drm/i915: move pnv|ilk_gem_mem_freq to intel_pm.c
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
35 * framebuffer contents in-memory, aiming at reducing the required bandwidth
36 * during in-memory transfers and, therefore, reduce the power packet.
37 *
38 * The benefits of FBC are mostly visible with solid backgrounds and
39 * variation-less patterns.
40 *
41 * FBC-related functionality can be enabled by the means of the
42 * i915.i915_enable_fbc parameter
43 */
44
45 static void i8xx_disable_fbc(struct drm_device *dev)
46 {
47 struct drm_i915_private *dev_priv = dev->dev_private;
48 u32 fbc_ctl;
49
50 /* Disable compression */
51 fbc_ctl = I915_READ(FBC_CONTROL);
52 if ((fbc_ctl & FBC_CTL_EN) == 0)
53 return;
54
55 fbc_ctl &= ~FBC_CTL_EN;
56 I915_WRITE(FBC_CONTROL, fbc_ctl);
57
58 /* Wait for compressing bit to clear */
59 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
60 DRM_DEBUG_KMS("FBC idle timed out\n");
61 return;
62 }
63
64 DRM_DEBUG_KMS("disabled FBC\n");
65 }
66
67 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
68 {
69 struct drm_device *dev = crtc->dev;
70 struct drm_i915_private *dev_priv = dev->dev_private;
71 struct drm_framebuffer *fb = crtc->fb;
72 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
73 struct drm_i915_gem_object *obj = intel_fb->obj;
74 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
75 int cfb_pitch;
76 int plane, i;
77 u32 fbc_ctl, fbc_ctl2;
78
79 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
80 if (fb->pitches[0] < cfb_pitch)
81 cfb_pitch = fb->pitches[0];
82
83 /* FBC_CTL wants 64B units */
84 cfb_pitch = (cfb_pitch / 64) - 1;
85 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
86
87 /* Clear old tags */
88 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
89 I915_WRITE(FBC_TAG + (i * 4), 0);
90
91 /* Set it up... */
92 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
93 fbc_ctl2 |= plane;
94 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
95 I915_WRITE(FBC_FENCE_OFF, crtc->y);
96
97 /* enable it... */
98 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
99 if (IS_I945GM(dev))
100 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
101 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
102 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
103 fbc_ctl |= obj->fence_reg;
104 I915_WRITE(FBC_CONTROL, fbc_ctl);
105
106 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
107 cfb_pitch, crtc->y, intel_crtc->plane);
108 }
109
110 static bool i8xx_fbc_enabled(struct drm_device *dev)
111 {
112 struct drm_i915_private *dev_priv = dev->dev_private;
113
114 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
115 }
116
117 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
118 {
119 struct drm_device *dev = crtc->dev;
120 struct drm_i915_private *dev_priv = dev->dev_private;
121 struct drm_framebuffer *fb = crtc->fb;
122 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
123 struct drm_i915_gem_object *obj = intel_fb->obj;
124 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
125 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
126 unsigned long stall_watermark = 200;
127 u32 dpfc_ctl;
128
129 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
130 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
131 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
132
133 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
134 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
135 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
136 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
137
138 /* enable it... */
139 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
140
141 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
142 }
143
144 static void g4x_disable_fbc(struct drm_device *dev)
145 {
146 struct drm_i915_private *dev_priv = dev->dev_private;
147 u32 dpfc_ctl;
148
149 /* Disable compression */
150 dpfc_ctl = I915_READ(DPFC_CONTROL);
151 if (dpfc_ctl & DPFC_CTL_EN) {
152 dpfc_ctl &= ~DPFC_CTL_EN;
153 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
154
155 DRM_DEBUG_KMS("disabled FBC\n");
156 }
157 }
158
159 static bool g4x_fbc_enabled(struct drm_device *dev)
160 {
161 struct drm_i915_private *dev_priv = dev->dev_private;
162
163 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
164 }
165
166 static void sandybridge_blit_fbc_update(struct drm_device *dev)
167 {
168 struct drm_i915_private *dev_priv = dev->dev_private;
169 u32 blt_ecoskpd;
170
171 /* Make sure blitter notifies FBC of writes */
172 gen6_gt_force_wake_get(dev_priv);
173 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
174 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
175 GEN6_BLITTER_LOCK_SHIFT;
176 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
177 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
178 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
179 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
180 GEN6_BLITTER_LOCK_SHIFT);
181 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
182 POSTING_READ(GEN6_BLITTER_ECOSKPD);
183 gen6_gt_force_wake_put(dev_priv);
184 }
185
186 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
187 {
188 struct drm_device *dev = crtc->dev;
189 struct drm_i915_private *dev_priv = dev->dev_private;
190 struct drm_framebuffer *fb = crtc->fb;
191 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
192 struct drm_i915_gem_object *obj = intel_fb->obj;
193 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
194 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
195 unsigned long stall_watermark = 200;
196 u32 dpfc_ctl;
197
198 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
199 dpfc_ctl &= DPFC_RESERVED;
200 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
201 /* Set persistent mode for front-buffer rendering, ala X. */
202 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
203 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
204 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
205
206 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
207 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
208 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
209 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
210 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
211 /* enable it... */
212 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
213
214 if (IS_GEN6(dev)) {
215 I915_WRITE(SNB_DPFC_CTL_SA,
216 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
217 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
218 sandybridge_blit_fbc_update(dev);
219 }
220
221 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
222 }
223
224 static void ironlake_disable_fbc(struct drm_device *dev)
225 {
226 struct drm_i915_private *dev_priv = dev->dev_private;
227 u32 dpfc_ctl;
228
229 /* Disable compression */
230 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
231 if (dpfc_ctl & DPFC_CTL_EN) {
232 dpfc_ctl &= ~DPFC_CTL_EN;
233 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
234
235 DRM_DEBUG_KMS("disabled FBC\n");
236 }
237 }
238
239 static bool ironlake_fbc_enabled(struct drm_device *dev)
240 {
241 struct drm_i915_private *dev_priv = dev->dev_private;
242
243 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
244 }
245
246 bool intel_fbc_enabled(struct drm_device *dev)
247 {
248 struct drm_i915_private *dev_priv = dev->dev_private;
249
250 if (!dev_priv->display.fbc_enabled)
251 return false;
252
253 return dev_priv->display.fbc_enabled(dev);
254 }
255
256 static void intel_fbc_work_fn(struct work_struct *__work)
257 {
258 struct intel_fbc_work *work =
259 container_of(to_delayed_work(__work),
260 struct intel_fbc_work, work);
261 struct drm_device *dev = work->crtc->dev;
262 struct drm_i915_private *dev_priv = dev->dev_private;
263
264 mutex_lock(&dev->struct_mutex);
265 if (work == dev_priv->fbc_work) {
266 /* Double check that we haven't switched fb without cancelling
267 * the prior work.
268 */
269 if (work->crtc->fb == work->fb) {
270 dev_priv->display.enable_fbc(work->crtc,
271 work->interval);
272
273 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
274 dev_priv->cfb_fb = work->crtc->fb->base.id;
275 dev_priv->cfb_y = work->crtc->y;
276 }
277
278 dev_priv->fbc_work = NULL;
279 }
280 mutex_unlock(&dev->struct_mutex);
281
282 kfree(work);
283 }
284
285 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
286 {
287 if (dev_priv->fbc_work == NULL)
288 return;
289
290 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
291
292 /* Synchronisation is provided by struct_mutex and checking of
293 * dev_priv->fbc_work, so we can perform the cancellation
294 * entirely asynchronously.
295 */
296 if (cancel_delayed_work(&dev_priv->fbc_work->work))
297 /* tasklet was killed before being run, clean up */
298 kfree(dev_priv->fbc_work);
299
300 /* Mark the work as no longer wanted so that if it does
301 * wake-up (because the work was already running and waiting
302 * for our mutex), it will discover that is no longer
303 * necessary to run.
304 */
305 dev_priv->fbc_work = NULL;
306 }
307
308 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
309 {
310 struct intel_fbc_work *work;
311 struct drm_device *dev = crtc->dev;
312 struct drm_i915_private *dev_priv = dev->dev_private;
313
314 if (!dev_priv->display.enable_fbc)
315 return;
316
317 intel_cancel_fbc_work(dev_priv);
318
319 work = kzalloc(sizeof *work, GFP_KERNEL);
320 if (work == NULL) {
321 dev_priv->display.enable_fbc(crtc, interval);
322 return;
323 }
324
325 work->crtc = crtc;
326 work->fb = crtc->fb;
327 work->interval = interval;
328 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
329
330 dev_priv->fbc_work = work;
331
332 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
333
334 /* Delay the actual enabling to let pageflipping cease and the
335 * display to settle before starting the compression. Note that
336 * this delay also serves a second purpose: it allows for a
337 * vblank to pass after disabling the FBC before we attempt
338 * to modify the control registers.
339 *
340 * A more complicated solution would involve tracking vblanks
341 * following the termination of the page-flipping sequence
342 * and indeed performing the enable as a co-routine and not
343 * waiting synchronously upon the vblank.
344 */
345 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
346 }
347
348 void intel_disable_fbc(struct drm_device *dev)
349 {
350 struct drm_i915_private *dev_priv = dev->dev_private;
351
352 intel_cancel_fbc_work(dev_priv);
353
354 if (!dev_priv->display.disable_fbc)
355 return;
356
357 dev_priv->display.disable_fbc(dev);
358 dev_priv->cfb_plane = -1;
359 }
360
361 /**
362 * intel_update_fbc - enable/disable FBC as needed
363 * @dev: the drm_device
364 *
365 * Set up the framebuffer compression hardware at mode set time. We
366 * enable it if possible:
367 * - plane A only (on pre-965)
368 * - no pixel mulitply/line duplication
369 * - no alpha buffer discard
370 * - no dual wide
371 * - framebuffer <= 2048 in width, 1536 in height
372 *
373 * We can't assume that any compression will take place (worst case),
374 * so the compressed buffer has to be the same size as the uncompressed
375 * one. It also must reside (along with the line length buffer) in
376 * stolen memory.
377 *
378 * We need to enable/disable FBC on a global basis.
379 */
380 void intel_update_fbc(struct drm_device *dev)
381 {
382 struct drm_i915_private *dev_priv = dev->dev_private;
383 struct drm_crtc *crtc = NULL, *tmp_crtc;
384 struct intel_crtc *intel_crtc;
385 struct drm_framebuffer *fb;
386 struct intel_framebuffer *intel_fb;
387 struct drm_i915_gem_object *obj;
388 int enable_fbc;
389
390 DRM_DEBUG_KMS("\n");
391
392 if (!i915_powersave)
393 return;
394
395 if (!I915_HAS_FBC(dev))
396 return;
397
398 /*
399 * If FBC is already on, we just have to verify that we can
400 * keep it that way...
401 * Need to disable if:
402 * - more than one pipe is active
403 * - changing FBC params (stride, fence, mode)
404 * - new fb is too large to fit in compressed buffer
405 * - going to an unsupported config (interlace, pixel multiply, etc.)
406 */
407 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
408 if (tmp_crtc->enabled && tmp_crtc->fb) {
409 if (crtc) {
410 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
411 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
412 goto out_disable;
413 }
414 crtc = tmp_crtc;
415 }
416 }
417
418 if (!crtc || crtc->fb == NULL) {
419 DRM_DEBUG_KMS("no output, disabling\n");
420 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
421 goto out_disable;
422 }
423
424 intel_crtc = to_intel_crtc(crtc);
425 fb = crtc->fb;
426 intel_fb = to_intel_framebuffer(fb);
427 obj = intel_fb->obj;
428
429 enable_fbc = i915_enable_fbc;
430 if (enable_fbc < 0) {
431 DRM_DEBUG_KMS("fbc set to per-chip default\n");
432 enable_fbc = 1;
433 if (INTEL_INFO(dev)->gen <= 6)
434 enable_fbc = 0;
435 }
436 if (!enable_fbc) {
437 DRM_DEBUG_KMS("fbc disabled per module param\n");
438 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
439 goto out_disable;
440 }
441 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
442 DRM_DEBUG_KMS("framebuffer too large, disabling "
443 "compression\n");
444 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
445 goto out_disable;
446 }
447 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
448 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
449 DRM_DEBUG_KMS("mode incompatible with compression, "
450 "disabling\n");
451 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
452 goto out_disable;
453 }
454 if ((crtc->mode.hdisplay > 2048) ||
455 (crtc->mode.vdisplay > 1536)) {
456 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
457 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
458 goto out_disable;
459 }
460 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
461 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
462 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
463 goto out_disable;
464 }
465
466 /* The use of a CPU fence is mandatory in order to detect writes
467 * by the CPU to the scanout and trigger updates to the FBC.
468 */
469 if (obj->tiling_mode != I915_TILING_X ||
470 obj->fence_reg == I915_FENCE_REG_NONE) {
471 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
472 dev_priv->no_fbc_reason = FBC_NOT_TILED;
473 goto out_disable;
474 }
475
476 /* If the kernel debugger is active, always disable compression */
477 if (in_dbg_master())
478 goto out_disable;
479
480 /* If the scanout has not changed, don't modify the FBC settings.
481 * Note that we make the fundamental assumption that the fb->obj
482 * cannot be unpinned (and have its GTT offset and fence revoked)
483 * without first being decoupled from the scanout and FBC disabled.
484 */
485 if (dev_priv->cfb_plane == intel_crtc->plane &&
486 dev_priv->cfb_fb == fb->base.id &&
487 dev_priv->cfb_y == crtc->y)
488 return;
489
490 if (intel_fbc_enabled(dev)) {
491 /* We update FBC along two paths, after changing fb/crtc
492 * configuration (modeswitching) and after page-flipping
493 * finishes. For the latter, we know that not only did
494 * we disable the FBC at the start of the page-flip
495 * sequence, but also more than one vblank has passed.
496 *
497 * For the former case of modeswitching, it is possible
498 * to switch between two FBC valid configurations
499 * instantaneously so we do need to disable the FBC
500 * before we can modify its control registers. We also
501 * have to wait for the next vblank for that to take
502 * effect. However, since we delay enabling FBC we can
503 * assume that a vblank has passed since disabling and
504 * that we can safely alter the registers in the deferred
505 * callback.
506 *
507 * In the scenario that we go from a valid to invalid
508 * and then back to valid FBC configuration we have
509 * no strict enforcement that a vblank occurred since
510 * disabling the FBC. However, along all current pipe
511 * disabling paths we do need to wait for a vblank at
512 * some point. And we wait before enabling FBC anyway.
