110c7fc957b7858e00bd277c37518ad2820d2810
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 /* Rough estimate of the typical request size, performing a flush,
38 * set-context and then emitting the batch.
39 */
40 #define LEGACY_REQUEST_SIZE 200
41
42 int __intel_ring_space(int head, int tail, int size)
43 {
44 int space = head - tail;
45 if (space <= 0)
46 space += size;
47 return space - I915_RING_FREE_SPACE;
48 }
49
50 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
51 {
52 if (ringbuf->last_retired_head != -1) {
53 ringbuf->head = ringbuf->last_retired_head;
54 ringbuf->last_retired_head = -1;
55 }
56
57 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
58 ringbuf->tail, ringbuf->size);
59 }
60
61 bool intel_engine_stopped(struct intel_engine_cs *engine)
62 {
63 struct drm_i915_private *dev_priv = engine->i915;
64 return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
65 }
66
67 static void __intel_ring_advance(struct intel_engine_cs *engine)
68 {
69 struct intel_ringbuffer *ringbuf = engine->buffer;
70 ringbuf->tail &= ringbuf->size - 1;
71 if (intel_engine_stopped(engine))
72 return;
73 engine->write_tail(engine, ringbuf->tail);
74 }
75
76 static int
77 gen2_render_ring_flush(struct drm_i915_gem_request *req,
78 u32 invalidate_domains,
79 u32 flush_domains)
80 {
81 struct intel_engine_cs *engine = req->engine;
82 u32 cmd;
83 int ret;
84
85 cmd = MI_FLUSH;
86 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
87 cmd |= MI_NO_WRITE_FLUSH;
88
89 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
90 cmd |= MI_READ_FLUSH;
91
92 ret = intel_ring_begin(req, 2);
93 if (ret)
94 return ret;
95
96 intel_ring_emit(engine, cmd);
97 intel_ring_emit(engine, MI_NOOP);
98 intel_ring_advance(engine);
99
100 return 0;
101 }
102
103 static int
104 gen4_render_ring_flush(struct drm_i915_gem_request *req,
105 u32 invalidate_domains,
106 u32 flush_domains)
107 {
108 struct intel_engine_cs *engine = req->engine;
109 u32 cmd;
110 int ret;
111
112 /*
113 * read/write caches:
114 *
115 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
116 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
117 * also flushed at 2d versus 3d pipeline switches.
118 *
119 * read-only caches:
120 *
121 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
122 * MI_READ_FLUSH is set, and is always flushed on 965.
123 *
124 * I915_GEM_DOMAIN_COMMAND may not exist?
125 *
126 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
127 * invalidated when MI_EXE_FLUSH is set.
128 *
129 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
130 * invalidated with every MI_FLUSH.
131 *
132 * TLBs:
133 *
134 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
135 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
136 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
137 * are flushed at any MI_FLUSH.
138 */
139
140 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
141 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
142 cmd &= ~MI_NO_WRITE_FLUSH;
143 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
144 cmd |= MI_EXE_FLUSH;
145
146 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
147 (IS_G4X(req->i915) || IS_GEN5(req->i915)))
148 cmd |= MI_INVALIDATE_ISP;
149
150 ret = intel_ring_begin(req, 2);
151 if (ret)
152 return ret;
153
154 intel_ring_emit(engine, cmd);
155 intel_ring_emit(engine, MI_NOOP);
156 intel_ring_advance(engine);
157
158 return 0;
159 }
160
161 /**
162 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
163 * implementing two workarounds on gen6. From section 1.4.7.1
164 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
165 *
166 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
167 * produced by non-pipelined state commands), software needs to first
168 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
169 * 0.
170 *
171 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
172 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
173 *
174 * And the workaround for these two requires this workaround first:
175 *
176 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
177 * BEFORE the pipe-control with a post-sync op and no write-cache
178 * flushes.
179 *
180 * And this last workaround is tricky because of the requirements on
181 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
182 * volume 2 part 1:
183 *
184 * "1 of the following must also be set:
185 * - Render Target Cache Flush Enable ([12] of DW1)
186 * - Depth Cache Flush Enable ([0] of DW1)
187 * - Stall at Pixel Scoreboard ([1] of DW1)
188 * - Depth Stall ([13] of DW1)
189 * - Post-Sync Operation ([13] of DW1)
190 * - Notify Enable ([8] of DW1)"
191 *
192 * The cache flushes require the workaround flush that triggered this
193 * one, so we can't use it. Depth stall would trigger the same.
194 * Post-sync nonzero is what triggered this second workaround, so we
195 * can't use that one either. Notify enable is IRQs, which aren't
196 * really our business. That leaves only stall at scoreboard.
197 */
198 static int
199 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
200 {
201 struct intel_engine_cs *engine = req->engine;
202 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
203 int ret;
204
205 ret = intel_ring_begin(req, 6);
206 if (ret)
207 return ret;
208
209 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
210 intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
211 PIPE_CONTROL_STALL_AT_SCOREBOARD);
212 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
213 intel_ring_emit(engine, 0); /* low dword */
214 intel_ring_emit(engine, 0); /* high dword */
215 intel_ring_emit(engine, MI_NOOP);
216 intel_ring_advance(engine);
217
218 ret = intel_ring_begin(req, 6);
219 if (ret)
220 return ret;
221
222 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
223 intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
224 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
225 intel_ring_emit(engine, 0);
226 intel_ring_emit(engine, 0);
227 intel_ring_emit(engine, MI_NOOP);
228 intel_ring_advance(engine);
229
230 return 0;
231 }
232
233 static int
234 gen6_render_ring_flush(struct drm_i915_gem_request *req,
235 u32 invalidate_domains, u32 flush_domains)
236 {
237 struct intel_engine_cs *engine = req->engine;
238 u32 flags = 0;
239 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
240 int ret;
241
242 /* Force SNB workarounds for PIPE_CONTROL flushes */
243 ret = intel_emit_post_sync_nonzero_flush(req);
244 if (ret)
245 return ret;
246
247 /* Just flush everything. Experiments have shown that reducing the
248 * number of bits based on the write domains has little performance
249 * impact.
250 */
251 if (flush_domains) {
252 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
253 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
254 /*
255 * Ensure that any following seqno writes only happen
256 * when the render cache is indeed flushed.
257 */
258 flags |= PIPE_CONTROL_CS_STALL;
259 }
260 if (invalidate_domains) {
261 flags |= PIPE_CONTROL_TLB_INVALIDATE;
262 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
263 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
264 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
265 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
266 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
267 /*
268 * TLB invalidate requires a post-sync write.
269 */
270 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
271 }
272
273 ret = intel_ring_begin(req, 4);
274 if (ret)
275 return ret;
276
277 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
278 intel_ring_emit(engine, flags);
279 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
280 intel_ring_emit(engine, 0);
281 intel_ring_advance(engine);
282
283 return 0;
284 }
285
286 static int
287 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
288 {
289 struct intel_engine_cs *engine = req->engine;
290 int ret;
291
292 ret = intel_ring_begin(req, 4);
293 if (ret)
294 return ret;
295
296 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
297 intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
298 PIPE_CONTROL_STALL_AT_SCOREBOARD);
299 intel_ring_emit(engine, 0);
300 intel_ring_emit(engine, 0);
301 intel_ring_advance(engine);
302
303 return 0;
304 }
305
306 static int
307 gen7_render_ring_flush(struct drm_i915_gem_request *req,
308 u32 invalidate_domains, u32 flush_domains)
309 {
310 struct intel_engine_cs *engine = req->engine;
311 u32 flags = 0;
312 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
313 int ret;
314
315 /*
316 * Ensure that any following seqno writes only happen when the render
317 * cache is indeed flushed.
318 *
319 * Workaround: 4th PIPE_CONTROL command (except the ones with only
320 * read-cache invalidate bits set) must have the CS_STALL bit set. We
321 * don't try to be clever and just set it unconditionally.
322 */
323 flags |= PIPE_CONTROL_CS_STALL;
324
325 /* Just flush everything. Experiments have shown that reducing the
326 * number of bits based on the write domains has little performance
327 * impact.
328 */
329 if (flush_domains) {
330 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
331 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
332 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
333 flags |= PIPE_CONTROL_FLUSH_ENABLE;
334 }
335 if (invalidate_domains) {
336 flags |= PIPE_CONTROL_TLB_INVALIDATE;
337 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
338 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
339 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
340 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
341 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
342 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
343 /*
344 * TLB invalidate requires a post-sync write.
