drm/i915: More renaming of rings to engines
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 int __intel_ring_space(int head, int tail, int size)
38 {
39 int space = head - tail;
40 if (space <= 0)
41 space += size;
42 return space - I915_RING_FREE_SPACE;
43 }
44
45 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
46 {
47 if (ringbuf->last_retired_head != -1) {
48 ringbuf->head = ringbuf->last_retired_head;
49 ringbuf->last_retired_head = -1;
50 }
51
52 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
53 ringbuf->tail, ringbuf->size);
54 }
55
56 int intel_ring_space(struct intel_ringbuffer *ringbuf)
57 {
58 intel_ring_update_space(ringbuf);
59 return ringbuf->space;
60 }
61
62 bool intel_engine_stopped(struct intel_engine_cs *engine)
63 {
64 struct drm_i915_private *dev_priv = engine->dev->dev_private;
65 return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
66 }
67
68 static void __intel_ring_advance(struct intel_engine_cs *engine)
69 {
70 struct intel_ringbuffer *ringbuf = engine->buffer;
71 ringbuf->tail &= ringbuf->size - 1;
72 if (intel_engine_stopped(engine))
73 return;
74 engine->write_tail(engine, ringbuf->tail);
75 }
76
77 static int
78 gen2_render_ring_flush(struct drm_i915_gem_request *req,
79 u32 invalidate_domains,
80 u32 flush_domains)
81 {
82 struct intel_engine_cs *engine = req->engine;
83 u32 cmd;
84 int ret;
85
86 cmd = MI_FLUSH;
87 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
88 cmd |= MI_NO_WRITE_FLUSH;
89
90 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
91 cmd |= MI_READ_FLUSH;
92
93 ret = intel_ring_begin(req, 2);
94 if (ret)
95 return ret;
96
97 intel_ring_emit(engine, cmd);
98 intel_ring_emit(engine, MI_NOOP);
99 intel_ring_advance(engine);
100
101 return 0;
102 }
103
104 static int
105 gen4_render_ring_flush(struct drm_i915_gem_request *req,
106 u32 invalidate_domains,
107 u32 flush_domains)
108 {
109 struct intel_engine_cs *engine = req->engine;
110 struct drm_device *dev = engine->dev;
111 u32 cmd;
112 int ret;
113
114 /*
115 * read/write caches:
116 *
117 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
118 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
119 * also flushed at 2d versus 3d pipeline switches.
120 *
121 * read-only caches:
122 *
123 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
124 * MI_READ_FLUSH is set, and is always flushed on 965.
125 *
126 * I915_GEM_DOMAIN_COMMAND may not exist?
127 *
128 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
129 * invalidated when MI_EXE_FLUSH is set.
130 *
131 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
132 * invalidated with every MI_FLUSH.
133 *
134 * TLBs:
135 *
136 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
137 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
138 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
139 * are flushed at any MI_FLUSH.
140 */
141
142 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
143 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
144 cmd &= ~MI_NO_WRITE_FLUSH;
145 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
146 cmd |= MI_EXE_FLUSH;
147
148 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
149 (IS_G4X(dev) || IS_GEN5(dev)))
150 cmd |= MI_INVALIDATE_ISP;
151
152 ret = intel_ring_begin(req, 2);
153 if (ret)
154 return ret;
155
156 intel_ring_emit(engine, cmd);
157 intel_ring_emit(engine, MI_NOOP);
158 intel_ring_advance(engine);
159
160 return 0;
161 }
162
163 /**
164 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
165 * implementing two workarounds on gen6. From section 1.4.7.1
166 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
167 *
168 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
169 * produced by non-pipelined state commands), software needs to first
170 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
171 * 0.
172 *
173 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
174 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
175 *
176 * And the workaround for these two requires this workaround first:
177 *
178 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
179 * BEFORE the pipe-control with a post-sync op and no write-cache
180 * flushes.
181 *
182 * And this last workaround is tricky because of the requirements on
183 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
184 * volume 2 part 1:
185 *
186 * "1 of the following must also be set:
187 * - Render Target Cache Flush Enable ([12] of DW1)
188 * - Depth Cache Flush Enable ([0] of DW1)
189 * - Stall at Pixel Scoreboard ([1] of DW1)
190 * - Depth Stall ([13] of DW1)
191 * - Post-Sync Operation ([13] of DW1)
192 * - Notify Enable ([8] of DW1)"
193 *
194 * The cache flushes require the workaround flush that triggered this
195 * one, so we can't use it. Depth stall would trigger the same.
196 * Post-sync nonzero is what triggered this second workaround, so we
197 * can't use that one either. Notify enable is IRQs, which aren't
198 * really our business. That leaves only stall at scoreboard.
199 */
200 static int
201 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
202 {
203 struct intel_engine_cs *engine = req->engine;
204 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
205 int ret;
206
207 ret = intel_ring_begin(req, 6);
208 if (ret)
209 return ret;
210
211 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
212 intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
213 PIPE_CONTROL_STALL_AT_SCOREBOARD);
214 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
215 intel_ring_emit(engine, 0); /* low dword */
216 intel_ring_emit(engine, 0); /* high dword */
217 intel_ring_emit(engine, MI_NOOP);
218 intel_ring_advance(engine);
219
220 ret = intel_ring_begin(req, 6);
221 if (ret)
222 return ret;
223
224 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
225 intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
226 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
227 intel_ring_emit(engine, 0);
228 intel_ring_emit(engine, 0);
229 intel_ring_emit(engine, MI_NOOP);
230 intel_ring_advance(engine);
231
232 return 0;
233 }
234
235 static int
236 gen6_render_ring_flush(struct drm_i915_gem_request *req,
237 u32 invalidate_domains, u32 flush_domains)
238 {
239 struct intel_engine_cs *engine = req->engine;
240 u32 flags = 0;
241 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
242 int ret;
243
244 /* Force SNB workarounds for PIPE_CONTROL flushes */
245 ret = intel_emit_post_sync_nonzero_flush(req);
246 if (ret)
247 return ret;
248
249 /* Just flush everything. Experiments have shown that reducing the
250 * number of bits based on the write domains has little performance
251 * impact.
252 */
253 if (flush_domains) {
254 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
255 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
256 /*
257 * Ensure that any following seqno writes only happen
258 * when the render cache is indeed flushed.
259 */
260 flags |= PIPE_CONTROL_CS_STALL;
261 }
262 if (invalidate_domains) {
263 flags |= PIPE_CONTROL_TLB_INVALIDATE;
264 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
265 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
266 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
267 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
268 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
269 /*
270 * TLB invalidate requires a post-sync write.
271 */
272 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
273 }
274
275 ret = intel_ring_begin(req, 4);
276 if (ret)
277 return ret;
278
279 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
280 intel_ring_emit(engine, flags);
281 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
282 intel_ring_emit(engine, 0);
283 intel_ring_advance(engine);
284
285 return 0;
286 }
287
288 static int
289 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
290 {
291 struct intel_engine_cs *engine = req->engine;
292 int ret;
293
294 ret = intel_ring_begin(req, 4);
295 if (ret)
296 return ret;
297
298 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
299 intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
300 PIPE_CONTROL_STALL_AT_SCOREBOARD);
301 intel_ring_emit(engine, 0);
302 intel_ring_emit(engine, 0);
303 intel_ring_advance(engine);
304
305 return 0;
306 }
307
308 static int
309 gen7_render_ring_flush(struct drm_i915_gem_request *req,
310 u32 invalidate_domains, u32 flush_domains)
311 {
312 struct intel_engine_cs *engine = req->engine;
313 u32 flags = 0;
314 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
315 int ret;
316
317 /*
318 * Ensure that any following seqno writes only happen when the render
319 * cache is indeed flushed.
320 *
321 * Workaround: 4th PIPE_CONTROL command (except the ones with only
322 * read-cache invalidate bits set) must have the CS_STALL bit set. We
323 * don't try to be clever and just set it unconditionally.
324 */
325 flags |= PIPE_CONTROL_CS_STALL;
326
327 /* Just flush everything. Experiments have shown that reducing the
328 * number of bits based on the write domains has little performance
329 * impact.
330 */
331 if (flush_domains) {
332 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
333 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
334 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
335 flags |= PIPE_CONTROL_FLUSH_ENABLE;
336 }
337 if (invalidate_domains) {
338 flags |= PIPE_CONTROL_TLB_INVALIDATE;
339 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
340 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
341 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
342 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
343 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
344 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
345 /*
346 * TLB invalidate requires a post-sync write.
347 */
348 flags |= PIPE_CONTROL_QW_WRITE;
349 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
350
351 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
352
353 /* Workaround: we must issue a pipe_control with CS-stall bit
354 * set before a pipe_control command that has the state cache
355 * invalidate bit set. */
356 gen7_render_ring_cs_stall_wa(req);
357 }
358
359 ret = intel_ring_begin(req, 4);
360 if (ret)
361 return ret;
362
363 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
364 intel_ring_emit(engine, flags);
365 intel_ring_emit(engine, scratch_addr);
366 intel_ring_emit(engine, 0);
367 intel_ring_advance(engine);
368
369 return 0;
370 }
371
372 static int
373 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
374 u32 flags, u32 scratch_addr)
375 {
376 struct intel_engine_cs *engine = req->engine;
377 int ret;
378
379 ret = intel_ring_begin(req, 6);
380 if (ret)
381 return ret;
382
383 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
384 intel_ring_emit(engine, flags);
385 intel_ring_emit(engine, scratch_addr);
386 intel_ring_emit(engine, 0);
387 intel_ring_emit(engine, 0);
388 intel_ring_emit(engine, 0);
389 intel_ring_advance(engine);
390
391 return 0;
392 }
393
394 static int
395 gen8_render_ring_flush(struct drm_i915_gem_request *req,
396 u32 invalidate_domains, u32 flush_domains)
397 {
398 u32 flags = 0;
399 u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
400 int ret;
401
402 flags |= PIPE_CONTROL_CS_STALL;
403
404 if (flush_domains) {
405 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
406 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
407 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
408 flags |= PIPE_CONTROL_FLUSH_ENABLE;
409 }
410 if (invalidate_domains) {
411 flags |= PIPE_CONTROL_TLB_INVALIDATE;
412 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
413 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
414 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
415 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
416 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
417 flags |= PIPE_CONTROL_QW_WRITE;
418 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
419
420 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
421 ret = gen8_emit_pipe_control(req,
422 PIPE_CONTROL_CS_STALL |
423 PIPE_CONTROL_STALL_AT_SCOREBOARD,
424 0);
425 if (ret)
426 return ret;
427 }
428
429 return gen8_emit_pipe_control(req, flags, scratch_addr);
430 }
431
432 static void ring_write_tail(struct intel_engine_cs *engine,
433 u32 value)
434 {
435 struct drm_i915_private *dev_priv = engine->dev->dev_private;
436 I915_WRITE_TAIL(engine, value);
437 }
438
439 u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
440 {
441 struct drm_i915_private *dev_priv = engine->dev->dev_private;
442 u64 acthd;
443
444 if (INTEL_INFO(engine->dev)->gen >= 8)
445 acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
446 RING_ACTHD_UDW(engine->mmio_base));
447 else if (INTEL_INFO(engine->dev)->gen >= 4)
448 acthd = I915_READ(RING_ACTHD(engine->mmio_base));
449 else
450 acthd = I915_READ(ACTHD);
451
452 return acthd;
453 }
454
455 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
456 {
457 struct drm_i915_private *dev_priv = engine->dev->dev_private;
458 u32 addr;
459
460 addr = dev_priv->status_page_dmah->busaddr;
461 if (INTEL_INFO(engine->dev)->gen >= 4)
462 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
463 I915_WRITE(HWS_PGA, addr);
464 }
465
466 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
467 {
468 struct drm_device *dev = engine->dev;
469 struct drm_i915_private *dev_priv = engine->dev->dev_private;
470 i915_reg_t mmio;
471
472 /* The ring status page addresses are no longer next to the rest of
473 * the ring registers as of gen7.
