Merge tag 'drm-intel-next-2013-06-01' of git://people.freedesktop.org/~danvet/drm...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 #define FORCEWAKE_ACK_TIMEOUT_MS 2
35
36 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
37 * framebuffer contents in-memory, aiming at reducing the required bandwidth
38 * during in-memory transfers and, therefore, reduce the power packet.
39 *
40 * The benefits of FBC are mostly visible with solid backgrounds and
41 * variation-less patterns.
42 *
43 * FBC-related functionality can be enabled by the means of the
44 * i915.i915_enable_fbc parameter
45 */
46
47 static bool intel_crtc_active(struct drm_crtc *crtc)
48 {
49 /* Be paranoid as we can arrive here with only partial
50 * state retrieved from the hardware during setup.
51 */
52 return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
53 }
54
55 static void i8xx_disable_fbc(struct drm_device *dev)
56 {
57 struct drm_i915_private *dev_priv = dev->dev_private;
58 u32 fbc_ctl;
59
60 /* Disable compression */
61 fbc_ctl = I915_READ(FBC_CONTROL);
62 if ((fbc_ctl & FBC_CTL_EN) == 0)
63 return;
64
65 fbc_ctl &= ~FBC_CTL_EN;
66 I915_WRITE(FBC_CONTROL, fbc_ctl);
67
68 /* Wait for compressing bit to clear */
69 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
70 DRM_DEBUG_KMS("FBC idle timed out\n");
71 return;
72 }
73
74 DRM_DEBUG_KMS("disabled FBC\n");
75 }
76
77 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
78 {
79 struct drm_device *dev = crtc->dev;
80 struct drm_i915_private *dev_priv = dev->dev_private;
81 struct drm_framebuffer *fb = crtc->fb;
82 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
83 struct drm_i915_gem_object *obj = intel_fb->obj;
84 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
85 int cfb_pitch;
86 int plane, i;
87 u32 fbc_ctl, fbc_ctl2;
88
89 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
90 if (fb->pitches[0] < cfb_pitch)
91 cfb_pitch = fb->pitches[0];
92
93 /* FBC_CTL wants 64B units */
94 cfb_pitch = (cfb_pitch / 64) - 1;
95 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
96
97 /* Clear old tags */
98 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
99 I915_WRITE(FBC_TAG + (i * 4), 0);
100
101 /* Set it up... */
102 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
103 fbc_ctl2 |= plane;
104 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
105 I915_WRITE(FBC_FENCE_OFF, crtc->y);
106
107 /* enable it... */
108 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
109 if (IS_I945GM(dev))
110 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
111 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
112 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
113 fbc_ctl |= obj->fence_reg;
114 I915_WRITE(FBC_CONTROL, fbc_ctl);
115
116 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
117 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
118 }
119
120 static bool i8xx_fbc_enabled(struct drm_device *dev)
121 {
122 struct drm_i915_private *dev_priv = dev->dev_private;
123
124 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
125 }
126
127 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
128 {
129 struct drm_device *dev = crtc->dev;
130 struct drm_i915_private *dev_priv = dev->dev_private;
131 struct drm_framebuffer *fb = crtc->fb;
132 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
133 struct drm_i915_gem_object *obj = intel_fb->obj;
134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
135 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
136 unsigned long stall_watermark = 200;
137 u32 dpfc_ctl;
138
139 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
140 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
141 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
142
143 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
144 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
145 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
146 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
147
148 /* enable it... */
149 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
150
151 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
152 }
153
154 static void g4x_disable_fbc(struct drm_device *dev)
155 {
156 struct drm_i915_private *dev_priv = dev->dev_private;
157 u32 dpfc_ctl;
158
159 /* Disable compression */
160 dpfc_ctl = I915_READ(DPFC_CONTROL);
161 if (dpfc_ctl & DPFC_CTL_EN) {
162 dpfc_ctl &= ~DPFC_CTL_EN;
163 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
164
165 DRM_DEBUG_KMS("disabled FBC\n");
166 }
167 }
168
169 static bool g4x_fbc_enabled(struct drm_device *dev)
170 {
171 struct drm_i915_private *dev_priv = dev->dev_private;
172
173 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
174 }
175
176 static void sandybridge_blit_fbc_update(struct drm_device *dev)
177 {
178 struct drm_i915_private *dev_priv = dev->dev_private;
179 u32 blt_ecoskpd;
180
181 /* Make sure blitter notifies FBC of writes */
182 gen6_gt_force_wake_get(dev_priv);
183 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
184 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
185 GEN6_BLITTER_LOCK_SHIFT;
186 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
187 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
188 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
189 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
190 GEN6_BLITTER_LOCK_SHIFT);
191 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
192 POSTING_READ(GEN6_BLITTER_ECOSKPD);
193 gen6_gt_force_wake_put(dev_priv);
194 }
195
196 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
197 {
198 struct drm_device *dev = crtc->dev;
199 struct drm_i915_private *dev_priv = dev->dev_private;
200 struct drm_framebuffer *fb = crtc->fb;
201 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
202 struct drm_i915_gem_object *obj = intel_fb->obj;
203 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
204 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
205 unsigned long stall_watermark = 200;
206 u32 dpfc_ctl;
207
208 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
209 dpfc_ctl &= DPFC_RESERVED;
210 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
211 /* Set persistent mode for front-buffer rendering, ala X. */
212 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
213 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
214 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
215
216 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
217 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
218 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
219 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
220 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
221 /* enable it... */
222 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
223
224 if (IS_GEN6(dev)) {
225 I915_WRITE(SNB_DPFC_CTL_SA,
226 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
227 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
228 sandybridge_blit_fbc_update(dev);
229 }
230
231 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
232 }
233
234 static void ironlake_disable_fbc(struct drm_device *dev)
235 {
236 struct drm_i915_private *dev_priv = dev->dev_private;
237 u32 dpfc_ctl;
238
239 /* Disable compression */
240 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
241 if (dpfc_ctl & DPFC_CTL_EN) {
242 dpfc_ctl &= ~DPFC_CTL_EN;
243 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
244
245 if (IS_IVYBRIDGE(dev))
246 /* WaFbcDisableDpfcClockGating:ivb */
247 I915_WRITE(ILK_DSPCLK_GATE_D,
248 I915_READ(ILK_DSPCLK_GATE_D) &
249 ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
250
251 if (IS_HASWELL(dev))
252 /* WaFbcDisableDpfcClockGating:hsw */
253 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
254 I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
255 ~HSW_DPFC_GATING_DISABLE);
256
257 DRM_DEBUG_KMS("disabled FBC\n");
258 }
259 }
260
261 static bool ironlake_fbc_enabled(struct drm_device *dev)
262 {
263 struct drm_i915_private *dev_priv = dev->dev_private;
264
265 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
266 }
267
268 static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
269 {
270 struct drm_device *dev = crtc->dev;
271 struct drm_i915_private *dev_priv = dev->dev_private;
272 struct drm_framebuffer *fb = crtc->fb;
273 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
274 struct drm_i915_gem_object *obj = intel_fb->obj;
275 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
276
277 I915_WRITE(IVB_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
278
279 I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
280 IVB_DPFC_CTL_FENCE_EN |
281 intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
282
283 if (IS_IVYBRIDGE(dev)) {
284 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
285 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
286 /* WaFbcDisableDpfcClockGating:ivb */
287 I915_WRITE(ILK_DSPCLK_GATE_D,
288 I915_READ(ILK_DSPCLK_GATE_D) |
289 ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
290 } else {
291 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
292 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
293 HSW_BYPASS_FBC_QUEUE);
294 /* WaFbcDisableDpfcClockGating:hsw */
295 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
296 I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
297 HSW_DPFC_GATING_DISABLE);
298 }
299
300 I915_WRITE(SNB_DPFC_CTL_SA,
301 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
302 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
303
304 sandybridge_blit_fbc_update(dev);
305
306 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
307 }
308
309 bool intel_fbc_enabled(struct drm_device *dev)
310 {
311 struct drm_i915_private *dev_priv = dev->dev_private;
312
313 if (!dev_priv->display.fbc_enabled)
314 return false;
315
316 return dev_priv->display.fbc_enabled(dev);
317 }
318
319 static void intel_fbc_work_fn(struct work_struct *__work)
320 {
321 struct intel_fbc_work *work =
322 container_of(to_delayed_work(__work),
323 struct intel_fbc_work, work);
324 struct drm_device *dev = work->crtc->dev;
325 struct drm_i915_private *dev_priv = dev->dev_private;
326
327 mutex_lock(&dev->struct_mutex);
328 if (work == dev_priv->fbc_work) {
329 /* Double check that we haven't switched fb without cancelling
330 * the prior work.
331 */
332 if (work->crtc->fb == work->fb) {
333 dev_priv->display.enable_fbc(work->crtc,
334 work->interval);
335
336 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
337 dev_priv->cfb_fb = work->crtc->fb->base.id;
338 dev_priv->cfb_y = work->crtc->y;
339 }
340
341 dev_priv->fbc_work = NULL;
342 }
343 mutex_unlock(&dev->struct_mutex);
344
345 kfree(work);
346 }
347
348 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
349 {
350 if (dev_priv->fbc_work == NULL)
351 return;
352
353 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
354
355 /* Synchronisation is provided by struct_mutex and checking of
356 * dev_priv->fbc_work, so we can perform the cancellation
357 * entirely asynchronously.
358 */
359 if (cancel_delayed_work(&dev_priv->fbc_work->work))
360 /* tasklet was killed before being run, clean up */
361 kfree(dev_priv->fbc_work);
362
363 /* Mark the work as no longer wanted so that if it does
364 * wake-up (because the work was already running and waiting
365 * for our mutex), it will discover that is no longer
366 * necessary to run.
367 */
368 dev_priv->fbc_work = NULL;
369 }
370
371 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
372 {
373 struct intel_fbc_work *work;
374 struct drm_device *dev = crtc->dev;
375 struct drm_i915_private *dev_priv = dev->dev_private;
376
377 if (!dev_priv->display.enable_fbc)
378 return;
379
380 intel_cancel_fbc_work(dev_priv);
381
382 work = kzalloc(sizeof *work, GFP_KERNEL);
383 if (work == NULL) {
384 dev_priv->display.enable_fbc(crtc, interval);
385 return;
386 }
387
388 work->crtc = crtc;
389 work->fb = crtc->fb;
390 work->interval = interval;
391 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
392
393 dev_priv->fbc_work = work;
394
395 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
396
397 /* Delay the actual enabling to let pageflipping cease and the
398 * display to settle before starting the compression. Note that
399 * this delay also serves a second purpose: it allows for a
400 * vblank to pass after disabling the FBC before we attempt
401 * to modify the control registers.
402 *
403 * A more complicated solution would involve tracking vblanks
404 * following the termination of the page-flipping sequence
405 * and indeed performing the enable as a co-routine and not
406 * waiting synchronously upon the vblank.
407 */
408 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
409 }
410
411 void intel_disable_fbc(struct drm_device *dev)
412 {
413 struct drm_i915_private *dev_priv = dev->dev_private;
414
415 intel_cancel_fbc_work(dev_priv);
416
417 if (!dev_priv->display.disable_fbc)
418 return;
419
420 dev_priv->display.disable_fbc(dev);
421 dev_priv->cfb_plane = -1;
422 }
423
424 /**
425 * intel_update_fbc - enable/disable FBC as needed
426 * @dev: the drm_device
427 *
428 * Set up the framebuffer compression hardware at mode set time. We
429 * enable it if possible:
430 * - plane A only (on pre-965)
431 * - no pixel mulitply/line duplication
432 * - no alpha buffer discard
433 * - no dual wide
434 * - framebuffer <= 2048 in width, 1536 in height
435 *
436 * We can't assume that any compression will take place (worst case),
437 * so the compressed buffer has to be the same size as the uncompressed
438 * one. It also must reside (along with the line length buffer) in
439 * stolen memory.
440 *
441 * We need to enable/disable FBC on a global basis.
442 */
443 void intel_update_fbc(struct drm_device *dev)
444 {
445 struct drm_i915_private *dev_priv = dev->dev_private;
446 struct drm_crtc *crtc = NULL, *tmp_crtc;
447 struct intel_crtc *intel_crtc;
448 struct drm_framebuffer *fb;
449 struct intel_framebuffer *intel_fb;
450 struct drm_i915_gem_object *obj;
451 int enable_fbc;
452
453 if (!i915_powersave)
454 return;
455
456 if (!I915_HAS_FBC(dev))
457 return;
458
459 /*
460 * If FBC is already on, we just have to verify that we can
461 * keep it that way...
462 * Need to disable if:
463 * - more than one pipe is active
464 * - changing FBC params (stride, fence, mode)
465 * - new fb is too large to fit in compressed buffer
466 * - going to an unsupported config (interlace, pixel multiply, etc.)
467 */
468 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
469 if (intel_crtc_active(tmp_crtc) &&
470 !to_intel_crtc(tmp_crtc)->primary_disabled) {
471 if (crtc) {
472 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
473 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
474 goto out_disable;
475 }
476 crtc = tmp_crtc;
477 }
478 }
479
480 if (!crtc || crtc->fb == NULL) {
481 DRM_DEBUG_KMS("no output, disabling\n");
482 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
483 goto out_disable;
484 }
485
486 intel_crtc = to_intel_crtc(crtc);
487 fb = crtc->fb;
488 intel_fb = to_intel_framebuffer(fb);
489 obj = intel_fb->obj;
490
491 enable_fbc = i915_enable_fbc;
492 if (enable_fbc < 0) {
493 DRM_DEBUG_KMS("fbc set to per-chip default\n");
494 enable_fbc = 1;
495 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
496 enable_fbc = 0;
497 }
498 if (!enable_fbc) {
499 DRM_DEBUG_KMS("fbc disabled per module param\n");
500 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
501 goto out_disable;
502 }
503 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
504 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
505 DRM_DEBUG_KMS("mode incompatible with compression, "
506 "disabling\n");
507 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
508 goto out_disable;
509 }
510 if ((crtc->mode.hdisplay > 2048) ||
511 (crtc->mode.vdisplay > 1536)) {
512 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
513 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
514 goto out_disable;
515 }
516 if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
517 intel_crtc->plane != 0) {
518 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
519 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
520 goto out_disable;
521 }
522
523 /* The use of a CPU fence is mandatory in order to detect writes
524 * by the CPU to the scanout and trigger updates to the FBC.
525 */
526 if (obj->tiling_mode != I915_TILING_X ||
527 obj->fence_reg == I915_FENCE_REG_NONE) {
528 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
529 dev_priv->no_fbc_reason = FBC_NOT_TILED;
530 goto out_disable;
531 }
532
533 /* If the kernel debugger is active, always disable compression */
534 if (in_dbg_master())
535 goto out_disable;
536
537 if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
538 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
539 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
540 goto out_disable;
541 }
542
543 /* If the scanout has not changed, don't modify the FBC settings.
544 * Note that we make the fundamental assumption that the fb->obj
545 * cannot be unpinned (and have its GTT offset and fence revoked)
546 * without first being decoupled from the scanout and FBC disabled.
547 */
548 if (dev_priv->cfb_plane == intel_crtc->plane &&
549 dev_priv->cfb_fb == fb->base.id &&
550 dev_priv->cfb_y == crtc->y)
551 return;
552
553 if (intel_fbc_enabled(dev)) {
554 /* We update FBC along two paths, after changing fb/crtc
555 * configuration (modeswitching) and after page-flipping
556 * finishes. For the latter, we know that not only did
557 * we disable the FBC at the start of the page-flip
558 * sequence, but also more than one vblank has passed.
559 *
560 * For the former case of modeswitching, it is possible
561 * to switch between two FBC valid configurations
562 * instantaneously so we do need to disable the FBC
563 * before we can modify its control registers. We also
564 * have to wait for the next vblank for that to take
565 * effect. However, since we delay enabling FBC we can
566 * assume that a vblank has passed since disabling and
567 * that we can safely alter the registers in the deferred
568 * callback.
569 *
570 * In the scenario that we go from a valid to invalid
571 * and then back to valid FBC configuration we have
572 * no strict enforcement that a vblank occurred since
573 * disabling the FBC. However, along all current pipe
574 * disabling paths we do need to wait for a vblank at
575 * some point. And we wait before enabling FBC anyway.
576 */
577 DRM_DEBUG_KMS("disabling active FBC for update\n");
578 intel_disable_fbc(dev);
579 }
580
581 intel_enable_fbc(crtc, 500);
582 return;
583
584 out_disable:
585 /* Multiple disables should be harmless */
586 if (intel_fbc_enabled(dev)) {
587 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
588 intel_disable_fbc(dev);
589 }
590 i915_gem_stolen_cleanup_compression(dev);
591 }
592
593 static void i915_pineview_get_mem_freq(struct drm_device *dev)
594 {
595 drm_i915_private_t *dev_priv = dev->dev_private;
596 u32 tmp;
597
598 tmp = I915_READ(CLKCFG);
599
600 switch (tmp & CLKCFG_FSB_MASK) {
601 case CLKCFG_FSB_533:
602 dev_priv->fsb_freq = 533; /* 133*4 */
603 break;
604 case CLKCFG_FSB_800:
605 dev_priv->fsb_freq = 800; /* 200*4 */
606 break;
607 case CLKCFG_FSB_667:
608 dev_priv->fsb_freq = 667; /* 167*4 */
609 break;
610 case CLKCFG_FSB_400:
611 dev_priv->fsb_freq = 400; /* 100*4 */
612 break;
613 }
614
615 switch (tmp & CLKCFG_MEM_MASK) {
616 case CLKCFG_MEM_533:
617 dev_priv->mem_freq = 533;
618 break;
619 case CLKCFG_MEM_667:
620 dev_priv->mem_freq = 667;
621 break;
622 case CLKCFG_MEM_800:
623 dev_priv->mem_freq = 800;
624 break;
625 }
626
627 /* detect pineview DDR3 setting */
628 tmp = I915_READ(CSHRDDR3CTL);
629 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
630 }
631
632 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
633 {
634 drm_i915_private_t *dev_priv = dev->dev_private;
635 u16 ddrpll, csipll;
636
637 ddrpll = I915_READ16(DDRMPLL1);
638 csipll = I915_READ16(CSIPLL0);
639
640 switch (ddrpll & 0xff) {
641 case 0xc:
642 dev_priv->mem_freq = 800;
643 break;
644 case 0x10:
645 dev_priv->mem_freq = 1066;
646 break;
647 case 0x14:
648 dev_priv->mem_freq = 1333;
649 break;
650 case 0x18:
651 dev_priv->mem_freq = 1600;
652 break;
653 default:
654 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
655 ddrpll & 0xff);
656 dev_priv->mem_freq = 0;
657 break;
658 }
659
660 dev_priv->ips.r_t = dev_priv->mem_freq;
661
662 switch (csipll & 0x3ff) {
663 case 0x00c:
664 dev_priv->fsb_freq = 3200;
665 break;
666 case 0x00e:
667 dev_priv->fsb_freq = 3733;
668 break;
669 case 0x010:
670 dev_priv->fsb_freq = 4266;
671 break;
672 case 0x012:
673 dev_priv->fsb_freq = 4800;
674 break;
675 case 0x014:
676 dev_priv->fsb_freq = 5333;
677 break;
678 case 0x016:
679 dev_priv->fsb_freq = 5866;
680 break;
681 case 0x018:
682 dev_priv->fsb_freq = 6400;
683 break;
684 default:
685 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
686 csipll & 0x3ff);
687 dev_priv->fsb_freq = 0;
688 break;
689 }
690
691 if (dev_priv->fsb_freq == 3200) {
692 dev_priv->ips.c_m = 0;
693 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
694 dev_priv->ips.c_m = 1;
695 } else {
696 dev_priv->ips.c_m = 2;
697 }
698 }
699
700 static const struct cxsr_latency cxsr_latency_table[] = {
701 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
702 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
703 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
704 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
705 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
706
707 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
708 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
709 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
710 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
711 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
712
713 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
714 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
715 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
716 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
717 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
718
719 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
720 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
721 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
722 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
723 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
724
725 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
726 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
727 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
728 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
729 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
730
731 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
732 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
733 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
734 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
735 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
736 };
737
738 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
739 int is_ddr3,
740 int fsb,
741 int mem)
742 {
743 const struct cxsr_latency *latency;
744 int i;
745
746 if (fsb == 0 || mem == 0)
747 return NULL;
748
749 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
750 latency = &cxsr_latency_table[i];
751 if (is_desktop == latency->is_desktop &&
752 is_ddr3 == latency->is_ddr3 &&
753 fsb == latency->fsb_freq && mem == latency->mem_freq)
754 return latency;
755 }
756
757 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
758
759 return NULL;
760 }
761
762 static void pineview_disable_cxsr(struct drm_device *dev)
763 {
764 struct drm_i915_private *dev_priv = dev->dev_private;
765
766 /* deactivate cxsr */
767 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
768 }
769
770 /*
771 * Latency for FIFO fetches is dependent on several factors:
772 * - memory configuration (speed, channels)
773 * - chipset
774 * - current MCH state
775 * It can be fairly high in some situations, so here we assume a fairly
776 * pessimal value. It's a tradeoff between extra memory fetches (if we
777 * set this value too high, the FIFO will fetch frequently to stay full)
778 * and power consumption (set it too low to save power and we might see
779 * FIFO underruns and display "flicker").
780 *
781 * A value of 5us seems to be a good balance; safe for very low end
782 * platforms but not overly aggressive on lower latency configs.
