drm/i915: Enable querying offset of UV plane with intel_plane_obj_offset
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_psr.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * DOC: Panel Self Refresh (PSR/SRD)
26 *
27 * Since Haswell Display controller supports Panel Self-Refresh on display
28 * panels witch have a remote frame buffer (RFB) implemented according to PSR
29 * spec in eDP1.3. PSR feature allows the display to go to lower standby states
30 * when system is idle but display is on as it eliminates display refresh
31 * request to DDR memory completely as long as the frame buffer for that
32 * display is unchanged.
33 *
34 * Panel Self Refresh must be supported by both Hardware (source) and
35 * Panel (sink).
36 *
37 * PSR saves power by caching the framebuffer in the panel RFB, which allows us
38 * to power down the link and memory controller. For DSI panels the same idea
39 * is called "manual mode".
40 *
41 * The implementation uses the hardware-based PSR support which automatically
42 * enters/exits self-refresh mode. The hardware takes care of sending the
43 * required DP aux message and could even retrain the link (that part isn't
44 * enabled yet though). The hardware also keeps track of any frontbuffer
45 * changes to know when to exit self-refresh mode again. Unfortunately that
46 * part doesn't work too well, hence why the i915 PSR support uses the
47 * software frontbuffer tracking to make sure it doesn't miss a screen
48 * update. For this integration intel_psr_invalidate() and intel_psr_flush()
49 * get called by the frontbuffer tracking code. Note that because of locking
50 * issues the self-refresh re-enable code is done from a work queue, which
51 * must be correctly synchronized/cancelled when shutting down the pipe."
52 */
53
54 #include <drm/drmP.h>
55
56 #include "intel_drv.h"
57 #include "i915_drv.h"
58
59 static bool is_edp_psr(struct intel_dp *intel_dp)
60 {
61 return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
62 }
63
64 static bool vlv_is_psr_active_on_pipe(struct drm_device *dev, int pipe)
65 {
66 struct drm_i915_private *dev_priv = dev->dev_private;
67 uint32_t val;
68
69 val = I915_READ(VLV_PSRSTAT(pipe)) &
70 VLV_EDP_PSR_CURR_STATE_MASK;
71 return (val == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
72 (val == VLV_EDP_PSR_ACTIVE_SF_UPDATE);
73 }
74
75 static void intel_psr_write_vsc(struct intel_dp *intel_dp,
76 struct edp_vsc_psr *vsc_psr)
77 {
78 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
79 struct drm_device *dev = dig_port->base.base.dev;
80 struct drm_i915_private *dev_priv = dev->dev_private;
81 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
82 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config->cpu_transcoder);
83 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config->cpu_transcoder);
84 uint32_t *data = (uint32_t *) vsc_psr;
85 unsigned int i;
86
87 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
88 the video DIP being updated before program video DIP data buffer
89 registers for DIP being updated. */
90 I915_WRITE(ctl_reg, 0);
91 POSTING_READ(ctl_reg);
92
93 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
94 if (i < sizeof(struct edp_vsc_psr))
95 I915_WRITE(data_reg + i, *data++);
96 else
97 I915_WRITE(data_reg + i, 0);
98 }
99
100 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
101 POSTING_READ(ctl_reg);
102 }
103
104 static void vlv_psr_setup_vsc(struct intel_dp *intel_dp)
105 {
106 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
107 struct drm_device *dev = intel_dig_port->base.base.dev;