474 */
475 if (IS_GEN7(dev)) {
476 switch (engine->id) {
477 case RCS:
478 mmio = RENDER_HWS_PGA_GEN7;
479 break;
480 case BCS:
481 mmio = BLT_HWS_PGA_GEN7;
482 break;
483 /*
484 * VCS2 actually doesn't exist on Gen7. Only shut up
485 * gcc switch check warning
486 */
487 case VCS2:
488 case VCS:
489 mmio = BSD_HWS_PGA_GEN7;
490 break;
491 case VECS:
492 mmio = VEBOX_HWS_PGA_GEN7;
493 break;
494 }
495 } else if (IS_GEN6(engine->dev)) {
496 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
497 } else {
498 /* XXX: gen8 returns to sanity */
499 mmio = RING_HWS_PGA(engine->mmio_base);
500 }
501
502 I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
503 POSTING_READ(mmio);
504
505 /*
506 * Flush the TLB for this page
507 *
508 * FIXME: These two bits have disappeared on gen8, so a question
509 * arises: do we still need this and if so how should we go about
510 * invalidating the TLB?
511 */
512 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
513 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
514
515 /* ring should be idle before issuing a sync flush*/
516 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
517
518 I915_WRITE(reg,
519 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
520 INSTPM_SYNC_FLUSH));
521 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
522 1000))
523 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
524 engine->name);
525 }
526 }
527
528 static bool stop_ring(struct intel_engine_cs *engine)
529 {
530 struct drm_i915_private *dev_priv = to_i915(engine->dev);
531
532 if (!IS_GEN2(engine->dev)) {
533 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
534 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
535 DRM_ERROR("%s : timed out trying to stop ring\n",
536 engine->name);
537 /* Sometimes we observe that the idle flag is not
538 * set even though the ring is empty. So double
539 * check before giving up.
540 */
541 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
542 return false;
543 }
544 }
545
546 I915_WRITE_CTL(engine, 0);
547 I915_WRITE_HEAD(engine, 0);
548 engine->write_tail(engine, 0);
549
550 if (!IS_GEN2(engine->dev)) {
551 (void)I915_READ_CTL(engine);
552 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
553 }
554
555 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
556 }
557
558 static int init_ring_common(struct intel_engine_cs *engine)
559 {
560 struct drm_device *dev = engine->dev;
561 struct drm_i915_private *dev_priv = dev->dev_private;
562 struct intel_ringbuffer *ringbuf = engine->buffer;
563 struct drm_i915_gem_object *obj = ringbuf->obj;
564 int ret = 0;
565
566 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
567
568 if (!stop_ring(engine)) {
569 /* G45 ring initialization often fails to reset head to zero */
570 DRM_DEBUG_KMS("%s head not reset to zero "
571 "ctl %08x head %08x tail %08x start %08x\n",
572 engine->name,
573 I915_READ_CTL(engine),
574 I915_READ_HEAD(engine),
575 I915_READ_TAIL(engine),
576 I915_READ_START(engine));
577
578 if (!stop_ring(engine)) {
579 DRM_ERROR("failed to set %s head to zero "
580 "ctl %08x head %08x tail %08x start %08x\n",
581 engine->name,
582 I915_READ_CTL(engine),
583 I915_READ_HEAD(engine),
584 I915_READ_TAIL(engine),
585 I915_READ_START(engine));
586 ret = -EIO;
587 goto out;
588 }
589 }
590
591 if (I915_NEED_GFX_HWS(dev))
592 intel_ring_setup_status_page(engine);
593 else
594 ring_setup_phys_status_page(engine);
595
596 /* Enforce ordering by reading HEAD register back */
597 I915_READ_HEAD(engine);
598
599 /* Initialize the ring. This must happen _after_ we've cleared the ring
600 * registers with the above sequence (the readback of the HEAD registers
601 * also enforces ordering), otherwise the hw might lose the new ring
602 * register values. */
603 I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
604
605 /* WaClearRingBufHeadRegAtInit:ctg,elk */
606 if (I915_READ_HEAD(engine))
607 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
608 engine->name, I915_READ_HEAD(engine));
609 I915_WRITE_HEAD(engine, 0);
610 (void)I915_READ_HEAD(engine);
611
612 I915_WRITE_CTL(engine,
613 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
614 | RING_VALID);
615
616 /* If the head is still not zero, the ring is dead */
617 if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
618 I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
619 (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
620 DRM_ERROR("%s initialization failed "
621 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
622 engine->name,
623 I915_READ_CTL(engine),
624 I915_READ_CTL(engine) & RING_VALID,
625 I915_READ_HEAD(engine), I915_READ_TAIL(engine),
626 I915_READ_START(engine),
627 (unsigned long)i915_gem_obj_ggtt_offset(obj));
628 ret = -EIO;
629 goto out;
630 }
631
632 ringbuf->last_retired_head = -1;
633 ringbuf->head = I915_READ_HEAD(engine);
634 ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
635 intel_ring_update_space(ringbuf);
636
637 memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
638
639 out:
640 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
641
642 return ret;
643 }
644
645 void
646 intel_fini_pipe_control(struct intel_engine_cs *engine)
647 {
648 struct drm_device *dev = engine->dev;
649
650 if (engine->scratch.obj == NULL)
651 return;
652
653 if (INTEL_INFO(dev)->gen >= 5) {
654 kunmap(sg_page(engine->scratch.obj->pages->sgl));
655 i915_gem_object_ggtt_unpin(engine->scratch.obj);
656 }
657
658 drm_gem_object_unreference(&engine->scratch.obj->base);
659 engine->scratch.obj = NULL;
660 }
661
662 int
663 intel_init_pipe_control(struct intel_engine_cs *engine)
664 {
665 int ret;
666
667 WARN_ON(engine->scratch.obj);
668
669 engine->scratch.obj = i915_gem_alloc_object(engine->dev, 4096);
670 if (engine->scratch.obj == NULL) {
671 DRM_ERROR("Failed to allocate seqno page\n");
672 ret = -ENOMEM;
673 goto err;
674 }
675
676 ret = i915_gem_object_set_cache_level(engine->scratch.obj,
677 I915_CACHE_LLC);
678 if (ret)
679 goto err_unref;
680
681 ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
682 if (ret)
683 goto err_unref;
684
685 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
686 engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
687 if (engine->scratch.cpu_page == NULL) {
688 ret = -ENOMEM;
689 goto err_unpin;
690 }
691
692 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
693 engine->name, engine->scratch.gtt_offset);
694 return 0;
695
696 err_unpin:
697 i915_gem_object_ggtt_unpin(engine->scratch.obj);
698 err_unref:
699 drm_gem_object_unreference(&engine->scratch.obj->base);
700 err:
701 return ret;
702 }
703
704 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
705 {
706 int ret, i;
707 struct intel_engine_cs *engine = req->engine;
708 struct drm_device *dev = engine->dev;
709 struct drm_i915_private *dev_priv = dev->dev_private;
710 struct i915_workarounds *w = &dev_priv->workarounds;
711
712 if (w->count == 0)
713 return 0;
714
715 engine->gpu_caches_dirty = true;
716 ret = intel_ring_flush_all_caches(req);
717 if (ret)
718 return ret;
719
720 ret = intel_ring_begin(req, (w->count * 2 + 2));
721 if (ret)
722 return ret;
723
724 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
725 for (i = 0; i < w->count; i++) {
726 intel_ring_emit_reg(engine, w->reg[i].addr);
727 intel_ring_emit(engine, w->reg[i].value);
728 }
729 intel_ring_emit(engine, MI_NOOP);
730
731 intel_ring_advance(engine);
732
733 engine->gpu_caches_dirty = true;
734 ret = intel_ring_flush_all_caches(req);
735 if (ret)
736 return ret;
737
738 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
739
740 return 0;
741 }
742
743 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
744 {
745 int ret;
746
747 ret = intel_ring_workarounds_emit(req);
748 if (ret != 0)
749 return ret;
750
751 ret = i915_gem_render_state_init(req);
752 if (ret)
753 return ret;
754
755 return 0;
756 }
757
758 static int wa_add(struct drm_i915_private *dev_priv,
759 i915_reg_t addr,
760 const u32 mask, const u32 val)
761 {
762 const u32 idx = dev_priv->workarounds.count;
763
764 if (WARN_ON(idx >= I915_MAX_WA_REGS))
765 return -ENOSPC;
766
767 dev_priv->workarounds.reg[idx].addr = addr;
768 dev_priv->workarounds.reg[idx].value = val;
769 dev_priv->workarounds.reg[idx].mask = mask;
770
771 dev_priv->workarounds.count++;
772
773 return 0;
774 }
775
776 #define WA_REG(addr, mask, val) do { \
777 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
778 if (r) \
779 return r; \
780 } while (0)
781
782 #define WA_SET_BIT_MASKED(addr, mask) \
783 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
784
785 #define WA_CLR_BIT_MASKED(addr, mask) \
786 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
787
788 #define WA_SET_FIELD_MASKED(addr, mask, value) \
789 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
790
791 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
792 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
793
794 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
795
796 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
797 i915_reg_t reg)
798 {
799 struct drm_i915_private *dev_priv = engine->dev->dev_private;
800 struct i915_workarounds *wa = &dev_priv->workarounds;
801 const uint32_t index = wa->hw_whitelist_count[engine->id];
802
803 if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
804 return -EINVAL;
805
806 WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
807 i915_mmio_reg_offset(reg));
808 wa->hw_whitelist_count[engine->id]++;
809
810 return 0;
811 }
812
813 static int gen8_init_workarounds(struct intel_engine_cs *engine)
814 {
815 struct drm_device *dev = engine->dev;
816 struct drm_i915_private *dev_priv = dev->dev_private;
817
818 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
819
820 /* WaDisableAsyncFlipPerfMode:bdw,chv */
821 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
822
823 /* WaDisablePartialInstShootdown:bdw,chv */
824 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
825 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
826
827 /* Use Force Non-Coherent whenever executing a 3D context. This is a
828 * workaround for for a possible hang in the unlikely event a TLB
829 * invalidation occurs during a PSD flush.
830 */
831 /* WaForceEnableNonCoherent:bdw,chv */
832 /* WaHdcDisableFetchWhenMasked:bdw,chv */
833 WA_SET_BIT_MASKED(HDC_CHICKEN0,
834 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
835 HDC_FORCE_NON_COHERENT);
836
837 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
838 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
839 * polygons in the same 8x4 pixel/sample area to be processed without
840 * stalling waiting for the earlier ones to write to Hierarchical Z
841 * buffer."
842 *
843 * This optimization is off by default for BDW and CHV; turn it on.
844 */
845 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
846
847 /* Wa4x4STCOptimizationDisable:bdw,chv */
848 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
849
850 /*
851 * BSpec recommends 8x4 when MSAA is used,
852 * however in practice 16x4 seems fastest.