783 */
784 static const int latency_ns = 5000;
785
786 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
787 {
788 struct drm_i915_private *dev_priv = dev->dev_private;
789 uint32_t dsparb = I915_READ(DSPARB);
790 int size;
791
792 size = dsparb & 0x7f;
793 if (plane)
794 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
795
796 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
797 plane ? "B" : "A", size);
798
799 return size;
800 }
801
802 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
803 {
804 struct drm_i915_private *dev_priv = dev->dev_private;
805 uint32_t dsparb = I915_READ(DSPARB);
806 int size;
807
808 size = dsparb & 0x1ff;
809 if (plane)
810 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
811 size >>= 1; /* Convert to cachelines */
812
813 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
814 plane ? "B" : "A", size);
815
816 return size;
817 }
818
819 static int i845_get_fifo_size(struct drm_device *dev, int plane)
820 {
821 struct drm_i915_private *dev_priv = dev->dev_private;
822 uint32_t dsparb = I915_READ(DSPARB);
823 int size;
824
825 size = dsparb & 0x7f;
826 size >>= 2; /* Convert to cachelines */
827
828 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
829 plane ? "B" : "A",
830 size);
831
832 return size;
833 }
834
835 static int i830_get_fifo_size(struct drm_device *dev, int plane)
836 {
837 struct drm_i915_private *dev_priv = dev->dev_private;
838 uint32_t dsparb = I915_READ(DSPARB);
839 int size;
840
841 size = dsparb & 0x7f;
842 size >>= 1; /* Convert to cachelines */
843
844 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
845 plane ? "B" : "A", size);
846
847 return size;
848 }
849
850 /* Pineview has different values for various configs */
851 static const struct intel_watermark_params pineview_display_wm = {
852 PINEVIEW_DISPLAY_FIFO,
853 PINEVIEW_MAX_WM,
854 PINEVIEW_DFT_WM,
855 PINEVIEW_GUARD_WM,
856 PINEVIEW_FIFO_LINE_SIZE
857 };
858 static const struct intel_watermark_params pineview_display_hplloff_wm = {
859 PINEVIEW_DISPLAY_FIFO,
860 PINEVIEW_MAX_WM,
861 PINEVIEW_DFT_HPLLOFF_WM,
862 PINEVIEW_GUARD_WM,
863 PINEVIEW_FIFO_LINE_SIZE
864 };
865 static const struct intel_watermark_params pineview_cursor_wm = {
866 PINEVIEW_CURSOR_FIFO,
867 PINEVIEW_CURSOR_MAX_WM,
868 PINEVIEW_CURSOR_DFT_WM,
869 PINEVIEW_CURSOR_GUARD_WM,
870 PINEVIEW_FIFO_LINE_SIZE,
871 };
872 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
873 PINEVIEW_CURSOR_FIFO,
874 PINEVIEW_CURSOR_MAX_WM,
875 PINEVIEW_CURSOR_DFT_WM,
876 PINEVIEW_CURSOR_GUARD_WM,
877 PINEVIEW_FIFO_LINE_SIZE
878 };
879 static const struct intel_watermark_params g4x_wm_info = {
880 G4X_FIFO_SIZE,
881 G4X_MAX_WM,
882 G4X_MAX_WM,
883 2,
884 G4X_FIFO_LINE_SIZE,
885 };
886 static const struct intel_watermark_params g4x_cursor_wm_info = {
887 I965_CURSOR_FIFO,
888 I965_CURSOR_MAX_WM,
889 I965_CURSOR_DFT_WM,
890 2,
891 G4X_FIFO_LINE_SIZE,
892 };
893 static const struct intel_watermark_params valleyview_wm_info = {
894 VALLEYVIEW_FIFO_SIZE,
895 VALLEYVIEW_MAX_WM,
896 VALLEYVIEW_MAX_WM,
897 2,
898 G4X_FIFO_LINE_SIZE,
899 };
900 static const struct intel_watermark_params valleyview_cursor_wm_info = {
901 I965_CURSOR_FIFO,
902 VALLEYVIEW_CURSOR_MAX_WM,
903 I965_CURSOR_DFT_WM,
904 2,
905 G4X_FIFO_LINE_SIZE,
906 };
907 static const struct intel_watermark_params i965_cursor_wm_info = {
908 I965_CURSOR_FIFO,
909 I965_CURSOR_MAX_WM,
910 I965_CURSOR_DFT_WM,
911 2,
912 I915_FIFO_LINE_SIZE,
913 };
914 static const struct intel_watermark_params i945_wm_info = {
915 I945_FIFO_SIZE,
916 I915_MAX_WM,
917 1,
918 2,
919 I915_FIFO_LINE_SIZE
920 };
921 static const struct intel_watermark_params i915_wm_info = {
922 I915_FIFO_SIZE,
923 I915_MAX_WM,
924 1,
925 2,
926 I915_FIFO_LINE_SIZE
927 };
928 static const struct intel_watermark_params i855_wm_info = {
929 I855GM_FIFO_SIZE,
930 I915_MAX_WM,
931 1,
932 2,
933 I830_FIFO_LINE_SIZE
934 };
935 static const struct intel_watermark_params i830_wm_info = {
936 I830_FIFO_SIZE,
937 I915_MAX_WM,
938 1,
939 2,
940 I830_FIFO_LINE_SIZE
941 };
942
943 static const struct intel_watermark_params ironlake_display_wm_info = {
944 ILK_DISPLAY_FIFO,
945 ILK_DISPLAY_MAXWM,
946 ILK_DISPLAY_DFTWM,
947 2,
948 ILK_FIFO_LINE_SIZE
949 };
950 static const struct intel_watermark_params ironlake_cursor_wm_info = {
951 ILK_CURSOR_FIFO,
952 ILK_CURSOR_MAXWM,
953 ILK_CURSOR_DFTWM,
954 2,
955 ILK_FIFO_LINE_SIZE
956 };
957 static const struct intel_watermark_params ironlake_display_srwm_info = {
958 ILK_DISPLAY_SR_FIFO,
959 ILK_DISPLAY_MAX_SRWM,
960 ILK_DISPLAY_DFT_SRWM,
961 2,
962 ILK_FIFO_LINE_SIZE
963 };
964 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
965 ILK_CURSOR_SR_FIFO,
966 ILK_CURSOR_MAX_SRWM,
967 ILK_CURSOR_DFT_SRWM,
968 2,
969 ILK_FIFO_LINE_SIZE
970 };
971
972 static const struct intel_watermark_params sandybridge_display_wm_info = {
973 SNB_DISPLAY_FIFO,
974 SNB_DISPLAY_MAXWM,
975 SNB_DISPLAY_DFTWM,
976 2,
977 SNB_FIFO_LINE_SIZE
978 };
979 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
980 SNB_CURSOR_FIFO,
981 SNB_CURSOR_MAXWM,
982 SNB_CURSOR_DFTWM,
983 2,
984 SNB_FIFO_LINE_SIZE
985 };
986 static const struct intel_watermark_params sandybridge_display_srwm_info = {
987 SNB_DISPLAY_SR_FIFO,
988 SNB_DISPLAY_MAX_SRWM,
989 SNB_DISPLAY_DFT_SRWM,
990 2,
991 SNB_FIFO_LINE_SIZE
992 };
993 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
994 SNB_CURSOR_SR_FIFO,
995 SNB_CURSOR_MAX_SRWM,
996 SNB_CURSOR_DFT_SRWM,
997 2,
998 SNB_FIFO_LINE_SIZE
999 };
1000
1001
1002 /**
1003 * intel_calculate_wm - calculate watermark level
1004 * @clock_in_khz: pixel clock
1005 * @wm: chip FIFO params
1006 * @pixel_size: display pixel size
1007 * @latency_ns: memory latency for the platform
1008 *
1009 * Calculate the watermark level (the level at which the display plane will
1010 * start fetching from memory again). Each chip has a different display
1011 * FIFO size and allocation, so the caller needs to figure that out and pass
1012 * in the correct intel_watermark_params structure.
1013 *
1014 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1015 * on the pixel size. When it reaches the watermark level, it'll start
1016 * fetching FIFO line sized based chunks from memory until the FIFO fills
1017 * past the watermark point. If the FIFO drains completely, a FIFO underrun
1018 * will occur, and a display engine hang could result.
1019 */
1020 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1021 const struct intel_watermark_params *wm,
1022 int fifo_size,
1023 int pixel_size,
1024 unsigned long latency_ns)
1025 {
1026 long entries_required, wm_size;
1027
1028 /*
1029 * Note: we need to make sure we don't overflow for various clock &
1030 * latency values.
1031 * clocks go from a few thousand to several hundred thousand.
1032 * latency is usually a few thousand
1033 */
1034 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1035 1000;
1036 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1037
1038 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1039
1040 wm_size = fifo_size - (entries_required + wm->guard_size);
1041
1042 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1043
1044 /* Don't promote wm_size to unsigned... */
1045 if (wm_size > (long)wm->max_wm)
1046 wm_size = wm->max_wm;
1047 if (wm_size <= 0)
1048 wm_size = wm->default_wm;
1049 return wm_size;
1050 }
1051
1052 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1053 {
1054 struct drm_crtc *crtc, *enabled = NULL;
1055
1056 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1057 if (intel_crtc_active(crtc)) {
1058 if (enabled)
1059 return NULL;
1060 enabled = crtc;
1061 }
1062 }
1063
1064 return enabled;
1065 }
1066
1067 static void pineview_update_wm(struct drm_device *dev)
1068 {
1069 struct drm_i915_private *dev_priv = dev->dev_private;
1070 struct drm_crtc *crtc;
1071 const struct cxsr_latency *latency;
1072 u32 reg;
1073 unsigned long wm;
1074
1075 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1076 dev_priv->fsb_freq, dev_priv->mem_freq);
1077 if (!latency) {
1078 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1079 pineview_disable_cxsr(dev);
1080 return;
1081 }
1082
1083 crtc = single_enabled_crtc(dev);
1084 if (crtc) {
1085 int clock = crtc->mode.clock;
1086 int pixel_size = crtc->fb->bits_per_pixel / 8;
1087
1088 /* Display SR */
1089 wm = intel_calculate_wm(clock, &pineview_display_wm,
1090 pineview_display_wm.fifo_size,
1091 pixel_size, latency->display_sr);
1092 reg = I915_READ(DSPFW1);
1093 reg &= ~DSPFW_SR_MASK;
1094 reg |= wm << DSPFW_SR_SHIFT;
1095 I915_WRITE(DSPFW1, reg);
1096 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1097
1098 /* cursor SR */
1099 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1100 pineview_display_wm.fifo_size,
1101 pixel_size, latency->cursor_sr);
1102 reg = I915_READ(DSPFW3);
1103 reg &= ~DSPFW_CURSOR_SR_MASK;
1104 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1105 I915_WRITE(DSPFW3, reg);
1106
1107 /* Display HPLL off SR */
1108 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1109 pineview_display_hplloff_wm.fifo_size,
1110 pixel_size, latency->display_hpll_disable);
1111 reg = I915_READ(DSPFW3);
1112 reg &= ~DSPFW_HPLL_SR_MASK;
1113 reg |= wm & DSPFW_HPLL_SR_MASK;
1114 I915_WRITE(DSPFW3, reg);
1115
1116 /* cursor HPLL off SR */
1117 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1118 pineview_display_hplloff_wm.fifo_size,
1119 pixel_size, latency->cursor_hpll_disable);
1120 reg = I915_READ(DSPFW3);
1121 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1122 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1123 I915_WRITE(DSPFW3, reg);
1124 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1125
1126 /* activate cxsr */
1127 I915_WRITE(DSPFW3,
1128 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1129 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1130 } else {
1131 pineview_disable_cxsr(dev);
1132 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1133 }
1134 }
1135
1136 static bool g4x_compute_wm0(struct drm_device *dev,
1137 int plane,
1138 const struct intel_watermark_params *display,
1139 int display_latency_ns,
1140 const struct intel_watermark_params *cursor,
1141 int cursor_latency_ns,
1142 int *plane_wm,
1143 int *cursor_wm)
1144 {
1145 struct drm_crtc *crtc;
1146 int htotal, hdisplay, clock, pixel_size;
1147 int line_time_us, line_count;
1148 int entries, tlb_miss;
1149
1150 crtc = intel_get_crtc_for_plane(dev, plane);
1151 if (!intel_crtc_active(crtc)) {
1152 *cursor_wm = cursor->guard_size;
1153 *plane_wm = display->guard_size;
1154 return false;
1155 }
1156
1157 htotal = crtc->mode.htotal;
1158 hdisplay = crtc->mode.hdisplay;
1159 clock = crtc->mode.clock;
1160 pixel_size = crtc->fb->bits_per_pixel / 8;
1161
1162 /* Use the small buffer method to calculate plane watermark */
1163 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1164 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1165 if (tlb_miss > 0)
1166 entries += tlb_miss;
1167 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1168 *plane_wm = entries + display->guard_size;
1169 if (*plane_wm > (int)display->max_wm)
1170 *plane_wm = display->max_wm;
1171
1172 /* Use the large buffer method to calculate cursor watermark */
1173 line_time_us = ((htotal * 1000) / clock);
1174 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1175 entries = line_count * 64 * pixel_size;
1176 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1177 if (tlb_miss > 0)
1178 entries += tlb_miss;
1179 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1180 *cursor_wm = entries + cursor->guard_size;
1181 if (*cursor_wm > (int)cursor->max_wm)
1182 *cursor_wm = (int)cursor->max_wm;
1183
1184 return true;
1185 }
1186
1187 /*
1188 * Check the wm result.
1189 *
1190 * If any calculated watermark values is larger than the maximum value that
1191 * can be programmed into the associated watermark register, that watermark
1192 * must be disabled.
1193 */
1194 static bool g4x_check_srwm(struct drm_device *dev,
1195 int display_wm, int cursor_wm,
1196 const struct intel_watermark_params *display,
1197 const struct intel_watermark_params *cursor)
1198 {
1199 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1200 display_wm, cursor_wm);
1201
1202 if (display_wm > display->max_wm) {
1203 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1204 display_wm, display->max_wm);
1205 return false;
1206 }
1207
1208 if (cursor_wm > cursor->max_wm) {
1209 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1210 cursor_wm, cursor->max_wm);
1211 return false;
1212 }
1213
1214 if (!(display_wm || cursor_wm)) {
1215 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1216 return false;
1217 }
1218
1219 return true;
1220 }
1221
1222 static bool g4x_compute_srwm(struct drm_device *dev,
1223 int plane,
1224 int latency_ns,
1225 const struct intel_watermark_params *display,
1226 const struct intel_watermark_params *cursor,
1227 int *display_wm, int *cursor_wm)
1228 {
1229 struct drm_crtc *crtc;
1230 int hdisplay, htotal, pixel_size, clock;
1231 unsigned long line_time_us;
1232 int line_count, line_size;
1233 int small, large;
1234 int entries;
1235
1236 if (!latency_ns) {
1237 *display_wm = *cursor_wm = 0;
1238 return false;
1239 }
1240
1241 crtc = intel_get_crtc_for_plane(dev, plane);
1242 hdisplay = crtc->mode.hdisplay;
1243 htotal = crtc->mode.htotal;
1244 clock = crtc->mode.clock;
1245 pixel_size = crtc->fb->bits_per_pixel / 8;
1246
1247 line_time_us = (htotal * 1000) / clock;
1248 line_count = (latency_ns / line_time_us + 1000) / 1000;
1249 line_size = hdisplay * pixel_size;
1250
1251 /* Use the minimum of the small and large buffer method for primary */
1252 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1253 large = line_count * line_size;
1254
1255 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1256 *display_wm = entries + display->guard_size;
1257
1258 /* calculate the self-refresh watermark for display cursor */
1259 entries = line_count * pixel_size * 64;
1260 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1261 *cursor_wm = entries + cursor->guard_size;
1262
1263 return g4x_check_srwm(dev,
1264 *display_wm, *cursor_wm,
1265 display, cursor);
1266 }
1267
1268 static bool vlv_compute_drain_latency(struct drm_device *dev,
1269 int plane,
1270 int *plane_prec_mult,
1271 int *plane_dl,
1272 int *cursor_prec_mult,
1273 int *cursor_dl)
1274 {
1275 struct drm_crtc *crtc;
1276 int clock, pixel_size;
1277 int entries;
1278
1279 crtc = intel_get_crtc_for_plane(dev, plane);
1280 if (!intel_crtc_active(crtc))
1281 return false;
1282
1283 clock = crtc->mode.clock; /* VESA DOT Clock */
1284 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
1285
1286 entries = (clock / 1000) * pixel_size;
1287 *plane_prec_mult = (entries > 256) ?
1288 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1289 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1290 pixel_size);
1291
1292 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1293 *cursor_prec_mult = (entries > 256) ?
1294 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1295 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1296
1297 return true;
1298 }
1299
1300 /*
1301 * Update drain latency registers of memory arbiter
1302 *
1303 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1304 * to be programmed. Each plane has a drain latency multiplier and a drain
1305 * latency value.
1306 */
1307
1308 static void vlv_update_drain_latency(struct drm_device *dev)
1309 {
1310 struct drm_i915_private *dev_priv = dev->dev_private;
1311 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1312 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1313 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1314 either 16 or 32 */
1315
1316 /* For plane A, Cursor A */
1317 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1318 &cursor_prec_mult, &cursora_dl)) {
1319 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1320 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1321 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1322 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1323
1324 I915_WRITE(VLV_DDL1, cursora_prec |
1325 (cursora_dl << DDL_CURSORA_SHIFT) |
1326 planea_prec | planea_dl);
1327 }
1328
1329 /* For plane B, Cursor B */
1330 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1331 &cursor_prec_mult, &cursorb_dl)) {
1332 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1333 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1334 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1335 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1336
1337 I915_WRITE(VLV_DDL2, cursorb_prec |
1338 (cursorb_dl << DDL_CURSORB_SHIFT) |
1339 planeb_prec | planeb_dl);
1340 }
1341 }
1342
1343 #define single_plane_enabled(mask) is_power_of_2(mask)
1344
1345 static void valleyview_update_wm(struct drm_device *dev)
1346 {
1347 static const int sr_latency_ns = 12000;
1348 struct drm_i915_private *dev_priv = dev->dev_private;
1349 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1350 int plane_sr, cursor_sr;
1351 int ignore_plane_sr, ignore_cursor_sr;
1352 unsigned int enabled = 0;
1353
1354 vlv_update_drain_latency(dev);
1355
1356 if (g4x_compute_wm0(dev, PIPE_A,
1357 &valleyview_wm_info, latency_ns,
1358 &valleyview_cursor_wm_info, latency_ns,
1359 &planea_wm, &cursora_wm))
1360 enabled |= 1 << PIPE_A;
1361
1362 if (g4x_compute_wm0(dev, PIPE_B,
1363 &valleyview_wm_info, latency_ns,
1364 &valleyview_cursor_wm_info, latency_ns,
1365 &planeb_wm, &cursorb_wm))
1366 enabled |= 1 << PIPE_B;
1367
1368 if (single_plane_enabled(enabled) &&
1369 g4x_compute_srwm(dev, ffs(enabled) - 1,
1370 sr_latency_ns,
1371 &valleyview_wm_info,
1372 &valleyview_cursor_wm_info,
1373 &plane_sr, &ignore_cursor_sr) &&
1374 g4x_compute_srwm(dev, ffs(enabled) - 1,
1375 2*sr_latency_ns,
1376 &valleyview_wm_info,
1377 &valleyview_cursor_wm_info,
1378 &ignore_plane_sr, &cursor_sr)) {
1379 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1380 } else {
1381 I915_WRITE(FW_BLC_SELF_VLV,
1382 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1383 plane_sr = cursor_sr = 0;
1384 }
1385
1386 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1387 planea_wm, cursora_wm,
1388 planeb_wm, cursorb_wm,
1389 plane_sr, cursor_sr);
1390
1391 I915_WRITE(DSPFW1,
1392 (plane_sr << DSPFW_SR_SHIFT) |
1393 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1394 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1395 planea_wm);
1396 I915_WRITE(DSPFW2,
1397 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1398 (cursora_wm << DSPFW_CURSORA_SHIFT));
1399 I915_WRITE(DSPFW3,
1400 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1401 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1402 }
1403
1404 static void g4x_update_wm(struct drm_device *dev)
1405 {
1406 static const int sr_latency_ns = 12000;
1407 struct drm_i915_private *dev_priv = dev->dev_private;
1408 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1409 int plane_sr, cursor_sr;
1410 unsigned int enabled = 0;
1411
1412 if (g4x_compute_wm0(dev, PIPE_A,
1413 &g4x_wm_info, latency_ns,
1414 &g4x_cursor_wm_info, latency_ns,
1415 &planea_wm, &cursora_wm))
1416 enabled |= 1 << PIPE_A;
1417
1418 if (g4x_compute_wm0(dev, PIPE_B,
1419 &g4x_wm_info, latency_ns,
1420 &g4x_cursor_wm_info, latency_ns,
1421 &planeb_wm, &cursorb_wm))
1422 enabled |= 1 << PIPE_B;
1423
1424 if (single_plane_enabled(enabled) &&
1425 g4x_compute_srwm(dev, ffs(enabled) - 1,
1426 sr_latency_ns,
1427 &g4x_wm_info,
1428 &g4x_cursor_wm_info,
1429 &plane_sr, &cursor_sr)) {
1430 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1431 } else {
1432 I915_WRITE(FW_BLC_SELF,
1433 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1434 plane_sr = cursor_sr = 0;
1435 }
1436
1437 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1438 planea_wm, cursora_wm,
1439 planeb_wm, cursorb_wm,
1440 plane_sr, cursor_sr);
1441
1442 I915_WRITE(DSPFW1,
1443 (plane_sr << DSPFW_SR_SHIFT) |
1444 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1445 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1446 planea_wm);
1447 I915_WRITE(DSPFW2,
1448 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1449 (cursora_wm << DSPFW_CURSORA_SHIFT));
1450 /* HPLL off in SR has some issues on G4x... disable it */
1451 I915_WRITE(DSPFW3,
1452 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1453 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1454 }
1455
1456 static void i965_update_wm(struct drm_device *dev)
1457 {
1458 struct drm_i915_private *dev_priv = dev->dev_private;
1459 struct drm_crtc *crtc;
1460 int srwm = 1;
1461 int cursor_sr = 16;
1462
1463 /* Calc sr entries for one plane configs */
1464 crtc = single_enabled_crtc(dev);
1465 if (crtc) {
1466 /* self-refresh has much higher latency */
1467 static const int sr_latency_ns = 12000;
1468 int clock = crtc->mode.clock;
1469 int htotal = crtc->mode.htotal;
1470 int hdisplay = crtc->mode.hdisplay;
1471 int pixel_size = crtc->fb->bits_per_pixel / 8;
1472 unsigned long line_time_us;
1473 int entries;
1474
1475 line_time_us = ((htotal * 1000) / clock);
1476
1477 /* Use ns/us then divide to preserve precision */
1478 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1479 pixel_size * hdisplay;
1480 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1481 srwm = I965_FIFO_SIZE - entries;
1482 if (srwm < 0)
1483 srwm = 1;
1484 srwm &= 0x1ff;
1485 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1486 entries, srwm);
1487
1488 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1489 pixel_size * 64;
1490 entries = DIV_ROUND_UP(entries,
1491 i965_cursor_wm_info.cacheline_size);
1492 cursor_sr = i965_cursor_wm_info.fifo_size -
1493 (entries + i965_cursor_wm_info.guard_size);
1494
1495 if (cursor_sr > i965_cursor_wm_info.max_wm)
1496 cursor_sr = i965_cursor_wm_info.max_wm;
1497
1498 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1499 "cursor %d\n", srwm, cursor_sr);
1500
1501 if (IS_CRESTLINE(dev))
1502 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1503 } else {
1504 /* Turn off self refresh if both pipes are enabled */
1505 if (IS_CRESTLINE(dev))
1506 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1507 & ~FW_BLC_SELF_EN);
1508 }
1509
1510 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1511 srwm);
1512
1513 /* 965 has limitations... */
1514 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1515 (8 << 16) | (8 << 8) | (8 << 0));
1516 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1517 /* update cursor SR watermark */
1518 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1519 }
1520
1521 static void i9xx_update_wm(struct drm_device *dev)
1522 {
1523 struct drm_i915_private *dev_priv = dev->dev_private;
1524 const struct intel_watermark_params *wm_info;
1525 uint32_t fwater_lo;
1526 uint32_t fwater_hi;
1527 int cwm, srwm = 1;
1528 int fifo_size;
1529 int planea_wm, planeb_wm;
1530 struct drm_crtc *crtc, *enabled = NULL;
1531
1532 if (IS_I945GM(dev))
1533 wm_info = &i945_wm_info;
1534 else if (!IS_GEN2(dev))
1535 wm_info = &i915_wm_info;
1536 else
1537 wm_info = &i855_wm_info;
1538
1539 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1540 crtc = intel_get_crtc_for_plane(dev, 0);
1541 if (intel_crtc_active(crtc)) {
1542 int cpp = crtc->fb->bits_per_pixel / 8;
1543 if (IS_GEN2(dev))
1544 cpp = 4;
1545
1546 planea_wm = intel_calculate_wm(crtc->mode.clock,
1547 wm_info, fifo_size, cpp,
1548 latency_ns);
1549 enabled = crtc;
1550 } else
1551 planea_wm = fifo_size - wm_info->guard_size;
1552
1553 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1554 crtc = intel_get_crtc_for_plane(dev, 1);
1555 if (intel_crtc_active(crtc)) {
1556 int cpp = crtc->fb->bits_per_pixel / 8;
1557 if (IS_GEN2(dev))
1558 cpp = 4;
1559
1560 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1561 wm_info, fifo_size, cpp,
1562 latency_ns);
1563 if (enabled == NULL)
1564 enabled = crtc;
1565 else
1566 enabled = NULL;
1567 } else
1568 planeb_wm = fifo_size - wm_info->guard_size;
1569
1570 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1571
1572 /*
1573 * Overlay gets an aggressive default since video jitter is bad.