513 */
514 DRM_DEBUG_KMS("disabling active FBC for update\n");
515 intel_disable_fbc(dev);
516 }
517
518 intel_enable_fbc(crtc, 500);
519 return;
520
521 out_disable:
522 /* Multiple disables should be harmless */
523 if (intel_fbc_enabled(dev)) {
524 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
525 intel_disable_fbc(dev);
526 }
527 }
528
529 static void i915_pineview_get_mem_freq(struct drm_device *dev)
530 {
531 drm_i915_private_t *dev_priv = dev->dev_private;
532 u32 tmp;
533
534 tmp = I915_READ(CLKCFG);
535
536 switch (tmp & CLKCFG_FSB_MASK) {
537 case CLKCFG_FSB_533:
538 dev_priv->fsb_freq = 533; /* 133*4 */
539 break;
540 case CLKCFG_FSB_800:
541 dev_priv->fsb_freq = 800; /* 200*4 */
542 break;
543 case CLKCFG_FSB_667:
544 dev_priv->fsb_freq = 667; /* 167*4 */
545 break;
546 case CLKCFG_FSB_400:
547 dev_priv->fsb_freq = 400; /* 100*4 */
548 break;
549 }
550
551 switch (tmp & CLKCFG_MEM_MASK) {
552 case CLKCFG_MEM_533:
553 dev_priv->mem_freq = 533;
554 break;
555 case CLKCFG_MEM_667:
556 dev_priv->mem_freq = 667;
557 break;
558 case CLKCFG_MEM_800:
559 dev_priv->mem_freq = 800;
560 break;
561 }
562
563 /* detect pineview DDR3 setting */
564 tmp = I915_READ(CSHRDDR3CTL);
565 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
566 }
567
568 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
569 {
570 drm_i915_private_t *dev_priv = dev->dev_private;
571 u16 ddrpll, csipll;
572
573 ddrpll = I915_READ16(DDRMPLL1);
574 csipll = I915_READ16(CSIPLL0);
575
576 switch (ddrpll & 0xff) {
577 case 0xc:
578 dev_priv->mem_freq = 800;
579 break;
580 case 0x10:
581 dev_priv->mem_freq = 1066;
582 break;
583 case 0x14:
584 dev_priv->mem_freq = 1333;
585 break;
586 case 0x18:
587 dev_priv->mem_freq = 1600;
588 break;
589 default:
590 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
591 ddrpll & 0xff);
592 dev_priv->mem_freq = 0;
593 break;
594 }
595
596 dev_priv->r_t = dev_priv->mem_freq;
597
598 switch (csipll & 0x3ff) {
599 case 0x00c:
600 dev_priv->fsb_freq = 3200;
601 break;
602 case 0x00e:
603 dev_priv->fsb_freq = 3733;
604 break;
605 case 0x010:
606 dev_priv->fsb_freq = 4266;
607 break;
608 case 0x012:
609 dev_priv->fsb_freq = 4800;
610 break;
611 case 0x014:
612 dev_priv->fsb_freq = 5333;
613 break;
614 case 0x016:
615 dev_priv->fsb_freq = 5866;
616 break;
617 case 0x018:
618 dev_priv->fsb_freq = 6400;
619 break;
620 default:
621 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
622 csipll & 0x3ff);
623 dev_priv->fsb_freq = 0;
624 break;
625 }
626
627 if (dev_priv->fsb_freq == 3200) {
628 dev_priv->c_m = 0;
629 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
630 dev_priv->c_m = 1;
631 } else {
632 dev_priv->c_m = 2;
633 }
634 }
635
636 static const struct cxsr_latency cxsr_latency_table[] = {
637 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
638 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
639 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
640 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
641 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
642
643 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
644 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
645 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
646 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
647 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
648
649 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
650 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
651 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
652 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
653 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
654
655 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
656 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
657 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
658 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
659 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
660
661 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
662 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
663 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
664 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
665 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
666
667 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
668 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
669 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
670 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
671 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
672 };
673
674 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
675 int is_ddr3,
676 int fsb,
677 int mem)
678 {
679 const struct cxsr_latency *latency;
680 int i;
681
682 if (fsb == 0 || mem == 0)
683 return NULL;
684
685 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
686 latency = &cxsr_latency_table[i];
687 if (is_desktop == latency->is_desktop &&
688 is_ddr3 == latency->is_ddr3 &&
689 fsb == latency->fsb_freq && mem == latency->mem_freq)
690 return latency;
691 }
692
693 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
694
695 return NULL;
696 }
697
698 static void pineview_disable_cxsr(struct drm_device *dev)
699 {
700 struct drm_i915_private *dev_priv = dev->dev_private;
701
702 /* deactivate cxsr */
703 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
704 }
705
706 /*
707 * Latency for FIFO fetches is dependent on several factors:
708 * - memory configuration (speed, channels)
709 * - chipset
710 * - current MCH state
711 * It can be fairly high in some situations, so here we assume a fairly
712 * pessimal value. It's a tradeoff between extra memory fetches (if we
713 * set this value too high, the FIFO will fetch frequently to stay full)
714 * and power consumption (set it too low to save power and we might see
715 * FIFO underruns and display "flicker").
716 *
717 * A value of 5us seems to be a good balance; safe for very low end
718 * platforms but not overly aggressive on lower latency configs.
719 */
720 static const int latency_ns = 5000;
721
722 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
723 {
724 struct drm_i915_private *dev_priv = dev->dev_private;
725 uint32_t dsparb = I915_READ(DSPARB);
726 int size;
727
728 size = dsparb & 0x7f;
729 if (plane)
730 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
731
732 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
733 plane ? "B" : "A", size);
734
735 return size;
736 }
737
738 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
739 {
740 struct drm_i915_private *dev_priv = dev->dev_private;
741 uint32_t dsparb = I915_READ(DSPARB);
742 int size;
743
744 size = dsparb & 0x1ff;
745 if (plane)
746 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
747 size >>= 1; /* Convert to cachelines */
748
749 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
750 plane ? "B" : "A", size);
751
752 return size;
753 }
754
755 static int i845_get_fifo_size(struct drm_device *dev, int plane)
756 {
757 struct drm_i915_private *dev_priv = dev->dev_private;
758 uint32_t dsparb = I915_READ(DSPARB);
759 int size;
760
761 size = dsparb & 0x7f;
762 size >>= 2; /* Convert to cachelines */
763
764 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
765 plane ? "B" : "A",
766 size);
767
768 return size;
769 }
770
771 static int i830_get_fifo_size(struct drm_device *dev, int plane)
772 {
773 struct drm_i915_private *dev_priv = dev->dev_private;
774 uint32_t dsparb = I915_READ(DSPARB);
775 int size;
776
777 size = dsparb & 0x7f;
778 size >>= 1; /* Convert to cachelines */
779
780 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
781 plane ? "B" : "A", size);
782
783 return size;
784 }
785
786 /* Pineview has different values for various configs */
787 static const struct intel_watermark_params pineview_display_wm = {
788 PINEVIEW_DISPLAY_FIFO,
789 PINEVIEW_MAX_WM,
790 PINEVIEW_DFT_WM,
791 PINEVIEW_GUARD_WM,
792 PINEVIEW_FIFO_LINE_SIZE
793 };
794 static const struct intel_watermark_params pineview_display_hplloff_wm = {
795 PINEVIEW_DISPLAY_FIFO,
796 PINEVIEW_MAX_WM,
797 PINEVIEW_DFT_HPLLOFF_WM,
798 PINEVIEW_GUARD_WM,
799 PINEVIEW_FIFO_LINE_SIZE
800 };
801 static const struct intel_watermark_params pineview_cursor_wm = {
802 PINEVIEW_CURSOR_FIFO,
803 PINEVIEW_CURSOR_MAX_WM,
804 PINEVIEW_CURSOR_DFT_WM,
805 PINEVIEW_CURSOR_GUARD_WM,
806 PINEVIEW_FIFO_LINE_SIZE,
807 };
808 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
809 PINEVIEW_CURSOR_FIFO,
810 PINEVIEW_CURSOR_MAX_WM,
811 PINEVIEW_CURSOR_DFT_WM,
812 PINEVIEW_CURSOR_GUARD_WM,
813 PINEVIEW_FIFO_LINE_SIZE
814 };
815 static const struct intel_watermark_params g4x_wm_info = {
816 G4X_FIFO_SIZE,
817 G4X_MAX_WM,
818 G4X_MAX_WM,
819 2,
820 G4X_FIFO_LINE_SIZE,
821 };
822 static const struct intel_watermark_params g4x_cursor_wm_info = {
823 I965_CURSOR_FIFO,
824 I965_CURSOR_MAX_WM,
825 I965_CURSOR_DFT_WM,
826 2,
827 G4X_FIFO_LINE_SIZE,
828 };
829 static const struct intel_watermark_params valleyview_wm_info = {
830 VALLEYVIEW_FIFO_SIZE,
831 VALLEYVIEW_MAX_WM,
832 VALLEYVIEW_MAX_WM,
833 2,
834 G4X_FIFO_LINE_SIZE,
835 };
836 static const struct intel_watermark_params valleyview_cursor_wm_info = {
837 I965_CURSOR_FIFO,
838 VALLEYVIEW_CURSOR_MAX_WM,
839 I965_CURSOR_DFT_WM,
840 2,
841 G4X_FIFO_LINE_SIZE,
842 };
843 static const struct intel_watermark_params i965_cursor_wm_info = {
844 I965_CURSOR_FIFO,
845 I965_CURSOR_MAX_WM,
846 I965_CURSOR_DFT_WM,
847 2,
848 I915_FIFO_LINE_SIZE,
849 };
850 static const struct intel_watermark_params i945_wm_info = {
851 I945_FIFO_SIZE,
852 I915_MAX_WM,
853 1,
854 2,
855 I915_FIFO_LINE_SIZE
856 };
857 static const struct intel_watermark_params i915_wm_info = {
858 I915_FIFO_SIZE,
859 I915_MAX_WM,
860 1,
861 2,
862 I915_FIFO_LINE_SIZE
863 };
864 static const struct intel_watermark_params i855_wm_info = {
865 I855GM_FIFO_SIZE,
866 I915_MAX_WM,
867 1,
868 2,
869 I830_FIFO_LINE_SIZE
870 };
871 static const struct intel_watermark_params i830_wm_info = {
872 I830_FIFO_SIZE,
873 I915_MAX_WM,
874 1,
875 2,
876 I830_FIFO_LINE_SIZE
877 };
878
879 static const struct intel_watermark_params ironlake_display_wm_info = {
880 ILK_DISPLAY_FIFO,
881 ILK_DISPLAY_MAXWM,
882 ILK_DISPLAY_DFTWM,
883 2,
884 ILK_FIFO_LINE_SIZE
885 };
886 static const struct intel_watermark_params ironlake_cursor_wm_info = {
887 ILK_CURSOR_FIFO,
888 ILK_CURSOR_MAXWM,
889 ILK_CURSOR_DFTWM,
890 2,
891 ILK_FIFO_LINE_SIZE
892 };
893 static const struct intel_watermark_params ironlake_display_srwm_info = {
894 ILK_DISPLAY_SR_FIFO,
895 ILK_DISPLAY_MAX_SRWM,
896 ILK_DISPLAY_DFT_SRWM,
897 2,
898 ILK_FIFO_LINE_SIZE
899 };
900 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
901 ILK_CURSOR_SR_FIFO,
902 ILK_CURSOR_MAX_SRWM,
903 ILK_CURSOR_DFT_SRWM,
904 2,
905 ILK_FIFO_LINE_SIZE
906 };
907
908 static const struct intel_watermark_params sandybridge_display_wm_info = {
909 SNB_DISPLAY_FIFO,
910 SNB_DISPLAY_MAXWM,
911 SNB_DISPLAY_DFTWM,
912 2,
913 SNB_FIFO_LINE_SIZE
914 };
915 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
916 SNB_CURSOR_FIFO,
917 SNB_CURSOR_MAXWM,
918 SNB_CURSOR_DFTWM,
919 2,
920 SNB_FIFO_LINE_SIZE
921 };
922 static const struct intel_watermark_params sandybridge_display_srwm_info = {
923 SNB_DISPLAY_SR_FIFO,
924 SNB_DISPLAY_MAX_SRWM,
925 SNB_DISPLAY_DFT_SRWM,
926 2,
927 SNB_FIFO_LINE_SIZE
928 };
929 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
930 SNB_CURSOR_SR_FIFO,
931 SNB_CURSOR_MAX_SRWM,
932 SNB_CURSOR_DFT_SRWM,
933 2,
934 SNB_FIFO_LINE_SIZE
935 };
936
937
938 /**
939 * intel_calculate_wm - calculate watermark level
940 * @clock_in_khz: pixel clock
941 * @wm: chip FIFO params
942 * @pixel_size: display pixel size
943 * @latency_ns: memory latency for the platform
944 *
945 * Calculate the watermark level (the level at which the display plane will
946 * start fetching from memory again). Each chip has a different display
947 * FIFO size and allocation, so the caller needs to figure that out and pass
948 * in the correct intel_watermark_params structure.
949 *
950 * As the pixel clock runs, the FIFO will be drained at a rate that depends
951 * on the pixel size. When it reaches the watermark level, it'll start
952 * fetching FIFO line sized based chunks from memory until the FIFO fills
953 * past the watermark point. If the FIFO drains completely, a FIFO underrun
954 * will occur, and a display engine hang could result.
955 */
956 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
957 const struct intel_watermark_params *wm,
958 int fifo_size,
959 int pixel_size,
960 unsigned long latency_ns)
961 {
962 long entries_required, wm_size;
963
964 /*
965 * Note: we need to make sure we don't overflow for various clock &
966 * latency values.
967 * clocks go from a few thousand to several hundred thousand.