345 */
346 flags |= PIPE_CONTROL_QW_WRITE;
347 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
348
349 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
350
351 /* Workaround: we must issue a pipe_control with CS-stall bit
352 * set before a pipe_control command that has the state cache
353 * invalidate bit set. */
354 gen7_render_ring_cs_stall_wa(req);
355 }
356
357 ret = intel_ring_begin(req, 4);
358 if (ret)
359 return ret;
360
361 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
362 intel_ring_emit(engine, flags);
363 intel_ring_emit(engine, scratch_addr);
364 intel_ring_emit(engine, 0);
365 intel_ring_advance(engine);
366
367 return 0;
368 }
369
370 static int
371 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
372 u32 flags, u32 scratch_addr)
373 {
374 struct intel_engine_cs *engine = req->engine;
375 int ret;
376
377 ret = intel_ring_begin(req, 6);
378 if (ret)
379 return ret;
380
381 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
382 intel_ring_emit(engine, flags);
383 intel_ring_emit(engine, scratch_addr);
384 intel_ring_emit(engine, 0);
385 intel_ring_emit(engine, 0);
386 intel_ring_emit(engine, 0);
387 intel_ring_advance(engine);
388
389 return 0;
390 }
391
392 static int
393 gen8_render_ring_flush(struct drm_i915_gem_request *req,
394 u32 invalidate_domains, u32 flush_domains)
395 {
396 u32 flags = 0;
397 u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
398 int ret;
399
400 flags |= PIPE_CONTROL_CS_STALL;
401
402 if (flush_domains) {
403 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
404 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
405 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
406 flags |= PIPE_CONTROL_FLUSH_ENABLE;
407 }
408 if (invalidate_domains) {
409 flags |= PIPE_CONTROL_TLB_INVALIDATE;
410 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
411 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
412 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
413 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
414 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
415 flags |= PIPE_CONTROL_QW_WRITE;
416 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
417
418 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
419 ret = gen8_emit_pipe_control(req,
420 PIPE_CONTROL_CS_STALL |
421 PIPE_CONTROL_STALL_AT_SCOREBOARD,
422 0);
423 if (ret)
424 return ret;
425 }
426
427 return gen8_emit_pipe_control(req, flags, scratch_addr);
428 }
429
430 static void ring_write_tail(struct intel_engine_cs *engine,
431 u32 value)
432 {
433 struct drm_i915_private *dev_priv = engine->i915;
434 I915_WRITE_TAIL(engine, value);
435 }
436
437 u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
438 {
439 struct drm_i915_private *dev_priv = engine->i915;
440 u64 acthd;
441
442 if (INTEL_GEN(dev_priv) >= 8)
443 acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
444 RING_ACTHD_UDW(engine->mmio_base));
445 else if (INTEL_GEN(dev_priv) >= 4)
446 acthd = I915_READ(RING_ACTHD(engine->mmio_base));
447 else
448 acthd = I915_READ(ACTHD);
449
450 return acthd;
451 }
452
453 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
454 {
455 struct drm_i915_private *dev_priv = engine->i915;
456 u32 addr;
457
458 addr = dev_priv->status_page_dmah->busaddr;
459 if (INTEL_GEN(dev_priv) >= 4)
460 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
461 I915_WRITE(HWS_PGA, addr);
462 }
463
464 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
465 {
466 struct drm_i915_private *dev_priv = engine->i915;
467 i915_reg_t mmio;
468
469 /* The ring status page addresses are no longer next to the rest of
470 * the ring registers as of gen7.
471 */
472 if (IS_GEN7(dev_priv)) {
473 switch (engine->id) {
474 case RCS:
475 mmio = RENDER_HWS_PGA_GEN7;
476 break;
477 case BCS:
478 mmio = BLT_HWS_PGA_GEN7;
479 break;
480 /*
481 * VCS2 actually doesn't exist on Gen7. Only shut up
482 * gcc switch check warning
483 */
484 case VCS2:
485 case VCS:
486 mmio = BSD_HWS_PGA_GEN7;
487 break;
488 case VECS:
489 mmio = VEBOX_HWS_PGA_GEN7;
490 break;
491 }
492 } else if (IS_GEN6(dev_priv)) {
493 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
494 } else {
495 /* XXX: gen8 returns to sanity */
496 mmio = RING_HWS_PGA(engine->mmio_base);
497 }
498
499 I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
500 POSTING_READ(mmio);
501
502 /*
503 * Flush the TLB for this page
504 *
505 * FIXME: These two bits have disappeared on gen8, so a question
506 * arises: do we still need this and if so how should we go about
507 * invalidating the TLB?
508 */
509 if (IS_GEN(dev_priv, 6, 7)) {
510 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
511
512 /* ring should be idle before issuing a sync flush*/
513 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
514
515 I915_WRITE(reg,
516 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
517 INSTPM_SYNC_FLUSH));
518 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
519 1000))
520 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
521 engine->name);
522 }
523 }
524
525 static bool stop_ring(struct intel_engine_cs *engine)
526 {
527 struct drm_i915_private *dev_priv = engine->i915;
528
529 if (!IS_GEN2(dev_priv)) {
530 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
531 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
532 DRM_ERROR("%s : timed out trying to stop ring\n",
533 engine->name);
534 /* Sometimes we observe that the idle flag is not
535 * set even though the ring is empty. So double
536 * check before giving up.
537 */
538 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
539 return false;
540 }
541 }
542
543 I915_WRITE_CTL(engine, 0);
544 I915_WRITE_HEAD(engine, 0);
545 engine->write_tail(engine, 0);
546
547 if (!IS_GEN2(dev_priv)) {
548 (void)I915_READ_CTL(engine);
549 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
550 }
551
552 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
553 }
554
555 void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
556 {
557 memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
558 }
559
560 static int init_ring_common(struct intel_engine_cs *engine)
561 {
562 struct drm_i915_private *dev_priv = engine->i915;
563 struct intel_ringbuffer *ringbuf = engine->buffer;
564 struct drm_i915_gem_object *obj = ringbuf->obj;
565 int ret = 0;
566
567 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
568
569 if (!stop_ring(engine)) {
570 /* G45 ring initialization often fails to reset head to zero */
571 DRM_DEBUG_KMS("%s head not reset to zero "
572 "ctl %08x head %08x tail %08x start %08x\n",
573 engine->name,
574 I915_READ_CTL(engine),
575 I915_READ_HEAD(engine),
576 I915_READ_TAIL(engine),
577 I915_READ_START(engine));
578
579 if (!stop_ring(engine)) {
580 DRM_ERROR("failed to set %s head to zero "
581 "ctl %08x head %08x tail %08x start %08x\n",
582 engine->name,
583 I915_READ_CTL(engine),
584 I915_READ_HEAD(engine),
585 I915_READ_TAIL(engine),
586 I915_READ_START(engine));
587 ret = -EIO;
588 goto out;
589 }
590 }
591
592 if (I915_NEED_GFX_HWS(dev_priv))
593 intel_ring_setup_status_page(engine);
594 else
595 ring_setup_phys_status_page(engine);
596
597 /* Enforce ordering by reading HEAD register back */
598 I915_READ_HEAD(engine);
599
600 /* Initialize the ring. This must happen _after_ we've cleared the ring
601 * registers with the above sequence (the readback of the HEAD registers
602 * also enforces ordering), otherwise the hw might lose the new ring
603 * register values. */
604 I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
605
606 /* WaClearRingBufHeadRegAtInit:ctg,elk */
607 if (I915_READ_HEAD(engine))
608 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
609 engine->name, I915_READ_HEAD(engine));
610 I915_WRITE_HEAD(engine, 0);
611 (void)I915_READ_HEAD(engine);
612
613 I915_WRITE_CTL(engine,
614 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
615 | RING_VALID);
616
617 /* If the head is still not zero, the ring is dead */
618 if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
619 I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
620 (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
621 DRM_ERROR("%s initialization failed "
622 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
623 engine->name,
624 I915_READ_CTL(engine),
625 I915_READ_CTL(engine) & RING_VALID,
626 I915_READ_HEAD(engine), I915_READ_TAIL(engine),
627 I915_READ_START(engine),
628 (unsigned long)i915_gem_obj_ggtt_offset(obj));
629 ret = -EIO;
630 goto out;
631 }
632
633 ringbuf->last_retired_head = -1;
634 ringbuf->head = I915_READ_HEAD(engine);
635 ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
636 intel_ring_update_space(ringbuf);
637
638 intel_engine_init_hangcheck(engine);
639
640 out:
641 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
642
643 return ret;
644 }
645
646 void
647 intel_fini_pipe_control(struct intel_engine_cs *engine)
648 {
649 if (engine->scratch.obj == NULL)
650 return;
651
652 if (INTEL_GEN(engine->i915) >= 5) {
653 kunmap(sg_page(engine->scratch.obj->pages->sgl));
654 i915_gem_object_ggtt_unpin(engine->scratch.obj);
655 }
656
657 drm_gem_object_unreference(&engine->scratch.obj->base);
658 engine->scratch.obj = NULL;
659 }
660
661 int
662 intel_init_pipe_control(struct intel_engine_cs *engine)
663 {
664 int ret;
665
666 WARN_ON(engine->scratch.obj);
667
668 engine->scratch.obj = i915_gem_object_create(engine->i915->dev, 4096);
669 if (IS_ERR(engine->scratch.obj)) {
670 DRM_ERROR("Failed to allocate seqno page\n");
671 ret = PTR_ERR(engine->scratch.obj);
672 engine->scratch.obj = NULL;
673 goto err;
674 }
675
676 ret = i915_gem_object_set_cache_level(engine->scratch.obj,
677 I915_CACHE_LLC);
678 if (ret)
679 goto err_unref;
680
681 ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
682 if (ret)
683 goto err_unref;
684
685 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
