drm/i915/bdw: Render ring flushing
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 static inline int ring_space(struct intel_ring_buffer *ring)
37 {
38 int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
39 if (space < 0)
40 space += ring->size;
41 return space;
42 }
43
44 void __intel_ring_advance(struct intel_ring_buffer *ring)
45 {
46 struct drm_i915_private *dev_priv = ring->dev->dev_private;
47
48 ring->tail &= ring->size - 1;
49 if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
50 return;
51 ring->write_tail(ring, ring->tail);
52 }
53
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56 u32 invalidate_domains,
57 u32 flush_domains)
58 {
59 u32 cmd;
60 int ret;
61
62 cmd = MI_FLUSH;
63 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64 cmd |= MI_NO_WRITE_FLUSH;
65
66 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67 cmd |= MI_READ_FLUSH;
68
69 ret = intel_ring_begin(ring, 2);
70 if (ret)
71 return ret;
72
73 intel_ring_emit(ring, cmd);
74 intel_ring_emit(ring, MI_NOOP);
75 intel_ring_advance(ring);
76
77 return 0;
78 }
79
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82 u32 invalidate_domains,
83 u32 flush_domains)
84 {
85 struct drm_device *dev = ring->dev;
86 u32 cmd;
87 int ret;
88
89 /*
90 * read/write caches:
91 *
92 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
94 * also flushed at 2d versus 3d pipeline switches.
95 *
96 * read-only caches:
97 *
98 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99 * MI_READ_FLUSH is set, and is always flushed on 965.
100 *
101 * I915_GEM_DOMAIN_COMMAND may not exist?
102 *
103 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104 * invalidated when MI_EXE_FLUSH is set.
105 *
106 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107 * invalidated with every MI_FLUSH.
108 *
109 * TLBs:
110 *
111 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114 * are flushed at any MI_FLUSH.
115 */
116
117 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119 cmd &= ~MI_NO_WRITE_FLUSH;
120 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121 cmd |= MI_EXE_FLUSH;
122
123 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124 (IS_G4X(dev) || IS_GEN5(dev)))
125 cmd |= MI_INVALIDATE_ISP;
126
127 ret = intel_ring_begin(ring, 2);
128 if (ret)
129 return ret;
130
131 intel_ring_emit(ring, cmd);
132 intel_ring_emit(ring, MI_NOOP);
133 intel_ring_advance(ring);
134
135 return 0;
136 }
137
138 /**
139 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140 * implementing two workarounds on gen6. From section 1.4.7.1
141 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142 *
143 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144 * produced by non-pipelined state commands), software needs to first
145 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146 * 0.
147 *
148 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150 *
151 * And the workaround for these two requires this workaround first:
152 *
153 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154 * BEFORE the pipe-control with a post-sync op and no write-cache
155 * flushes.
156 *
157 * And this last workaround is tricky because of the requirements on
158 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159 * volume 2 part 1:
160 *
161 * "1 of the following must also be set:
162 * - Render Target Cache Flush Enable ([12] of DW1)
163 * - Depth Cache Flush Enable ([0] of DW1)
164 * - Stall at Pixel Scoreboard ([1] of DW1)
165 * - Depth Stall ([13] of DW1)
166 * - Post-Sync Operation ([13] of DW1)
167 * - Notify Enable ([8] of DW1)"
168 *
169 * The cache flushes require the workaround flush that triggered this
170 * one, so we can't use it. Depth stall would trigger the same.
171 * Post-sync nonzero is what triggered this second workaround, so we
172 * can't use that one either. Notify enable is IRQs, which aren't
173 * really our business. That leaves only stall at scoreboard.
174 */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178 u32 scratch_addr = ring->scratch.gtt_offset + 128;
179 int ret;
180
181
182 ret = intel_ring_begin(ring, 6);
183 if (ret)
184 return ret;
185
186 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
187 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188 PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
190 intel_ring_emit(ring, 0); /* low dword */
191 intel_ring_emit(ring, 0); /* high dword */
192 intel_ring_emit(ring, MI_NOOP);
193 intel_ring_advance(ring);
194
195 ret = intel_ring_begin(ring, 6);
196 if (ret)
197 return ret;
198
199 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
200 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
201 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
202 intel_ring_emit(ring, 0);
203 intel_ring_emit(ring, 0);
204 intel_ring_emit(ring, MI_NOOP);
205 intel_ring_advance(ring);
206
207 return 0;
208 }
209
210 static int
211 gen6_render_ring_flush(struct intel_ring_buffer *ring,
212 u32 invalidate_domains, u32 flush_domains)
213 {
214 u32 flags = 0;
215 u32 scratch_addr = ring->scratch.gtt_offset + 128;
216 int ret;
217
218 /* Force SNB workarounds for PIPE_CONTROL flushes */
219 ret = intel_emit_post_sync_nonzero_flush(ring);
220 if (ret)
221 return ret;
222
223 /* Just flush everything. Experiments have shown that reducing the
224 * number of bits based on the write domains has little performance
225 * impact.
226 */
227 if (flush_domains) {
228 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
229 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
230 /*
231 * Ensure that any following seqno writes only happen
232 * when the render cache is indeed flushed.
233 */
234 flags |= PIPE_CONTROL_CS_STALL;
235 }
236 if (invalidate_domains) {
237 flags |= PIPE_CONTROL_TLB_INVALIDATE;
238 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
239 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
240 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
243 /*
244 * TLB invalidate requires a post-sync write.
245 */
246 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
247 }
248
249 ret = intel_ring_begin(ring, 4);
250 if (ret)
251 return ret;
252
253 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
254 intel_ring_emit(ring, flags);
255 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
256 intel_ring_emit(ring, 0);
257 intel_ring_advance(ring);
258
259 return 0;
260 }
261
262 static int
263 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
264 {
265 int ret;
266
267 ret = intel_ring_begin(ring, 4);
268 if (ret)
269 return ret;
270
271 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
272 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
273 PIPE_CONTROL_STALL_AT_SCOREBOARD);
274 intel_ring_emit(ring, 0);
275 intel_ring_emit(ring, 0);
276 intel_ring_advance(ring);
277
278 return 0;
279 }
280
281 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
282 {
283 int ret;
284
285 if (!ring->fbc_dirty)
286 return 0;
287
288 ret = intel_ring_begin(ring, 4);
289 if (ret)
290 return ret;
291 intel_ring_emit(ring, MI_NOOP);
292 /* WaFbcNukeOn3DBlt:ivb/hsw */
293 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
294 intel_ring_emit(ring, MSG_FBC_REND_STATE);
295 intel_ring_emit(ring, value);
296 intel_ring_advance(ring);
297
298 ring->fbc_dirty = false;
299 return 0;
300 }
301
302 static int
303 gen7_render_ring_flush(struct intel_ring_buffer *ring,
304 u32 invalidate_domains, u32 flush_domains)
305 {
306 u32 flags = 0;
307 u32 scratch_addr = ring->scratch.gtt_offset + 128;
308 int ret;
309
310 /*
311 * Ensure that any following seqno writes only happen when the render
312 * cache is indeed flushed.
313 *
314 * Workaround: 4th PIPE_CONTROL command (except the ones with only
315 * read-cache invalidate bits set) must have the CS_STALL bit set. We
316 * don't try to be clever and just set it unconditionally.
317 */
318 flags |= PIPE_CONTROL_CS_STALL;
319
320 /* Just flush everything. Experiments have shown that reducing the
321 * number of bits based on the write domains has little performance
322 * impact.
323 */
324 if (flush_domains) {
325 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
326 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
327 }
328 if (invalidate_domains) {
329 flags |= PIPE_CONTROL_TLB_INVALIDATE;
330 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
331 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
332 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
333 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
334 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
335 /*
336 * TLB invalidate requires a post-sync write.