108 struct drm_i915_private *dev_priv = dev->dev_private;
109 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
110 enum pipe pipe = to_intel_crtc(crtc)->pipe;
111 uint32_t val;
112
113 /* VLV auto-generate VSC package as per EDP 1.3 spec, Table 3.10 */
114 val = I915_READ(VLV_VSCSDP(pipe));
115 val &= ~VLV_EDP_PSR_SDP_FREQ_MASK;
116 val |= VLV_EDP_PSR_SDP_FREQ_EVFRAME;
117 I915_WRITE(VLV_VSCSDP(pipe), val);
118 }
119
120 static void skl_psr_setup_su_vsc(struct intel_dp *intel_dp)
121 {
122 struct edp_vsc_psr psr_vsc;
123
124 /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
125 memset(&psr_vsc, 0, sizeof(psr_vsc));
126 psr_vsc.sdp_header.HB0 = 0;
127 psr_vsc.sdp_header.HB1 = 0x7;
128 psr_vsc.sdp_header.HB2 = 0x3;
129 psr_vsc.sdp_header.HB3 = 0xb;
130 intel_psr_write_vsc(intel_dp, &psr_vsc);
131 }
132
133 static void hsw_psr_setup_vsc(struct intel_dp *intel_dp)
134 {
135 struct edp_vsc_psr psr_vsc;
136
137 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
138 memset(&psr_vsc, 0, sizeof(psr_vsc));
139 psr_vsc.sdp_header.HB0 = 0;
140 psr_vsc.sdp_header.HB1 = 0x7;
141 psr_vsc.sdp_header.HB2 = 0x2;
142 psr_vsc.sdp_header.HB3 = 0x8;
143 intel_psr_write_vsc(intel_dp, &psr_vsc);
144 }
145
146 static void vlv_psr_enable_sink(struct intel_dp *intel_dp)
147 {
148 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
149 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
150 }
151
152 static void hsw_psr_enable_sink(struct intel_dp *intel_dp)
153 {
154 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
155 struct drm_device *dev = dig_port->base.base.dev;
156 struct drm_i915_private *dev_priv = dev->dev_private;
157 uint32_t aux_clock_divider;
158 uint32_t aux_data_reg, aux_ctl_reg;
159 int precharge = 0x3;
160 static const uint8_t aux_msg[] = {
161 [0] = DP_AUX_NATIVE_WRITE << 4,
162 [1] = DP_SET_POWER >> 8,
163 [2] = DP_SET_POWER & 0xff,
164 [3] = 1 - 1,
165 [4] = DP_SET_POWER_D0,
166 };
167 int i;
168
169 BUILD_BUG_ON(sizeof(aux_msg) > 20);
170
171 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
172
173 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
174 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
175
176 /* Enable AUX frame sync at sink */
177 if (dev_priv->psr.aux_frame_sync)
178 drm_dp_dpcd_writeb(&intel_dp->aux,
179 DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF,
180 DP_AUX_FRAME_SYNC_ENABLE);
181
182 aux_data_reg = (INTEL_INFO(dev)->gen >= 9) ?
183 DPA_AUX_CH_DATA1 : EDP_PSR_AUX_DATA1(dev);
184 aux_ctl_reg = (INTEL_INFO(dev)->gen >= 9) ?
185 DPA_AUX_CH_CTL : EDP_PSR_AUX_CTL(dev);
186
187 /* Setup AUX registers */
188 for (i = 0; i < sizeof(aux_msg); i += 4)
189 I915_WRITE(aux_data_reg + i,
190 intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
191
192 if (INTEL_INFO(dev)->gen >= 9) {
193 uint32_t val;
194
195 val = I915_READ(aux_ctl_reg);
196 val &= ~DP_AUX_CH_CTL_TIME_OUT_MASK;
197 val |= DP_AUX_CH_CTL_TIME_OUT_1600us;
198 val &= ~DP_AUX_CH_CTL_MESSAGE_SIZE_MASK;
199 val |= (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
200 /* Use hardcoded data values for PSR, frame sync and GTC */
201 val &= ~DP_AUX_CH_CTL_PSR_DATA_AUX_REG_SKL;
202 val &= ~DP_AUX_CH_CTL_FS_DATA_AUX_REG_SKL;
203 val &= ~DP_AUX_CH_CTL_GTC_DATA_AUX_REG_SKL;
204 I915_WRITE(aux_ctl_reg, val);
205 } else {
206 I915_WRITE(aux_ctl_reg,
207 DP_AUX_CH_CTL_TIME_OUT_400us |
208 (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
209 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
210 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
211 }
212