853 *
854 * Note that PS/WM thread counts depend on the WIZ hashing
855 * disable bit, which we don't touch here, but it's good
856 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
857 */
858 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
859 GEN6_WIZ_HASHING_MASK,
860 GEN6_WIZ_HASHING_16x4);
861
862 return 0;
863 }
864
865 static int bdw_init_workarounds(struct intel_engine_cs *engine)
866 {
867 int ret;
868 struct drm_device *dev = engine->dev;
869 struct drm_i915_private *dev_priv = dev->dev_private;
870
871 ret = gen8_init_workarounds(engine);
872 if (ret)
873 return ret;
874
875 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
876 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
877
878 /* WaDisableDopClockGating:bdw */
879 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
880 DOP_CLOCK_GATING_DISABLE);
881
882 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
883 GEN8_SAMPLER_POWER_BYPASS_DIS);
884
885 WA_SET_BIT_MASKED(HDC_CHICKEN0,
886 /* WaForceContextSaveRestoreNonCoherent:bdw */
887 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
888 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
889 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
890
891 return 0;
892 }
893
894 static int chv_init_workarounds(struct intel_engine_cs *engine)
895 {
896 int ret;
897 struct drm_device *dev = engine->dev;
898 struct drm_i915_private *dev_priv = dev->dev_private;
899
900 ret = gen8_init_workarounds(engine);
901 if (ret)
902 return ret;
903
904 /* WaDisableThreadStallDopClockGating:chv */
905 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
906
907 /* Improve HiZ throughput on CHV. */
908 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
909
910 return 0;
911 }
912
913 static int gen9_init_workarounds(struct intel_engine_cs *engine)
914 {
915 struct drm_device *dev = engine->dev;
916 struct drm_i915_private *dev_priv = dev->dev_private;
917 uint32_t tmp;
918 int ret;
919
920 /* WaEnableLbsSlaRetryTimerDecrement:skl */
921 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
922 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
923
924 /* WaDisableKillLogic:bxt,skl */
925 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
926 ECOCHK_DIS_TLB);
927
928 /* WaDisablePartialInstShootdown:skl,bxt */
929 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
930 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
931
932 /* Syncing dependencies between camera and graphics:skl,bxt */
933 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
934 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
935
936 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
937 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
938 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
939 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
940 GEN9_DG_MIRROR_FIX_ENABLE);
941
942 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
943 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
944 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
945 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
946 GEN9_RHWO_OPTIMIZATION_DISABLE);
947 /*
948 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
949 * but we do that in per ctx batchbuffer as there is an issue
950 * with this register not getting restored on ctx restore
951 */
952 }
953
954 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
955 if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
956 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
957 GEN9_ENABLE_YV12_BUGFIX);
958
959 /* Wa4x4STCOptimizationDisable:skl,bxt */
960 /* WaDisablePartialResolveInVc:skl,bxt */
961 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
962 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
963
964 /* WaCcsTlbPrefetchDisable:skl,bxt */
965 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
966 GEN9_CCS_TLB_PREFETCH_ENABLE);
967
968 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
969 if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
970 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
971 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
972 PIXEL_MASK_CAMMING_DISABLE);
973
974 /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
975 tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
976 if (IS_SKL_REVID(dev, SKL_REVID_F0, SKL_REVID_F0) ||
977 IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
978 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
979 WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
980
981 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
982 if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
983 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
984 GEN8_SAMPLER_POWER_BYPASS_DIS);
985
986 /* WaDisableSTUnitPowerOptimization:skl,bxt */
987 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
988
989 /* WaOCLCoherentLineFlush:skl,bxt */
990 I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
991 GEN8_LQSC_FLUSH_COHERENT_LINES));
992
993 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
994 ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
995 if (ret)
996 return ret;
997
998 /* WaAllowUMDToModifyHDCChicken1:skl,bxt */
999 ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1000 if (ret)
1001 return ret;
1002
1003 return 0;
1004 }
1005
1006 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1007 {
1008 struct drm_device *dev = engine->dev;
1009 struct drm_i915_private *dev_priv = dev->dev_private;
1010 u8 vals[3] = { 0, 0, 0 };
1011 unsigned int i;
1012
1013 for (i = 0; i < 3; i++) {
1014 u8 ss;
1015
1016 /*
1017 * Only consider slices where one, and only one, subslice has 7
1018 * EUs
1019 */
1020 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1021 continue;
1022
1023 /*
1024 * subslice_7eu[i] != 0 (because of the check above) and
1025 * ss_max == 4 (maximum number of subslices possible per slice)
1026 *
1027 * -> 0 <= ss <= 3;
1028 */
1029 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1030 vals[i] = 3 - ss;
1031 }
1032
1033 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1034 return 0;
1035
1036 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1037 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1038 GEN9_IZ_HASHING_MASK(2) |
1039 GEN9_IZ_HASHING_MASK(1) |
1040 GEN9_IZ_HASHING_MASK(0),
1041 GEN9_IZ_HASHING(2, vals[2]) |
1042 GEN9_IZ_HASHING(1, vals[1]) |
1043 GEN9_IZ_HASHING(0, vals[0]));
1044
1045 return 0;
1046 }
1047
1048 static int skl_init_workarounds(struct intel_engine_cs *engine)
1049 {
1050 int ret;
1051 struct drm_device *dev = engine->dev;
1052 struct drm_i915_private *dev_priv = dev->dev_private;
1053
1054 ret = gen9_init_workarounds(engine);
1055 if (ret)
1056 return ret;
1057
1058 /*
1059 * Actual WA is to disable percontext preemption granularity control
1060 * until D0 which is the default case so this is equivalent to
1061 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1062 */
1063 if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
1064 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1065 _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1066 }
1067
1068 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1069 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1070 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1071 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1072 }
1073
1074 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1075 * involving this register should also be added to WA batch as required.
1076 */
1077 if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1078 /* WaDisableLSQCROPERFforOCL:skl */
1079 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1080 GEN8_LQSC_RO_PERF_DIS);
1081
1082 /* WaEnableGapsTsvCreditFix:skl */
1083 if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1084 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1085 GEN9_GAPS_TSV_CREDIT_DISABLE));
1086 }
1087
1088 /* WaDisablePowerCompilerClockGating:skl */
1089 if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1090 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1091 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1092
1093 if (IS_SKL_REVID(dev, 0, SKL_REVID_F0)) {
1094 /*
1095 *Use Force Non-Coherent whenever executing a 3D context. This
1096 * is a workaround for a possible hang in the unlikely event
1097 * a TLB invalidation occurs during a PSD flush.
1098 */
1099 /* WaForceEnableNonCoherent:skl */
1100 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1101 HDC_FORCE_NON_COHERENT);
1102
1103 /* WaDisableHDCInvalidation:skl */
1104 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1105 BDW_DISABLE_HDC_INVALIDATION);
1106 }
1107
1108 /* WaBarrierPerformanceFixDisable:skl */
1109 if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1110 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1111 HDC_FENCE_DEST_SLM_DISABLE |
1112 HDC_BARRIER_PERFORMANCE_DISABLE);
1113
1114 /* WaDisableSbeCacheDispatchPortSharing:skl */
1115 if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1116 WA_SET_BIT_MASKED(
1117 GEN7_HALF_SLICE_CHICKEN1,
1118 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1119
1120 /* WaDisableLSQCROPERFforOCL:skl */
1121 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1122 if (ret)
1123 return ret;
1124
1125 return skl_tune_iz_hashing(engine);
1126 }
1127
1128 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1129 {
1130 int ret;
1131 struct drm_device *dev = engine->dev;
1132 struct drm_i915_private *dev_priv = dev->dev_private;
1133
1134 ret = gen9_init_workarounds(engine);
1135 if (ret)
1136 return ret;
1137
1138 /* WaStoreMultiplePTEenable:bxt */
1139 /* This is a requirement according to Hardware specification */
1140 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1141 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1142
1143 /* WaSetClckGatingDisableMedia:bxt */
1144 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1145 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1146 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1147 }
1148
1149 /* WaDisableThreadStallDopClockGating:bxt */
1150 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1151 STALL_DOP_GATING_DISABLE);
1152
1153 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1154 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1155 WA_SET_BIT_MASKED(
1156 GEN7_HALF_SLICE_CHICKEN1,
1157 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1158 }
1159
1160 /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1161 /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1162 /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1163 /* WaDisableLSQCROPERFforOCL:bxt */
1164 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1165 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1166 if (ret)
1167 return ret;
1168
1169 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1170 if (ret)
1171 return ret;
1172 }
1173
1174 return 0;
1175 }
1176
1177 int init_workarounds_ring(struct intel_engine_cs *engine)
1178 {
1179 struct drm_device *dev = engine->dev;
1180 struct drm_i915_private *dev_priv = dev->dev_private;
1181
1182 WARN_ON(engine->id != RCS);
1183
1184 dev_priv->workarounds.count = 0;
1185 dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1186
1187 if (IS_BROADWELL(dev))
1188 return bdw_init_workarounds(engine);
1189
1190 if (IS_CHERRYVIEW(dev))
1191 return chv_init_workarounds(engine);
1192
1193 if (IS_SKYLAKE(dev))
1194 return skl_init_workarounds(engine);
1195
1196 if (IS_BROXTON(dev))
1197 return bxt_init_workarounds(engine);
1198
1199 return 0;
1200 }
1201
1202 static int init_render_ring(struct intel_engine_cs *engine)
1203 {
1204 struct drm_device *dev = engine->dev;
1205 struct drm_i915_private *dev_priv = dev->dev_private;
1206 int ret = init_ring_common(engine);
1207 if (ret)
1208 return ret;
1209
1210 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1211 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1212 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1213
1214 /* We need to disable the AsyncFlip performance optimisations in order
1215 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1216 * programmed to '1' on all products.
1217 *
1218 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1219 */
1220 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1221 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1222
1223 /* Required for the hardware to program scanline values for waiting */
1224 /* WaEnableFlushTlbInvalidationMode:snb */
1225 if (INTEL_INFO(dev)->gen == 6)
1226 I915_WRITE(GFX_MODE,
1227 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1228
1229 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1230 if (IS_GEN7(dev))
1231 I915_WRITE(GFX_MODE_GEN7,
1232 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1233 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1234
1235 if (IS_GEN6(dev)) {
1236 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1237 * "If this bit is set, STCunit will have LRA as replacement
1238 * policy. [...] This bit must be reset. LRA replacement
1239 * policy is not supported."