686 engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
687 if (engine->scratch.cpu_page == NULL) {
688 ret = -ENOMEM;
689 goto err_unpin;
690 }
691
692 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
693 engine->name, engine->scratch.gtt_offset);
694 return 0;
695
696 err_unpin:
697 i915_gem_object_ggtt_unpin(engine->scratch.obj);
698 err_unref:
699 drm_gem_object_unreference(&engine->scratch.obj->base);
700 err:
701 return ret;
702 }
703
704 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
705 {
706 struct intel_engine_cs *engine = req->engine;
707 struct i915_workarounds *w = &req->i915->workarounds;
708 int ret, i;
709
710 if (w->count == 0)
711 return 0;
712
713 engine->gpu_caches_dirty = true;
714 ret = intel_ring_flush_all_caches(req);
715 if (ret)
716 return ret;
717
718 ret = intel_ring_begin(req, (w->count * 2 + 2));
719 if (ret)
720 return ret;
721
722 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
723 for (i = 0; i < w->count; i++) {
724 intel_ring_emit_reg(engine, w->reg[i].addr);
725 intel_ring_emit(engine, w->reg[i].value);
726 }
727 intel_ring_emit(engine, MI_NOOP);
728
729 intel_ring_advance(engine);
730
731 engine->gpu_caches_dirty = true;
732 ret = intel_ring_flush_all_caches(req);
733 if (ret)
734 return ret;
735
736 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
737
738 return 0;
739 }
740
741 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
742 {
743 int ret;
744
745 ret = intel_ring_workarounds_emit(req);
746 if (ret != 0)
747 return ret;
748
749 ret = i915_gem_render_state_init(req);
750 if (ret)
751 return ret;
752
753 return 0;
754 }
755
756 static int wa_add(struct drm_i915_private *dev_priv,
757 i915_reg_t addr,
758 const u32 mask, const u32 val)
759 {
760 const u32 idx = dev_priv->workarounds.count;
761
762 if (WARN_ON(idx >= I915_MAX_WA_REGS))
763 return -ENOSPC;
764
765 dev_priv->workarounds.reg[idx].addr = addr;
766 dev_priv->workarounds.reg[idx].value = val;
767 dev_priv->workarounds.reg[idx].mask = mask;
768
769 dev_priv->workarounds.count++;
770
771 return 0;
772 }
773
774 #define WA_REG(addr, mask, val) do { \
775 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
776 if (r) \
777 return r; \
778 } while (0)
779
780 #define WA_SET_BIT_MASKED(addr, mask) \
781 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
782
783 #define WA_CLR_BIT_MASKED(addr, mask) \
784 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
785
786 #define WA_SET_FIELD_MASKED(addr, mask, value) \
787 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
788
789 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
790 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
791
792 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
793
794 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
795 i915_reg_t reg)
796 {
797 struct drm_i915_private *dev_priv = engine->i915;
798 struct i915_workarounds *wa = &dev_priv->workarounds;
799 const uint32_t index = wa->hw_whitelist_count[engine->id];
800
801 if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
802 return -EINVAL;
803
804 WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
805 i915_mmio_reg_offset(reg));
806 wa->hw_whitelist_count[engine->id]++;
807
808 return 0;
809 }
810
811 static int gen8_init_workarounds(struct intel_engine_cs *engine)
812 {
813 struct drm_i915_private *dev_priv = engine->i915;
814
815 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
816
817 /* WaDisableAsyncFlipPerfMode:bdw,chv */
818 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
819
820 /* WaDisablePartialInstShootdown:bdw,chv */
821 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
822 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
823
824 /* Use Force Non-Coherent whenever executing a 3D context. This is a
825 * workaround for for a possible hang in the unlikely event a TLB
826 * invalidation occurs during a PSD flush.
827 */
828 /* WaForceEnableNonCoherent:bdw,chv */
829 /* WaHdcDisableFetchWhenMasked:bdw,chv */
830 WA_SET_BIT_MASKED(HDC_CHICKEN0,
831 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
832 HDC_FORCE_NON_COHERENT);
833
834 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
835 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
836 * polygons in the same 8x4 pixel/sample area to be processed without
837 * stalling waiting for the earlier ones to write to Hierarchical Z
838 * buffer."
839 *
840 * This optimization is off by default for BDW and CHV; turn it on.
841 */
842 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
843
844 /* Wa4x4STCOptimizationDisable:bdw,chv */
845 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
846
847 /*
848 * BSpec recommends 8x4 when MSAA is used,
849 * however in practice 16x4 seems fastest.
850 *
851 * Note that PS/WM thread counts depend on the WIZ hashing
852 * disable bit, which we don't touch here, but it's good
853 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
854 */
855 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
856 GEN6_WIZ_HASHING_MASK,
857 GEN6_WIZ_HASHING_16x4);
858
859 return 0;
860 }
861
862 static int bdw_init_workarounds(struct intel_engine_cs *engine)
863 {
864 struct drm_i915_private *dev_priv = engine->i915;
865 int ret;
866
867 ret = gen8_init_workarounds(engine);
868 if (ret)
869 return ret;
870
871 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
872 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
873
874 /* WaDisableDopClockGating:bdw */
875 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
876 DOP_CLOCK_GATING_DISABLE);
877
878 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
879 GEN8_SAMPLER_POWER_BYPASS_DIS);
880
881 WA_SET_BIT_MASKED(HDC_CHICKEN0,
882 /* WaForceContextSaveRestoreNonCoherent:bdw */
883 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
884 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
885 (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
886
887 return 0;
888 }
889
890 static int chv_init_workarounds(struct intel_engine_cs *engine)
891 {
892 struct drm_i915_private *dev_priv = engine->i915;
893 int ret;
894
895 ret = gen8_init_workarounds(engine);
896 if (ret)
897 return ret;
898
899 /* WaDisableThreadStallDopClockGating:chv */
900 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
901
902 /* Improve HiZ throughput on CHV. */
903 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
904
905 return 0;
906 }
907
908 static int gen9_init_workarounds(struct intel_engine_cs *engine)
909 {
910 struct drm_i915_private *dev_priv = engine->i915;
911 int ret;
912
913 /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
914 I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
915
916 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
917 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
918 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
919
920 /* WaDisableKillLogic:bxt,skl,kbl */
921 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
922 ECOCHK_DIS_TLB);
923
924 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
925 /* WaDisablePartialInstShootdown:skl,bxt,kbl */
926 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
927 FLOW_CONTROL_ENABLE |
928 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
929
930 /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
931 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
932 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
933
934 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
935 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
936 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
937 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
938 GEN9_DG_MIRROR_FIX_ENABLE);
939
940 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
941 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
942 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
943 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
944 GEN9_RHWO_OPTIMIZATION_DISABLE);
945 /*
946 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
947 * but we do that in per ctx batchbuffer as there is an issue
948 * with this register not getting restored on ctx restore
949 */
950 }
951
952 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
953 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
954 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
955 GEN9_ENABLE_YV12_BUGFIX |
956 GEN9_ENABLE_GPGPU_PREEMPTION);
957
958 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
959 /* WaDisablePartialResolveInVc:skl,bxt,kbl */
960 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
961 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
962
963 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
964 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
965 GEN9_CCS_TLB_PREFETCH_ENABLE);
966
967 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
968 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
969 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
970 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
971 PIXEL_MASK_CAMMING_DISABLE);
972
973 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
974 WA_SET_BIT_MASKED(HDC_CHICKEN0,
975 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
976 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
977
978 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
979 * both tied to WaForceContextSaveRestoreNonCoherent
980 * in some hsds for skl. We keep the tie for all gen9. The
981 * documentation is a bit hazy and so we want to get common behaviour,
982 * even though there is no clear evidence we would need both on kbl/bxt.
983 * This area has been source of system hangs so we play it safe
984 * and mimic the skl regardless of what bspec says.
985 *
986 * Use Force Non-Coherent whenever executing a 3D context. This
987 * is a workaround for a possible hang in the unlikely event
988 * a TLB invalidation occurs during a PSD flush.