1574 */
1575 cwm = 2;
1576
1577 /* Play safe and disable self-refresh before adjusting watermarks. */
1578 if (IS_I945G(dev) || IS_I945GM(dev))
1579 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1580 else if (IS_I915GM(dev))
1581 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1582
1583 /* Calc sr entries for one plane configs */
1584 if (HAS_FW_BLC(dev) && enabled) {
1585 /* self-refresh has much higher latency */
1586 static const int sr_latency_ns = 6000;
1587 int clock = enabled->mode.clock;
1588 int htotal = enabled->mode.htotal;
1589 int hdisplay = enabled->mode.hdisplay;
1590 int pixel_size = enabled->fb->bits_per_pixel / 8;
1591 unsigned long line_time_us;
1592 int entries;
1593
1594 line_time_us = (htotal * 1000) / clock;
1595
1596 /* Use ns/us then divide to preserve precision */
1597 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1598 pixel_size * hdisplay;
1599 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1600 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1601 srwm = wm_info->fifo_size - entries;
1602 if (srwm < 0)
1603 srwm = 1;
1604
1605 if (IS_I945G(dev) || IS_I945GM(dev))
1606 I915_WRITE(FW_BLC_SELF,
1607 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1608 else if (IS_I915GM(dev))
1609 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1610 }
1611
1612 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1613 planea_wm, planeb_wm, cwm, srwm);
1614
1615 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1616 fwater_hi = (cwm & 0x1f);
1617
1618 /* Set request length to 8 cachelines per fetch */
1619 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1620 fwater_hi = fwater_hi | (1 << 8);
1621
1622 I915_WRITE(FW_BLC, fwater_lo);
1623 I915_WRITE(FW_BLC2, fwater_hi);
1624
1625 if (HAS_FW_BLC(dev)) {
1626 if (enabled) {
1627 if (IS_I945G(dev) || IS_I945GM(dev))
1628 I915_WRITE(FW_BLC_SELF,
1629 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1630 else if (IS_I915GM(dev))
1631 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1632 DRM_DEBUG_KMS("memory self refresh enabled\n");
1633 } else
1634 DRM_DEBUG_KMS("memory self refresh disabled\n");
1635 }
1636 }
1637
1638 static void i830_update_wm(struct drm_device *dev)
1639 {
1640 struct drm_i915_private *dev_priv = dev->dev_private;
1641 struct drm_crtc *crtc;
1642 uint32_t fwater_lo;
1643 int planea_wm;
1644
1645 crtc = single_enabled_crtc(dev);
1646 if (crtc == NULL)
1647 return;
1648
1649 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1650 dev_priv->display.get_fifo_size(dev, 0),
1651 4, latency_ns);
1652 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1653 fwater_lo |= (3<<8) | planea_wm;
1654
1655 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1656
1657 I915_WRITE(FW_BLC, fwater_lo);
1658 }
1659
1660 #define ILK_LP0_PLANE_LATENCY 700
1661 #define ILK_LP0_CURSOR_LATENCY 1300
1662
1663 /*
1664 * Check the wm result.
1665 *
1666 * If any calculated watermark values is larger than the maximum value that
1667 * can be programmed into the associated watermark register, that watermark
1668 * must be disabled.
1669 */
1670 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1671 int fbc_wm, int display_wm, int cursor_wm,
1672 const struct intel_watermark_params *display,
1673 const struct intel_watermark_params *cursor)
1674 {
1675 struct drm_i915_private *dev_priv = dev->dev_private;
1676
1677 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1678 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1679
1680 if (fbc_wm > SNB_FBC_MAX_SRWM) {
1681 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1682 fbc_wm, SNB_FBC_MAX_SRWM, level);
1683
1684 /* fbc has it's own way to disable FBC WM */
1685 I915_WRITE(DISP_ARB_CTL,
1686 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1687 return false;
1688 } else if (INTEL_INFO(dev)->gen >= 6) {
1689 /* enable FBC WM (except on ILK, where it must remain off) */
1690 I915_WRITE(DISP_ARB_CTL,
1691 I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1692 }
1693
1694 if (display_wm > display->max_wm) {
1695 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1696 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1697 return false;
1698 }
1699
1700 if (cursor_wm > cursor->max_wm) {
1701 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1702 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1703 return false;
1704 }
1705
1706 if (!(fbc_wm || display_wm || cursor_wm)) {
1707 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1708 return false;
1709 }
1710
1711 return true;
1712 }
1713
1714 /*
1715 * Compute watermark values of WM[1-3],
1716 */
1717 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1718 int latency_ns,
1719 const struct intel_watermark_params *display,
1720 const struct intel_watermark_params *cursor,
1721 int *fbc_wm, int *display_wm, int *cursor_wm)
1722 {
1723 struct drm_crtc *crtc;
1724 unsigned long line_time_us;
1725 int hdisplay, htotal, pixel_size, clock;
1726 int line_count, line_size;
1727 int small, large;
1728 int entries;
1729
1730 if (!latency_ns) {
1731 *fbc_wm = *display_wm = *cursor_wm = 0;
1732 return false;
1733 }
1734
1735 crtc = intel_get_crtc_for_plane(dev, plane);
1736 hdisplay = crtc->mode.hdisplay;
1737 htotal = crtc->mode.htotal;
1738 clock = crtc->mode.clock;
1739 pixel_size = crtc->fb->bits_per_pixel / 8;
1740
1741 line_time_us = (htotal * 1000) / clock;
1742 line_count = (latency_ns / line_time_us + 1000) / 1000;
1743 line_size = hdisplay * pixel_size;
1744
1745 /* Use the minimum of the small and large buffer method for primary */
1746 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1747 large = line_count * line_size;
1748
1749 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1750 *display_wm = entries + display->guard_size;
1751
1752 /*
1753 * Spec says:
1754 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1755 */
1756 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1757
1758 /* calculate the self-refresh watermark for display cursor */
1759 entries = line_count * pixel_size * 64;
1760 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1761 *cursor_wm = entries + cursor->guard_size;
1762
1763 return ironlake_check_srwm(dev, level,
1764 *fbc_wm, *display_wm, *cursor_wm,
1765 display, cursor);
1766 }
1767
1768 static void ironlake_update_wm(struct drm_device *dev)
1769 {
1770 struct drm_i915_private *dev_priv = dev->dev_private;
1771 int fbc_wm, plane_wm, cursor_wm;
1772 unsigned int enabled;
1773
1774 enabled = 0;
1775 if (g4x_compute_wm0(dev, PIPE_A,
1776 &ironlake_display_wm_info,
1777 ILK_LP0_PLANE_LATENCY,
1778 &ironlake_cursor_wm_info,
1779 ILK_LP0_CURSOR_LATENCY,
1780 &plane_wm, &cursor_wm)) {
1781 I915_WRITE(WM0_PIPEA_ILK,
1782 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1783 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1784 " plane %d, " "cursor: %d\n",
1785 plane_wm, cursor_wm);
1786 enabled |= 1 << PIPE_A;
1787 }
1788
1789 if (g4x_compute_wm0(dev, PIPE_B,
1790 &ironlake_display_wm_info,
1791 ILK_LP0_PLANE_LATENCY,
1792 &ironlake_cursor_wm_info,
1793 ILK_LP0_CURSOR_LATENCY,
1794 &plane_wm, &cursor_wm)) {
1795 I915_WRITE(WM0_PIPEB_ILK,
1796 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1797 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1798 " plane %d, cursor: %d\n",
1799 plane_wm, cursor_wm);
1800 enabled |= 1 << PIPE_B;
1801 }
1802
1803 /*
1804 * Calculate and update the self-refresh watermark only when one
1805 * display plane is used.
1806 */
1807 I915_WRITE(WM3_LP_ILK, 0);
1808 I915_WRITE(WM2_LP_ILK, 0);
1809 I915_WRITE(WM1_LP_ILK, 0);
1810
1811 if (!single_plane_enabled(enabled))
1812 return;
1813 enabled = ffs(enabled) - 1;
1814
1815 /* WM1 */
1816 if (!ironlake_compute_srwm(dev, 1, enabled,
1817 ILK_READ_WM1_LATENCY() * 500,
1818 &ironlake_display_srwm_info,
1819 &ironlake_cursor_srwm_info,
1820 &fbc_wm, &plane_wm, &cursor_wm))
1821 return;
1822
1823 I915_WRITE(WM1_LP_ILK,
1824 WM1_LP_SR_EN |
1825 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1826 (fbc_wm << WM1_LP_FBC_SHIFT) |
1827 (plane_wm << WM1_LP_SR_SHIFT) |
1828 cursor_wm);
1829
1830 /* WM2 */
1831 if (!ironlake_compute_srwm(dev, 2, enabled,
1832 ILK_READ_WM2_LATENCY() * 500,
1833 &ironlake_display_srwm_info,
1834 &ironlake_cursor_srwm_info,
1835 &fbc_wm, &plane_wm, &cursor_wm))
1836 return;
1837
1838 I915_WRITE(WM2_LP_ILK,
1839 WM2_LP_EN |
1840 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1841 (fbc_wm << WM1_LP_FBC_SHIFT) |
1842 (plane_wm << WM1_LP_SR_SHIFT) |
1843 cursor_wm);
1844
1845 /*
1846 * WM3 is unsupported on ILK, probably because we don't have latency
1847 * data for that power state
1848 */
1849 }
1850
1851 static void sandybridge_update_wm(struct drm_device *dev)
1852 {
1853 struct drm_i915_private *dev_priv = dev->dev_private;
1854 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1855 u32 val;
1856 int fbc_wm, plane_wm, cursor_wm;
1857 unsigned int enabled;
1858
1859 enabled = 0;
1860 if (g4x_compute_wm0(dev, PIPE_A,
1861 &sandybridge_display_wm_info, latency,
1862 &sandybridge_cursor_wm_info, latency,
1863 &plane_wm, &cursor_wm)) {
1864 val = I915_READ(WM0_PIPEA_ILK);
1865 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1866 I915_WRITE(WM0_PIPEA_ILK, val |
1867 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1868 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1869 " plane %d, " "cursor: %d\n",
1870 plane_wm, cursor_wm);
1871 enabled |= 1 << PIPE_A;
1872 }
1873
1874 if (g4x_compute_wm0(dev, PIPE_B,
1875 &sandybridge_display_wm_info, latency,
1876 &sandybridge_cursor_wm_info, latency,
1877 &plane_wm, &cursor_wm)) {
1878 val = I915_READ(WM0_PIPEB_ILK);
1879 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1880 I915_WRITE(WM0_PIPEB_ILK, val |
1881 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1882 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1883 " plane %d, cursor: %d\n",
1884 plane_wm, cursor_wm);
1885 enabled |= 1 << PIPE_B;
1886 }
1887
1888 /*
1889 * Calculate and update the self-refresh watermark only when one
1890 * display plane is used.
1891 *
1892 * SNB support 3 levels of watermark.
1893 *
1894 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1895 * and disabled in the descending order
1896 *
1897 */
1898 I915_WRITE(WM3_LP_ILK, 0);
1899 I915_WRITE(WM2_LP_ILK, 0);
1900 I915_WRITE(WM1_LP_ILK, 0);
1901
1902 if (!single_plane_enabled(enabled) ||
1903 dev_priv->sprite_scaling_enabled)
1904 return;
1905 enabled = ffs(enabled) - 1;
1906
1907 /* WM1 */
1908 if (!ironlake_compute_srwm(dev, 1, enabled,
1909 SNB_READ_WM1_LATENCY() * 500,
1910 &sandybridge_display_srwm_info,
1911 &sandybridge_cursor_srwm_info,
1912 &fbc_wm, &plane_wm, &cursor_wm))
1913 return;
1914
1915 I915_WRITE(WM1_LP_ILK,
1916 WM1_LP_SR_EN |
1917 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1918 (fbc_wm << WM1_LP_FBC_SHIFT) |
1919 (plane_wm << WM1_LP_SR_SHIFT) |
1920 cursor_wm);
1921
1922 /* WM2 */
1923 if (!ironlake_compute_srwm(dev, 2, enabled,
1924 SNB_READ_WM2_LATENCY() * 500,
1925 &sandybridge_display_srwm_info,
1926 &sandybridge_cursor_srwm_info,
1927 &fbc_wm, &plane_wm, &cursor_wm))
1928 return;
1929
1930 I915_WRITE(WM2_LP_ILK,
1931 WM2_LP_EN |
1932 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1933 (fbc_wm << WM1_LP_FBC_SHIFT) |
1934 (plane_wm << WM1_LP_SR_SHIFT) |
1935 cursor_wm);
1936
1937 /* WM3 */
1938 if (!ironlake_compute_srwm(dev, 3, enabled,
1939 SNB_READ_WM3_LATENCY() * 500,
1940 &sandybridge_display_srwm_info,
1941 &sandybridge_cursor_srwm_info,
1942 &fbc_wm, &plane_wm, &cursor_wm))
1943 return;
1944
1945 I915_WRITE(WM3_LP_ILK,
1946 WM3_LP_EN |
1947 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1948 (fbc_wm << WM1_LP_FBC_SHIFT) |
1949 (plane_wm << WM1_LP_SR_SHIFT) |
1950 cursor_wm);
1951 }
1952
1953 static void ivybridge_update_wm(struct drm_device *dev)
1954 {
1955 struct drm_i915_private *dev_priv = dev->dev_private;
1956 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1957 u32 val;
1958 int fbc_wm, plane_wm, cursor_wm;
1959 int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1960 unsigned int enabled;
1961
1962 enabled = 0;
1963 if (g4x_compute_wm0(dev, PIPE_A,
1964 &sandybridge_display_wm_info, latency,
1965 &sandybridge_cursor_wm_info, latency,
1966 &plane_wm, &cursor_wm)) {
1967 val = I915_READ(WM0_PIPEA_ILK);
1968 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1969 I915_WRITE(WM0_PIPEA_ILK, val |
1970 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1971 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1972 " plane %d, " "cursor: %d\n",
1973 plane_wm, cursor_wm);
1974 enabled |= 1 << PIPE_A;
1975 }
1976
1977 if (g4x_compute_wm0(dev, PIPE_B,
1978 &sandybridge_display_wm_info, latency,
1979 &sandybridge_cursor_wm_info, latency,
1980 &plane_wm, &cursor_wm)) {
1981 val = I915_READ(WM0_PIPEB_ILK);
1982 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1983 I915_WRITE(WM0_PIPEB_ILK, val |
1984 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1985 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1986 " plane %d, cursor: %d\n",
1987 plane_wm, cursor_wm);
1988 enabled |= 1 << PIPE_B;
1989 }
1990
1991 if (g4x_compute_wm0(dev, PIPE_C,
1992 &sandybridge_display_wm_info, latency,
1993 &sandybridge_cursor_wm_info, latency,
1994 &plane_wm, &cursor_wm)) {
1995 val = I915_READ(WM0_PIPEC_IVB);
1996 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1997 I915_WRITE(WM0_PIPEC_IVB, val |
1998 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1999 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2000 " plane %d, cursor: %d\n",
2001 plane_wm, cursor_wm);
2002 enabled |= 1 << PIPE_C;
2003 }
2004
2005 /*
2006 * Calculate and update the self-refresh watermark only when one
2007 * display plane is used.
2008 *
2009 * SNB support 3 levels of watermark.