213 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, DP_PSR_ENABLE);
214 }
215
216 static void vlv_psr_enable_source(struct intel_dp *intel_dp)
217 {
218 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
219 struct drm_device *dev = dig_port->base.base.dev;
220 struct drm_i915_private *dev_priv = dev->dev_private;
221 struct drm_crtc *crtc = dig_port->base.base.crtc;
222 enum pipe pipe = to_intel_crtc(crtc)->pipe;
223
224 /* Transition from PSR_state 0 to PSR_state 1, i.e. PSR Inactive */
225 I915_WRITE(VLV_PSRCTL(pipe),
226 VLV_EDP_PSR_MODE_SW_TIMER |
227 VLV_EDP_PSR_SRC_TRANSMITTER_STATE |
228 VLV_EDP_PSR_ENABLE);
229 }
230
231 static void vlv_psr_activate(struct intel_dp *intel_dp)
232 {
233 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
234 struct drm_device *dev = dig_port->base.base.dev;
235 struct drm_i915_private *dev_priv = dev->dev_private;
236 struct drm_crtc *crtc = dig_port->base.base.crtc;
237 enum pipe pipe = to_intel_crtc(crtc)->pipe;
238
239 /* Let's do the transition from PSR_state 1 to PSR_state 2
240 * that is PSR transition to active - static frame transmission.
241 * Then Hardware is responsible for the transition to PSR_state 3
242 * that is PSR active - no Remote Frame Buffer (RFB) update.
243 */
244 I915_WRITE(VLV_PSRCTL(pipe), I915_READ(VLV_PSRCTL(pipe)) |
245 VLV_EDP_PSR_ACTIVE_ENTRY);
246 }
247
248 static void hsw_psr_enable_source(struct intel_dp *intel_dp)
249 {
250 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
251 struct drm_device *dev = dig_port->base.base.dev;
252 struct drm_i915_private *dev_priv = dev->dev_private;
253
254 uint32_t max_sleep_time = 0x1f;
255 /* Lately it was identified that depending on panel idle frame count
256 * calculated at HW can be off by 1. So let's use what came
257 * from VBT + 1.
258 * There are also other cases where panel demands at least 4
259 * but VBT is not being set. To cover these 2 cases lets use
260 * at least 5 when VBT isn't set to be on the safest side.
261 */
262 uint32_t idle_frames = dev_priv->vbt.psr.idle_frames ?
263 dev_priv->vbt.psr.idle_frames + 1 : 5;
264 uint32_t val = 0x0;
265 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
266
267 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
268 /* It doesn't mean we shouldn't send TPS patters, so let's
269 send the minimal TP1 possible and skip TP2. */
270 val |= EDP_PSR_TP1_TIME_100us;
271 val |= EDP_PSR_TP2_TP3_TIME_0us;
272 val |= EDP_PSR_SKIP_AUX_EXIT;
273 /* Sink should be able to train with the 5 or 6 idle patterns */
274 idle_frames += 4;
275 }
276
277 I915_WRITE(EDP_PSR_CTL(dev), val |
278 (IS_BROADWELL(dev) ? 0 : link_entry_time) |
279 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
280 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
281 EDP_PSR_ENABLE);
282
283 if (dev_priv->psr.psr2_support)
284 I915_WRITE(EDP_PSR2_CTL, EDP_PSR2_ENABLE |
285 EDP_SU_TRACK_ENABLE | EDP_PSR2_TP2_TIME_100);
286 }
287
288 static bool intel_psr_match_conditions(struct intel_dp *intel_dp)
289 {
290 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
291 struct drm_device *dev = dig_port->base.base.dev;
292 struct drm_i915_private *dev_priv = dev->dev_private;
293 struct drm_crtc *crtc = dig_port->base.base.crtc;
294 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
295
296 lockdep_assert_held(&dev_priv->psr.lock);
297 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
298 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
299
300 dev_priv->psr.source_ok = false;
301
302 if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
303 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