989 */
990
991 /* WaForceEnableNonCoherent:skl,bxt,kbl */
992 WA_SET_BIT_MASKED(HDC_CHICKEN0,
993 HDC_FORCE_NON_COHERENT);
994
995 /* WaDisableHDCInvalidation:skl,bxt,kbl */
996 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
997 BDW_DISABLE_HDC_INVALIDATION);
998
999 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
1000 if (IS_SKYLAKE(dev_priv) ||
1001 IS_KABYLAKE(dev_priv) ||
1002 IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
1003 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
1004 GEN8_SAMPLER_POWER_BYPASS_DIS);
1005
1006 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
1007 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
1008
1009 /* WaOCLCoherentLineFlush:skl,bxt,kbl */
1010 I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
1011 GEN8_LQSC_FLUSH_COHERENT_LINES));
1012
1013 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
1014 ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
1015 if (ret)
1016 return ret;
1017
1018 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
1019 ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
1020 if (ret)
1021 return ret;
1022
1023 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
1024 ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1025 if (ret)
1026 return ret;
1027
1028 return 0;
1029 }
1030
1031 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1032 {
1033 struct drm_i915_private *dev_priv = engine->i915;
1034 u8 vals[3] = { 0, 0, 0 };
1035 unsigned int i;
1036
1037 for (i = 0; i < 3; i++) {
1038 u8 ss;
1039
1040 /*
1041 * Only consider slices where one, and only one, subslice has 7
1042 * EUs
1043 */
1044 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1045 continue;
1046
1047 /*
1048 * subslice_7eu[i] != 0 (because of the check above) and
1049 * ss_max == 4 (maximum number of subslices possible per slice)
1050 *
1051 * -> 0 <= ss <= 3;
1052 */
1053 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1054 vals[i] = 3 - ss;
1055 }
1056
1057 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1058 return 0;
1059
1060 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1061 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1062 GEN9_IZ_HASHING_MASK(2) |
1063 GEN9_IZ_HASHING_MASK(1) |
1064 GEN9_IZ_HASHING_MASK(0),
1065 GEN9_IZ_HASHING(2, vals[2]) |
1066 GEN9_IZ_HASHING(1, vals[1]) |
1067 GEN9_IZ_HASHING(0, vals[0]));
1068
1069 return 0;
1070 }
1071
1072 static int skl_init_workarounds(struct intel_engine_cs *engine)
1073 {
1074 struct drm_i915_private *dev_priv = engine->i915;
1075 int ret;
1076
1077 ret = gen9_init_workarounds(engine);
1078 if (ret)
1079 return ret;
1080
1081 /*
1082 * Actual WA is to disable percontext preemption granularity control
1083 * until D0 which is the default case so this is equivalent to
1084 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1085 */
1086 if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1087 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1088 _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1089 }
1090
1091 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1092 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1093 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1094 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1095 }
1096
1097 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1098 * involving this register should also be added to WA batch as required.
1099 */
1100 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1101 /* WaDisableLSQCROPERFforOCL:skl */
1102 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1103 GEN8_LQSC_RO_PERF_DIS);
1104
1105 /* WaEnableGapsTsvCreditFix:skl */
1106 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1107 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1108 GEN9_GAPS_TSV_CREDIT_DISABLE));
1109 }
1110
1111 /* WaDisablePowerCompilerClockGating:skl */
1112 if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1113 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1114 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1115
1116 /* WaBarrierPerformanceFixDisable:skl */
1117 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1118 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1119 HDC_FENCE_DEST_SLM_DISABLE |
1120 HDC_BARRIER_PERFORMANCE_DISABLE);
1121
1122 /* WaDisableSbeCacheDispatchPortSharing:skl */
1123 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1124 WA_SET_BIT_MASKED(
1125 GEN7_HALF_SLICE_CHICKEN1,
1126 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1127
1128 /* WaDisableGafsUnitClkGating:skl */
1129 WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1130
1131 /* WaDisableLSQCROPERFforOCL:skl */
1132 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1133 if (ret)
1134 return ret;
1135
1136 return skl_tune_iz_hashing(engine);
1137 }
1138
1139 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1140 {
1141 struct drm_i915_private *dev_priv = engine->i915;
1142 int ret;
1143
1144 ret = gen9_init_workarounds(engine);
1145 if (ret)
1146 return ret;
1147
1148 /* WaStoreMultiplePTEenable:bxt */
1149 /* This is a requirement according to Hardware specification */
1150 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1151 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1152
1153 /* WaSetClckGatingDisableMedia:bxt */
1154 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1155 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1156 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1157 }
1158
1159 /* WaDisableThreadStallDopClockGating:bxt */
1160 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1161 STALL_DOP_GATING_DISABLE);
1162
1163 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1164 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1165 WA_SET_BIT_MASKED(
1166 GEN7_HALF_SLICE_CHICKEN1,
1167 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1168 }
1169
1170 /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1171 /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1172 /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1173 /* WaDisableLSQCROPERFforOCL:bxt */
1174 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1175 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1176 if (ret)
1177 return ret;
1178
1179 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1180 if (ret)
1181 return ret;
1182 }
1183
1184 /* WaProgramL3SqcReg1DefaultForPerf:bxt */
1185 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1186 I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1187 L3_HIGH_PRIO_CREDITS(2));
1188
1189 /* WaInsertDummyPushConstPs:bxt */
1190 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
1191 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1192 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1193
1194 return 0;
1195 }
1196
1197 static int kbl_init_workarounds(struct intel_engine_cs *engine)
1198 {
1199 struct drm_i915_private *dev_priv = engine->i915;
1200 int ret;
1201
1202 ret = gen9_init_workarounds(engine);
1203 if (ret)
1204 return ret;
1205
1206 /* WaEnableGapsTsvCreditFix:kbl */
1207 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1208 GEN9_GAPS_TSV_CREDIT_DISABLE));
1209
1210 /* WaDisableDynamicCreditSharing:kbl */
1211 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1212 WA_SET_BIT(GAMT_CHKN_BIT_REG,
1213 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1214
1215 /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1216 if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1217 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1218 HDC_FENCE_DEST_SLM_DISABLE);
1219
1220 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1221 * involving this register should also be added to WA batch as required.
1222 */
1223 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1224 /* WaDisableLSQCROPERFforOCL:kbl */
1225 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1226 GEN8_LQSC_RO_PERF_DIS);
1227
1228 /* WaInsertDummyPushConstPs:kbl */
1229 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1230 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1231 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1232
1233 /* WaDisableGafsUnitClkGating:kbl */
1234 WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1235
1236 /* WaDisableSbeCacheDispatchPortSharing:kbl */
1237 WA_SET_BIT_MASKED(
1238 GEN7_HALF_SLICE_CHICKEN1,
1239 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1240
1241 /* WaDisableLSQCROPERFforOCL:kbl */
1242 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1243 if (ret)
1244 return ret;
1245
1246 return 0;
1247 }
1248
1249 int init_workarounds_ring(struct intel_engine_cs *engine)
1250 {
1251 struct drm_i915_private *dev_priv = engine->i915;
1252
1253 WARN_ON(engine->id != RCS);
1254
1255 dev_priv->workarounds.count = 0;
1256 dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1257
1258 if (IS_BROADWELL(dev_priv))
1259 return bdw_init_workarounds(engine);
1260
1261 if (IS_CHERRYVIEW(dev_priv))
1262 return chv_init_workarounds(engine);
1263
1264 if (IS_SKYLAKE(dev_priv))
1265 return skl_init_workarounds(engine);
1266
1267 if (IS_BROXTON(dev_priv))
1268 return bxt_init_workarounds(engine);
1269
1270 if (IS_KABYLAKE(dev_priv))
1271 return kbl_init_workarounds(engine);
1272
1273 return 0;
1274 }
1275
1276 static int init_render_ring(struct intel_engine_cs *engine)
1277 {
1278 struct drm_i915_private *dev_priv = engine->i915;
1279 int ret = init_ring_common(engine);
1280 if (ret)
1281 return ret;
1282
1283 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1284 if (IS_GEN(dev_priv, 4, 6))
1285 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1286
1287 /* We need to disable the AsyncFlip performance optimisations in order
1288 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1289 * programmed to '1' on all products.
1290 *
1291 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1292 */
1293 if (IS_GEN(dev_priv, 6, 7))
1294 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1295
1296 /* Required for the hardware to program scanline values for waiting */
1297 /* WaEnableFlushTlbInvalidationMode:snb */
1298 if (IS_GEN6(dev_priv))
1299 I915_WRITE(GFX_MODE,
1300 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1301
1302 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1303 if (IS_GEN7(dev_priv))
1304 I915_WRITE(GFX_MODE_GEN7,
1305 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1306 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1307
1308 if (IS_GEN6(dev_priv)) {
1309 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1310 * "If this bit is set, STCunit will have LRA as replacement
1311 * policy. [...] This bit must be reset. LRA replacement
1312 * policy is not supported."