2010 *
2011 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2012 * and disabled in the descending order
2013 *
2014 */
2015 I915_WRITE(WM3_LP_ILK, 0);
2016 I915_WRITE(WM2_LP_ILK, 0);
2017 I915_WRITE(WM1_LP_ILK, 0);
2018
2019 if (!single_plane_enabled(enabled) ||
2020 dev_priv->sprite_scaling_enabled)
2021 return;
2022 enabled = ffs(enabled) - 1;
2023
2024 /* WM1 */
2025 if (!ironlake_compute_srwm(dev, 1, enabled,
2026 SNB_READ_WM1_LATENCY() * 500,
2027 &sandybridge_display_srwm_info,
2028 &sandybridge_cursor_srwm_info,
2029 &fbc_wm, &plane_wm, &cursor_wm))
2030 return;
2031
2032 I915_WRITE(WM1_LP_ILK,
2033 WM1_LP_SR_EN |
2034 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2035 (fbc_wm << WM1_LP_FBC_SHIFT) |
2036 (plane_wm << WM1_LP_SR_SHIFT) |
2037 cursor_wm);
2038
2039 /* WM2 */
2040 if (!ironlake_compute_srwm(dev, 2, enabled,
2041 SNB_READ_WM2_LATENCY() * 500,
2042 &sandybridge_display_srwm_info,
2043 &sandybridge_cursor_srwm_info,
2044 &fbc_wm, &plane_wm, &cursor_wm))
2045 return;
2046
2047 I915_WRITE(WM2_LP_ILK,
2048 WM2_LP_EN |
2049 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2050 (fbc_wm << WM1_LP_FBC_SHIFT) |
2051 (plane_wm << WM1_LP_SR_SHIFT) |
2052 cursor_wm);
2053
2054 /* WM3, note we have to correct the cursor latency */
2055 if (!ironlake_compute_srwm(dev, 3, enabled,
2056 SNB_READ_WM3_LATENCY() * 500,
2057 &sandybridge_display_srwm_info,
2058 &sandybridge_cursor_srwm_info,
2059 &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2060 !ironlake_compute_srwm(dev, 3, enabled,
2061 2 * SNB_READ_WM3_LATENCY() * 500,
2062 &sandybridge_display_srwm_info,
2063 &sandybridge_cursor_srwm_info,
2064 &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2065 return;
2066
2067 I915_WRITE(WM3_LP_ILK,
2068 WM3_LP_EN |
2069 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2070 (fbc_wm << WM1_LP_FBC_SHIFT) |
2071 (plane_wm << WM1_LP_SR_SHIFT) |
2072 cursor_wm);
2073 }
2074
2075 static uint32_t hsw_wm_get_pixel_rate(struct drm_device *dev,
2076 struct drm_crtc *crtc)
2077 {
2078 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2079 uint32_t pixel_rate, pfit_size;
2080
2081 if (intel_crtc->config.pixel_target_clock)
2082 pixel_rate = intel_crtc->config.pixel_target_clock;
2083 else
2084 pixel_rate = intel_crtc->config.adjusted_mode.clock;
2085
2086 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
2087 * adjust the pixel_rate here. */
2088
2089 pfit_size = intel_crtc->config.pch_pfit.size;
2090 if (pfit_size) {
2091 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2092
2093 pipe_w = intel_crtc->config.requested_mode.hdisplay;
2094 pipe_h = intel_crtc->config.requested_mode.vdisplay;
2095 pfit_w = (pfit_size >> 16) & 0xFFFF;
2096 pfit_h = pfit_size & 0xFFFF;
2097 if (pipe_w < pfit_w)
2098 pipe_w = pfit_w;
2099 if (pipe_h < pfit_h)
2100 pipe_h = pfit_h;
2101
2102 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
2103 pfit_w * pfit_h);
2104 }
2105
2106 return pixel_rate;
2107 }
2108
2109 static uint32_t hsw_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2110 uint32_t latency)
2111 {
2112 uint64_t ret;
2113
2114 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
2115 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
2116
2117 return ret;
2118 }
2119
2120 static uint32_t hsw_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2121 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2122 uint32_t latency)
2123 {
2124 uint32_t ret;
2125
2126 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
2127 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
2128 ret = DIV_ROUND_UP(ret, 64) + 2;
2129 return ret;
2130 }
2131
2132 static uint32_t hsw_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2133 uint8_t bytes_per_pixel)
2134 {
2135 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
2136 }
2137
2138 struct hsw_pipe_wm_parameters {
2139 bool active;
2140 bool sprite_enabled;
2141 uint8_t pri_bytes_per_pixel;
2142 uint8_t spr_bytes_per_pixel;
2143 uint8_t cur_bytes_per_pixel;
2144 uint32_t pri_horiz_pixels;
2145 uint32_t spr_horiz_pixels;
2146 uint32_t cur_horiz_pixels;
2147 uint32_t pipe_htotal;
2148 uint32_t pixel_rate;
2149 };
2150
2151 struct hsw_wm_maximums {
2152 uint16_t pri;
2153 uint16_t spr;
2154 uint16_t cur;
2155 uint16_t fbc;
2156 };
2157
2158 struct hsw_lp_wm_result {
2159 bool enable;
2160 bool fbc_enable;
2161 uint32_t pri_val;
2162 uint32_t spr_val;
2163 uint32_t cur_val;
2164 uint32_t fbc_val;
2165 };
2166
2167 struct hsw_wm_values {
2168 uint32_t wm_pipe[3];
2169 uint32_t wm_lp[3];
2170 uint32_t wm_lp_spr[3];
2171 uint32_t wm_linetime[3];
2172 bool enable_fbc_wm;
2173 };
2174
2175 enum hsw_data_buf_partitioning {
2176 HSW_DATA_BUF_PART_1_2,
2177 HSW_DATA_BUF_PART_5_6,
2178 };
2179
2180 /* For both WM_PIPE and WM_LP. */
2181 static uint32_t hsw_compute_pri_wm(struct hsw_pipe_wm_parameters *params,
2182 uint32_t mem_value,
2183 bool is_lp)
2184 {
2185 uint32_t method1, method2;
2186
2187 /* TODO: for now, assume the primary plane is always enabled. */
2188 if (!params->active)
2189 return 0;
2190
2191 method1 = hsw_wm_method1(params->pixel_rate,
2192 params->pri_bytes_per_pixel,
2193 mem_value);
2194
2195 if (!is_lp)
2196 return method1;
2197
2198 method2 = hsw_wm_method2(params->pixel_rate,
2199 params->pipe_htotal,
2200 params->pri_horiz_pixels,
2201 params->pri_bytes_per_pixel,
2202 mem_value);
2203
2204 return min(method1, method2);
2205 }
2206
2207 /* For both WM_PIPE and WM_LP. */
2208 static uint32_t hsw_compute_spr_wm(struct hsw_pipe_wm_parameters *params,
2209 uint32_t mem_value)
2210 {
2211 uint32_t method1, method2;
2212
2213 if (!params->active || !params->sprite_enabled)
2214 return 0;
2215
2216 method1 = hsw_wm_method1(params->pixel_rate,
2217 params->spr_bytes_per_pixel,
2218 mem_value);
2219 method2 = hsw_wm_method2(params->pixel_rate,
2220 params->pipe_htotal,
2221 params->spr_horiz_pixels,
2222 params->spr_bytes_per_pixel,
2223 mem_value);
2224 return min(method1, method2);
2225 }
2226
2227 /* For both WM_PIPE and WM_LP. */
2228 static uint32_t hsw_compute_cur_wm(struct hsw_pipe_wm_parameters *params,
2229 uint32_t mem_value)
2230 {
2231 if (!params->active)
2232 return 0;
2233
2234 return hsw_wm_method2(params->pixel_rate,
2235 params->pipe_htotal,
2236 params->cur_horiz_pixels,
2237 params->cur_bytes_per_pixel,
2238 mem_value);
2239 }
2240
2241 /* Only for WM_LP. */
2242 static uint32_t hsw_compute_fbc_wm(struct hsw_pipe_wm_parameters *params,
2243 uint32_t pri_val,
2244 uint32_t mem_value)
2245 {
2246 if (!params->active)
2247 return 0;
2248
2249 return hsw_wm_fbc(pri_val,
2250 params->pri_horiz_pixels,
2251 params->pri_bytes_per_pixel);
2252 }
2253
2254 static bool hsw_compute_lp_wm(uint32_t mem_value, struct hsw_wm_maximums *max,
2255 struct hsw_pipe_wm_parameters *params,
2256 struct hsw_lp_wm_result *result)
2257 {
2258 enum pipe pipe;
2259 uint32_t pri_val[3], spr_val[3], cur_val[3], fbc_val[3];
2260
2261 for (pipe = PIPE_A; pipe <= PIPE_C; pipe++) {
2262 struct hsw_pipe_wm_parameters *p = &params[pipe];
2263
2264 pri_val[pipe] = hsw_compute_pri_wm(p, mem_value, true);
2265 spr_val[pipe] = hsw_compute_spr_wm(p, mem_value);
2266 cur_val[pipe] = hsw_compute_cur_wm(p, mem_value);
2267 fbc_val[pipe] = hsw_compute_fbc_wm(p, pri_val[pipe], mem_value);
2268 }
2269
2270 result->pri_val = max3(pri_val[0], pri_val[1], pri_val[2]);
2271 result->spr_val = max3(spr_val[0], spr_val[1], spr_val[2]);
2272 result->cur_val = max3(cur_val[0], cur_val[1], cur_val[2]);
2273 result->fbc_val = max3(fbc_val[0], fbc_val[1], fbc_val[2]);
2274
2275 if (result->fbc_val > max->fbc) {
2276 result->fbc_enable = false;
2277 result->fbc_val = 0;
2278 } else {
2279 result->fbc_enable = true;
2280 }
2281
2282 result->enable = result->pri_val <= max->pri &&
2283 result->spr_val <= max->spr &&
2284 result->cur_val <= max->cur;
2285 return result->enable;
2286 }
2287
2288 static uint32_t hsw_compute_wm_pipe(struct drm_i915_private *dev_priv,
2289 uint32_t mem_value, enum pipe pipe,
2290 struct hsw_pipe_wm_parameters *params)
2291 {
2292 uint32_t pri_val, cur_val, spr_val;
2293
2294 pri_val = hsw_compute_pri_wm(params, mem_value, false);
2295 spr_val = hsw_compute_spr_wm(params, mem_value);
2296 cur_val = hsw_compute_cur_wm(params, mem_value);
2297
2298 WARN(pri_val > 127,
2299 "Primary WM error, mode not supported for pipe %c\n",
2300 pipe_name(pipe));
2301 WARN(spr_val > 127,
2302 "Sprite WM error, mode not supported for pipe %c\n",
2303 pipe_name(pipe));
2304 WARN(cur_val > 63,
2305 "Cursor WM error, mode not supported for pipe %c\n",
2306 pipe_name(pipe));
2307
2308 return (pri_val << WM0_PIPE_PLANE_SHIFT) |
2309 (spr_val << WM0_PIPE_SPRITE_SHIFT) |
2310 cur_val;
2311 }
2312
2313 static uint32_t
2314 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2315 {
2316 struct drm_i915_private *dev_priv = dev->dev_private;
2317 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2318 struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2319 u32 linetime, ips_linetime;
2320
2321 if (!intel_crtc_active(crtc))
2322 return 0;
2323
2324 /* The WM are computed with base on how long it takes to fill a single
2325 * row at the given clock rate, multiplied by 8.
2326 * */
2327 linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
2328 ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
2329 intel_ddi_get_cdclk_freq(dev_priv));
2330
2331 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2332 PIPE_WM_LINETIME_TIME(linetime);
2333 }
2334
2335 static void hsw_compute_wm_parameters(struct drm_device *dev,
2336 struct hsw_pipe_wm_parameters *params,
2337 uint32_t *wm,
2338 struct hsw_wm_maximums *lp_max_1_2,
2339 struct hsw_wm_maximums *lp_max_5_6)
2340 {
2341 struct drm_i915_private *dev_priv = dev->dev_private;
2342 struct drm_crtc *crtc;
2343 struct drm_plane *plane;
2344 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2345 enum pipe pipe;
2346 int pipes_active = 0, sprites_enabled = 0;
2347
2348 if ((sskpd >> 56) & 0xFF)
2349 wm[0] = (sskpd >> 56) & 0xFF;
2350 else
2351 wm[0] = sskpd & 0xF;
2352 wm[1] = ((sskpd >> 4) & 0xFF) * 5;
2353 wm[2] = ((sskpd >> 12) & 0xFF) * 5;
2354 wm[3] = ((sskpd >> 20) & 0x1FF) * 5;
2355 wm[4] = ((sskpd >> 32) & 0x1FF) * 5;
2356
2357 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2358 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2359 struct hsw_pipe_wm_parameters *p;
2360
2361 pipe = intel_crtc->pipe;
2362 p = &params[pipe];
2363
2364 p->active = intel_crtc_active(crtc);
2365 if (!p->active)
2366 continue;
2367
2368 pipes_active++;
2369
2370 p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2371 p->pixel_rate = hsw_wm_get_pixel_rate(dev, crtc);
2372 p->pri_bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2373 p->cur_bytes_per_pixel = 4;
2374 p->pri_horiz_pixels =
2375 intel_crtc->config.requested_mode.hdisplay;
2376 p->cur_horiz_pixels = 64;
2377 }
2378
2379 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2380 struct intel_plane *intel_plane = to_intel_plane(plane);
2381 struct hsw_pipe_wm_parameters *p;
2382
2383 pipe = intel_plane->pipe;
2384 p = &params[pipe];
2385
2386 p->sprite_enabled = intel_plane->wm.enable;
2387 p->spr_bytes_per_pixel = intel_plane->wm.bytes_per_pixel;
2388 p->spr_horiz_pixels = intel_plane->wm.horiz_pixels;
2389
2390 if (p->sprite_enabled)
2391 sprites_enabled++;
2392 }
2393
2394 if (pipes_active > 1) {
2395 lp_max_1_2->pri = lp_max_5_6->pri = sprites_enabled ? 128 : 256;
2396 lp_max_1_2->spr = lp_max_5_6->spr = 128;
2397 lp_max_1_2->cur = lp_max_5_6->cur = 64;
2398 } else {
2399 lp_max_1_2->pri = sprites_enabled ? 384 : 768;
2400 lp_max_5_6->pri = sprites_enabled ? 128 : 768;
2401 lp_max_1_2->spr = 384;
2402 lp_max_5_6->spr = 640;
2403 lp_max_1_2->cur = lp_max_5_6->cur = 255;
2404 }
2405 lp_max_1_2->fbc = lp_max_5_6->fbc = 15;
2406 }
2407
2408 static void hsw_compute_wm_results(struct drm_device *dev,
2409 struct hsw_pipe_wm_parameters *params,
2410 uint32_t *wm,
2411 struct hsw_wm_maximums *lp_maximums,
2412 struct hsw_wm_values *results)
2413 {
2414 struct drm_i915_private *dev_priv = dev->dev_private;
2415 struct drm_crtc *crtc;
2416 struct hsw_lp_wm_result lp_results[4] = {};
2417 enum pipe pipe;
2418 int level, max_level, wm_lp;
2419
2420 for (level = 1; level <= 4; level++)
2421 if (!hsw_compute_lp_wm(wm[level], lp_maximums, params,
2422 &lp_results[level - 1]))
2423 break;
2424 max_level = level - 1;
2425
2426 /* The spec says it is preferred to disable FBC WMs instead of disabling
2427 * a WM level. */
2428 results->enable_fbc_wm = true;
2429 for (level = 1; level <= max_level; level++) {
2430 if (!lp_results[level - 1].fbc_enable) {
2431 results->enable_fbc_wm = false;
2432 break;
2433 }
2434 }
2435
2436 memset(results, 0, sizeof(*results));
2437 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2438 const struct hsw_lp_wm_result *r;
2439
2440 level = (max_level == 4 && wm_lp > 1) ? wm_lp + 1 : wm_lp;
2441 if (level > max_level)
2442 break;
2443
2444 r = &lp_results[level - 1];
2445 results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
2446 r->fbc_val,
2447 r->pri_val,
2448 r->cur_val);
2449 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2450 }
2451
2452 for_each_pipe(pipe)
2453 results->wm_pipe[pipe] = hsw_compute_wm_pipe(dev_priv, wm[0],
2454 pipe,
2455 &params[pipe]);
2456
2457 for_each_pipe(pipe) {
2458 crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2459 results->wm_linetime[pipe] = hsw_compute_linetime_wm(dev, crtc);
2460 }
2461 }
2462
2463 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2464 * case both are at the same level. Prefer r1 in case they're the same. */
2465 struct hsw_wm_values *hsw_find_best_result(struct hsw_wm_values *r1,
2466 struct hsw_wm_values *r2)
2467 {
2468 int i, val_r1 = 0, val_r2 = 0;
2469
2470 for (i = 0; i < 3; i++) {
2471 if (r1->wm_lp[i] & WM3_LP_EN)
2472 val_r1 = r1->wm_lp[i] & WM1_LP_LATENCY_MASK;
2473 if (r2->wm_lp[i] & WM3_LP_EN)
2474 val_r2 = r2->wm_lp[i] & WM1_LP_LATENCY_MASK;
2475 }
2476
2477 if (val_r1 == val_r2) {
2478 if (r2->enable_fbc_wm && !r1->enable_fbc_wm)
2479 return r2;
2480 else
2481 return r1;
2482 } else if (val_r1 > val_r2) {
2483 return r1;
2484 } else {
2485 return r2;
2486 }
2487 }
2488
2489 /*
2490 * The spec says we shouldn't write when we don't need, because every write
2491 * causes WMs to be re-evaluated, expending some power.
2492 */
2493 static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2494 struct hsw_wm_values *results,
2495 enum hsw_data_buf_partitioning partitioning)
2496 {
2497 struct hsw_wm_values previous;
2498 uint32_t val;
2499 enum hsw_data_buf_partitioning prev_partitioning;
2500 bool prev_enable_fbc_wm;
2501
2502 previous.wm_pipe[0] = I915_READ(WM0_PIPEA_ILK);
2503 previous.wm_pipe[1] = I915_READ(WM0_PIPEB_ILK);
2504 previous.wm_pipe[2] = I915_READ(WM0_PIPEC_IVB);
2505 previous.wm_lp[0] = I915_READ(WM1_LP_ILK);
2506 previous.wm_lp[1] = I915_READ(WM2_LP_ILK);
2507 previous.wm_lp[2] = I915_READ(WM3_LP_ILK);
2508 previous.wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2509 previous.wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2510 previous.wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2511 previous.wm_linetime[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A));
2512 previous.wm_linetime[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B));
2513 previous.wm_linetime[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C));
2514
2515 prev_partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2516 HSW_DATA_BUF_PART_5_6 : HSW_DATA_BUF_PART_1_2;
2517
2518 prev_enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2519
2520 if (memcmp(results->wm_pipe, previous.wm_pipe,
2521 sizeof(results->wm_pipe)) == 0 &&
2522 memcmp(results->wm_lp, previous.wm_lp,
2523 sizeof(results->wm_lp)) == 0 &&
2524 memcmp(results->wm_lp_spr, previous.wm_lp_spr,
2525 sizeof(results->wm_lp_spr)) == 0 &&
2526 memcmp(results->wm_linetime, previous.wm_linetime,
2527 sizeof(results->wm_linetime)) == 0 &&
2528 partitioning == prev_partitioning &&
2529 results->enable_fbc_wm == prev_enable_fbc_wm)
2530 return;
2531
2532 if (previous.wm_lp[2] != 0)
2533 I915_WRITE(WM3_LP_ILK, 0);
2534 if (previous.wm_lp[1] != 0)
2535 I915_WRITE(WM2_LP_ILK, 0);
2536 if (previous.wm_lp[0] != 0)
2537 I915_WRITE(WM1_LP_ILK, 0);
2538
2539 if (previous.wm_pipe[0] != results->wm_pipe[0])
2540 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2541 if (previous.wm_pipe[1] != results->wm_pipe[1])
2542 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2543 if (previous.wm_pipe[2] != results->wm_pipe[2])
2544 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2545
2546 if (previous.wm_linetime[0] != results->wm_linetime[0])
2547 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2548 if (previous.wm_linetime[1] != results->wm_linetime[1])
2549 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2550 if (previous.wm_linetime[2] != results->wm_linetime[2])
2551 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2552
2553 if (prev_partitioning != partitioning) {
2554 val = I915_READ(WM_MISC);
2555 if (partitioning == HSW_DATA_BUF_PART_1_2)
2556 val &= ~WM_MISC_DATA_PARTITION_5_6;
2557 else
2558 val |= WM_MISC_DATA_PARTITION_5_6;
2559 I915_WRITE(WM_MISC, val);
2560 }
2561
2562 if (prev_enable_fbc_wm != results->enable_fbc_wm) {
2563 val = I915_READ(DISP_ARB_CTL);
2564 if (results->enable_fbc_wm)
2565 val &= ~DISP_FBC_WM_DIS;
2566 else
2567 val |= DISP_FBC_WM_DIS;
2568 I915_WRITE(DISP_ARB_CTL, val);
2569 }
2570
2571 if (previous.wm_lp_spr[0] != results->wm_lp_spr[0])
2572 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2573 if (previous.wm_lp_spr[1] != results->wm_lp_spr[1])
2574 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2575 if (previous.wm_lp_spr[2] != results->wm_lp_spr[2])
2576 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2577
2578 if (results->wm_lp[0] != 0)
2579 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2580 if (results->wm_lp[1] != 0)
2581 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2582 if (results->wm_lp[2] != 0)
2583 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2584 }
2585
2586 static void haswell_update_wm(struct drm_device *dev)
2587 {
2588 struct drm_i915_private *dev_priv = dev->dev_private;
2589 struct hsw_wm_maximums lp_max_1_2, lp_max_5_6;
2590 struct hsw_pipe_wm_parameters params[3];
2591 struct hsw_wm_values results_1_2, results_5_6, *best_results;
2592 uint32_t wm[5];
2593 enum hsw_data_buf_partitioning partitioning;
2594
2595 hsw_compute_wm_parameters(dev, params, wm, &lp_max_1_2, &lp_max_5_6);
2596
2597 hsw_compute_wm_results(dev, params, wm, &lp_max_1_2, &results_1_2);
2598 if (lp_max_1_2.pri != lp_max_5_6.pri) {
2599 hsw_compute_wm_results(dev, params, wm, &lp_max_5_6,
2600 &results_5_6);
2601 best_results = hsw_find_best_result(&results_1_2, &results_5_6);
2602 } else {
2603 best_results = &results_1_2;
2604 }
2605
2606 partitioning = (best_results == &results_1_2) ?
2607 HSW_DATA_BUF_PART_1_2 : HSW_DATA_BUF_PART_5_6;
2608
2609 hsw_write_wm_values(dev_priv, best_results, partitioning);
2610 }
2611
2612 static void haswell_update_sprite_wm(struct drm_device *dev, int pipe,
2613 uint32_t sprite_width, int pixel_size,
2614 bool enable)
2615 {
2616 struct drm_plane *plane;
2617
2618 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2619 struct intel_plane *intel_plane = to_intel_plane(plane);
2620
2621 if (intel_plane->pipe == pipe) {
2622 intel_plane->wm.enable = enable;
2623 intel_plane->wm.horiz_pixels = sprite_width + 1;
2624 intel_plane->wm.bytes_per_pixel = pixel_size;
2625 break;
2626 }
2627 }
2628
2629 haswell_update_wm(dev);
2630 }
2631
2632 static bool
2633 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2634 uint32_t sprite_width, int pixel_size,
2635 const struct intel_watermark_params *display,
2636 int display_latency_ns, int *sprite_wm)
2637 {
2638 struct drm_crtc *crtc;
2639 int clock;
2640 int entries, tlb_miss;
2641
2642 crtc = intel_get_crtc_for_plane(dev, plane);
2643 if (!intel_crtc_active(crtc)) {
2644 *sprite_wm = display->guard_size;
2645 return false;
2646 }
2647
2648 clock = crtc->mode.clock;
2649
2650 /* Use the small buffer method to calculate the sprite watermark */
2651 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2652 tlb_miss = display->fifo_size*display->cacheline_size -
2653 sprite_width * 8;
2654 if (tlb_miss > 0)
2655 entries += tlb_miss;
2656 entries = DIV_ROUND_UP(entries, display->cacheline_size);
2657 *sprite_wm = entries + display->guard_size;
2658 if (*sprite_wm > (int)display->max_wm)
2659 *sprite_wm = display->max_wm;
2660
2661 return true;
2662 }
2663
2664 static bool
2665 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2666 uint32_t sprite_width, int pixel_size,
2667 const struct intel_watermark_params *display,
2668 int latency_ns, int *sprite_wm)
2669 {
2670 struct drm_crtc *crtc;
2671 unsigned long line_time_us;
2672 int clock;
2673 int line_count, line_size;
2674 int small, large;
2675 int entries;
2676
2677 if (!latency_ns) {
2678 *sprite_wm = 0;
2679 return false;
2680 }
2681
2682 crtc = intel_get_crtc_for_plane(dev, plane);
2683 clock = crtc->mode.clock;
2684 if (!clock) {
2685 *sprite_wm = 0;
2686 return false;
2687 }
2688
2689 line_time_us = (sprite_width * 1000) / clock;
2690 if (!line_time_us) {
2691 *sprite_wm = 0;
2692 return false;
2693 }
2694
2695 line_count = (latency_ns / line_time_us + 1000) / 1000;
2696 line_size = sprite_width * pixel_size;
2697
2698 /* Use the minimum of the small and large buffer method for primary */
2699 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2700 large = line_count * line_size;
2701
2702 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2703 *sprite_wm = entries + display->guard_size;
2704
2705 return *sprite_wm > 0x3ff ? false : true;
2706 }
2707
2708 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2709 uint32_t sprite_width, int pixel_size,
2710 bool enable)
2711 {
2712 struct drm_i915_private *dev_priv = dev->dev_private;
2713 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
2714 u32 val;
2715 int sprite_wm, reg;
2716 int ret;
2717
2718 if (!enable)
2719 return;
2720
2721 switch (pipe) {
2722 case 0:
2723 reg = WM0_PIPEA_ILK;
2724 break;
2725 case 1:
2726 reg = WM0_PIPEB_ILK;
2727 break;
2728 case 2:
2729 reg = WM0_PIPEC_IVB;
2730 break;
2731 default:
2732 return; /* bad pipe */
2733 }
2734
2735 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2736 &sandybridge_display_wm_info,
2737 latency, &sprite_wm);
2738 if (!ret) {
2739 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
2740 pipe_name(pipe));
2741 return;
2742 }
2743
2744 val = I915_READ(reg);
2745 val &= ~WM0_PIPE_SPRITE_MASK;
2746 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2747 DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
2748
2749
2750 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2751 pixel_size,
2752 &sandybridge_display_srwm_info,
2753 SNB_READ_WM1_LATENCY() * 500,
2754 &sprite_wm);
2755 if (!ret) {
2756 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
2757 pipe_name(pipe));
2758 return;
2759 }
2760 I915_WRITE(WM1S_LP_ILK, sprite_wm);
2761
2762 /* Only IVB has two more LP watermarks for sprite */
2763 if (!IS_IVYBRIDGE(dev))
2764 return;
2765
2766 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2767 pixel_size,
2768 &sandybridge_display_srwm_info,
2769 SNB_READ_WM2_LATENCY() * 500,
2770 &sprite_wm);
2771 if (!ret) {
2772 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
2773 pipe_name(pipe));
2774 return;
2775 }
2776 I915_WRITE(WM2S_LP_IVB, sprite_wm);
2777
2778 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2779 pixel_size,
2780 &sandybridge_display_srwm_info,
2781 SNB_READ_WM3_LATENCY() * 500,
2782 &sprite_wm);
2783 if (!ret) {
2784 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
2785 pipe_name(pipe));
2786 return;
2787 }
2788 I915_WRITE(WM3S_LP_IVB, sprite_wm);
2789 }
2790
2791 /**
2792 * intel_update_watermarks - update FIFO watermark values based on current modes
2793 *
2794 * Calculate watermark values for the various WM regs based on current mode
2795 * and plane configuration.