337 */
338 flags |= PIPE_CONTROL_QW_WRITE;
339 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
340
341 /* Workaround: we must issue a pipe_control with CS-stall bit
342 * set before a pipe_control command that has the state cache
343 * invalidate bit set. */
344 gen7_render_ring_cs_stall_wa(ring);
345 }
346
347 ret = intel_ring_begin(ring, 4);
348 if (ret)
349 return ret;
350
351 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
352 intel_ring_emit(ring, flags);
353 intel_ring_emit(ring, scratch_addr);
354 intel_ring_emit(ring, 0);
355 intel_ring_advance(ring);
356
357 if (flush_domains)
358 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
359
360 return 0;
361 }
362
363 static int
364 gen8_render_ring_flush(struct intel_ring_buffer *ring,
365 u32 invalidate_domains, u32 flush_domains)
366 {
367 u32 flags = 0;
368 u32 scratch_addr = ring->scratch.gtt_offset + 128;
369 int ret;
370
371 flags |= PIPE_CONTROL_CS_STALL;
372
373 if (flush_domains) {
374 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
375 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
376 }
377 if (invalidate_domains) {
378 flags |= PIPE_CONTROL_TLB_INVALIDATE;
379 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
380 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
381 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
382 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
383 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
384 flags |= PIPE_CONTROL_QW_WRITE;
385 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
386 }
387
388 ret = intel_ring_begin(ring, 6);
389 if (ret)
390 return ret;
391
392 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
393 intel_ring_emit(ring, flags);
394 intel_ring_emit(ring, scratch_addr);
395 intel_ring_emit(ring, 0);
396 intel_ring_emit(ring, 0);
397 intel_ring_emit(ring, 0);
398 intel_ring_advance(ring);
399
400 return 0;
401
402 }
403
404 static void ring_write_tail(struct intel_ring_buffer *ring,
405 u32 value)
406 {
407 drm_i915_private_t *dev_priv = ring->dev->dev_private;
408 I915_WRITE_TAIL(ring, value);
409 }
410
411 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
412 {
413 drm_i915_private_t *dev_priv = ring->dev->dev_private;
414 u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
415 RING_ACTHD(ring->mmio_base) : ACTHD;
416
417 return I915_READ(acthd_reg);
418 }
419
420 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
421 {
422 struct drm_i915_private *dev_priv = ring->dev->dev_private;
423 u32 addr;
424
425 addr = dev_priv->status_page_dmah->busaddr;
426 if (INTEL_INFO(ring->dev)->gen >= 4)
427 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
428 I915_WRITE(HWS_PGA, addr);
429 }
430
431 static int init_ring_common(struct intel_ring_buffer *ring)
432 {
433 struct drm_device *dev = ring->dev;
434 drm_i915_private_t *dev_priv = dev->dev_private;
435 struct drm_i915_gem_object *obj = ring->obj;
436 int ret = 0;
437 u32 head;
438
439 gen6_gt_force_wake_get(dev_priv);
440
441 if (I915_NEED_GFX_HWS(dev))
442 intel_ring_setup_status_page(ring);
443 else
444 ring_setup_phys_status_page(ring);
445
446 /* Stop the ring if it's running. */
447 I915_WRITE_CTL(ring, 0);
448 I915_WRITE_HEAD(ring, 0);
449 ring->write_tail(ring, 0);
450
451 head = I915_READ_HEAD(ring) & HEAD_ADDR;
452
453 /* G45 ring initialization fails to reset head to zero */
454 if (head != 0) {
455 DRM_DEBUG_KMS("%s head not reset to zero "
456 "ctl %08x head %08x tail %08x start %08x\n",
457 ring->name,
458 I915_READ_CTL(ring),
459 I915_READ_HEAD(ring),
460 I915_READ_TAIL(ring),
461 I915_READ_START(ring));
462
463 I915_WRITE_HEAD(ring, 0);
464
465 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
466 DRM_ERROR("failed to set %s head to zero "
467 "ctl %08x head %08x tail %08x start %08x\n",
468 ring->name,
469 I915_READ_CTL(ring),
470 I915_READ_HEAD(ring),
471 I915_READ_TAIL(ring),
472 I915_READ_START(ring));
473 }
474 }
475
476 /* Initialize the ring. This must happen _after_ we've cleared the ring
477 * registers with the above sequence (the readback of the HEAD registers
478 * also enforces ordering), otherwise the hw might lose the new ring
479 * register values. */
480 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
481 I915_WRITE_CTL(ring,
482 ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
483 | RING_VALID);
484
485 /* If the head is still not zero, the ring is dead */
486 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
487 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
488 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
489 DRM_ERROR("%s initialization failed "
490 "ctl %08x head %08x tail %08x start %08x\n",
491 ring->name,
492 I915_READ_CTL(ring),
493 I915_READ_HEAD(ring),
494 I915_READ_TAIL(ring),
495 I915_READ_START(ring));
496 ret = -EIO;
497 goto out;
498 }
499
500 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
501 i915_kernel_lost_context(ring->dev);
502 else {
503 ring->head = I915_READ_HEAD(ring);
504 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
505 ring->space = ring_space(ring);
506 ring->last_retired_head = -1;
507 }
508
509 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
510
511 out:
512 gen6_gt_force_wake_put(dev_priv);
513
514 return ret;
515 }
516
517 static int
518 init_pipe_control(struct intel_ring_buffer *ring)
519 {
520 int ret;
521
522 if (ring->scratch.obj)
523 return 0;
524
525 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
526 if (ring->scratch.obj == NULL) {
527 DRM_ERROR("Failed to allocate seqno page\n");
528 ret = -ENOMEM;
529 goto err;
530 }
531
532 i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
533
534 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, true, false);
535 if (ret)
536 goto err_unref;
537
538 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
539 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
540 if (ring->scratch.cpu_page == NULL) {
541 ret = -ENOMEM;
542 goto err_unpin;
543 }
544
545 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
546 ring->name, ring->scratch.gtt_offset);
547 return 0;
548
549 err_unpin:
550 i915_gem_object_unpin(ring->scratch.obj);
551 err_unref:
552 drm_gem_object_unreference(&ring->scratch.obj->base);
553 err:
554 return ret;
555 }
556
557 static int init_render_ring(struct intel_ring_buffer *ring)
558 {
559 struct drm_device *dev = ring->dev;
560 struct drm_i915_private *dev_priv = dev->dev_private;
561 int ret = init_ring_common(ring);
562
563 if (INTEL_INFO(dev)->gen > 3)
564 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
565
566 /* We need to disable the AsyncFlip performance optimisations in order
567 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
568 * programmed to '1' on all products.
569 *
570 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
571 */
572 if (INTEL_INFO(dev)->gen >= 6)
573 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
574
575 /* Required for the hardware to program scanline values for waiting */
576 if (INTEL_INFO(dev)->gen == 6)
577 I915_WRITE(GFX_MODE,
578 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
579
580 if (IS_GEN7(dev))
581 I915_WRITE(GFX_MODE_GEN7,
582 _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
583 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
584
585 if (INTEL_INFO(dev)->gen >= 5) {
586 ret = init_pipe_control(ring);
587 if (ret)
588 return ret;
589 }
590
591 if (IS_GEN6(dev)) {
592 /* From the Sandybridge PRM, volume 1 part 3, page 24:
593 * "If this bit is set, STCunit will have LRA as replacement
594 * policy. [...] This bit must be reset. LRA replacement
595 * policy is not supported."
596 */
597 I915_WRITE(CACHE_MODE_0,
598 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
599
600 /* This is not explicitly set for GEN6, so read the register.
601 * see intel_ring_mi_set_context() for why we care.
602 * TODO: consider explicitly setting the bit for GEN5
603 */
604 ring->itlb_before_ctx_switch =
605 !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
606 }
607
608 if (INTEL_INFO(dev)->gen >= 6)
609 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
610
611 if (HAS_L3_DPF(dev))
612 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
613
614 return ret;
615 }
616
617 static void render_ring_cleanup(struct intel_ring_buffer *ring)
618 {
619 struct drm_device *dev = ring->dev;
620
621 if (ring->scratch.obj == NULL)
622 return;
623
624 if (INTEL_INFO(dev)->gen >= 5) {
625 kunmap(sg_page(ring->scratch.obj->pages->sgl));
626 i915_gem_object_unpin(ring->scratch.obj);
627 }
628
629 drm_gem_object_unreference(&ring->scratch.obj->base);
630 ring->scratch.obj = NULL;
631 }
632
633 static void
634 update_mboxes(struct intel_ring_buffer *ring,
635 u32 mmio_offset)
636 {
637 /* NB: In order to be able to do semaphore MBOX updates for varying number
638 * of rings, it's easiest if we round up each individual update to a
639 * multiple of 2 (since ring updates must always be a multiple of 2)
640 * even though the actual update only requires 3 dwords.