304 return false;
305 }
306
307 if (!i915.enable_psr) {
308 DRM_DEBUG_KMS("PSR disable by flag\n");
309 return false;
310 }
311
312 if (IS_HASWELL(dev) &&
313 I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config->cpu_transcoder)) &
314 S3D_ENABLE) {
315 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
316 return false;
317 }
318
319 if (IS_HASWELL(dev) &&
320 intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
321 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
322 return false;
323 }
324
325 if (!IS_VALLEYVIEW(dev) && ((dev_priv->vbt.psr.full_link) ||
326 (dig_port->port != PORT_A))) {
327 DRM_DEBUG_KMS("PSR condition failed: Link Standby requested/needed but not supported on this platform\n");
328 return false;
329 }
330
331 dev_priv->psr.source_ok = true;
332 return true;
333 }
334
335 static void intel_psr_activate(struct intel_dp *intel_dp)
336 {
337 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
338 struct drm_device *dev = intel_dig_port->base.base.dev;
339 struct drm_i915_private *dev_priv = dev->dev_private;
340
341 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
342 WARN_ON(dev_priv->psr.active);
343 lockdep_assert_held(&dev_priv->psr.lock);
344
345 /* Enable/Re-enable PSR on the host */
346 if (HAS_DDI(dev))
347 /* On HSW+ after we enable PSR on source it will activate it
348 * as soon as it match configure idle_frame count. So
349 * we just actually enable it here on activation time.
350 */
351 hsw_psr_enable_source(intel_dp);
352 else
353 vlv_psr_activate(intel_dp);
354
355 dev_priv->psr.active = true;
356 }
357
358 /**
359 * intel_psr_enable - Enable PSR
360 * @intel_dp: Intel DP
361 *
362 * This function can only be called after the pipe is fully trained and enabled.
363 */
364 void intel_psr_enable(struct intel_dp *intel_dp)
365 {
366 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
367 struct drm_device *dev = intel_dig_port->base.base.dev;
368 struct drm_i915_private *dev_priv = dev->dev_private;
369 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
370
371 if (!HAS_PSR(dev)) {
372 DRM_DEBUG_KMS("PSR not supported on this platform\n");
373 return;
374 }
375
376 if (!is_edp_psr(intel_dp)) {
377 DRM_DEBUG_KMS("PSR not supported by this panel\n");
378 return;
379 }
380
381 mutex_lock(&dev_priv->psr.lock);
382 if (dev_priv->psr.enabled) {
383 DRM_DEBUG_KMS("PSR already in use\n");
384 goto unlock;
385 }
386
387 if (!intel_psr_match_conditions(intel_dp))
388 goto unlock;
389
390 dev_priv->psr.busy_frontbuffer_bits = 0;
391
392 if (HAS_DDI(dev)) {
393 hsw_psr_setup_vsc(intel_dp);
394
395 if (dev_priv->psr.psr2_support) {
396 /* PSR2 is restricted to work with panel resolutions upto 3200x2000 */
397 if (crtc->config->pipe_src_w > 3200 ||
398 crtc->config->pipe_src_h > 2000)
399 dev_priv->psr.psr2_support = false;
400 else
401 skl_psr_setup_su_vsc(intel_dp);
402 }
403
404 /* Avoid continuous PSR exit by masking memup and hpd */
405 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
406 EDP_PSR_DEBUG_MASK_HPD);
407
408 /* Enable PSR on the panel */
409 hsw_psr_enable_sink(intel_dp);
410
411 if (INTEL_INFO(dev)->gen >= 9)
412 intel_psr_activate(intel_dp);
413 } else {
414 vlv_psr_setup_vsc(intel_dp);
415
416 /* Enable PSR on the panel */
417 vlv_psr_enable_sink(intel_dp);
418
419 /* On HSW+ enable_source also means go to PSR entry/active
420 * state as soon as idle_frame achieved and here would be
421 * to soon. However on VLV enable_source just enable PSR
422 * but let it on inactive state. So we might do this prior
423 * to active transition, i.e. here.