2796 *
2797 * There are several cases to deal with here:
2798 * - normal (i.e. non-self-refresh)
2799 * - self-refresh (SR) mode
2800 * - lines are large relative to FIFO size (buffer can hold up to 2)
2801 * - lines are small relative to FIFO size (buffer can hold more than 2
2802 * lines), so need to account for TLB latency
2803 *
2804 * The normal calculation is:
2805 * watermark = dotclock * bytes per pixel * latency
2806 * where latency is platform & configuration dependent (we assume pessimal
2807 * values here).
2808 *
2809 * The SR calculation is:
2810 * watermark = (trunc(latency/line time)+1) * surface width *
2811 * bytes per pixel
2812 * where
2813 * line time = htotal / dotclock
2814 * surface width = hdisplay for normal plane and 64 for cursor
2815 * and latency is assumed to be high, as above.
2816 *
2817 * The final value programmed to the register should always be rounded up,
2818 * and include an extra 2 entries to account for clock crossings.
2819 *
2820 * We don't use the sprite, so we can ignore that. And on Crestline we have
2821 * to set the non-SR watermarks to 8.
2822 */
2823 void intel_update_watermarks(struct drm_device *dev)
2824 {
2825 struct drm_i915_private *dev_priv = dev->dev_private;
2826
2827 if (dev_priv->display.update_wm)
2828 dev_priv->display.update_wm(dev);
2829 }
2830
2831 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2832 uint32_t sprite_width, int pixel_size,
2833 bool enable)
2834 {
2835 struct drm_i915_private *dev_priv = dev->dev_private;
2836
2837 if (dev_priv->display.update_sprite_wm)
2838 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2839 pixel_size, enable);
2840 }
2841
2842 static struct drm_i915_gem_object *
2843 intel_alloc_context_page(struct drm_device *dev)
2844 {
2845 struct drm_i915_gem_object *ctx;
2846 int ret;
2847
2848 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2849
2850 ctx = i915_gem_alloc_object(dev, 4096);
2851 if (!ctx) {
2852 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2853 return NULL;
2854 }
2855
2856 ret = i915_gem_object_pin(ctx, 4096, true, false);
2857 if (ret) {
2858 DRM_ERROR("failed to pin power context: %d\n", ret);
2859 goto err_unref;
2860 }
2861
2862 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2863 if (ret) {
2864 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2865 goto err_unpin;
2866 }
2867
2868 return ctx;
2869
2870 err_unpin:
2871 i915_gem_object_unpin(ctx);
2872 err_unref:
2873 drm_gem_object_unreference(&ctx->base);
2874 return NULL;
2875 }
2876
2877 /**
2878 * Lock protecting IPS related data structures
2879 */
2880 DEFINE_SPINLOCK(mchdev_lock);
2881
2882 /* Global for IPS driver to get at the current i915 device. Protected by
2883 * mchdev_lock. */
2884 static struct drm_i915_private *i915_mch_dev;
2885
2886 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2887 {
2888 struct drm_i915_private *dev_priv = dev->dev_private;
2889 u16 rgvswctl;
2890
2891 assert_spin_locked(&mchdev_lock);
2892
2893 rgvswctl = I915_READ16(MEMSWCTL);
2894 if (rgvswctl & MEMCTL_CMD_STS) {
2895 DRM_DEBUG("gpu busy, RCS change rejected\n");
2896 return false; /* still busy with another command */
2897 }
2898
2899 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2900 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2901 I915_WRITE16(MEMSWCTL, rgvswctl);
2902 POSTING_READ16(MEMSWCTL);
2903
2904 rgvswctl |= MEMCTL_CMD_STS;
2905 I915_WRITE16(MEMSWCTL, rgvswctl);
2906
2907 return true;
2908 }
2909
2910 static void ironlake_enable_drps(struct drm_device *dev)
2911 {
2912 struct drm_i915_private *dev_priv = dev->dev_private;
2913 u32 rgvmodectl = I915_READ(MEMMODECTL);
2914 u8 fmax, fmin, fstart, vstart;
2915
2916 spin_lock_irq(&mchdev_lock);
2917
2918 /* Enable temp reporting */
2919 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2920 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2921
2922 /* 100ms RC evaluation intervals */
2923 I915_WRITE(RCUPEI, 100000);
2924 I915_WRITE(RCDNEI, 100000);
2925
2926 /* Set max/min thresholds to 90ms and 80ms respectively */
2927 I915_WRITE(RCBMAXAVG, 90000);
2928 I915_WRITE(RCBMINAVG, 80000);
2929
2930 I915_WRITE(MEMIHYST, 1);
2931
2932 /* Set up min, max, and cur for interrupt handling */
2933 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2934 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2935 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2936 MEMMODE_FSTART_SHIFT;
2937
2938 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2939 PXVFREQ_PX_SHIFT;
2940
2941 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2942 dev_priv->ips.fstart = fstart;
2943
2944 dev_priv->ips.max_delay = fstart;
2945 dev_priv->ips.min_delay = fmin;
2946 dev_priv->ips.cur_delay = fstart;
2947
2948 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2949 fmax, fmin, fstart);
2950
2951 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2952
2953 /*
2954 * Interrupts will be enabled in ironlake_irq_postinstall
2955 */
2956
2957 I915_WRITE(VIDSTART, vstart);
2958 POSTING_READ(VIDSTART);
2959
2960 rgvmodectl |= MEMMODE_SWMODE_EN;
2961 I915_WRITE(MEMMODECTL, rgvmodectl);
2962
2963 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2964 DRM_ERROR("stuck trying to change perf mode\n");
2965 mdelay(1);
2966
2967 ironlake_set_drps(dev, fstart);
2968
2969 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2970 I915_READ(0x112e0);
2971 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2972 dev_priv->ips.last_count2 = I915_READ(0x112f4);
2973 getrawmonotonic(&dev_priv->ips.last_time2);
2974
2975 spin_unlock_irq(&mchdev_lock);
2976 }
2977
2978 static void ironlake_disable_drps(struct drm_device *dev)
2979 {
2980 struct drm_i915_private *dev_priv = dev->dev_private;
2981 u16 rgvswctl;
2982
2983 spin_lock_irq(&mchdev_lock);
2984
2985 rgvswctl = I915_READ16(MEMSWCTL);
2986
2987 /* Ack interrupts, disable EFC interrupt */
2988 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2989 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2990 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2991 I915_WRITE(DEIIR, DE_PCU_EVENT);
2992 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2993
2994 /* Go back to the starting frequency */
2995 ironlake_set_drps(dev, dev_priv->ips.fstart);
2996 mdelay(1);
2997 rgvswctl |= MEMCTL_CMD_STS;
2998 I915_WRITE(MEMSWCTL, rgvswctl);
2999 mdelay(1);
3000
3001 spin_unlock_irq(&mchdev_lock);
3002 }
3003
3004 /* There's a funny hw issue where the hw returns all 0 when reading from
3005 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3006 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3007 * all limits and the gpu stuck at whatever frequency it is at atm).
3008 */
3009 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
3010 {
3011 u32 limits;
3012
3013 limits = 0;
3014
3015 if (*val >= dev_priv->rps.max_delay)
3016 *val = dev_priv->rps.max_delay;
3017 limits |= dev_priv->rps.max_delay << 24;
3018
3019 /* Only set the down limit when we've reached the lowest level to avoid
3020 * getting more interrupts, otherwise leave this clear. This prevents a
3021 * race in the hw when coming out of rc6: There's a tiny window where
3022 * the hw runs at the minimal clock before selecting the desired
3023 * frequency, if the down threshold expires in that window we will not
3024 * receive a down interrupt. */
3025 if (*val <= dev_priv->rps.min_delay) {
3026 *val = dev_priv->rps.min_delay;
3027 limits |= dev_priv->rps.min_delay << 16;
3028 }
3029
3030 return limits;
3031 }
3032
3033 void gen6_set_rps(struct drm_device *dev, u8 val)
3034 {
3035 struct drm_i915_private *dev_priv = dev->dev_private;
3036 u32 limits = gen6_rps_limits(dev_priv, &val);
3037
3038 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3039 WARN_ON(val > dev_priv->rps.max_delay);
3040 WARN_ON(val < dev_priv->rps.min_delay);
3041
3042 if (val == dev_priv->rps.cur_delay)
3043 return;
3044
3045 if (IS_HASWELL(dev))
3046 I915_WRITE(GEN6_RPNSWREQ,
3047 HSW_FREQUENCY(val));
3048 else
3049 I915_WRITE(GEN6_RPNSWREQ,
3050 GEN6_FREQUENCY(val) |
3051 GEN6_OFFSET(0) |
3052 GEN6_AGGRESSIVE_TURBO);
3053
3054 /* Make sure we continue to get interrupts
3055 * until we hit the minimum or maximum frequencies.
3056 */
3057 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3058
3059 POSTING_READ(GEN6_RPNSWREQ);
3060
3061 dev_priv->rps.cur_delay = val;
3062
3063 trace_intel_gpu_freq_change(val * 50);
3064 }
3065
3066 void valleyview_set_rps(struct drm_device *dev, u8 val)
3067 {
3068 struct drm_i915_private *dev_priv = dev->dev_private;
3069 unsigned long timeout = jiffies + msecs_to_jiffies(10);
3070 u32 limits = gen6_rps_limits(dev_priv, &val);
3071 u32 pval;
3072
3073 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3074 WARN_ON(val > dev_priv->rps.max_delay);
3075 WARN_ON(val < dev_priv->rps.min_delay);
3076
3077 DRM_DEBUG_DRIVER("gpu freq request from %d to %d\n",
3078 vlv_gpu_freq(dev_priv->mem_freq,
3079 dev_priv->rps.cur_delay),
3080 vlv_gpu_freq(dev_priv->mem_freq, val));
3081
3082 if (val == dev_priv->rps.cur_delay)
3083 return;
3084
3085 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3086
3087 do {
3088 pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3089 if (time_after(jiffies, timeout)) {
3090 DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
3091 break;
3092 }
3093 udelay(10);
3094 } while (pval & 1);
3095
3096 pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3097 if ((pval >> 8) != val)
3098 DRM_DEBUG_DRIVER("punit overrode freq: %d requested, but got %d\n",
3099 val, pval >> 8);
3100
3101 /* Make sure we continue to get interrupts
3102 * until we hit the minimum or maximum frequencies.
3103 */
3104 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3105
3106 dev_priv->rps.cur_delay = pval >> 8;
3107
3108 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
3109 }
3110
3111
3112 static void gen6_disable_rps(struct drm_device *dev)
3113 {
3114 struct drm_i915_private *dev_priv = dev->dev_private;
3115
3116 I915_WRITE(GEN6_RC_CONTROL, 0);
3117 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3118 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3119 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3120 /* Complete PM interrupt masking here doesn't race with the rps work
3121 * item again unmasking PM interrupts because that is using a different
3122 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3123 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3124
3125 spin_lock_irq(&dev_priv->rps.lock);
3126 dev_priv->rps.pm_iir = 0;
3127 spin_unlock_irq(&dev_priv->rps.lock);
3128
3129 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3130 }
3131
3132 static void valleyview_disable_rps(struct drm_device *dev)
3133 {
3134 struct drm_i915_private *dev_priv = dev->dev_private;
3135
3136 I915_WRITE(GEN6_RC_CONTROL, 0);
3137 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3138 I915_WRITE(GEN6_PMIER, 0);
3139 /* Complete PM interrupt masking here doesn't race with the rps work
3140 * item again unmasking PM interrupts because that is using a different
3141 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3142 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3143
3144 spin_lock_irq(&dev_priv->rps.lock);
3145 dev_priv->rps.pm_iir = 0;
3146 spin_unlock_irq(&dev_priv->rps.lock);
3147
3148 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
3149
3150 if (dev_priv->vlv_pctx) {
3151 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3152 dev_priv->vlv_pctx = NULL;
3153 }
3154 }
3155
3156 int intel_enable_rc6(const struct drm_device *dev)
3157 {
3158 /* Respect the kernel parameter if it is set */
3159 if (i915_enable_rc6 >= 0)
3160 return i915_enable_rc6;
3161
3162 /* Disable RC6 on Ironlake */
3163 if (INTEL_INFO(dev)->gen == 5)
3164 return 0;
3165
3166 if (IS_HASWELL(dev)) {
3167 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3168 return INTEL_RC6_ENABLE;
3169 }
3170
3171 /* snb/ivb have more than one rc6 state. */
3172 if (INTEL_INFO(dev)->gen == 6) {
3173 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3174 return INTEL_RC6_ENABLE;
3175 }
3176
3177 DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
3178 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3179 }
3180
3181 static void gen6_enable_rps(struct drm_device *dev)
3182 {
3183 struct drm_i915_private *dev_priv = dev->dev_private;
3184 struct intel_ring_buffer *ring;
3185 u32 rp_state_cap;
3186 u32 gt_perf_status;
3187 u32 rc6vids, pcu_mbox, rc6_mask = 0;
3188 u32 gtfifodbg;
3189 int rc6_mode;
3190 int i, ret;
3191
3192 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3193
3194 /* Here begins a magic sequence of register writes to enable
3195 * auto-downclocking.
3196 *
3197 * Perhaps there might be some value in exposing these to
3198 * userspace...
3199 */
3200 I915_WRITE(GEN6_RC_STATE, 0);
3201
3202 /* Clear the DBG now so we don't confuse earlier errors */
3203 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3204 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3205 I915_WRITE(GTFIFODBG, gtfifodbg);
3206 }
3207
3208 gen6_gt_force_wake_get(dev_priv);
3209
3210 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3211 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3212
3213 /* In units of 50MHz */
3214 dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3215 dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
3216 dev_priv->rps.cur_delay = 0;
3217
3218 /* disable the counters and set deterministic thresholds */
3219 I915_WRITE(GEN6_RC_CONTROL, 0);
3220
3221 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3222 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3223 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3224 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3225 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3226
3227 for_each_ring(ring, dev_priv, i)
3228 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3229
3230 I915_WRITE(GEN6_RC_SLEEP, 0);
3231 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3232 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3233 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3234 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3235
3236 /* Check if we are enabling RC6 */
3237 rc6_mode = intel_enable_rc6(dev_priv->dev);
3238 if (rc6_mode & INTEL_RC6_ENABLE)
3239 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3240
3241 /* We don't use those on Haswell */
3242 if (!IS_HASWELL(dev)) {
3243 if (rc6_mode & INTEL_RC6p_ENABLE)
3244 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3245
3246 if (rc6_mode & INTEL_RC6pp_ENABLE)
3247 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3248 }
3249
3250 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3251 (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3252 (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3253 (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3254
3255 I915_WRITE(GEN6_RC_CONTROL,
3256 rc6_mask |
3257 GEN6_RC_CTL_EI_MODE(1) |
3258 GEN6_RC_CTL_HW_ENABLE);
3259
3260 if (IS_HASWELL(dev)) {
3261 I915_WRITE(GEN6_RPNSWREQ,
3262 HSW_FREQUENCY(10));
3263 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3264 HSW_FREQUENCY(12));
3265 } else {
3266 I915_WRITE(GEN6_RPNSWREQ,
3267 GEN6_FREQUENCY(10) |
3268 GEN6_OFFSET(0) |
3269 GEN6_AGGRESSIVE_TURBO);
3270 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3271 GEN6_FREQUENCY(12));
3272 }
3273
3274 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
3275 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3276 dev_priv->rps.max_delay << 24 |
3277 dev_priv->rps.min_delay << 16);
3278
3279 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3280 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3281 I915_WRITE(GEN6_RP_UP_EI, 66000);
3282 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3283
3284 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3285 I915_WRITE(GEN6_RP_CONTROL,
3286 GEN6_RP_MEDIA_TURBO |
3287 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3288 GEN6_RP_MEDIA_IS_GFX |
3289 GEN6_RP_ENABLE |
3290 GEN6_RP_UP_BUSY_AVG |
3291 (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
3292
3293 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3294 if (!ret) {
3295 pcu_mbox = 0;
3296 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3297 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3298 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3299 (dev_priv->rps.max_delay & 0xff) * 50,
3300 (pcu_mbox & 0xff) * 50);
3301 dev_priv->rps.hw_max = pcu_mbox & 0xff;
3302 }
3303 } else {
3304 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3305 }
3306
3307 gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
3308
3309 /* requires MSI enabled */
3310 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) | GEN6_PM_RPS_EVENTS);
3311 spin_lock_irq(&dev_priv->rps.lock);
3312 /* FIXME: Our interrupt enabling sequence is bonghits.
3313 * dev_priv->rps.pm_iir really should be 0 here. */
3314 dev_priv->rps.pm_iir = 0;
3315 I915_WRITE(GEN6_PMIMR, I915_READ(GEN6_PMIMR) & ~GEN6_PM_RPS_EVENTS);
3316 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3317 spin_unlock_irq(&dev_priv->rps.lock);
3318 /* unmask all PM interrupts */
3319 I915_WRITE(GEN6_PMINTRMSK, 0);
3320
3321 rc6vids = 0;
3322 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3323 if (IS_GEN6(dev) && ret) {
3324 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3325 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3326 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3327 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3328 rc6vids &= 0xffff00;
3329 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3330 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3331 if (ret)
3332 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3333 }
3334
3335 gen6_gt_force_wake_put(dev_priv);
3336 }
3337
3338 static void gen6_update_ring_freq(struct drm_device *dev)
3339 {
3340 struct drm_i915_private *dev_priv = dev->dev_private;
3341 int min_freq = 15;
3342 unsigned int gpu_freq;
3343 unsigned int max_ia_freq, min_ring_freq;
3344 int scaling_factor = 180;
3345
3346 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3347
3348 max_ia_freq = cpufreq_quick_get_max(0);
3349 /*
3350 * Default to measured freq if none found, PCU will ensure we don't go
3351 * over
3352 */
3353 if (!max_ia_freq)
3354 max_ia_freq = tsc_khz;
3355
3356 /* Convert from kHz to MHz */
3357 max_ia_freq /= 1000;
3358
3359 min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
3360 /* convert DDR frequency from units of 133.3MHz to bandwidth */
3361 min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
3362
3363 /*
3364 * For each potential GPU frequency, load a ring frequency we'd like
3365 * to use for memory access. We do this by specifying the IA frequency
3366 * the PCU should use as a reference to determine the ring frequency.
3367 */
3368 for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3369 gpu_freq--) {
3370 int diff = dev_priv->rps.max_delay - gpu_freq;
3371 unsigned int ia_freq = 0, ring_freq = 0;
3372
3373 if (IS_HASWELL(dev)) {
3374 ring_freq = (gpu_freq * 5 + 3) / 4;
3375 ring_freq = max(min_ring_freq, ring_freq);
3376 /* leave ia_freq as the default, chosen by cpufreq */
3377 } else {
3378 /* On older processors, there is no separate ring
3379 * clock domain, so in order to boost the bandwidth
3380 * of the ring, we need to upclock the CPU (ia_freq).
3381 *
3382 * For GPU frequencies less than 750MHz,
3383 * just use the lowest ring freq.