641 */
642 #define MBOX_UPDATE_DWORDS 4
643 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
644 intel_ring_emit(ring, mmio_offset);
645 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
646 intel_ring_emit(ring, MI_NOOP);
647 }
648
649 /**
650 * gen6_add_request - Update the semaphore mailbox registers
651 *
652 * @ring - ring that is adding a request
653 * @seqno - return seqno stuck into the ring
654 *
655 * Update the mailbox registers in the *other* rings with the current seqno.
656 * This acts like a signal in the canonical semaphore.
657 */
658 static int
659 gen6_add_request(struct intel_ring_buffer *ring)
660 {
661 struct drm_device *dev = ring->dev;
662 struct drm_i915_private *dev_priv = dev->dev_private;
663 struct intel_ring_buffer *useless;
664 int i, ret;
665
666 ret = intel_ring_begin(ring, ((I915_NUM_RINGS-1) *
667 MBOX_UPDATE_DWORDS) +
668 4);
669 if (ret)
670 return ret;
671 #undef MBOX_UPDATE_DWORDS
672
673 for_each_ring(useless, dev_priv, i) {
674 u32 mbox_reg = ring->signal_mbox[i];
675 if (mbox_reg != GEN6_NOSYNC)
676 update_mboxes(ring, mbox_reg);
677 }
678
679 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
680 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
681 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
682 intel_ring_emit(ring, MI_USER_INTERRUPT);
683 __intel_ring_advance(ring);
684
685 return 0;
686 }
687
688 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
689 u32 seqno)
690 {
691 struct drm_i915_private *dev_priv = dev->dev_private;
692 return dev_priv->last_seqno < seqno;
693 }
694
695 /**
696 * intel_ring_sync - sync the waiter to the signaller on seqno
697 *
698 * @waiter - ring that is waiting
699 * @signaller - ring which has, or will signal
700 * @seqno - seqno which the waiter will block on
701 */
702 static int
703 gen6_ring_sync(struct intel_ring_buffer *waiter,
704 struct intel_ring_buffer *signaller,
705 u32 seqno)
706 {
707 int ret;
708 u32 dw1 = MI_SEMAPHORE_MBOX |
709 MI_SEMAPHORE_COMPARE |
710 MI_SEMAPHORE_REGISTER;
711
712 /* Throughout all of the GEM code, seqno passed implies our current
713 * seqno is >= the last seqno executed. However for hardware the
714 * comparison is strictly greater than.
715 */
716 seqno -= 1;
717
718 WARN_ON(signaller->semaphore_register[waiter->id] ==
719 MI_SEMAPHORE_SYNC_INVALID);
720
721 ret = intel_ring_begin(waiter, 4);
722 if (ret)
723 return ret;
724
725 /* If seqno wrap happened, omit the wait with no-ops */
726 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
727 intel_ring_emit(waiter,
728 dw1 |
729 signaller->semaphore_register[waiter->id]);
730 intel_ring_emit(waiter, seqno);
731 intel_ring_emit(waiter, 0);
732 intel_ring_emit(waiter, MI_NOOP);
733 } else {
734 intel_ring_emit(waiter, MI_NOOP);
735 intel_ring_emit(waiter, MI_NOOP);
736 intel_ring_emit(waiter, MI_NOOP);
737 intel_ring_emit(waiter, MI_NOOP);
738 }
739 intel_ring_advance(waiter);
740
741 return 0;
742 }
743
744 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
745 do { \
746 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
747 PIPE_CONTROL_DEPTH_STALL); \
748 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
749 intel_ring_emit(ring__, 0); \
750 intel_ring_emit(ring__, 0); \
751 } while (0)
752
753 static int
754 pc_render_add_request(struct intel_ring_buffer *ring)
755 {
756 u32 scratch_addr = ring->scratch.gtt_offset + 128;
757 int ret;
758
759 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
760 * incoherent with writes to memory, i.e. completely fubar,
761 * so we need to use PIPE_NOTIFY instead.
762 *
763 * However, we also need to workaround the qword write
764 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
765 * memory before requesting an interrupt.
766 */
767 ret = intel_ring_begin(ring, 32);
768 if (ret)
769 return ret;
770
771 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
772 PIPE_CONTROL_WRITE_FLUSH |
773 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
774 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
775 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
776 intel_ring_emit(ring, 0);
777 PIPE_CONTROL_FLUSH(ring, scratch_addr);
778 scratch_addr += 128; /* write to separate cachelines */
779 PIPE_CONTROL_FLUSH(ring, scratch_addr);
780 scratch_addr += 128;
781 PIPE_CONTROL_FLUSH(ring, scratch_addr);
782 scratch_addr += 128;
783 PIPE_CONTROL_FLUSH(ring, scratch_addr);
784 scratch_addr += 128;
785 PIPE_CONTROL_FLUSH(ring, scratch_addr);
786 scratch_addr += 128;
787 PIPE_CONTROL_FLUSH(ring, scratch_addr);
788
789 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
790 PIPE_CONTROL_WRITE_FLUSH |
791 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
792 PIPE_CONTROL_NOTIFY);
793 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
794 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
795 intel_ring_emit(ring, 0);
796 __intel_ring_advance(ring);
797
798 return 0;
799 }
800
801 static u32
802 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
803 {
804 /* Workaround to force correct ordering between irq and seqno writes on
805 * ivb (and maybe also on snb) by reading from a CS register (like
806 * ACTHD) before reading the status page. */
807 if (!lazy_coherency)
808 intel_ring_get_active_head(ring);
809 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
810 }
811
812 static u32
813 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
814 {
815 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
816 }
817
818 static void
819 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
820 {
821 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
822 }
823
824 static u32
825 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
826 {
827 return ring->scratch.cpu_page[0];
828 }
829
830 static void
831 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
832 {
833 ring->scratch.cpu_page[0] = seqno;
834 }
835
836 static bool
837 gen5_ring_get_irq(struct intel_ring_buffer *ring)
838 {
839 struct drm_device *dev = ring->dev;
840 drm_i915_private_t *dev_priv = dev->dev_private;
841 unsigned long flags;
842
843 if (!dev->irq_enabled)
844 return false;
845
846 spin_lock_irqsave(&dev_priv->irq_lock, flags);
847 if (ring->irq_refcount++ == 0)
848 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
849 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
850
851 return true;
852 }
853
854 static void
855 gen5_ring_put_irq(struct intel_ring_buffer *ring)
856 {
857 struct drm_device *dev = ring->dev;
858 drm_i915_private_t *dev_priv = dev->dev_private;
859 unsigned long flags;
860
861 spin_lock_irqsave(&dev_priv->irq_lock, flags);
862 if (--ring->irq_refcount == 0)
863 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
864 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
865 }
866
867 static bool
868 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
869 {
870 struct drm_device *dev = ring->dev;
871 drm_i915_private_t *dev_priv = dev->dev_private;
872 unsigned long flags;
873
874 if (!dev->irq_enabled)
875 return false;
876
877 spin_lock_irqsave(&dev_priv->irq_lock, flags);
878 if (ring->irq_refcount++ == 0) {
879 dev_priv->irq_mask &= ~ring->irq_enable_mask;
880 I915_WRITE(IMR, dev_priv->irq_mask);
881 POSTING_READ(IMR);
882 }
883 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
884
885 return true;
886 }
887
888 static void
889 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
890 {
891 struct drm_device *dev = ring->dev;
892 drm_i915_private_t *dev_priv = dev->dev_private;
893 unsigned long flags;
894
895 spin_lock_irqsave(&dev_priv->irq_lock, flags);
896 if (--ring->irq_refcount == 0) {
897 dev_priv->irq_mask |= ring->irq_enable_mask;
898 I915_WRITE(IMR, dev_priv->irq_mask);
899 POSTING_READ(IMR);
900 }
901 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
902 }
903
904 static bool
905 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
906 {
907 struct drm_device *dev = ring->dev;
908 drm_i915_private_t *dev_priv = dev->dev_private;
909 unsigned long flags;
910
911 if (!dev->irq_enabled)
912 return false;
913
914 spin_lock_irqsave(&dev_priv->irq_lock, flags);
915 if (ring->irq_refcount++ == 0) {
916 dev_priv->irq_mask &= ~ring->irq_enable_mask;
917 I915_WRITE16(IMR, dev_priv->irq_mask);
918 POSTING_READ16(IMR);
919 }
920 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
921
922 return true;
923 }
924
925 static void
926 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
927 {
928 struct drm_device *dev = ring->dev;
929 drm_i915_private_t *dev_priv = dev->dev_private;
930 unsigned long flags;
931
932 spin_lock_irqsave(&dev_priv->irq_lock, flags);
933 if (--ring->irq_refcount == 0) {
934 dev_priv->irq_mask |= ring->irq_enable_mask;
935 I915_WRITE16(IMR, dev_priv->irq_mask);
936 POSTING_READ16(IMR);
937 }
938 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
939 }
940
941 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
942 {
943 struct drm_device *dev = ring->dev;
944 drm_i915_private_t *dev_priv = ring->dev->dev_private;
945 u32 mmio = 0;
946
947 /* The ring status page addresses are no longer next to the rest of
948 * the ring registers as of gen7.