1240 */
1241 I915_WRITE(CACHE_MODE_0,
1242 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1243 }
1244
1245 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1246 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1247
1248 if (HAS_L3_DPF(dev))
1249 I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
1250
1251 return init_workarounds_ring(engine);
1252 }
1253
1254 static void render_ring_cleanup(struct intel_engine_cs *engine)
1255 {
1256 struct drm_device *dev = engine->dev;
1257 struct drm_i915_private *dev_priv = dev->dev_private;
1258
1259 if (dev_priv->semaphore_obj) {
1260 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1261 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1262 dev_priv->semaphore_obj = NULL;
1263 }
1264
1265 intel_fini_pipe_control(engine);
1266 }
1267
1268 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1269 unsigned int num_dwords)
1270 {
1271 #define MBOX_UPDATE_DWORDS 8
1272 struct intel_engine_cs *signaller = signaller_req->engine;
1273 struct drm_device *dev = signaller->dev;
1274 struct drm_i915_private *dev_priv = dev->dev_private;
1275 struct intel_engine_cs *waiter;
1276 int i, ret, num_rings;
1277
1278 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1279 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1280 #undef MBOX_UPDATE_DWORDS
1281
1282 ret = intel_ring_begin(signaller_req, num_dwords);
1283 if (ret)
1284 return ret;
1285
1286 for_each_engine(waiter, dev_priv, i) {
1287 u32 seqno;
1288 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1289 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1290 continue;
1291
1292 seqno = i915_gem_request_get_seqno(signaller_req);
1293 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1294 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1295 PIPE_CONTROL_QW_WRITE |
1296 PIPE_CONTROL_FLUSH_ENABLE);
1297 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1298 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1299 intel_ring_emit(signaller, seqno);
1300 intel_ring_emit(signaller, 0);
1301 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1302 MI_SEMAPHORE_TARGET(waiter->id));
1303 intel_ring_emit(signaller, 0);
1304 }
1305
1306 return 0;
1307 }
1308
1309 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1310 unsigned int num_dwords)
1311 {
1312 #define MBOX_UPDATE_DWORDS 6
1313 struct intel_engine_cs *signaller = signaller_req->engine;
1314 struct drm_device *dev = signaller->dev;
1315 struct drm_i915_private *dev_priv = dev->dev_private;
1316 struct intel_engine_cs *waiter;
1317 int i, ret, num_rings;
1318
1319 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1320 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1321 #undef MBOX_UPDATE_DWORDS
1322
1323 ret = intel_ring_begin(signaller_req, num_dwords);
1324 if (ret)
1325 return ret;
1326
1327 for_each_engine(waiter, dev_priv, i) {
1328 u32 seqno;
1329 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1330 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1331 continue;
1332
1333 seqno = i915_gem_request_get_seqno(signaller_req);
1334 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1335 MI_FLUSH_DW_OP_STOREDW);
1336 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1337 MI_FLUSH_DW_USE_GTT);
1338 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1339 intel_ring_emit(signaller, seqno);
1340 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1341 MI_SEMAPHORE_TARGET(waiter->id));
1342 intel_ring_emit(signaller, 0);
1343 }
1344
1345 return 0;
1346 }
1347
1348 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1349 unsigned int num_dwords)
1350 {
1351 struct intel_engine_cs *signaller = signaller_req->engine;
1352 struct drm_device *dev = signaller->dev;
1353 struct drm_i915_private *dev_priv = dev->dev_private;
1354 struct intel_engine_cs *useless;
1355 int i, ret, num_rings;
1356
1357 #define MBOX_UPDATE_DWORDS 3
1358 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1359 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1360 #undef MBOX_UPDATE_DWORDS
1361
1362 ret = intel_ring_begin(signaller_req, num_dwords);
1363 if (ret)
1364 return ret;
1365
1366 for_each_engine(useless, dev_priv, i) {
1367 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[i];
1368
1369 if (i915_mmio_reg_valid(mbox_reg)) {
1370 u32 seqno = i915_gem_request_get_seqno(signaller_req);
1371
1372 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1373 intel_ring_emit_reg(signaller, mbox_reg);
1374 intel_ring_emit(signaller, seqno);
1375 }
1376 }
1377
1378 /* If num_dwords was rounded, make sure the tail pointer is correct */
1379 if (num_rings % 2 == 0)
1380 intel_ring_emit(signaller, MI_NOOP);
1381
1382 return 0;
1383 }
1384
1385 /**
1386 * gen6_add_request - Update the semaphore mailbox registers
1387 *
1388 * @request - request to write to the ring
1389 *
1390 * Update the mailbox registers in the *other* rings with the current seqno.
1391 * This acts like a signal in the canonical semaphore.
1392 */
1393 static int
1394 gen6_add_request(struct drm_i915_gem_request *req)
1395 {
1396 struct intel_engine_cs *engine = req->engine;
1397 int ret;
1398
1399 if (engine->semaphore.signal)
1400 ret = engine->semaphore.signal(req, 4);
1401 else
1402 ret = intel_ring_begin(req, 4);
1403
1404 if (ret)
1405 return ret;
1406
1407 intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1408 intel_ring_emit(engine,
1409 I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1410 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1411 intel_ring_emit(engine, MI_USER_INTERRUPT);
1412 __intel_ring_advance(engine);
1413
1414 return 0;
1415 }
1416
1417 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1418 u32 seqno)
1419 {
1420 struct drm_i915_private *dev_priv = dev->dev_private;
1421 return dev_priv->last_seqno < seqno;
1422 }
1423
1424 /**
1425 * intel_ring_sync - sync the waiter to the signaller on seqno
1426 *
1427 * @waiter - ring that is waiting
1428 * @signaller - ring which has, or will signal
1429 * @seqno - seqno which the waiter will block on
1430 */
1431
1432 static int
1433 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1434 struct intel_engine_cs *signaller,
1435 u32 seqno)
1436 {
1437 struct intel_engine_cs *waiter = waiter_req->engine;
1438 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1439 int ret;
1440
1441 ret = intel_ring_begin(waiter_req, 4);
1442 if (ret)
1443 return ret;
1444
1445 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1446 MI_SEMAPHORE_GLOBAL_GTT |
1447 MI_SEMAPHORE_POLL |
1448 MI_SEMAPHORE_SAD_GTE_SDD);
1449 intel_ring_emit(waiter, seqno);
1450 intel_ring_emit(waiter,
1451 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1452 intel_ring_emit(waiter,
1453 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1454 intel_ring_advance(waiter);
1455 return 0;
1456 }
1457
1458 static int
1459 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1460 struct intel_engine_cs *signaller,
1461 u32 seqno)
1462 {
1463 struct intel_engine_cs *waiter = waiter_req->engine;
1464 u32 dw1 = MI_SEMAPHORE_MBOX |
1465 MI_SEMAPHORE_COMPARE |
1466 MI_SEMAPHORE_REGISTER;
1467 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1468 int ret;
1469
1470 /* Throughout all of the GEM code, seqno passed implies our current
1471 * seqno is >= the last seqno executed. However for hardware the
1472 * comparison is strictly greater than.
1473 */
1474 seqno -= 1;
1475
1476 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1477
1478 ret = intel_ring_begin(waiter_req, 4);
1479 if (ret)
1480 return ret;
1481
1482 /* If seqno wrap happened, omit the wait with no-ops */
1483 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1484 intel_ring_emit(waiter, dw1 | wait_mbox);
1485 intel_ring_emit(waiter, seqno);
1486 intel_ring_emit(waiter, 0);
1487 intel_ring_emit(waiter, MI_NOOP);
1488 } else {
1489 intel_ring_emit(waiter, MI_NOOP);
1490 intel_ring_emit(waiter, MI_NOOP);
1491 intel_ring_emit(waiter, MI_NOOP);
1492 intel_ring_emit(waiter, MI_NOOP);
1493 }
1494 intel_ring_advance(waiter);
1495
1496 return 0;
1497 }
1498
1499 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1500 do { \
1501 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1502 PIPE_CONTROL_DEPTH_STALL); \
1503 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1504 intel_ring_emit(ring__, 0); \
1505 intel_ring_emit(ring__, 0); \
1506 } while (0)
1507
1508 static int
1509 pc_render_add_request(struct drm_i915_gem_request *req)
1510 {
1511 struct intel_engine_cs *engine = req->engine;
1512 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1513 int ret;
1514
1515 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1516 * incoherent with writes to memory, i.e. completely fubar,
1517 * so we need to use PIPE_NOTIFY instead.
1518 *
1519 * However, we also need to workaround the qword write
1520 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1521 * memory before requesting an interrupt.
1522 */
1523 ret = intel_ring_begin(req, 32);
1524 if (ret)
1525 return ret;
1526
1527 intel_ring_emit(engine,
1528 GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1529 PIPE_CONTROL_WRITE_FLUSH |
1530 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1531 intel_ring_emit(engine,
1532 engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1533 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1534 intel_ring_emit(engine, 0);
1535 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1536 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1537 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1538 scratch_addr += 2 * CACHELINE_BYTES;
1539 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1540 scratch_addr += 2 * CACHELINE_BYTES;
1541 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1542 scratch_addr += 2 * CACHELINE_BYTES;
1543 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1544 scratch_addr += 2 * CACHELINE_BYTES;
1545 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1546
1547 intel_ring_emit(engine,
1548 GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1549 PIPE_CONTROL_WRITE_FLUSH |
1550 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1551 PIPE_CONTROL_NOTIFY);
1552 intel_ring_emit(engine,
1553 engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1554 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1555 intel_ring_emit(engine, 0);
1556 __intel_ring_advance(engine);
1557
1558 return 0;
1559 }
1560
1561 static u32
1562 gen6_ring_get_seqno(struct intel_engine_cs *engine, bool lazy_coherency)
1563 {
1564 /* Workaround to force correct ordering between irq and seqno writes on
1565 * ivb (and maybe also on snb) by reading from a CS register (like
1566 * ACTHD) before reading the status page. */
1567 if (!lazy_coherency) {
1568 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1569 POSTING_READ(RING_ACTHD(engine->mmio_base));
1570 }
1571
1572 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1573 }
1574
1575 static u32
1576 ring_get_seqno(struct intel_engine_cs *engine, bool lazy_coherency)
1577 {
1578 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1579 }
1580
1581 static void
1582 ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1583 {
1584 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1585 }
1586
1587 static u32
1588 pc_render_get_seqno(struct intel_engine_cs *engine, bool lazy_coherency)
1589 {
1590 return engine->scratch.cpu_page[0];
1591 }
1592
1593 static void
1594 pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1595 {
1596 engine->scratch.cpu_page[0] = seqno;
1597 }
1598
1599 static bool
1600 gen5_ring_get_irq(struct intel_engine_cs *engine)
1601 {
1602 struct drm_device *dev = engine->dev;
1603 struct drm_i915_private *dev_priv = dev->dev_private;
1604 unsigned long flags;
1605
1606 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1607 return false;
1608
1609 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1610 if (engine->irq_refcount++ == 0)
1611 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1612 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1613
1614 return true;
1615 }
1616
1617 static void
1618 gen5_ring_put_irq(struct intel_engine_cs *engine)
1619 {
