Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_psr.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * DOC: Panel Self Refresh (PSR/SRD)
26 *
27 * Since Haswell Display controller supports Panel Self-Refresh on display
28 * panels witch have a remote frame buffer (RFB) implemented according to PSR
29 * spec in eDP1.3. PSR feature allows the display to go to lower standby states
30 * when system is idle but display is on as it eliminates display refresh
31 * request to DDR memory completely as long as the frame buffer for that
32 * display is unchanged.
33 *
34 * Panel Self Refresh must be supported by both Hardware (source) and
35 * Panel (sink).
36 *
37 * PSR saves power by caching the framebuffer in the panel RFB, which allows us
38 * to power down the link and memory controller. For DSI panels the same idea
39 * is called "manual mode".
40 *
41 * The implementation uses the hardware-based PSR support which automatically
42 * enters/exits self-refresh mode. The hardware takes care of sending the
43 * required DP aux message and could even retrain the link (that part isn't
44 * enabled yet though). The hardware also keeps track of any frontbuffer
45 * changes to know when to exit self-refresh mode again. Unfortunately that
46 * part doesn't work too well, hence why the i915 PSR support uses the
47 * software frontbuffer tracking to make sure it doesn't miss a screen
48 * update. For this integration intel_psr_invalidate() and intel_psr_flush()
49 * get called by the frontbuffer tracking code. Note that because of locking
50 * issues the self-refresh re-enable code is done from a work queue, which
51 * must be correctly synchronized/cancelled when shutting down the pipe."
52 */
53
54 #include <drm/drmP.h>
55
56 #include "intel_drv.h"
57 #include "i915_drv.h"
58
59 static bool is_edp_psr(struct intel_dp *intel_dp)
60 {
61 return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
62 }
63
64 static bool vlv_is_psr_active_on_pipe(struct drm_device *dev, int pipe)
65 {
66 struct drm_i915_private *dev_priv = dev->dev_private;
67 uint32_t val;
68
69 val = I915_READ(VLV_PSRSTAT(pipe)) &
70 VLV_EDP_PSR_CURR_STATE_MASK;
71 return (val == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
72 (val == VLV_EDP_PSR_ACTIVE_SF_UPDATE);
73 }
74
75 static void intel_psr_write_vsc(struct intel_dp *intel_dp,
76 const struct edp_vsc_psr *vsc_psr)
77 {
78 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
79 struct drm_device *dev = dig_port->base.base.dev;
80 struct drm_i915_private *dev_priv = dev->dev_private;
81 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
82 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
83 i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
84 uint32_t *data = (uint32_t *) vsc_psr;
85 unsigned int i;
86
87 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
88 the video DIP being updated before program video DIP data buffer
89 registers for DIP being updated. */
90 I915_WRITE(ctl_reg, 0);
91 POSTING_READ(ctl_reg);
92
93 for (i = 0; i < sizeof(*vsc_psr); i += 4) {
94 I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder,
95 i >> 2), *data);
96 data++;
97 }
98 for (; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4)
99 I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder,
100 i >> 2), 0);
101
102 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
103 POSTING_READ(ctl_reg);
104 }
105
106 static void vlv_psr_setup_vsc(struct intel_dp *intel_dp)
107 {
108 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
109 struct drm_device *dev = intel_dig_port->base.base.dev;
110 struct drm_i915_private *dev_priv = dev->dev_private;
111 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
112 enum pipe pipe = to_intel_crtc(crtc)->pipe;
113 uint32_t val;
114
115 /* VLV auto-generate VSC package as per EDP 1.3 spec, Table 3.10 */
116 val = I915_READ(VLV_VSCSDP(pipe));
117 val &= ~VLV_EDP_PSR_SDP_FREQ_MASK;
118 val |= VLV_EDP_PSR_SDP_FREQ_EVFRAME;
119 I915_WRITE(VLV_VSCSDP(pipe), val);
120 }
121
122 static void skl_psr_setup_su_vsc(struct intel_dp *intel_dp)
123 {
124 struct edp_vsc_psr psr_vsc;
125
126 /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
127 memset(&psr_vsc, 0, sizeof(psr_vsc));
128 psr_vsc.sdp_header.HB0 = 0;
129 psr_vsc.sdp_header.HB1 = 0x7;
130 psr_vsc.sdp_header.HB2 = 0x3;