949 */
950 if (IS_GEN7(dev)) {
951 switch (ring->id) {
952 case RCS:
953 mmio = RENDER_HWS_PGA_GEN7;
954 break;
955 case BCS:
956 mmio = BLT_HWS_PGA_GEN7;
957 break;
958 case VCS:
959 mmio = BSD_HWS_PGA_GEN7;
960 break;
961 case VECS:
962 mmio = VEBOX_HWS_PGA_GEN7;
963 break;
964 }
965 } else if (IS_GEN6(ring->dev)) {
966 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
967 } else {
968 mmio = RING_HWS_PGA(ring->mmio_base);
969 }
970
971 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
972 POSTING_READ(mmio);
973
974 /* Flush the TLB for this page */
975 if (INTEL_INFO(dev)->gen >= 6) {
976 u32 reg = RING_INSTPM(ring->mmio_base);
977 I915_WRITE(reg,
978 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
979 INSTPM_SYNC_FLUSH));
980 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
981 1000))
982 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
983 ring->name);
984 }
985 }
986
987 static int
988 bsd_ring_flush(struct intel_ring_buffer *ring,
989 u32 invalidate_domains,
990 u32 flush_domains)
991 {
992 int ret;
993
994 ret = intel_ring_begin(ring, 2);
995 if (ret)
996 return ret;
997
998 intel_ring_emit(ring, MI_FLUSH);
999 intel_ring_emit(ring, MI_NOOP);
1000 intel_ring_advance(ring);
1001 return 0;
1002 }
1003
1004 static int
1005 i9xx_add_request(struct intel_ring_buffer *ring)
1006 {
1007 int ret;
1008
1009 ret = intel_ring_begin(ring, 4);
1010 if (ret)
1011 return ret;
1012
1013 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1014 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1015 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1016 intel_ring_emit(ring, MI_USER_INTERRUPT);
1017 __intel_ring_advance(ring);
1018
1019 return 0;
1020 }
1021
1022 static bool
1023 gen6_ring_get_irq(struct intel_ring_buffer *ring)
1024 {
1025 struct drm_device *dev = ring->dev;
1026 drm_i915_private_t *dev_priv = dev->dev_private;
1027 unsigned long flags;
1028
1029 if (!dev->irq_enabled)
1030 return false;
1031
1032 /* It looks like we need to prevent the gt from suspending while waiting
1033 * for an notifiy irq, otherwise irqs seem to get lost on at least the
1034 * blt/bsd rings on ivb. */
1035 gen6_gt_force_wake_get(dev_priv);
1036
1037 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1038 if (ring->irq_refcount++ == 0) {
1039 if (HAS_L3_DPF(dev) && ring->id == RCS)
1040 I915_WRITE_IMR(ring,
1041 ~(ring->irq_enable_mask |
1042 GT_PARITY_ERROR(dev)));
1043 else
1044 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1045 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1046 }
1047 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1048
1049 return true;
1050 }
1051
1052 static void
1053 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1054 {
1055 struct drm_device *dev = ring->dev;
1056 drm_i915_private_t *dev_priv = dev->dev_private;
1057 unsigned long flags;
1058
1059 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1060 if (--ring->irq_refcount == 0) {
1061 if (HAS_L3_DPF(dev) && ring->id == RCS)
1062 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1063 else
1064 I915_WRITE_IMR(ring, ~0);
1065 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1066 }
1067 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1068
1069 gen6_gt_force_wake_put(dev_priv);
1070 }
1071
1072 static bool
1073 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1074 {
1075 struct drm_device *dev = ring->dev;
1076 struct drm_i915_private *dev_priv = dev->dev_private;
1077 unsigned long flags;
1078
1079 if (!dev->irq_enabled)
1080 return false;
1081
1082 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1083 if (ring->irq_refcount++ == 0) {
1084 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1085 snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1086 }
1087 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1088
1089 return true;
1090 }
1091
1092 static void
1093 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1094 {
1095 struct drm_device *dev = ring->dev;
1096 struct drm_i915_private *dev_priv = dev->dev_private;
1097 unsigned long flags;
1098
1099 if (!dev->irq_enabled)
1100 return;
1101
1102 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1103 if (--ring->irq_refcount == 0) {
1104 I915_WRITE_IMR(ring, ~0);
1105 snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1106 }
1107 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1108 }
1109
1110 static bool
1111 gen8_ring_get_irq(struct intel_ring_buffer *ring)
1112 {
1113 struct drm_device *dev = ring->dev;
1114 struct drm_i915_private *dev_priv = dev->dev_private;
1115 unsigned long flags;
1116
1117 if (!dev->irq_enabled)
1118 return false;
1119
1120 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1121 if (ring->irq_refcount++ == 0) {
1122 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1123 I915_WRITE_IMR(ring,
1124 ~(ring->irq_enable_mask |
1125 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1126 } else {
1127 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1128 }
1129 POSTING_READ(RING_IMR(ring->mmio_base));
1130 }
1131 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1132
1133 return true;
1134 }
1135
1136 static void
1137 gen8_ring_put_irq(struct intel_ring_buffer *ring)
1138 {
1139 struct drm_device *dev = ring->dev;
1140 struct drm_i915_private *dev_priv = dev->dev_private;
1141 unsigned long flags;
1142
1143 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1144 if (--ring->irq_refcount == 0) {
1145 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1146 I915_WRITE_IMR(ring,
1147 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1148 } else {
1149 I915_WRITE_IMR(ring, ~0);
1150 }
1151 POSTING_READ(RING_IMR(ring->mmio_base));
1152 }
1153 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1154 }
1155
1156 static int
1157 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1158 u32 offset, u32 length,
1159 unsigned flags)
1160 {
1161 int ret;
1162
1163 ret = intel_ring_begin(ring, 2);
1164 if (ret)
1165 return ret;
1166
1167 intel_ring_emit(ring,
1168 MI_BATCH_BUFFER_START |
1169 MI_BATCH_GTT |
1170 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1171 intel_ring_emit(ring, offset);
1172 intel_ring_advance(ring);
1173
1174 return 0;
1175 }
1176
1177 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1178 #define I830_BATCH_LIMIT (256*1024)
1179 static int
1180 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1181 u32 offset, u32 len,
1182 unsigned flags)
1183 {
1184 int ret;
1185
1186 if (flags & I915_DISPATCH_PINNED) {
1187 ret = intel_ring_begin(ring, 4);
1188 if (ret)
1189 return ret;
1190
1191 intel_ring_emit(ring, MI_BATCH_BUFFER);
1192 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1193 intel_ring_emit(ring, offset + len - 8);
1194 intel_ring_emit(ring, MI_NOOP);
1195 intel_ring_advance(ring);
1196 } else {
1197 u32 cs_offset = ring->scratch.gtt_offset;
1198
1199 if (len > I830_BATCH_LIMIT)
1200 return -ENOSPC;
1201
1202 ret = intel_ring_begin(ring, 9+3);
1203 if (ret)
1204 return ret;
1205 /* Blit the batch (which has now all relocs applied) to the stable batch
1206 * scratch bo area (so that the CS never stumbles over its tlb
1207 * invalidation bug) ... */
