454 if (dev_priv->rps.enabled) {
3455 if (IS_VALLEYVIEW(dev))
3456 valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3457 else if (!dev_priv->rps.is_bdw_sw_turbo
3458 || atomic_read(&dev_priv->rps.sw_turbo.flip_received)){
3459 gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3460 }
3461
3462 dev_priv->rps.last_adj = 0;
3463 }
3464 mutex_unlock(&dev_priv->rps.hw_lock);
3465 }
3466
3467 void valleyview_set_rps(struct drm_device *dev, u8 val)
3468 {
3469 struct drm_i915_private *dev_priv = dev->dev_private;
3470
3471 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3472 WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3473 WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3474
3475 DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3476 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3477 dev_priv->rps.cur_freq,
3478 vlv_gpu_freq(dev_priv, val), val);
3479
3480 if (val != dev_priv->rps.cur_freq)
3481 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3482
3483 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3484
3485 dev_priv->rps.cur_freq = val;
3486 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3487 }
3488
3489 static void gen8_disable_rps_interrupts(struct drm_device *dev)
3490 {
3491 struct drm_i915_private *dev_priv = dev->dev_private;
3492 if (IS_BROADWELL(dev) && dev_priv->rps.is_bdw_sw_turbo){
3493 if (atomic_read(&dev_priv->rps.sw_turbo.flip_received))
3494 del_timer(&dev_priv->rps.sw_turbo.flip_timer);
3495 dev_priv-> rps.is_bdw_sw_turbo = false;
3496 } else {
3497 I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
3498 I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
3499 ~dev_priv->pm_rps_events);
3500 /* Complete PM interrupt masking here doesn't race with the rps work
3501 * item again unmasking PM interrupts because that is using a different
3502 * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
3503 * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
3504 * gen8_enable_rps will clean up. */
3505
3506 spin_lock_irq(&dev_priv->irq_lock);
3507 dev_priv->rps.pm_iir = 0;
3508 spin_unlock_irq(&dev_priv->irq_lock);
3509
3510 I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3511 }
3512 }
3513
3514 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3515 {
3516 struct drm_i915_private *dev_priv = dev->dev_private;
3517
3518 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3519 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3520 ~dev_priv->pm_rps_events);
3521 /* Complete PM interrupt masking here doesn't race with the rps work
3522 * item again unmasking PM interrupts because that is using a different
3523 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3524 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3525
3526 spin_lock_irq(&dev_priv->irq_lock);
3527 dev_priv->rps.pm_iir = 0;
3528 spin_unlock_irq(&dev_priv->irq_lock);
3529
3530 I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3531 }
3532
3533 static void gen6_disable_rps(struct drm_device *dev)
3534 {
3535 struct drm_i915_private *dev_priv = dev->dev_private;
3536
3537 I915_WRITE(GEN6_RC_CONTROL, 0);
3538 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3539
3540 if (IS_BROADWELL(dev))
3541 gen8_disable_rps_interrupts(dev);
3542 else
3543 gen6_disable_rps_interrupts(dev);
3544 }
3545
3546 static void cherryview_disable_rps(struct drm_device *dev)
3547 {
3548 struct drm_i915_private *dev_priv = dev->dev_private;
3549
3550 I915_WRITE(GEN6_RC_CONTROL, 0);
3551
3552 gen8_disable_rps_interrupts(dev);
3553 }
3554
3555 static void valleyview_disable_rps(struct drm_device *dev)
3556 {
3557 struct drm_i915_private *dev_priv = dev->dev_private;
3558
3559 /* we're doing forcewake before Disabling RC6,
3560 * This what the BIOS expects when going into suspend */
3561 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3562
3563 I915_WRITE(GEN6_RC_CONTROL, 0);
3564
3565 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3566
3567 gen6_disable_rps_interrupts(dev);
3568 }
3569
3570 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3571 {
3572 if (IS_VALLEYVIEW(dev)) {
3573 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3574 mode = GEN6_RC_CTL_RC6_ENABLE;
3575 else
3576 mode = 0;
3577 }
3578 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3579 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3580 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3581 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3582 }
3583
3584 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3585 {
3586 /* No RC6 before Ironlake */
3587 if (INTEL_INFO(dev)->gen < 5)
3588 return 0;
3589
3590 /* RC6 is only on Ironlake mobile not on desktop */
3591 if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3592 return 0;
3593
3594 /* Respect the kernel parameter if it is set */
3595 if (enable_rc6 >= 0) {
3596 int mask;
3597
3598 if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
3599 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3600 INTEL_RC6pp_ENABLE;
3601 else
3602 mask = INTEL_RC6_ENABLE;
3603
3604 if ((enable_rc6 & mask) != enable_rc6)
3605 DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3606 enable_rc6 & mask, enable_rc6, mask);
3607
3608 return enable_rc6 & mask;
3609 }
3610
3611 /* Disable RC6 on Ironlake */
3612 if (INTEL_INFO(dev)->gen == 5)
3613 return 0;
3614
3615 if (IS_IVYBRIDGE(dev))
3616 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3617
3618 return INTEL_RC6_ENABLE;
3619 }
3620
3621 int intel_enable_rc6(const struct drm_device *dev)
3622 {
3623 return i915.enable_rc6;
3624 }
3625
3626 static void gen8_enable_rps_interrupts(struct drm_device *dev)
3627 {
3628 struct drm_i915_private *dev_priv = dev->dev_private;
3629
3630 spin_lock_irq(&dev_priv->irq_lock);
3631 WARN_ON(dev_priv->rps.pm_iir);
3632 gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3633 I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3634 spin_unlock_irq(&dev_priv->irq_lock);
3635 }
3636
3637 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3638 {
3639 struct drm_i915_private *dev_priv = dev->dev_private;
3640
3641 spin_lock_irq(&dev_priv->irq_lock);
3642 WARN_ON(dev_priv->rps.pm_iir);
3643 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3644 I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3645 spin_unlock_irq(&dev_priv->irq_lock);
3646 }
3647
3648 static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
3649 {
3650 /* All of these values are in units of 50MHz */
3651 dev_priv->rps.cur_freq = 0;
3652 /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3653 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
3654 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
3655 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
3656 /* XXX: only BYT has a special efficient freq */
3657 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
3658 /* hw_max = RP0 until we check for overclocking */
3659 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
3660
3661 /* Preserve min/max settings in case of re-init */
3662 if (dev_priv->rps.max_freq_softlimit == 0)
3663 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3664
3665 if (dev_priv->rps.min_freq_softlimit == 0)
3666 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3667 }
3668
3669 static void bdw_sw_calculate_freq(struct drm_device *dev,
3670 struct intel_rps_bdw_cal *c, u32 *cur_time, u32 *c0)
3671 {
3672 struct drm_i915_private *dev_priv = dev->dev_private;
3673 u64 busy = 0;
3674 u32 busyness_pct = 0;
3675 u32 elapsed_time = 0;
3676 u16 new_freq = 0;
3677
3678 if (!c || !cur_time || !c0)
3679 return;
3680
3681 if (0 == c->last_c0)
3682 goto out;
3683
3684 /* Check Evaluation interval */
3685 elapsed_time = *cur_time - c->last_ts;
3686 if (elapsed_time < c->eval_interval)
3687 return;
3688
3689 mutex_lock(&dev_priv->rps.hw_lock);
3690
3691 /*
3692 * c0 unit in 32*1.28 usec, elapsed_time unit in 1 usec.
3693 * Whole busyness_pct calculation should be
3694 * busy = ((u64)(*c0 - c->last_c0) << 5 << 7) / 100;
3695 * busyness_pct = (u32)(busy * 100 / elapsed_time);
3696 * The final formula is to simplify CPU calculation
3697 */
3698 busy = (u64)(*c0 - c->last_c0) << 12;
3699 do_div(busy, elapsed_time);
3700 busyness_pct = (u32)busy;
3701
3702 if (c->is_up && busyness_pct >= c->it_threshold_pct)
3703 new_freq = (u16)dev_priv->rps.cur_freq + 3;
3704 if (!c->is_up && busyness_pct <= c->it_threshold_pct)
3705 new_freq = (u16)dev_priv->rps.cur_freq - 1;
3706
3707 /* Adjust to new frequency busyness and compare with threshold */
3708 if (0 != new_freq) {
3709 if (new_freq > dev_priv->rps.max_freq_softlimit)
3710 new_freq = dev_priv->rps.max_freq_softlimit;
3711 else if (new_freq < dev_priv->rps.min_freq_softlimit)
3712 new_freq = dev_priv->rps.min_freq_softlimit;
3713
3714 gen6_set_rps(dev, new_freq);
3715 }
3716
3717 mutex_unlock(&dev_priv->rps.hw_lock);
3718
3719 out:
3720 c->last_c0 = *c0;
3721 c->last_ts = *cur_time;
3722 }
3723
3724 static void gen8_set_frequency_RP0(struct work_struct *work)
3725 {
3726 struct intel_rps_bdw_turbo *p_bdw_turbo =
3727 container_of(work, struct intel_rps_bdw_turbo, work_max_freq);
3728 struct intel_gen6_power_mgmt *p_power_mgmt =
3729 container_of(p_bdw_turbo, struct intel_gen6_power_mgmt, sw_turbo);
3730 struct drm_i915_private *dev_priv =
3731 container_of(p_power_mgmt, struct drm_i915_private, rps);
3732
3733 mutex_lock(&dev_priv->rps.hw_lock);
3734 gen6_set_rps(dev_priv->dev, dev_priv->rps.rp0_freq);
3735 mutex_unlock(&dev_priv->rps.hw_lock);
3736 }
3737
3738 static void flip_active_timeout_handler(unsigned long var)
3739 {
3740 struct drm_i915_private *dev_priv = (struct drm_i915_private *) var;
3741
3742 del_timer(&dev_priv->rps.sw_turbo.flip_timer);
3743 atomic_set(&dev_priv->rps.sw_turbo.flip_received, false);
3744
3745 queue_work(dev_priv->wq, &dev_priv->rps.sw_turbo.work_max_freq);
3746 }
3747
3748 void bdw_software_turbo(struct drm_device *dev)
3749 {
3750 struct drm_i915_private *dev_priv = dev->dev_private;
3751
3752 u32 current_time = I915_READ(TIMESTAMP_CTR); /* unit in usec */
3753 u32 current_c0 = I915_READ(MCHBAR_PCU_C0); /* unit in 32*1.28 usec */
3754
3755 bdw_sw_calculate_freq(dev, &dev_priv->rps.sw_turbo.up,
3756 &current_time, &current_c0);
3757 bdw_sw_calculate_freq(dev, &dev_priv->rps.sw_turbo.down,
3758 &current_time, &current_c0);
3759 }
3760
3761 static void gen8_enable_rps(struct drm_device *dev)
3762 {
3763 struct drm_i915_private *dev_priv = dev->dev_private;
3764 struct intel_engine_cs *ring;
3765 uint32_t rc6_mask = 0, rp_state_cap;
3766 uint32_t threshold_up_pct, threshold_down_pct;
3767 uint32_t ei_up, ei_down; /* up and down evaluation interval */
3768 u32 rp_ctl_flag;
3769 int unused;
3770
3771 /* Use software Turbo for BDW */
3772 dev_priv->rps.is_bdw_sw_turbo = IS_BROADWELL(dev);
3773
3774 /* 1a: Software RC state - RC0 */
3775 I915_WRITE(GEN6_RC_STATE, 0);
3776
3777 /* 1c & 1d: Get forcewake during program sequence. Although the driver
3778 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3779 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3780
3781 /* 2a: Disable RC states. */
3782 I915_WRITE(GEN6_RC_CONTROL, 0);
3783
3784 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3785 parse_rp_state_cap(dev_priv, rp_state_cap);
3786
3787 /* 2b: Program RC6 thresholds.*/
3788 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3789 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3790 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3791 for_each_ring(ring, dev_priv, unused)
3792 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3793 I915_WRITE(GEN6_RC_SLEEP, 0);
3794 if (IS_BROADWELL(dev))
3795 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
3796 else
3797 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3798
3799 /* 3: Enable RC6 */
3800 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3801 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3802 intel_print_rc6_info(dev, rc6_mask);
3803 if (IS_BROADWELL(dev))
3804 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3805 GEN7_RC_CTL_TO_MODE |
3806 rc6_mask);
3807 else
3808 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3809 GEN6_RC_CTL_EI_MODE(1) |
3810 rc6_mask);
3811
3812 /* 4 Program defaults and thresholds for RPS*/
3813 I915_WRITE(GEN6_RPNSWREQ,
3814 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3815 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3816 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3817 ei_up = 84480; /* 84.48ms */
3818 ei_down = 448000;
3819 threshold_up_pct = 90; /* x percent busy */
3820 threshold_down_pct = 70;
3821
3822 if (dev_priv->rps.is_bdw_sw_turbo) {
3823 dev_priv->rps.sw_turbo.up.it_threshold_pct = threshold_up_pct;
3824 dev_priv->rps.sw_turbo.up.eval_interval = ei_up;
3825 dev_priv->rps.sw_turbo.up.is_up = true;
3826 dev_priv->rps.sw_turbo.up.last_ts = 0;
3827 dev_priv->rps.sw_turbo.up.last_c0 = 0;
3828
3829 dev_priv->rps.sw_turbo.down.it_threshold_pct = threshold_down_pct;
3830 dev_priv->rps.sw_turbo.down.eval_interval = ei_down;
3831 dev_priv->rps.sw_turbo.down.is_up = false;
3832 dev_priv->rps.sw_turbo.down.last_ts = 0;
3833 dev_priv->rps.sw_turbo.down.last_c0 = 0;
3834
3835 /* Start the timer to track if flip comes*/
3836 dev_priv->rps.sw_turbo.timeout = 200*1000; /* in us */
3837
3838 init_timer(&dev_priv->rps.sw_turbo.flip_timer);
3839 dev_priv->rps.sw_turbo.flip_timer.function = flip_active_timeout_handler;
3840 dev_priv->rps.sw_turbo.flip_timer.data = (unsigned long) dev_priv;
3841 dev_priv->rps.sw_turbo.flip_timer.expires =
3842 usecs_to_jiffies(dev_priv->rps.sw_turbo.timeout) + jiffies;
3843 add_timer(&dev_priv->rps.sw_turbo.flip_timer);
3844 INIT_WORK(&dev_priv->rps.sw_turbo.work_max_freq, gen8_set_frequency_RP0);
3845
3846 atomic_set(&dev_priv->rps.sw_turbo.flip_received, true);
3847 } else {
3848 /* NB: Docs say 1s, and 1000000 - which aren't equivalent
3849 * 1 second timeout*/
3850 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, FREQ_1_28_US(1000000));
3851
3852 /* Docs recommend 900MHz, and 300 MHz respectively */
3853 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3854 dev_priv->rps.max_freq_softlimit << 24 |
3855 dev_priv->rps.min_freq_softlimit << 16);
3856
3857 I915_WRITE(GEN6_RP_UP_THRESHOLD,
3858 FREQ_1_28_US(ei_up * threshold_up_pct / 100));
3859 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
3860 FREQ_1_28_US(ei_down * threshold_down_pct / 100));
3861 I915_WRITE(GEN6_RP_UP_EI,
3862 FREQ_1_28_US(ei_up));
3863 I915_WRITE(GEN6_RP_DOWN_EI,
3864 FREQ_1_28_US(ei_down));
3865
3866 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3867 }
3868
3869 /* 5: Enable RPS */
3870 rp_ctl_flag = GEN6_RP_MEDIA_TURBO |
3871 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3872 GEN6_RP_MEDIA_IS_GFX |
3873 GEN6_RP_UP_BUSY_AVG |
3874 GEN6_RP_DOWN_IDLE_AVG;
3875 if (!dev_priv->rps.is_bdw_sw_turbo)
3876 rp_ctl_flag |= GEN6_RP_ENABLE;
3877
3878 I915_WRITE(GEN6_RP_CONTROL, rp_ctl_flag);
3879
3880 /* 6: Ring frequency + overclocking
3881 * (our driver does this later */
3882 gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3883 if (!dev_priv->rps.is_bdw_sw_turbo)
3884 gen8_enable_rps_interrupts(dev);
3885
3886 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3887 }
3888
3889 static void gen6_enable_rps(struct drm_device *dev)
3890 {
3891 struct drm_i915_private *dev_priv = dev->dev_private;
3892 struct intel_engine_cs *ring;
3893 u32 rp_state_cap;
3894 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3895 u32 gtfifodbg;
3896 int rc6_mode;
3897 int i, ret;
3898
3899 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3900
3901 /* Here begins a magic sequence of register writes to enable
3902 * auto-downclocking.