131 psr_vsc.sdp_header.HB3 = 0xb;
132 intel_psr_write_vsc(intel_dp, &psr_vsc);
133 }
134
135 static void hsw_psr_setup_vsc(struct intel_dp *intel_dp)
136 {
137 struct edp_vsc_psr psr_vsc;
138
139 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
140 memset(&psr_vsc, 0, sizeof(psr_vsc));
141 psr_vsc.sdp_header.HB0 = 0;
142 psr_vsc.sdp_header.HB1 = 0x7;
143 psr_vsc.sdp_header.HB2 = 0x2;
144 psr_vsc.sdp_header.HB3 = 0x8;
145 intel_psr_write_vsc(intel_dp, &psr_vsc);
146 }
147
148 static void vlv_psr_enable_sink(struct intel_dp *intel_dp)
149 {
150 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
151 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
152 }
153
154 static i915_reg_t psr_aux_ctl_reg(struct drm_i915_private *dev_priv,
155 enum port port)
156 {
157 if (INTEL_INFO(dev_priv)->gen >= 9)
158 return DP_AUX_CH_CTL(port);
159 else
160 return EDP_PSR_AUX_CTL;
161 }
162
163 static i915_reg_t psr_aux_data_reg(struct drm_i915_private *dev_priv,
164 enum port port, int index)
165 {
166 if (INTEL_INFO(dev_priv)->gen >= 9)
167 return DP_AUX_CH_DATA(port, index);
168 else
169 return EDP_PSR_AUX_DATA(index);
170 }
171
172 static void hsw_psr_enable_sink(struct intel_dp *intel_dp)
173 {
174 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
175 struct drm_device *dev = dig_port->base.base.dev;
176 struct drm_i915_private *dev_priv = dev->dev_private;
177 uint32_t aux_clock_divider;
178 i915_reg_t aux_ctl_reg;
179 int precharge = 0x3;
180 static const uint8_t aux_msg[] = {
181 [0] = DP_AUX_NATIVE_WRITE << 4,
182 [1] = DP_SET_POWER >> 8,
183 [2] = DP_SET_POWER & 0xff,
184 [3] = 1 - 1,
185 [4] = DP_SET_POWER_D0,
186 };
187 enum port port = dig_port->port;
188 int i;
189
190 BUILD_BUG_ON(sizeof(aux_msg) > 20);
191
192 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
193
194 /* Enable AUX frame sync at sink */
195 if (dev_priv->psr.aux_frame_sync)
196 drm_dp_dpcd_writeb(&intel_dp->aux,
197 DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF,
198 DP_AUX_FRAME_SYNC_ENABLE);
199
200 aux_ctl_reg = psr_aux_ctl_reg(dev_priv, port);
201
202 /* Setup AUX registers */
203 for (i = 0; i < sizeof(aux_msg); i += 4)
204 I915_WRITE(psr_aux_data_reg(dev_priv, port, i >> 2),
205 intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
206
207 if (INTEL_INFO(dev)->gen >= 9) {
208 uint32_t val;
209
210 val = I915_READ(aux_ctl_reg);
211 val &= ~DP_AUX_CH_CTL_TIME_OUT_MASK;
212 val |= DP_AUX_CH_CTL_TIME_OUT_1600us;
213 val &= ~DP_AUX_CH_CTL_MESSAGE_SIZE_MASK;
214 val |= (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
215 /* Use hardcoded data values for PSR, frame sync and GTC */
216 val &= ~DP_AUX_CH_CTL_PSR_DATA_AUX_REG_SKL;
217 val &= ~DP_AUX_CH_CTL_FS_DATA_AUX_REG_SKL;
218 val &= ~DP_AUX_CH_CTL_GTC_DATA_AUX_REG_SKL;
219 I915_WRITE(aux_ctl_reg, val);
220 } else {
221 I915_WRITE(aux_ctl_reg,
222 DP_AUX_CH_CTL_TIME_OUT_400us |
223 (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
224 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
225 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
226 }
227
228 if (dev_priv->psr.link_standby)
229 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
230 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
231 else
232 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
233 DP_PSR_ENABLE);
234 }
235
236 static void vlv_psr_enable_source(struct intel_dp *intel_dp)
237 {
238 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
239 struct drm_device *dev = dig_port->base.base.dev;
240 struct drm_i915_private *dev_priv = dev->dev_private;
241 struct drm_crtc *crtc = dig_port->base.base.crtc;
242 enum pipe pipe = to_intel_crtc(crtc)->pipe;
243
244 /* Transition from PSR_state 0 to PSR_state 1, i.e. PSR Inactive */
245 I915_WRITE(VLV_PSRCTL(pipe),
246 VLV_EDP_PSR_MODE_SW_TIMER |
247 VLV_EDP_PSR_SRC_TRANSMITTER_STATE |
248 VLV_EDP_PSR_ENABLE);
249 }
250
251 static void vlv_psr_activate(struct intel_dp *intel_dp)
252 {
253 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
254 struct drm_device *dev = dig_port->base.base.dev;
255 struct drm_i915_private *dev_priv = dev->dev_private;
256 struct drm_crtc *crtc = dig_port->base.base.crtc;
257 enum pipe pipe = to_intel_crtc(crtc)->pipe;
258
259 /* Let's do the transition from PSR_state 1 to PSR_state 2
260 * that is PSR transition to active - static frame transmission.