424 */
425 vlv_psr_enable_source(intel_dp);
426 }
427
428 dev_priv->psr.enabled = intel_dp;
429 unlock:
430 mutex_unlock(&dev_priv->psr.lock);
431 }
432
433 static void vlv_psr_disable(struct intel_dp *intel_dp)
434 {
435 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
436 struct drm_device *dev = intel_dig_port->base.base.dev;
437 struct drm_i915_private *dev_priv = dev->dev_private;
438 struct intel_crtc *intel_crtc =
439 to_intel_crtc(intel_dig_port->base.base.crtc);
440 uint32_t val;
441
442 if (dev_priv->psr.active) {
443 /* Put VLV PSR back to PSR_state 0 that is PSR Disabled. */
444 if (wait_for((I915_READ(VLV_PSRSTAT(intel_crtc->pipe)) &
445 VLV_EDP_PSR_IN_TRANS) == 0, 1))
446 WARN(1, "PSR transition took longer than expected\n");
447
448 val = I915_READ(VLV_PSRCTL(intel_crtc->pipe));
449 val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
450 val &= ~VLV_EDP_PSR_ENABLE;
451 val &= ~VLV_EDP_PSR_MODE_MASK;
452 I915_WRITE(VLV_PSRCTL(intel_crtc->pipe), val);
453
454 dev_priv->psr.active = false;
455 } else {
456 WARN_ON(vlv_is_psr_active_on_pipe(dev, intel_crtc->pipe));
457 }
458 }
459
460 static void hsw_psr_disable(struct intel_dp *intel_dp)
461 {
462 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
463 struct drm_device *dev = intel_dig_port->base.base.dev;
464 struct drm_i915_private *dev_priv = dev->dev_private;
465
466 if (dev_priv->psr.active) {
467 I915_WRITE(EDP_PSR_CTL(dev),
468 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
469
470 /* Wait till PSR is idle */
471 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
472 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
473 DRM_ERROR("Timed out waiting for PSR Idle State\n");
474
475 dev_priv->psr.active = false;
476 } else {
477 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
478 }
479 }
480
481 /**
482 * intel_psr_disable - Disable PSR
483 * @intel_dp: Intel DP
484 *
485 * This function needs to be called before disabling pipe.
486 */
487 void intel_psr_disable(struct intel_dp *intel_dp)
488 {
489 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
490 struct drm_device *dev = intel_dig_port->base.base.dev;
491 struct drm_i915_private *dev_priv = dev->dev_private;
492
493 mutex_lock(&dev_priv->psr.lock);
494 if (!dev_priv->psr.enabled) {
495 mutex_unlock(&dev_priv->psr.lock);
496 return;
497 }
498
499 if (HAS_DDI(dev))
500 hsw_psr_disable(intel_dp);
501 else
502 vlv_psr_disable(intel_dp);
503
504 dev_priv->psr.enabled = NULL;
505 mutex_unlock(&dev_priv->psr.lock);
506
507 cancel_delayed_work_sync(&dev_priv->psr.work);
508 }
509
510 static void intel_psr_work(struct work_struct *work)
511 {
512 struct drm_i915_private *dev_priv =
513 container_of(work, typeof(*dev_priv), psr.work.work);
514 struct intel_dp *intel_dp = dev_priv->psr.enabled;
515 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
516 enum pipe pipe = to_intel_crtc(crtc)->pipe;
517
518 /* We have to make sure PSR is ready for re-enable
519 * otherwise it keeps disabled until next full enable/disable cycle.
520 * PSR might take some time to get fully disabled
521 * and be ready for re-enable.