1313 */
1314 I915_WRITE(CACHE_MODE_0,
1315 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1316 }
1317
1318 if (IS_GEN(dev_priv, 6, 7))
1319 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1320
1321 if (HAS_L3_DPF(dev_priv))
1322 I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
1323
1324 return init_workarounds_ring(engine);
1325 }
1326
1327 static void render_ring_cleanup(struct intel_engine_cs *engine)
1328 {
1329 struct drm_i915_private *dev_priv = engine->i915;
1330
1331 if (dev_priv->semaphore_obj) {
1332 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1333 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1334 dev_priv->semaphore_obj = NULL;
1335 }
1336
1337 intel_fini_pipe_control(engine);
1338 }
1339
1340 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1341 unsigned int num_dwords)
1342 {
1343 #define MBOX_UPDATE_DWORDS 8
1344 struct intel_engine_cs *signaller = signaller_req->engine;
1345 struct drm_i915_private *dev_priv = signaller_req->i915;
1346 struct intel_engine_cs *waiter;
1347 enum intel_engine_id id;
1348 int ret, num_rings;
1349
1350 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1351 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1352 #undef MBOX_UPDATE_DWORDS
1353
1354 ret = intel_ring_begin(signaller_req, num_dwords);
1355 if (ret)
1356 return ret;
1357
1358 for_each_engine_id(waiter, dev_priv, id) {
1359 u32 seqno;
1360 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1361 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1362 continue;
1363
1364 seqno = i915_gem_request_get_seqno(signaller_req);
1365 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1366 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1367 PIPE_CONTROL_QW_WRITE |
1368 PIPE_CONTROL_CS_STALL);
1369 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1370 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1371 intel_ring_emit(signaller, seqno);
1372 intel_ring_emit(signaller, 0);
1373 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1374 MI_SEMAPHORE_TARGET(waiter->hw_id));
1375 intel_ring_emit(signaller, 0);
1376 }
1377
1378 return 0;
1379 }
1380
1381 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1382 unsigned int num_dwords)
1383 {
1384 #define MBOX_UPDATE_DWORDS 6
1385 struct intel_engine_cs *signaller = signaller_req->engine;
1386 struct drm_i915_private *dev_priv = signaller_req->i915;
1387 struct intel_engine_cs *waiter;
1388 enum intel_engine_id id;
1389 int ret, num_rings;
1390
1391 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1392 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1393 #undef MBOX_UPDATE_DWORDS
1394
1395 ret = intel_ring_begin(signaller_req, num_dwords);
1396 if (ret)
1397 return ret;
1398
1399 for_each_engine_id(waiter, dev_priv, id) {
1400 u32 seqno;
1401 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1402 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1403 continue;
1404
1405 seqno = i915_gem_request_get_seqno(signaller_req);
1406 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1407 MI_FLUSH_DW_OP_STOREDW);
1408 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1409 MI_FLUSH_DW_USE_GTT);
1410 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1411 intel_ring_emit(signaller, seqno);
1412 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1413 MI_SEMAPHORE_TARGET(waiter->hw_id));
1414 intel_ring_emit(signaller, 0);
1415 }
1416
1417 return 0;
1418 }
1419
1420 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1421 unsigned int num_dwords)
1422 {
1423 struct intel_engine_cs *signaller = signaller_req->engine;
1424 struct drm_i915_private *dev_priv = signaller_req->i915;
1425 struct intel_engine_cs *useless;
1426 enum intel_engine_id id;
1427 int ret, num_rings;
1428
1429 #define MBOX_UPDATE_DWORDS 3
1430 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1431 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1432 #undef MBOX_UPDATE_DWORDS
1433
1434 ret = intel_ring_begin(signaller_req, num_dwords);
1435 if (ret)
1436 return ret;
1437
1438 for_each_engine_id(useless, dev_priv, id) {
1439 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1440
1441 if (i915_mmio_reg_valid(mbox_reg)) {
1442 u32 seqno = i915_gem_request_get_seqno(signaller_req);
1443
1444 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1445 intel_ring_emit_reg(signaller, mbox_reg);
1446 intel_ring_emit(signaller, seqno);
1447 }
1448 }
1449
1450 /* If num_dwords was rounded, make sure the tail pointer is correct */
1451 if (num_rings % 2 == 0)
1452 intel_ring_emit(signaller, MI_NOOP);
1453
1454 return 0;
1455 }
1456
1457 /**
1458 * gen6_add_request - Update the semaphore mailbox registers
1459 *
1460 * @request - request to write to the ring
1461 *
1462 * Update the mailbox registers in the *other* rings with the current seqno.
1463 * This acts like a signal in the canonical semaphore.
1464 */
1465 static int
1466 gen6_add_request(struct drm_i915_gem_request *req)
1467 {
1468 struct intel_engine_cs *engine = req->engine;
1469 int ret;
1470
1471 if (engine->semaphore.signal)
1472 ret = engine->semaphore.signal(req, 4);
1473 else
1474 ret = intel_ring_begin(req, 4);
1475
1476 if (ret)
1477 return ret;
1478
1479 intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1480 intel_ring_emit(engine,
1481 I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1482 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1483 intel_ring_emit(engine, MI_USER_INTERRUPT);
1484 __intel_ring_advance(engine);
1485
1486 return 0;
1487 }
1488
1489 static int
1490 gen8_render_add_request(struct drm_i915_gem_request *req)
1491 {
1492 struct intel_engine_cs *engine = req->engine;
1493 int ret;
1494
1495 if (engine->semaphore.signal)
1496 ret = engine->semaphore.signal(req, 8);
1497 else
1498 ret = intel_ring_begin(req, 8);
1499 if (ret)
1500 return ret;
1501
1502 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
1503 intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
1504 PIPE_CONTROL_CS_STALL |
1505 PIPE_CONTROL_QW_WRITE));
1506 intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
1507 intel_ring_emit(engine, 0);
1508 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1509 /* We're thrashing one dword of HWS. */
1510 intel_ring_emit(engine, 0);
1511 intel_ring_emit(engine, MI_USER_INTERRUPT);
1512 intel_ring_emit(engine, MI_NOOP);
1513 __intel_ring_advance(engine);
1514
1515 return 0;
1516 }
1517
1518 static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
1519 u32 seqno)
1520 {
1521 return dev_priv->last_seqno < seqno;
1522 }
1523
1524 /**
1525 * intel_ring_sync - sync the waiter to the signaller on seqno
1526 *
1527 * @waiter - ring that is waiting
1528 * @signaller - ring which has, or will signal
1529 * @seqno - seqno which the waiter will block on
1530 */
1531
1532 static int
1533 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1534 struct intel_engine_cs *signaller,
1535 u32 seqno)
1536 {
1537 struct intel_engine_cs *waiter = waiter_req->engine;
1538 struct drm_i915_private *dev_priv = waiter_req->i915;
1539 struct i915_hw_ppgtt *ppgtt;
1540 int ret;
1541
1542 ret = intel_ring_begin(waiter_req, 4);
1543 if (ret)
1544 return ret;
1545
1546 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1547 MI_SEMAPHORE_GLOBAL_GTT |
1548 MI_SEMAPHORE_SAD_GTE_SDD);
1549 intel_ring_emit(waiter, seqno);
1550 intel_ring_emit(waiter,
1551 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1552 intel_ring_emit(waiter,
1553 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1554 intel_ring_advance(waiter);
1555
1556 /* When the !RCS engines idle waiting upon a semaphore, they lose their
1557 * pagetables and we must reload them before executing the batch.
1558 * We do this on the i915_switch_context() following the wait and
1559 * before the dispatch.
1560 */
1561 ppgtt = waiter_req->ctx->ppgtt;
1562 if (ppgtt && waiter_req->engine->id != RCS)
1563 ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
1564 return 0;
1565 }
1566
1567 static int
1568 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1569 struct intel_engine_cs *signaller,
1570 u32 seqno)
1571 {
1572 struct intel_engine_cs *waiter = waiter_req->engine;
1573 u32 dw1 = MI_SEMAPHORE_MBOX |
1574 MI_SEMAPHORE_COMPARE |
1575 MI_SEMAPHORE_REGISTER;
1576 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1577 int ret;
1578
1579 /* Throughout all of the GEM code, seqno passed implies our current
1580 * seqno is >= the last seqno executed. However for hardware the
1581 * comparison is strictly greater than.