261 * Then Hardware is responsible for the transition to PSR_state 3
262 * that is PSR active - no Remote Frame Buffer (RFB) update.
263 */
264 I915_WRITE(VLV_PSRCTL(pipe), I915_READ(VLV_PSRCTL(pipe)) |
265 VLV_EDP_PSR_ACTIVE_ENTRY);
266 }
267
268 static void hsw_psr_enable_source(struct intel_dp *intel_dp)
269 {
270 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
271 struct drm_device *dev = dig_port->base.base.dev;
272 struct drm_i915_private *dev_priv = dev->dev_private;
273
274 uint32_t max_sleep_time = 0x1f;
275 /*
276 * Let's respect VBT in case VBT asks a higher idle_frame value.
277 * Let's use 6 as the minimum to cover all known cases including
278 * the off-by-one issue that HW has in some cases. Also there are
279 * cases where sink should be able to train
280 * with the 5 or 6 idle patterns.
281 */
282 uint32_t idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
283 uint32_t val = EDP_PSR_ENABLE;
284
285 val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
286 val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
287
288 if (IS_HASWELL(dev))
289 val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
290
291 if (dev_priv->psr.link_standby)
292 val |= EDP_PSR_LINK_STANDBY;
293
294 if (dev_priv->vbt.psr.tp1_wakeup_time > 5)
295 val |= EDP_PSR_TP1_TIME_2500us;
296 else if (dev_priv->vbt.psr.tp1_wakeup_time > 1)
297 val |= EDP_PSR_TP1_TIME_500us;
298 else if (dev_priv->vbt.psr.tp1_wakeup_time > 0)
299 val |= EDP_PSR_TP1_TIME_100us;
300 else
301 val |= EDP_PSR_TP1_TIME_0us;
302
303 if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 5)
304 val |= EDP_PSR_TP2_TP3_TIME_2500us;
305 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 1)
306 val |= EDP_PSR_TP2_TP3_TIME_500us;
307 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 0)
308 val |= EDP_PSR_TP2_TP3_TIME_100us;
309 else
310 val |= EDP_PSR_TP2_TP3_TIME_0us;
311
312 if (intel_dp_source_supports_hbr2(intel_dp) &&
313 drm_dp_tps3_supported(intel_dp->dpcd))
314 val |= EDP_PSR_TP1_TP3_SEL;
315 else
316 val |= EDP_PSR_TP1_TP2_SEL;
317
318 I915_WRITE(EDP_PSR_CTL, val);
319
320 if (!dev_priv->psr.psr2_support)
321 return;
322
323 /* FIXME: selective update is probably totally broken because it doesn't
324 * mesh at all with our frontbuffer tracking. And the hw alone isn't
325 * good enough. */
326 val = EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
327
328 if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 5)
329 val |= EDP_PSR2_TP2_TIME_2500;
330 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 1)
331 val |= EDP_PSR2_TP2_TIME_500;
332 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 0)
333 val |= EDP_PSR2_TP2_TIME_100;
334 else
335 val |= EDP_PSR2_TP2_TIME_50;
336
337 I915_WRITE(EDP_PSR2_CTL, val);
338 }
339
340 static bool intel_psr_match_conditions(struct intel_dp *intel_dp)
341 {
342 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
343 struct drm_device *dev = dig_port->base.base.dev;
344 struct drm_i915_private *dev_priv = dev->dev_private;
345 struct drm_crtc *crtc = dig_port->base.base.crtc;
346 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
347
348 lockdep_assert_held(&dev_priv->psr.lock);
349 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
350 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
351
352 dev_priv->psr.source_ok = false;
353
354 /*
355 * HSW spec explicitly says PSR is tied to port A.