968 * latency is usually a few thousand
969 */
970 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
971 1000;
972 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
973
974 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
975
976 wm_size = fifo_size - (entries_required + wm->guard_size);
977
978 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
979
980 /* Don't promote wm_size to unsigned... */
981 if (wm_size > (long)wm->max_wm)
982 wm_size = wm->max_wm;
983 if (wm_size <= 0)
984 wm_size = wm->default_wm;
985 return wm_size;
986 }
987
988 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
989 {
990 struct drm_crtc *crtc, *enabled = NULL;
991
992 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
993 if (crtc->enabled && crtc->fb) {
994 if (enabled)
995 return NULL;
996 enabled = crtc;
997 }
998 }
999
1000 return enabled;
1001 }
1002
1003 static void pineview_update_wm(struct drm_device *dev)
1004 {
1005 struct drm_i915_private *dev_priv = dev->dev_private;
1006 struct drm_crtc *crtc;
1007 const struct cxsr_latency *latency;
1008 u32 reg;
1009 unsigned long wm;
1010
1011 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1012 dev_priv->fsb_freq, dev_priv->mem_freq);
1013 if (!latency) {
1014 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1015 pineview_disable_cxsr(dev);
1016 return;
1017 }
1018
1019 crtc = single_enabled_crtc(dev);
1020 if (crtc) {
1021 int clock = crtc->mode.clock;
1022 int pixel_size = crtc->fb->bits_per_pixel / 8;
1023
1024 /* Display SR */
1025 wm = intel_calculate_wm(clock, &pineview_display_wm,
1026 pineview_display_wm.fifo_size,
1027 pixel_size, latency->display_sr);
1028 reg = I915_READ(DSPFW1);
1029 reg &= ~DSPFW_SR_MASK;
1030 reg |= wm << DSPFW_SR_SHIFT;
1031 I915_WRITE(DSPFW1, reg);
1032 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1033
1034 /* cursor SR */
1035 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1036 pineview_display_wm.fifo_size,
1037 pixel_size, latency->cursor_sr);
1038 reg = I915_READ(DSPFW3);
1039 reg &= ~DSPFW_CURSOR_SR_MASK;
1040 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1041 I915_WRITE(DSPFW3, reg);
1042
1043 /* Display HPLL off SR */
1044 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1045 pineview_display_hplloff_wm.fifo_size,
1046 pixel_size, latency->display_hpll_disable);
1047 reg = I915_READ(DSPFW3);
1048 reg &= ~DSPFW_HPLL_SR_MASK;
1049 reg |= wm & DSPFW_HPLL_SR_MASK;
1050 I915_WRITE(DSPFW3, reg);
1051
1052 /* cursor HPLL off SR */
1053 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1054 pineview_display_hplloff_wm.fifo_size,
1055 pixel_size, latency->cursor_hpll_disable);
1056 reg = I915_READ(DSPFW3);
1057 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1058 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1059 I915_WRITE(DSPFW3, reg);
1060 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1061
1062 /* activate cxsr */
1063 I915_WRITE(DSPFW3,
1064 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1065 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1066 } else {
1067 pineview_disable_cxsr(dev);
1068 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1069 }
1070 }
1071
1072 static bool g4x_compute_wm0(struct drm_device *dev,
1073 int plane,
1074 const struct intel_watermark_params *display,
1075 int display_latency_ns,
1076 const struct intel_watermark_params *cursor,
1077 int cursor_latency_ns,
1078 int *plane_wm,
1079 int *cursor_wm)
1080 {
1081 struct drm_crtc *crtc;
1082 int htotal, hdisplay, clock, pixel_size;
1083 int line_time_us, line_count;
1084 int entries, tlb_miss;
1085
1086 crtc = intel_get_crtc_for_plane(dev, plane);
1087 if (crtc->fb == NULL || !crtc->enabled) {
1088 *cursor_wm = cursor->guard_size;
1089 *plane_wm = display->guard_size;
1090 return false;
1091 }
1092
1093 htotal = crtc->mode.htotal;
1094 hdisplay = crtc->mode.hdisplay;
1095 clock = crtc->mode.clock;
1096 pixel_size = crtc->fb->bits_per_pixel / 8;
1097
1098 /* Use the small buffer method to calculate plane watermark */
1099 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1100 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1101 if (tlb_miss > 0)
1102 entries += tlb_miss;
1103 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1104 *plane_wm = entries + display->guard_size;
1105 if (*plane_wm > (int)display->max_wm)
1106 *plane_wm = display->max_wm;
1107
1108 /* Use the large buffer method to calculate cursor watermark */
1109 line_time_us = ((htotal * 1000) / clock);
1110 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1111 entries = line_count * 64 * pixel_size;
1112 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1113 if (tlb_miss > 0)
1114 entries += tlb_miss;
1115 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1116 *cursor_wm = entries + cursor->guard_size;
1117 if (*cursor_wm > (int)cursor->max_wm)
1118 *cursor_wm = (int)cursor->max_wm;
1119
1120 return true;
1121 }
1122
1123 /*
1124 * Check the wm result.
1125 *
1126 * If any calculated watermark values is larger than the maximum value that
1127 * can be programmed into the associated watermark register, that watermark
1128 * must be disabled.
1129 */
1130 static bool g4x_check_srwm(struct drm_device *dev,
1131 int display_wm, int cursor_wm,
1132 const struct intel_watermark_params *display,
1133 const struct intel_watermark_params *cursor)
1134 {
1135 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1136 display_wm, cursor_wm);
1137
1138 if (display_wm > display->max_wm) {
1139 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1140 display_wm, display->max_wm);
1141 return false;
1142 }
1143
1144 if (cursor_wm > cursor->max_wm) {
1145 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1146 cursor_wm, cursor->max_wm);
1147 return false;
1148 }
1149
1150 if (!(display_wm || cursor_wm)) {
1151 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1152 return false;
1153 }
1154
1155 return true;
1156 }
1157
1158 static bool g4x_compute_srwm(struct drm_device *dev,
1159 int plane,
1160 int latency_ns,
1161 const struct intel_watermark_params *display,
1162 const struct intel_watermark_params *cursor,
1163 int *display_wm, int *cursor_wm)
1164 {
1165 struct drm_crtc *crtc;
1166 int hdisplay, htotal, pixel_size, clock;
1167 unsigned long line_time_us;
1168 int line_count, line_size;
1169 int small, large;
1170 int entries;
1171
1172 if (!latency_ns) {
1173 *display_wm = *cursor_wm = 0;
1174 return false;
1175 }
1176
1177 crtc = intel_get_crtc_for_plane(dev, plane);
1178 hdisplay = crtc->mode.hdisplay;
1179 htotal = crtc->mode.htotal;
1180 clock = crtc->mode.clock;
1181 pixel_size = crtc->fb->bits_per_pixel / 8;
1182
1183 line_time_us = (htotal * 1000) / clock;
1184 line_count = (latency_ns / line_time_us + 1000) / 1000;
1185 line_size = hdisplay * pixel_size;
1186
1187 /* Use the minimum of the small and large buffer method for primary */
1188 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1189 large = line_count * line_size;
1190
1191 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1192 *display_wm = entries + display->guard_size;
1193
1194 /* calculate the self-refresh watermark for display cursor */
1195 entries = line_count * pixel_size * 64;
1196 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1197 *cursor_wm = entries + cursor->guard_size;
1198
1199 return g4x_check_srwm(dev,
1200 *display_wm, *cursor_wm,
1201 display, cursor);
1202 }
1203
1204 static bool vlv_compute_drain_latency(struct drm_device *dev,
1205 int plane,
1206 int *plane_prec_mult,
1207 int *plane_dl,
1208 int *cursor_prec_mult,
1209 int *cursor_dl)
1210 {
1211 struct drm_crtc *crtc;
1212 int clock, pixel_size;
1213 int entries;
1214
1215 crtc = intel_get_crtc_for_plane(dev, plane);
1216 if (crtc->fb == NULL || !crtc->enabled)
1217 return false;
1218
1219 clock = crtc->mode.clock; /* VESA DOT Clock */
1220 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
1221
1222 entries = (clock / 1000) * pixel_size;
1223 *plane_prec_mult = (entries > 256) ?
1224 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1225 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1226 pixel_size);
1227
1228 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1229 *cursor_prec_mult = (entries > 256) ?
1230 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1231 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1232
1233 return true;
1234 }
1235
1236 /*
1237 * Update drain latency registers of memory arbiter
1238 *
1239 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1240 * to be programmed. Each plane has a drain latency multiplier and a drain
1241 * latency value.
1242 */
1243
1244 static void vlv_update_drain_latency(struct drm_device *dev)
1245 {
1246 struct drm_i915_private *dev_priv = dev->dev_private;
1247 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1248 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1249 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1250 either 16 or 32 */
1251
1252 /* For plane A, Cursor A */
1253 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1254 &cursor_prec_mult, &cursora_dl)) {
1255 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1256 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1257 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1258 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1259
1260 I915_WRITE(VLV_DDL1, cursora_prec |
1261 (cursora_dl << DDL_CURSORA_SHIFT) |
1262 planea_prec | planea_dl);
1263 }
1264
1265 /* For plane B, Cursor B */
1266 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1267 &cursor_prec_mult, &cursorb_dl)) {
1268 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1269 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1270 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1271 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1272
1273 I915_WRITE(VLV_DDL2, cursorb_prec |
1274 (cursorb_dl << DDL_CURSORB_SHIFT) |
1275 planeb_prec | planeb_dl);
1276 }
1277 }
1278
1279 #define single_plane_enabled(mask) is_power_of_2(mask)
1280
1281 static void valleyview_update_wm(struct drm_device *dev)
1282 {
1283 static const int sr_latency_ns = 12000;
1284 struct drm_i915_private *dev_priv = dev->dev_private;
1285 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1286 int plane_sr, cursor_sr;
1287 unsigned int enabled = 0;
1288
1289 vlv_update_drain_latency(dev);
1290
1291 if (g4x_compute_wm0(dev, 0,
1292 &valleyview_wm_info, latency_ns,
1293 &valleyview_cursor_wm_info, latency_ns,
1294 &planea_wm, &cursora_wm))
1295 enabled |= 1;
1296
1297 if (g4x_compute_wm0(dev, 1,
1298 &valleyview_wm_info, latency_ns,
1299 &valleyview_cursor_wm_info, latency_ns,
1300 &planeb_wm, &cursorb_wm))
1301 enabled |= 2;
1302
1303 plane_sr = cursor_sr = 0;
1304 if (single_plane_enabled(enabled) &&
1305 g4x_compute_srwm(dev, ffs(enabled) - 1,
1306 sr_latency_ns,
1307 &valleyview_wm_info,
1308 &valleyview_cursor_wm_info,
1309 &plane_sr, &cursor_sr))
1310 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1311 else
1312 I915_WRITE(FW_BLC_SELF_VLV,
1313 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1314
1315 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1316 planea_wm, cursora_wm,
1317 planeb_wm, cursorb_wm,
1318 plane_sr, cursor_sr);
1319
1320 I915_WRITE(DSPFW1,
1321 (plane_sr << DSPFW_SR_SHIFT) |
1322 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1323 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1324 planea_wm);
1325 I915_WRITE(DSPFW2,
1326 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1327 (cursora_wm << DSPFW_CURSORA_SHIFT));
1328 I915_WRITE(DSPFW3,
1329 (I915_READ(DSPFW3) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)));
1330 }
1331
1332 static void g4x_update_wm(struct drm_device *dev)
1333 {
1334 static const int sr_latency_ns = 12000;
1335 struct drm_i915_private *dev_priv = dev->dev_private;
1336 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1337 int plane_sr, cursor_sr;
1338 unsigned int enabled = 0;
1339
1340 if (g4x_compute_wm0(dev, 0,
1341 &g4x_wm_info, latency_ns,
1342 &g4x_cursor_wm_info, latency_ns,
1343 &planea_wm, &cursora_wm))
1344 enabled |= 1;
1345
1346 if (g4x_compute_wm0(dev, 1,
1347 &g4x_wm_info, latency_ns,
1348 &g4x_cursor_wm_info, latency_ns,
1349 &planeb_wm, &cursorb_wm))
1350 enabled |= 2;
1351
1352 plane_sr = cursor_sr = 0;
1353 if (single_plane_enabled(enabled) &&
1354 g4x_compute_srwm(dev, ffs(enabled) - 1,
1355 sr_latency_ns,
1356 &g4x_wm_info,
1357 &g4x_cursor_wm_info,
1358 &plane_sr, &cursor_sr))
1359 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1360 else
1361 I915_WRITE(FW_BLC_SELF,
1362 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1363
1364 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1365 planea_wm, cursora_wm,
1366 planeb_wm, cursorb_wm,
1367 plane_sr, cursor_sr);
1368
1369 I915_WRITE(DSPFW1,
1370 (plane_sr << DSPFW_SR_SHIFT) |
1371 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1372 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1373 planea_wm);
1374 I915_WRITE(DSPFW2,
1375 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1376 (cursora_wm << DSPFW_CURSORA_SHIFT));
1377 /* HPLL off in SR has some issues on G4x... disable it */
1378 I915_WRITE(DSPFW3,
1379 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
1380 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1381 }
1382
1383 static void i965_update_wm(struct drm_device *dev)
1384 {
1385 struct drm_i915_private *dev_priv = dev->dev_private;
1386 struct drm_crtc *crtc;
1387 int srwm = 1;
1388 int cursor_sr = 16;
1389
1390 /* Calc sr entries for one plane configs */
1391 crtc = single_enabled_crtc(dev);
1392 if (crtc) {
1393 /* self-refresh has much higher latency */
1394 static const int sr_latency_ns = 12000;
1395 int clock = crtc->mode.clock;
1396 int htotal = crtc->mode.htotal;
1397 int hdisplay = crtc->mode.hdisplay;
1398 int pixel_size = crtc->fb->bits_per_pixel / 8;
1399 unsigned long line_time_us;
1400 int entries;
1401
1402 line_time_us = ((htotal * 1000) / clock);
1403
1404 /* Use ns/us then divide to preserve precision */
1405 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1406 pixel_size * hdisplay;
1407 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1408 srwm = I965_FIFO_SIZE - entries;
1409 if (srwm < 0)
1410 srwm = 1;
1411 srwm &= 0x1ff;
1412 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1413 entries, srwm);
1414
1415 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1416 pixel_size * 64;
1417 entries = DIV_ROUND_UP(entries,
1418 i965_cursor_wm_info.cacheline_size);
1419 cursor_sr = i965_cursor_wm_info.fifo_size -
1420 (entries + i965_cursor_wm_info.guard_size);
1421
1422 if (cursor_sr > i965_cursor_wm_info.max_wm)
1423 cursor_sr = i965_cursor_wm_info.max_wm;
1424
1425 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1426 "cursor %d\n", srwm, cursor_sr);
1427
1428 if (IS_CRESTLINE(dev))
1429 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1430 } else {
1431 /* Turn off self refresh if both pipes are enabled */
1432 if (IS_CRESTLINE(dev))
1433 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1434 & ~FW_BLC_SELF_EN);
1435 }
1436
1437 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1438 srwm);
1439
1440 /* 965 has limitations... */
1441 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1442 (8 << 16) | (8 << 8) | (8 << 0));
1443 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1444 /* update cursor SR watermark */
1445 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1446 }
1447
1448 static void i9xx_update_wm(struct drm_device *dev)
1449 {
1450 struct drm_i915_private *dev_priv = dev->dev_private;
1451 const struct intel_watermark_params *wm_info;
1452 uint32_t fwater_lo;
1453 uint32_t fwater_hi;
1454 int cwm, srwm = 1;
1455 int fifo_size;
1456 int planea_wm, planeb_wm;
1457 struct drm_crtc *crtc, *enabled = NULL;
1458
1459 if (IS_I945GM(dev))
1460 wm_info = &i945_wm_info;
1461 else if (!IS_GEN2(dev))
1462 wm_info = &i915_wm_info;
1463 else
1464 wm_info = &i855_wm_info;
1465
1466 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1467 crtc = intel_get_crtc_for_plane(dev, 0);
1468 if (crtc->enabled && crtc->fb) {
1469 planea_wm = intel_calculate_wm(crtc->mode.clock,
1470 wm_info, fifo_size,
1471 crtc->fb->bits_per_pixel / 8,
1472 latency_ns);
1473 enabled = crtc;
1474 } else
1475 planea_wm = fifo_size - wm_info->guard_size;
1476
1477 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1478 crtc = intel_get_crtc_for_plane(dev, 1);
1479 if (crtc->enabled && crtc->fb) {
1480 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1481 wm_info, fifo_size,
1482 crtc->fb->bits_per_pixel / 8,
1483 latency_ns);
1484 if (enabled == NULL)
1485 enabled = crtc;
1486 else
1487 enabled = NULL;
1488 } else
1489 planeb_wm = fifo_size - wm_info->guard_size;
1490
1491 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1492
1493 /*
1494 * Overlay gets an aggressive default since video jitter is bad.