522 */
523 if (HAS_DDI(dev_priv->dev)) {
524 if (wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev_priv->dev)) &
525 EDP_PSR_STATUS_STATE_MASK) == 0, 50)) {
526 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
527 return;
528 }
529 } else {
530 if (wait_for((I915_READ(VLV_PSRSTAT(pipe)) &
531 VLV_EDP_PSR_IN_TRANS) == 0, 1)) {
532 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
533 return;
534 }
535 }
536 mutex_lock(&dev_priv->psr.lock);
537 intel_dp = dev_priv->psr.enabled;
538
539 if (!intel_dp)
540 goto unlock;
541
542 /*
543 * The delayed work can race with an invalidate hence we need to
544 * recheck. Since psr_flush first clears this and then reschedules we
545 * won't ever miss a flush when bailing out here.
546 */
547 if (dev_priv->psr.busy_frontbuffer_bits)
548 goto unlock;
549
550 intel_psr_activate(intel_dp);
551 unlock:
552 mutex_unlock(&dev_priv->psr.lock);
553 }
554
555 static void intel_psr_exit(struct drm_device *dev)
556 {
557 struct drm_i915_private *dev_priv = dev->dev_private;
558 struct intel_dp *intel_dp = dev_priv->psr.enabled;
559 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
560 enum pipe pipe = to_intel_crtc(crtc)->pipe;
561 u32 val;
562
563 if (!dev_priv->psr.active)
564 return;
565
566 if (HAS_DDI(dev)) {
567 val = I915_READ(EDP_PSR_CTL(dev));
568
569 WARN_ON(!(val & EDP_PSR_ENABLE));
570
571 I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
572 } else {
573 val = I915_READ(VLV_PSRCTL(pipe));
574
575 /* Here we do the transition from PSR_state 3 to PSR_state 5
576 * directly once PSR State 4 that is active with single frame
577 * update can be skipped. PSR_state 5 that is PSR exit then
578 * Hardware is responsible to transition back to PSR_state 1
579 * that is PSR inactive. Same state after
580 * vlv_edp_psr_enable_source.
581 */
582 val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
583 I915_WRITE(VLV_PSRCTL(pipe), val);
584
585 /* Send AUX wake up - Spec says after transitioning to PSR
586 * active we have to send AUX wake up by writing 01h in DPCD
587 * 600h of sink device.
588 * XXX: This might slow down the transition, but without this
589 * HW doesn't complete the transition to PSR_state 1 and we
590 * never get the screen updated.
591 */
592 drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
593 DP_SET_POWER_D0);
594 }
595
596 dev_priv->psr.active = false;
597 }
598
599 /**
600 * intel_psr_single_frame_update - Single Frame Update
601 * @dev: DRM device
602 * @frontbuffer_bits: frontbuffer plane tracking bits
603 *
604 * Some platforms support a single frame update feature that is used to
605 * send and update only one frame on Remote Frame Buffer.
606 * So far it is only implemented for Valleyview and Cherryview because
607 * hardware requires this to be done before a page flip.
608 */
609 void intel_psr_single_frame_update(struct drm_device *dev,
610 unsigned frontbuffer_bits)
611 {
612 struct drm_i915_private *dev_priv = dev->dev_private;
613 struct drm_crtc *crtc;
614 enum pipe pipe;
615 u32 val;
616
617 /*
618 * Single frame update is already supported on BDW+ but it requires
619 * many W/A and it isn't really needed.
620 */
621 if (!IS_VALLEYVIEW(dev))
622 return;
623
624 mutex_lock(&dev_priv->psr.lock);
625 if (!dev_priv->psr.enabled) {
626 mutex_unlock(&dev_priv->psr.lock);
627 return;
628 }
629
630 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
631 pipe = to_intel_crtc(crtc)->pipe;
632
633 if (frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)) {
634 val = I915_READ(VLV_PSRCTL(pipe));
635
636 /*
637 * We need to set this bit before writing registers for a flip.
638 * This bit will be self-clear when it gets to the PSR active state.