356 * BDW+ platforms with DDI implementation of PSR have different
357 * PSR registers per transcoder and we only implement transcoder EDP
358 * ones. Since by Display design transcoder EDP is tied to port A
359 * we can safely escape based on the port A.
360 */
361 if (HAS_DDI(dev) && dig_port->port != PORT_A) {
362 DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
363 return false;
364 }
365
366 if (!i915.enable_psr) {
367 DRM_DEBUG_KMS("PSR disable by flag\n");
368 return false;
369 }
370
371 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
372 !dev_priv->psr.link_standby) {
373 DRM_ERROR("PSR condition failed: Link off requested but not supported on this platform\n");
374 return false;
375 }
376
377 if (IS_HASWELL(dev) &&
378 I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config->cpu_transcoder)) &
379 S3D_ENABLE) {
380 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
381 return false;
382 }
383
384 if (IS_HASWELL(dev) &&
385 intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
386 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
387 return false;
388 }
389
390 dev_priv->psr.source_ok = true;
391 return true;
392 }
393
394 static void intel_psr_activate(struct intel_dp *intel_dp)
395 {
396 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
397 struct drm_device *dev = intel_dig_port->base.base.dev;
398 struct drm_i915_private *dev_priv = dev->dev_private;
399
400 WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
401 WARN_ON(dev_priv->psr.active);
402 lockdep_assert_held(&dev_priv->psr.lock);
403
404 /* Enable/Re-enable PSR on the host */
405 if (HAS_DDI(dev))
406 /* On HSW+ after we enable PSR on source it will activate it
407 * as soon as it match configure idle_frame count. So
408 * we just actually enable it here on activation time.
409 */
410 hsw_psr_enable_source(intel_dp);
411 else
412 vlv_psr_activate(intel_dp);
413
414 dev_priv->psr.active = true;
415 }
416
417 /**
418 * intel_psr_enable - Enable PSR
419 * @intel_dp: Intel DP
420 *
421 * This function can only be called after the pipe is fully trained and enabled.
422 */
423 void intel_psr_enable(struct intel_dp *intel_dp)
424 {
425 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
426 struct drm_device *dev = intel_dig_port->base.base.dev;
427 struct drm_i915_private *dev_priv = dev->dev_private;
428 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
429
430 if (!HAS_PSR(dev)) {
431 DRM_DEBUG_KMS("PSR not supported on this platform\n");
432 return;
433 }
434
435 if (!is_edp_psr(intel_dp)) {
436 DRM_DEBUG_KMS("PSR not supported by this panel\n");
437 return;
438 }
439
440 mutex_lock(&dev_priv->psr.lock);
441 if (dev_priv->psr.enabled) {
442 DRM_DEBUG_KMS("PSR already in use\n");
443 goto unlock;
444 }
445
446 if (!intel_psr_match_conditions(intel_dp))
447 goto unlock;
448
449 dev_priv->psr.busy_frontbuffer_bits = 0;
450
451 if (HAS_DDI(dev)) {
452 hsw_psr_setup_vsc(intel_dp);
453
454 if (dev_priv->psr.psr2_support) {
455 /* PSR2 is restricted to work with panel resolutions upto 3200x2000 */
456 if (crtc->config->pipe_src_w > 3200 ||
457 crtc->config->pipe_src_h > 2000)
458 dev_priv->psr.psr2_support = false;
459 else
460 skl_psr_setup_su_vsc(intel_dp);
461 }
462
463 /*
464 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD.
465 * Also mask LPSP to avoid dependency on other drivers that
466 * might block runtime_pm besides preventing other hw tracking
467 * issues now we can rely on frontbuffer tracking.
468 */
469 I915_WRITE(EDP_PSR_DEBUG_CTL, EDP_PSR_DEBUG_MASK_MEMUP |
470 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
471
472 /* Enable PSR on the panel */
473 hsw_psr_enable_sink(intel_dp);
474
475 if (INTEL_INFO(dev)->gen >= 9)
476 intel_psr_activate(intel_dp);
477 } else {
478 vlv_psr_setup_vsc(intel_dp);
479
480 /* Enable PSR on the panel */
481 vlv_psr_enable_sink(intel_dp);
482
483 /* On HSW+ enable_source also means go to PSR entry/active
484 * state as soon as idle_frame achieved and here would be
485 * to soon. However on VLV enable_source just enable PSR
486 * but let it on inactive state. So we might do this prior
487 * to active transition, i.e. here.