3384 */
3385 if (gpu_freq < min_freq)
3386 ia_freq = 800;
3387 else
3388 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3389 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3390 }
3391
3392 sandybridge_pcode_write(dev_priv,
3393 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3394 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3395 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3396 gpu_freq);
3397 }
3398 }
3399
3400 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3401 {
3402 u32 val, rp0;
3403
3404 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3405
3406 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3407 /* Clamp to max */
3408 rp0 = min_t(u32, rp0, 0xea);
3409
3410 return rp0;
3411 }
3412
3413 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3414 {
3415 u32 val, rpe;
3416
3417 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3418 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3419 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3420 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3421
3422 return rpe;
3423 }
3424
3425 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3426 {
3427 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3428 }
3429
3430 static void vlv_rps_timer_work(struct work_struct *work)
3431 {
3432 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3433 rps.vlv_work.work);
3434
3435 /*
3436 * Timer fired, we must be idle. Drop to min voltage state.
3437 * Note: we use RPe here since it should match the
3438 * Vmin we were shooting for. That should give us better
3439 * perf when we come back out of RC6 than if we used the
3440 * min freq available.
3441 */
3442 mutex_lock(&dev_priv->rps.hw_lock);
3443 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3444 mutex_unlock(&dev_priv->rps.hw_lock);
3445 }
3446
3447 static void valleyview_setup_pctx(struct drm_device *dev)
3448 {
3449 struct drm_i915_private *dev_priv = dev->dev_private;
3450 struct drm_i915_gem_object *pctx;
3451 unsigned long pctx_paddr;
3452 u32 pcbr;
3453 int pctx_size = 24*1024;
3454
3455 pcbr = I915_READ(VLV_PCBR);
3456 if (pcbr) {
3457 /* BIOS set it up already, grab the pre-alloc'd space */
3458 int pcbr_offset;
3459
3460 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3461 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3462 pcbr_offset,
3463 -1,
3464 pctx_size);
3465 goto out;
3466 }
3467
3468 /*
3469 * From the Gunit register HAS:
3470 * The Gfx driver is expected to program this register and ensure
3471 * proper allocation within Gfx stolen memory. For example, this
3472 * register should be programmed such than the PCBR range does not
3473 * overlap with other ranges, such as the frame buffer, protected
3474 * memory, or any other relevant ranges.
3475 */
3476 pctx = i915_gem_object_create_stolen(dev, pctx_size);
3477 if (!pctx) {
3478 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3479 return;
3480 }
3481
3482 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3483 I915_WRITE(VLV_PCBR, pctx_paddr);
3484
3485 out:
3486 dev_priv->vlv_pctx = pctx;
3487 }
3488
3489 static void valleyview_enable_rps(struct drm_device *dev)
3490 {
3491 struct drm_i915_private *dev_priv = dev->dev_private;
3492 struct intel_ring_buffer *ring;
3493 u32 gtfifodbg, val, rpe;
3494 int i;
3495
3496 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3497
3498 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3499 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3500 I915_WRITE(GTFIFODBG, gtfifodbg);
3501 }
3502
3503 valleyview_setup_pctx(dev);
3504
3505 gen6_gt_force_wake_get(dev_priv);
3506
3507 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3508 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3509 I915_WRITE(GEN6_RP_UP_EI, 66000);
3510 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3511
3512 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3513
3514 I915_WRITE(GEN6_RP_CONTROL,
3515 GEN6_RP_MEDIA_TURBO |
3516 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3517 GEN6_RP_MEDIA_IS_GFX |
3518 GEN6_RP_ENABLE |
3519 GEN6_RP_UP_BUSY_AVG |
3520 GEN6_RP_DOWN_IDLE_CONT);
3521
3522 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3523 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3524 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3525
3526 for_each_ring(ring, dev_priv, i)
3527 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3528
3529 I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
3530
3531 /* allows RC6 residency counter to work */
3532 I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
3533 I915_WRITE(GEN6_RC_CONTROL,
3534 GEN7_RC_CTL_TO_MODE);
3535
3536 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3537 switch ((val >> 6) & 3) {
3538 case 0:
3539 case 1:
3540 dev_priv->mem_freq = 800;
3541 break;
3542 case 2:
3543 dev_priv->mem_freq = 1066;
3544 break;
3545 case 3:
3546 dev_priv->mem_freq = 1333;
3547 break;
3548 }
3549 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
3550
3551 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3552 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3553
3554 DRM_DEBUG_DRIVER("current GPU freq: %d\n",
3555 vlv_gpu_freq(dev_priv->mem_freq, (val >> 8) & 0xff));
3556 dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3557
3558 dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
3559 dev_priv->rps.hw_max = dev_priv->rps.max_delay;
3560 DRM_DEBUG_DRIVER("max GPU freq: %d\n", vlv_gpu_freq(dev_priv->mem_freq,
3561 dev_priv->rps.max_delay));
3562
3563 rpe = valleyview_rps_rpe_freq(dev_priv);
3564 DRM_DEBUG_DRIVER("RPe GPU freq: %d\n",
3565 vlv_gpu_freq(dev_priv->mem_freq, rpe));
3566 dev_priv->rps.rpe_delay = rpe;
3567
3568 val = valleyview_rps_min_freq(dev_priv);
3569 DRM_DEBUG_DRIVER("min GPU freq: %d\n", vlv_gpu_freq(dev_priv->mem_freq,
3570 val));
3571 dev_priv->rps.min_delay = val;
3572
3573 DRM_DEBUG_DRIVER("setting GPU freq to %d\n",
3574 vlv_gpu_freq(dev_priv->mem_freq, rpe));
3575
3576 INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);
3577
3578 valleyview_set_rps(dev_priv->dev, rpe);
3579
3580 /* requires MSI enabled */
3581 I915_WRITE(GEN6_PMIER, GEN6_PM_RPS_EVENTS);
3582 spin_lock_irq(&dev_priv->rps.lock);
3583 WARN_ON(dev_priv->rps.pm_iir != 0);
3584 I915_WRITE(GEN6_PMIMR, 0);
3585 spin_unlock_irq(&dev_priv->rps.lock);
3586 /* enable all PM interrupts */
3587 I915_WRITE(GEN6_PMINTRMSK, 0);
3588
3589 gen6_gt_force_wake_put(dev_priv);
3590 }
3591
3592 void ironlake_teardown_rc6(struct drm_device *dev)
3593 {
3594 struct drm_i915_private *dev_priv = dev->dev_private;
3595
3596 if (dev_priv->ips.renderctx) {
3597 i915_gem_object_unpin(dev_priv->ips.renderctx);
3598 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3599 dev_priv->ips.renderctx = NULL;
3600 }
3601
3602 if (dev_priv->ips.pwrctx) {
3603 i915_gem_object_unpin(dev_priv->ips.pwrctx);
3604 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3605 dev_priv->ips.pwrctx = NULL;
3606 }
3607 }
3608
3609 static void ironlake_disable_rc6(struct drm_device *dev)
3610 {
3611 struct drm_i915_private *dev_priv = dev->dev_private;
3612
3613 if (I915_READ(PWRCTXA)) {
3614 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3615 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3616 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3617 50);
3618
3619 I915_WRITE(PWRCTXA, 0);
3620 POSTING_READ(PWRCTXA);
3621
3622 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3623 POSTING_READ(RSTDBYCTL);
3624 }
3625 }
3626
3627 static int ironlake_setup_rc6(struct drm_device *dev)
3628 {
3629 struct drm_i915_private *dev_priv = dev->dev_private;
3630
3631 if (dev_priv->ips.renderctx == NULL)
3632 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3633 if (!dev_priv->ips.renderctx)
3634 return -ENOMEM;
3635
3636 if (dev_priv->ips.pwrctx == NULL)
3637 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3638 if (!dev_priv->ips.pwrctx) {
3639 ironlake_teardown_rc6(dev);
3640 return -ENOMEM;
3641 }
3642
3643 return 0;
3644 }
3645
3646 static void ironlake_enable_rc6(struct drm_device *dev)
3647 {
3648 struct drm_i915_private *dev_priv = dev->dev_private;
3649 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3650 bool was_interruptible;
3651 int ret;
3652
3653 /* rc6 disabled by default due to repeated reports of hanging during
3654 * boot and resume.
3655 */
3656 if (!intel_enable_rc6(dev))
3657 return;
3658
3659 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3660
3661 ret = ironlake_setup_rc6(dev);
3662 if (ret)
3663 return;
3664
3665 was_interruptible = dev_priv->mm.interruptible;
3666 dev_priv->mm.interruptible = false;
3667
3668 /*
3669 * GPU can automatically power down the render unit if given a page
3670 * to save state.
3671 */
3672 ret = intel_ring_begin(ring, 6);
3673 if (ret) {
3674 ironlake_teardown_rc6(dev);
3675 dev_priv->mm.interruptible = was_interruptible;
3676 return;
3677 }
3678
3679 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3680 intel_ring_emit(ring, MI_SET_CONTEXT);
3681 intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
3682 MI_MM_SPACE_GTT |
3683 MI_SAVE_EXT_STATE_EN |
3684 MI_RESTORE_EXT_STATE_EN |
3685 MI_RESTORE_INHIBIT);
3686 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3687 intel_ring_emit(ring, MI_NOOP);
3688 intel_ring_emit(ring, MI_FLUSH);
3689 intel_ring_advance(ring);
3690
3691 /*
3692 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3693 * does an implicit flush, combined with MI_FLUSH above, it should be
3694 * safe to assume that renderctx is valid
3695 */
3696 ret = intel_ring_idle(ring);
3697 dev_priv->mm.interruptible = was_interruptible;
3698 if (ret) {
3699 DRM_ERROR("failed to enable ironlake power savings\n");
3700 ironlake_teardown_rc6(dev);
3701 return;
3702 }
3703
3704 I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
3705 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3706 }
3707
3708 static unsigned long intel_pxfreq(u32 vidfreq)
3709 {
3710 unsigned long freq;
3711 int div = (vidfreq & 0x3f0000) >> 16;
3712 int post = (vidfreq & 0x3000) >> 12;
3713 int pre = (vidfreq & 0x7);
3714
3715 if (!pre)
3716 return 0;
3717
3718 freq = ((div * 133333) / ((1<<post) * pre));
3719
3720 return freq;
3721 }
3722
3723 static const struct cparams {
3724 u16 i;
3725 u16 t;
3726 u16 m;
3727 u16 c;
3728 } cparams[] = {
3729 { 1, 1333, 301, 28664 },
3730 { 1, 1066, 294, 24460 },
3731 { 1, 800, 294, 25192 },
3732 { 0, 1333, 276, 27605 },
3733 { 0, 1066, 276, 27605 },
3734 { 0, 800, 231, 23784 },
3735 };
3736
3737 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3738 {
3739 u64 total_count, diff, ret;
3740 u32 count1, count2, count3, m = 0, c = 0;
3741 unsigned long now = jiffies_to_msecs(jiffies), diff1;
3742 int i;
3743
3744 assert_spin_locked(&mchdev_lock);
3745
3746 diff1 = now - dev_priv->ips.last_time1;
3747
3748 /* Prevent division-by-zero if we are asking too fast.
3749 * Also, we don't get interesting results if we are polling
3750 * faster than once in 10ms, so just return the saved value
3751 * in such cases.
3752 */
3753 if (diff1 <= 10)
3754 return dev_priv->ips.chipset_power;
3755
3756 count1 = I915_READ(DMIEC);
3757 count2 = I915_READ(DDREC);
3758 count3 = I915_READ(CSIEC);
3759
3760 total_count = count1 + count2 + count3;
3761
3762 /* FIXME: handle per-counter overflow */
3763 if (total_count < dev_priv->ips.last_count1) {
3764 diff = ~0UL - dev_priv->ips.last_count1;
3765 diff += total_count;
3766 } else {
3767 diff = total_count - dev_priv->ips.last_count1;
3768 }
3769
3770 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3771 if (cparams[i].i == dev_priv->ips.c_m &&
3772 cparams[i].t == dev_priv->ips.r_t) {
3773 m = cparams[i].m;
3774 c = cparams[i].c;
3775 break;
3776 }
3777 }
3778
3779 diff = div_u64(diff, diff1);
3780 ret = ((m * diff) + c);
3781 ret = div_u64(ret, 10);
3782
3783 dev_priv->ips.last_count1 = total_count;
3784 dev_priv->ips.last_time1 = now;
3785
3786 dev_priv->ips.chipset_power = ret;
3787
3788 return ret;
3789 }
3790
3791 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3792 {
3793 unsigned long val;
3794
3795 if (dev_priv->info->gen != 5)
3796 return 0;
3797
3798 spin_lock_irq(&mchdev_lock);
3799
3800 val = __i915_chipset_val(dev_priv);
3801
3802 spin_unlock_irq(&mchdev_lock);
3803
3804 return val;
3805 }
3806
3807 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3808 {
3809 unsigned long m, x, b;
3810 u32 tsfs;
3811
3812 tsfs = I915_READ(TSFS);
3813
3814 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3815 x = I915_READ8(TR1);
3816
3817 b = tsfs & TSFS_INTR_MASK;
3818
3819 return ((m * x) / 127) - b;
3820 }
3821
3822 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3823 {
3824 static const struct v_table {
3825 u16 vd; /* in .1 mil */
3826 u16 vm; /* in .1 mil */
3827 } v_table[] = {
3828 { 0, 0, },
3829 { 375, 0, },
3830 { 500, 0, },
3831 { 625, 0, },
3832 { 750, 0, },
3833 { 875, 0, },
3834 { 1000, 0, },
3835 { 1125, 0, },
3836 { 4125, 3000, },
3837 { 4125, 3000, },
3838 { 4125, 3000, },
3839 { 4125, 3000, },
3840 { 4125, 3000, },
3841 { 4125, 3000, },
3842 { 4125, 3000, },
3843 { 4125, 3000, },
3844 { 4125, 3000, },
3845 { 4125, 3000, },
3846 { 4125, 3000, },
3847 { 4125, 3000, },
3848 { 4125, 3000, },
3849 { 4125, 3000, },
3850 { 4125, 3000, },
3851 { 4125, 3000, },
3852 { 4125, 3000, },
3853 { 4125, 3000, },
3854 { 4125, 3000, },
3855 { 4125, 3000, },
3856 { 4125, 3000, },
3857 { 4125, 3000, },
3858 { 4125, 3000, },
3859 { 4125, 3000, },
3860 { 4250, 3125, },
3861 { 4375, 3250, },
3862 { 4500, 3375, },
3863 { 4625, 3500, },
3864 { 4750, 3625, },
3865 { 4875, 3750, },
3866 { 5000, 3875, },
3867 { 5125, 4000, },
3868 { 5250, 4125, },
3869 { 5375, 4250, },
3870 { 5500, 4375, },
3871 { 5625, 4500, },
3872 { 5750, 4625, },
3873 { 5875, 4750, },
3874 { 6000, 4875, },
3875 { 6125, 5000, },
3876 { 6250, 5125, },
3877 { 6375, 5250, },
3878 { 6500, 5375, },
3879 { 6625, 5500, },
3880 { 6750, 5625, },
3881 { 6875, 5750, },
3882 { 7000, 5875, },
3883 { 7125, 6000, },
3884 { 7250, 6125, },
3885 { 7375, 6250, },
3886 { 7500, 6375, },
3887 { 7625, 6500, },
3888 { 7750, 6625, },
3889 { 7875, 6750, },
3890 { 8000, 6875, },
3891 { 8125, 7000, },
3892 { 8250, 7125, },
3893 { 8375, 7250, },
3894 { 8500, 7375, },
3895 { 8625, 7500, },
3896 { 8750, 7625, },
3897 { 8875, 7750, },
3898 { 9000, 7875, },
3899 { 9125, 8000, },
3900 { 9250, 8125, },
3901 { 9375, 8250, },
3902 { 9500, 8375, },
3903 { 9625, 8500, },
3904 { 9750, 8625, },
3905 { 9875, 8750, },
3906 { 10000, 8875, },
3907 { 10125, 9000, },
3908 { 10250, 9125, },
3909 { 10375, 9250, },
3910 { 10500, 9375, },
3911 { 10625, 9500, },
3912 { 10750, 9625, },
3913 { 10875, 9750, },
3914 { 11000, 9875, },
3915 { 11125, 10000, },
3916 { 11250, 10125, },
3917 { 11375, 10250, },
3918 { 11500, 10375, },
3919 { 11625, 10500, },
3920 { 11750, 10625, },
3921 { 11875, 10750, },
3922 { 12000, 10875, },
3923 { 12125, 11000, },
3924 { 12250, 11125, },
3925 { 12375, 11250, },
3926 { 12500, 11375, },
3927 { 12625, 11500, },
3928 { 12750, 11625, },
3929 { 12875, 11750, },
3930 { 13000, 11875, },
3931 { 13125, 12000, },
3932 { 13250, 12125, },
3933 { 13375, 12250, },
3934 { 13500, 12375, },
3935 { 13625, 12500, },
3936 { 13750, 12625, },
3937 { 13875, 12750, },
3938 { 14000, 12875, },
3939 { 14125, 13000, },
3940 { 14250, 13125, },
3941 { 14375, 13250, },
3942 { 14500, 13375, },
3943 { 14625, 13500, },
3944 { 14750, 13625, },
3945 { 14875, 13750, },
3946 { 15000, 13875, },
3947 { 15125, 14000, },
3948 { 15250, 14125, },
3949 { 15375, 14250, },
3950 { 15500, 14375, },
3951 { 15625, 14500, },
3952 { 15750, 14625, },
3953 { 15875, 14750, },
3954 { 16000, 14875, },
3955 { 16125, 15000, },
3956 };
3957 if (dev_priv->info->is_mobile)
3958 return v_table[pxvid].vm;
3959 else
3960 return v_table[pxvid].vd;
3961 }
3962
3963 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3964 {
3965 struct timespec now, diff1;
3966 u64 diff;
3967 unsigned long diffms;
3968 u32 count;
3969
3970 assert_spin_locked(&mchdev_lock);
3971
3972 getrawmonotonic(&now);
3973 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
3974
3975 /* Don't divide by 0 */
3976 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3977 if (!diffms)
3978 return;
3979
3980 count = I915_READ(GFXEC);
3981
3982 if (count < dev_priv->ips.last_count2) {
3983 diff = ~0UL - dev_priv->ips.last_count2;
3984 diff += count;
3985 } else {
3986 diff = count - dev_priv->ips.last_count2;
3987 }
3988
3989 dev_priv->ips.last_count2 = count;
3990 dev_priv->ips.last_time2 = now;
3991
3992 /* More magic constants... */
3993 diff = diff * 1181;
3994 diff = div_u64(diff, diffms * 10);
3995 dev_priv->ips.gfx_power = diff;
3996 }
3997
3998 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
3999 {
4000 if (dev_priv->info->gen != 5)
4001 return;
4002
4003 spin_lock_irq(&mchdev_lock);
4004
4005 __i915_update_gfx_val(dev_priv);
4006
4007 spin_unlock_irq(&mchdev_lock);
4008 }
4009
4010 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4011 {
4012 unsigned long t, corr, state1, corr2, state2;
4013 u32 pxvid, ext_v;
4014
4015 assert_spin_locked(&mchdev_lock);
4016
4017 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4018 pxvid = (pxvid >> 24) & 0x7f;
4019 ext_v = pvid_to_extvid(dev_priv, pxvid);
4020
4021 state1 = ext_v;
4022
4023 t = i915_mch_val(dev_priv);
4024
4025 /* Revel in the empirically derived constants */
4026
4027 /* Correction factor in 1/100000 units */
4028 if (t > 80)
4029 corr = ((t * 2349) + 135940);
4030 else if (t >= 50)
4031 corr = ((t * 964) + 29317);
4032 else /* < 50 */
4033 corr = ((t * 301) + 1004);
4034
4035 corr = corr * ((150142 * state1) / 10000 - 78642);
4036 corr /= 100000;
4037 corr2 = (corr * dev_priv->ips.corr);
4038
4039 state2 = (corr2 * state1) / 10000;
4040 state2 /= 100; /* convert to mW */
4041
4042 __i915_update_gfx_val(dev_priv);
4043
4044 return dev_priv->ips.gfx_power + state2;
4045 }
4046
4047 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4048 {
4049 unsigned long val;
4050
4051 if (dev_priv->info->gen != 5)
4052 return 0;
4053
4054 spin_lock_irq(&mchdev_lock);
4055
4056 val = __i915_gfx_val(dev_priv);
4057
4058 spin_unlock_irq(&mchdev_lock);
4059
4060 return val;
4061 }
4062
4063 /**
4064 * i915_read_mch_val - return value for IPS use
4065 *
4066 * Calculate and return a value for the IPS driver to use when deciding whether
4067 * we have thermal and power headroom to increase CPU or GPU power budget.
4068 */
4069 unsigned long i915_read_mch_val(void)
4070 {
4071 struct drm_i915_private *dev_priv;
4072 unsigned long chipset_val, graphics_val, ret = 0;
4073
4074 spin_lock_irq(&mchdev_lock);
4075 if (!i915_mch_dev)
4076 goto out_unlock;
4077 dev_priv = i915_mch_dev;
4078
4079 chipset_val = __i915_chipset_val(dev_priv);
4080 graphics_val = __i915_gfx_val(dev_priv);
4081
4082 ret = chipset_val + graphics_val;
4083
4084 out_unlock:
4085 spin_unlock_irq(&mchdev_lock);
4086
4087 return ret;
4088 }
4089 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4090
4091 /**
4092 * i915_gpu_raise - raise GPU frequency limit
4093 *
4094 * Raise the limit; IPS indicates we have thermal headroom.
4095 */
4096 bool i915_gpu_raise(void)
4097 {
4098 struct drm_i915_private *dev_priv;
4099 bool ret = true;
4100
4101 spin_lock_irq(&mchdev_lock);
4102 if (!i915_mch_dev) {
4103 ret = false;
4104 goto out_unlock;
4105 }
4106 dev_priv = i915_mch_dev;
4107
4108 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4109 dev_priv->ips.max_delay--;
4110
4111 out_unlock:
4112 spin_unlock_irq(&mchdev_lock);
4113
4114 return ret;
4115 }
4116 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4117
4118 /**
4119 * i915_gpu_lower - lower GPU frequency limit
4120 *
4121 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4122 * frequency maximum.