1620 struct drm_device *dev = engine->dev;
1621 struct drm_i915_private *dev_priv = dev->dev_private;
1622 unsigned long flags;
1623
1624 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1625 if (--engine->irq_refcount == 0)
1626 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1627 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1628 }
1629
1630 static bool
1631 i9xx_ring_get_irq(struct intel_engine_cs *engine)
1632 {
1633 struct drm_device *dev = engine->dev;
1634 struct drm_i915_private *dev_priv = dev->dev_private;
1635 unsigned long flags;
1636
1637 if (!intel_irqs_enabled(dev_priv))
1638 return false;
1639
1640 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1641 if (engine->irq_refcount++ == 0) {
1642 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1643 I915_WRITE(IMR, dev_priv->irq_mask);
1644 POSTING_READ(IMR);
1645 }
1646 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1647
1648 return true;
1649 }
1650
1651 static void
1652 i9xx_ring_put_irq(struct intel_engine_cs *engine)
1653 {
1654 struct drm_device *dev = engine->dev;
1655 struct drm_i915_private *dev_priv = dev->dev_private;
1656 unsigned long flags;
1657
1658 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1659 if (--engine->irq_refcount == 0) {
1660 dev_priv->irq_mask |= engine->irq_enable_mask;
1661 I915_WRITE(IMR, dev_priv->irq_mask);
1662 POSTING_READ(IMR);
1663 }
1664 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1665 }
1666
1667 static bool
1668 i8xx_ring_get_irq(struct intel_engine_cs *engine)
1669 {
1670 struct drm_device *dev = engine->dev;
1671 struct drm_i915_private *dev_priv = dev->dev_private;
1672 unsigned long flags;
1673
1674 if (!intel_irqs_enabled(dev_priv))
1675 return false;
1676
1677 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1678 if (engine->irq_refcount++ == 0) {
1679 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1680 I915_WRITE16(IMR, dev_priv->irq_mask);
1681 POSTING_READ16(IMR);
1682 }
1683 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1684
1685 return true;
1686 }
1687
1688 static void
1689 i8xx_ring_put_irq(struct intel_engine_cs *engine)
1690 {
1691 struct drm_device *dev = engine->dev;
1692 struct drm_i915_private *dev_priv = dev->dev_private;
1693 unsigned long flags;
1694
1695 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1696 if (--engine->irq_refcount == 0) {
1697 dev_priv->irq_mask |= engine->irq_enable_mask;
1698 I915_WRITE16(IMR, dev_priv->irq_mask);
1699 POSTING_READ16(IMR);
1700 }
1701 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1702 }
1703
1704 static int
1705 bsd_ring_flush(struct drm_i915_gem_request *req,
1706 u32 invalidate_domains,
1707 u32 flush_domains)
1708 {
1709 struct intel_engine_cs *engine = req->engine;
1710 int ret;
1711
1712 ret = intel_ring_begin(req, 2);
1713 if (ret)
1714 return ret;
1715
1716 intel_ring_emit(engine, MI_FLUSH);
1717 intel_ring_emit(engine, MI_NOOP);
1718 intel_ring_advance(engine);
1719 return 0;
1720 }
1721
1722 static int
1723 i9xx_add_request(struct drm_i915_gem_request *req)
1724 {
1725 struct intel_engine_cs *engine = req->engine;
1726 int ret;
1727
1728 ret = intel_ring_begin(req, 4);
1729 if (ret)
1730 return ret;
1731
1732 intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1733 intel_ring_emit(engine,
1734 I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1735 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1736 intel_ring_emit(engine, MI_USER_INTERRUPT);
1737 __intel_ring_advance(engine);
1738
1739 return 0;
1740 }
1741
1742 static bool
1743 gen6_ring_get_irq(struct intel_engine_cs *engine)
1744 {
1745 struct drm_device *dev = engine->dev;
1746 struct drm_i915_private *dev_priv = dev->dev_private;
1747 unsigned long flags;
1748
1749 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1750 return false;
1751
1752 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1753 if (engine->irq_refcount++ == 0) {
1754 if (HAS_L3_DPF(dev) && engine->id == RCS)
1755 I915_WRITE_IMR(engine,
1756 ~(engine->irq_enable_mask |
1757 GT_PARITY_ERROR(dev)));
1758 else
1759 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1760 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1761 }
1762 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1763
1764 return true;
1765 }
1766
1767 static void
1768 gen6_ring_put_irq(struct intel_engine_cs *engine)
1769 {
1770 struct drm_device *dev = engine->dev;
1771 struct drm_i915_private *dev_priv = dev->dev_private;
1772 unsigned long flags;
1773
1774 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1775 if (--engine->irq_refcount == 0) {
1776 if (HAS_L3_DPF(dev) && engine->id == RCS)
1777 I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
1778 else
1779 I915_WRITE_IMR(engine, ~0);
1780 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1781 }
1782 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1783 }
1784
1785 static bool
1786 hsw_vebox_get_irq(struct intel_engine_cs *engine)
1787 {
1788 struct drm_device *dev = engine->dev;
1789 struct drm_i915_private *dev_priv = dev->dev_private;
1790 unsigned long flags;
1791
1792 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1793 return false;
1794
1795 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1796 if (engine->irq_refcount++ == 0) {
1797 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1798 gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
1799 }
1800 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1801
1802 return true;
1803 }
1804
1805 static void
1806 hsw_vebox_put_irq(struct intel_engine_cs *engine)
1807 {
1808 struct drm_device *dev = engine->dev;
1809 struct drm_i915_private *dev_priv = dev->dev_private;
1810 unsigned long flags;
1811
1812 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1813 if (--engine->irq_refcount == 0) {
1814 I915_WRITE_IMR(engine, ~0);
1815 gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
1816 }
1817 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1818 }
1819
1820 static bool
1821 gen8_ring_get_irq(struct intel_engine_cs *engine)
1822 {
1823 struct drm_device *dev = engine->dev;
1824 struct drm_i915_private *dev_priv = dev->dev_private;
1825 unsigned long flags;
1826
1827 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1828 return false;
1829
1830 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1831 if (engine->irq_refcount++ == 0) {
1832 if (HAS_L3_DPF(dev) && engine->id == RCS) {
1833 I915_WRITE_IMR(engine,
1834 ~(engine->irq_enable_mask |
1835 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1836 } else {
1837 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1838 }
1839 POSTING_READ(RING_IMR(engine->mmio_base));
1840 }
1841 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1842
1843 return true;
1844 }
1845
1846 static void
1847 gen8_ring_put_irq(struct intel_engine_cs *engine)
1848 {
1849 struct drm_device *dev = engine->dev;
1850 struct drm_i915_private *dev_priv = dev->dev_private;
1851 unsigned long flags;
1852
1853 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1854 if (--engine->irq_refcount == 0) {
1855 if (HAS_L3_DPF(dev) && engine->id == RCS) {
1856 I915_WRITE_IMR(engine,
1857 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1858 } else {
1859 I915_WRITE_IMR(engine, ~0);
1860 }
1861 POSTING_READ(RING_IMR(engine->mmio_base));
1862 }
1863 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1864 }
1865
1866 static int
1867 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1868 u64 offset, u32 length,
1869 unsigned dispatch_flags)
1870 {
1871 struct intel_engine_cs *engine = req->engine;
1872 int ret;
1873
1874 ret = intel_ring_begin(req, 2);
1875 if (ret)
1876 return ret;
1877
1878 intel_ring_emit(engine,
1879 MI_BATCH_BUFFER_START |
1880 MI_BATCH_GTT |
1881 (dispatch_flags & I915_DISPATCH_SECURE ?
1882 0 : MI_BATCH_NON_SECURE_I965));
1883 intel_ring_emit(engine, offset);
1884 intel_ring_advance(engine);
1885
1886 return 0;
1887 }
1888
1889 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1890 #define I830_BATCH_LIMIT (256*1024)
1891 #define I830_TLB_ENTRIES (2)
1892 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1893 static int
1894 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1895 u64 offset, u32 len,
1896 unsigned dispatch_flags)
1897 {
1898 struct intel_engine_cs *engine = req->engine;
1899 u32 cs_offset = engine->scratch.gtt_offset;
1900 int ret;
1901
1902 ret = intel_ring_begin(req, 6);
1903 if (ret)
1904 return ret;
1905
1906 /* Evict the invalid PTE TLBs */
1907 intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1908 intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1909 intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1910 intel_ring_emit(engine, cs_offset);
1911 intel_ring_emit(engine, 0xdeadbeef);
1912 intel_ring_emit(engine, MI_NOOP);
1913 intel_ring_advance(engine);
1914
1915 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1916 if (len > I830_BATCH_LIMIT)
1917 return -ENOSPC;
1918
1919 ret = intel_ring_begin(req, 6 + 2);
1920 if (ret)
1921 return ret;
1922
1923 /* Blit the batch (which has now all relocs applied) to the
1924 * stable batch scratch bo area (so that the CS never
1925 * stumbles over its tlb invalidation bug) ...
1926 */
1927 intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1928 intel_ring_emit(engine,
1929 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1930 intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1931 intel_ring_emit(engine, cs_offset);
1932 intel_ring_emit(engine, 4096);
1933 intel_ring_emit(engine, offset);
1934
1935 intel_ring_emit(engine, MI_FLUSH);
1936 intel_ring_emit(engine, MI_NOOP);
1937 intel_ring_advance(engine);
1938
1939 /* ... and execute it. */
1940 offset = cs_offset;
1941 }
1942
1943 ret = intel_ring_begin(req, 2);
1944 if (ret)
1945 return ret;
1946
1947 intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1948 intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1949 0 : MI_BATCH_NON_SECURE));
1950 intel_ring_advance(engine);
1951
1952 return 0;
1953 }
1954
1955 static int
1956 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1957 u64 offset, u32 len,
1958 unsigned dispatch_flags)
1959 {
1960 struct intel_engine_cs *engine = req->engine;
1961 int ret;
1962
1963 ret = intel_ring_begin(req, 2);
1964 if (ret)
1965 return ret;
1966
1967 intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1968 intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1969 0 : MI_BATCH_NON_SECURE));
1970 intel_ring_advance(engine);
1971
1972 return 0;
1973 }
1974
1975 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1976 {
1977 struct drm_i915_private *dev_priv = to_i915(engine->dev);
1978
1979 if (!dev_priv->status_page_dmah)
1980 return;
1981
1982 drm_pci_free(engine->dev, dev_priv->status_page_dmah);
1983 engine->status_page.page_addr = NULL;
1984 }
1985
1986 static void cleanup_status_page(struct intel_engine_cs *engine)
1987 {
1988 struct drm_i915_gem_object *obj;
1989
1990 obj = engine->status_page.obj;
1991 if (obj == NULL)
1992 return;
1993
1994 kunmap(sg_page(obj->pages->sgl));
1995 i915_gem_object_ggtt_unpin(obj);
1996 drm_gem_object_unreference(&obj->base);
1997 engine->status_page.obj = NULL;
1998 }
1999
2000 static int init_status_page(struct intel_engine_cs *engine)
2001 {
2002 struct drm_i915_gem_object *obj = engine->status_page.obj;
2003
2004 if (obj == NULL) {
2005 unsigned flags;
2006 int ret;
2007
2008 obj = i915_gem_alloc_object(engine->dev, 4096);
2009 if (obj == NULL) {
2010 DRM_ERROR("Failed to allocate status page\n");
2011 return -ENOMEM;
2012 }
2013
2014 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2015 if (ret)
2016 goto err_unref;
2017
2018 flags = 0;
2019 if (!HAS_LLC(engine->dev))
2020 /* On g33, we cannot place HWS above 256MiB, so
2021 * restrict its pinning to the low mappable arena.
2022 * Though this restriction is not documented for
2023 * gen4, gen5, or byt, they also behave similarly
2024 * and hang if the HWS is placed at the top of the
2025 * GTT. To generalise, it appears that all !llc
2026 * platforms have issues with us placing the HWS
2027 * above the mappable region (even though we never
2028 * actualy map it).