1208 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1209 XY_SRC_COPY_BLT_WRITE_ALPHA |
1210 XY_SRC_COPY_BLT_WRITE_RGB);
1211 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1212 intel_ring_emit(ring, 0);
1213 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1214 intel_ring_emit(ring, cs_offset);
1215 intel_ring_emit(ring, 0);
1216 intel_ring_emit(ring, 4096);
1217 intel_ring_emit(ring, offset);
1218 intel_ring_emit(ring, MI_FLUSH);
1219
1220 /* ... and execute it. */
1221 intel_ring_emit(ring, MI_BATCH_BUFFER);
1222 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1223 intel_ring_emit(ring, cs_offset + len - 8);
1224 intel_ring_advance(ring);
1225 }
1226
1227 return 0;
1228 }
1229
1230 static int
1231 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1232 u32 offset, u32 len,
1233 unsigned flags)
1234 {
1235 int ret;
1236
1237 ret = intel_ring_begin(ring, 2);
1238 if (ret)
1239 return ret;
1240
1241 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1242 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1243 intel_ring_advance(ring);
1244
1245 return 0;
1246 }
1247
1248 static void cleanup_status_page(struct intel_ring_buffer *ring)
1249 {
1250 struct drm_i915_gem_object *obj;
1251
1252 obj = ring->status_page.obj;
1253 if (obj == NULL)
1254 return;
1255
1256 kunmap(sg_page(obj->pages->sgl));
1257 i915_gem_object_unpin(obj);
1258 drm_gem_object_unreference(&obj->base);
1259 ring->status_page.obj = NULL;
1260 }
1261
1262 static int init_status_page(struct intel_ring_buffer *ring)
1263 {
1264 struct drm_device *dev = ring->dev;
1265 struct drm_i915_gem_object *obj;
1266 int ret;
1267
1268 obj = i915_gem_alloc_object(dev, 4096);
1269 if (obj == NULL) {
1270 DRM_ERROR("Failed to allocate status page\n");
1271 ret = -ENOMEM;
1272 goto err;
1273 }
1274
1275 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1276
1277 ret = i915_gem_obj_ggtt_pin(obj, 4096, true, false);
1278 if (ret != 0) {
1279 goto err_unref;
1280 }
1281
1282 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1283 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1284 if (ring->status_page.page_addr == NULL) {
1285 ret = -ENOMEM;
1286 goto err_unpin;
1287 }
1288 ring->status_page.obj = obj;
1289 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1290
1291 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1292 ring->name, ring->status_page.gfx_addr);
1293
1294 return 0;
1295
1296 err_unpin:
1297 i915_gem_object_unpin(obj);
1298 err_unref:
1299 drm_gem_object_unreference(&obj->base);
1300 err:
1301 return ret;
1302 }
1303
1304 static int init_phys_status_page(struct intel_ring_buffer *ring)
1305 {
1306 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1307
1308 if (!dev_priv->status_page_dmah) {
1309 dev_priv->status_page_dmah =
1310 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1311 if (!dev_priv->status_page_dmah)
1312 return -ENOMEM;
1313 }
1314
1315 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1316 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1317
1318 return 0;
1319 }
1320
1321 static int intel_init_ring_buffer(struct drm_device *dev,
1322 struct intel_ring_buffer *ring)
1323 {
1324 struct drm_i915_gem_object *obj;
1325 struct drm_i915_private *dev_priv = dev->dev_private;
1326 int ret;
1327
1328 ring->dev = dev;
1329 INIT_LIST_HEAD(&ring->active_list);
1330 INIT_LIST_HEAD(&ring->request_list);
1331 ring->size = 32 * PAGE_SIZE;
1332 memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1333
1334 init_waitqueue_head(&ring->irq_queue);
1335
1336 if (I915_NEED_GFX_HWS(dev)) {
1337 ret = init_status_page(ring);
1338 if (ret)
1339 return ret;
1340 } else {
1341 BUG_ON(ring->id != RCS);
1342 ret = init_phys_status_page(ring);
1343 if (ret)
1344 return ret;
1345 }
1346
1347 obj = NULL;
1348 if (!HAS_LLC(dev))
1349 obj = i915_gem_object_create_stolen(dev, ring->size);
1350 if (obj == NULL)
1351 obj = i915_gem_alloc_object(dev, ring->size);
1352 if (obj == NULL) {
1353 DRM_ERROR("Failed to allocate ringbuffer\n");
1354 ret = -ENOMEM;
1355 goto err_hws;
1356 }
1357
1358 ring->obj = obj;
1359
1360 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, true, false);
1361 if (ret)
1362 goto err_unref;
1363
1364 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1365 if (ret)
1366 goto err_unpin;
1367
1368 ring->virtual_start =
1369 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1370 ring->size);
1371 if (ring->virtual_start == NULL) {
1372 DRM_ERROR("Failed to map ringbuffer.\n");
1373 ret = -EINVAL;
1374 goto err_unpin;
1375 }
1376
1377 ret = ring->init(ring);
1378 if (ret)
1379 goto err_unmap;
1380
1381 /* Workaround an erratum on the i830 which causes a hang if
1382 * the TAIL pointer points to within the last 2 cachelines
1383 * of the buffer.
1384 */
1385 ring->effective_size = ring->size;
1386 if (IS_I830(ring->dev) || IS_845G(ring->dev))
1387 ring->effective_size -= 128;
1388
1389 return 0;
1390
1391 err_unmap:
1392 iounmap(ring->virtual_start);
1393 err_unpin:
1394 i915_gem_object_unpin(obj);
1395 err_unref:
1396 drm_gem_object_unreference(&obj->base);
1397 ring->obj = NULL;
1398 err_hws:
1399 cleanup_status_page(ring);
1400 return ret;
1401 }
1402
1403 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1404 {
1405 struct drm_i915_private *dev_priv;
1406 int ret;
1407
1408 if (ring->obj == NULL)
1409 return;
1410
1411 /* Disable the ring buffer. The ring must be idle at this point */
1412 dev_priv = ring->dev->dev_private;
1413 ret = intel_ring_idle(ring);
1414 if (ret && !i915_reset_in_progress(&dev_priv->gpu_error))
1415 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1416 ring->name, ret);
1417
1418 I915_WRITE_CTL(ring, 0);
1419
1420 iounmap(ring->virtual_start);
1421
1422 i915_gem_object_unpin(ring->obj);
1423 drm_gem_object_unreference(&ring->obj->base);
1424 ring->obj = NULL;
1425 ring->preallocated_lazy_request = NULL;
1426 ring->outstanding_lazy_seqno = 0;
1427
1428 if (ring->cleanup)
1429 ring->cleanup(ring);
1430
1431 cleanup_status_page(ring);
1432 }
1433
1434 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1435 {
1436 int ret;
1437
1438 ret = i915_wait_seqno(ring, seqno);
1439 if (!ret)
1440 i915_gem_retire_requests_ring(ring);
1441
1442 return ret;
1443 }
1444
1445 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1446 {
1447 struct drm_i915_gem_request *request;
1448 u32 seqno = 0;
1449 int ret;
1450
1451 i915_gem_retire_requests_ring(ring);
1452
1453 if (ring->last_retired_head != -1) {
1454 ring->head = ring->last_retired_head;
1455 ring->last_retired_head = -1;
1456 ring->space = ring_space(ring);
1457 if (ring->space >= n)
1458 return 0;
1459 }
1460
1461 list_for_each_entry(request, &ring->request_list, list) {
1462 int space;
1463
1464 if (request->tail == -1)
1465 continue;
1466
1467 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1468 if (space < 0)
1469 space += ring->size;
1470 if (space >= n) {
1471 seqno = request->seqno;
1472 break;
1473 }
1474
1475 /* Consume this request in case we need more space than
1476 * is available and so need to prevent a race between
1477 * updating last_retired_head and direct reads of
1478 * I915_RING_HEAD. It also provides a nice sanity check.