488 */
489 vlv_psr_enable_source(intel_dp);
490 }
491
492 /*
493 * FIXME: Activation should happen immediately since this function
494 * is just called after pipe is fully trained and enabled.
495 * However on every platform we face issues when first activation
496 * follows a modeset so quickly.
497 * - On VLV/CHV we get bank screen on first activation
498 * - On HSW/BDW we get a recoverable frozen screen until next
499 * exit-activate sequence.
500 */
501 if (INTEL_INFO(dev)->gen < 9)
502 schedule_delayed_work(&dev_priv->psr.work,
503 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
504
505 dev_priv->psr.enabled = intel_dp;
506 unlock:
507 mutex_unlock(&dev_priv->psr.lock);
508 }
509
510 static void vlv_psr_disable(struct intel_dp *intel_dp)
511 {
512 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
513 struct drm_device *dev = intel_dig_port->base.base.dev;
514 struct drm_i915_private *dev_priv = dev->dev_private;
515 struct intel_crtc *intel_crtc =
516 to_intel_crtc(intel_dig_port->base.base.crtc);
517 uint32_t val;
518
519 if (dev_priv->psr.active) {
520 /* Put VLV PSR back to PSR_state 0 that is PSR Disabled. */
521 if (wait_for((I915_READ(VLV_PSRSTAT(intel_crtc->pipe)) &
522 VLV_EDP_PSR_IN_TRANS) == 0, 1))
523 WARN(1, "PSR transition took longer than expected\n");
524
525 val = I915_READ(VLV_PSRCTL(intel_crtc->pipe));
526 val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
527 val &= ~VLV_EDP_PSR_ENABLE;
528 val &= ~VLV_EDP_PSR_MODE_MASK;
529 I915_WRITE(VLV_PSRCTL(intel_crtc->pipe), val);
530
531 dev_priv->psr.active = false;
532 } else {
533 WARN_ON(vlv_is_psr_active_on_pipe(dev, intel_crtc->pipe));
534 }
535 }
536
537 static void hsw_psr_disable(struct intel_dp *intel_dp)
538 {
539 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
540 struct drm_device *dev = intel_dig_port->base.base.dev;
541 struct drm_i915_private *dev_priv = dev->dev_private;
542
543 if (dev_priv->psr.active) {
544 I915_WRITE(EDP_PSR_CTL,
545 I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
546
547 /* Wait till PSR is idle */
548 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL) &
549 EDP_PSR_STATUS_STATE_MASK) == 0,
550 2 * USEC_PER_SEC, 10 * USEC_PER_MSEC))
551 DRM_ERROR("Timed out waiting for PSR Idle State\n");
552
553 dev_priv->psr.active = false;
554 } else {
555 WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
556 }
557 }
558
559 /**
560 * intel_psr_disable - Disable PSR
561 * @intel_dp: Intel DP
562 *
563 * This function needs to be called before disabling pipe.
564 */
565 void intel_psr_disable(struct intel_dp *intel_dp)
566 {
567 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
568 struct drm_device *dev = intel_dig_port->base.base.dev;
569 struct drm_i915_private *dev_priv = dev->dev_private;
570
571 mutex_lock(&dev_priv->psr.lock);
572 if (!dev_priv->psr.enabled) {
573 mutex_unlock(&dev_priv->psr.lock);
574 return;
575 }
576
577 /* Disable PSR on Source */
578 if (HAS_DDI(dev))
579 hsw_psr_disable(intel_dp);
580 else
581 vlv_psr_disable(intel_dp);
582
583 /* Disable PSR on Sink */
584 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
585
586 dev_priv->psr.enabled = NULL;
587 mutex_unlock(&dev_priv->psr.lock);
588
589 cancel_delayed_work_sync(&dev_priv->psr.work);
590 }
591
592 static void intel_psr_work(struct work_struct *work)
593 {
594 struct drm_i915_private *dev_priv =
595 container_of(work, typeof(*dev_priv), psr.work.work);
596 struct intel_dp *intel_dp = dev_priv->psr.enabled;
597 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
598 enum pipe pipe = to_intel_crtc(crtc)->pipe;
599
600 /* We have to make sure PSR is ready for re-enable
601 * otherwise it keeps disabled until next full enable/disable cycle.