2029 */
2030 flags |= PIN_MAPPABLE;
2031 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2032 if (ret) {
2033 err_unref:
2034 drm_gem_object_unreference(&obj->base);
2035 return ret;
2036 }
2037
2038 engine->status_page.obj = obj;
2039 }
2040
2041 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
2042 engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
2043 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2044
2045 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2046 engine->name, engine->status_page.gfx_addr);
2047
2048 return 0;
2049 }
2050
2051 static int init_phys_status_page(struct intel_engine_cs *engine)
2052 {
2053 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2054
2055 if (!dev_priv->status_page_dmah) {
2056 dev_priv->status_page_dmah =
2057 drm_pci_alloc(engine->dev, PAGE_SIZE, PAGE_SIZE);
2058 if (!dev_priv->status_page_dmah)
2059 return -ENOMEM;
2060 }
2061
2062 engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2063 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2064
2065 return 0;
2066 }
2067
2068 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2069 {
2070 if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2071 vunmap(ringbuf->virtual_start);
2072 else
2073 iounmap(ringbuf->virtual_start);
2074 ringbuf->virtual_start = NULL;
2075 ringbuf->vma = NULL;
2076 i915_gem_object_ggtt_unpin(ringbuf->obj);
2077 }
2078
2079 static u32 *vmap_obj(struct drm_i915_gem_object *obj)
2080 {
2081 struct sg_page_iter sg_iter;
2082 struct page **pages;
2083 void *addr;
2084 int i;
2085
2086 pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
2087 if (pages == NULL)
2088 return NULL;
2089
2090 i = 0;
2091 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
2092 pages[i++] = sg_page_iter_page(&sg_iter);
2093
2094 addr = vmap(pages, i, 0, PAGE_KERNEL);
2095 drm_free_large(pages);
2096
2097 return addr;
2098 }
2099
2100 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2101 struct intel_ringbuffer *ringbuf)
2102 {
2103 struct drm_i915_private *dev_priv = to_i915(dev);
2104 struct drm_i915_gem_object *obj = ringbuf->obj;
2105 int ret;
2106
2107 if (HAS_LLC(dev_priv) && !obj->stolen) {
2108 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, 0);
2109 if (ret)
2110 return ret;
2111
2112 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2113 if (ret) {
2114 i915_gem_object_ggtt_unpin(obj);
2115 return ret;
2116 }
2117
2118 ringbuf->virtual_start = vmap_obj(obj);
2119 if (ringbuf->virtual_start == NULL) {
2120 i915_gem_object_ggtt_unpin(obj);
2121 return -ENOMEM;
2122 }
2123 } else {
2124 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2125 if (ret)
2126 return ret;
2127
2128 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2129 if (ret) {
2130 i915_gem_object_ggtt_unpin(obj);
2131 return ret;
2132 }
2133
2134 /* Access through the GTT requires the device to be awake. */
2135 assert_rpm_wakelock_held(dev_priv);
2136
2137 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2138 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2139 if (ringbuf->virtual_start == NULL) {
2140 i915_gem_object_ggtt_unpin(obj);
2141 return -EINVAL;
2142 }
2143 }
2144
2145 ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2146
2147 return 0;
2148 }
2149
2150 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2151 {
2152 drm_gem_object_unreference(&ringbuf->obj->base);
2153 ringbuf->obj = NULL;
2154 }
2155
2156 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2157 struct intel_ringbuffer *ringbuf)
2158 {
2159 struct drm_i915_gem_object *obj;
2160
2161 obj = NULL;
2162 if (!HAS_LLC(dev))
2163 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2164 if (obj == NULL)
2165 obj = i915_gem_alloc_object(dev, ringbuf->size);
2166 if (obj == NULL)
2167 return -ENOMEM;
2168
2169 /* mark ring buffers as read-only from GPU side by default */
2170 obj->gt_ro = 1;
2171
2172 ringbuf->obj = obj;
2173
2174 return 0;
2175 }
2176
2177 struct intel_ringbuffer *
2178 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2179 {
2180 struct intel_ringbuffer *ring;
2181 int ret;
2182
2183 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2184 if (ring == NULL) {
2185 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2186 engine->name);
2187 return ERR_PTR(-ENOMEM);
2188 }
2189
2190 ring->engine = engine;
2191 list_add(&ring->link, &engine->buffers);
2192
2193 ring->size = size;
2194 /* Workaround an erratum on the i830 which causes a hang if
2195 * the TAIL pointer points to within the last 2 cachelines
2196 * of the buffer.
2197 */
2198 ring->effective_size = size;
2199 if (IS_I830(engine->dev) || IS_845G(engine->dev))
2200 ring->effective_size -= 2 * CACHELINE_BYTES;
2201
2202 ring->last_retired_head = -1;
2203 intel_ring_update_space(ring);
2204
2205 ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2206 if (ret) {
2207 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2208 engine->name, ret);
2209 list_del(&ring->link);
2210 kfree(ring);
2211 return ERR_PTR(ret);
2212 }
2213
2214 return ring;
2215 }
2216
2217 void
2218 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2219 {
2220 intel_destroy_ringbuffer_obj(ring);
2221 list_del(&ring->link);
2222 kfree(ring);
2223 }
2224
2225 static int intel_init_ring_buffer(struct drm_device *dev,
2226 struct intel_engine_cs *engine)
2227 {
2228 struct intel_ringbuffer *ringbuf;
2229 int ret;
2230
2231 WARN_ON(engine->buffer);
2232
2233 engine->dev = dev;
2234 INIT_LIST_HEAD(&engine->active_list);
2235 INIT_LIST_HEAD(&engine->request_list);
2236 INIT_LIST_HEAD(&engine->execlist_queue);
2237 INIT_LIST_HEAD(&engine->buffers);
2238 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2239 memset(engine->semaphore.sync_seqno, 0,
2240 sizeof(engine->semaphore.sync_seqno));
2241
2242 init_waitqueue_head(&engine->irq_queue);
2243
2244 ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2245 if (IS_ERR(ringbuf)) {
2246 ret = PTR_ERR(ringbuf);
2247 goto error;
2248 }
2249 engine->buffer = ringbuf;
2250
2251 if (I915_NEED_GFX_HWS(dev)) {
2252 ret = init_status_page(engine);
2253 if (ret)
2254 goto error;
2255 } else {
2256 WARN_ON(engine->id != RCS);
2257 ret = init_phys_status_page(engine);
2258 if (ret)
2259 goto error;
2260 }
2261
2262 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2263 if (ret) {
2264 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2265 engine->name, ret);
2266 intel_destroy_ringbuffer_obj(ringbuf);
2267 goto error;
2268 }
2269
2270 ret = i915_cmd_parser_init_ring(engine);
2271 if (ret)
2272 goto error;
2273
2274 return 0;
2275
2276 error:
2277 intel_cleanup_engine(engine);
2278 return ret;
2279 }
2280
2281 void intel_cleanup_engine(struct intel_engine_cs *engine)
2282 {
2283 struct drm_i915_private *dev_priv;
2284
2285 if (!intel_engine_initialized(engine))
2286 return;
2287
2288 dev_priv = to_i915(engine->dev);
2289
2290 if (engine->buffer) {
2291 intel_stop_engine(engine);
2292 WARN_ON(!IS_GEN2(engine->dev) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2293
2294 intel_unpin_ringbuffer_obj(engine->buffer);
2295 intel_ringbuffer_free(engine->buffer);
2296 engine->buffer = NULL;
2297 }
2298
2299 if (engine->cleanup)
2300 engine->cleanup(engine);
2301
2302 if (I915_NEED_GFX_HWS(engine->dev)) {
2303 cleanup_status_page(engine);
2304 } else {
2305 WARN_ON(engine->id != RCS);
2306 cleanup_phys_status_page(engine);
2307 }
2308
2309 i915_cmd_parser_fini_ring(engine);
2310 i915_gem_batch_pool_fini(&engine->batch_pool);
2311 engine->dev = NULL;
2312 }
2313
2314 static int ring_wait_for_space(struct intel_engine_cs *engine, int n)
2315 {
2316 struct intel_ringbuffer *ringbuf = engine->buffer;
2317 struct drm_i915_gem_request *request;
2318 unsigned space;
2319 int ret;
2320
2321 if (intel_ring_space(ringbuf) >= n)
2322 return 0;
2323
2324 /* The whole point of reserving space is to not wait! */
2325 WARN_ON(ringbuf->reserved_in_use);
2326
2327 list_for_each_entry(request, &engine->request_list, list) {
2328 space = __intel_ring_space(request->postfix, ringbuf->tail,
2329 ringbuf->size);
2330 if (space >= n)
2331 break;
2332 }
2333
2334 if (WARN_ON(&request->list == &engine->request_list))
2335 return -ENOSPC;
2336
2337 ret = i915_wait_request(request);
2338 if (ret)
2339 return ret;
2340
2341 ringbuf->space = space;
2342 return 0;
2343 }
2344
2345 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2346 {
2347 uint32_t __iomem *virt;
2348 int rem = ringbuf->size - ringbuf->tail;
2349
2350 virt = ringbuf->virtual_start + ringbuf->tail;
2351 rem /= 4;
2352 while (rem--)
2353 iowrite32(MI_NOOP, virt++);
2354
2355 ringbuf->tail = 0;
2356 intel_ring_update_space(ringbuf);
2357 }
2358
2359 int intel_engine_idle(struct intel_engine_cs *engine)
2360 {
2361 struct drm_i915_gem_request *req;
2362
2363 /* Wait upon the last request to be completed */
2364 if (list_empty(&engine->request_list))
2365 return 0;
2366
2367 req = list_entry(engine->request_list.prev,
2368 struct drm_i915_gem_request,
2369 list);
2370
2371 /* Make sure we do not trigger any retires */
2372 return __i915_wait_request(req,
2373 atomic_read(&to_i915(engine->dev)->gpu_error.reset_counter),
2374 to_i915(engine->dev)->mm.interruptible,
2375 NULL, NULL);
2376 }
2377
2378 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2379 {
2380 request->ringbuf = request->engine->buffer;
2381 return 0;
2382 }
2383
2384 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2385 {
2386 /*
2387 * The first call merely notes the reserve request and is common for
2388 * all back ends. The subsequent localised _begin() call actually
2389 * ensures that the reservation is available. Without the begin, if
2390 * the request creator immediately submitted the request without
2391 * adding any commands to it then there might not actually be
2392 * sufficient room for the submission commands.
2393 */
2394 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2395
2396 return intel_ring_begin(request, 0);
2397 }
2398
2399 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2400 {
2401 WARN_ON(ringbuf->reserved_size);
2402 WARN_ON(ringbuf->reserved_in_use);
2403
2404 ringbuf->reserved_size = size;
2405 }
2406
2407 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2408 {
2409 WARN_ON(ringbuf->reserved_in_use);
2410
2411 ringbuf->reserved_size = 0;
2412 ringbuf->reserved_in_use = false;
2413 }
2414
2415 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2416 {
2417 WARN_ON(ringbuf->reserved_in_use);
2418
2419 ringbuf->reserved_in_use = true;
2420 ringbuf->reserved_tail = ringbuf->tail;
2421 }
2422
2423 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2424 {
2425 WARN_ON(!ringbuf->reserved_in_use);
2426 if (ringbuf->tail > ringbuf->reserved_tail) {
2427 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2428 "request reserved size too small: %d vs %d!\n",
2429 ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2430 } else {
2431 /*
2432 * The ring was wrapped while the reserved space was in use.
2433 * That means that some unknown amount of the ring tail was
2434 * no-op filled and skipped. Thus simply adding the ring size
2435 * to the tail and doing the above space check will not work.
2436 * Rather than attempt to track how much tail was skipped,
2437 * it is much simpler to say that also skipping the sanity
2438 * check every once in a while is not a big issue.
2439 */
2440 }
2441
2442 ringbuf->reserved_size = 0;
2443 ringbuf->reserved_in_use = false;
2444 }
2445
2446 static int __intel_ring_prepare(struct intel_engine_cs *engine, int bytes)
2447 {
2448 struct intel_ringbuffer *ringbuf = engine->buffer;
2449 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2450 int remain_actual = ringbuf->size - ringbuf->tail;
2451 int ret, total_bytes, wait_bytes = 0;
2452 bool need_wrap = false;
2453
2454 if (ringbuf->reserved_in_use)
2455 total_bytes = bytes;
2456 else
2457 total_bytes = bytes + ringbuf->reserved_size;
2458
2459 if (unlikely(bytes > remain_usable)) {
2460 /*
2461 * Not enough space for the basic request. So need to flush
2462 * out the remainder and then wait for base + reserved.
2463 */
2464 wait_bytes = remain_actual + total_bytes;
2465 need_wrap = true;
2466 } else {
2467 if (unlikely(total_bytes > remain_usable)) {
2468 /*
2469 * The base request will fit but the reserved space
2470 * falls off the end. So only need to to wait for the
2471 * reserved size after flushing out the remainder.