1495 */
1496 cwm = 2;
1497
1498 /* Play safe and disable self-refresh before adjusting watermarks. */
1499 if (IS_I945G(dev) || IS_I945GM(dev))
1500 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1501 else if (IS_I915GM(dev))
1502 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1503
1504 /* Calc sr entries for one plane configs */
1505 if (HAS_FW_BLC(dev) && enabled) {
1506 /* self-refresh has much higher latency */
1507 static const int sr_latency_ns = 6000;
1508 int clock = enabled->mode.clock;
1509 int htotal = enabled->mode.htotal;
1510 int hdisplay = enabled->mode.hdisplay;
1511 int pixel_size = enabled->fb->bits_per_pixel / 8;
1512 unsigned long line_time_us;
1513 int entries;
1514
1515 line_time_us = (htotal * 1000) / clock;
1516
1517 /* Use ns/us then divide to preserve precision */
1518 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1519 pixel_size * hdisplay;
1520 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1521 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1522 srwm = wm_info->fifo_size - entries;
1523 if (srwm < 0)
1524 srwm = 1;
1525
1526 if (IS_I945G(dev) || IS_I945GM(dev))
1527 I915_WRITE(FW_BLC_SELF,
1528 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1529 else if (IS_I915GM(dev))
1530 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1531 }
1532
1533 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1534 planea_wm, planeb_wm, cwm, srwm);
1535
1536 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1537 fwater_hi = (cwm & 0x1f);
1538
1539 /* Set request length to 8 cachelines per fetch */
1540 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1541 fwater_hi = fwater_hi | (1 << 8);
1542
1543 I915_WRITE(FW_BLC, fwater_lo);
1544 I915_WRITE(FW_BLC2, fwater_hi);
1545
1546 if (HAS_FW_BLC(dev)) {
1547 if (enabled) {
1548 if (IS_I945G(dev) || IS_I945GM(dev))
1549 I915_WRITE(FW_BLC_SELF,
1550 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1551 else if (IS_I915GM(dev))
1552 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1553 DRM_DEBUG_KMS("memory self refresh enabled\n");
1554 } else
1555 DRM_DEBUG_KMS("memory self refresh disabled\n");
1556 }
1557 }
1558
1559 static void i830_update_wm(struct drm_device *dev)
1560 {
1561 struct drm_i915_private *dev_priv = dev->dev_private;
1562 struct drm_crtc *crtc;
1563 uint32_t fwater_lo;
1564 int planea_wm;
1565
1566 crtc = single_enabled_crtc(dev);
1567 if (crtc == NULL)
1568 return;
1569
1570 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1571 dev_priv->display.get_fifo_size(dev, 0),
1572 crtc->fb->bits_per_pixel / 8,
1573 latency_ns);
1574 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1575 fwater_lo |= (3<<8) | planea_wm;
1576
1577 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1578
1579 I915_WRITE(FW_BLC, fwater_lo);
1580 }
1581
1582 #define ILK_LP0_PLANE_LATENCY 700
1583 #define ILK_LP0_CURSOR_LATENCY 1300
1584
1585 /*
1586 * Check the wm result.
1587 *
1588 * If any calculated watermark values is larger than the maximum value that
1589 * can be programmed into the associated watermark register, that watermark
1590 * must be disabled.
1591 */
1592 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1593 int fbc_wm, int display_wm, int cursor_wm,
1594 const struct intel_watermark_params *display,
1595 const struct intel_watermark_params *cursor)
1596 {
1597 struct drm_i915_private *dev_priv = dev->dev_private;
1598
1599 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1600 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1601
1602 if (fbc_wm > SNB_FBC_MAX_SRWM) {
1603 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1604 fbc_wm, SNB_FBC_MAX_SRWM, level);
1605
1606 /* fbc has it's own way to disable FBC WM */
1607 I915_WRITE(DISP_ARB_CTL,
1608 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1609 return false;
1610 }
1611
1612 if (display_wm > display->max_wm) {
1613 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1614 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1615 return false;
1616 }
1617
1618 if (cursor_wm > cursor->max_wm) {
1619 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1620 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1621 return false;
1622 }
1623
1624 if (!(fbc_wm || display_wm || cursor_wm)) {
1625 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1626 return false;
1627 }
1628
1629 return true;
1630 }
1631
1632 /*
1633 * Compute watermark values of WM[1-3],
1634 */
1635 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1636 int latency_ns,
1637 const struct intel_watermark_params *display,
1638 const struct intel_watermark_params *cursor,
1639 int *fbc_wm, int *display_wm, int *cursor_wm)
1640 {
1641 struct drm_crtc *crtc;
1642 unsigned long line_time_us;
1643 int hdisplay, htotal, pixel_size, clock;
1644 int line_count, line_size;
1645 int small, large;
1646 int entries;
1647
1648 if (!latency_ns) {
1649 *fbc_wm = *display_wm = *cursor_wm = 0;
1650 return false;
1651 }
1652
1653 crtc = intel_get_crtc_for_plane(dev, plane);
1654 hdisplay = crtc->mode.hdisplay;
1655 htotal = crtc->mode.htotal;
1656 clock = crtc->mode.clock;
1657 pixel_size = crtc->fb->bits_per_pixel / 8;
1658
1659 line_time_us = (htotal * 1000) / clock;
1660 line_count = (latency_ns / line_time_us + 1000) / 1000;
1661 line_size = hdisplay * pixel_size;
1662
1663 /* Use the minimum of the small and large buffer method for primary */
1664 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1665 large = line_count * line_size;
1666
1667 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1668 *display_wm = entries + display->guard_size;
1669
1670 /*
1671 * Spec says:
1672 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1673 */
1674 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1675
1676 /* calculate the self-refresh watermark for display cursor */
1677 entries = line_count * pixel_size * 64;
1678 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1679 *cursor_wm = entries + cursor->guard_size;
1680
1681 return ironlake_check_srwm(dev, level,
1682 *fbc_wm, *display_wm, *cursor_wm,
1683 display, cursor);
1684 }
1685
1686 static void ironlake_update_wm(struct drm_device *dev)
1687 {
1688 struct drm_i915_private *dev_priv = dev->dev_private;
1689 int fbc_wm, plane_wm, cursor_wm;
1690 unsigned int enabled;
1691
1692 enabled = 0;
1693 if (g4x_compute_wm0(dev, 0,
1694 &ironlake_display_wm_info,
1695 ILK_LP0_PLANE_LATENCY,
1696 &ironlake_cursor_wm_info,
1697 ILK_LP0_CURSOR_LATENCY,
1698 &plane_wm, &cursor_wm)) {
1699 I915_WRITE(WM0_PIPEA_ILK,
1700 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1701 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1702 " plane %d, " "cursor: %d\n",
1703 plane_wm, cursor_wm);
1704 enabled |= 1;
1705 }
1706
1707 if (g4x_compute_wm0(dev, 1,
1708 &ironlake_display_wm_info,
1709 ILK_LP0_PLANE_LATENCY,
1710 &ironlake_cursor_wm_info,
1711 ILK_LP0_CURSOR_LATENCY,
1712 &plane_wm, &cursor_wm)) {
1713 I915_WRITE(WM0_PIPEB_ILK,
1714 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1715 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1716 " plane %d, cursor: %d\n",
1717 plane_wm, cursor_wm);
1718 enabled |= 2;
1719 }
1720
1721 /*
1722 * Calculate and update the self-refresh watermark only when one
1723 * display plane is used.
1724 */
1725 I915_WRITE(WM3_LP_ILK, 0);
1726 I915_WRITE(WM2_LP_ILK, 0);
1727 I915_WRITE(WM1_LP_ILK, 0);
1728
1729 if (!single_plane_enabled(enabled))
1730 return;
1731 enabled = ffs(enabled) - 1;
1732
1733 /* WM1 */
1734 if (!ironlake_compute_srwm(dev, 1, enabled,
1735 ILK_READ_WM1_LATENCY() * 500,
1736 &ironlake_display_srwm_info,
1737 &ironlake_cursor_srwm_info,
1738 &fbc_wm, &plane_wm, &cursor_wm))
1739 return;
1740
1741 I915_WRITE(WM1_LP_ILK,
1742 WM1_LP_SR_EN |
1743 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1744 (fbc_wm << WM1_LP_FBC_SHIFT) |
1745 (plane_wm << WM1_LP_SR_SHIFT) |
1746 cursor_wm);
1747
1748 /* WM2 */
1749 if (!ironlake_compute_srwm(dev, 2, enabled,
1750 ILK_READ_WM2_LATENCY() * 500,
1751 &ironlake_display_srwm_info,
1752 &ironlake_cursor_srwm_info,
1753 &fbc_wm, &plane_wm, &cursor_wm))
1754 return;
1755
1756 I915_WRITE(WM2_LP_ILK,
1757 WM2_LP_EN |
1758 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1759 (fbc_wm << WM1_LP_FBC_SHIFT) |
1760 (plane_wm << WM1_LP_SR_SHIFT) |
1761 cursor_wm);
1762
1763 /*
1764 * WM3 is unsupported on ILK, probably because we don't have latency
1765 * data for that power state
1766 */
1767 }
1768
1769 static void sandybridge_update_wm(struct drm_device *dev)
1770 {
1771 struct drm_i915_private *dev_priv = dev->dev_private;
1772 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1773 u32 val;
1774 int fbc_wm, plane_wm, cursor_wm;
1775 unsigned int enabled;
1776
1777 enabled = 0;
1778 if (g4x_compute_wm0(dev, 0,
1779 &sandybridge_display_wm_info, latency,
1780 &sandybridge_cursor_wm_info, latency,
1781 &plane_wm, &cursor_wm)) {
1782 val = I915_READ(WM0_PIPEA_ILK);
1783 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1784 I915_WRITE(WM0_PIPEA_ILK, val |
1785 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1786 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1787 " plane %d, " "cursor: %d\n",
1788 plane_wm, cursor_wm);
1789 enabled |= 1;
1790 }
1791
1792 if (g4x_compute_wm0(dev, 1,
1793 &sandybridge_display_wm_info, latency,
1794 &sandybridge_cursor_wm_info, latency,
1795 &plane_wm, &cursor_wm)) {
1796 val = I915_READ(WM0_PIPEB_ILK);
1797 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1798 I915_WRITE(WM0_PIPEB_ILK, val |
1799 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1800 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1801 " plane %d, cursor: %d\n",
1802 plane_wm, cursor_wm);
1803 enabled |= 2;
1804 }
1805
1806 /* IVB has 3 pipes */
1807 if (IS_IVYBRIDGE(dev) &&
1808 g4x_compute_wm0(dev, 2,
1809 &sandybridge_display_wm_info, latency,
1810 &sandybridge_cursor_wm_info, latency,
1811 &plane_wm, &cursor_wm)) {
1812 val = I915_READ(WM0_PIPEC_IVB);
1813 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1814 I915_WRITE(WM0_PIPEC_IVB, val |
1815 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1816 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1817 " plane %d, cursor: %d\n",
1818 plane_wm, cursor_wm);
1819 enabled |= 3;
1820 }
1821
1822 /*
1823 * Calculate and update the self-refresh watermark only when one
1824 * display plane is used.
1825 *
1826 * SNB support 3 levels of watermark.