3903 *
3904 * Perhaps there might be some value in exposing these to
3905 * userspace...
3906 */
3907 I915_WRITE(GEN6_RC_STATE, 0);
3908
3909 /* Clear the DBG now so we don't confuse earlier errors */
3910 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3911 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3912 I915_WRITE(GTFIFODBG, gtfifodbg);
3913 }
3914
3915 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3916
3917 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3918
3919 parse_rp_state_cap(dev_priv, rp_state_cap);
3920
3921 /* disable the counters and set deterministic thresholds */
3922 I915_WRITE(GEN6_RC_CONTROL, 0);
3923
3924 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3925 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3926 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3927 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3928 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3929
3930 for_each_ring(ring, dev_priv, i)
3931 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3932
3933 I915_WRITE(GEN6_RC_SLEEP, 0);
3934 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3935 if (IS_IVYBRIDGE(dev))
3936 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3937 else
3938 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3939 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3940 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3941
3942 /* Check if we are enabling RC6 */
3943 rc6_mode = intel_enable_rc6(dev_priv->dev);
3944 if (rc6_mode & INTEL_RC6_ENABLE)
3945 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3946
3947 /* We don't use those on Haswell */
3948 if (!IS_HASWELL(dev)) {
3949 if (rc6_mode & INTEL_RC6p_ENABLE)
3950 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3951
3952 if (rc6_mode & INTEL_RC6pp_ENABLE)
3953 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3954 }
3955
3956 intel_print_rc6_info(dev, rc6_mask);
3957
3958 I915_WRITE(GEN6_RC_CONTROL,
3959 rc6_mask |
3960 GEN6_RC_CTL_EI_MODE(1) |
3961 GEN6_RC_CTL_HW_ENABLE);
3962
3963 /* Power down if completely idle for over 50ms */
3964 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3965 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3966
3967 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3968 if (ret)
3969 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3970
3971 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3972 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3973 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3974 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3975 (pcu_mbox & 0xff) * 50);
3976 dev_priv->rps.max_freq = pcu_mbox & 0xff;
3977 }
3978
3979 dev_priv->rps.power = HIGH_POWER; /* force a reset */
3980 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3981
3982 gen6_enable_rps_interrupts(dev);
3983
3984 rc6vids = 0;
3985 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3986 if (IS_GEN6(dev) && ret) {
3987 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3988 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3989 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3990 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3991 rc6vids &= 0xffff00;
3992 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3993 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3994 if (ret)
3995 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3996 }
3997
3998 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3999 }
4000
4001 static void __gen6_update_ring_freq(struct drm_device *dev)
4002 {
4003 struct drm_i915_private *dev_priv = dev->dev_private;
4004 int min_freq = 15;
4005 unsigned int gpu_freq;
4006 unsigned int max_ia_freq, min_ring_freq;
4007 int scaling_factor = 180;
4008 struct cpufreq_policy *policy;
4009
4010 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4011
4012 policy = cpufreq_cpu_get(0);
4013 if (policy) {
4014 max_ia_freq = policy->cpuinfo.max_freq;
4015 cpufreq_cpu_put(policy);
4016 } else {
4017 /*
4018 * Default to measured freq if none found, PCU will ensure we
4019 * don't go over
4020 */
4021 max_ia_freq = tsc_khz;
4022 }
4023
4024 /* Convert from kHz to MHz */
4025 max_ia_freq /= 1000;
4026
4027 min_ring_freq = I915_READ(DCLK) & 0xf;
4028 /* convert DDR frequency from units of 266.6MHz to bandwidth */
4029 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4030
4031 /*
4032 * For each potential GPU frequency, load a ring frequency we'd like
4033 * to use for memory access. We do this by specifying the IA frequency
4034 * the PCU should use as a reference to determine the ring frequency.
4035 */
4036 for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
4037 gpu_freq--) {
4038 int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
4039 unsigned int ia_freq = 0, ring_freq = 0;
4040
4041 if (INTEL_INFO(dev)->gen >= 8) {
4042 /* max(2 * GT, DDR). NB: GT is 50MHz units */
4043 ring_freq = max(min_ring_freq, gpu_freq);
4044 } else if (IS_HASWELL(dev)) {
4045 ring_freq = mult_frac(gpu_freq, 5, 4);
4046 ring_freq = max(min_ring_freq, ring_freq);
4047 /* leave ia_freq as the default, chosen by cpufreq */
4048 } else {
4049 /* On older processors, there is no separate ring
4050 * clock domain, so in order to boost the bandwidth
4051 * of the ring, we need to upclock the CPU (ia_freq).
4052 *
4053 * For GPU frequencies less than 750MHz,
4054 * just use the lowest ring freq.
4055 */
4056 if (gpu_freq < min_freq)
4057 ia_freq = 800;
4058 else
4059 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
4060 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
4061 }
4062
4063 sandybridge_pcode_write(dev_priv,
4064 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4065 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
4066 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
4067 gpu_freq);
4068 }
4069 }
4070
4071 void gen6_update_ring_freq(struct drm_device *dev)
4072 {
4073 struct drm_i915_private *dev_priv = dev->dev_private;
4074
4075 if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
4076 return;
4077
4078 mutex_lock(&dev_priv->rps.hw_lock);
4079 __gen6_update_ring_freq(dev);
4080 mutex_unlock(&dev_priv->rps.hw_lock);
4081 }
4082
4083 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4084 {
4085 u32 val, rp0;
4086
4087 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4088 rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4089
4090 return rp0;
4091 }
4092
4093 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4094 {
4095 u32 val, rpe;
4096
4097 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
4098 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
4099
4100 return rpe;
4101 }
4102
4103 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
4104 {
4105 u32 val, rp1;
4106
4107 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4108 rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4109
4110 return rp1;
4111 }
4112
4113 static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4114 {
4115 u32 val, rpn;
4116
4117 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4118 rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
4119 return rpn;
4120 }
4121
4122 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
4123 {
4124 u32 val, rp1;
4125
4126 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4127
4128 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
4129
4130 return rp1;
4131 }
4132
4133 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4134 {
4135 u32 val, rp0;
4136
4137 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4138
4139 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
4140 /* Clamp to max */
4141 rp0 = min_t(u32, rp0, 0xea);
4142
4143 return rp0;
4144 }
4145
4146 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4147 {
4148 u32 val, rpe;
4149
4150 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4151 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4152 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4153 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
4154
4155 return rpe;
4156 }
4157
4158 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4159 {
4160 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4161 }
4162
4163 /* Check that the pctx buffer wasn't move under us. */
4164 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
4165 {
4166 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4167
4168 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
4169 dev_priv->vlv_pctx->stolen->start);
4170 }
4171
4172
4173 /* Check that the pcbr address is not empty. */
4174 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
4175 {
4176 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4177
4178 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
4179 }
4180
4181 static void cherryview_setup_pctx(struct drm_device *dev)
4182 {
4183 struct drm_i915_private *dev_priv = dev->dev_private;
4184 unsigned long pctx_paddr, paddr;
4185 struct i915_gtt *gtt = &dev_priv->gtt;
4186 u32 pcbr;
4187 int pctx_size = 32*1024;
4188
4189 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4190
4191 pcbr = I915_READ(VLV_PCBR);
4192 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4193 paddr = (dev_priv->mm.stolen_base +
4194 (gtt->stolen_size - pctx_size));
4195
4196 pctx_paddr = (paddr & (~4095));
4197 I915_WRITE(VLV_PCBR, pctx_paddr);
4198 }
4199 }
4200
4201 static void valleyview_setup_pctx(struct drm_device *dev)
4202 {
4203 struct drm_i915_private *dev_priv = dev->dev_private;
4204 struct drm_i915_gem_object *pctx;
4205 unsigned long pctx_paddr;
4206 u32 pcbr;
4207 int pctx_size = 24*1024;
4208
4209 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4210
4211 pcbr = I915_READ(VLV_PCBR);
4212 if (pcbr) {
4213 /* BIOS set it up already, grab the pre-alloc'd space */
4214 int pcbr_offset;
4215
4216 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4217 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4218 pcbr_offset,
4219 I915_GTT_OFFSET_NONE,
4220 pctx_size);
4221 goto out;
4222 }
4223
4224 /*
4225 * From the Gunit register HAS:
4226 * The Gfx driver is expected to program this register and ensure
4227 * proper allocation within Gfx stolen memory. For example, this
4228 * register should be programmed such than the PCBR range does not
4229 * overlap with other ranges, such as the frame buffer, protected
4230 * memory, or any other relevant ranges.
4231 */
4232 pctx = i915_gem_object_create_stolen(dev, pctx_size);
4233 if (!pctx) {
4234 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4235 return;
4236 }
4237
4238 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4239 I915_WRITE(VLV_PCBR, pctx_paddr);
4240
4241 out:
4242 dev_priv->vlv_pctx = pctx;
4243 }
4244
4245 static void valleyview_cleanup_pctx(struct drm_device *dev)
4246 {
4247 struct drm_i915_private *dev_priv = dev->dev_private;
4248
4249 if (WARN_ON(!dev_priv->vlv_pctx))
4250 return;
4251
4252 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
4253 dev_priv->vlv_pctx = NULL;
4254 }
4255
4256 static void valleyview_init_gt_powersave(struct drm_device *dev)
4257 {
4258 struct drm_i915_private *dev_priv = dev->dev_private;
4259 u32 val;
4260
4261 valleyview_setup_pctx(dev);
4262
4263 mutex_lock(&dev_priv->rps.hw_lock);
4264
4265 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4266 switch ((val >> 6) & 3) {
4267 case 0:
4268 case 1:
4269 dev_priv->mem_freq = 800;
4270 break;
4271 case 2:
4272 dev_priv->mem_freq = 1066;
4273 break;
4274 case 3:
4275 dev_priv->mem_freq = 1333;
4276 break;
4277 }
4278 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
4279
4280 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
4281 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4282 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4283 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4284 dev_priv->rps.max_freq);
4285
4286 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
4287 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4288 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4289 dev_priv->rps.efficient_freq);
4290
4291 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
4292 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4293 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4294 dev_priv->rps.rp1_freq);
4295
4296 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
4297 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4298 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4299 dev_priv->rps.min_freq);
4300
4301 /* Preserve min/max settings in case of re-init */
4302 if (dev_priv->rps.max_freq_softlimit == 0)
4303 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4304
4305 if (dev_priv->rps.min_freq_softlimit == 0)
4306 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4307
4308 mutex_unlock(&dev_priv->rps.hw_lock);
4309 }
4310
4311 static void cherryview_init_gt_powersave(struct drm_device *dev)
4312 {
4313 struct drm_i915_private *dev_priv = dev->dev_private;
4314 u32 val;
4315
4316 cherryview_setup_pctx(dev);
4317
4318 mutex_lock(&dev_priv->rps.hw_lock);
4319
4320 val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
4321 switch ((val >> 2) & 0x7) {
4322 case 0:
4323 case 1:
4324 dev_priv->rps.cz_freq = 200;
4325 dev_priv->mem_freq = 1600;
4326 break;
4327 case 2:
4328 dev_priv->rps.cz_freq = 267;
4329 dev_priv->mem_freq = 1600;
4330 break;
4331 case 3:
4332 dev_priv->rps.cz_freq = 333;
4333 dev_priv->mem_freq = 2000;
4334 break;
4335 case 4:
4336 dev_priv->rps.cz_freq = 320;
4337 dev_priv->mem_freq = 1600;
4338 break;
4339 case 5:
4340 dev_priv->rps.cz_freq = 400;
4341 dev_priv->mem_freq = 1600;
4342 break;
4343 }
4344 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
4345
4346 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4347 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4348 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4349 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4350 dev_priv->rps.max_freq);
4351
4352 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
4353 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4354 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4355 dev_priv->rps.efficient_freq);
4356
4357 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
4358 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4359 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4360 dev_priv->rps.rp1_freq);
4361
4362 dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
4363 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4364 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4365 dev_priv->rps.min_freq);
4366
4367 /* Preserve min/max settings in case of re-init */
4368 if (dev_priv->rps.max_freq_softlimit == 0)
4369 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4370
4371 if (dev_priv->rps.min_freq_softlimit == 0)
4372 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4373
4374 mutex_unlock(&dev_priv->rps.hw_lock);
4375 }
4376
4377 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
4378 {
4379 valleyview_cleanup_pctx(dev);
4380 }
4381
4382 static void cherryview_enable_rps(struct drm_device *dev)
4383 {
4384 struct drm_i915_private *dev_priv = dev->dev_private;
4385 struct intel_engine_cs *ring;
4386 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4387 int i;
4388
4389 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4390
4391 gtfifodbg = I915_READ(GTFIFODBG);
4392 if (gtfifodbg) {
4393 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4394 gtfifodbg);
4395 I915_WRITE(GTFIFODBG, gtfifodbg);
4396 }
4397
4398 cherryview_check_pctx(dev_priv);
4399
4400 /* 1a & 1b: Get forcewake during program sequence. Although the driver
4401 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4402 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4403
4404 /* 2a: Program RC6 thresholds.*/
4405 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4406 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4407 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4408
4409 for_each_ring(ring, dev_priv, i)
4410 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4411 I915_WRITE(GEN6_RC_SLEEP, 0);
4412
4413 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4414
4415 /* allows RC6 residency counter to work */
4416 I915_WRITE(VLV_COUNTER_CONTROL,
4417 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4418 VLV_MEDIA_RC6_COUNT_EN |
4419 VLV_RENDER_RC6_COUNT_EN));
4420
4421 /* For now we assume BIOS is allocating and populating the PCBR */
4422 pcbr = I915_READ(VLV_PCBR);
4423
4424 DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);
4425
4426 /* 3: Enable RC6 */
4427 if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
4428 (pcbr >> VLV_PCBR_ADDR_SHIFT))
4429 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
4430
4431 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4432
4433 /* 4 Program defaults and thresholds for RPS*/
4434 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4435 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4436 I915_WRITE(GEN6_RP_UP_EI, 66000);
4437 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4438
4439 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4440
4441 /* WaDisablePwrmtrEvent:chv (pre-production hw) */
4442 I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
4443 I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
4444
4445 /* 5: Enable RPS */
4446 I915_WRITE(GEN6_RP_CONTROL,
4447 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4448 GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
4449 GEN6_RP_ENABLE |
4450 GEN6_RP_UP_BUSY_AVG |
4451 GEN6_RP_DOWN_IDLE_AVG);
4452
4453 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4454
4455 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4456 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4457
4458 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4459 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4460 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4461 dev_priv->rps.cur_freq);
4462
4463 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4464 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4465 dev_priv->rps.efficient_freq);
4466
4467 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4468
4469 gen8_enable_rps_interrupts(dev);
4470
4471 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4472 }
4473
4474 static void valleyview_enable_rps(struct drm_device *dev)
4475 {
4476 struct drm_i915_private *dev_priv = dev->dev_private;
4477 struct intel_engine_cs *ring;
4478 u32 gtfifodbg, val, rc6_mode = 0;
4479 int i;
4480
4481 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4482
4483 valleyview_check_pctx(dev_priv);
4484
4485 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4486 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4487 gtfifodbg);
4488 I915_WRITE(GTFIFODBG, gtfifodbg);
4489 }
4490
4491 /* If VLV, Forcewake all wells, else re-direct to regular path */
4492 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4493
4494 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4495 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4496 I915_WRITE(GEN6_RP_UP_EI, 66000);
4497 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4498
4499 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4500 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4501
4502 I915_WRITE(GEN6_RP_CONTROL,
4503 GEN6_RP_MEDIA_TURBO |
4504 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4505 GEN6_RP_MEDIA_IS_GFX |
4506 GEN6_RP_ENABLE |
4507 GEN6_RP_UP_BUSY_AVG |
4508 GEN6_RP_DOWN_IDLE_CONT);
4509
4510 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4511 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4512 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4513
4514 for_each_ring(ring, dev_priv, i)
4515 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4516
4517 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4518
4519 /* allows RC6 residency counter to work */
4520 I915_WRITE(VLV_COUNTER_CONTROL,
4521 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
4522 VLV_RENDER_RC0_COUNT_EN |
4523 VLV_MEDIA_RC6_COUNT_EN |
4524 VLV_RENDER_RC6_COUNT_EN));
4525
4526 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4527 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4528
4529 intel_print_rc6_info(dev, rc6_mode);
4530
4531 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4532
4533 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4534
4535 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4536 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4537
4538 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4539 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4540 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4541 dev_priv->rps.cur_freq);
4542
4543 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4544 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4545 dev_priv->rps.efficient_freq);
4546
4547 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4548
4549 gen6_enable_rps_interrupts(dev);
4550
4551 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4552 }
4553
4554 void ironlake_teardown_rc6(struct drm_device *dev)
4555 {
4556 struct drm_i915_private *dev_priv = dev->dev_private;
4557
4558 if (dev_priv->ips.renderctx) {
4559 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4560 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4561 dev_priv->ips.renderctx = NULL;
4562 }
4563
4564 if (dev_priv->ips.pwrctx) {
4565 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4566 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4567 dev_priv->ips.pwrctx = NULL;
4568 }
4569 }
4570
4571 static void ironlake_disable_rc6(struct drm_device *dev)
4572 {
4573 struct drm_i915_private *dev_priv = dev->dev_private;
4574
4575 if (I915_READ(PWRCTXA)) {
4576 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4577 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4578 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4579 50);
4580
4581 I915_WRITE(PWRCTXA, 0);
4582 POSTING_READ(PWRCTXA);
4583
4584 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4585 POSTING_READ(RSTDBYCTL);
4586 }
4587 }
4588
4589 static int ironlake_setup_rc6(struct drm_device *dev)
4590 {
4591 struct drm_i915_private *dev_priv = dev->dev_private;
4592
4593 if (dev_priv->ips.renderctx == NULL)
4594 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4595 if (!dev_priv->ips.renderctx)
4596 return -ENOMEM;
4597
4598 if (dev_priv->ips.pwrctx == NULL)
4599 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4600 if (!dev_priv->ips.pwrctx) {
4601 ironlake_teardown_rc6(dev);
4602 return -ENOMEM;
4603 }
4604
4605 return 0;
4606 }
4607
4608 static void ironlake_enable_rc6(struct drm_device *dev)
4609 {
4610 struct drm_i915_private *dev_priv = dev->dev_private;
4611 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4612 bool was_interruptible;
4613 int ret;
4614
4615 /* rc6 disabled by default due to repeated reports of hanging during
4616 * boot and resume.