2472 */
2473 wait_bytes = remain_actual + ringbuf->reserved_size;
2474 need_wrap = true;
2475 } else if (total_bytes > ringbuf->space) {
2476 /* No wrapping required, just waiting. */
2477 wait_bytes = total_bytes;
2478 }
2479 }
2480
2481 if (wait_bytes) {
2482 ret = ring_wait_for_space(engine, wait_bytes);
2483 if (unlikely(ret))
2484 return ret;
2485
2486 if (need_wrap)
2487 __wrap_ring_buffer(ringbuf);
2488 }
2489
2490 return 0;
2491 }
2492
2493 int intel_ring_begin(struct drm_i915_gem_request *req,
2494 int num_dwords)
2495 {
2496 struct intel_engine_cs *engine;
2497 struct drm_i915_private *dev_priv;
2498 int ret;
2499
2500 WARN_ON(req == NULL);
2501 engine = req->engine;
2502 dev_priv = engine->dev->dev_private;
2503
2504 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2505 dev_priv->mm.interruptible);
2506 if (ret)
2507 return ret;
2508
2509 ret = __intel_ring_prepare(engine, num_dwords * sizeof(uint32_t));
2510 if (ret)
2511 return ret;
2512
2513 engine->buffer->space -= num_dwords * sizeof(uint32_t);
2514 return 0;
2515 }
2516
2517 /* Align the ring tail to a cacheline boundary */
2518 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2519 {
2520 struct intel_engine_cs *engine = req->engine;
2521 int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2522 int ret;
2523
2524 if (num_dwords == 0)
2525 return 0;
2526
2527 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2528 ret = intel_ring_begin(req, num_dwords);
2529 if (ret)
2530 return ret;
2531
2532 while (num_dwords--)
2533 intel_ring_emit(engine, MI_NOOP);
2534
2535 intel_ring_advance(engine);
2536
2537 return 0;
2538 }
2539
2540 void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2541 {
2542 struct drm_device *dev = engine->dev;
2543 struct drm_i915_private *dev_priv = dev->dev_private;
2544
2545 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2546 I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
2547 I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2548 if (HAS_VEBOX(dev))
2549 I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2550 }
2551
2552 engine->set_seqno(engine, seqno);
2553 engine->hangcheck.seqno = seqno;
2554 }
2555
2556 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2557 u32 value)
2558 {
2559 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2560
2561 /* Every tail move must follow the sequence below */
2562
2563 /* Disable notification that the ring is IDLE. The GT
2564 * will then assume that it is busy and bring it out of rc6.
2565 */
2566 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2567 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2568
2569 /* Clear the context id. Here be magic! */
2570 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2571
2572 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2573 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2574 GEN6_BSD_SLEEP_INDICATOR) == 0,
2575 50))
2576 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2577
2578 /* Now that the ring is fully powered up, update the tail */
2579 I915_WRITE_TAIL(engine, value);
2580 POSTING_READ(RING_TAIL(engine->mmio_base));
2581
2582 /* Let the ring send IDLE messages to the GT again,
2583 * and so let it sleep to conserve power when idle.
2584 */
2585 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2586 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2587 }
2588
2589 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2590 u32 invalidate, u32 flush)
2591 {
2592 struct intel_engine_cs *engine = req->engine;
2593 uint32_t cmd;
2594 int ret;
2595
2596 ret = intel_ring_begin(req, 4);
2597 if (ret)
2598 return ret;
2599
2600 cmd = MI_FLUSH_DW;
2601 if (INTEL_INFO(engine->dev)->gen >= 8)
2602 cmd += 1;
2603
2604 /* We always require a command barrier so that subsequent
2605 * commands, such as breadcrumb interrupts, are strictly ordered
2606 * wrt the contents of the write cache being flushed to memory
2607 * (and thus being coherent from the CPU).
2608 */
2609 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2610
2611 /*
2612 * Bspec vol 1c.5 - video engine command streamer:
2613 * "If ENABLED, all TLBs will be invalidated once the flush
2614 * operation is complete. This bit is only valid when the
2615 * Post-Sync Operation field is a value of 1h or 3h."
2616 */
2617 if (invalidate & I915_GEM_GPU_DOMAINS)
2618 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2619
2620 intel_ring_emit(engine, cmd);
2621 intel_ring_emit(engine,
2622 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2623 if (INTEL_INFO(engine->dev)->gen >= 8) {
2624 intel_ring_emit(engine, 0); /* upper addr */
2625 intel_ring_emit(engine, 0); /* value */
2626 } else {
2627 intel_ring_emit(engine, 0);
2628 intel_ring_emit(engine, MI_NOOP);
2629 }
2630 intel_ring_advance(engine);
2631 return 0;
2632 }
2633
2634 static int
2635 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2636 u64 offset, u32 len,
2637 unsigned dispatch_flags)
2638 {
2639 struct intel_engine_cs *engine = req->engine;
2640 bool ppgtt = USES_PPGTT(engine->dev) &&
2641 !(dispatch_flags & I915_DISPATCH_SECURE);
2642 int ret;
2643
2644 ret = intel_ring_begin(req, 4);
2645 if (ret)
2646 return ret;
2647
2648 /* FIXME(BDW): Address space and security selectors. */
2649 intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2650 (dispatch_flags & I915_DISPATCH_RS ?
2651 MI_BATCH_RESOURCE_STREAMER : 0));
2652 intel_ring_emit(engine, lower_32_bits(offset));
2653 intel_ring_emit(engine, upper_32_bits(offset));
2654 intel_ring_emit(engine, MI_NOOP);
2655 intel_ring_advance(engine);
2656
2657 return 0;
2658 }
2659
2660 static int
2661 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2662 u64 offset, u32 len,
2663 unsigned dispatch_flags)
2664 {
2665 struct intel_engine_cs *engine = req->engine;
2666 int ret;
2667
2668 ret = intel_ring_begin(req, 2);
2669 if (ret)
2670 return ret;
2671
2672 intel_ring_emit(engine,
2673 MI_BATCH_BUFFER_START |
2674 (dispatch_flags & I915_DISPATCH_SECURE ?
2675 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2676 (dispatch_flags & I915_DISPATCH_RS ?
2677 MI_BATCH_RESOURCE_STREAMER : 0));
2678 /* bit0-7 is the length on GEN6+ */
2679 intel_ring_emit(engine, offset);
2680 intel_ring_advance(engine);
2681
2682 return 0;
2683 }
2684
2685 static int
2686 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2687 u64 offset, u32 len,
2688 unsigned dispatch_flags)
2689 {
2690 struct intel_engine_cs *engine = req->engine;
2691 int ret;
2692
2693 ret = intel_ring_begin(req, 2);
2694 if (ret)
2695 return ret;
2696
2697 intel_ring_emit(engine,
2698 MI_BATCH_BUFFER_START |
2699 (dispatch_flags & I915_DISPATCH_SECURE ?
2700 0 : MI_BATCH_NON_SECURE_I965));
2701 /* bit0-7 is the length on GEN6+ */
2702 intel_ring_emit(engine, offset);
2703 intel_ring_advance(engine);
2704
2705 return 0;
2706 }
2707
2708 /* Blitter support (SandyBridge+) */
2709
2710 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2711 u32 invalidate, u32 flush)
2712 {
2713 struct intel_engine_cs *engine = req->engine;
2714 struct drm_device *dev = engine->dev;
2715 uint32_t cmd;
2716 int ret;
2717
2718 ret = intel_ring_begin(req, 4);
2719 if (ret)
2720 return ret;
2721
2722 cmd = MI_FLUSH_DW;
2723 if (INTEL_INFO(dev)->gen >= 8)
2724 cmd += 1;
2725
2726 /* We always require a command barrier so that subsequent
2727 * commands, such as breadcrumb interrupts, are strictly ordered
2728 * wrt the contents of the write cache being flushed to memory
2729 * (and thus being coherent from the CPU).
2730 */
2731 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2732
2733 /*
2734 * Bspec vol 1c.3 - blitter engine command streamer:
2735 * "If ENABLED, all TLBs will be invalidated once the flush
2736 * operation is complete. This bit is only valid when the
2737 * Post-Sync Operation field is a value of 1h or 3h."
2738 */
2739 if (invalidate & I915_GEM_DOMAIN_RENDER)
2740 cmd |= MI_INVALIDATE_TLB;
2741 intel_ring_emit(engine, cmd);
2742 intel_ring_emit(engine,
2743 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2744 if (INTEL_INFO(dev)->gen >= 8) {
2745 intel_ring_emit(engine, 0); /* upper addr */
2746 intel_ring_emit(engine, 0); /* value */
2747 } else {
2748 intel_ring_emit(engine, 0);
2749 intel_ring_emit(engine, MI_NOOP);
2750 }
2751 intel_ring_advance(engine);
2752
2753 return 0;
2754 }
2755
2756 int intel_init_render_ring_buffer(struct drm_device *dev)
2757 {
2758 struct drm_i915_private *dev_priv = dev->dev_private;
2759 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2760 struct drm_i915_gem_object *obj;
2761 int ret;
2762
2763 engine->name = "render ring";
2764 engine->id = RCS;
2765 engine->exec_id = I915_EXEC_RENDER;
2766 engine->mmio_base = RENDER_RING_BASE;
2767
2768 if (INTEL_INFO(dev)->gen >= 8) {
2769 if (i915_semaphore_is_enabled(dev)) {
2770 obj = i915_gem_alloc_object(dev, 4096);
2771 if (obj == NULL) {
2772 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2773 i915.semaphores = 0;
2774 } else {
2775 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2776 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2777 if (ret != 0) {
2778 drm_gem_object_unreference(&obj->base);
2779 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2780 i915.semaphores = 0;
2781 } else
2782 dev_priv->semaphore_obj = obj;
2783 }
2784 }
2785
2786 engine->init_context = intel_rcs_ctx_init;
2787 engine->add_request = gen6_add_request;
2788 engine->flush = gen8_render_ring_flush;
2789 engine->irq_get = gen8_ring_get_irq;
2790 engine->irq_put = gen8_ring_put_irq;
2791 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2792 engine->get_seqno = gen6_ring_get_seqno;
2793 engine->set_seqno = ring_set_seqno;
2794 if (i915_semaphore_is_enabled(dev)) {
2795 WARN_ON(!dev_priv->semaphore_obj);
2796 engine->semaphore.sync_to = gen8_ring_sync;
2797 engine->semaphore.signal = gen8_rcs_signal;
2798 GEN8_RING_SEMAPHORE_INIT(engine);
2799 }
2800 } else if (INTEL_INFO(dev)->gen >= 6) {
2801 engine->init_context = intel_rcs_ctx_init;
2802 engine->add_request = gen6_add_request;
2803 engine->flush = gen7_render_ring_flush;
2804 if (INTEL_INFO(dev)->gen == 6)
2805 engine->flush = gen6_render_ring_flush;
2806 engine->irq_get = gen6_ring_get_irq;
2807 engine->irq_put = gen6_ring_put_irq;
2808 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2809 engine->get_seqno = gen6_ring_get_seqno;
2810 engine->set_seqno = ring_set_seqno;
2811 if (i915_semaphore_is_enabled(dev)) {
2812 engine->semaphore.sync_to = gen6_ring_sync;
2813 engine->semaphore.signal = gen6_signal;
2814 /*
2815 * The current semaphore is only applied on pre-gen8
2816 * platform. And there is no VCS2 ring on the pre-gen8
2817 * platform. So the semaphore between RCS and VCS2 is
2818 * initialized as INVALID. Gen8 will initialize the
2819 * sema between VCS2 and RCS later.