1827 *
1828 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1829 * and disabled in the descending order
1830 *
1831 */
1832 I915_WRITE(WM3_LP_ILK, 0);
1833 I915_WRITE(WM2_LP_ILK, 0);
1834 I915_WRITE(WM1_LP_ILK, 0);
1835
1836 if (!single_plane_enabled(enabled) ||
1837 dev_priv->sprite_scaling_enabled)
1838 return;
1839 enabled = ffs(enabled) - 1;
1840
1841 /* WM1 */
1842 if (!ironlake_compute_srwm(dev, 1, enabled,
1843 SNB_READ_WM1_LATENCY() * 500,
1844 &sandybridge_display_srwm_info,
1845 &sandybridge_cursor_srwm_info,
1846 &fbc_wm, &plane_wm, &cursor_wm))
1847 return;
1848
1849 I915_WRITE(WM1_LP_ILK,
1850 WM1_LP_SR_EN |
1851 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1852 (fbc_wm << WM1_LP_FBC_SHIFT) |
1853 (plane_wm << WM1_LP_SR_SHIFT) |
1854 cursor_wm);
1855
1856 /* WM2 */
1857 if (!ironlake_compute_srwm(dev, 2, enabled,
1858 SNB_READ_WM2_LATENCY() * 500,
1859 &sandybridge_display_srwm_info,
1860 &sandybridge_cursor_srwm_info,
1861 &fbc_wm, &plane_wm, &cursor_wm))
1862 return;
1863
1864 I915_WRITE(WM2_LP_ILK,
1865 WM2_LP_EN |
1866 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1867 (fbc_wm << WM1_LP_FBC_SHIFT) |
1868 (plane_wm << WM1_LP_SR_SHIFT) |
1869 cursor_wm);
1870
1871 /* WM3 */
1872 if (!ironlake_compute_srwm(dev, 3, enabled,
1873 SNB_READ_WM3_LATENCY() * 500,
1874 &sandybridge_display_srwm_info,
1875 &sandybridge_cursor_srwm_info,
1876 &fbc_wm, &plane_wm, &cursor_wm))
1877 return;
1878
1879 I915_WRITE(WM3_LP_ILK,
1880 WM3_LP_EN |
1881 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1882 (fbc_wm << WM1_LP_FBC_SHIFT) |
1883 (plane_wm << WM1_LP_SR_SHIFT) |
1884 cursor_wm);
1885 }
1886
1887 static bool
1888 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
1889 uint32_t sprite_width, int pixel_size,
1890 const struct intel_watermark_params *display,
1891 int display_latency_ns, int *sprite_wm)
1892 {
1893 struct drm_crtc *crtc;
1894 int clock;
1895 int entries, tlb_miss;
1896
1897 crtc = intel_get_crtc_for_plane(dev, plane);
1898 if (crtc->fb == NULL || !crtc->enabled) {
1899 *sprite_wm = display->guard_size;
1900 return false;
1901 }
1902
1903 clock = crtc->mode.clock;
1904
1905 /* Use the small buffer method to calculate the sprite watermark */
1906 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1907 tlb_miss = display->fifo_size*display->cacheline_size -
1908 sprite_width * 8;
1909 if (tlb_miss > 0)
1910 entries += tlb_miss;
1911 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1912 *sprite_wm = entries + display->guard_size;
1913 if (*sprite_wm > (int)display->max_wm)
1914 *sprite_wm = display->max_wm;
1915
1916 return true;
1917 }
1918
1919 static bool
1920 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
1921 uint32_t sprite_width, int pixel_size,
1922 const struct intel_watermark_params *display,
1923 int latency_ns, int *sprite_wm)
1924 {
1925 struct drm_crtc *crtc;
1926 unsigned long line_time_us;
1927 int clock;
1928 int line_count, line_size;
1929 int small, large;
1930 int entries;
1931
1932 if (!latency_ns) {
1933 *sprite_wm = 0;
1934 return false;
1935 }
1936
1937 crtc = intel_get_crtc_for_plane(dev, plane);
1938 clock = crtc->mode.clock;
1939 if (!clock) {
1940 *sprite_wm = 0;
1941 return false;
1942 }
1943
1944 line_time_us = (sprite_width * 1000) / clock;
1945 if (!line_time_us) {
1946 *sprite_wm = 0;
1947 return false;
1948 }
1949
1950 line_count = (latency_ns / line_time_us + 1000) / 1000;
1951 line_size = sprite_width * pixel_size;
1952
1953 /* Use the minimum of the small and large buffer method for primary */
1954 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1955 large = line_count * line_size;
1956
1957 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1958 *sprite_wm = entries + display->guard_size;
1959
1960 return *sprite_wm > 0x3ff ? false : true;
1961 }
1962
1963 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
1964 uint32_t sprite_width, int pixel_size)
1965 {
1966 struct drm_i915_private *dev_priv = dev->dev_private;
1967 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1968 u32 val;
1969 int sprite_wm, reg;
1970 int ret;
1971
1972 switch (pipe) {
1973 case 0:
1974 reg = WM0_PIPEA_ILK;
1975 break;
1976 case 1:
1977 reg = WM0_PIPEB_ILK;
1978 break;
1979 case 2:
1980 reg = WM0_PIPEC_IVB;
1981 break;
1982 default:
1983 return; /* bad pipe */
1984 }
1985
1986 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
1987 &sandybridge_display_wm_info,
1988 latency, &sprite_wm);
1989 if (!ret) {
1990 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
1991 pipe);
1992 return;
1993 }
1994
1995 val = I915_READ(reg);
1996 val &= ~WM0_PIPE_SPRITE_MASK;
1997 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
1998 DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
1999
2000
2001 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2002 pixel_size,
2003 &sandybridge_display_srwm_info,
2004 SNB_READ_WM1_LATENCY() * 500,
2005 &sprite_wm);
2006 if (!ret) {
2007 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2008 pipe);
2009 return;
2010 }
2011 I915_WRITE(WM1S_LP_ILK, sprite_wm);
2012
2013 /* Only IVB has two more LP watermarks for sprite */
2014 if (!IS_IVYBRIDGE(dev))
2015 return;
2016
2017 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2018 pixel_size,
2019 &sandybridge_display_srwm_info,
2020 SNB_READ_WM2_LATENCY() * 500,
2021 &sprite_wm);
2022 if (!ret) {
2023 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2024 pipe);
2025 return;
2026 }
2027 I915_WRITE(WM2S_LP_IVB, sprite_wm);
2028
2029 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2030 pixel_size,
2031 &sandybridge_display_srwm_info,
2032 SNB_READ_WM3_LATENCY() * 500,
2033 &sprite_wm);
2034 if (!ret) {
2035 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2036 pipe);
2037 return;
2038 }
2039 I915_WRITE(WM3S_LP_IVB, sprite_wm);
2040 }
2041
2042 /**
2043 * intel_update_watermarks - update FIFO watermark values based on current modes
2044 *
2045 * Calculate watermark values for the various WM regs based on current mode
2046 * and plane configuration.
2047 *
2048 * There are several cases to deal with here:
2049 * - normal (i.e. non-self-refresh)
2050 * - self-refresh (SR) mode
2051 * - lines are large relative to FIFO size (buffer can hold up to 2)
2052 * - lines are small relative to FIFO size (buffer can hold more than 2
2053 * lines), so need to account for TLB latency
2054 *
2055 * The normal calculation is:
2056 * watermark = dotclock * bytes per pixel * latency
2057 * where latency is platform & configuration dependent (we assume pessimal
2058 * values here).
2059 *
2060 * The SR calculation is:
2061 * watermark = (trunc(latency/line time)+1) * surface width *
2062 * bytes per pixel
2063 * where
2064 * line time = htotal / dotclock
2065 * surface width = hdisplay for normal plane and 64 for cursor
2066 * and latency is assumed to be high, as above.
2067 *
2068 * The final value programmed to the register should always be rounded up,
2069 * and include an extra 2 entries to account for clock crossings.
2070 *
2071 * We don't use the sprite, so we can ignore that. And on Crestline we have
2072 * to set the non-SR watermarks to 8.
2073 */
2074 void intel_update_watermarks(struct drm_device *dev)
2075 {
2076 struct drm_i915_private *dev_priv = dev->dev_private;
2077
2078 if (dev_priv->display.update_wm)
2079 dev_priv->display.update_wm(dev);
2080 }
2081
2082 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2083 uint32_t sprite_width, int pixel_size)
2084 {
2085 struct drm_i915_private *dev_priv = dev->dev_private;
2086
2087 if (dev_priv->display.update_sprite_wm)
2088 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2089 pixel_size);
2090 }
2091
2092 static struct drm_i915_gem_object *
2093 intel_alloc_context_page(struct drm_device *dev)
2094 {
2095 struct drm_i915_gem_object *ctx;
2096 int ret;
2097
2098 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2099
2100 ctx = i915_gem_alloc_object(dev, 4096);
2101 if (!ctx) {
2102 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2103 return NULL;
2104 }
2105
2106 ret = i915_gem_object_pin(ctx, 4096, true);
2107 if (ret) {
2108 DRM_ERROR("failed to pin power context: %d\n", ret);
2109 goto err_unref;
2110 }
2111
2112 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2113 if (ret) {
2114 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2115 goto err_unpin;
2116 }
2117
2118 return ctx;
2119
2120 err_unpin:
2121 i915_gem_object_unpin(ctx);
2122 err_unref:
2123 drm_gem_object_unreference(&ctx->base);
2124 mutex_unlock(&dev->struct_mutex);
2125 return NULL;
2126 }
2127
2128 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2129 {
2130 struct drm_i915_private *dev_priv = dev->dev_private;
2131 u16 rgvswctl;
2132
2133 rgvswctl = I915_READ16(MEMSWCTL);
2134 if (rgvswctl & MEMCTL_CMD_STS) {
2135 DRM_DEBUG("gpu busy, RCS change rejected\n");
2136 return false; /* still busy with another command */
2137 }
2138
2139 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2140 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2141 I915_WRITE16(MEMSWCTL, rgvswctl);
2142 POSTING_READ16(MEMSWCTL);
2143
2144 rgvswctl |= MEMCTL_CMD_STS;
2145 I915_WRITE16(MEMSWCTL, rgvswctl);
2146
2147 return true;
2148 }
2149
2150 void ironlake_enable_drps(struct drm_device *dev)
2151 {
2152 struct drm_i915_private *dev_priv = dev->dev_private;
2153 u32 rgvmodectl = I915_READ(MEMMODECTL);
2154 u8 fmax, fmin, fstart, vstart;
2155
2156 /* Enable temp reporting */
2157 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2158 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2159
2160 /* 100ms RC evaluation intervals */
2161 I915_WRITE(RCUPEI, 100000);
2162 I915_WRITE(RCDNEI, 100000);
2163
2164 /* Set max/min thresholds to 90ms and 80ms respectively */
2165 I915_WRITE(RCBMAXAVG, 90000);
2166 I915_WRITE(RCBMINAVG, 80000);
2167
2168 I915_WRITE(MEMIHYST, 1);
2169
2170 /* Set up min, max, and cur for interrupt handling */
2171 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2172 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2173 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2174 MEMMODE_FSTART_SHIFT;
2175
2176 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2177 PXVFREQ_PX_SHIFT;
2178
2179 dev_priv->fmax = fmax; /* IPS callback will increase this */
2180 dev_priv->fstart = fstart;
2181
2182 dev_priv->max_delay = fstart;
2183 dev_priv->min_delay = fmin;
2184 dev_priv->cur_delay = fstart;
2185
2186 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2187 fmax, fmin, fstart);
2188
2189 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2190
2191 /*
2192 * Interrupts will be enabled in ironlake_irq_postinstall
2193 */
2194
2195 I915_WRITE(VIDSTART, vstart);
2196 POSTING_READ(VIDSTART);
2197
2198 rgvmodectl |= MEMMODE_SWMODE_EN;
2199 I915_WRITE(MEMMODECTL, rgvmodectl);
2200
2201 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2202 DRM_ERROR("stuck trying to change perf mode\n");
2203 msleep(1);
2204
2205 ironlake_set_drps(dev, fstart);
2206
2207 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2208 I915_READ(0x112e0);
2209 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
2210 dev_priv->last_count2 = I915_READ(0x112f4);
2211 getrawmonotonic(&dev_priv->last_time2);
2212 }
2213
2214 void ironlake_disable_drps(struct drm_device *dev)
2215 {
2216 struct drm_i915_private *dev_priv = dev->dev_private;
2217 u16 rgvswctl = I915_READ16(MEMSWCTL);
2218
2219 /* Ack interrupts, disable EFC interrupt */
2220 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2221 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2222 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2223 I915_WRITE(DEIIR, DE_PCU_EVENT);
2224 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2225
2226 /* Go back to the starting frequency */
2227 ironlake_set_drps(dev, dev_priv->fstart);
2228 msleep(1);
2229 rgvswctl |= MEMCTL_CMD_STS;
2230 I915_WRITE(MEMSWCTL, rgvswctl);
2231 msleep(1);
2232
2233 }
2234
2235 void gen6_set_rps(struct drm_device *dev, u8 val)
2236 {
2237 struct drm_i915_private *dev_priv = dev->dev_private;
2238 u32 swreq;
2239
2240 swreq = (val & 0x3ff) << 25;
2241 I915_WRITE(GEN6_RPNSWREQ, swreq);
2242 }
2243
2244 void gen6_disable_rps(struct drm_device *dev)
2245 {
2246 struct drm_i915_private *dev_priv = dev->dev_private;
2247
2248 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2249 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2250 I915_WRITE(GEN6_PMIER, 0);
2251 /* Complete PM interrupt masking here doesn't race with the rps work
2252 * item again unmasking PM interrupts because that is using a different
2253 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2254 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2255
2256 spin_lock_irq(&dev_priv->rps_lock);
2257 dev_priv->pm_iir = 0;
2258 spin_unlock_irq(&dev_priv->rps_lock);
2259
2260 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2261 }
2262
2263 int intel_enable_rc6(const struct drm_device *dev)
2264 {
2265 /*
2266 * Respect the kernel parameter if it is set
2267 */
2268 if (i915_enable_rc6 >= 0)
2269 return i915_enable_rc6;
2270
2271 /*
2272 * Disable RC6 on Ironlake
2273 */
2274 if (INTEL_INFO(dev)->gen == 5)
2275 return 0;
2276
2277 /* Sorry Haswell, no RC6 for you for now. */
2278 if (IS_HASWELL(dev))
2279 return 0;
2280
2281 /*
2282 * Disable rc6 on Sandybridge
2283 */
2284 if (INTEL_INFO(dev)->gen == 6) {
2285 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2286 return INTEL_RC6_ENABLE;
2287 }
2288 DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2289 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2290 }
2291
2292 void gen6_enable_rps(struct drm_i915_private *dev_priv)
2293 {
2294 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2295 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2296 u32 pcu_mbox, rc6_mask = 0;
2297 u32 gtfifodbg;
2298 int cur_freq, min_freq, max_freq;
2299 int rc6_mode;
2300 int i;
2301
2302 /* Here begins a magic sequence of register writes to enable
2303 * auto-downclocking.
2304 *
2305 * Perhaps there might be some value in exposing these to
2306 * userspace...