1479 */
1480 request->tail = -1;
1481 }
1482
1483 if (seqno == 0)
1484 return -ENOSPC;
1485
1486 ret = intel_ring_wait_seqno(ring, seqno);
1487 if (ret)
1488 return ret;
1489
1490 if (WARN_ON(ring->last_retired_head == -1))
1491 return -ENOSPC;
1492
1493 ring->head = ring->last_retired_head;
1494 ring->last_retired_head = -1;
1495 ring->space = ring_space(ring);
1496 if (WARN_ON(ring->space < n))
1497 return -ENOSPC;
1498
1499 return 0;
1500 }
1501
1502 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1503 {
1504 struct drm_device *dev = ring->dev;
1505 struct drm_i915_private *dev_priv = dev->dev_private;
1506 unsigned long end;
1507 int ret;
1508
1509 ret = intel_ring_wait_request(ring, n);
1510 if (ret != -ENOSPC)
1511 return ret;
1512
1513 /* force the tail write in case we have been skipping them */
1514 __intel_ring_advance(ring);
1515
1516 trace_i915_ring_wait_begin(ring);
1517 /* With GEM the hangcheck timer should kick us out of the loop,
1518 * leaving it early runs the risk of corrupting GEM state (due
1519 * to running on almost untested codepaths). But on resume
1520 * timers don't work yet, so prevent a complete hang in that
1521 * case by choosing an insanely large timeout. */
1522 end = jiffies + 60 * HZ;
1523
1524 do {
1525 ring->head = I915_READ_HEAD(ring);
1526 ring->space = ring_space(ring);
1527 if (ring->space >= n) {
1528 trace_i915_ring_wait_end(ring);
1529 return 0;
1530 }
1531
1532 if (dev->primary->master) {
1533 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1534 if (master_priv->sarea_priv)
1535 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1536 }
1537
1538 msleep(1);
1539
1540 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1541 dev_priv->mm.interruptible);
1542 if (ret)
1543 return ret;
1544 } while (!time_after(jiffies, end));
1545 trace_i915_ring_wait_end(ring);
1546 return -EBUSY;
1547 }
1548
1549 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1550 {
1551 uint32_t __iomem *virt;
1552 int rem = ring->size - ring->tail;
1553
1554 if (ring->space < rem) {
1555 int ret = ring_wait_for_space(ring, rem);
1556 if (ret)
1557 return ret;
1558 }
1559
1560 virt = ring->virtual_start + ring->tail;
1561 rem /= 4;
1562 while (rem--)
1563 iowrite32(MI_NOOP, virt++);
1564
1565 ring->tail = 0;
1566 ring->space = ring_space(ring);
1567
1568 return 0;
1569 }
1570
1571 int intel_ring_idle(struct intel_ring_buffer *ring)
1572 {
1573 u32 seqno;
1574 int ret;
1575
1576 /* We need to add any requests required to flush the objects and ring */
1577 if (ring->outstanding_lazy_seqno) {
1578 ret = i915_add_request(ring, NULL);
1579 if (ret)
1580 return ret;
1581 }
1582
1583 /* Wait upon the last request to be completed */
1584 if (list_empty(&ring->request_list))
1585 return 0;
1586
1587 seqno = list_entry(ring->request_list.prev,
1588 struct drm_i915_gem_request,
1589 list)->seqno;
1590
1591 return i915_wait_seqno(ring, seqno);
1592 }
1593
1594 static int
1595 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1596 {
1597 if (ring->outstanding_lazy_seqno)
1598 return 0;
1599
1600 if (ring->preallocated_lazy_request == NULL) {
1601 struct drm_i915_gem_request *request;
1602
1603 request = kmalloc(sizeof(*request), GFP_KERNEL);
1604 if (request == NULL)
1605 return -ENOMEM;
1606
1607 ring->preallocated_lazy_request = request;
1608 }
1609
1610 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1611 }
1612
1613 static int __intel_ring_begin(struct intel_ring_buffer *ring,
1614 int bytes)
1615 {
1616 int ret;
1617
1618 if (unlikely(ring->tail + bytes > ring->effective_size)) {
1619 ret = intel_wrap_ring_buffer(ring);
1620 if (unlikely(ret))
1621 return ret;
1622 }
1623
1624 if (unlikely(ring->space < bytes)) {
1625 ret = ring_wait_for_space(ring, bytes);
1626 if (unlikely(ret))
1627 return ret;
1628 }
1629
1630 ring->space -= bytes;
1631 return 0;
1632 }
1633
1634 int intel_ring_begin(struct intel_ring_buffer *ring,
1635 int num_dwords)
1636 {
1637 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1638 int ret;
1639
1640 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1641 dev_priv->mm.interruptible);
1642 if (ret)
1643 return ret;
1644
1645 /* Preallocate the olr before touching the ring */
1646 ret = intel_ring_alloc_seqno(ring);
1647 if (ret)
1648 return ret;
1649
1650 return __intel_ring_begin(ring, num_dwords * sizeof(uint32_t));
1651 }
1652
1653 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1654 {
1655 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1656
1657 BUG_ON(ring->outstanding_lazy_seqno);
1658
1659 if (INTEL_INFO(ring->dev)->gen >= 6) {
1660 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1661 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1662 if (HAS_VEBOX(ring->dev))
1663 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1664 }
1665
1666 ring->set_seqno(ring, seqno);
1667 ring->hangcheck.seqno = seqno;
1668 }
1669
1670 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1671 u32 value)
1672 {
1673 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1674
1675 /* Every tail move must follow the sequence below */
1676
1677 /* Disable notification that the ring is IDLE. The GT
1678 * will then assume that it is busy and bring it out of rc6.
1679 */
1680 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1681 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1682
1683 /* Clear the context id. Here be magic! */
1684 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1685
1686 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1687 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1688 GEN6_BSD_SLEEP_INDICATOR) == 0,
1689 50))
1690 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1691
1692 /* Now that the ring is fully powered up, update the tail */
1693 I915_WRITE_TAIL(ring, value);
1694 POSTING_READ(RING_TAIL(ring->mmio_base));
1695
1696 /* Let the ring send IDLE messages to the GT again,
1697 * and so let it sleep to conserve power when idle.
1698 */
1699 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1700 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1701 }
1702
1703 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1704 u32 invalidate, u32 flush)
1705 {
1706 uint32_t cmd;
1707 int ret;
1708
1709 ret = intel_ring_begin(ring, 4);
1710 if (ret)
1711 return ret;
1712
1713 cmd = MI_FLUSH_DW;
1714 if (INTEL_INFO(ring->dev)->gen >= 8)
1715 cmd += 1;
1716 /*
1717 * Bspec vol 1c.5 - video engine command streamer:
1718 * "If ENABLED, all TLBs will be invalidated once the flush
1719 * operation is complete. This bit is only valid when the
1720 * Post-Sync Operation field is a value of 1h or 3h."