4617 */
4618 if (!intel_enable_rc6(dev))
4619 return;
4620
4621 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4622
4623 ret = ironlake_setup_rc6(dev);
4624 if (ret)
4625 return;
4626
4627 was_interruptible = dev_priv->mm.interruptible;
4628 dev_priv->mm.interruptible = false;
4629
4630 /*
4631 * GPU can automatically power down the render unit if given a page
4632 * to save state.
4633 */
4634 ret = intel_ring_begin(ring, 6);
4635 if (ret) {
4636 ironlake_teardown_rc6(dev);
4637 dev_priv->mm.interruptible = was_interruptible;
4638 return;
4639 }
4640
4641 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4642 intel_ring_emit(ring, MI_SET_CONTEXT);
4643 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4644 MI_MM_SPACE_GTT |
4645 MI_SAVE_EXT_STATE_EN |
4646 MI_RESTORE_EXT_STATE_EN |
4647 MI_RESTORE_INHIBIT);
4648 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4649 intel_ring_emit(ring, MI_NOOP);
4650 intel_ring_emit(ring, MI_FLUSH);
4651 intel_ring_advance(ring);
4652
4653 /*
4654 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4655 * does an implicit flush, combined with MI_FLUSH above, it should be
4656 * safe to assume that renderctx is valid
4657 */
4658 ret = intel_ring_idle(ring);
4659 dev_priv->mm.interruptible = was_interruptible;
4660 if (ret) {
4661 DRM_ERROR("failed to enable ironlake power savings\n");
4662 ironlake_teardown_rc6(dev);
4663 return;
4664 }
4665
4666 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4667 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4668
4669 intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4670 }
4671
4672 static unsigned long intel_pxfreq(u32 vidfreq)
4673 {
4674 unsigned long freq;
4675 int div = (vidfreq & 0x3f0000) >> 16;
4676 int post = (vidfreq & 0x3000) >> 12;
4677 int pre = (vidfreq & 0x7);
4678
4679 if (!pre)
4680 return 0;
4681
4682 freq = ((div * 133333) / ((1<<post) * pre));
4683
4684 return freq;
4685 }
4686
4687 static const struct cparams {
4688 u16 i;
4689 u16 t;
4690 u16 m;
4691 u16 c;
4692 } cparams[] = {
4693 { 1, 1333, 301, 28664 },
4694 { 1, 1066, 294, 24460 },
4695 { 1, 800, 294, 25192 },
4696 { 0, 1333, 276, 27605 },
4697 { 0, 1066, 276, 27605 },
4698 { 0, 800, 231, 23784 },
4699 };
4700
4701 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4702 {
4703 u64 total_count, diff, ret;
4704 u32 count1, count2, count3, m = 0, c = 0;
4705 unsigned long now = jiffies_to_msecs(jiffies), diff1;
4706 int i;
4707
4708 assert_spin_locked(&mchdev_lock);
4709
4710 diff1 = now - dev_priv->ips.last_time1;
4711
4712 /* Prevent division-by-zero if we are asking too fast.
4713 * Also, we don't get interesting results if we are polling
4714 * faster than once in 10ms, so just return the saved value
4715 * in such cases.
4716 */
4717 if (diff1 <= 10)
4718 return dev_priv->ips.chipset_power;
4719
4720 count1 = I915_READ(DMIEC);
4721 count2 = I915_READ(DDREC);
4722 count3 = I915_READ(CSIEC);
4723
4724 total_count = count1 + count2 + count3;
4725
4726 /* FIXME: handle per-counter overflow */
4727 if (total_count < dev_priv->ips.last_count1) {
4728 diff = ~0UL - dev_priv->ips.last_count1;
4729 diff += total_count;
4730 } else {
4731 diff = total_count - dev_priv->ips.last_count1;
4732 }
4733
4734 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4735 if (cparams[i].i == dev_priv->ips.c_m &&
4736 cparams[i].t == dev_priv->ips.r_t) {
4737 m = cparams[i].m;
4738 c = cparams[i].c;
4739 break;
4740 }
4741 }
4742
4743 diff = div_u64(diff, diff1);
4744 ret = ((m * diff) + c);
4745 ret = div_u64(ret, 10);
4746
4747 dev_priv->ips.last_count1 = total_count;
4748 dev_priv->ips.last_time1 = now;
4749
4750 dev_priv->ips.chipset_power = ret;
4751
4752 return ret;
4753 }
4754
4755 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4756 {
4757 struct drm_device *dev = dev_priv->dev;
4758 unsigned long val;
4759
4760 if (INTEL_INFO(dev)->gen != 5)
4761 return 0;
4762
4763 spin_lock_irq(&mchdev_lock);
4764
4765 val = __i915_chipset_val(dev_priv);
4766
4767 spin_unlock_irq(&mchdev_lock);
4768
4769 return val;
4770 }
4771
4772 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4773 {
4774 unsigned long m, x, b;
4775 u32 tsfs;
4776
4777 tsfs = I915_READ(TSFS);
4778
4779 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4780 x = I915_READ8(TR1);
4781
4782 b = tsfs & TSFS_INTR_MASK;
4783
4784 return ((m * x) / 127) - b;
4785 }
4786
4787 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4788 {
4789 struct drm_device *dev = dev_priv->dev;
4790 static const struct v_table {
4791 u16 vd; /* in .1 mil */
4792 u16 vm; /* in .1 mil */
4793 } v_table[] = {
4794 { 0, 0, },
4795 { 375, 0, },
4796 { 500, 0, },
4797 { 625, 0, },
4798 { 750, 0, },
4799 { 875, 0, },
4800 { 1000, 0, },
4801 { 1125, 0, },
4802 { 4125, 3000, },
4803 { 4125, 3000, },
4804 { 4125, 3000, },
4805 { 4125, 3000, },
4806 { 4125, 3000, },
4807 { 4125, 3000, },
4808 { 4125, 3000, },
4809 { 4125, 3000, },
4810 { 4125, 3000, },
4811 { 4125, 3000, },
4812 { 4125, 3000, },
4813 { 4125, 3000, },
4814 { 4125, 3000, },
4815 { 4125, 3000, },
4816 { 4125, 3000, },
4817 { 4125, 3000, },
4818 { 4125, 3000, },
4819 { 4125, 3000, },
4820 { 4125, 3000, },
4821 { 4125, 3000, },
4822 { 4125, 3000, },
4823 { 4125, 3000, },
4824 { 4125, 3000, },
4825 { 4125, 3000, },
4826 { 4250, 3125, },
4827 { 4375, 3250, },
4828 { 4500, 3375, },
4829 { 4625, 3500, },
4830 { 4750, 3625, },
4831 { 4875, 3750, },
4832 { 5000, 3875, },
4833 { 5125, 4000, },
4834 { 5250, 4125, },
4835 { 5375, 4250, },
4836 { 5500, 4375, },
4837 { 5625, 4500, },
4838 { 5750, 4625, },
4839 { 5875, 4750, },
4840 { 6000, 4875, },
4841 { 6125, 5000, },
4842 { 6250, 5125, },
4843 { 6375, 5250, },
4844 { 6500, 5375, },
4845 { 6625, 5500, },
4846 { 6750, 5625, },
4847 { 6875, 5750, },
4848 { 7000, 5875, },
4849 { 7125, 6000, },
4850 { 7250, 6125, },
4851 { 7375, 6250, },
4852 { 7500, 6375, },
4853 { 7625, 6500, },
4854 { 7750, 6625, },
4855 { 7875, 6750, },
4856 { 8000, 6875, },
4857 { 8125, 7000, },
4858 { 8250, 7125, },
4859 { 8375, 7250, },
4860 { 8500, 7375, },
4861 { 8625, 7500, },
4862 { 8750, 7625, },
4863 { 8875, 7750, },
4864 { 9000, 7875, },
4865 { 9125, 8000, },
4866 { 9250, 8125, },
4867 { 9375, 8250, },
4868 { 9500, 8375, },
4869 { 9625, 8500, },
4870 { 9750, 8625, },
4871 { 9875, 8750, },
4872 { 10000, 8875, },
4873 { 10125, 9000, },
4874 { 10250, 9125, },
4875 { 10375, 9250, },
4876 { 10500, 9375, },
4877 { 10625, 9500, },
4878 { 10750, 9625, },
4879 { 10875, 9750, },
4880 { 11000, 9875, },
4881 { 11125, 10000, },
4882 { 11250, 10125, },
4883 { 11375, 10250, },
4884 { 11500, 10375, },
4885 { 11625, 10500, },
4886 { 11750, 10625, },
4887 { 11875, 10750, },
4888 { 12000, 10875, },
4889 { 12125, 11000, },
4890 { 12250, 11125, },
4891 { 12375, 11250, },
4892 { 12500, 11375, },
4893 { 12625, 11500, },
4894 { 12750, 11625, },
4895 { 12875, 11750, },
4896 { 13000, 11875, },
4897 { 13125, 12000, },
4898 { 13250, 12125, },
4899 { 13375, 12250, },
4900 { 13500, 12375, },
4901 { 13625, 12500, },
4902 { 13750, 12625, },
4903 { 13875, 12750, },
4904 { 14000, 12875, },
4905 { 14125, 13000, },
4906 { 14250, 13125, },
4907 { 14375, 13250, },
4908 { 14500, 13375, },
4909 { 14625, 13500, },
4910 { 14750, 13625, },
4911 { 14875, 13750, },
4912 { 15000, 13875, },
4913 { 15125, 14000, },
4914 { 15250, 14125, },
4915 { 15375, 14250, },
4916 { 15500, 14375, },
4917 { 15625, 14500, },
4918 { 15750, 14625, },
4919 { 15875, 14750, },
4920 { 16000, 14875, },
4921 { 16125, 15000, },
4922 };
4923 if (INTEL_INFO(dev)->is_mobile)
4924 return v_table[pxvid].vm;
4925 else
4926 return v_table[pxvid].vd;
4927 }
4928
4929 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4930 {
4931 u64 now, diff, diffms;
4932 u32 count;
4933
4934 assert_spin_locked(&mchdev_lock);
4935
4936 now = ktime_get_raw_ns();
4937 diffms = now - dev_priv->ips.last_time2;
4938 do_div(diffms, NSEC_PER_MSEC);
4939
4940 /* Don't divide by 0 */
4941 if (!diffms)
4942 return;
4943
4944 count = I915_READ(GFXEC);
4945
4946 if (count < dev_priv->ips.last_count2) {
4947 diff = ~0UL - dev_priv->ips.last_count2;
4948 diff += count;
4949 } else {
4950 diff = count - dev_priv->ips.last_count2;
4951 }
4952
4953 dev_priv->ips.last_count2 = count;
4954 dev_priv->ips.last_time2 = now;
4955
4956 /* More magic constants... */
4957 diff = diff * 1181;
4958 diff = div_u64(diff, diffms * 10);
4959 dev_priv->ips.gfx_power = diff;
4960 }
4961
4962 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4963 {
4964 struct drm_device *dev = dev_priv->dev;
4965
4966 if (INTEL_INFO(dev)->gen != 5)
4967 return;
4968
4969 spin_lock_irq(&mchdev_lock);
4970
4971 __i915_update_gfx_val(dev_priv);
4972
4973 spin_unlock_irq(&mchdev_lock);
4974 }
4975
4976 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4977 {
4978 unsigned long t, corr, state1, corr2, state2;
4979 u32 pxvid, ext_v;
4980
4981 assert_spin_locked(&mchdev_lock);
4982
4983 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4984 pxvid = (pxvid >> 24) & 0x7f;
4985 ext_v = pvid_to_extvid(dev_priv, pxvid);
4986
4987 state1 = ext_v;
4988
4989 t = i915_mch_val(dev_priv);
4990
4991 /* Revel in the empirically derived constants */
4992
4993 /* Correction factor in 1/100000 units */
4994 if (t > 80)
4995 corr = ((t * 2349) + 135940);
4996 else if (t >= 50)
4997 corr = ((t * 964) + 29317);
4998 else /* < 50 */
4999 corr = ((t * 301) + 1004);
5000
5001 corr = corr * ((150142 * state1) / 10000 - 78642);
5002 corr /= 100000;
5003 corr2 = (corr * dev_priv->ips.corr);
5004
5005 state2 = (corr2 * state1) / 10000;
5006 state2 /= 100; /* convert to mW */
5007
5008 __i915_update_gfx_val(dev_priv);
5009
5010 return dev_priv->ips.gfx_power + state2;
5011 }
5012
5013 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5014 {
5015 struct drm_device *dev = dev_priv->dev;
5016 unsigned long val;
5017
5018 if (INTEL_INFO(dev)->gen != 5)
5019 return 0;
5020
5021 spin_lock_irq(&mchdev_lock);
5022
5023 val = __i915_gfx_val(dev_priv);
5024
5025 spin_unlock_irq(&mchdev_lock);
5026
5027 return val;
5028 }
5029
5030 /**
5031 * i915_read_mch_val - return value for IPS use
5032 *
5033 * Calculate and return a value for the IPS driver to use when deciding whether
5034 * we have thermal and power headroom to increase CPU or GPU power budget.