2307 */
2308 I915_WRITE(GEN6_RC_STATE, 0);
2309 mutex_lock(&dev_priv->dev->struct_mutex);
2310
2311 /* Clear the DBG now so we don't confuse earlier errors */
2312 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2313 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2314 I915_WRITE(GTFIFODBG, gtfifodbg);
2315 }
2316
2317 gen6_gt_force_wake_get(dev_priv);
2318
2319 /* disable the counters and set deterministic thresholds */
2320 I915_WRITE(GEN6_RC_CONTROL, 0);
2321
2322 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2323 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2324 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2325 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2326 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2327
2328 for (i = 0; i < I915_NUM_RINGS; i++)
2329 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
2330
2331 I915_WRITE(GEN6_RC_SLEEP, 0);
2332 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2333 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2334 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
2335 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2336
2337 rc6_mode = intel_enable_rc6(dev_priv->dev);
2338 if (rc6_mode & INTEL_RC6_ENABLE)
2339 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2340
2341 if (rc6_mode & INTEL_RC6p_ENABLE)
2342 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2343
2344 if (rc6_mode & INTEL_RC6pp_ENABLE)
2345 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2346
2347 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2348 (rc6_mode & INTEL_RC6_ENABLE) ? "on" : "off",
2349 (rc6_mode & INTEL_RC6p_ENABLE) ? "on" : "off",
2350 (rc6_mode & INTEL_RC6pp_ENABLE) ? "on" : "off");
2351
2352 I915_WRITE(GEN6_RC_CONTROL,
2353 rc6_mask |
2354 GEN6_RC_CTL_EI_MODE(1) |
2355 GEN6_RC_CTL_HW_ENABLE);
2356
2357 I915_WRITE(GEN6_RPNSWREQ,
2358 GEN6_FREQUENCY(10) |
2359 GEN6_OFFSET(0) |
2360 GEN6_AGGRESSIVE_TURBO);
2361 I915_WRITE(GEN6_RC_VIDEO_FREQ,
2362 GEN6_FREQUENCY(12));
2363
2364 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2365 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2366 18 << 24 |
2367 6 << 16);
2368 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
2369 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
2370 I915_WRITE(GEN6_RP_UP_EI, 100000);
2371 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
2372 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2373 I915_WRITE(GEN6_RP_CONTROL,
2374 GEN6_RP_MEDIA_TURBO |
2375 GEN6_RP_MEDIA_HW_MODE |
2376 GEN6_RP_MEDIA_IS_GFX |
2377 GEN6_RP_ENABLE |
2378 GEN6_RP_UP_BUSY_AVG |
2379 GEN6_RP_DOWN_IDLE_CONT);
2380
2381 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2382 500))
2383 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
2384
2385 I915_WRITE(GEN6_PCODE_DATA, 0);
2386 I915_WRITE(GEN6_PCODE_MAILBOX,
2387 GEN6_PCODE_READY |
2388 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
2389 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2390 500))
2391 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
2392
2393 min_freq = (rp_state_cap & 0xff0000) >> 16;
2394 max_freq = rp_state_cap & 0xff;
2395 cur_freq = (gt_perf_status & 0xff00) >> 8;
2396
2397 /* Check for overclock support */
2398 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2399 500))
2400 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
2401 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
2402 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
2403 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2404 500))
2405 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
2406 if (pcu_mbox & (1<<31)) { /* OC supported */
2407 max_freq = pcu_mbox & 0xff;
2408 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2409 }
2410
2411 /* In units of 100MHz */
2412 dev_priv->max_delay = max_freq;
2413 dev_priv->min_delay = min_freq;
2414 dev_priv->cur_delay = cur_freq;
2415
2416 /* requires MSI enabled */
2417 I915_WRITE(GEN6_PMIER,
2418 GEN6_PM_MBOX_EVENT |
2419 GEN6_PM_THERMAL_EVENT |
2420 GEN6_PM_RP_DOWN_TIMEOUT |
2421 GEN6_PM_RP_UP_THRESHOLD |
2422 GEN6_PM_RP_DOWN_THRESHOLD |
2423 GEN6_PM_RP_UP_EI_EXPIRED |
2424 GEN6_PM_RP_DOWN_EI_EXPIRED);
2425 spin_lock_irq(&dev_priv->rps_lock);
2426 WARN_ON(dev_priv->pm_iir != 0);
2427 I915_WRITE(GEN6_PMIMR, 0);
2428 spin_unlock_irq(&dev_priv->rps_lock);
2429 /* enable all PM interrupts */
2430 I915_WRITE(GEN6_PMINTRMSK, 0);
2431
2432 gen6_gt_force_wake_put(dev_priv);
2433 mutex_unlock(&dev_priv->dev->struct_mutex);
2434 }
2435
2436 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
2437 {
2438 int min_freq = 15;
2439 int gpu_freq, ia_freq, max_ia_freq;
2440 int scaling_factor = 180;
2441
2442 max_ia_freq = cpufreq_quick_get_max(0);
2443 /*
2444 * Default to measured freq if none found, PCU will ensure we don't go
2445 * over
2446 */
2447 if (!max_ia_freq)
2448 max_ia_freq = tsc_khz;
2449
2450 /* Convert from kHz to MHz */
2451 max_ia_freq /= 1000;
2452
2453 mutex_lock(&dev_priv->dev->struct_mutex);
2454
2455 /*
2456 * For each potential GPU frequency, load a ring frequency we'd like
2457 * to use for memory access. We do this by specifying the IA frequency
2458 * the PCU should use as a reference to determine the ring frequency.
2459 */
2460 for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
2461 gpu_freq--) {
2462 int diff = dev_priv->max_delay - gpu_freq;
2463
2464 /*
2465 * For GPU frequencies less than 750MHz, just use the lowest
2466 * ring freq.
2467 */
2468 if (gpu_freq < min_freq)
2469 ia_freq = 800;
2470 else
2471 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2472 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2473
2474 I915_WRITE(GEN6_PCODE_DATA,
2475 (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
2476 gpu_freq);
2477 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
2478 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
2479 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
2480 GEN6_PCODE_READY) == 0, 10)) {
2481 DRM_ERROR("pcode write of freq table timed out\n");
2482 continue;
2483 }
2484 }
2485
2486 mutex_unlock(&dev_priv->dev->struct_mutex);
2487 }
2488
2489 static void ironlake_teardown_rc6(struct drm_device *dev)
2490 {
2491 struct drm_i915_private *dev_priv = dev->dev_private;
2492
2493 if (dev_priv->renderctx) {
2494 i915_gem_object_unpin(dev_priv->renderctx);
2495 drm_gem_object_unreference(&dev_priv->renderctx->base);
2496 dev_priv->renderctx = NULL;
2497 }
2498
2499 if (dev_priv->pwrctx) {
2500 i915_gem_object_unpin(dev_priv->pwrctx);
2501 drm_gem_object_unreference(&dev_priv->pwrctx->base);
2502 dev_priv->pwrctx = NULL;
2503 }
2504 }
2505
2506 void ironlake_disable_rc6(struct drm_device *dev)
2507 {
2508 struct drm_i915_private *dev_priv = dev->dev_private;
2509
2510 if (I915_READ(PWRCTXA)) {
2511 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2512 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2513 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2514 50);
2515
2516 I915_WRITE(PWRCTXA, 0);
2517 POSTING_READ(PWRCTXA);
2518
2519 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2520 POSTING_READ(RSTDBYCTL);
2521 }
2522
2523 ironlake_teardown_rc6(dev);
2524 }
2525
2526 static int ironlake_setup_rc6(struct drm_device *dev)
2527 {
2528 struct drm_i915_private *dev_priv = dev->dev_private;
2529
2530 if (dev_priv->renderctx == NULL)
2531 dev_priv->renderctx = intel_alloc_context_page(dev);
2532 if (!dev_priv->renderctx)
2533 return -ENOMEM;
2534
2535 if (dev_priv->pwrctx == NULL)
2536 dev_priv->pwrctx = intel_alloc_context_page(dev);
2537 if (!dev_priv->pwrctx) {
2538 ironlake_teardown_rc6(dev);
2539 return -ENOMEM;
2540 }
2541
2542 return 0;
2543 }
2544
2545 void ironlake_enable_rc6(struct drm_device *dev)
2546 {
2547 struct drm_i915_private *dev_priv = dev->dev_private;
2548 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2549 int ret;
2550
2551 /* rc6 disabled by default due to repeated reports of hanging during
2552 * boot and resume.
2553 */
2554 if (!intel_enable_rc6(dev))
2555 return;
2556
2557 mutex_lock(&dev->struct_mutex);
2558 ret = ironlake_setup_rc6(dev);
2559 if (ret) {
2560 mutex_unlock(&dev->struct_mutex);
2561 return;
2562 }
2563
2564 /*
2565 * GPU can automatically power down the render unit if given a page
2566 * to save state.
2567 */
2568 ret = intel_ring_begin(ring, 6);
2569 if (ret) {
2570 ironlake_teardown_rc6(dev);
2571 mutex_unlock(&dev->struct_mutex);
2572 return;
2573 }
2574
2575 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2576 intel_ring_emit(ring, MI_SET_CONTEXT);
2577 intel_ring_emit(ring, dev_priv->renderctx->gtt_offset |
2578 MI_MM_SPACE_GTT |
2579 MI_SAVE_EXT_STATE_EN |
2580 MI_RESTORE_EXT_STATE_EN |
2581 MI_RESTORE_INHIBIT);
2582 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2583 intel_ring_emit(ring, MI_NOOP);
2584 intel_ring_emit(ring, MI_FLUSH);
2585 intel_ring_advance(ring);
2586
2587 /*
2588 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2589 * does an implicit flush, combined with MI_FLUSH above, it should be
2590 * safe to assume that renderctx is valid
2591 */
2592 ret = intel_wait_ring_idle(ring);
2593 if (ret) {
2594 DRM_ERROR("failed to enable ironlake power power savings\n");
2595 ironlake_teardown_rc6(dev);
2596 mutex_unlock(&dev->struct_mutex);
2597 return;
2598 }
2599
2600 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
2601 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2602 mutex_unlock(&dev->struct_mutex);
2603 }
2604
2605 static unsigned long intel_pxfreq(u32 vidfreq)
2606 {
2607 unsigned long freq;
2608 int div = (vidfreq & 0x3f0000) >> 16;
2609 int post = (vidfreq & 0x3000) >> 12;
2610 int pre = (vidfreq & 0x7);
2611
2612 if (!pre)
2613 return 0;
2614
2615 freq = ((div * 133333) / ((1<<post) * pre));
2616
2617 return freq;
2618 }
2619
2620 static const struct cparams {
2621 u16 i;
2622 u16 t;
2623 u16 m;
2624 u16 c;
2625 } cparams[] = {
2626 { 1, 1333, 301, 28664 },
2627 { 1, 1066, 294, 24460 },
2628 { 1, 800, 294, 25192 },
2629 { 0, 1333, 276, 27605 },
2630 { 0, 1066, 276, 27605 },
2631 { 0, 800, 231, 23784 },
2632 };
2633
2634 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2635 {
2636 u64 total_count, diff, ret;
2637 u32 count1, count2, count3, m = 0, c = 0;
2638 unsigned long now = jiffies_to_msecs(jiffies), diff1;
2639 int i;
2640
2641 diff1 = now - dev_priv->last_time1;
2642
2643 /* Prevent division-by-zero if we are asking too fast.
2644 * Also, we don't get interesting results if we are polling
2645 * faster than once in 10ms, so just return the saved value
2646 * in such cases.
2647 */
2648 if (diff1 <= 10)
2649 return dev_priv->chipset_power;
2650
2651 count1 = I915_READ(DMIEC);
2652 count2 = I915_READ(DDREC);
2653 count3 = I915_READ(CSIEC);
2654
2655 total_count = count1 + count2 + count3;
2656
2657 /* FIXME: handle per-counter overflow */
2658 if (total_count < dev_priv->last_count1) {
2659 diff = ~0UL - dev_priv->last_count1;
2660 diff += total_count;
2661 } else {
2662 diff = total_count - dev_priv->last_count1;
2663 }
2664
2665 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2666 if (cparams[i].i == dev_priv->c_m &&
2667 cparams[i].t == dev_priv->r_t) {
2668 m = cparams[i].m;
2669 c = cparams[i].c;
2670 break;
2671 }
2672 }
2673
2674 diff = div_u64(diff, diff1);
2675 ret = ((m * diff) + c);
2676 ret = div_u64(ret, 10);
2677
2678 dev_priv->last_count1 = total_count;
2679 dev_priv->last_time1 = now;
2680
2681 dev_priv->chipset_power = ret;
2682
2683 return ret;
2684 }
2685
2686 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2687 {
2688 unsigned long m, x, b;
2689 u32 tsfs;
2690
2691 tsfs = I915_READ(TSFS);
2692
2693 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2694 x = I915_READ8(TR1);
2695
2696 b = tsfs & TSFS_INTR_MASK;
2697
2698 return ((m * x) / 127) - b;
2699 }
2700
2701 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2702 {
2703 static const struct v_table {
2704 u16 vd; /* in .1 mil */
2705 u16 vm; /* in .1 mil */
2706 } v_table[] = {
2707 { 0, 0, },
2708 { 375, 0, },
2709 { 500, 0, },
2710 { 625, 0, },
2711 { 750, 0, },
2712 { 875, 0, },
2713 { 1000, 0, },
2714 { 1125, 0, },
2715 { 4125, 3000, },
2716 { 4125, 3000, },
2717 { 4125, 3000, },
2718 { 4125, 3000, },
2719 { 4125, 3000, },
2720 { 4125, 3000, },
2721 { 4125, 3000, },
2722 { 4125, 3000, },
2723 { 4125, 3000, },
2724 { 4125, 3000, },
2725 { 4125, 3000, },
2726 { 4125, 3000, },
2727 { 4125, 3000, },
2728 { 4125, 3000, },
2729 { 4125, 3000, },
2730 { 4125, 3000, },
2731 { 4125, 3000, },
2732 { 4125, 3000, },
2733 { 4125, 3000, },
2734 { 4125, 3000, },
2735 { 4125, 3000, },
2736 { 4125, 3000, },
2737 { 4125, 3000, },
2738 { 4125, 3000, },
2739 { 4250, 3125, },
2740 { 4375, 3250, },
2741 { 4500, 3375, },
2742 { 4625, 3500, },
2743 { 4750, 3625, },
2744 { 4875, 3750, },
2745 { 5000, 3875, },
2746 { 5125, 4000, },
2747 { 5250, 4125, },
2748 { 5375, 4250, },
2749 { 5500, 4375, },
2750 { 5625, 4500, },
2751 { 5750, 4625, },
2752 { 5875, 4750, },
2753 { 6000, 4875, },
2754 { 6125, 5000, },
2755 { 6250, 5125, },
2756 { 6375, 5250, },
2757 { 6500, 5375, },
2758 { 6625, 5500, },
2759 { 6750, 5625, },
2760 { 6875, 5750, },
2761 { 7000, 5875, },
2762 { 7125, 6000, },
2763 { 7250, 6125, },
2764 { 7375, 6250, },
2765 { 7500, 6375, },
2766 { 7625, 6500, },
2767 { 7750, 6625, },
2768 { 7875, 6750, },
2769 { 8000, 6875, },
2770 { 8125, 7000, },
2771 { 8250, 7125, },
2772 { 8375, 7250, },
2773 { 8500, 7375, },
2774 { 8625, 7500, },
2775 { 8750, 7625, },
2776 { 8875, 7750, },
2777 { 9000, 7875, },
2778 { 9125, 8000, },
2779 { 9250, 8125, },
2780 { 9375, 8250, },
2781 { 9500, 8375, },
2782 { 9625, 8500, },
2783 { 9750, 8625, },
2784 { 9875, 8750, },
2785 { 10000, 8875, },
2786 { 10125, 9000, },
2787 { 10250, 9125, },
2788 { 10375, 9250, },
2789 { 10500, 9375, },
2790 { 10625, 9500, },
2791 { 10750, 9625, },
2792 { 10875, 9750, },
2793 { 11000, 9875, },
2794 { 11125, 10000, },
2795 { 11250, 10125, },
2796 { 11375, 10250, },
2797 { 11500, 10375, },
2798 { 11625, 10500, },
2799 { 11750, 10625, },
2800 { 11875, 10750, },
2801 { 12000, 10875, },
2802 { 12125, 11000, },
2803 { 12250, 11125, },
2804 { 12375, 11250, },
2805 { 12500, 11375, },
2806 { 12625, 11500, },
2807 { 12750, 11625, },
2808 { 12875, 11750, },
2809 { 13000, 11875, },
2810 { 13125, 12000, },
2811 { 13250, 12125, },
2812 { 13375, 12250, },
2813 { 13500, 12375, },
2814 { 13625, 12500, },
2815 { 13750, 12625, },
2816 { 13875, 12750, },
2817 { 14000, 12875, },
2818 { 14125, 13000, },
2819 { 14250, 13125, },
2820 { 14375, 13250, },
2821 { 14500, 13375, },
2822 { 14625, 13500, },
2823 { 14750, 13625, },
2824 { 14875, 13750, },
2825 { 15000, 13875, },
2826 { 15125, 14000, },
2827 { 15250, 14125, },
2828 { 15375, 14250, },
2829 { 15500, 14375, },
2830 { 15625, 14500, },
2831 { 15750, 14625, },
2832 { 15875, 14750, },
2833 { 16000, 14875, },
2834 { 16125, 15000, },
2835 };
2836 if (dev_priv->info->is_mobile)
2837 return v_table[pxvid].vm;
2838 else
2839 return v_table[pxvid].vd;
2840 }
2841
2842 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
2843 {
2844 struct timespec now, diff1;
2845 u64 diff;
2846 unsigned long diffms;
2847 u32 count;
2848
2849 if (dev_priv->info->gen != 5)
2850 return;
2851
2852 getrawmonotonic(&now);
2853 diff1 = timespec_sub(now, dev_priv->last_time2);
2854
2855 /* Don't divide by 0 */
2856 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
2857 if (!diffms)
2858 return;
2859
2860 count = I915_READ(GFXEC);
2861
2862 if (count < dev_priv->last_count2) {
2863 diff = ~0UL - dev_priv->last_count2;
2864 diff += count;
2865 } else {
2866 diff = count - dev_priv->last_count2;
2867 }
2868
2869 dev_priv->last_count2 = count;
2870 dev_priv->last_time2 = now;
2871
2872 /* More magic constants... */
2873 diff = diff * 1181;
2874 diff = div_u64(diff, diffms * 10);
2875 dev_priv->gfx_power = diff;
2876 }
2877
2878 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
2879 {
2880 unsigned long t, corr, state1, corr2, state2;
2881 u32 pxvid, ext_v;
2882
2883 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->cur_delay * 4));
2884 pxvid = (pxvid >> 24) & 0x7f;
2885 ext_v = pvid_to_extvid(dev_priv, pxvid);
2886
2887 state1 = ext_v;
2888
2889 t = i915_mch_val(dev_priv);
2890
2891 /* Revel in the empirically derived constants */
2892
2893 /* Correction factor in 1/100000 units */
2894 if (t > 80)
2895 corr = ((t * 2349) + 135940);
2896 else if (t >= 50)
2897 corr = ((t * 964) + 29317);
2898 else /* < 50 */
2899 corr = ((t * 301) + 1004);
2900
2901 corr = corr * ((150142 * state1) / 10000 - 78642);
2902 corr /= 100000;
2903 corr2 = (corr * dev_priv->corr);
2904
2905 state2 = (corr2 * state1) / 10000;
2906 state2 /= 100; /* convert to mW */
2907
2908 i915_update_gfx_val(dev_priv);
2909
2910 return dev_priv->gfx_power + state2;
2911 }
2912
2913 /* Global for IPS driver to get at the current i915 device */
2914 static struct drm_i915_private *i915_mch_dev;
2915 /*
2916 * Lock protecting IPS related data structures
2917 * - i915_mch_dev
2918 * - dev_priv->max_delay
2919 * - dev_priv->min_delay
2920 * - dev_priv->fmax
2921 * - dev_priv->gpu_busy
2922 */
2923 static DEFINE_SPINLOCK(mchdev_lock);
2924
2925 /**
2926 * i915_read_mch_val - return value for IPS use
2927 *
2928 * Calculate and return a value for the IPS driver to use when deciding whether
2929 * we have thermal and power headroom to increase CPU or GPU power budget.