602 * PSR might take some time to get fully disabled
603 * and be ready for re-enable.
604 */
605 if (HAS_DDI(dev_priv)) {
606 if (wait_for((I915_READ(EDP_PSR_STATUS_CTL) &
607 EDP_PSR_STATUS_STATE_MASK) == 0, 50)) {
608 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
609 return;
610 }
611 } else {
612 if (wait_for((I915_READ(VLV_PSRSTAT(pipe)) &
613 VLV_EDP_PSR_IN_TRANS) == 0, 1)) {
614 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
615 return;
616 }
617 }
618 mutex_lock(&dev_priv->psr.lock);
619 intel_dp = dev_priv->psr.enabled;
620
621 if (!intel_dp)
622 goto unlock;
623
624 /*
625 * The delayed work can race with an invalidate hence we need to
626 * recheck. Since psr_flush first clears this and then reschedules we
627 * won't ever miss a flush when bailing out here.
628 */
629 if (dev_priv->psr.busy_frontbuffer_bits)
630 goto unlock;
631
632 intel_psr_activate(intel_dp);
633 unlock:
634 mutex_unlock(&dev_priv->psr.lock);
635 }
636
637 static void intel_psr_exit(struct drm_device *dev)
638 {
639 struct drm_i915_private *dev_priv = dev->dev_private;
640 struct intel_dp *intel_dp = dev_priv->psr.enabled;
641 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
642 enum pipe pipe = to_intel_crtc(crtc)->pipe;
643 u32 val;
644
645 if (!dev_priv->psr.active)
646 return;
647
648 if (HAS_DDI(dev)) {
649 val = I915_READ(EDP_PSR_CTL);
650
651 WARN_ON(!(val & EDP_PSR_ENABLE));
652
653 I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE);
654 } else {
655 val = I915_READ(VLV_PSRCTL(pipe));
656
657 /* Here we do the transition from PSR_state 3 to PSR_state 5
658 * directly once PSR State 4 that is active with single frame
659 * update can be skipped. PSR_state 5 that is PSR exit then
660 * Hardware is responsible to transition back to PSR_state 1
661 * that is PSR inactive. Same state after
662 * vlv_edp_psr_enable_source.
663 */
664 val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
665 I915_WRITE(VLV_PSRCTL(pipe), val);
666
667 /* Send AUX wake up - Spec says after transitioning to PSR
668 * active we have to send AUX wake up by writing 01h in DPCD
669 * 600h of sink device.
670 * XXX: This might slow down the transition, but without this
671 * HW doesn't complete the transition to PSR_state 1 and we
672 * never get the screen updated.
673 */
674 drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
675 DP_SET_POWER_D0);
676 }
677
678 dev_priv->psr.active = false;
679 }
680
681 /**
682 * intel_psr_single_frame_update - Single Frame Update
683 * @dev: DRM device
684 * @frontbuffer_bits: frontbuffer plane tracking bits
685 *
686 * Some platforms support a single frame update feature that is used to
687 * send and update only one frame on Remote Frame Buffer.
688 * So far it is only implemented for Valleyview and Cherryview because
689 * hardware requires this to be done before a page flip.
690 */
691 void intel_psr_single_frame_update(struct drm_device *dev,
692 unsigned frontbuffer_bits)
693 {
694 struct drm_i915_private *dev_priv = dev->dev_private;
695 struct drm_crtc *crtc;
696 enum pipe pipe;
697 u32 val;
698
699 /*
700 * Single frame update is already supported on BDW+ but it requires
701 * many W/A and it isn't really needed.
702 */
703 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
704 return;
705
706 mutex_lock(&dev_priv->psr.lock);
707 if (!dev_priv->psr.enabled) {
708 mutex_unlock(&dev_priv->psr.lock);
709 return;
710 }
711
712 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
713 pipe = to_intel_crtc(crtc)->pipe;
714
715 if (frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)) {
716 val = I915_READ(VLV_PSRCTL(pipe));
717
718 /*
719 * We need to set this bit before writing registers for a flip.
720 * This bit will be self-clear when it gets to the PSR active state.