5035 */
5036 unsigned long i915_read_mch_val(void)
5037 {
5038 struct drm_i915_private *dev_priv;
5039 unsigned long chipset_val, graphics_val, ret = 0;
5040
5041 spin_lock_irq(&mchdev_lock);
5042 if (!i915_mch_dev)
5043 goto out_unlock;
5044 dev_priv = i915_mch_dev;
5045
5046 chipset_val = __i915_chipset_val(dev_priv);
5047 graphics_val = __i915_gfx_val(dev_priv);
5048
5049 ret = chipset_val + graphics_val;
5050
5051 out_unlock:
5052 spin_unlock_irq(&mchdev_lock);
5053
5054 return ret;
5055 }
5056 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5057
5058 /**
5059 * i915_gpu_raise - raise GPU frequency limit
5060 *
5061 * Raise the limit; IPS indicates we have thermal headroom.
5062 */
5063 bool i915_gpu_raise(void)
5064 {
5065 struct drm_i915_private *dev_priv;
5066 bool ret = true;
5067
5068 spin_lock_irq(&mchdev_lock);
5069 if (!i915_mch_dev) {
5070 ret = false;
5071 goto out_unlock;
5072 }
5073 dev_priv = i915_mch_dev;
5074
5075 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5076 dev_priv->ips.max_delay--;
5077
5078 out_unlock:
5079 spin_unlock_irq(&mchdev_lock);
5080
5081 return ret;
5082 }
5083 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5084
5085 /**
5086 * i915_gpu_lower - lower GPU frequency limit
5087 *
5088 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5089 * frequency maximum.
5090 */
5091 bool i915_gpu_lower(void)
5092 {
5093 struct drm_i915_private *dev_priv;
5094 bool ret = true;
5095
5096 spin_lock_irq(&mchdev_lock);
5097 if (!i915_mch_dev) {
5098 ret = false;
5099 goto out_unlock;
5100 }
5101 dev_priv = i915_mch_dev;
5102
5103 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5104 dev_priv->ips.max_delay++;
5105
5106 out_unlock:
5107 spin_unlock_irq(&mchdev_lock);
5108
5109 return ret;
5110 }
5111 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5112
5113 /**
5114 * i915_gpu_busy - indicate GPU business to IPS
5115 *
5116 * Tell the IPS driver whether or not the GPU is busy.
5117 */
5118 bool i915_gpu_busy(void)
5119 {
5120 struct drm_i915_private *dev_priv;
5121 struct intel_engine_cs *ring;
5122 bool ret = false;
5123 int i;
5124
5125 spin_lock_irq(&mchdev_lock);
5126 if (!i915_mch_dev)
5127 goto out_unlock;
5128 dev_priv = i915_mch_dev;
5129
5130 for_each_ring(ring, dev_priv, i)
5131 ret |= !list_empty(&ring->request_list);
5132
5133 out_unlock:
5134 spin_unlock_irq(&mchdev_lock);
5135
5136 return ret;
5137 }
5138 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5139
5140 /**
5141 * i915_gpu_turbo_disable - disable graphics turbo
5142 *
5143 * Disable graphics turbo by resetting the max frequency and setting the
5144 * current frequency to the default.
5145 */
5146 bool i915_gpu_turbo_disable(void)
5147 {
5148 struct drm_i915_private *dev_priv;
5149 bool ret = true;
5150
5151 spin_lock_irq(&mchdev_lock);
5152 if (!i915_mch_dev) {
5153 ret = false;
5154 goto out_unlock;
5155 }
5156 dev_priv = i915_mch_dev;
5157
5158 dev_priv->ips.max_delay = dev_priv->ips.fstart;
5159
5160 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5161 ret = false;
5162
5163 out_unlock:
5164 spin_unlock_irq(&mchdev_lock);
5165
5166 return ret;
5167 }
5168 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5169
5170 /**
5171 * Tells the intel_ips driver that the i915 driver is now loaded, if
5172 * IPS got loaded first.
5173 *
5174 * This awkward dance is so that neither module has to depend on the
5175 * other in order for IPS to do the appropriate communication of
5176 * GPU turbo limits to i915.
5177 */
5178 static void
5179 ips_ping_for_i915_load(void)
5180 {
5181 void (*link)(void);
5182
5183 link = symbol_get(ips_link_to_i915_driver);
5184 if (link) {
5185 link();
5186 symbol_put(ips_link_to_i915_driver);
5187 }
5188 }
5189
5190 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5191 {
5192 /* We only register the i915 ips part with intel-ips once everything is
5193 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5194 spin_lock_irq(&mchdev_lock);
5195 i915_mch_dev = dev_priv;
5196 spin_unlock_irq(&mchdev_lock);
5197
5198 ips_ping_for_i915_load();
5199 }
5200
5201 void intel_gpu_ips_teardown(void)
5202 {
5203 spin_lock_irq(&mchdev_lock);
5204 i915_mch_dev = NULL;
5205 spin_unlock_irq(&mchdev_lock);
5206 }
5207
5208 static void intel_init_emon(struct drm_device *dev)
5209 {
5210 struct drm_i915_private *dev_priv = dev->dev_private;
5211 u32 lcfuse;
5212 u8 pxw[16];
5213 int i;
5214
5215 /* Disable to program */
5216 I915_WRITE(ECR, 0);
5217 POSTING_READ(ECR);
5218
5219 /* Program energy weights for various events */
5220 I915_WRITE(SDEW, 0x15040d00);
5221 I915_WRITE(CSIEW0, 0x007f0000);
5222 I915_WRITE(CSIEW1, 0x1e220004);
5223 I915_WRITE(CSIEW2, 0x04000004);
5224
5225 for (i = 0; i < 5; i++)
5226 I915_WRITE(PEW + (i * 4), 0);
5227 for (i = 0; i < 3; i++)
5228 I915_WRITE(DEW + (i * 4), 0);
5229
5230 /* Program P-state weights to account for frequency power adjustment */
5231 for (i = 0; i < 16; i++) {
5232 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5233 unsigned long freq = intel_pxfreq(pxvidfreq);
5234 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5235 PXVFREQ_PX_SHIFT;
5236 unsigned long val;
5237
5238 val = vid * vid;
5239 val *= (freq / 1000);
5240 val *= 255;
5241 val /= (127*127*900);
5242 if (val > 0xff)
5243 DRM_ERROR("bad pxval: %ld\n", val);
5244 pxw[i] = val;
5245 }
5246 /* Render standby states get 0 weight */
5247 pxw[14] = 0;
5248 pxw[15] = 0;
5249
5250 for (i = 0; i < 4; i++) {
5251 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5252 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5253 I915_WRITE(PXW + (i * 4), val);
5254 }
5255
5256 /* Adjust magic regs to magic values (more experimental results) */
5257 I915_WRITE(OGW0, 0);
5258 I915_WRITE(OGW1, 0);
5259 I915_WRITE(EG0, 0x00007f00);
5260 I915_WRITE(EG1, 0x0000000e);
5261 I915_WRITE(EG2, 0x000e0000);
5262 I915_WRITE(EG3, 0x68000300);
5263 I915_WRITE(EG4, 0x42000000);
5264 I915_WRITE(EG5, 0x00140031);
5265 I915_WRITE(EG6, 0);
5266 I915_WRITE(EG7, 0);
5267
5268 for (i = 0; i < 8; i++)
5269 I915_WRITE(PXWL + (i * 4), 0);
5270
5271 /* Enable PMON + select events */
5272 I915_WRITE(ECR, 0x80000019);
5273
5274 lcfuse = I915_READ(LCFUSE02);
5275
5276 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5277 }
5278
5279 void intel_init_gt_powersave(struct drm_device *dev)
5280 {
5281 i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
5282
5283 if (IS_CHERRYVIEW(dev))
5284 cherryview_init_gt_powersave(dev);
5285 else if (IS_VALLEYVIEW(dev))
5286 valleyview_init_gt_powersave(dev);
5287 }
5288
5289 void intel_cleanup_gt_powersave(struct drm_device *dev)
5290 {
5291 if (IS_CHERRYVIEW(dev))
5292 return;
5293 else if (IS_VALLEYVIEW(dev))
5294 valleyview_cleanup_gt_powersave(dev);
5295 }
5296
5297 /**
5298 * intel_suspend_gt_powersave - suspend PM work and helper threads
5299 * @dev: drm device
5300 *
5301 * We don't want to disable RC6 or other features here, we just want
5302 * to make sure any work we've queued has finished and won't bother
5303 * us while we're suspended.
5304 */
5305 void intel_suspend_gt_powersave(struct drm_device *dev)
5306 {
5307 struct drm_i915_private *dev_priv = dev->dev_private;
5308
5309 /* Interrupts should be disabled already to avoid re-arming. */
5310 WARN_ON(intel_irqs_enabled(dev_priv));
5311
5312 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5313
5314 cancel_work_sync(&dev_priv->rps.work);
5315
5316 /* Force GPU to min freq during suspend */
5317 gen6_rps_idle(dev_priv);
5318 }
5319
5320 void intel_disable_gt_powersave(struct drm_device *dev)
5321 {
5322 struct drm_i915_private *dev_priv = dev->dev_private;
5323
5324 /* Interrupts should be disabled already to avoid re-arming. */
5325 WARN_ON(intel_irqs_enabled(dev_priv));
5326
5327 if (IS_IRONLAKE_M(dev)) {
5328 ironlake_disable_drps(dev);
5329 ironlake_disable_rc6(dev);
5330 } else if (INTEL_INFO(dev)->gen >= 6) {
5331 intel_suspend_gt_powersave(dev);
5332
5333 mutex_lock(&dev_priv->rps.hw_lock);
5334 if (IS_CHERRYVIEW(dev))
5335 cherryview_disable_rps(dev);
5336 else if (IS_VALLEYVIEW(dev))
5337 valleyview_disable_rps(dev);
5338 else
5339 gen6_disable_rps(dev);
5340 dev_priv->rps.enabled = false;
5341 mutex_unlock(&dev_priv->rps.hw_lock);
5342 }
5343 }
5344
5345 static void intel_gen6_powersave_work(struct work_struct *work)
5346 {
5347 struct drm_i915_private *dev_priv =
5348 container_of(work, struct drm_i915_private,
5349 rps.delayed_resume_work.work);
5350 struct drm_device *dev = dev_priv->dev;
5351
5352 dev_priv->rps.is_bdw_sw_turbo = false;
5353
5354 mutex_lock(&dev_priv->rps.hw_lock);
5355
5356 if (IS_CHERRYVIEW(dev)) {
5357 cherryview_enable_rps(dev);
5358 } else if (IS_VALLEYVIEW(dev)) {
5359 valleyview_enable_rps(dev);
5360 } else if (IS_BROADWELL(dev)) {
5361 gen8_enable_rps(dev);
5362 __gen6_update_ring_freq(dev);
5363 } else {
5364 gen6_enable_rps(dev);
5365 __gen6_update_ring_freq(dev);
5366 }
5367 dev_priv->rps.enabled = true;
5368 mutex_unlock(&dev_priv->rps.hw_lock);
5369
5370 intel_runtime_pm_put(dev_priv);
5371 }
5372
5373 void intel_enable_gt_powersave(struct drm_device *dev)
5374 {
5375 struct drm_i915_private *dev_priv = dev->dev_private;
5376
5377 if (IS_IRONLAKE_M(dev)) {
5378 mutex_lock(&dev->struct_mutex);
5379 ironlake_enable_drps(dev);
5380 ironlake_enable_rc6(dev);
5381 intel_init_emon(dev);
5382 mutex_unlock(&dev->struct_mutex);
5383 } else if (INTEL_INFO(dev)->gen >= 6) {
5384 /*
5385 * PCU communication is slow and this doesn't need to be
5386 * done at any specific time, so do this out of our fast path
5387 * to make resume and init faster.
5388 *
5389 * We depend on the HW RC6 power context save/restore
5390 * mechanism when entering D3 through runtime PM suspend. So
5391 * disable RPM until RPS/RC6 is properly setup. We can only
5392 * get here via the driver load/system resume/runtime resume
5393 * paths, so the _noresume version is enough (and in case of
5394 * runtime resume it's necessary).
5395 */
5396 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5397 round_jiffies_up_relative(HZ)))
5398 intel_runtime_pm_get_noresume(dev_priv);
5399 }
5400 }
5401
5402 void intel_reset_gt_powersave(struct drm_device *dev)
5403 {
5404 struct drm_i915_private *dev_priv = dev->dev_private;
5405
5406 dev_priv->rps.enabled = false;
5407 intel_enable_gt_powersave(dev);
5408 }
5409
5410 static void ibx_init_clock_gating(struct drm_device *dev)
5411 {
5412 struct drm_i915_private *dev_priv = dev->dev_private;
5413
5414 /*
5415 * On Ibex Peak and Cougar Point, we need to disable clock
5416 * gating for the panel power sequencer or it will fail to
5417 * start up when no ports are active.
5418 */
5419 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5420 }
5421
5422 static void g4x_disable_trickle_feed(struct drm_device *dev)
5423 {
5424 struct drm_i915_private *dev_priv = dev->dev_private;
5425 int pipe;
5426
5427 for_each_pipe(dev_priv, pipe) {
5428 I915_WRITE(DSPCNTR(pipe),
5429 I915_READ(DSPCNTR(pipe)) |
5430 DISPPLANE_TRICKLE_FEED_DISABLE);
5431 intel_flush_primary_plane(dev_priv, pipe);
5432 }
5433 }
5434
5435 static void ilk_init_lp_watermarks(struct drm_device *dev)
5436 {
5437 struct drm_i915_private *dev_priv = dev->dev_private;
5438
5439 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5440 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5441 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5442
5443 /*
5444 * Don't touch WM1S_LP_EN here.
5445 * Doing so could cause underruns.
5446 */
5447 }
5448
5449 static void ironlake_init_clock_gating(struct drm_device *dev)
5450 {
5451 struct drm_i915_private *dev_priv = dev->dev_private;
5452 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5453
5454 /*
5455 * Required for FBC
5456 * WaFbcDisableDpfcClockGating:ilk
5457 */
5458 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5459 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5460 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5461
5462 I915_WRITE(PCH_3DCGDIS0,
5463 MARIUNIT_CLOCK_GATE_DISABLE |
5464 SVSMUNIT_CLOCK_GATE_DISABLE);
5465 I915_WRITE(PCH_3DCGDIS1,
5466 VFMUNIT_CLOCK_GATE_DISABLE);
5467
5468 /*
5469 * According to the spec the following bits should be set in
5470 * order to enable memory self-refresh
5471 * The bit 22/21 of 0x42004
5472 * The bit 5 of 0x42020
5473 * The bit 15 of 0x45000
5474 */
5475 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5476 (I915_READ(ILK_DISPLAY_CHICKEN2) |
5477 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5478 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5479 I915_WRITE(DISP_ARB_CTL,
5480 (I915_READ(DISP_ARB_CTL) |
5481 DISP_FBC_WM_DIS));
5482
5483 ilk_init_lp_watermarks(dev);
5484
5485 /*
5486 * Based on the document from hardware guys the following bits
5487 * should be set unconditionally in order to enable FBC.