4123 */
4124 bool i915_gpu_lower(void)
4125 {
4126 struct drm_i915_private *dev_priv;
4127 bool ret = true;
4128
4129 spin_lock_irq(&mchdev_lock);
4130 if (!i915_mch_dev) {
4131 ret = false;
4132 goto out_unlock;
4133 }
4134 dev_priv = i915_mch_dev;
4135
4136 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4137 dev_priv->ips.max_delay++;
4138
4139 out_unlock:
4140 spin_unlock_irq(&mchdev_lock);
4141
4142 return ret;
4143 }
4144 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4145
4146 /**
4147 * i915_gpu_busy - indicate GPU business to IPS
4148 *
4149 * Tell the IPS driver whether or not the GPU is busy.
4150 */
4151 bool i915_gpu_busy(void)
4152 {
4153 struct drm_i915_private *dev_priv;
4154 struct intel_ring_buffer *ring;
4155 bool ret = false;
4156 int i;
4157
4158 spin_lock_irq(&mchdev_lock);
4159 if (!i915_mch_dev)
4160 goto out_unlock;
4161 dev_priv = i915_mch_dev;
4162
4163 for_each_ring(ring, dev_priv, i)
4164 ret |= !list_empty(&ring->request_list);
4165
4166 out_unlock:
4167 spin_unlock_irq(&mchdev_lock);
4168
4169 return ret;
4170 }
4171 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4172
4173 /**
4174 * i915_gpu_turbo_disable - disable graphics turbo
4175 *
4176 * Disable graphics turbo by resetting the max frequency and setting the
4177 * current frequency to the default.
4178 */
4179 bool i915_gpu_turbo_disable(void)
4180 {
4181 struct drm_i915_private *dev_priv;
4182 bool ret = true;
4183
4184 spin_lock_irq(&mchdev_lock);
4185 if (!i915_mch_dev) {
4186 ret = false;
4187 goto out_unlock;
4188 }
4189 dev_priv = i915_mch_dev;
4190
4191 dev_priv->ips.max_delay = dev_priv->ips.fstart;
4192
4193 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4194 ret = false;
4195
4196 out_unlock:
4197 spin_unlock_irq(&mchdev_lock);
4198
4199 return ret;
4200 }
4201 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4202
4203 /**
4204 * Tells the intel_ips driver that the i915 driver is now loaded, if
4205 * IPS got loaded first.
4206 *
4207 * This awkward dance is so that neither module has to depend on the
4208 * other in order for IPS to do the appropriate communication of
4209 * GPU turbo limits to i915.
4210 */
4211 static void
4212 ips_ping_for_i915_load(void)
4213 {
4214 void (*link)(void);
4215
4216 link = symbol_get(ips_link_to_i915_driver);
4217 if (link) {
4218 link();
4219 symbol_put(ips_link_to_i915_driver);
4220 }
4221 }
4222
4223 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4224 {
4225 /* We only register the i915 ips part with intel-ips once everything is
4226 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4227 spin_lock_irq(&mchdev_lock);
4228 i915_mch_dev = dev_priv;
4229 spin_unlock_irq(&mchdev_lock);
4230
4231 ips_ping_for_i915_load();
4232 }
4233
4234 void intel_gpu_ips_teardown(void)
4235 {
4236 spin_lock_irq(&mchdev_lock);
4237 i915_mch_dev = NULL;
4238 spin_unlock_irq(&mchdev_lock);
4239 }
4240 static void intel_init_emon(struct drm_device *dev)
4241 {
4242 struct drm_i915_private *dev_priv = dev->dev_private;
4243 u32 lcfuse;
4244 u8 pxw[16];
4245 int i;
4246
4247 /* Disable to program */
4248 I915_WRITE(ECR, 0);
4249 POSTING_READ(ECR);
4250
4251 /* Program energy weights for various events */
4252 I915_WRITE(SDEW, 0x15040d00);
4253 I915_WRITE(CSIEW0, 0x007f0000);
4254 I915_WRITE(CSIEW1, 0x1e220004);
4255 I915_WRITE(CSIEW2, 0x04000004);
4256
4257 for (i = 0; i < 5; i++)
4258 I915_WRITE(PEW + (i * 4), 0);
4259 for (i = 0; i < 3; i++)
4260 I915_WRITE(DEW + (i * 4), 0);
4261
4262 /* Program P-state weights to account for frequency power adjustment */
4263 for (i = 0; i < 16; i++) {
4264 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4265 unsigned long freq = intel_pxfreq(pxvidfreq);
4266 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4267 PXVFREQ_PX_SHIFT;
4268 unsigned long val;
4269
4270 val = vid * vid;
4271 val *= (freq / 1000);
4272 val *= 255;
4273 val /= (127*127*900);
4274 if (val > 0xff)
4275 DRM_ERROR("bad pxval: %ld\n", val);
4276 pxw[i] = val;
4277 }
4278 /* Render standby states get 0 weight */
4279 pxw[14] = 0;
4280 pxw[15] = 0;
4281
4282 for (i = 0; i < 4; i++) {
4283 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4284 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4285 I915_WRITE(PXW + (i * 4), val);
4286 }
4287
4288 /* Adjust magic regs to magic values (more experimental results) */
4289 I915_WRITE(OGW0, 0);
4290 I915_WRITE(OGW1, 0);
4291 I915_WRITE(EG0, 0x00007f00);
4292 I915_WRITE(EG1, 0x0000000e);
4293 I915_WRITE(EG2, 0x000e0000);
4294 I915_WRITE(EG3, 0x68000300);
4295 I915_WRITE(EG4, 0x42000000);
4296 I915_WRITE(EG5, 0x00140031);
4297 I915_WRITE(EG6, 0);
4298 I915_WRITE(EG7, 0);
4299
4300 for (i = 0; i < 8; i++)
4301 I915_WRITE(PXWL + (i * 4), 0);
4302
4303 /* Enable PMON + select events */
4304 I915_WRITE(ECR, 0x80000019);
4305
4306 lcfuse = I915_READ(LCFUSE02);
4307
4308 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4309 }
4310
4311 void intel_disable_gt_powersave(struct drm_device *dev)
4312 {
4313 struct drm_i915_private *dev_priv = dev->dev_private;
4314
4315 /* Interrupts should be disabled already to avoid re-arming. */
4316 WARN_ON(dev->irq_enabled);
4317
4318 if (IS_IRONLAKE_M(dev)) {
4319 ironlake_disable_drps(dev);
4320 ironlake_disable_rc6(dev);
4321 } else if (INTEL_INFO(dev)->gen >= 6) {
4322 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4323 cancel_work_sync(&dev_priv->rps.work);
4324 if (IS_VALLEYVIEW(dev))
4325 cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
4326 mutex_lock(&dev_priv->rps.hw_lock);
4327 if (IS_VALLEYVIEW(dev))
4328 valleyview_disable_rps(dev);
4329 else
4330 gen6_disable_rps(dev);
4331 mutex_unlock(&dev_priv->rps.hw_lock);
4332 }
4333 }
4334
4335 static void intel_gen6_powersave_work(struct work_struct *work)
4336 {
4337 struct drm_i915_private *dev_priv =
4338 container_of(work, struct drm_i915_private,
4339 rps.delayed_resume_work.work);
4340 struct drm_device *dev = dev_priv->dev;
4341
4342 mutex_lock(&dev_priv->rps.hw_lock);
4343
4344 if (IS_VALLEYVIEW(dev)) {
4345 valleyview_enable_rps(dev);
4346 } else {
4347 gen6_enable_rps(dev);
4348 gen6_update_ring_freq(dev);
4349 }
4350 mutex_unlock(&dev_priv->rps.hw_lock);
4351 }
4352
4353 void intel_enable_gt_powersave(struct drm_device *dev)
4354 {
4355 struct drm_i915_private *dev_priv = dev->dev_private;
4356
4357 if (IS_IRONLAKE_M(dev)) {
4358 ironlake_enable_drps(dev);
4359 ironlake_enable_rc6(dev);
4360 intel_init_emon(dev);
4361 } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4362 /*
4363 * PCU communication is slow and this doesn't need to be
4364 * done at any specific time, so do this out of our fast path
4365 * to make resume and init faster.
4366 */
4367 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4368 round_jiffies_up_relative(HZ));
4369 }
4370 }
4371
4372 static void ibx_init_clock_gating(struct drm_device *dev)
4373 {
4374 struct drm_i915_private *dev_priv = dev->dev_private;
4375
4376 /*
4377 * On Ibex Peak and Cougar Point, we need to disable clock
4378 * gating for the panel power sequencer or it will fail to
4379 * start up when no ports are active.
4380 */
4381 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4382 }
4383
4384 static void ironlake_init_clock_gating(struct drm_device *dev)
4385 {
4386 struct drm_i915_private *dev_priv = dev->dev_private;
4387 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4388
4389 /* Required for FBC */
4390 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4391 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4392 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4393
4394 I915_WRITE(PCH_3DCGDIS0,
4395 MARIUNIT_CLOCK_GATE_DISABLE |
4396 SVSMUNIT_CLOCK_GATE_DISABLE);
4397 I915_WRITE(PCH_3DCGDIS1,
4398 VFMUNIT_CLOCK_GATE_DISABLE);
4399
4400 /*
4401 * According to the spec the following bits should be set in
4402 * order to enable memory self-refresh
4403 * The bit 22/21 of 0x42004
4404 * The bit 5 of 0x42020
4405 * The bit 15 of 0x45000
4406 */
4407 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4408 (I915_READ(ILK_DISPLAY_CHICKEN2) |
4409 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4410 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4411 I915_WRITE(DISP_ARB_CTL,
4412 (I915_READ(DISP_ARB_CTL) |
4413 DISP_FBC_WM_DIS));
4414 I915_WRITE(WM3_LP_ILK, 0);
4415 I915_WRITE(WM2_LP_ILK, 0);
4416 I915_WRITE(WM1_LP_ILK, 0);
4417
4418 /*
4419 * Based on the document from hardware guys the following bits
4420 * should be set unconditionally in order to enable FBC.
4421 * The bit 22 of 0x42000
4422 * The bit 22 of 0x42004
4423 * The bit 7,8,9 of 0x42020.
4424 */
4425 if (IS_IRONLAKE_M(dev)) {
4426 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4427 I915_READ(ILK_DISPLAY_CHICKEN1) |
4428 ILK_FBCQ_DIS);
4429 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4430 I915_READ(ILK_DISPLAY_CHICKEN2) |
4431 ILK_DPARB_GATE);
4432 }
4433
4434 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4435
4436 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4437 I915_READ(ILK_DISPLAY_CHICKEN2) |
4438 ILK_ELPIN_409_SELECT);
4439 I915_WRITE(_3D_CHICKEN2,
4440 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4441 _3D_CHICKEN2_WM_READ_PIPELINED);
4442
4443 /* WaDisableRenderCachePipelinedFlush:ilk */
4444 I915_WRITE(CACHE_MODE_0,
4445 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4446
4447 ibx_init_clock_gating(dev);
4448 }
4449
4450 static void cpt_init_clock_gating(struct drm_device *dev)
4451 {
4452 struct drm_i915_private *dev_priv = dev->dev_private;
4453 int pipe;
4454 uint32_t val;
4455
4456 /*
4457 * On Ibex Peak and Cougar Point, we need to disable clock
4458 * gating for the panel power sequencer or it will fail to
4459 * start up when no ports are active.
4460 */
4461 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4462 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4463 DPLS_EDP_PPS_FIX_DIS);
4464 /* The below fixes the weird display corruption, a few pixels shifted
4465 * downward, on (only) LVDS of some HP laptops with IVY.
4466 */
4467 for_each_pipe(pipe) {
4468 val = I915_READ(TRANS_CHICKEN2(pipe));
4469 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4470 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4471 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4472 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4473 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4474 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4475 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4476 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4477 }
4478 /* WADP0ClockGatingDisable */
4479 for_each_pipe(pipe) {
4480 I915_WRITE(TRANS_CHICKEN1(pipe),
4481 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4482 }
4483 }
4484
4485 static void gen6_check_mch_setup(struct drm_device *dev)
4486 {
4487 struct drm_i915_private *dev_priv = dev->dev_private;
4488 uint32_t tmp;
4489
4490 tmp = I915_READ(MCH_SSKPD);
4491 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4492 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4493 DRM_INFO("This can cause pipe underruns and display issues.\n");
4494 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4495 }
4496 }
4497
4498 static void gen6_init_clock_gating(struct drm_device *dev)
4499 {
4500 struct drm_i915_private *dev_priv = dev->dev_private;
4501 int pipe;
4502 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4503
4504 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4505
4506 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4507 I915_READ(ILK_DISPLAY_CHICKEN2) |
4508 ILK_ELPIN_409_SELECT);
4509
4510 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4511 I915_WRITE(_3D_CHICKEN,
4512 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4513
4514 /* WaSetupGtModeTdRowDispatch:snb */
4515 if (IS_SNB_GT1(dev))
4516 I915_WRITE(GEN6_GT_MODE,
4517 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4518
4519 I915_WRITE(WM3_LP_ILK, 0);
4520 I915_WRITE(WM2_LP_ILK, 0);
4521 I915_WRITE(WM1_LP_ILK, 0);
4522
4523 I915_WRITE(CACHE_MODE_0,
4524 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4525
4526 I915_WRITE(GEN6_UCGCTL1,
4527 I915_READ(GEN6_UCGCTL1) |
4528 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4529 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4530
4531 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4532 * gating disable must be set. Failure to set it results in
4533 * flickering pixels due to Z write ordering failures after
4534 * some amount of runtime in the Mesa "fire" demo, and Unigine
4535 * Sanctuary and Tropics, and apparently anything else with
4536 * alpha test or pixel discard.
4537 *
4538 * According to the spec, bit 11 (RCCUNIT) must also be set,
4539 * but we didn't debug actual testcases to find it out.
4540 *
4541 * Also apply WaDisableVDSUnitClockGating:snb and
4542 * WaDisableRCPBUnitClockGating:snb.
4543 */
4544 I915_WRITE(GEN6_UCGCTL2,
4545 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4546 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4547 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4548
4549 /* Bspec says we need to always set all mask bits. */
4550 I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4551 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
4552
4553 /*
4554 * According to the spec the following bits should be
4555 * set in order to enable memory self-refresh and fbc:
4556 * The bit21 and bit22 of 0x42000
4557 * The bit21 and bit22 of 0x42004
4558 * The bit5 and bit7 of 0x42020
4559 * The bit14 of 0x70180
4560 * The bit14 of 0x71180
4561 */
4562 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4563 I915_READ(ILK_DISPLAY_CHICKEN1) |
4564 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4565 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4566 I915_READ(ILK_DISPLAY_CHICKEN2) |
4567 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4568 I915_WRITE(ILK_DSPCLK_GATE_D,
4569 I915_READ(ILK_DSPCLK_GATE_D) |
4570 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
4571 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4572
4573 /* WaMbcDriverBootEnable:snb */
4574 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4575 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4576
4577 for_each_pipe(pipe) {
4578 I915_WRITE(DSPCNTR(pipe),
4579 I915_READ(DSPCNTR(pipe)) |
4580 DISPPLANE_TRICKLE_FEED_DISABLE);
4581 intel_flush_display_plane(dev_priv, pipe);
4582 }
4583
4584 /* The default value should be 0x200 according to docs, but the two
4585 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4586 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4587 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
4588
4589 cpt_init_clock_gating(dev);
4590
4591 gen6_check_mch_setup(dev);
4592 }
4593
4594 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4595 {
4596 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4597
4598 reg &= ~GEN7_FF_SCHED_MASK;
4599 reg |= GEN7_FF_TS_SCHED_HW;
4600 reg |= GEN7_FF_VS_SCHED_HW;
4601 reg |= GEN7_FF_DS_SCHED_HW;
4602
4603 if (IS_HASWELL(dev_priv->dev))
4604 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
4605
4606 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4607 }
4608
4609 static void lpt_init_clock_gating(struct drm_device *dev)
4610 {
4611 struct drm_i915_private *dev_priv = dev->dev_private;
4612
4613 /*
4614 * TODO: this bit should only be enabled when really needed, then
4615 * disabled when not needed anymore in order to save power.
4616 */
4617 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4618 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4619 I915_READ(SOUTH_DSPCLK_GATE_D) |
4620 PCH_LP_PARTITION_LEVEL_DISABLE);
4621
4622 /* WADPOClockGatingDisable:hsw */
4623 I915_WRITE(_TRANSA_CHICKEN1,
4624 I915_READ(_TRANSA_CHICKEN1) |
4625 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4626 }
4627
4628 static void lpt_suspend_hw(struct drm_device *dev)
4629 {
4630 struct drm_i915_private *dev_priv = dev->dev_private;
4631
4632 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4633 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4634
4635 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4636 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4637 }
4638 }
4639
4640 static void haswell_init_clock_gating(struct drm_device *dev)
4641 {
4642 struct drm_i915_private *dev_priv = dev->dev_private;
4643 int pipe;
4644
4645 I915_WRITE(WM3_LP_ILK, 0);
4646 I915_WRITE(WM2_LP_ILK, 0);
4647 I915_WRITE(WM1_LP_ILK, 0);
4648
4649 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4650 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
4651 */
4652 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4653
4654 /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
4655 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4656 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4657
4658 /* WaApplyL3ControlAndL3ChickenMode:hsw */
4659 I915_WRITE(GEN7_L3CNTLREG1,
4660 GEN7_WA_FOR_GEN7_L3_CONTROL);
4661 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4662 GEN7_WA_L3_CHICKEN_MODE);
4663
4664 /* This is required by WaCatErrorRejectionIssue:hsw */
4665 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4666 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4667 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4668
4669 for_each_pipe(pipe) {
4670 I915_WRITE(DSPCNTR(pipe),
4671 I915_READ(DSPCNTR(pipe)) |
4672 DISPPLANE_TRICKLE_FEED_DISABLE);
4673 intel_flush_display_plane(dev_priv, pipe);
4674 }
4675
4676 /* WaVSRefCountFullforceMissDisable:hsw */
4677 gen7_setup_fixed_func_scheduler(dev_priv);
4678
4679 /* WaDisable4x2SubspanOptimization:hsw */
4680 I915_WRITE(CACHE_MODE_1,
4681 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4682
4683 /* WaMbcDriverBootEnable:hsw */
4684 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4685 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4686
4687 /* WaSwitchSolVfFArbitrationPriority:hsw */
4688 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4689
4690 /* WaRsPkgCStateDisplayPMReq:hsw */
4691 I915_WRITE(CHICKEN_PAR1_1,
4692 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
4693
4694 lpt_init_clock_gating(dev);
4695 }
4696
4697 static void ivybridge_init_clock_gating(struct drm_device *dev)
4698 {
4699 struct drm_i915_private *dev_priv = dev->dev_private;
4700 int pipe;
4701 uint32_t snpcr;
4702
4703 I915_WRITE(WM3_LP_ILK, 0);
4704 I915_WRITE(WM2_LP_ILK, 0);
4705 I915_WRITE(WM1_LP_ILK, 0);
4706
4707 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4708
4709 /* WaDisableEarlyCull:ivb */
4710 I915_WRITE(_3D_CHICKEN3,
4711 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4712
4713 /* WaDisableBackToBackFlipFix:ivb */
4714 I915_WRITE(IVB_CHICKEN3,
4715 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4716 CHICKEN3_DGMG_DONE_FIX_DISABLE);
4717
4718 /* WaDisablePSDDualDispatchEnable:ivb */
4719 if (IS_IVB_GT1(dev))
4720 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4721 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4722 else
4723 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
4724 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4725
4726 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
4727 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4728 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4729
4730 /* WaApplyL3ControlAndL3ChickenMode:ivb */
4731 I915_WRITE(GEN7_L3CNTLREG1,
4732 GEN7_WA_FOR_GEN7_L3_CONTROL);
4733 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4734 GEN7_WA_L3_CHICKEN_MODE);
4735 if (IS_IVB_GT1(dev))
4736 I915_WRITE(GEN7_ROW_CHICKEN2,
4737 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4738 else
4739 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
4740 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4741
4742
4743 /* WaForceL3Serialization:ivb */
4744 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4745 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4746
4747 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4748 * gating disable must be set. Failure to set it results in
4749 * flickering pixels due to Z write ordering failures after
4750 * some amount of runtime in the Mesa "fire" demo, and Unigine
4751 * Sanctuary and Tropics, and apparently anything else with
4752 * alpha test or pixel discard.
4753 *
4754 * According to the spec, bit 11 (RCCUNIT) must also be set,
4755 * but we didn't debug actual testcases to find it out.
4756 *
4757 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4758 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
4759 */
4760 I915_WRITE(GEN6_UCGCTL2,
4761 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4762 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4763
4764 /* This is required by WaCatErrorRejectionIssue:ivb */
4765 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4766 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4767 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4768
4769 for_each_pipe(pipe) {
4770 I915_WRITE(DSPCNTR(pipe),
4771 I915_READ(DSPCNTR(pipe)) |
4772 DISPPLANE_TRICKLE_FEED_DISABLE);
4773 intel_flush_display_plane(dev_priv, pipe);
4774 }
4775
4776 /* WaMbcDriverBootEnable:ivb */
4777 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4778 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4779
4780 /* WaVSRefCountFullforceMissDisable:ivb */
4781 gen7_setup_fixed_func_scheduler(dev_priv);
4782
4783 /* WaDisable4x2SubspanOptimization:ivb */
4784 I915_WRITE(CACHE_MODE_1,
4785 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4786
4787 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4788 snpcr &= ~GEN6_MBC_SNPCR_MASK;
4789 snpcr |= GEN6_MBC_SNPCR_MED;
4790 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4791
4792 if (!HAS_PCH_NOP(dev))
4793 cpt_init_clock_gating(dev);
4794
4795 gen6_check_mch_setup(dev);
4796 }
4797
4798 static void valleyview_init_clock_gating(struct drm_device *dev)
4799 {
4800 struct drm_i915_private *dev_priv = dev->dev_private;
4801 int pipe;
4802
4803 I915_WRITE(WM3_LP_ILK, 0);
4804 I915_WRITE(WM2_LP_ILK, 0);
4805 I915_WRITE(WM1_LP_ILK, 0);
4806
4807 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4808
4809 /* WaDisableEarlyCull:vlv */
4810 I915_WRITE(_3D_CHICKEN3,
4811 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4812
4813 /* WaDisableBackToBackFlipFix:vlv */
4814 I915_WRITE(IVB_CHICKEN3,
4815 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4816 CHICKEN3_DGMG_DONE_FIX_DISABLE);
4817
4818 /* WaDisablePSDDualDispatchEnable:vlv */
4819 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4820 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
4821 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4822
4823 /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
4824 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4825 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4826
4827 /* WaApplyL3ControlAndL3ChickenMode:vlv */
4828 I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
4829 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
4830
4831 /* WaForceL3Serialization:vlv */
4832 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4833 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4834
4835 /* WaDisableDopClockGating:vlv */
4836 I915_WRITE(GEN7_ROW_CHICKEN2,
4837 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4838
4839 /* WaForceL3Serialization:vlv */
4840 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4841 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4842
4843 /* This is required by WaCatErrorRejectionIssue:vlv */
4844 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4845 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4846 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4847
4848 /* WaMbcDriverBootEnable:vlv */
4849 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4850 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4851
4852
4853 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4854 * gating disable must be set. Failure to set it results in
4855 * flickering pixels due to Z write ordering failures after
4856 * some amount of runtime in the Mesa "fire" demo, and Unigine
4857 * Sanctuary and Tropics, and apparently anything else with
4858 * alpha test or pixel discard.