1721 */
1722 if (invalidate & I915_GEM_GPU_DOMAINS)
1723 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1724 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1725 intel_ring_emit(ring, cmd);
1726 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1727 if (INTEL_INFO(ring->dev)->gen >= 8) {
1728 intel_ring_emit(ring, 0); /* upper addr */
1729 intel_ring_emit(ring, 0); /* value */
1730 } else {
1731 intel_ring_emit(ring, 0);
1732 intel_ring_emit(ring, MI_NOOP);
1733 }
1734 intel_ring_advance(ring);
1735 return 0;
1736 }
1737
1738 static int
1739 gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1740 u32 offset, u32 len,
1741 unsigned flags)
1742 {
1743 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1744 bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1745 !(flags & I915_DISPATCH_SECURE);
1746 int ret;
1747
1748 ret = intel_ring_begin(ring, 4);
1749 if (ret)
1750 return ret;
1751
1752 /* FIXME(BDW): Address space and security selectors. */
1753 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1754 intel_ring_emit(ring, offset);
1755 intel_ring_emit(ring, 0);
1756 intel_ring_emit(ring, MI_NOOP);
1757 intel_ring_advance(ring);
1758
1759 return 0;
1760 }
1761
1762 static int
1763 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1764 u32 offset, u32 len,
1765 unsigned flags)
1766 {
1767 int ret;
1768
1769 ret = intel_ring_begin(ring, 2);
1770 if (ret)
1771 return ret;
1772
1773 intel_ring_emit(ring,
1774 MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1775 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1776 /* bit0-7 is the length on GEN6+ */
1777 intel_ring_emit(ring, offset);
1778 intel_ring_advance(ring);
1779
1780 return 0;
1781 }
1782
1783 static int
1784 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1785 u32 offset, u32 len,
1786 unsigned flags)
1787 {
1788 int ret;
1789
1790 ret = intel_ring_begin(ring, 2);
1791 if (ret)
1792 return ret;
1793
1794 intel_ring_emit(ring,
1795 MI_BATCH_BUFFER_START |
1796 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1797 /* bit0-7 is the length on GEN6+ */
1798 intel_ring_emit(ring, offset);
1799 intel_ring_advance(ring);
1800
1801 return 0;
1802 }
1803
1804 /* Blitter support (SandyBridge+) */
1805
1806 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1807 u32 invalidate, u32 flush)
1808 {
1809 struct drm_device *dev = ring->dev;
1810 uint32_t cmd;
1811 int ret;
1812
1813 ret = intel_ring_begin(ring, 4);
1814 if (ret)
1815 return ret;
1816
1817 cmd = MI_FLUSH_DW;
1818 if (INTEL_INFO(ring->dev)->gen >= 8)
1819 cmd += 1;
1820 /*
1821 * Bspec vol 1c.3 - blitter engine command streamer:
1822 * "If ENABLED, all TLBs will be invalidated once the flush
1823 * operation is complete. This bit is only valid when the
1824 * Post-Sync Operation field is a value of 1h or 3h."
1825 */
1826 if (invalidate & I915_GEM_DOMAIN_RENDER)
1827 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1828 MI_FLUSH_DW_OP_STOREDW;
1829 intel_ring_emit(ring, cmd);
1830 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1831 if (INTEL_INFO(ring->dev)->gen >= 8) {
1832 intel_ring_emit(ring, 0); /* upper addr */
1833 intel_ring_emit(ring, 0); /* value */
1834 } else {
1835 intel_ring_emit(ring, 0);
1836 intel_ring_emit(ring, MI_NOOP);
1837 }
1838 intel_ring_advance(ring);
1839
1840 if (IS_GEN7(dev) && flush)
1841 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1842
1843 return 0;
1844 }
1845
1846 int intel_init_render_ring_buffer(struct drm_device *dev)
1847 {
1848 drm_i915_private_t *dev_priv = dev->dev_private;
1849 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1850
1851 ring->name = "render ring";
1852 ring->id = RCS;
1853 ring->mmio_base = RENDER_RING_BASE;
1854
1855 if (INTEL_INFO(dev)->gen >= 6) {
1856 ring->add_request = gen6_add_request;
1857 ring->flush = gen7_render_ring_flush;
1858 if (INTEL_INFO(dev)->gen == 6)
1859 ring->flush = gen6_render_ring_flush;
1860 if (INTEL_INFO(dev)->gen >= 8) {
1861 ring->flush = gen8_render_ring_flush;
1862 ring->irq_get = gen8_ring_get_irq;
1863 ring->irq_put = gen8_ring_put_irq;
1864 } else {
1865 ring->irq_get = gen6_ring_get_irq;
1866 ring->irq_put = gen6_ring_put_irq;
1867 }
1868 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1869 ring->get_seqno = gen6_ring_get_seqno;
1870 ring->set_seqno = ring_set_seqno;
1871 ring->sync_to = gen6_ring_sync;
1872 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1873 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1874 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1875 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1876 ring->signal_mbox[RCS] = GEN6_NOSYNC;
1877 ring->signal_mbox[VCS] = GEN6_VRSYNC;
1878 ring->signal_mbox[BCS] = GEN6_BRSYNC;
1879 ring->signal_mbox[VECS] = GEN6_VERSYNC;
1880 } else if (IS_GEN5(dev)) {
1881 ring->add_request = pc_render_add_request;
1882 ring->flush = gen4_render_ring_flush;
1883 ring->get_seqno = pc_render_get_seqno;
1884 ring->set_seqno = pc_render_set_seqno;
1885 ring->irq_get = gen5_ring_get_irq;
1886 ring->irq_put = gen5_ring_put_irq;
1887 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1888 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1889 } else {
1890 ring->add_request = i9xx_add_request;
1891 if (INTEL_INFO(dev)->gen < 4)
1892 ring->flush = gen2_render_ring_flush;
1893 else
1894 ring->flush = gen4_render_ring_flush;
1895 ring->get_seqno = ring_get_seqno;
1896 ring->set_seqno = ring_set_seqno;
1897 if (IS_GEN2(dev)) {
1898 ring->irq_get = i8xx_ring_get_irq;
1899 ring->irq_put = i8xx_ring_put_irq;
1900 } else {
1901 ring->irq_get = i9xx_ring_get_irq;
1902 ring->irq_put = i9xx_ring_put_irq;
1903 }
1904 ring->irq_enable_mask = I915_USER_INTERRUPT;
1905 }
1906 ring->write_tail = ring_write_tail;
1907 if (IS_HASWELL(dev))
1908 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1909 else if (IS_GEN8(dev))
1910 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
1911 else if (INTEL_INFO(dev)->gen >= 6)
1912 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1913 else if (INTEL_INFO(dev)->gen >= 4)
1914 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1915 else if (IS_I830(dev) || IS_845G(dev))
1916 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1917 else
1918 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1919 ring->init = init_render_ring;
1920 ring->cleanup = render_ring_cleanup;
1921
1922 /* Workaround batchbuffer to combat CS tlb bug. */
1923 if (HAS_BROKEN_CS_TLB(dev)) {
1924 struct drm_i915_gem_object *obj;
1925 int ret;
1926
1927 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1928 if (obj == NULL) {
1929 DRM_ERROR("Failed to allocate batch bo\n");
1930 return -ENOMEM;
1931 }
1932
1933 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
1934 if (ret != 0) {
1935 drm_gem_object_unreference(&obj->base);
1936 DRM_ERROR("Failed to ping batch bo\n");
1937 return ret;
1938 }
1939
1940 ring->scratch.obj = obj;
1941 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
1942 }
1943
1944 return intel_init_ring_buffer(dev, ring);
1945 }
1946
1947 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1948 {
1949 drm_i915_private_t *dev_priv = dev->dev_private;
1950 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1951 int ret;
1952
1953 ring->name = "render ring";
1954 ring->id = RCS;
1955 ring->mmio_base = RENDER_RING_BASE;
1956
1957 if (INTEL_INFO(dev)->gen >= 6) {
1958 /* non-kms not supported on gen6+ */
1959 return -ENODEV;
1960 }
1961
1962 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1963 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1964 * the special gen5 functions. */
1965 ring->add_request = i9xx_add_request;
1966 if (INTEL_INFO(dev)->gen < 4)