5488 * The bit 22 of 0x42000
5489 * The bit 22 of 0x42004
5490 * The bit 7,8,9 of 0x42020.
5491 */
5492 if (IS_IRONLAKE_M(dev)) {
5493 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5494 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5495 I915_READ(ILK_DISPLAY_CHICKEN1) |
5496 ILK_FBCQ_DIS);
5497 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5498 I915_READ(ILK_DISPLAY_CHICKEN2) |
5499 ILK_DPARB_GATE);
5500 }
5501
5502 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5503
5504 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5505 I915_READ(ILK_DISPLAY_CHICKEN2) |
5506 ILK_ELPIN_409_SELECT);
5507 I915_WRITE(_3D_CHICKEN2,
5508 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5509 _3D_CHICKEN2_WM_READ_PIPELINED);
5510
5511 /* WaDisableRenderCachePipelinedFlush:ilk */
5512 I915_WRITE(CACHE_MODE_0,
5513 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5514
5515 /* WaDisable_RenderCache_OperationalFlush:ilk */
5516 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5517
5518 g4x_disable_trickle_feed(dev);
5519
5520 ibx_init_clock_gating(dev);
5521 }
5522
5523 static void cpt_init_clock_gating(struct drm_device *dev)
5524 {
5525 struct drm_i915_private *dev_priv = dev->dev_private;
5526 int pipe;
5527 uint32_t val;
5528
5529 /*
5530 * On Ibex Peak and Cougar Point, we need to disable clock
5531 * gating for the panel power sequencer or it will fail to
5532 * start up when no ports are active.
5533 */
5534 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5535 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5536 PCH_CPUNIT_CLOCK_GATE_DISABLE);
5537 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5538 DPLS_EDP_PPS_FIX_DIS);
5539 /* The below fixes the weird display corruption, a few pixels shifted
5540 * downward, on (only) LVDS of some HP laptops with IVY.
5541 */
5542 for_each_pipe(dev_priv, pipe) {
5543 val = I915_READ(TRANS_CHICKEN2(pipe));
5544 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5545 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5546 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5547 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5548 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5549 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5550 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5551 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5552 }
5553 /* WADP0ClockGatingDisable */
5554 for_each_pipe(dev_priv, pipe) {
5555 I915_WRITE(TRANS_CHICKEN1(pipe),
5556 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5557 }
5558 }
5559
5560 static void gen6_check_mch_setup(struct drm_device *dev)
5561 {
5562 struct drm_i915_private *dev_priv = dev->dev_private;
5563 uint32_t tmp;
5564
5565 tmp = I915_READ(MCH_SSKPD);
5566 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
5567 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
5568 tmp);
5569 }
5570
5571 static void gen6_init_clock_gating(struct drm_device *dev)
5572 {
5573 struct drm_i915_private *dev_priv = dev->dev_private;
5574 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5575
5576 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5577
5578 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5579 I915_READ(ILK_DISPLAY_CHICKEN2) |
5580 ILK_ELPIN_409_SELECT);
5581
5582 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5583 I915_WRITE(_3D_CHICKEN,
5584 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5585
5586 /* WaSetupGtModeTdRowDispatch:snb */
5587 if (IS_SNB_GT1(dev))
5588 I915_WRITE(GEN6_GT_MODE,
5589 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
5590
5591 /* WaDisable_RenderCache_OperationalFlush:snb */
5592 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5593
5594 /*
5595 * BSpec recoomends 8x4 when MSAA is used,
5596 * however in practice 16x4 seems fastest.
5597 *
5598 * Note that PS/WM thread counts depend on the WIZ hashing
5599 * disable bit, which we don't touch here, but it's good
5600 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5601 */
5602 I915_WRITE(GEN6_GT_MODE,
5603 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5604
5605 ilk_init_lp_watermarks(dev);
5606
5607 I915_WRITE(CACHE_MODE_0,
5608 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5609
5610 I915_WRITE(GEN6_UCGCTL1,
5611 I915_READ(GEN6_UCGCTL1) |
5612 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5613 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5614
5615 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5616 * gating disable must be set. Failure to set it results in
5617 * flickering pixels due to Z write ordering failures after
5618 * some amount of runtime in the Mesa "fire" demo, and Unigine
5619 * Sanctuary and Tropics, and apparently anything else with
5620 * alpha test or pixel discard.
5621 *
5622 * According to the spec, bit 11 (RCCUNIT) must also be set,
5623 * but we didn't debug actual testcases to find it out.
5624 *
5625 * WaDisableRCCUnitClockGating:snb
5626 * WaDisableRCPBUnitClockGating:snb
5627 */
5628 I915_WRITE(GEN6_UCGCTL2,
5629 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5630 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5631
5632 /* WaStripsFansDisableFastClipPerformanceFix:snb */
5633 I915_WRITE(_3D_CHICKEN3,
5634 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5635
5636 /*
5637 * Bspec says:
5638 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
5639 * 3DSTATE_SF number of SF output attributes is more than 16."
5640 */
5641 I915_WRITE(_3D_CHICKEN3,
5642 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
5643
5644 /*
5645 * According to the spec the following bits should be
5646 * set in order to enable memory self-refresh and fbc:
5647 * The bit21 and bit22 of 0x42000
5648 * The bit21 and bit22 of 0x42004
5649 * The bit5 and bit7 of 0x42020
5650 * The bit14 of 0x70180
5651 * The bit14 of 0x71180
5652 *
5653 * WaFbcAsynchFlipDisableFbcQueue:snb
5654 */
5655 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5656 I915_READ(ILK_DISPLAY_CHICKEN1) |
5657 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5658 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5659 I915_READ(ILK_DISPLAY_CHICKEN2) |
5660 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5661 I915_WRITE(ILK_DSPCLK_GATE_D,
5662 I915_READ(ILK_DSPCLK_GATE_D) |
5663 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
5664 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5665
5666 g4x_disable_trickle_feed(dev);
5667
5668 cpt_init_clock_gating(dev);
5669
5670 gen6_check_mch_setup(dev);
5671 }
5672
5673 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5674 {
5675 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5676
5677 /*
5678 * WaVSThreadDispatchOverride:ivb,vlv
5679 *
5680 * This actually overrides the dispatch
5681 * mode for all thread types.
5682 */
5683 reg &= ~GEN7_FF_SCHED_MASK;
5684 reg |= GEN7_FF_TS_SCHED_HW;
5685 reg |= GEN7_FF_VS_SCHED_HW;
5686 reg |= GEN7_FF_DS_SCHED_HW;
5687
5688 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5689 }
5690
5691 static void lpt_init_clock_gating(struct drm_device *dev)
5692 {
5693 struct drm_i915_private *dev_priv = dev->dev_private;
5694
5695 /*
5696 * TODO: this bit should only be enabled when really needed, then
5697 * disabled when not needed anymore in order to save power.
5698 */
5699 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5700 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5701 I915_READ(SOUTH_DSPCLK_GATE_D) |
5702 PCH_LP_PARTITION_LEVEL_DISABLE);
5703
5704 /* WADPOClockGatingDisable:hsw */
5705 I915_WRITE(_TRANSA_CHICKEN1,
5706 I915_READ(_TRANSA_CHICKEN1) |
5707 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5708 }
5709
5710 static void lpt_suspend_hw(struct drm_device *dev)
5711 {
5712 struct drm_i915_private *dev_priv = dev->dev_private;
5713
5714 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5715 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5716
5717 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5718 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5719 }
5720 }
5721
5722 static void broadwell_init_clock_gating(struct drm_device *dev)
5723 {
5724 struct drm_i915_private *dev_priv = dev->dev_private;
5725 enum pipe pipe;
5726
5727 I915_WRITE(WM3_LP_ILK, 0);
5728 I915_WRITE(WM2_LP_ILK, 0);
5729 I915_WRITE(WM1_LP_ILK, 0);
5730
5731 /* FIXME(BDW): Check all the w/a, some might only apply to
5732 * pre-production hw. */
5733
5734
5735 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
5736
5737 I915_WRITE(_3D_CHICKEN3,
5738 _MASKED_BIT_ENABLE(_3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2)));
5739
5740
5741 /* WaSwitchSolVfFArbitrationPriority:bdw */
5742 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5743
5744 /* WaPsrDPAMaskVBlankInSRD:bdw */
5745 I915_WRITE(CHICKEN_PAR1_1,
5746 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5747
5748 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5749 for_each_pipe(dev_priv, pipe) {
5750 I915_WRITE(CHICKEN_PIPESL_1(pipe),
5751 I915_READ(CHICKEN_PIPESL_1(pipe)) |
5752 BDW_DPRS_MASK_VBLANK_SRD);
5753 }
5754
5755 /* WaVSRefCountFullforceMissDisable:bdw */
5756 /* WaDSRefCountFullforceMissDisable:bdw */
5757 I915_WRITE(GEN7_FF_THREAD_MODE,
5758 I915_READ(GEN7_FF_THREAD_MODE) &
5759 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5760
5761 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5762 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5763
5764 /* WaDisableSDEUnitClockGating:bdw */
5765 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5766 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5767
5768 lpt_init_clock_gating(dev);
5769 }
5770
5771 static void haswell_init_clock_gating(struct drm_device *dev)
5772 {
5773 struct drm_i915_private *dev_priv = dev->dev_private;
5774
5775 ilk_init_lp_watermarks(dev);
5776
5777 /* L3 caching of data atomics doesn't work -- disable it. */
5778 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5779 I915_WRITE(HSW_ROW_CHICKEN3,
5780 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5781
5782 /* This is required by WaCatErrorRejectionIssue:hsw */
5783 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5784 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5785 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5786
5787 /* WaVSRefCountFullforceMissDisable:hsw */
5788 I915_WRITE(GEN7_FF_THREAD_MODE,
5789 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5790
5791 /* WaDisable_RenderCache_OperationalFlush:hsw */
5792 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5793
5794 /* enable HiZ Raw Stall Optimization */
5795 I915_WRITE(CACHE_MODE_0_GEN7,
5796 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5797
5798 /* WaDisable4x2SubspanOptimization:hsw */
5799 I915_WRITE(CACHE_MODE_1,
5800 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5801
5802 /*
5803 * BSpec recommends 8x4 when MSAA is used,
5804 * however in practice 16x4 seems fastest.
5805 *
5806 * Note that PS/WM thread counts depend on the WIZ hashing
5807 * disable bit, which we don't touch here, but it's good
5808 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5809 */
5810 I915_WRITE(GEN7_GT_MODE,
5811 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5812
5813 /* WaSwitchSolVfFArbitrationPriority:hsw */
5814 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5815
5816 /* WaRsPkgCStateDisplayPMReq:hsw */
5817 I915_WRITE(CHICKEN_PAR1_1,
5818 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5819
5820 lpt_init_clock_gating(dev);
5821 }
5822
5823 static void ivybridge_init_clock_gating(struct drm_device *dev)
5824 {
5825 struct drm_i915_private *dev_priv = dev->dev_private;
5826 uint32_t snpcr;
5827
5828 ilk_init_lp_watermarks(dev);
5829
5830 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5831
5832 /* WaDisableEarlyCull:ivb */
5833 I915_WRITE(_3D_CHICKEN3,
5834 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5835
5836 /* WaDisableBackToBackFlipFix:ivb */
5837 I915_WRITE(IVB_CHICKEN3,
5838 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5839 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5840
5841 /* WaDisablePSDDualDispatchEnable:ivb */
5842 if (IS_IVB_GT1(dev))
5843 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5844 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5845
5846 /* WaDisable_RenderCache_OperationalFlush:ivb */
5847 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5848
5849 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5850 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5851 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5852
5853 /* WaApplyL3ControlAndL3ChickenMode:ivb */
5854 I915_WRITE(GEN7_L3CNTLREG1,
5855 GEN7_WA_FOR_GEN7_L3_CONTROL);
5856 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5857 GEN7_WA_L3_CHICKEN_MODE);
5858 if (IS_IVB_GT1(dev))
5859 I915_WRITE(GEN7_ROW_CHICKEN2,
5860 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5861 else {
5862 /* must write both registers */
5863 I915_WRITE(GEN7_ROW_CHICKEN2,
5864 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5865 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5866 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5867 }
5868
5869 /* WaForceL3Serialization:ivb */
5870 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5871 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5872
5873 /*
5874 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5875 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5876 */
5877 I915_WRITE(GEN6_UCGCTL2,
5878 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5879
5880 /* This is required by WaCatErrorRejectionIssue:ivb */
5881 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5882 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5883 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5884
5885 g4x_disable_trickle_feed(dev);
5886
5887 gen7_setup_fixed_func_scheduler(dev_priv);
5888
5889 if (0) { /* causes HiZ corruption on ivb:gt1 */
5890 /* enable HiZ Raw Stall Optimization */
5891 I915_WRITE(CACHE_MODE_0_GEN7,
5892 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5893 }
5894
5895 /* WaDisable4x2SubspanOptimization:ivb */
5896 I915_WRITE(CACHE_MODE_1,
5897 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5898
5899 /*
5900 * BSpec recommends 8x4 when MSAA is used,
5901 * however in practice 16x4 seems fastest.
5902 *
5903 * Note that PS/WM thread counts depend on the WIZ hashing
5904 * disable bit, which we don't touch here, but it's good
5905 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5906 */
5907 I915_WRITE(GEN7_GT_MODE,
5908 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5909
5910 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5911 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5912 snpcr |= GEN6_MBC_SNPCR_MED;
5913 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5914
5915 if (!HAS_PCH_NOP(dev))
5916 cpt_init_clock_gating(dev);
5917
5918 gen6_check_mch_setup(dev);
5919 }
5920
5921 static void valleyview_init_clock_gating(struct drm_device *dev)
5922 {
5923 struct drm_i915_private *dev_priv = dev->dev_private;
5924
5925 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5926
5927 /* WaDisableEarlyCull:vlv */
5928 I915_WRITE(_3D_CHICKEN3,
5929 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5930
5931 /* WaDisableBackToBackFlipFix:vlv */
5932 I915_WRITE(IVB_CHICKEN3,
5933 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5934 CHICKEN3_DGMG_DONE_FIX_DISABLE);
5935
5936 /* WaPsdDispatchEnable:vlv */
5937 /* WaDisablePSDDualDispatchEnable:vlv */
5938 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5939 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5940 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5941
5942 /* WaDisable_RenderCache_OperationalFlush:vlv */
5943 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5944
5945 /* WaForceL3Serialization:vlv */
5946 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5947 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5948
5949 /* WaDisableDopClockGating:vlv */
5950 I915_WRITE(GEN7_ROW_CHICKEN2,
5951 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5952
5953 /* This is required by WaCatErrorRejectionIssue:vlv */
5954 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5955 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5956 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5957
5958 gen7_setup_fixed_func_scheduler(dev_priv);
5959
5960 /*
5961 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5962 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5963 */
5964 I915_WRITE(GEN6_UCGCTL2,
5965 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5966
5967 /* WaDisableL3Bank2xClockGate:vlv
5968 * Disabling L3 clock gating- MMIO 940c[25] = 1
5969 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
5970 I915_WRITE(GEN7_UCGCTL4,
5971 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5972
5973 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5974
5975 /*
5976 * BSpec says this must be set, even though
5977 * WaDisable4x2SubspanOptimization isn't listed for VLV.