2930 */
2931 unsigned long i915_read_mch_val(void)
2932 {
2933 struct drm_i915_private *dev_priv;
2934 unsigned long chipset_val, graphics_val, ret = 0;
2935
2936 spin_lock(&mchdev_lock);
2937 if (!i915_mch_dev)
2938 goto out_unlock;
2939 dev_priv = i915_mch_dev;
2940
2941 chipset_val = i915_chipset_val(dev_priv);
2942 graphics_val = i915_gfx_val(dev_priv);
2943
2944 ret = chipset_val + graphics_val;
2945
2946 out_unlock:
2947 spin_unlock(&mchdev_lock);
2948
2949 return ret;
2950 }
2951 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2952
2953 /**
2954 * i915_gpu_raise - raise GPU frequency limit
2955 *
2956 * Raise the limit; IPS indicates we have thermal headroom.
2957 */
2958 bool i915_gpu_raise(void)
2959 {
2960 struct drm_i915_private *dev_priv;
2961 bool ret = true;
2962
2963 spin_lock(&mchdev_lock);
2964 if (!i915_mch_dev) {
2965 ret = false;
2966 goto out_unlock;
2967 }
2968 dev_priv = i915_mch_dev;
2969
2970 if (dev_priv->max_delay > dev_priv->fmax)
2971 dev_priv->max_delay--;
2972
2973 out_unlock:
2974 spin_unlock(&mchdev_lock);
2975
2976 return ret;
2977 }
2978 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2979
2980 /**
2981 * i915_gpu_lower - lower GPU frequency limit
2982 *
2983 * IPS indicates we're close to a thermal limit, so throttle back the GPU
2984 * frequency maximum.
2985 */
2986 bool i915_gpu_lower(void)
2987 {
2988 struct drm_i915_private *dev_priv;
2989 bool ret = true;
2990
2991 spin_lock(&mchdev_lock);
2992 if (!i915_mch_dev) {
2993 ret = false;
2994 goto out_unlock;
2995 }
2996 dev_priv = i915_mch_dev;
2997
2998 if (dev_priv->max_delay < dev_priv->min_delay)
2999 dev_priv->max_delay++;
3000
3001 out_unlock:
3002 spin_unlock(&mchdev_lock);
3003
3004 return ret;
3005 }
3006 EXPORT_SYMBOL_GPL(i915_gpu_lower);
3007
3008 /**
3009 * i915_gpu_busy - indicate GPU business to IPS
3010 *
3011 * Tell the IPS driver whether or not the GPU is busy.
3012 */
3013 bool i915_gpu_busy(void)
3014 {
3015 struct drm_i915_private *dev_priv;
3016 bool ret = false;
3017
3018 spin_lock(&mchdev_lock);
3019 if (!i915_mch_dev)
3020 goto out_unlock;
3021 dev_priv = i915_mch_dev;
3022
3023 ret = dev_priv->busy;
3024
3025 out_unlock:
3026 spin_unlock(&mchdev_lock);
3027
3028 return ret;
3029 }
3030 EXPORT_SYMBOL_GPL(i915_gpu_busy);
3031
3032 /**
3033 * i915_gpu_turbo_disable - disable graphics turbo
3034 *
3035 * Disable graphics turbo by resetting the max frequency and setting the
3036 * current frequency to the default.
3037 */
3038 bool i915_gpu_turbo_disable(void)
3039 {
3040 struct drm_i915_private *dev_priv;
3041 bool ret = true;
3042
3043 spin_lock(&mchdev_lock);
3044 if (!i915_mch_dev) {
3045 ret = false;
3046 goto out_unlock;
3047 }
3048 dev_priv = i915_mch_dev;
3049
3050 dev_priv->max_delay = dev_priv->fstart;
3051
3052 if (!ironlake_set_drps(dev_priv->dev, dev_priv->fstart))
3053 ret = false;
3054
3055 out_unlock:
3056 spin_unlock(&mchdev_lock);
3057
3058 return ret;
3059 }
3060 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3061
3062 /**
3063 * Tells the intel_ips driver that the i915 driver is now loaded, if
3064 * IPS got loaded first.
3065 *
3066 * This awkward dance is so that neither module has to depend on the
3067 * other in order for IPS to do the appropriate communication of
3068 * GPU turbo limits to i915.
3069 */
3070 static void
3071 ips_ping_for_i915_load(void)
3072 {
3073 void (*link)(void);
3074
3075 link = symbol_get(ips_link_to_i915_driver);
3076 if (link) {
3077 link();
3078 symbol_put(ips_link_to_i915_driver);
3079 }
3080 }
3081
3082 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3083 {
3084 spin_lock(&mchdev_lock);
3085 i915_mch_dev = dev_priv;
3086 dev_priv->mchdev_lock = &mchdev_lock;
3087 spin_unlock(&mchdev_lock);
3088
3089 ips_ping_for_i915_load();
3090 }
3091
3092 void intel_gpu_ips_teardown(void)
3093 {
3094 spin_lock(&mchdev_lock);
3095 i915_mch_dev = NULL;
3096 spin_unlock(&mchdev_lock);
3097 }
3098
3099 void intel_init_emon(struct drm_device *dev)
3100 {
3101 struct drm_i915_private *dev_priv = dev->dev_private;
3102 u32 lcfuse;
3103 u8 pxw[16];
3104 int i;
3105
3106 /* Disable to program */
3107 I915_WRITE(ECR, 0);
3108 POSTING_READ(ECR);
3109
3110 /* Program energy weights for various events */
3111 I915_WRITE(SDEW, 0x15040d00);
3112 I915_WRITE(CSIEW0, 0x007f0000);
3113 I915_WRITE(CSIEW1, 0x1e220004);
3114 I915_WRITE(CSIEW2, 0x04000004);
3115
3116 for (i = 0; i < 5; i++)
3117 I915_WRITE(PEW + (i * 4), 0);
3118 for (i = 0; i < 3; i++)
3119 I915_WRITE(DEW + (i * 4), 0);
3120
3121 /* Program P-state weights to account for frequency power adjustment */
3122 for (i = 0; i < 16; i++) {
3123 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3124 unsigned long freq = intel_pxfreq(pxvidfreq);
3125 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3126 PXVFREQ_PX_SHIFT;
3127 unsigned long val;
3128
3129 val = vid * vid;
3130 val *= (freq / 1000);
3131 val *= 255;
3132 val /= (127*127*900);
3133 if (val > 0xff)
3134 DRM_ERROR("bad pxval: %ld\n", val);
3135 pxw[i] = val;
3136 }
3137 /* Render standby states get 0 weight */
3138 pxw[14] = 0;
3139 pxw[15] = 0;
3140
3141 for (i = 0; i < 4; i++) {
3142 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3143 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3144 I915_WRITE(PXW + (i * 4), val);
3145 }
3146
3147 /* Adjust magic regs to magic values (more experimental results) */
3148 I915_WRITE(OGW0, 0);
3149 I915_WRITE(OGW1, 0);
3150 I915_WRITE(EG0, 0x00007f00);
3151 I915_WRITE(EG1, 0x0000000e);
3152 I915_WRITE(EG2, 0x000e0000);
3153 I915_WRITE(EG3, 0x68000300);
3154 I915_WRITE(EG4, 0x42000000);
3155 I915_WRITE(EG5, 0x00140031);
3156 I915_WRITE(EG6, 0);
3157 I915_WRITE(EG7, 0);
3158
3159 for (i = 0; i < 8; i++)
3160 I915_WRITE(PXWL + (i * 4), 0);
3161
3162 /* Enable PMON + select events */
3163 I915_WRITE(ECR, 0x80000019);
3164
3165 lcfuse = I915_READ(LCFUSE02);
3166
3167 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
3168 }
3169
3170 static void ironlake_init_clock_gating(struct drm_device *dev)
3171 {
3172 struct drm_i915_private *dev_priv = dev->dev_private;
3173 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3174
3175 /* Required for FBC */
3176 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
3177 DPFCRUNIT_CLOCK_GATE_DISABLE |
3178 DPFDUNIT_CLOCK_GATE_DISABLE;
3179 /* Required for CxSR */
3180 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
3181
3182 I915_WRITE(PCH_3DCGDIS0,
3183 MARIUNIT_CLOCK_GATE_DISABLE |
3184 SVSMUNIT_CLOCK_GATE_DISABLE);
3185 I915_WRITE(PCH_3DCGDIS1,
3186 VFMUNIT_CLOCK_GATE_DISABLE);
3187
3188 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3189
3190 /*
3191 * According to the spec the following bits should be set in
3192 * order to enable memory self-refresh
3193 * The bit 22/21 of 0x42004
3194 * The bit 5 of 0x42020
3195 * The bit 15 of 0x45000
3196 */
3197 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3198 (I915_READ(ILK_DISPLAY_CHICKEN2) |
3199 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3200 I915_WRITE(ILK_DSPCLK_GATE,
3201 (I915_READ(ILK_DSPCLK_GATE) |
3202 ILK_DPARB_CLK_GATE));
3203 I915_WRITE(DISP_ARB_CTL,
3204 (I915_READ(DISP_ARB_CTL) |
3205 DISP_FBC_WM_DIS));
3206 I915_WRITE(WM3_LP_ILK, 0);
3207 I915_WRITE(WM2_LP_ILK, 0);
3208 I915_WRITE(WM1_LP_ILK, 0);
3209
3210 /*
3211 * Based on the document from hardware guys the following bits
3212 * should be set unconditionally in order to enable FBC.
3213 * The bit 22 of 0x42000
3214 * The bit 22 of 0x42004
3215 * The bit 7,8,9 of 0x42020.
3216 */
3217 if (IS_IRONLAKE_M(dev)) {
3218 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3219 I915_READ(ILK_DISPLAY_CHICKEN1) |
3220 ILK_FBCQ_DIS);
3221 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3222 I915_READ(ILK_DISPLAY_CHICKEN2) |
3223 ILK_DPARB_GATE);
3224 I915_WRITE(ILK_DSPCLK_GATE,
3225 I915_READ(ILK_DSPCLK_GATE) |
3226 ILK_DPFC_DIS1 |
3227 ILK_DPFC_DIS2 |
3228 ILK_CLK_FBC);
3229 }
3230
3231 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3232 I915_READ(ILK_DISPLAY_CHICKEN2) |
3233 ILK_ELPIN_409_SELECT);
3234 I915_WRITE(_3D_CHICKEN2,
3235 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3236 _3D_CHICKEN2_WM_READ_PIPELINED);
3237 }
3238
3239 static void gen6_init_clock_gating(struct drm_device *dev)
3240 {
3241 struct drm_i915_private *dev_priv = dev->dev_private;
3242 int pipe;
3243 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3244
3245 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3246
3247 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3248 I915_READ(ILK_DISPLAY_CHICKEN2) |
3249 ILK_ELPIN_409_SELECT);
3250
3251 I915_WRITE(WM3_LP_ILK, 0);
3252 I915_WRITE(WM2_LP_ILK, 0);
3253 I915_WRITE(WM1_LP_ILK, 0);
3254
3255 I915_WRITE(CACHE_MODE_0,
3256 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3257
3258 I915_WRITE(GEN6_UCGCTL1,
3259 I915_READ(GEN6_UCGCTL1) |
3260 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3261 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3262
3263 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3264 * gating disable must be set. Failure to set it results in
3265 * flickering pixels due to Z write ordering failures after
3266 * some amount of runtime in the Mesa "fire" demo, and Unigine
3267 * Sanctuary and Tropics, and apparently anything else with
3268 * alpha test or pixel discard.