1967 ring->flush = gen2_render_ring_flush;
1968 else
1969 ring->flush = gen4_render_ring_flush;
1970 ring->get_seqno = ring_get_seqno;
1971 ring->set_seqno = ring_set_seqno;
1972 if (IS_GEN2(dev)) {
1973 ring->irq_get = i8xx_ring_get_irq;
1974 ring->irq_put = i8xx_ring_put_irq;
1975 } else {
1976 ring->irq_get = i9xx_ring_get_irq;
1977 ring->irq_put = i9xx_ring_put_irq;
1978 }
1979 ring->irq_enable_mask = I915_USER_INTERRUPT;
1980 ring->write_tail = ring_write_tail;
1981 if (INTEL_INFO(dev)->gen >= 4)
1982 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1983 else if (IS_I830(dev) || IS_845G(dev))
1984 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1985 else
1986 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1987 ring->init = init_render_ring;
1988 ring->cleanup = render_ring_cleanup;
1989
1990 ring->dev = dev;
1991 INIT_LIST_HEAD(&ring->active_list);
1992 INIT_LIST_HEAD(&ring->request_list);
1993
1994 ring->size = size;
1995 ring->effective_size = ring->size;
1996 if (IS_I830(ring->dev) || IS_845G(ring->dev))
1997 ring->effective_size -= 128;
1998
1999 ring->virtual_start = ioremap_wc(start, size);
2000 if (ring->virtual_start == NULL) {
2001 DRM_ERROR("can not ioremap virtual address for"
2002 " ring buffer\n");
2003 return -ENOMEM;
2004 }
2005
2006 if (!I915_NEED_GFX_HWS(dev)) {
2007 ret = init_phys_status_page(ring);
2008 if (ret)
2009 return ret;
2010 }
2011
2012 return 0;
2013 }
2014
2015 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2016 {
2017 drm_i915_private_t *dev_priv = dev->dev_private;
2018 struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
2019
2020 ring->name = "bsd ring";
2021 ring->id = VCS;
2022
2023 ring->write_tail = ring_write_tail;
2024 if (IS_GEN6(dev) || IS_GEN7(dev)) {
2025 ring->mmio_base = GEN6_BSD_RING_BASE;
2026 /* gen6 bsd needs a special wa for tail updates */
2027 if (IS_GEN6(dev))
2028 ring->write_tail = gen6_bsd_ring_write_tail;
2029 ring->flush = gen6_bsd_ring_flush;
2030 ring->add_request = gen6_add_request;
2031 ring->get_seqno = gen6_ring_get_seqno;
2032 ring->set_seqno = ring_set_seqno;
2033 if (INTEL_INFO(dev)->gen >= 8) {
2034 ring->irq_enable_mask =
2035 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2036 ring->irq_get = gen8_ring_get_irq;
2037 ring->irq_put = gen8_ring_put_irq;
2038 ring->dispatch_execbuffer =
2039 gen8_ring_dispatch_execbuffer;
2040 } else {
2041 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2042 ring->irq_get = gen6_ring_get_irq;
2043 ring->irq_put = gen6_ring_put_irq;
2044 ring->dispatch_execbuffer =
2045 gen6_ring_dispatch_execbuffer;
2046 }
2047 ring->sync_to = gen6_ring_sync;
2048 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
2049 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2050 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
2051 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
2052 ring->signal_mbox[RCS] = GEN6_RVSYNC;
2053 ring->signal_mbox[VCS] = GEN6_NOSYNC;
2054 ring->signal_mbox[BCS] = GEN6_BVSYNC;
2055 ring->signal_mbox[VECS] = GEN6_VEVSYNC;
2056 } else {
2057 ring->mmio_base = BSD_RING_BASE;
2058 ring->flush = bsd_ring_flush;
2059 ring->add_request = i9xx_add_request;
2060 ring->get_seqno = ring_get_seqno;
2061 ring->set_seqno = ring_set_seqno;
2062 if (IS_GEN5(dev)) {
2063 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2064 ring->irq_get = gen5_ring_get_irq;
2065 ring->irq_put = gen5_ring_put_irq;
2066 } else {
2067 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2068 ring->irq_get = i9xx_ring_get_irq;
2069 ring->irq_put = i9xx_ring_put_irq;
2070 }
2071 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2072 }
2073 ring->init = init_ring_common;
2074
2075 return intel_init_ring_buffer(dev, ring);
2076 }
2077
2078 int intel_init_blt_ring_buffer(struct drm_device *dev)
2079 {
2080 drm_i915_private_t *dev_priv = dev->dev_private;
2081 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
2082
2083 ring->name = "blitter ring";
2084 ring->id = BCS;
2085
2086 ring->mmio_base = BLT_RING_BASE;
2087 ring->write_tail = ring_write_tail;
2088 ring->flush = gen6_ring_flush;
2089 ring->add_request = gen6_add_request;
2090 ring->get_seqno = gen6_ring_get_seqno;
2091 ring->set_seqno = ring_set_seqno;
2092 if (INTEL_INFO(dev)->gen >= 8) {
2093 ring->irq_enable_mask =
2094 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2095 ring->irq_get = gen8_ring_get_irq;
2096 ring->irq_put = gen8_ring_put_irq;
2097 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2098 } else {
2099 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2100 ring->irq_get = gen6_ring_get_irq;
2101 ring->irq_put = gen6_ring_put_irq;
2102 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2103 }
2104 ring->sync_to = gen6_ring_sync;
2105 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
2106 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
2107 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2108 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
2109 ring->signal_mbox[RCS] = GEN6_RBSYNC;
2110 ring->signal_mbox[VCS] = GEN6_VBSYNC;
2111 ring->signal_mbox[BCS] = GEN6_NOSYNC;
2112 ring->signal_mbox[VECS] = GEN6_VEBSYNC;
2113 ring->init = init_ring_common;
2114
2115 return intel_init_ring_buffer(dev, ring);
2116 }
2117
2118 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2119 {
2120 drm_i915_private_t *dev_priv = dev->dev_private;
2121 struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2122
2123 ring->name = "video enhancement ring";
2124 ring->id = VECS;
2125
2126 ring->mmio_base = VEBOX_RING_BASE;
2127 ring->write_tail = ring_write_tail;
2128 ring->flush = gen6_ring_flush;
2129 ring->add_request = gen6_add_request;
2130 ring->get_seqno = gen6_ring_get_seqno;
2131 ring->set_seqno = ring_set_seqno;
2132
2133 if (INTEL_INFO(dev)->gen >= 8) {
2134 ring->irq_enable_mask =
2135 (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT) |
2136 GT_RENDER_CS_MASTER_ERROR_INTERRUPT;
2137 ring->irq_get = gen8_ring_get_irq;
2138 ring->irq_put = gen8_ring_put_irq;
2139 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2140 } else {
2141 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2142 ring->irq_get = hsw_vebox_get_irq;
2143 ring->irq_put = hsw_vebox_put_irq;
2144 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2145 }
2146 ring->sync_to = gen6_ring_sync;
2147 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
2148 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
2149 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
2150 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2151 ring->signal_mbox[RCS] = GEN6_RVESYNC;
2152 ring->signal_mbox[VCS] = GEN6_VVESYNC;
2153 ring->signal_mbox[BCS] = GEN6_BVESYNC;
2154 ring->signal_mbox[VECS] = GEN6_NOSYNC;
2155 ring->init = init_ring_common;
2156
2157 return intel_init_ring_buffer(dev, ring);
2158 }
2159
2160 int
2161 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2162 {
2163 int ret;
2164
2165 if (!ring->gpu_caches_dirty)
2166 return 0;
2167
2168 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2169 if (ret)
2170 return ret;
2171
2172 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2173
2174 ring->gpu_caches_dirty = false;
2175 return 0;
2176 }
2177
2178 int
2179 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2180 {
2181 uint32_t flush_domains;
2182 int ret;
2183
2184 flush_domains = 0;
2185 if (ring->gpu_caches_dirty)
2186 flush_domains = I915_GEM_GPU_DOMAINS;
2187
2188 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2189 if (ret)
2190 return ret;
2191
2192 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2193
2194 ring->gpu_caches_dirty = false;
2195 return 0;
2196 }
This page took 0.147124 seconds and 5 git commands to generate.