2820 */
2821 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2822 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2823 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2824 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2825 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2826 engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2827 engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2828 engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2829 engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2830 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2831 }
2832 } else if (IS_GEN5(dev)) {
2833 engine->add_request = pc_render_add_request;
2834 engine->flush = gen4_render_ring_flush;
2835 engine->get_seqno = pc_render_get_seqno;
2836 engine->set_seqno = pc_render_set_seqno;
2837 engine->irq_get = gen5_ring_get_irq;
2838 engine->irq_put = gen5_ring_put_irq;
2839 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2840 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2841 } else {
2842 engine->add_request = i9xx_add_request;
2843 if (INTEL_INFO(dev)->gen < 4)
2844 engine->flush = gen2_render_ring_flush;
2845 else
2846 engine->flush = gen4_render_ring_flush;
2847 engine->get_seqno = ring_get_seqno;
2848 engine->set_seqno = ring_set_seqno;
2849 if (IS_GEN2(dev)) {
2850 engine->irq_get = i8xx_ring_get_irq;
2851 engine->irq_put = i8xx_ring_put_irq;
2852 } else {
2853 engine->irq_get = i9xx_ring_get_irq;
2854 engine->irq_put = i9xx_ring_put_irq;
2855 }
2856 engine->irq_enable_mask = I915_USER_INTERRUPT;
2857 }
2858 engine->write_tail = ring_write_tail;
2859
2860 if (IS_HASWELL(dev))
2861 engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2862 else if (IS_GEN8(dev))
2863 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2864 else if (INTEL_INFO(dev)->gen >= 6)
2865 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2866 else if (INTEL_INFO(dev)->gen >= 4)
2867 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2868 else if (IS_I830(dev) || IS_845G(dev))
2869 engine->dispatch_execbuffer = i830_dispatch_execbuffer;
2870 else
2871 engine->dispatch_execbuffer = i915_dispatch_execbuffer;
2872 engine->init_hw = init_render_ring;
2873 engine->cleanup = render_ring_cleanup;
2874
2875 /* Workaround batchbuffer to combat CS tlb bug. */
2876 if (HAS_BROKEN_CS_TLB(dev)) {
2877 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2878 if (obj == NULL) {
2879 DRM_ERROR("Failed to allocate batch bo\n");
2880 return -ENOMEM;
2881 }
2882
2883 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2884 if (ret != 0) {
2885 drm_gem_object_unreference(&obj->base);
2886 DRM_ERROR("Failed to ping batch bo\n");
2887 return ret;
2888 }
2889
2890 engine->scratch.obj = obj;
2891 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2892 }
2893
2894 ret = intel_init_ring_buffer(dev, engine);
2895 if (ret)
2896 return ret;
2897
2898 if (INTEL_INFO(dev)->gen >= 5) {
2899 ret = intel_init_pipe_control(engine);
2900 if (ret)
2901 return ret;
2902 }
2903
2904 return 0;
2905 }
2906
2907 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2908 {
2909 struct drm_i915_private *dev_priv = dev->dev_private;
2910 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2911
2912 engine->name = "bsd ring";
2913 engine->id = VCS;
2914 engine->exec_id = I915_EXEC_BSD;
2915
2916 engine->write_tail = ring_write_tail;
2917 if (INTEL_INFO(dev)->gen >= 6) {
2918 engine->mmio_base = GEN6_BSD_RING_BASE;
2919 /* gen6 bsd needs a special wa for tail updates */
2920 if (IS_GEN6(dev))
2921 engine->write_tail = gen6_bsd_ring_write_tail;
2922 engine->flush = gen6_bsd_ring_flush;
2923 engine->add_request = gen6_add_request;
2924 engine->get_seqno = gen6_ring_get_seqno;
2925 engine->set_seqno = ring_set_seqno;
2926 if (INTEL_INFO(dev)->gen >= 8) {
2927 engine->irq_enable_mask =
2928 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2929 engine->irq_get = gen8_ring_get_irq;
2930 engine->irq_put = gen8_ring_put_irq;
2931 engine->dispatch_execbuffer =
2932 gen8_ring_dispatch_execbuffer;
2933 if (i915_semaphore_is_enabled(dev)) {
2934 engine->semaphore.sync_to = gen8_ring_sync;
2935 engine->semaphore.signal = gen8_xcs_signal;
2936 GEN8_RING_SEMAPHORE_INIT(engine);
2937 }
2938 } else {
2939 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2940 engine->irq_get = gen6_ring_get_irq;
2941 engine->irq_put = gen6_ring_put_irq;
2942 engine->dispatch_execbuffer =
2943 gen6_ring_dispatch_execbuffer;
2944 if (i915_semaphore_is_enabled(dev)) {
2945 engine->semaphore.sync_to = gen6_ring_sync;
2946 engine->semaphore.signal = gen6_signal;
2947 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2948 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2949 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2950 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2951 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2952 engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2953 engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2954 engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2955 engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2956 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2957 }
2958 }
2959 } else {
2960 engine->mmio_base = BSD_RING_BASE;
2961 engine->flush = bsd_ring_flush;
2962 engine->add_request = i9xx_add_request;
2963 engine->get_seqno = ring_get_seqno;
2964 engine->set_seqno = ring_set_seqno;
2965 if (IS_GEN5(dev)) {
2966 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2967 engine->irq_get = gen5_ring_get_irq;
2968 engine->irq_put = gen5_ring_put_irq;
2969 } else {
2970 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2971 engine->irq_get = i9xx_ring_get_irq;
2972 engine->irq_put = i9xx_ring_put_irq;
2973 }
2974 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2975 }
2976 engine->init_hw = init_ring_common;
2977
2978 return intel_init_ring_buffer(dev, engine);
2979 }
2980
2981 /**
2982 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2983 */
2984 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2985 {
2986 struct drm_i915_private *dev_priv = dev->dev_private;
2987 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2988
2989 engine->name = "bsd2 ring";
2990 engine->id = VCS2;
2991 engine->exec_id = I915_EXEC_BSD;
2992
2993 engine->write_tail = ring_write_tail;
2994 engine->mmio_base = GEN8_BSD2_RING_BASE;
2995 engine->flush = gen6_bsd_ring_flush;
2996 engine->add_request = gen6_add_request;
2997 engine->get_seqno = gen6_ring_get_seqno;
2998 engine->set_seqno = ring_set_seqno;
2999 engine->irq_enable_mask =
3000 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
3001 engine->irq_get = gen8_ring_get_irq;
3002 engine->irq_put = gen8_ring_put_irq;
3003 engine->dispatch_execbuffer =
3004 gen8_ring_dispatch_execbuffer;
3005 if (i915_semaphore_is_enabled(dev)) {
3006 engine->semaphore.sync_to = gen8_ring_sync;
3007 engine->semaphore.signal = gen8_xcs_signal;
3008 GEN8_RING_SEMAPHORE_INIT(engine);
3009 }
3010 engine->init_hw = init_ring_common;
3011
3012 return intel_init_ring_buffer(dev, engine);
3013 }
3014
3015 int intel_init_blt_ring_buffer(struct drm_device *dev)
3016 {
3017 struct drm_i915_private *dev_priv = dev->dev_private;
3018 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
3019
3020 engine->name = "blitter ring";
3021 engine->id = BCS;
3022 engine->exec_id = I915_EXEC_BLT;
3023
3024 engine->mmio_base = BLT_RING_BASE;
3025 engine->write_tail = ring_write_tail;
3026 engine->flush = gen6_ring_flush;
3027 engine->add_request = gen6_add_request;
3028 engine->get_seqno = gen6_ring_get_seqno;
3029 engine->set_seqno = ring_set_seqno;
3030 if (INTEL_INFO(dev)->gen >= 8) {
3031 engine->irq_enable_mask =
3032 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3033 engine->irq_get = gen8_ring_get_irq;
3034 engine->irq_put = gen8_ring_put_irq;
3035 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3036 if (i915_semaphore_is_enabled(dev)) {
3037 engine->semaphore.sync_to = gen8_ring_sync;
3038 engine->semaphore.signal = gen8_xcs_signal;
3039 GEN8_RING_SEMAPHORE_INIT(engine);
3040 }
3041 } else {
3042 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3043 engine->irq_get = gen6_ring_get_irq;
3044 engine->irq_put = gen6_ring_put_irq;
3045 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3046 if (i915_semaphore_is_enabled(dev)) {
3047 engine->semaphore.signal = gen6_signal;
3048 engine->semaphore.sync_to = gen6_ring_sync;
3049 /*
3050 * The current semaphore is only applied on pre-gen8
3051 * platform. And there is no VCS2 ring on the pre-gen8
3052 * platform. So the semaphore between BCS and VCS2 is
3053 * initialized as INVALID. Gen8 will initialize the
3054 * sema between BCS and VCS2 later.
3055 */
3056 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
3057 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
3058 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
3059 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
3060 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3061 engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
3062 engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
3063 engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
3064 engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
3065 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3066 }
3067 }
3068 engine->init_hw = init_ring_common;
3069
3070 return intel_init_ring_buffer(dev, engine);
3071 }
3072
3073 int intel_init_vebox_ring_buffer(struct drm_device *dev)
3074 {
3075 struct drm_i915_private *dev_priv = dev->dev_private;
3076 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
3077
3078 engine->name = "video enhancement ring";
3079 engine->id = VECS;
3080 engine->exec_id = I915_EXEC_VEBOX;
3081
3082 engine->mmio_base = VEBOX_RING_BASE;
3083 engine->write_tail = ring_write_tail;
3084 engine->flush = gen6_ring_flush;
3085 engine->add_request = gen6_add_request;
3086 engine->get_seqno = gen6_ring_get_seqno;
3087 engine->set_seqno = ring_set_seqno;
3088
3089 if (INTEL_INFO(dev)->gen >= 8) {
3090 engine->irq_enable_mask =
3091 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3092 engine->irq_get = gen8_ring_get_irq;
3093 engine->irq_put = gen8_ring_put_irq;
3094 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3095 if (i915_semaphore_is_enabled(dev)) {
3096 engine->semaphore.sync_to = gen8_ring_sync;
3097 engine->semaphore.signal = gen8_xcs_signal;
3098 GEN8_RING_SEMAPHORE_INIT(engine);
3099 }
3100 } else {
3101 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3102 engine->irq_get = hsw_vebox_get_irq;
3103 engine->irq_put = hsw_vebox_put_irq;
3104 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3105 if (i915_semaphore_is_enabled(dev)) {
3106 engine->semaphore.sync_to = gen6_ring_sync;
3107 engine->semaphore.signal = gen6_signal;
3108 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3109 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3110 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3111 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3112 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3113 engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3114 engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3115 engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3116 engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3117 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3118 }
3119 }
3120 engine->init_hw = init_ring_common;
3121
3122 return intel_init_ring_buffer(dev, engine);
3123 }
3124
3125 int
3126 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3127 {
3128 struct intel_engine_cs *engine = req->engine;
3129 int ret;
3130
3131 if (!engine->gpu_caches_dirty)
3132 return 0;
3133
3134 ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
3135 if (ret)
3136 return ret;
3137
3138 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3139
3140 engine->gpu_caches_dirty = false;
3141 return 0;
3142 }
3143
3144 int
3145 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3146 {
3147 struct intel_engine_cs *engine = req->engine;
3148 uint32_t flush_domains;
3149 int ret;
3150
3151 flush_domains = 0;
3152 if (engine->gpu_caches_dirty)
3153 flush_domains = I915_GEM_GPU_DOMAINS;
3154
3155 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3156 if (ret)
3157 return ret;
3158
3159 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3160
3161 engine->gpu_caches_dirty = false;
3162 return 0;
3163 }
3164
3165 void
3166 intel_stop_engine(struct intel_engine_cs *engine)
3167 {
3168 int ret;
3169
3170 if (!intel_engine_initialized(engine))
3171 return;
3172
3173 ret = intel_engine_idle(engine);
3174 if (ret && !i915_reset_in_progress(&to_i915(engine->dev)->gpu_error))
3175 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3176 engine->name, ret);
3177
3178 stop_ring(engine);
3179 }
This page took 0.098064 seconds and 5 git commands to generate.