3269 *
3270 * According to the spec, bit 11 (RCCUNIT) must also be set,
3271 * but we didn't debug actual testcases to find it out.
3272 */
3273 I915_WRITE(GEN6_UCGCTL2,
3274 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3275 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3276
3277 /* Bspec says we need to always set all mask bits. */
3278 I915_WRITE(_3D_CHICKEN, (0xFFFF << 16) |
3279 _3D_CHICKEN_SF_DISABLE_FASTCLIP_CULL);
3280
3281 /*
3282 * According to the spec the following bits should be
3283 * set in order to enable memory self-refresh and fbc:
3284 * The bit21 and bit22 of 0x42000
3285 * The bit21 and bit22 of 0x42004
3286 * The bit5 and bit7 of 0x42020
3287 * The bit14 of 0x70180
3288 * The bit14 of 0x71180
3289 */
3290 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3291 I915_READ(ILK_DISPLAY_CHICKEN1) |
3292 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3293 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3294 I915_READ(ILK_DISPLAY_CHICKEN2) |
3295 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3296 I915_WRITE(ILK_DSPCLK_GATE,
3297 I915_READ(ILK_DSPCLK_GATE) |
3298 ILK_DPARB_CLK_GATE |
3299 ILK_DPFD_CLK_GATE);
3300
3301 for_each_pipe(pipe) {
3302 I915_WRITE(DSPCNTR(pipe),
3303 I915_READ(DSPCNTR(pipe)) |
3304 DISPPLANE_TRICKLE_FEED_DISABLE);
3305 intel_flush_display_plane(dev_priv, pipe);
3306 }
3307 }
3308
3309 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3310 {
3311 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3312
3313 reg &= ~GEN7_FF_SCHED_MASK;
3314 reg |= GEN7_FF_TS_SCHED_HW;
3315 reg |= GEN7_FF_VS_SCHED_HW;
3316 reg |= GEN7_FF_DS_SCHED_HW;
3317
3318 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3319 }
3320
3321 static void ivybridge_init_clock_gating(struct drm_device *dev)
3322 {
3323 struct drm_i915_private *dev_priv = dev->dev_private;
3324 int pipe;
3325 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3326
3327 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3328
3329 I915_WRITE(WM3_LP_ILK, 0);
3330 I915_WRITE(WM2_LP_ILK, 0);
3331 I915_WRITE(WM1_LP_ILK, 0);
3332
3333 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3334 * This implements the WaDisableRCZUnitClockGating workaround.
3335 */
3336 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3337
3338 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
3339
3340 I915_WRITE(IVB_CHICKEN3,
3341 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3342 CHICKEN3_DGMG_DONE_FIX_DISABLE);
3343
3344 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3345 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3346 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3347
3348 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3349 I915_WRITE(GEN7_L3CNTLREG1,
3350 GEN7_WA_FOR_GEN7_L3_CONTROL);
3351 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3352 GEN7_WA_L3_CHICKEN_MODE);
3353
3354 /* This is required by WaCatErrorRejectionIssue */
3355 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3356 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3357 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3358
3359 for_each_pipe(pipe) {
3360 I915_WRITE(DSPCNTR(pipe),
3361 I915_READ(DSPCNTR(pipe)) |
3362 DISPPLANE_TRICKLE_FEED_DISABLE);
3363 intel_flush_display_plane(dev_priv, pipe);
3364 }
3365
3366 gen7_setup_fixed_func_scheduler(dev_priv);
3367
3368 /* WaDisable4x2SubspanOptimization */
3369 I915_WRITE(CACHE_MODE_1,
3370 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3371 }
3372
3373 static void valleyview_init_clock_gating(struct drm_device *dev)
3374 {
3375 struct drm_i915_private *dev_priv = dev->dev_private;
3376 int pipe;
3377 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3378
3379 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3380
3381 I915_WRITE(WM3_LP_ILK, 0);
3382 I915_WRITE(WM2_LP_ILK, 0);
3383 I915_WRITE(WM1_LP_ILK, 0);
3384
3385 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3386 * This implements the WaDisableRCZUnitClockGating workaround.
3387 */
3388 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3389
3390 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
3391
3392 I915_WRITE(IVB_CHICKEN3,
3393 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3394 CHICKEN3_DGMG_DONE_FIX_DISABLE);
3395
3396 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3397 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3398 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3399
3400 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3401 I915_WRITE(GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
3402 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3403
3404 /* This is required by WaCatErrorRejectionIssue */
3405 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3406 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3407 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3408
3409 for_each_pipe(pipe) {
3410 I915_WRITE(DSPCNTR(pipe),
3411 I915_READ(DSPCNTR(pipe)) |
3412 DISPPLANE_TRICKLE_FEED_DISABLE);
3413 intel_flush_display_plane(dev_priv, pipe);
3414 }
3415
3416 I915_WRITE(CACHE_MODE_1,
3417 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3418 }
3419
3420 static void g4x_init_clock_gating(struct drm_device *dev)
3421 {
3422 struct drm_i915_private *dev_priv = dev->dev_private;
3423 uint32_t dspclk_gate;
3424
3425 I915_WRITE(RENCLK_GATE_D1, 0);
3426 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
3427 GS_UNIT_CLOCK_GATE_DISABLE |
3428 CL_UNIT_CLOCK_GATE_DISABLE);
3429 I915_WRITE(RAMCLK_GATE_D, 0);
3430 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
3431 OVRUNIT_CLOCK_GATE_DISABLE |
3432 OVCUNIT_CLOCK_GATE_DISABLE;
3433 if (IS_GM45(dev))
3434 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
3435 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3436 }
3437
3438 static void crestline_init_clock_gating(struct drm_device *dev)
3439 {
3440 struct drm_i915_private *dev_priv = dev->dev_private;
3441
3442 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
3443 I915_WRITE(RENCLK_GATE_D2, 0);
3444 I915_WRITE(DSPCLK_GATE_D, 0);
3445 I915_WRITE(RAMCLK_GATE_D, 0);
3446 I915_WRITE16(DEUC, 0);
3447 }
3448
3449 static void broadwater_init_clock_gating(struct drm_device *dev)
3450 {
3451 struct drm_i915_private *dev_priv = dev->dev_private;
3452
3453 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
3454 I965_RCC_CLOCK_GATE_DISABLE |
3455 I965_RCPB_CLOCK_GATE_DISABLE |
3456 I965_ISC_CLOCK_GATE_DISABLE |
3457 I965_FBC_CLOCK_GATE_DISABLE);
3458 I915_WRITE(RENCLK_GATE_D2, 0);
3459 }
3460
3461 static void gen3_init_clock_gating(struct drm_device *dev)
3462 {
3463 struct drm_i915_private *dev_priv = dev->dev_private;
3464 u32 dstate = I915_READ(D_STATE);
3465
3466 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
3467 DSTATE_DOT_CLOCK_GATING;
3468 I915_WRITE(D_STATE, dstate);
3469
3470 if (IS_PINEVIEW(dev))
3471 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
3472 }
3473
3474 static void i85x_init_clock_gating(struct drm_device *dev)
3475 {
3476 struct drm_i915_private *dev_priv = dev->dev_private;
3477
3478 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
3479 }
3480
3481 static void i830_init_clock_gating(struct drm_device *dev)
3482 {
3483 struct drm_i915_private *dev_priv = dev->dev_private;
3484
3485 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
3486 }
3487
3488 static void ibx_init_clock_gating(struct drm_device *dev)
3489 {
3490 struct drm_i915_private *dev_priv = dev->dev_private;
3491
3492 /*
3493 * On Ibex Peak and Cougar Point, we need to disable clock
3494 * gating for the panel power sequencer or it will fail to
3495 * start up when no ports are active.
3496 */
3497 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3498 }
3499
3500 static void cpt_init_clock_gating(struct drm_device *dev)
3501 {
3502 struct drm_i915_private *dev_priv = dev->dev_private;
3503 int pipe;
3504
3505 /*
3506 * On Ibex Peak and Cougar Point, we need to disable clock
3507 * gating for the panel power sequencer or it will fail to
3508 * start up when no ports are active.
3509 */
3510 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3511 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3512 DPLS_EDP_PPS_FIX_DIS);
3513 /* Without this, mode sets may fail silently on FDI */
3514 for_each_pipe(pipe)
3515 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
3516 }
3517
3518 void intel_init_clock_gating(struct drm_device *dev)
3519 {
3520 struct drm_i915_private *dev_priv = dev->dev_private;
3521
3522 dev_priv->display.init_clock_gating(dev);
3523
3524 if (dev_priv->display.init_pch_clock_gating)
3525 dev_priv->display.init_pch_clock_gating(dev);
3526 }
3527
3528 /* Set up chip specific power management-related functions */
3529 void intel_init_pm(struct drm_device *dev)
3530 {
3531 struct drm_i915_private *dev_priv = dev->dev_private;
3532
3533 if (I915_HAS_FBC(dev)) {
3534 if (HAS_PCH_SPLIT(dev)) {
3535 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
3536 dev_priv->display.enable_fbc = ironlake_enable_fbc;
3537 dev_priv->display.disable_fbc = ironlake_disable_fbc;
3538 } else if (IS_GM45(dev)) {
3539 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
3540 dev_priv->display.enable_fbc = g4x_enable_fbc;
3541 dev_priv->display.disable_fbc = g4x_disable_fbc;
3542 } else if (IS_CRESTLINE(dev)) {
3543 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
3544 dev_priv->display.enable_fbc = i8xx_enable_fbc;
3545 dev_priv->display.disable_fbc = i8xx_disable_fbc;
3546 }
3547 /* 855GM needs testing */
3548 }
3549
3550 /* For cxsr */
3551 if (IS_PINEVIEW(dev))
3552 i915_pineview_get_mem_freq(dev);
3553 else if (IS_GEN5(dev))
3554 i915_ironlake_get_mem_freq(dev);
3555
3556 /* For FIFO watermark updates */
3557 if (HAS_PCH_SPLIT(dev)) {
3558 dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
3559 dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
3560
3561 /* IVB configs may use multi-threaded forcewake */
3562 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
3563 u32 ecobus;
3564
3565 /* A small trick here - if the bios hasn't configured MT forcewake,
3566 * and if the device is in RC6, then force_wake_mt_get will not wake
3567 * the device and the ECOBUS read will return zero. Which will be
3568 * (correctly) interpreted by the test below as MT forcewake being
3569 * disabled.
3570 */
3571 mutex_lock(&dev->struct_mutex);
3572 __gen6_gt_force_wake_mt_get(dev_priv);
3573 ecobus = I915_READ_NOTRACE(ECOBUS);
3574 __gen6_gt_force_wake_mt_put(dev_priv);
3575 mutex_unlock(&dev->struct_mutex);
3576
3577 if (ecobus & FORCEWAKE_MT_ENABLE) {
3578 DRM_DEBUG_KMS("Using MT version of forcewake\n");
3579 dev_priv->display.force_wake_get =
3580 __gen6_gt_force_wake_mt_get;
3581 dev_priv->display.force_wake_put =
3582 __gen6_gt_force_wake_mt_put;
3583 }
3584 }
3585
3586 if (HAS_PCH_IBX(dev))
3587 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
3588 else if (HAS_PCH_CPT(dev))
3589 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
3590
3591 if (IS_GEN5(dev)) {
3592 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
3593 dev_priv->display.update_wm = ironlake_update_wm;
3594 else {
3595 DRM_DEBUG_KMS("Failed to get proper latency. "
3596 "Disable CxSR\n");
3597 dev_priv->display.update_wm = NULL;
3598 }
3599 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
3600 } else if (IS_GEN6(dev)) {
3601 if (SNB_READ_WM0_LATENCY()) {
3602 dev_priv->display.update_wm = sandybridge_update_wm;
3603 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3604 } else {
3605 DRM_DEBUG_KMS("Failed to read display plane latency. "
3606 "Disable CxSR\n");
3607 dev_priv->display.update_wm = NULL;
3608 }
3609 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
3610 } else if (IS_IVYBRIDGE(dev)) {
3611 /* FIXME: detect B0+ stepping and use auto training */
3612 if (SNB_READ_WM0_LATENCY()) {
3613 dev_priv->display.update_wm = sandybridge_update_wm;
3614 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3615 } else {
3616 DRM_DEBUG_KMS("Failed to read display plane latency. "
3617 "Disable CxSR\n");
3618 dev_priv->display.update_wm = NULL;
3619 }
3620 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
3621 } else
3622 dev_priv->display.update_wm = NULL;
3623 } else if (IS_VALLEYVIEW(dev)) {
3624 dev_priv->display.update_wm = valleyview_update_wm;
3625 dev_priv->display.init_clock_gating =
3626 valleyview_init_clock_gating;
3627 dev_priv->display.force_wake_get = vlv_force_wake_get;
3628 dev_priv->display.force_wake_put = vlv_force_wake_put;
3629 } else if (IS_PINEVIEW(dev)) {
3630 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
3631 dev_priv->is_ddr3,
3632 dev_priv->fsb_freq,
3633 dev_priv->mem_freq)) {
3634 DRM_INFO("failed to find known CxSR latency "
3635 "(found ddr%s fsb freq %d, mem freq %d), "
3636 "disabling CxSR\n",
3637 (dev_priv->is_ddr3 == 1) ? "3" : "2",
3638 dev_priv->fsb_freq, dev_priv->mem_freq);
3639 /* Disable CxSR and never update its watermark again */
3640 pineview_disable_cxsr(dev);
3641 dev_priv->display.update_wm = NULL;
3642 } else
3643 dev_priv->display.update_wm = pineview_update_wm;
3644 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
3645 } else if (IS_G4X(dev)) {
3646 dev_priv->display.update_wm = g4x_update_wm;
3647 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
3648 } else if (IS_GEN4(dev)) {
3649 dev_priv->display.update_wm = i965_update_wm;
3650 if (IS_CRESTLINE(dev))
3651 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
3652 else if (IS_BROADWATER(dev))
3653 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
3654 } else if (IS_GEN3(dev)) {
3655 dev_priv->display.update_wm = i9xx_update_wm;
3656 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
3657 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
3658 } else if (IS_I865G(dev)) {
3659 dev_priv->display.update_wm = i830_update_wm;
3660 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
3661 dev_priv->display.get_fifo_size = i830_get_fifo_size;
3662 } else if (IS_I85X(dev)) {
3663 dev_priv->display.update_wm = i9xx_update_wm;
3664 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
3665 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
3666 } else {
3667 dev_priv->display.update_wm = i830_update_wm;
3668 dev_priv->display.init_clock_gating = i830_init_clock_gating;
3669 if (IS_845G(dev))
3670 dev_priv->display.get_fifo_size = i845_get_fifo_size;
3671 else
3672 dev_priv->display.get_fifo_size = i830_get_fifo_size;
3673 }
3674 }
3675
This page took 0.108599 seconds and 6 git commands to generate.