721 */
722 I915_WRITE(VLV_PSRCTL(pipe), val | VLV_EDP_PSR_SINGLE_FRAME_UPDATE);
723 }
724 mutex_unlock(&dev_priv->psr.lock);
725 }
726
727 /**
728 * intel_psr_invalidate - Invalidade PSR
729 * @dev: DRM device
730 * @frontbuffer_bits: frontbuffer plane tracking bits
731 *
732 * Since the hardware frontbuffer tracking has gaps we need to integrate
733 * with the software frontbuffer tracking. This function gets called every
734 * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
735 * disabled if the frontbuffer mask contains a buffer relevant to PSR.
736 *
737 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
738 */
739 void intel_psr_invalidate(struct drm_device *dev,
740 unsigned frontbuffer_bits)
741 {
742 struct drm_i915_private *dev_priv = dev->dev_private;
743 struct drm_crtc *crtc;
744 enum pipe pipe;
745
746 mutex_lock(&dev_priv->psr.lock);
747 if (!dev_priv->psr.enabled) {
748 mutex_unlock(&dev_priv->psr.lock);
749 return;
750 }
751
752 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
753 pipe = to_intel_crtc(crtc)->pipe;
754
755 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
756 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
757
758 if (frontbuffer_bits)
759 intel_psr_exit(dev);
760
761 mutex_unlock(&dev_priv->psr.lock);
762 }
763
764 /**
765 * intel_psr_flush - Flush PSR
766 * @dev: DRM device
767 * @frontbuffer_bits: frontbuffer plane tracking bits
768 * @origin: which operation caused the flush
769 *
770 * Since the hardware frontbuffer tracking has gaps we need to integrate
771 * with the software frontbuffer tracking. This function gets called every
772 * time frontbuffer rendering has completed and flushed out to memory. PSR
773 * can be enabled again if no other frontbuffer relevant to PSR is dirty.
774 *
775 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
776 */
777 void intel_psr_flush(struct drm_device *dev,
778 unsigned frontbuffer_bits, enum fb_op_origin origin)
779 {
780 struct drm_i915_private *dev_priv = dev->dev_private;
781 struct drm_crtc *crtc;
782 enum pipe pipe;
783
784 mutex_lock(&dev_priv->psr.lock);
785 if (!dev_priv->psr.enabled) {
786 mutex_unlock(&dev_priv->psr.lock);
787 return;
788 }
789
790 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
791 pipe = to_intel_crtc(crtc)->pipe;
792
793 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
794 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
795
796 /* By definition flush = invalidate + flush */
797 if (frontbuffer_bits)
798 intel_psr_exit(dev);
799
800 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
801 if (!work_busy(&dev_priv->psr.work.work))
802 schedule_delayed_work(&dev_priv->psr.work,
803 msecs_to_jiffies(100));
804 mutex_unlock(&dev_priv->psr.lock);
805 }
806
807 /**
808 * intel_psr_init - Init basic PSR work and mutex.
809 * @dev: DRM device
810 *
811 * This function is called only once at driver load to initialize basic
812 * PSR stuff.
813 */
814 void intel_psr_init(struct drm_device *dev)
815 {
816 struct drm_i915_private *dev_priv = dev->dev_private;
817
818 dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ?
819 HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE;
820
821 /* Per platform default */
822 if (i915.enable_psr == -1) {
823 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
824 i915.enable_psr = 1;
825 else
826 i915.enable_psr = 0;
827 }
828
829 /* Set link_standby x link_off defaults */
830 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
831 /* HSW and BDW require workarounds that we don't implement. */
832 dev_priv->psr.link_standby = false;
833 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
834 /* On VLV and CHV only standby mode is supported. */
835 dev_priv->psr.link_standby = true;
836 else
837 /* For new platforms let's respect VBT back again */
838 dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
839
840 /* Override link_standby x link_off defaults */
841 if (i915.enable_psr == 2 && !dev_priv->psr.link_standby) {
842 DRM_DEBUG_KMS("PSR: Forcing link standby\n");
843 dev_priv->psr.link_standby = true;
844 }
845 if (i915.enable_psr == 3 && dev_priv->psr.link_standby) {
846 DRM_DEBUG_KMS("PSR: Forcing main link off\n");
847 dev_priv->psr.link_standby = false;
848 }
849
850 INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work);
851 mutex_init(&dev_priv->psr.lock);
852 }
This page took 0.050113 seconds and 6 git commands to generate.