639 */
640 I915_WRITE(VLV_PSRCTL(pipe), val | VLV_EDP_PSR_SINGLE_FRAME_UPDATE);
641 }
642 mutex_unlock(&dev_priv->psr.lock);
643 }
644
645 /**
646 * intel_psr_invalidate - Invalidade PSR
647 * @dev: DRM device
648 * @frontbuffer_bits: frontbuffer plane tracking bits
649 *
650 * Since the hardware frontbuffer tracking has gaps we need to integrate
651 * with the software frontbuffer tracking. This function gets called every
652 * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
653 * disabled if the frontbuffer mask contains a buffer relevant to PSR.
654 *
655 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
656 */
657 void intel_psr_invalidate(struct drm_device *dev,
658 unsigned frontbuffer_bits)
659 {
660 struct drm_i915_private *dev_priv = dev->dev_private;
661 struct drm_crtc *crtc;
662 enum pipe pipe;
663
664 mutex_lock(&dev_priv->psr.lock);
665 if (!dev_priv->psr.enabled) {
666 mutex_unlock(&dev_priv->psr.lock);
667 return;
668 }
669
670 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
671 pipe = to_intel_crtc(crtc)->pipe;
672
673 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
674 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
675
676 if (frontbuffer_bits)
677 intel_psr_exit(dev);
678
679 mutex_unlock(&dev_priv->psr.lock);
680 }
681
682 /**
683 * intel_psr_flush - Flush PSR
684 * @dev: DRM device
685 * @frontbuffer_bits: frontbuffer plane tracking bits
686 * @origin: which operation caused the flush
687 *
688 * Since the hardware frontbuffer tracking has gaps we need to integrate
689 * with the software frontbuffer tracking. This function gets called every
690 * time frontbuffer rendering has completed and flushed out to memory. PSR
691 * can be enabled again if no other frontbuffer relevant to PSR is dirty.
692 *
693 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
694 */
695 void intel_psr_flush(struct drm_device *dev,
696 unsigned frontbuffer_bits, enum fb_op_origin origin)
697 {
698 struct drm_i915_private *dev_priv = dev->dev_private;
699 struct drm_crtc *crtc;
700 enum pipe pipe;
701 int delay_ms = HAS_DDI(dev) ? 100 : 500;
702
703 mutex_lock(&dev_priv->psr.lock);
704 if (!dev_priv->psr.enabled) {
705 mutex_unlock(&dev_priv->psr.lock);
706 return;
707 }
708
709 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
710 pipe = to_intel_crtc(crtc)->pipe;
711
712 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
713 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
714
715 if (HAS_DDI(dev)) {
716 /*
717 * By definition every flush should mean invalidate + flush,
718 * however on core platforms let's minimize the
719 * disable/re-enable so we can avoid the invalidate when flip
720 * originated the flush.
721 */
722 if (frontbuffer_bits && origin != ORIGIN_FLIP)
723 intel_psr_exit(dev);
724 } else {
725 /*
726 * On Valleyview and Cherryview we don't use hardware tracking
727 * so any plane updates or cursor moves don't result in a PSR
728 * invalidating. Which means we need to manually fake this in
729 * software for all flushes.
730 */
731 if (frontbuffer_bits)
732 intel_psr_exit(dev);
733 }
734
735 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
736 schedule_delayed_work(&dev_priv->psr.work,
737 msecs_to_jiffies(delay_ms));
738 mutex_unlock(&dev_priv->psr.lock);
739 }
740
741 /**
742 * intel_psr_init - Init basic PSR work and mutex.
743 * @dev: DRM device
744 *
745 * This function is called only once at driver load to initialize basic
746 * PSR stuff.
747 */
748 void intel_psr_init(struct drm_device *dev)
749 {
750 struct drm_i915_private *dev_priv = dev->dev_private;
751
752 INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work);
753 mutex_init(&dev_priv->psr.lock);
754 }
This page took 0.063264 seconds and 5 git commands to generate.