1582 */
1583 seqno -= 1;
1584
1585 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1586
1587 ret = intel_ring_begin(waiter_req, 4);
1588 if (ret)
1589 return ret;
1590
1591 /* If seqno wrap happened, omit the wait with no-ops */
1592 if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
1593 intel_ring_emit(waiter, dw1 | wait_mbox);
1594 intel_ring_emit(waiter, seqno);
1595 intel_ring_emit(waiter, 0);
1596 intel_ring_emit(waiter, MI_NOOP);
1597 } else {
1598 intel_ring_emit(waiter, MI_NOOP);
1599 intel_ring_emit(waiter, MI_NOOP);
1600 intel_ring_emit(waiter, MI_NOOP);
1601 intel_ring_emit(waiter, MI_NOOP);
1602 }
1603 intel_ring_advance(waiter);
1604
1605 return 0;
1606 }
1607
1608 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1609 do { \
1610 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1611 PIPE_CONTROL_DEPTH_STALL); \
1612 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1613 intel_ring_emit(ring__, 0); \
1614 intel_ring_emit(ring__, 0); \
1615 } while (0)
1616
1617 static int
1618 pc_render_add_request(struct drm_i915_gem_request *req)
1619 {
1620 struct intel_engine_cs *engine = req->engine;
1621 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1622 int ret;
1623
1624 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1625 * incoherent with writes to memory, i.e. completely fubar,
1626 * so we need to use PIPE_NOTIFY instead.
1627 *
1628 * However, we also need to workaround the qword write
1629 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1630 * memory before requesting an interrupt.
1631 */
1632 ret = intel_ring_begin(req, 32);
1633 if (ret)
1634 return ret;
1635
1636 intel_ring_emit(engine,
1637 GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1638 PIPE_CONTROL_WRITE_FLUSH |
1639 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1640 intel_ring_emit(engine,
1641 engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1642 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1643 intel_ring_emit(engine, 0);
1644 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1645 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1646 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1647 scratch_addr += 2 * CACHELINE_BYTES;
1648 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1649 scratch_addr += 2 * CACHELINE_BYTES;
1650 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1651 scratch_addr += 2 * CACHELINE_BYTES;
1652 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1653 scratch_addr += 2 * CACHELINE_BYTES;
1654 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1655
1656 intel_ring_emit(engine,
1657 GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1658 PIPE_CONTROL_WRITE_FLUSH |
1659 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1660 PIPE_CONTROL_NOTIFY);
1661 intel_ring_emit(engine,
1662 engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1663 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1664 intel_ring_emit(engine, 0);
1665 __intel_ring_advance(engine);
1666
1667 return 0;
1668 }
1669
1670 static void
1671 gen6_seqno_barrier(struct intel_engine_cs *engine)
1672 {
1673 struct drm_i915_private *dev_priv = engine->i915;
1674
1675 /* Workaround to force correct ordering between irq and seqno writes on
1676 * ivb (and maybe also on snb) by reading from a CS register (like
1677 * ACTHD) before reading the status page.
1678 *
1679 * Note that this effectively stalls the read by the time it takes to
1680 * do a memory transaction, which more or less ensures that the write
1681 * from the GPU has sufficient time to invalidate the CPU cacheline.
1682 * Alternatively we could delay the interrupt from the CS ring to give
1683 * the write time to land, but that would incur a delay after every
1684 * batch i.e. much more frequent than a delay when waiting for the
1685 * interrupt (with the same net latency).
1686 *
1687 * Also note that to prevent whole machine hangs on gen7, we have to
1688 * take the spinlock to guard against concurrent cacheline access.
1689 */
1690 spin_lock_irq(&dev_priv->uncore.lock);
1691 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1692 spin_unlock_irq(&dev_priv->uncore.lock);
1693 }
1694
1695 static u32
1696 ring_get_seqno(struct intel_engine_cs *engine)
1697 {
1698 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1699 }
1700
1701 static void
1702 ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1703 {
1704 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1705 }
1706
1707 static u32
1708 pc_render_get_seqno(struct intel_engine_cs *engine)
1709 {
1710 return engine->scratch.cpu_page[0];
1711 }
1712
1713 static void
1714 pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1715 {
1716 engine->scratch.cpu_page[0] = seqno;
1717 }
1718
1719 static bool
1720 gen5_ring_get_irq(struct intel_engine_cs *engine)
1721 {
1722 struct drm_i915_private *dev_priv = engine->i915;
1723 unsigned long flags;
1724
1725 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1726 return false;
1727
1728 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1729 if (engine->irq_refcount++ == 0)
1730 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1731 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1732
1733 return true;
1734 }
1735
1736 static void
1737 gen5_ring_put_irq(struct intel_engine_cs *engine)
1738 {
1739 struct drm_i915_private *dev_priv = engine->i915;
1740 unsigned long flags;
1741
1742 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1743 if (--engine->irq_refcount == 0)
1744 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1745 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1746 }
1747
1748 static bool
1749 i9xx_ring_get_irq(struct intel_engine_cs *engine)
1750 {
1751 struct drm_i915_private *dev_priv = engine->i915;
1752 unsigned long flags;
1753
1754 if (!intel_irqs_enabled(dev_priv))
1755 return false;
1756
1757 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1758 if (engine->irq_refcount++ == 0) {
1759 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1760 I915_WRITE(IMR, dev_priv->irq_mask);
1761 POSTING_READ(IMR);
1762 }
1763 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1764
1765 return true;
1766 }
1767
1768 static void
1769 i9xx_ring_put_irq(struct intel_engine_cs *engine)
1770 {
1771 struct drm_i915_private *dev_priv = engine->i915;
1772 unsigned long flags;
1773
1774 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1775 if (--engine->irq_refcount == 0) {
1776 dev_priv->irq_mask |= engine->irq_enable_mask;
1777 I915_WRITE(IMR, dev_priv->irq_mask);
1778 POSTING_READ(IMR);
1779 }
1780 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1781 }
1782
1783 static bool
1784 i8xx_ring_get_irq(struct intel_engine_cs *engine)
1785 {
1786 struct drm_i915_private *dev_priv = engine->i915;
1787 unsigned long flags;
1788
1789 if (!intel_irqs_enabled(dev_priv))
1790 return false;
1791
1792 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1793 if (engine->irq_refcount++ == 0) {
1794 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1795 I915_WRITE16(IMR, dev_priv->irq_mask);
1796 POSTING_READ16(IMR);
1797 }
1798 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1799
1800 return true;
1801 }
1802
1803 static void
1804 i8xx_ring_put_irq(struct intel_engine_cs *engine)
1805 {
1806 struct drm_i915_private *dev_priv = engine->i915;
1807 unsigned long flags;
1808
1809 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1810 if (--engine->irq_refcount == 0) {
1811 dev_priv->irq_mask |= engine->irq_enable_mask;
1812 I915_WRITE16(IMR, dev_priv->irq_mask);
1813 POSTING_READ16(IMR);
1814 }
1815 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1816 }
1817
1818 static int
1819 bsd_ring_flush(struct drm_i915_gem_request *req,
1820 u32 invalidate_domains,
1821 u32 flush_domains)
1822 {
1823 struct intel_engine_cs *engine = req->engine;
1824 int ret;
1825
1826 ret = intel_ring_begin(req, 2);
1827 if (ret)
1828 return ret;
1829
1830 intel_ring_emit(engine, MI_FLUSH);
1831 intel_ring_emit(engine, MI_NOOP);
1832 intel_ring_advance(engine);
1833 return 0;
1834 }
1835
1836 static int
1837 i9xx_add_request(struct drm_i915_gem_request *req)
1838 {
1839 struct intel_engine_cs *engine = req->engine;
1840 int ret;
1841
1842 ret = intel_ring_begin(req, 4);
1843 if (ret)
1844 return ret;
1845
1846 intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1847 intel_ring_emit(engine,
1848 I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1849 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1850 intel_ring_emit(engine, MI_USER_INTERRUPT);
1851 __intel_ring_advance(engine);
1852
1853 return 0;
1854 }
1855
1856 static bool
1857 gen6_ring_get_irq(struct intel_engine_cs *engine)
1858 {
1859 struct drm_i915_private *dev_priv = engine->i915;
1860 unsigned long flags;
1861
1862 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1863 return false;
1864
1865 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1866 if (engine->irq_refcount++ == 0) {
1867 if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
1868 I915_WRITE_IMR(engine,
1869 ~(engine->irq_enable_mask |
1870 GT_PARITY_ERROR(dev_priv)));
1871 else
1872 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1873 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1874 }
1875 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1876
1877 return true;
1878 }
1879
1880 static void
1881 gen6_ring_put_irq(struct intel_engine_cs *engine)
1882 {
1883 struct drm_i915_private *dev_priv = engine->i915;
1884 unsigned long flags;
1885
1886 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1887 if (--engine->irq_refcount == 0) {
1888 if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
1889 I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
1890 else
1891 I915_WRITE_IMR(engine, ~0);
1892 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1893 }
1894 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1895 }
1896
1897 static bool
1898 hsw_vebox_get_irq(struct intel_engine_cs *engine)
1899 {
1900 struct drm_i915_private *dev_priv = engine->i915;
1901 unsigned long flags;
1902
1903 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1904 return false;
1905
1906 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1907 if (engine->irq_refcount++ == 0) {
1908 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1909 gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
1910 }
1911 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1912
1913 return true;
1914 }
1915
1916 static void
1917 hsw_vebox_put_irq(struct intel_engine_cs *engine)
1918 {
1919 struct drm_i915_private *dev_priv = engine->i915;
1920 unsigned long flags;
1921
1922 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1923 if (--engine->irq_refcount == 0) {
1924 I915_WRITE_IMR(engine, ~0);
1925 gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
1926 }
1927 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1928 }
1929
1930 static bool
1931 gen8_ring_get_irq(struct intel_engine_cs *engine)
1932 {
1933 struct drm_i915_private *dev_priv = engine->i915;
1934 unsigned long flags;
1935
1936 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1937 return false;
1938
1939 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1940 if (engine->irq_refcount++ == 0) {
1941 if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
1942 I915_WRITE_IMR(engine,
1943 ~(engine->irq_enable_mask |
1944 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1945 } else {
1946 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1947 }
1948 POSTING_READ(RING_IMR(engine->mmio_base));
1949 }
1950 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1951
1952 return true;
1953 }
1954
1955 static void
1956 gen8_ring_put_irq(struct intel_engine_cs *engine)
1957 {
1958 struct drm_i915_private *dev_priv = engine->i915;
1959 unsigned long flags;
1960
1961 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1962 if (--engine->irq_refcount == 0) {
1963 if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
1964 I915_WRITE_IMR(engine,
1965 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1966 } else {
1967 I915_WRITE_IMR(engine, ~0);
1968 }
1969 POSTING_READ(RING_IMR(engine->mmio_base));
1970 }
1971 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1972 }
1973
1974 static int
1975 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1976 u64 offset, u32 length,
1977 unsigned dispatch_flags)
1978 {
1979 struct intel_engine_cs *engine = req->engine;
1980 int ret;
1981
1982 ret = intel_ring_begin(req, 2);
1983 if (ret)
1984 return ret;
1985
1986 intel_ring_emit(engine,
1987 MI_BATCH_BUFFER_START |
1988 MI_BATCH_GTT |
1989 (dispatch_flags & I915_DISPATCH_SECURE ?