5978 */
5979 I915_WRITE(CACHE_MODE_1,
5980 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5981
5982 /*
5983 * WaIncreaseL3CreditsForVLVB0:vlv
5984 * This is the hardware default actually.
5985 */
5986 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5987
5988 /*
5989 * WaDisableVLVClockGating_VBIIssue:vlv
5990 * Disable clock gating on th GCFG unit to prevent a delay
5991 * in the reporting of vblank events.
5992 */
5993 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5994 }
5995
5996 static void cherryview_init_clock_gating(struct drm_device *dev)
5997 {
5998 struct drm_i915_private *dev_priv = dev->dev_private;
5999
6000 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6001
6002 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6003
6004 /* WaDisablePartialInstShootdown:chv */
6005 I915_WRITE(GEN8_ROW_CHICKEN,
6006 _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
6007
6008 /* WaDisableThreadStallDopClockGating:chv */
6009 I915_WRITE(GEN8_ROW_CHICKEN,
6010 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
6011
6012 /* WaVSRefCountFullforceMissDisable:chv */
6013 /* WaDSRefCountFullforceMissDisable:chv */
6014 I915_WRITE(GEN7_FF_THREAD_MODE,
6015 I915_READ(GEN7_FF_THREAD_MODE) &
6016 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6017
6018 /* WaDisableSemaphoreAndSyncFlipWait:chv */
6019 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6020 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6021
6022 /* WaDisableCSUnitClockGating:chv */
6023 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6024 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6025
6026 /* WaDisableSDEUnitClockGating:chv */
6027 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6028 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6029
6030 /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
6031 I915_WRITE(HALF_SLICE_CHICKEN3,
6032 _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
6033
6034 /* WaDisableGunitClockGating:chv (pre-production hw) */
6035 I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
6036 GINT_DIS);
6037
6038 /* WaDisableFfDopClockGating:chv (pre-production hw) */
6039 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6040 _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
6041
6042 /* WaDisableDopClockGating:chv (pre-production hw) */
6043 I915_WRITE(GEN7_ROW_CHICKEN2,
6044 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6045 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6046 GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
6047 }
6048
6049 static void g4x_init_clock_gating(struct drm_device *dev)
6050 {
6051 struct drm_i915_private *dev_priv = dev->dev_private;
6052 uint32_t dspclk_gate;
6053
6054 I915_WRITE(RENCLK_GATE_D1, 0);
6055 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6056 GS_UNIT_CLOCK_GATE_DISABLE |
6057 CL_UNIT_CLOCK_GATE_DISABLE);
6058 I915_WRITE(RAMCLK_GATE_D, 0);
6059 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6060 OVRUNIT_CLOCK_GATE_DISABLE |
6061 OVCUNIT_CLOCK_GATE_DISABLE;
6062 if (IS_GM45(dev))
6063 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6064 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6065
6066 /* WaDisableRenderCachePipelinedFlush */
6067 I915_WRITE(CACHE_MODE_0,
6068 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6069
6070 /* WaDisable_RenderCache_OperationalFlush:g4x */
6071 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6072
6073 g4x_disable_trickle_feed(dev);
6074 }
6075
6076 static void crestline_init_clock_gating(struct drm_device *dev)
6077 {
6078 struct drm_i915_private *dev_priv = dev->dev_private;
6079
6080 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6081 I915_WRITE(RENCLK_GATE_D2, 0);
6082 I915_WRITE(DSPCLK_GATE_D, 0);
6083 I915_WRITE(RAMCLK_GATE_D, 0);
6084 I915_WRITE16(DEUC, 0);
6085 I915_WRITE(MI_ARB_STATE,
6086 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6087
6088 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6089 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6090 }
6091
6092 static void broadwater_init_clock_gating(struct drm_device *dev)
6093 {
6094 struct drm_i915_private *dev_priv = dev->dev_private;
6095
6096 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6097 I965_RCC_CLOCK_GATE_DISABLE |
6098 I965_RCPB_CLOCK_GATE_DISABLE |
6099 I965_ISC_CLOCK_GATE_DISABLE |
6100 I965_FBC_CLOCK_GATE_DISABLE);
6101 I915_WRITE(RENCLK_GATE_D2, 0);
6102 I915_WRITE(MI_ARB_STATE,
6103 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6104
6105 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6106 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6107 }
6108
6109 static void gen3_init_clock_gating(struct drm_device *dev)
6110 {
6111 struct drm_i915_private *dev_priv = dev->dev_private;
6112 u32 dstate = I915_READ(D_STATE);
6113
6114 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6115 DSTATE_DOT_CLOCK_GATING;
6116 I915_WRITE(D_STATE, dstate);
6117
6118 if (IS_PINEVIEW(dev))
6119 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6120
6121 /* IIR "flip pending" means done if this bit is set */
6122 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6123
6124 /* interrupts should cause a wake up from C3 */
6125 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6126
6127 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6128 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6129 }
6130
6131 static void i85x_init_clock_gating(struct drm_device *dev)
6132 {
6133 struct drm_i915_private *dev_priv = dev->dev_private;
6134
6135 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6136
6137 /* interrupts should cause a wake up from C3 */
6138 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6139 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6140 }
6141
6142 static void i830_init_clock_gating(struct drm_device *dev)
6143 {
6144 struct drm_i915_private *dev_priv = dev->dev_private;
6145
6146 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6147 }
6148
6149 void intel_init_clock_gating(struct drm_device *dev)
6150 {
6151 struct drm_i915_private *dev_priv = dev->dev_private;
6152
6153 dev_priv->display.init_clock_gating(dev);
6154 }
6155
6156 void intel_suspend_hw(struct drm_device *dev)
6157 {
6158 if (HAS_PCH_LPT(dev))
6159 lpt_suspend_hw(dev);
6160 }
6161
6162 #define for_each_power_well(i, power_well, domain_mask, power_domains) \
6163 for (i = 0; \
6164 i < (power_domains)->power_well_count && \
6165 ((power_well) = &(power_domains)->power_wells[i]); \
6166 i++) \
6167 if ((power_well)->domains & (domain_mask))
6168
6169 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
6170 for (i = (power_domains)->power_well_count - 1; \
6171 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
6172 i--) \
6173 if ((power_well)->domains & (domain_mask))
6174
6175 /**
6176 * We should only use the power well if we explicitly asked the hardware to
6177 * enable it, so check if it's enabled and also check if we've requested it to
6178 * be enabled.
6179 */
6180 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
6181 struct i915_power_well *power_well)
6182 {
6183 return I915_READ(HSW_PWR_WELL_DRIVER) ==
6184 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
6185 }
6186
6187 bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
6188 enum intel_display_power_domain domain)
6189 {
6190 struct i915_power_domains *power_domains;
6191 struct i915_power_well *power_well;
6192 bool is_enabled;
6193 int i;
6194
6195 if (dev_priv->pm.suspended)
6196 return false;
6197
6198 power_domains = &dev_priv->power_domains;
6199
6200 is_enabled = true;
6201
6202 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6203 if (power_well->always_on)
6204 continue;
6205
6206 if (!power_well->hw_enabled) {
6207 is_enabled = false;
6208 break;
6209 }
6210 }
6211
6212 return is_enabled;
6213 }
6214
6215 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
6216 enum intel_display_power_domain domain)
6217 {
6218 struct i915_power_domains *power_domains;
6219 bool ret;
6220
6221 power_domains = &dev_priv->power_domains;
6222
6223 mutex_lock(&power_domains->lock);
6224 ret = intel_display_power_enabled_unlocked(dev_priv, domain);
6225 mutex_unlock(&power_domains->lock);
6226
6227 return ret;
6228 }
6229
6230 /*
6231 * Starting with Haswell, we have a "Power Down Well" that can be turned off
6232 * when not needed anymore. We have 4 registers that can request the power well
6233 * to be enabled, and it will only be disabled if none of the registers is
6234 * requesting it to be enabled.
6235 */
6236 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
6237 {
6238 struct drm_device *dev = dev_priv->dev;
6239
6240 /*
6241 * After we re-enable the power well, if we touch VGA register 0x3d5
6242 * we'll get unclaimed register interrupts. This stops after we write
6243 * anything to the VGA MSR register. The vgacon module uses this
6244 * register all the time, so if we unbind our driver and, as a
6245 * consequence, bind vgacon, we'll get stuck in an infinite loop at
6246 * console_unlock(). So make here we touch the VGA MSR register, making
6247 * sure vgacon can keep working normally without triggering interrupts
6248 * and error messages.
6249 */
6250 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6251 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
6252 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6253
6254 if (IS_BROADWELL(dev))
6255 gen8_irq_power_well_post_enable(dev_priv);
6256 }
6257
6258 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
6259 struct i915_power_well *power_well, bool enable)
6260 {
6261 bool is_enabled, enable_requested;
6262 uint32_t tmp;
6263
6264 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
6265 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
6266 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
6267
6268 if (enable) {
6269 if (!enable_requested)
6270 I915_WRITE(HSW_PWR_WELL_DRIVER,
6271 HSW_PWR_WELL_ENABLE_REQUEST);
6272
6273 if (!is_enabled) {
6274 DRM_DEBUG_KMS("Enabling power well\n");
6275 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
6276 HSW_PWR_WELL_STATE_ENABLED), 20))
6277 DRM_ERROR("Timeout enabling power well\n");
6278 }
6279
6280 hsw_power_well_post_enable(dev_priv);
6281 } else {
6282 if (enable_requested) {
6283 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
6284 POSTING_READ(HSW_PWR_WELL_DRIVER);
6285 DRM_DEBUG_KMS("Requesting to disable the power well\n");
6286 }
6287 }
6288 }
6289
6290 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
6291 struct i915_power_well *power_well)
6292 {
6293 hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
6294
6295 /*
6296 * We're taking over the BIOS, so clear any requests made by it since
6297 * the driver is in charge now.
6298 */
6299 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
6300 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
6301 }
6302
6303 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
6304 struct i915_power_well *power_well)
6305 {
6306 hsw_set_power_well(dev_priv, power_well, true);
6307 }
6308
6309 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
6310 struct i915_power_well *power_well)
6311 {
6312 hsw_set_power_well(dev_priv, power_well, false);
6313 }
6314
6315 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
6316 struct i915_power_well *power_well)
6317 {
6318 }
6319
6320 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
6321 struct i915_power_well *power_well)
6322 {
6323 return true;
6324 }
6325
6326 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
6327 struct i915_power_well *power_well, bool enable)
6328 {
6329 enum punit_power_well power_well_id = power_well->data;
6330 u32 mask;
6331 u32 state;
6332 u32 ctrl;
6333
6334 mask = PUNIT_PWRGT_MASK(power_well_id);
6335 state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
6336 PUNIT_PWRGT_PWR_GATE(power_well_id);
6337
6338 mutex_lock(&dev_priv->rps.hw_lock);
6339
6340 #define COND \
6341 ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
6342
6343 if (COND)
6344 goto out;
6345
6346 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
6347 ctrl &= ~mask;
6348 ctrl |= state;
6349 vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
6350
6351 if (wait_for(COND, 100))
6352 DRM_ERROR("timout setting power well state %08x (%08x)\n",
6353 state,
6354 vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
6355
6356 #undef COND
6357
6358 out:
6359 mutex_unlock(&dev_priv->rps.hw_lock);
6360 }
6361
6362 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
6363 struct i915_power_well *power_well)
6364 {
6365 vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
6366 }
6367
6368 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
6369 struct i915_power_well *power_well)
6370 {
6371 vlv_set_power_well(dev_priv, power_well, true);
6372 }
6373
6374 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
6375 struct i915_power_well *power_well)
6376 {
6377 vlv_set_power_well(dev_priv, power_well, false);
6378 }
6379
6380 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
6381 struct i915_power_well *power_well)
6382 {
6383 int power_well_id = power_well->data;
6384 bool enabled = false;
6385 u32 mask;
6386 u32 state;
6387 u32 ctrl;
6388
6389 mask = PUNIT_PWRGT_MASK(power_well_id);
6390 ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
6391
6392 mutex_lock(&dev_priv->rps.hw_lock);
6393
6394 state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
6395 /*
6396 * We only ever set the power-on and power-gate states, anything
6397 * else is unexpected.
6398 */
6399 WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
6400 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
6401 if (state == ctrl)
6402 enabled = true;
6403
6404 /*
6405 * A transient state at this point would mean some unexpected party
6406 * is poking at the power controls too.
6407 */
6408 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
6409 WARN_ON(ctrl != state);
6410
6411 mutex_unlock(&dev_priv->rps.hw_lock);
6412
6413 return enabled;
6414 }
6415
6416 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
6417 struct i915_power_well *power_well)
6418 {
6419 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6420
6421 vlv_set_power_well(dev_priv, power_well, true);
6422
6423 spin_lock_irq(&dev_priv->irq_lock);
6424 valleyview_enable_display_irqs(dev_priv);
6425 spin_unlock_irq(&dev_priv->irq_lock);
6426
6427 /*
6428 * During driver initialization/resume we can avoid restoring the
6429 * part of the HW/SW state that will be inited anyway explicitly.
6430 */
6431 if (dev_priv->power_domains.initializing)
6432 return;
6433
6434 intel_hpd_init(dev_priv->dev);
6435
6436 i915_redisable_vga_power_on(dev_priv->dev);
6437 }
6438
6439 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
6440 struct i915_power_well *power_well)
6441 {
6442 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6443
6444 spin_lock_irq(&dev_priv->irq_lock);
6445 valleyview_disable_display_irqs(dev_priv);
6446 spin_unlock_irq(&dev_priv->irq_lock);
6447
6448 vlv_set_power_well(dev_priv, power_well, false);
6449 }
6450
6451 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
6452 struct i915_power_well *power_well)
6453 {
6454 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6455
6456 /*
6457 * Enable the CRI clock source so we can get at the
6458 * display and the reference clock for VGA
6459 * hotplug / manual detection.
6460 */
6461 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6462 DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6463 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
6464
6465 vlv_set_power_well(dev_priv, power_well, true);
6466
6467 /*
6468 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
6469 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
6470 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
6471 * b. The other bits such as sfr settings / modesel may all
6472 * be set to 0.
6473 *
6474 * This should only be done on init and resume from S3 with
6475 * both PLLs disabled, or we risk losing DPIO and PLL
6476 * synchronization.
6477 */
6478 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
6479 }
6480
6481 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
6482 struct i915_power_well *power_well)
6483 {
6484 enum pipe pipe;
6485
6486 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6487
6488 for_each_pipe(dev_priv, pipe)
6489 assert_pll_disabled(dev_priv, pipe);
6490
6491 /* Assert common reset */
6492 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
6493
6494 vlv_set_power_well(dev_priv, power_well, false);
6495 }
6496
6497 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
6498 struct i915_power_well *power_well)
6499 {
6500 enum dpio_phy phy;
6501
6502 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
6503 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
6504
6505 /*
6506 * Enable the CRI clock source so we can get at the
6507 * display and the reference clock for VGA
6508 * hotplug / manual detection.