4859 *
4860 * According to the spec, bit 11 (RCCUNIT) must also be set,
4861 * but we didn't debug actual testcases to find it out.
4862 *
4863 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4864 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
4865 *
4866 * Also apply WaDisableVDSUnitClockGating:vlv and
4867 * WaDisableRCPBUnitClockGating:vlv.
4868 */
4869 I915_WRITE(GEN6_UCGCTL2,
4870 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4871 GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
4872 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4873 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4874 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4875
4876 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
4877
4878 for_each_pipe(pipe) {
4879 I915_WRITE(DSPCNTR(pipe),
4880 I915_READ(DSPCNTR(pipe)) |
4881 DISPPLANE_TRICKLE_FEED_DISABLE);
4882 intel_flush_display_plane(dev_priv, pipe);
4883 }
4884
4885 I915_WRITE(CACHE_MODE_1,
4886 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4887
4888 /*
4889 * WaDisableVLVClockGating_VBIIssue:vlv
4890 * Disable clock gating on th GCFG unit to prevent a delay
4891 * in the reporting of vblank events.
4892 */
4893 I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
4894
4895 /* Conservative clock gating settings for now */
4896 I915_WRITE(0x9400, 0xffffffff);
4897 I915_WRITE(0x9404, 0xffffffff);
4898 I915_WRITE(0x9408, 0xffffffff);
4899 I915_WRITE(0x940c, 0xffffffff);
4900 I915_WRITE(0x9410, 0xffffffff);
4901 I915_WRITE(0x9414, 0xffffffff);
4902 I915_WRITE(0x9418, 0xffffffff);
4903 }
4904
4905 static void g4x_init_clock_gating(struct drm_device *dev)
4906 {
4907 struct drm_i915_private *dev_priv = dev->dev_private;
4908 uint32_t dspclk_gate;
4909
4910 I915_WRITE(RENCLK_GATE_D1, 0);
4911 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4912 GS_UNIT_CLOCK_GATE_DISABLE |
4913 CL_UNIT_CLOCK_GATE_DISABLE);
4914 I915_WRITE(RAMCLK_GATE_D, 0);
4915 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4916 OVRUNIT_CLOCK_GATE_DISABLE |
4917 OVCUNIT_CLOCK_GATE_DISABLE;
4918 if (IS_GM45(dev))
4919 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4920 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4921
4922 /* WaDisableRenderCachePipelinedFlush */
4923 I915_WRITE(CACHE_MODE_0,
4924 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4925 }
4926
4927 static void crestline_init_clock_gating(struct drm_device *dev)
4928 {
4929 struct drm_i915_private *dev_priv = dev->dev_private;
4930
4931 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4932 I915_WRITE(RENCLK_GATE_D2, 0);
4933 I915_WRITE(DSPCLK_GATE_D, 0);
4934 I915_WRITE(RAMCLK_GATE_D, 0);
4935 I915_WRITE16(DEUC, 0);
4936 }
4937
4938 static void broadwater_init_clock_gating(struct drm_device *dev)
4939 {
4940 struct drm_i915_private *dev_priv = dev->dev_private;
4941
4942 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4943 I965_RCC_CLOCK_GATE_DISABLE |
4944 I965_RCPB_CLOCK_GATE_DISABLE |
4945 I965_ISC_CLOCK_GATE_DISABLE |
4946 I965_FBC_CLOCK_GATE_DISABLE);
4947 I915_WRITE(RENCLK_GATE_D2, 0);
4948 }
4949
4950 static void gen3_init_clock_gating(struct drm_device *dev)
4951 {
4952 struct drm_i915_private *dev_priv = dev->dev_private;
4953 u32 dstate = I915_READ(D_STATE);
4954
4955 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4956 DSTATE_DOT_CLOCK_GATING;
4957 I915_WRITE(D_STATE, dstate);
4958
4959 if (IS_PINEVIEW(dev))
4960 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4961
4962 /* IIR "flip pending" means done if this bit is set */
4963 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4964 }
4965
4966 static void i85x_init_clock_gating(struct drm_device *dev)
4967 {
4968 struct drm_i915_private *dev_priv = dev->dev_private;
4969
4970 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4971 }
4972
4973 static void i830_init_clock_gating(struct drm_device *dev)
4974 {
4975 struct drm_i915_private *dev_priv = dev->dev_private;
4976
4977 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4978 }
4979
4980 void intel_init_clock_gating(struct drm_device *dev)
4981 {
4982 struct drm_i915_private *dev_priv = dev->dev_private;
4983
4984 dev_priv->display.init_clock_gating(dev);
4985 }
4986
4987 void intel_suspend_hw(struct drm_device *dev)
4988 {
4989 if (HAS_PCH_LPT(dev))
4990 lpt_suspend_hw(dev);
4991 }
4992
4993 /**
4994 * We should only use the power well if we explicitly asked the hardware to
4995 * enable it, so check if it's enabled and also check if we've requested it to
4996 * be enabled.
4997 */
4998 bool intel_display_power_enabled(struct drm_device *dev,
4999 enum intel_display_power_domain domain)
5000 {
5001 struct drm_i915_private *dev_priv = dev->dev_private;
5002
5003 if (!HAS_POWER_WELL(dev))
5004 return true;
5005
5006 switch (domain) {
5007 case POWER_DOMAIN_PIPE_A:
5008 case POWER_DOMAIN_TRANSCODER_EDP:
5009 return true;
5010 case POWER_DOMAIN_PIPE_B:
5011 case POWER_DOMAIN_PIPE_C:
5012 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
5013 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
5014 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
5015 case POWER_DOMAIN_TRANSCODER_A:
5016 case POWER_DOMAIN_TRANSCODER_B:
5017 case POWER_DOMAIN_TRANSCODER_C:
5018 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5019 (HSW_PWR_WELL_ENABLE | HSW_PWR_WELL_STATE);
5020 default:
5021 BUG();
5022 }
5023 }
5024
5025 void intel_set_power_well(struct drm_device *dev, bool enable)
5026 {
5027 struct drm_i915_private *dev_priv = dev->dev_private;
5028 bool is_enabled, enable_requested;
5029 uint32_t tmp;
5030
5031 if (!HAS_POWER_WELL(dev))
5032 return;
5033
5034 if (!i915_disable_power_well && !enable)
5035 return;
5036
5037 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5038 is_enabled = tmp & HSW_PWR_WELL_STATE;
5039 enable_requested = tmp & HSW_PWR_WELL_ENABLE;
5040
5041 if (enable) {
5042 if (!enable_requested)
5043 I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
5044
5045 if (!is_enabled) {
5046 DRM_DEBUG_KMS("Enabling power well\n");
5047 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5048 HSW_PWR_WELL_STATE), 20))
5049 DRM_ERROR("Timeout enabling power well\n");
5050 }
5051 } else {
5052 if (enable_requested) {
5053 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5054 DRM_DEBUG_KMS("Requesting to disable the power well\n");
5055 }
5056 }
5057 }
5058
5059 /*
5060 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5061 * when not needed anymore. We have 4 registers that can request the power well
5062 * to be enabled, and it will only be disabled if none of the registers is
5063 * requesting it to be enabled.
5064 */
5065 void intel_init_power_well(struct drm_device *dev)
5066 {
5067 struct drm_i915_private *dev_priv = dev->dev_private;
5068
5069 if (!HAS_POWER_WELL(dev))
5070 return;
5071
5072 /* For now, we need the power well to be always enabled. */
5073 intel_set_power_well(dev, true);
5074
5075 /* We're taking over the BIOS, so clear any requests made by it since
5076 * the driver is in charge now. */
5077 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
5078 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5079 }
5080
5081 /* Set up chip specific power management-related functions */
5082 void intel_init_pm(struct drm_device *dev)
5083 {
5084 struct drm_i915_private *dev_priv = dev->dev_private;
5085
5086 if (I915_HAS_FBC(dev)) {
5087 if (HAS_PCH_SPLIT(dev)) {
5088 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5089 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5090 dev_priv->display.enable_fbc =
5091 gen7_enable_fbc;
5092 else
5093 dev_priv->display.enable_fbc =
5094 ironlake_enable_fbc;
5095 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5096 } else if (IS_GM45(dev)) {
5097 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5098 dev_priv->display.enable_fbc = g4x_enable_fbc;
5099 dev_priv->display.disable_fbc = g4x_disable_fbc;
5100 } else if (IS_CRESTLINE(dev)) {
5101 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5102 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5103 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5104 }
5105 /* 855GM needs testing */
5106 }
5107
5108 /* For cxsr */
5109 if (IS_PINEVIEW(dev))
5110 i915_pineview_get_mem_freq(dev);
5111 else if (IS_GEN5(dev))
5112 i915_ironlake_get_mem_freq(dev);
5113
5114 /* For FIFO watermark updates */
5115 if (HAS_PCH_SPLIT(dev)) {
5116 if (IS_GEN5(dev)) {
5117 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5118 dev_priv->display.update_wm = ironlake_update_wm;
5119 else {
5120 DRM_DEBUG_KMS("Failed to get proper latency. "
5121 "Disable CxSR\n");
5122 dev_priv->display.update_wm = NULL;
5123 }
5124 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5125 } else if (IS_GEN6(dev)) {
5126 if (SNB_READ_WM0_LATENCY()) {
5127 dev_priv->display.update_wm = sandybridge_update_wm;
5128 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5129 } else {
5130 DRM_DEBUG_KMS("Failed to read display plane latency. "
5131 "Disable CxSR\n");
5132 dev_priv->display.update_wm = NULL;
5133 }
5134 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
5135 } else if (IS_IVYBRIDGE(dev)) {
5136 if (SNB_READ_WM0_LATENCY()) {
5137 dev_priv->display.update_wm = ivybridge_update_wm;
5138 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5139 } else {
5140 DRM_DEBUG_KMS("Failed to read display plane latency. "
5141 "Disable CxSR\n");
5142 dev_priv->display.update_wm = NULL;
5143 }
5144 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
5145 } else if (IS_HASWELL(dev)) {
5146 if (I915_READ64(MCH_SSKPD)) {
5147 dev_priv->display.update_wm = haswell_update_wm;
5148 dev_priv->display.update_sprite_wm =
5149 haswell_update_sprite_wm;
5150 } else {
5151 DRM_DEBUG_KMS("Failed to read display plane latency. "
5152 "Disable CxSR\n");
5153 dev_priv->display.update_wm = NULL;
5154 }
5155 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
5156 } else
5157 dev_priv->display.update_wm = NULL;
5158 } else if (IS_VALLEYVIEW(dev)) {
5159 dev_priv->display.update_wm = valleyview_update_wm;
5160 dev_priv->display.init_clock_gating =
5161 valleyview_init_clock_gating;
5162 } else if (IS_PINEVIEW(dev)) {
5163 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5164 dev_priv->is_ddr3,
5165 dev_priv->fsb_freq,
5166 dev_priv->mem_freq)) {
5167 DRM_INFO("failed to find known CxSR latency "
5168 "(found ddr%s fsb freq %d, mem freq %d), "
5169 "disabling CxSR\n",
5170 (dev_priv->is_ddr3 == 1) ? "3" : "2",
5171 dev_priv->fsb_freq, dev_priv->mem_freq);
5172 /* Disable CxSR and never update its watermark again */
5173 pineview_disable_cxsr(dev);
5174 dev_priv->display.update_wm = NULL;
5175 } else
5176 dev_priv->display.update_wm = pineview_update_wm;
5177 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5178 } else if (IS_G4X(dev)) {
5179 dev_priv->display.update_wm = g4x_update_wm;
5180 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5181 } else if (IS_GEN4(dev)) {
5182 dev_priv->display.update_wm = i965_update_wm;
5183 if (IS_CRESTLINE(dev))
5184 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5185 else if (IS_BROADWATER(dev))
5186 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5187 } else if (IS_GEN3(dev)) {
5188 dev_priv->display.update_wm = i9xx_update_wm;
5189 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5190 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5191 } else if (IS_I865G(dev)) {
5192 dev_priv->display.update_wm = i830_update_wm;
5193 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5194 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5195 } else if (IS_I85X(dev)) {
5196 dev_priv->display.update_wm = i9xx_update_wm;
5197 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5198 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5199 } else {
5200 dev_priv->display.update_wm = i830_update_wm;
5201 dev_priv->display.init_clock_gating = i830_init_clock_gating;
5202 if (IS_845G(dev))
5203 dev_priv->display.get_fifo_size = i845_get_fifo_size;
5204 else
5205 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5206 }
5207 }
5208
5209 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
5210 {
5211 u32 gt_thread_status_mask;
5212
5213 if (IS_HASWELL(dev_priv->dev))
5214 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
5215 else
5216 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
5217
5218 /* w/a for a sporadic read returning 0 by waiting for the GT
5219 * thread to wake up.
5220 */
5221 if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
5222 DRM_ERROR("GT thread status wait timed out\n");
5223 }
5224
5225 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
5226 {
5227 I915_WRITE_NOTRACE(FORCEWAKE, 0);
5228 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
5229 }
5230
5231 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
5232 {
5233 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1) == 0,
5234 FORCEWAKE_ACK_TIMEOUT_MS))
5235 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
5236
5237 I915_WRITE_NOTRACE(FORCEWAKE, 1);
5238 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
5239
5240 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1),
5241 FORCEWAKE_ACK_TIMEOUT_MS))
5242 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
5243
5244 /* WaRsForcewakeWaitTC0:snb */
5245 __gen6_gt_wait_for_thread_c0(dev_priv);
5246 }
5247
5248 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
5249 {
5250 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
5251 /* something from same cacheline, but !FORCEWAKE_MT */
5252 POSTING_READ(ECOBUS);
5253 }
5254
5255 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
5256 {
5257 u32 forcewake_ack;
5258
5259 if (IS_HASWELL(dev_priv->dev))
5260 forcewake_ack = FORCEWAKE_ACK_HSW;
5261 else
5262 forcewake_ack = FORCEWAKE_MT_ACK;
5263
5264 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL) == 0,
5265 FORCEWAKE_ACK_TIMEOUT_MS))
5266 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
5267
5268 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
5269 /* something from same cacheline, but !FORCEWAKE_MT */
5270 POSTING_READ(ECOBUS);
5271
5272 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL),
5273 FORCEWAKE_ACK_TIMEOUT_MS))
5274 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
5275
5276 /* WaRsForcewakeWaitTC0:ivb,hsw */
5277 __gen6_gt_wait_for_thread_c0(dev_priv);
5278 }
5279
5280 /*
5281 * Generally this is called implicitly by the register read function. However,
5282 * if some sequence requires the GT to not power down then this function should
5283 * be called at the beginning of the sequence followed by a call to
5284 * gen6_gt_force_wake_put() at the end of the sequence.
5285 */
5286 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
5287 {
5288 unsigned long irqflags;
5289
5290 spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
5291 if (dev_priv->forcewake_count++ == 0)
5292 dev_priv->gt.force_wake_get(dev_priv);
5293 spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
5294 }
5295
5296 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
5297 {
5298 u32 gtfifodbg;
5299 gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
5300 if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
5301 "MMIO read or write has been dropped %x\n", gtfifodbg))
5302 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
5303 }
5304
5305 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
5306 {
5307 I915_WRITE_NOTRACE(FORCEWAKE, 0);
5308 /* something from same cacheline, but !FORCEWAKE */
5309 POSTING_READ(ECOBUS);
5310 gen6_gt_check_fifodbg(dev_priv);
5311 }
5312
5313 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
5314 {
5315 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
5316 /* something from same cacheline, but !FORCEWAKE_MT */
5317 POSTING_READ(ECOBUS);
5318 gen6_gt_check_fifodbg(dev_priv);
5319 }
5320
5321 /*
5322 * see gen6_gt_force_wake_get()
5323 */
5324 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
5325 {
5326 unsigned long irqflags;
5327
5328 spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
5329 if (--dev_priv->forcewake_count == 0)
5330 dev_priv->gt.force_wake_put(dev_priv);
5331 spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
5332 }
5333
5334 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
5335 {
5336 int ret = 0;
5337
5338 if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
5339 int loop = 500;
5340 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
5341 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
5342 udelay(10);
5343 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
5344 }
5345 if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
5346 ++ret;
5347 dev_priv->gt_fifo_count = fifo;
5348 }
5349 dev_priv->gt_fifo_count--;
5350
5351 return ret;
5352 }
5353
5354 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
5355 {
5356 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
5357 /* something from same cacheline, but !FORCEWAKE_VLV */
5358 POSTING_READ(FORCEWAKE_ACK_VLV);
5359 }
5360
5361 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
5362 {
5363 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL) == 0,
5364 FORCEWAKE_ACK_TIMEOUT_MS))
5365 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
5366
5367 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
5368 I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
5369 _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
5370
5371 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL),
5372 FORCEWAKE_ACK_TIMEOUT_MS))
5373 DRM_ERROR("Timed out waiting for GT to ack forcewake request.\n");
5374
5375 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_MEDIA_VLV) &
5376 FORCEWAKE_KERNEL),
5377 FORCEWAKE_ACK_TIMEOUT_MS))
5378 DRM_ERROR("Timed out waiting for media to ack forcewake request.\n");
5379
5380 /* WaRsForcewakeWaitTC0:vlv */
5381 __gen6_gt_wait_for_thread_c0(dev_priv);
5382 }
5383
5384 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
5385 {
5386 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
5387 I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
5388 _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
5389 /* The below doubles as a POSTING_READ */
5390 gen6_gt_check_fifodbg(dev_priv);
5391 }
5392
5393 void intel_gt_reset(struct drm_device *dev)
5394 {
5395 struct drm_i915_private *dev_priv = dev->dev_private;
5396
5397 if (IS_VALLEYVIEW(dev)) {
5398 vlv_force_wake_reset(dev_priv);
5399 } else if (INTEL_INFO(dev)->gen >= 6) {
5400 __gen6_gt_force_wake_reset(dev_priv);
5401 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5402 __gen6_gt_force_wake_mt_reset(dev_priv);
5403 }
5404 }
5405
5406 void intel_gt_init(struct drm_device *dev)
5407 {
5408 struct drm_i915_private *dev_priv = dev->dev_private;
5409
5410 spin_lock_init(&dev_priv->gt_lock);
5411
5412 intel_gt_reset(dev);
5413
5414 if (IS_VALLEYVIEW(dev)) {
5415 dev_priv->gt.force_wake_get = vlv_force_wake_get;
5416 dev_priv->gt.force_wake_put = vlv_force_wake_put;
5417 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5418 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
5419 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
5420 } else if (IS_GEN6(dev)) {
5421 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
5422 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
5423 }
5424 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
5425 intel_gen6_powersave_work);
5426 }
5427
5428 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5429 {
5430 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5431
5432 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5433 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5434 return -EAGAIN;
5435 }
5436
5437 I915_WRITE(GEN6_PCODE_DATA, *val);
5438 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5439
5440 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5441 500)) {
5442 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5443 return -ETIMEDOUT;
5444 }
5445
5446 *val = I915_READ(GEN6_PCODE_DATA);
5447 I915_WRITE(GEN6_PCODE_DATA, 0);
5448
5449 return 0;
5450 }
5451
5452 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5453 {
5454 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5455
5456 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5457 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5458 return -EAGAIN;
5459 }
5460
5461 I915_WRITE(GEN6_PCODE_DATA, val);
5462 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5463
5464 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5465 500)) {
5466 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5467 return -ETIMEDOUT;
5468 }
5469
5470 I915_WRITE(GEN6_PCODE_DATA, 0);
5471
5472 return 0;
5473 }
5474
5475 int vlv_gpu_freq(int ddr_freq, int val)
5476 {
5477 int mult, base;
5478
5479 switch (ddr_freq) {
5480 case 800:
5481 mult = 20;
5482 base = 120;
5483 break;
5484 case 1066:
5485 mult = 22;
5486 base = 133;
5487 break;
5488 case 1333:
5489 mult = 21;
5490 base = 125;
5491 break;
5492 default:
5493 return -1;
5494 }
5495
5496 return ((val - 0xbd) * mult) + base;
5497 }
5498
5499 int vlv_freq_opcode(int ddr_freq, int val)
5500 {
5501 int mult, base;
5502
5503 switch (ddr_freq) {
5504 case 800:
5505 mult = 20;
5506 base = 120;
5507 break;
5508 case 1066:
5509 mult = 22;
5510 base = 133;
5511 break;
5512 case 1333:
5513 mult = 21;
5514 base = 125;
5515 break;
5516 default:
5517 return -1;
5518 }
5519
5520 val /= mult;
5521 val -= base / mult;
5522 val += 0xbd;
5523
5524 if (val > 0xea)
5525 val = 0xea;
5526
5527 return val;
5528 }
5529
This page took 0.142388 seconds and 6 git commands to generate.