1990 0 : MI_BATCH_NON_SECURE_I965));
1991 intel_ring_emit(engine, offset);
1992 intel_ring_advance(engine);
1993
1994 return 0;
1995 }
1996
1997 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1998 #define I830_BATCH_LIMIT (256*1024)
1999 #define I830_TLB_ENTRIES (2)
2000 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
2001 static int
2002 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
2003 u64 offset, u32 len,
2004 unsigned dispatch_flags)
2005 {
2006 struct intel_engine_cs *engine = req->engine;
2007 u32 cs_offset = engine->scratch.gtt_offset;
2008 int ret;
2009
2010 ret = intel_ring_begin(req, 6);
2011 if (ret)
2012 return ret;
2013
2014 /* Evict the invalid PTE TLBs */
2015 intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
2016 intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
2017 intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
2018 intel_ring_emit(engine, cs_offset);
2019 intel_ring_emit(engine, 0xdeadbeef);
2020 intel_ring_emit(engine, MI_NOOP);
2021 intel_ring_advance(engine);
2022
2023 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
2024 if (len > I830_BATCH_LIMIT)
2025 return -ENOSPC;
2026
2027 ret = intel_ring_begin(req, 6 + 2);
2028 if (ret)
2029 return ret;
2030
2031 /* Blit the batch (which has now all relocs applied) to the
2032 * stable batch scratch bo area (so that the CS never
2033 * stumbles over its tlb invalidation bug) ...
2034 */
2035 intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
2036 intel_ring_emit(engine,
2037 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
2038 intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
2039 intel_ring_emit(engine, cs_offset);
2040 intel_ring_emit(engine, 4096);
2041 intel_ring_emit(engine, offset);
2042
2043 intel_ring_emit(engine, MI_FLUSH);
2044 intel_ring_emit(engine, MI_NOOP);
2045 intel_ring_advance(engine);
2046
2047 /* ... and execute it. */
2048 offset = cs_offset;
2049 }
2050
2051 ret = intel_ring_begin(req, 2);
2052 if (ret)
2053 return ret;
2054
2055 intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
2056 intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
2057 0 : MI_BATCH_NON_SECURE));
2058 intel_ring_advance(engine);
2059
2060 return 0;
2061 }
2062
2063 static int
2064 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
2065 u64 offset, u32 len,
2066 unsigned dispatch_flags)
2067 {
2068 struct intel_engine_cs *engine = req->engine;
2069 int ret;
2070
2071 ret = intel_ring_begin(req, 2);
2072 if (ret)
2073 return ret;
2074
2075 intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
2076 intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
2077 0 : MI_BATCH_NON_SECURE));
2078 intel_ring_advance(engine);
2079
2080 return 0;
2081 }
2082
2083 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
2084 {
2085 struct drm_i915_private *dev_priv = engine->i915;
2086
2087 if (!dev_priv->status_page_dmah)
2088 return;
2089
2090 drm_pci_free(dev_priv->dev, dev_priv->status_page_dmah);
2091 engine->status_page.page_addr = NULL;
2092 }
2093
2094 static void cleanup_status_page(struct intel_engine_cs *engine)
2095 {
2096 struct drm_i915_gem_object *obj;
2097
2098 obj = engine->status_page.obj;
2099 if (obj == NULL)
2100 return;
2101
2102 kunmap(sg_page(obj->pages->sgl));
2103 i915_gem_object_ggtt_unpin(obj);
2104 drm_gem_object_unreference(&obj->base);
2105 engine->status_page.obj = NULL;
2106 }
2107
2108 static int init_status_page(struct intel_engine_cs *engine)
2109 {
2110 struct drm_i915_gem_object *obj = engine->status_page.obj;
2111
2112 if (obj == NULL) {
2113 unsigned flags;
2114 int ret;
2115
2116 obj = i915_gem_object_create(engine->i915->dev, 4096);
2117 if (IS_ERR(obj)) {
2118 DRM_ERROR("Failed to allocate status page\n");
2119 return PTR_ERR(obj);
2120 }
2121
2122 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2123 if (ret)
2124 goto err_unref;
2125
2126 flags = 0;
2127 if (!HAS_LLC(engine->i915))
2128 /* On g33, we cannot place HWS above 256MiB, so
2129 * restrict its pinning to the low mappable arena.
2130 * Though this restriction is not documented for
2131 * gen4, gen5, or byt, they also behave similarly
2132 * and hang if the HWS is placed at the top of the
2133 * GTT. To generalise, it appears that all !llc
2134 * platforms have issues with us placing the HWS
2135 * above the mappable region (even though we never
2136 * actualy map it).
2137 */
2138 flags |= PIN_MAPPABLE;
2139 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2140 if (ret) {
2141 err_unref:
2142 drm_gem_object_unreference(&obj->base);
2143 return ret;
2144 }
2145
2146 engine->status_page.obj = obj;
2147 }
2148
2149 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
2150 engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
2151 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2152
2153 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2154 engine->name, engine->status_page.gfx_addr);
2155
2156 return 0;
2157 }
2158
2159 static int init_phys_status_page(struct intel_engine_cs *engine)
2160 {
2161 struct drm_i915_private *dev_priv = engine->i915;
2162
2163 if (!dev_priv->status_page_dmah) {
2164 dev_priv->status_page_dmah =
2165 drm_pci_alloc(dev_priv->dev, PAGE_SIZE, PAGE_SIZE);
2166 if (!dev_priv->status_page_dmah)
2167 return -ENOMEM;
2168 }
2169
2170 engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2171 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2172
2173 return 0;
2174 }
2175
2176 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2177 {
2178 GEM_BUG_ON(ringbuf->vma == NULL);
2179 GEM_BUG_ON(ringbuf->virtual_start == NULL);
2180
2181 if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2182 i915_gem_object_unpin_map(ringbuf->obj);
2183 else
2184 i915_vma_unpin_iomap(ringbuf->vma);
2185 ringbuf->virtual_start = NULL;
2186
2187 i915_gem_object_ggtt_unpin(ringbuf->obj);
2188 ringbuf->vma = NULL;
2189 }
2190
2191 int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
2192 struct intel_ringbuffer *ringbuf)
2193 {
2194 struct drm_i915_gem_object *obj = ringbuf->obj;
2195 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2196 unsigned flags = PIN_OFFSET_BIAS | 4096;
2197 void *addr;
2198 int ret;
2199
2200 if (HAS_LLC(dev_priv) && !obj->stolen) {
2201 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2202 if (ret)
2203 return ret;
2204
2205 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2206 if (ret)
2207 goto err_unpin;
2208
2209 addr = i915_gem_object_pin_map(obj);
2210 if (IS_ERR(addr)) {
2211 ret = PTR_ERR(addr);
2212 goto err_unpin;
2213 }
2214 } else {
2215 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
2216 flags | PIN_MAPPABLE);
2217 if (ret)
2218 return ret;
2219
2220 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2221 if (ret)
2222 goto err_unpin;
2223
2224 /* Access through the GTT requires the device to be awake. */
2225 assert_rpm_wakelock_held(dev_priv);
2226
2227 addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
2228 if (IS_ERR(addr)) {
2229 ret = PTR_ERR(addr);
2230 goto err_unpin;
2231 }
2232 }
2233
2234 ringbuf->virtual_start = addr;
2235 ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2236 return 0;
2237
2238 err_unpin:
2239 i915_gem_object_ggtt_unpin(obj);
2240 return ret;
2241 }
2242
2243 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2244 {
2245 drm_gem_object_unreference(&ringbuf->obj->base);
2246 ringbuf->obj = NULL;
2247 }
2248
2249 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2250 struct intel_ringbuffer *ringbuf)
2251 {
2252 struct drm_i915_gem_object *obj;
2253
2254 obj = NULL;
2255 if (!HAS_LLC(dev))
2256 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2257 if (obj == NULL)
2258 obj = i915_gem_object_create(dev, ringbuf->size);
2259 if (IS_ERR(obj))
2260 return PTR_ERR(obj);
2261
2262 /* mark ring buffers as read-only from GPU side by default */
2263 obj->gt_ro = 1;
2264
2265 ringbuf->obj = obj;
2266
2267 return 0;
2268 }
2269
2270 struct intel_ringbuffer *
2271 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2272 {
2273 struct intel_ringbuffer *ring;
2274 int ret;
2275
2276 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2277 if (ring == NULL) {
2278 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2279 engine->name);
2280 return ERR_PTR(-ENOMEM);
2281 }
2282
2283 ring->engine = engine;
2284 list_add(&ring->link, &engine->buffers);
2285
2286 ring->size = size;
2287 /* Workaround an erratum on the i830 which causes a hang if
2288 * the TAIL pointer points to within the last 2 cachelines
2289 * of the buffer.