6509 */
6510 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
6511 phy = DPIO_PHY0;
6512 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6513 DPLL_REFA_CLK_ENABLE_VLV);
6514 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6515 DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6516 } else {
6517 phy = DPIO_PHY1;
6518 I915_WRITE(DPLL(PIPE_C), I915_READ(DPLL(PIPE_C)) |
6519 DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6520 }
6521 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
6522 vlv_set_power_well(dev_priv, power_well, true);
6523
6524 /* Poll for phypwrgood signal */
6525 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
6526 DRM_ERROR("Display PHY %d is not power up\n", phy);
6527
6528 I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) |
6529 PHY_COM_LANE_RESET_DEASSERT(phy));
6530 }
6531
6532 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
6533 struct i915_power_well *power_well)
6534 {
6535 enum dpio_phy phy;
6536
6537 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
6538 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
6539
6540 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
6541 phy = DPIO_PHY0;
6542 assert_pll_disabled(dev_priv, PIPE_A);
6543 assert_pll_disabled(dev_priv, PIPE_B);
6544 } else {
6545 phy = DPIO_PHY1;
6546 assert_pll_disabled(dev_priv, PIPE_C);
6547 }
6548
6549 I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) &
6550 ~PHY_COM_LANE_RESET_DEASSERT(phy));
6551
6552 vlv_set_power_well(dev_priv, power_well, false);
6553 }
6554
6555 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
6556 struct i915_power_well *power_well)
6557 {
6558 enum pipe pipe = power_well->data;
6559 bool enabled;
6560 u32 state, ctrl;
6561
6562 mutex_lock(&dev_priv->rps.hw_lock);
6563
6564 state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
6565 /*
6566 * We only ever set the power-on and power-gate states, anything
6567 * else is unexpected.
6568 */
6569 WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
6570 enabled = state == DP_SSS_PWR_ON(pipe);
6571
6572 /*
6573 * A transient state at this point would mean some unexpected party
6574 * is poking at the power controls too.
6575 */
6576 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
6577 WARN_ON(ctrl << 16 != state);
6578
6579 mutex_unlock(&dev_priv->rps.hw_lock);
6580
6581 return enabled;
6582 }
6583
6584 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
6585 struct i915_power_well *power_well,
6586 bool enable)
6587 {
6588 enum pipe pipe = power_well->data;
6589 u32 state;
6590 u32 ctrl;
6591
6592 state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
6593
6594 mutex_lock(&dev_priv->rps.hw_lock);
6595
6596 #define COND \
6597 ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
6598
6599 if (COND)
6600 goto out;
6601
6602 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6603 ctrl &= ~DP_SSC_MASK(pipe);
6604 ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
6605 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
6606
6607 if (wait_for(COND, 100))
6608 DRM_ERROR("timout setting power well state %08x (%08x)\n",
6609 state,
6610 vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
6611
6612 #undef COND
6613
6614 out:
6615 mutex_unlock(&dev_priv->rps.hw_lock);
6616 }
6617
6618 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
6619 struct i915_power_well *power_well)
6620 {
6621 chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
6622 }
6623
6624 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
6625 struct i915_power_well *power_well)
6626 {
6627 WARN_ON_ONCE(power_well->data != PIPE_A &&
6628 power_well->data != PIPE_B &&
6629 power_well->data != PIPE_C);
6630
6631 chv_set_pipe_power_well(dev_priv, power_well, true);
6632 }
6633
6634 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
6635 struct i915_power_well *power_well)
6636 {
6637 WARN_ON_ONCE(power_well->data != PIPE_A &&
6638 power_well->data != PIPE_B &&
6639 power_well->data != PIPE_C);
6640
6641 chv_set_pipe_power_well(dev_priv, power_well, false);
6642 }
6643
6644 static void check_power_well_state(struct drm_i915_private *dev_priv,
6645 struct i915_power_well *power_well)
6646 {
6647 bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
6648
6649 if (power_well->always_on || !i915.disable_power_well) {
6650 if (!enabled)
6651 goto mismatch;
6652
6653 return;
6654 }
6655
6656 if (enabled != (power_well->count > 0))
6657 goto mismatch;
6658
6659 return;
6660
6661 mismatch:
6662 WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
6663 power_well->name, power_well->always_on, enabled,
6664 power_well->count, i915.disable_power_well);
6665 }
6666
6667 void intel_display_power_get(struct drm_i915_private *dev_priv,
6668 enum intel_display_power_domain domain)
6669 {
6670 struct i915_power_domains *power_domains;
6671 struct i915_power_well *power_well;
6672 int i;
6673
6674 intel_runtime_pm_get(dev_priv);
6675
6676 power_domains = &dev_priv->power_domains;
6677
6678 mutex_lock(&power_domains->lock);
6679
6680 for_each_power_well(i, power_well, BIT(domain), power_domains) {
6681 if (!power_well->count++) {
6682 DRM_DEBUG_KMS("enabling %s\n", power_well->name);
6683 power_well->ops->enable(dev_priv, power_well);
6684 power_well->hw_enabled = true;
6685 }
6686
6687 check_power_well_state(dev_priv, power_well);
6688 }
6689
6690 power_domains->domain_use_count[domain]++;
6691
6692 mutex_unlock(&power_domains->lock);
6693 }
6694
6695 void intel_display_power_put(struct drm_i915_private *dev_priv,
6696 enum intel_display_power_domain domain)
6697 {
6698 struct i915_power_domains *power_domains;
6699 struct i915_power_well *power_well;
6700 int i;
6701
6702 power_domains = &dev_priv->power_domains;
6703
6704 mutex_lock(&power_domains->lock);
6705
6706 WARN_ON(!power_domains->domain_use_count[domain]);
6707 power_domains->domain_use_count[domain]--;
6708
6709 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6710 WARN_ON(!power_well->count);
6711
6712 if (!--power_well->count && i915.disable_power_well) {
6713 DRM_DEBUG_KMS("disabling %s\n", power_well->name);
6714 power_well->hw_enabled = false;
6715 power_well->ops->disable(dev_priv, power_well);
6716 }
6717
6718 check_power_well_state(dev_priv, power_well);
6719 }
6720
6721 mutex_unlock(&power_domains->lock);
6722
6723 intel_runtime_pm_put(dev_priv);
6724 }
6725
6726 static struct i915_power_domains *hsw_pwr;
6727
6728 /* Display audio driver power well request */
6729 int i915_request_power_well(void)
6730 {
6731 struct drm_i915_private *dev_priv;
6732
6733 if (!hsw_pwr)
6734 return -ENODEV;
6735
6736 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6737 power_domains);
6738 intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
6739 return 0;
6740 }
6741 EXPORT_SYMBOL_GPL(i915_request_power_well);
6742
6743 /* Display audio driver power well release */
6744 int i915_release_power_well(void)
6745 {
6746 struct drm_i915_private *dev_priv;
6747
6748 if (!hsw_pwr)
6749 return -ENODEV;
6750
6751 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6752 power_domains);
6753 intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
6754 return 0;
6755 }
6756 EXPORT_SYMBOL_GPL(i915_release_power_well);
6757
6758 /*
6759 * Private interface for the audio driver to get CDCLK in kHz.
6760 *
6761 * Caller must request power well using i915_request_power_well() prior to
6762 * making the call.
6763 */
6764 int i915_get_cdclk_freq(void)
6765 {
6766 struct drm_i915_private *dev_priv;
6767
6768 if (!hsw_pwr)
6769 return -ENODEV;
6770
6771 dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6772 power_domains);
6773
6774 return intel_ddi_get_cdclk_freq(dev_priv);
6775 }
6776 EXPORT_SYMBOL_GPL(i915_get_cdclk_freq);
6777
6778
6779 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
6780
6781 #define HSW_ALWAYS_ON_POWER_DOMAINS ( \
6782 BIT(POWER_DOMAIN_PIPE_A) | \
6783 BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
6784 BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
6785 BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
6786 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
6787 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
6788 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
6789 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
6790 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
6791 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
6792 BIT(POWER_DOMAIN_PORT_CRT) | \
6793 BIT(POWER_DOMAIN_PLLS) | \
6794 BIT(POWER_DOMAIN_INIT))
6795 #define HSW_DISPLAY_POWER_DOMAINS ( \
6796 (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
6797 BIT(POWER_DOMAIN_INIT))
6798
6799 #define BDW_ALWAYS_ON_POWER_DOMAINS ( \
6800 HSW_ALWAYS_ON_POWER_DOMAINS | \
6801 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
6802 #define BDW_DISPLAY_POWER_DOMAINS ( \
6803 (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
6804 BIT(POWER_DOMAIN_INIT))
6805
6806 #define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
6807 #define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
6808
6809 #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
6810 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
6811 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
6812 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
6813 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
6814 BIT(POWER_DOMAIN_PORT_CRT) | \
6815 BIT(POWER_DOMAIN_INIT))
6816
6817 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
6818 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
6819 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
6820 BIT(POWER_DOMAIN_INIT))
6821
6822 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
6823 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
6824 BIT(POWER_DOMAIN_INIT))
6825
6826 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
6827 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
6828 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
6829 BIT(POWER_DOMAIN_INIT))
6830
6831 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
6832 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
6833 BIT(POWER_DOMAIN_INIT))
6834
6835 #define CHV_PIPE_A_POWER_DOMAINS ( \
6836 BIT(POWER_DOMAIN_PIPE_A) | \
6837 BIT(POWER_DOMAIN_INIT))
6838
6839 #define CHV_PIPE_B_POWER_DOMAINS ( \
6840 BIT(POWER_DOMAIN_PIPE_B) | \
6841 BIT(POWER_DOMAIN_INIT))
6842
6843 #define CHV_PIPE_C_POWER_DOMAINS ( \
6844 BIT(POWER_DOMAIN_PIPE_C) | \
6845 BIT(POWER_DOMAIN_INIT))
6846
6847 #define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \
6848 BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
6849 BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
6850 BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
6851 BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
6852 BIT(POWER_DOMAIN_INIT))
6853
6854 #define CHV_DPIO_CMN_D_POWER_DOMAINS ( \
6855 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
6856 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
6857 BIT(POWER_DOMAIN_INIT))
6858
6859 #define CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS ( \
6860 BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
6861 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
6862 BIT(POWER_DOMAIN_INIT))
6863
6864 #define CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS ( \
6865 BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
6866 BIT(POWER_DOMAIN_INIT))
6867
6868 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
6869 .sync_hw = i9xx_always_on_power_well_noop,
6870 .enable = i9xx_always_on_power_well_noop,
6871 .disable = i9xx_always_on_power_well_noop,
6872 .is_enabled = i9xx_always_on_power_well_enabled,
6873 };
6874
6875 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
6876 .sync_hw = chv_pipe_power_well_sync_hw,
6877 .enable = chv_pipe_power_well_enable,
6878 .disable = chv_pipe_power_well_disable,
6879 .is_enabled = chv_pipe_power_well_enabled,
6880 };
6881
6882 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
6883 .sync_hw = vlv_power_well_sync_hw,
6884 .enable = chv_dpio_cmn_power_well_enable,
6885 .disable = chv_dpio_cmn_power_well_disable,
6886 .is_enabled = vlv_power_well_enabled,
6887 };
6888
6889 static struct i915_power_well i9xx_always_on_power_well[] = {
6890 {
6891 .name = "always-on",
6892 .always_on = 1,
6893 .domains = POWER_DOMAIN_MASK,
6894 .ops = &i9xx_always_on_power_well_ops,
6895 },
6896 };
6897
6898 static const struct i915_power_well_ops hsw_power_well_ops = {
6899 .sync_hw = hsw_power_well_sync_hw,
6900 .enable = hsw_power_well_enable,
6901 .disable = hsw_power_well_disable,
6902 .is_enabled = hsw_power_well_enabled,
6903 };
6904
6905 static struct i915_power_well hsw_power_wells[] = {
6906 {
6907 .name = "always-on",
6908 .always_on = 1,
6909 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
6910 .ops = &i9xx_always_on_power_well_ops,
6911 },
6912 {
6913 .name = "display",
6914 .domains = HSW_DISPLAY_POWER_DOMAINS,
6915 .ops = &hsw_power_well_ops,
6916 },
6917 };
6918
6919 static struct i915_power_well bdw_power_wells[] = {
6920 {
6921 .name = "always-on",
6922 .always_on = 1,
6923 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
6924 .ops = &i9xx_always_on_power_well_ops,
6925 },
6926 {
6927 .name = "display",
6928 .domains = BDW_DISPLAY_POWER_DOMAINS,
6929 .ops = &hsw_power_well_ops,
6930 },
6931 };
6932
6933 static const struct i915_power_well_ops vlv_display_power_well_ops = {
6934 .sync_hw = vlv_power_well_sync_hw,
6935 .enable = vlv_display_power_well_enable,
6936 .disable = vlv_display_power_well_disable,
6937 .is_enabled = vlv_power_well_enabled,
6938 };
6939
6940 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
6941 .sync_hw = vlv_power_well_sync_hw,
6942 .enable = vlv_dpio_cmn_power_well_enable,
6943 .disable = vlv_dpio_cmn_power_well_disable,
6944 .is_enabled = vlv_power_well_enabled,
6945 };
6946
6947 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
6948 .sync_hw = vlv_power_well_sync_hw,
6949 .enable = vlv_power_well_enable,
6950 .disable = vlv_power_well_disable,
6951 .is_enabled = vlv_power_well_enabled,
6952 };
6953
6954 static struct i915_power_well vlv_power_wells[] = {
6955 {
6956 .name = "always-on",
6957 .always_on = 1,
6958 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
6959 .ops = &i9xx_always_on_power_well_ops,
6960 },
6961 {
6962 .name = "display",
6963 .domains = VLV_DISPLAY_POWER_DOMAINS,
6964 .data = PUNIT_POWER_WELL_DISP2D,
6965 .ops = &vlv_display_power_well_ops,
6966 },
6967 {
6968 .name = "dpio-tx-b-01",
6969 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6970 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6971 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6972 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6973 .ops = &vlv_dpio_power_well_ops,
6974 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
6975 },
6976 {
6977 .name = "dpio-tx-b-23",
6978 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6979 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6980 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6981 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6982 .ops = &vlv_dpio_power_well_ops,
6983 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
6984 },
6985 {
6986 .name = "dpio-tx-c-01",
6987 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6988 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6989 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6990 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6991 .ops = &vlv_dpio_power_well_ops,
6992 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
6993 },
6994 {
6995 .name = "dpio-tx-c-23",
6996 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6997 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6998 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6999 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
7000 .ops = &vlv_dpio_power_well_ops,
7001 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
7002 },
7003 {
7004 .name = "dpio-common",
7005 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
7006 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
7007 .ops = &vlv_dpio_cmn_power_well_ops,
7008 },
7009 };
7010
7011 static struct i915_power_well chv_power_wells[] = {
7012 {
7013 .name = "always-on",
7014 .always_on = 1,
7015 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
7016 .ops = &i9xx_always_on_power_well_ops,
7017 },
7018 #if 0
7019 {
7020 .name = "display",
7021 .domains = VLV_DISPLAY_POWER_DOMAINS,
7022 .data = PUNIT_POWER_WELL_DISP2D,
7023 .ops = &vlv_display_power_well_ops,
7024 },
7025 {
7026 .name = "pipe-a",
7027 .domains = CHV_PIPE_A_POWER_DOMAINS,
7028 .data = PIPE_A,
7029 .ops = &chv_pipe_power_well_ops,
7030 },
7031 {
7032 .name = "pipe-b",
7033 .domains = CHV_PIPE_B_POWER_DOMAINS,
7034 .data = PIPE_B,
7035 .ops = &chv_pipe_power_well_ops,
7036 },
7037 {
7038 .name = "pipe-c",
7039 .domains = CHV_PIPE_C_POWER_DOMAINS,
7040 .data = PIPE_C,
7041 .ops = &chv_pipe_power_well_ops,
7042 },
7043 #endif
7044 {
7045 .name = "dpio-common-bc",
7046 /*
7047 * XXX: cmnreset for one PHY seems to disturb the other.
7048 * As a workaround keep both powered on at the same
7049 * time for now.
7050 */
7051 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
7052 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
7053 .ops = &chv_dpio_cmn_power_well_ops,
7054 },
7055 {
7056 .name = "dpio-common-d",
7057 /*
7058 * XXX: cmnreset for one PHY seems to disturb the other.
7059 * As a workaround keep both powered on at the same
7060 * time for now.
7061 */
7062 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
7063 .data = PUNIT_POWER_WELL_DPIO_CMN_D,
7064 .ops = &chv_dpio_cmn_power_well_ops,
7065 },
7066 #if 0
7067 {
7068 .name = "dpio-tx-b-01",
7069 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
7070 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
7071 .ops = &vlv_dpio_power_well_ops,
7072 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
7073 },
7074 {
7075 .name = "dpio-tx-b-23",
7076 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
7077 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
7078 .ops = &vlv_dpio_power_well_ops,
7079 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
7080 },
7081 {
7082 .name = "dpio-tx-c-01",
7083 .domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
7084 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
7085 .ops = &vlv_dpio_power_well_ops,
7086 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
7087 },
7088 {
7089 .name = "dpio-tx-c-23",
7090 .domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
7091 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
7092 .ops = &vlv_dpio_power_well_ops,
7093 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
7094 },
7095 {
7096 .name = "dpio-tx-d-01",
7097 .domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
7098 CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
7099 .ops = &vlv_dpio_power_well_ops,
7100 .data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_01,
7101 },
7102 {
7103 .name = "dpio-tx-d-23",
7104 .domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
7105 CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
7106 .ops = &vlv_dpio_power_well_ops,
7107 .data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_23,
7108 },
7109 #endif
7110 };
7111
7112 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
7113 enum punit_power_well power_well_id)
7114 {
7115 struct i915_power_domains *power_domains = &dev_priv->power_domains;
7116 struct i915_power_well *power_well;
7117 int i;
7118
7119 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
7120 if (power_well->data == power_well_id)
7121 return power_well;
7122 }
7123
7124 return NULL;
7125 }
7126
7127 #define set_power_wells(power_domains, __power_wells) ({ \
7128 (power_domains)->power_wells = (__power_wells); \
7129 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
7130 })
7131
7132 int intel_power_domains_init(struct drm_i915_private *dev_priv)
7133 {
7134 struct i915_power_domains *power_domains = &dev_priv->power_domains;
7135
7136 mutex_init(&power_domains->lock);
7137
7138 /*
7139 * The enabling order will be from lower to higher indexed wells,
7140 * the disabling order is reversed.
7141 */
7142 if (IS_HASWELL(dev_priv->dev)) {
7143 set_power_wells(power_domains, hsw_power_wells);
7144 hsw_pwr = power_domains;
7145 } else if (IS_BROADWELL(dev_priv->dev)) {
7146 set_power_wells(power_domains, bdw_power_wells);
7147 hsw_pwr = power_domains;
7148 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
7149 set_power_wells(power_domains, chv_power_wells);
7150 } else if (IS_VALLEYVIEW(dev_priv->dev)) {
7151 set_power_wells(power_domains, vlv_power_wells);
7152 } else {
7153 set_power_wells(power_domains, i9xx_always_on_power_well);
7154 }
7155
7156 return 0;
7157 }
7158
7159 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
7160 {
7161 hsw_pwr = NULL;
7162 }
7163
7164 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
7165 {
7166 struct i915_power_domains *power_domains = &dev_priv->power_domains;
7167 struct i915_power_well *power_well;
7168 int i;
7169
7170 mutex_lock(&power_domains->lock);
7171 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
7172 power_well->ops->sync_hw(dev_priv, power_well);
7173 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
7174 power_well);
7175 }
7176 mutex_unlock(&power_domains->lock);
7177 }
7178
7179 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
7180 {
7181 struct i915_power_well *cmn =
7182 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
7183 struct i915_power_well *disp2d =
7184 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
7185
7186 /* nothing to do if common lane is already off */
7187 if (!cmn->ops->is_enabled(dev_priv, cmn))
7188 return;
7189
7190 /* If the display might be already active skip this */
7191 if (disp2d->ops->is_enabled(dev_priv, disp2d) &&
7192 I915_READ(DPIO_CTL) & DPIO_CMNRST)
7193 return;
7194
7195 DRM_DEBUG_KMS("toggling display PHY side reset\n");
7196
7197 /* cmnlane needs DPLL registers */
7198 disp2d->ops->enable(dev_priv, disp2d);
7199
7200 /*
7201 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
7202 * Need to assert and de-assert PHY SB reset by gating the
7203 * common lane power, then un-gating it.
7204 * Simply ungating isn't enough to reset the PHY enough to get
7205 * ports and lanes running.
7206 */
7207 cmn->ops->disable(dev_priv, cmn);
7208 }
7209
7210 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
7211 {
7212 struct drm_device *dev = dev_priv->dev;
7213 struct i915_power_domains *power_domains = &dev_priv->power_domains;
7214
7215 power_domains->initializing = true;
7216
7217 if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
7218 mutex_lock(&power_domains->lock);
7219 vlv_cmnlane_wa(dev_priv);
7220 mutex_unlock(&power_domains->lock);
7221 }
7222
7223 /* For now, we need the power well to be always enabled. */
7224 intel_display_set_init_power(dev_priv, true);
7225 intel_power_domains_resume(dev_priv);
7226 power_domains->initializing = false;
7227 }
7228
7229 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
7230 {
7231 intel_runtime_pm_get(dev_priv);
7232 }
7233
7234 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
7235 {
7236 intel_runtime_pm_put(dev_priv);
7237 }
7238
7239 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
7240 {
7241 struct drm_device *dev = dev_priv->dev;
7242 struct device *device = &dev->pdev->dev;
7243
7244 if (!HAS_RUNTIME_PM(dev))
7245 return;
7246
7247 pm_runtime_get_sync(device);
7248 WARN(dev_priv->pm.suspended, "Device still suspended.\n");
7249 }
7250
7251 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
7252 {
7253 struct drm_device *dev = dev_priv->dev;
7254 struct device *device = &dev->pdev->dev;
7255
7256 if (!HAS_RUNTIME_PM(dev))
7257 return;
7258
7259 WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
7260 pm_runtime_get_noresume(device);
7261 }
7262
7263 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
7264 {
7265 struct drm_device *dev = dev_priv->dev;
7266 struct device *device = &dev->pdev->dev;
7267
7268 if (!HAS_RUNTIME_PM(dev))
7269 return;
7270
7271 pm_runtime_mark_last_busy(device);
7272 pm_runtime_put_autosuspend(device);
7273 }
7274
7275 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
7276 {
7277 struct drm_device *dev = dev_priv->dev;
7278 struct device *device = &dev->pdev->dev;
7279
7280 if (!HAS_RUNTIME_PM(dev))
7281 return;
7282
7283 pm_runtime_set_active(device);
7284
7285 /*
7286 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
7287 * requirement.
7288 */
7289 if (!intel_enable_rc6(dev)) {
7290 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
7291 return;
7292 }
7293
7294 pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
7295 pm_runtime_mark_last_busy(device);
7296 pm_runtime_use_autosuspend(device);
7297
7298 pm_runtime_put_autosuspend(device);
7299 }
7300
7301 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
7302 {
7303 struct drm_device *dev = dev_priv->dev;
7304 struct device *device = &dev->pdev->dev;
7305
7306 if (!HAS_RUNTIME_PM(dev))
7307 return;
7308
7309 if (!intel_enable_rc6(dev))
7310 return;
7311
7312 /* Make sure we're not suspended first. */
7313 pm_runtime_get_sync(device);
7314 pm_runtime_disable(device);
7315 }
7316
7317 /* Set up chip specific power management-related functions */
7318 void intel_init_pm(struct drm_device *dev)
7319 {
7320 struct drm_i915_private *dev_priv = dev->dev_private;
7321
7322 if (HAS_FBC(dev)) {
7323 if (INTEL_INFO(dev)->gen >= 7) {
7324 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7325 dev_priv->display.enable_fbc = gen7_enable_fbc;
7326 dev_priv->display.disable_fbc = ironlake_disable_fbc;
7327 } else if (INTEL_INFO(dev)->gen >= 5) {
7328 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7329 dev_priv->display.enable_fbc = ironlake_enable_fbc;
7330 dev_priv->display.disable_fbc = ironlake_disable_fbc;
7331 } else if (IS_GM45(dev)) {
7332 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
7333 dev_priv->display.enable_fbc = g4x_enable_fbc;
7334 dev_priv->display.disable_fbc = g4x_disable_fbc;
7335 } else {
7336 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
7337 dev_priv->display.enable_fbc = i8xx_enable_fbc;
7338 dev_priv->display.disable_fbc = i8xx_disable_fbc;
7339
7340 /* This value was pulled out of someone's hat */
7341 I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
7342 }
7343 }
7344
7345 /* For cxsr */
7346 if (IS_PINEVIEW(dev))
7347 i915_pineview_get_mem_freq(dev);
7348 else if (IS_GEN5(dev))
7349 i915_ironlake_get_mem_freq(dev);
7350
7351 /* For FIFO watermark updates */
7352 if (HAS_PCH_SPLIT(dev)) {
7353 ilk_setup_wm_latency(dev);
7354
7355 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7356 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7357 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7358 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7359 dev_priv->display.update_wm = ilk_update_wm;
7360 dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7361 } else {
7362 DRM_DEBUG_KMS("Failed to read display plane latency. "
7363 "Disable CxSR\n");
7364 }
7365
7366 if (IS_GEN5(dev))
7367 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7368 else if (IS_GEN6(dev))
7369 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7370 else if (IS_IVYBRIDGE(dev))
7371 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7372 else if (IS_HASWELL(dev))
7373 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7374 else if (INTEL_INFO(dev)->gen == 8)
7375 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7376 } else if (IS_CHERRYVIEW(dev)) {
7377 dev_priv->display.update_wm = cherryview_update_wm;
7378 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7379 dev_priv->display.init_clock_gating =
7380 cherryview_init_clock_gating;
7381 } else if (IS_VALLEYVIEW(dev)) {
7382 dev_priv->display.update_wm = valleyview_update_wm;
7383 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7384 dev_priv->display.init_clock_gating =
7385 valleyview_init_clock_gating;
7386 } else if (IS_PINEVIEW(dev)) {
7387 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7388 dev_priv->is_ddr3,
7389 dev_priv->fsb_freq,
7390 dev_priv->mem_freq)) {
7391 DRM_INFO("failed to find known CxSR latency "
7392 "(found ddr%s fsb freq %d, mem freq %d), "
7393 "disabling CxSR\n",
7394 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7395 dev_priv->fsb_freq, dev_priv->mem_freq);
7396 /* Disable CxSR and never update its watermark again */
7397 intel_set_memory_cxsr(dev_priv, false);
7398 dev_priv->display.update_wm = NULL;
7399 } else
7400 dev_priv->display.update_wm = pineview_update_wm;
7401 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7402 } else if (IS_G4X(dev)) {
7403 dev_priv->display.update_wm = g4x_update_wm;
7404 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7405 } else if (IS_GEN4(dev)) {
7406 dev_priv->display.update_wm = i965_update_wm;
7407 if (IS_CRESTLINE(dev))
7408 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7409 else if (IS_BROADWATER(dev))
7410 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7411 } else if (IS_GEN3(dev)) {
7412 dev_priv->display.update_wm = i9xx_update_wm;
7413 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7414 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7415 } else if (IS_GEN2(dev)) {
7416 if (INTEL_INFO(dev)->num_pipes == 1) {
7417 dev_priv->display.update_wm = i845_update_wm;
7418 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7419 } else {
7420 dev_priv->display.update_wm = i9xx_update_wm;
7421 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7422 }
7423
7424 if (IS_I85X(dev) || IS_I865G(dev))
7425 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7426 else
7427 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7428 } else {
7429 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7430 }
7431 }
7432
7433 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
7434 {
7435 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7436
7437 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7438 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7439 return -EAGAIN;
7440 }
7441
7442 I915_WRITE(GEN6_PCODE_DATA, *val);
7443 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7444
7445 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7446 500)) {
7447 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7448 return -ETIMEDOUT;
7449 }
7450
7451 *val = I915_READ(GEN6_PCODE_DATA);
7452 I915_WRITE(GEN6_PCODE_DATA, 0);
7453
7454 return 0;
7455 }
7456
7457 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
7458 {
7459 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7460
7461 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7462 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7463 return -EAGAIN;
7464 }
7465
7466 I915_WRITE(GEN6_PCODE_DATA, val);
7467 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7468
7469 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7470 500)) {
7471 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7472 return -ETIMEDOUT;
7473 }
7474
7475 I915_WRITE(GEN6_PCODE_DATA, 0);
7476
7477 return 0;
7478 }
7479
7480 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7481 {
7482 int div;
7483
7484 /* 4 x czclk */
7485 switch (dev_priv->mem_freq) {
7486 case 800:
7487 div = 10;
7488 break;
7489 case 1066:
7490 div = 12;
7491 break;
7492 case 1333:
7493 div = 16;
7494 break;
7495 default:
7496 return -1;
7497 }
7498
7499 return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
7500 }
7501
7502 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7503 {
7504 int mul;
7505
7506 /* 4 x czclk */
7507 switch (dev_priv->mem_freq) {
7508 case 800:
7509 mul = 10;
7510 break;
7511 case 1066:
7512 mul = 12;
7513 break;
7514 case 1333:
7515 mul = 16;
7516 break;
7517 default:
7518 return -1;
7519 }
7520
7521 return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
7522 }
7523
7524 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7525 {
7526 int div, freq;
7527
7528 switch (dev_priv->rps.cz_freq) {
7529 case 200:
7530 div = 5;
7531 break;
7532 case 267:
7533 div = 6;
7534 break;
7535 case 320:
7536 case 333:
7537 case 400:
7538 div = 8;
7539 break;
7540 default:
7541 return -1;
7542 }
7543
7544 freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);
7545
7546 return freq;
7547 }
7548
7549 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7550 {
7551 int mul, opcode;
7552
7553 switch (dev_priv->rps.cz_freq) {
7554 case 200:
7555 mul = 5;
7556 break;
7557 case 267:
7558 mul = 6;
7559 break;
7560 case 320:
7561 case 333:
7562 case 400:
7563 mul = 8;
7564 break;
7565 default:
7566 return -1;
7567 }
7568
7569 opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);
7570
7571 return opcode;
7572 }
7573
7574 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7575 {
7576 int ret = -1;
7577
7578 if (IS_CHERRYVIEW(dev_priv->dev))
7579 ret = chv_gpu_freq(dev_priv, val);
7580 else if (IS_VALLEYVIEW(dev_priv->dev))
7581 ret = byt_gpu_freq(dev_priv, val);
7582
7583 return ret;
7584 }
7585
7586 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7587 {
7588 int ret = -1;
7589
7590 if (IS_CHERRYVIEW(dev_priv->dev))
7591 ret = chv_freq_opcode(dev_priv, val);
7592 else if (IS_VALLEYVIEW(dev_priv->dev))
7593 ret = byt_freq_opcode(dev_priv, val);
7594
7595 return ret;
7596 }
7597
7598 void intel_pm_setup(struct drm_device *dev)
7599 {
7600 struct drm_i915_private *dev_priv = dev->dev_private;
7601
7602 mutex_init(&dev_priv->rps.hw_lock);
7603
7604 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7605 intel_gen6_powersave_work);
7606
7607 dev_priv->pm.suspended = false;
7608 dev_priv->pm._irqs_disabled = false;
7609 }
This page took 0.359651 seconds and 6 git commands to generate.