2290 */
2291 ring->effective_size = size;
2292 if (IS_I830(engine->i915) || IS_845G(engine->i915))
2293 ring->effective_size -= 2 * CACHELINE_BYTES;
2294
2295 ring->last_retired_head = -1;
2296 intel_ring_update_space(ring);
2297
2298 ret = intel_alloc_ringbuffer_obj(engine->i915->dev, ring);
2299 if (ret) {
2300 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2301 engine->name, ret);
2302 list_del(&ring->link);
2303 kfree(ring);
2304 return ERR_PTR(ret);
2305 }
2306
2307 return ring;
2308 }
2309
2310 void
2311 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2312 {
2313 intel_destroy_ringbuffer_obj(ring);
2314 list_del(&ring->link);
2315 kfree(ring);
2316 }
2317
2318 static int intel_init_ring_buffer(struct drm_device *dev,
2319 struct intel_engine_cs *engine)
2320 {
2321 struct drm_i915_private *dev_priv = to_i915(dev);
2322 struct intel_ringbuffer *ringbuf;
2323 int ret;
2324
2325 WARN_ON(engine->buffer);
2326
2327 engine->i915 = dev_priv;
2328 INIT_LIST_HEAD(&engine->active_list);
2329 INIT_LIST_HEAD(&engine->request_list);
2330 INIT_LIST_HEAD(&engine->execlist_queue);
2331 INIT_LIST_HEAD(&engine->buffers);
2332 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2333 memset(engine->semaphore.sync_seqno, 0,
2334 sizeof(engine->semaphore.sync_seqno));
2335
2336 init_waitqueue_head(&engine->irq_queue);
2337
2338 ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2339 if (IS_ERR(ringbuf)) {
2340 ret = PTR_ERR(ringbuf);
2341 goto error;
2342 }
2343 engine->buffer = ringbuf;
2344
2345 if (I915_NEED_GFX_HWS(dev_priv)) {
2346 ret = init_status_page(engine);
2347 if (ret)
2348 goto error;
2349 } else {
2350 WARN_ON(engine->id != RCS);
2351 ret = init_phys_status_page(engine);
2352 if (ret)
2353 goto error;
2354 }
2355
2356 ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
2357 if (ret) {
2358 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2359 engine->name, ret);
2360 intel_destroy_ringbuffer_obj(ringbuf);
2361 goto error;
2362 }
2363
2364 ret = i915_cmd_parser_init_ring(engine);
2365 if (ret)
2366 goto error;
2367
2368 return 0;
2369
2370 error:
2371 intel_cleanup_engine(engine);
2372 return ret;
2373 }
2374
2375 void intel_cleanup_engine(struct intel_engine_cs *engine)
2376 {
2377 struct drm_i915_private *dev_priv;
2378
2379 if (!intel_engine_initialized(engine))
2380 return;
2381
2382 dev_priv = engine->i915;
2383
2384 if (engine->buffer) {
2385 intel_stop_engine(engine);
2386 WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2387
2388 intel_unpin_ringbuffer_obj(engine->buffer);
2389 intel_ringbuffer_free(engine->buffer);
2390 engine->buffer = NULL;
2391 }
2392
2393 if (engine->cleanup)
2394 engine->cleanup(engine);
2395
2396 if (I915_NEED_GFX_HWS(dev_priv)) {
2397 cleanup_status_page(engine);
2398 } else {
2399 WARN_ON(engine->id != RCS);
2400 cleanup_phys_status_page(engine);
2401 }
2402
2403 i915_cmd_parser_fini_ring(engine);
2404 i915_gem_batch_pool_fini(&engine->batch_pool);
2405 engine->i915 = NULL;
2406 }
2407
2408 int intel_engine_idle(struct intel_engine_cs *engine)
2409 {
2410 struct drm_i915_gem_request *req;
2411
2412 /* Wait upon the last request to be completed */
2413 if (list_empty(&engine->request_list))
2414 return 0;
2415
2416 req = list_entry(engine->request_list.prev,
2417 struct drm_i915_gem_request,
2418 list);
2419
2420 /* Make sure we do not trigger any retires */
2421 return __i915_wait_request(req,
2422 req->i915->mm.interruptible,
2423 NULL, NULL);
2424 }
2425
2426 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2427 {
2428 int ret;
2429
2430 /* Flush enough space to reduce the likelihood of waiting after
2431 * we start building the request - in which case we will just
2432 * have to repeat work.
2433 */
2434 request->reserved_space += LEGACY_REQUEST_SIZE;
2435
2436 request->ringbuf = request->engine->buffer;
2437
2438 ret = intel_ring_begin(request, 0);
2439 if (ret)
2440 return ret;
2441
2442 request->reserved_space -= LEGACY_REQUEST_SIZE;
2443 return 0;
2444 }
2445
2446 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2447 {
2448 struct intel_ringbuffer *ringbuf = req->ringbuf;
2449 struct intel_engine_cs *engine = req->engine;
2450 struct drm_i915_gem_request *target;
2451
2452 intel_ring_update_space(ringbuf);
2453 if (ringbuf->space >= bytes)
2454 return 0;
2455
2456 /*
2457 * Space is reserved in the ringbuffer for finalising the request,
2458 * as that cannot be allowed to fail. During request finalisation,
2459 * reserved_space is set to 0 to stop the overallocation and the
2460 * assumption is that then we never need to wait (which has the
2461 * risk of failing with EINTR).
2462 *
2463 * See also i915_gem_request_alloc() and i915_add_request().
2464 */
2465 GEM_BUG_ON(!req->reserved_space);
2466
2467 list_for_each_entry(target, &engine->request_list, list) {
2468 unsigned space;
2469
2470 /*
2471 * The request queue is per-engine, so can contain requests
2472 * from multiple ringbuffers. Here, we must ignore any that
2473 * aren't from the ringbuffer we're considering.
2474 */
2475 if (target->ringbuf != ringbuf)
2476 continue;
2477
2478 /* Would completion of this request free enough space? */
2479 space = __intel_ring_space(target->postfix, ringbuf->tail,
2480 ringbuf->size);
2481 if (space >= bytes)
2482 break;
2483 }
2484
2485 if (WARN_ON(&target->list == &engine->request_list))
2486 return -ENOSPC;
2487
2488 return i915_wait_request(target);
2489 }
2490
2491 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2492 {
2493 struct intel_ringbuffer *ringbuf = req->ringbuf;
2494 int remain_actual = ringbuf->size - ringbuf->tail;
2495 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2496 int bytes = num_dwords * sizeof(u32);
2497 int total_bytes, wait_bytes;
2498 bool need_wrap = false;
2499
2500 total_bytes = bytes + req->reserved_space;
2501
2502 if (unlikely(bytes > remain_usable)) {
2503 /*
2504 * Not enough space for the basic request. So need to flush
2505 * out the remainder and then wait for base + reserved.
2506 */
2507 wait_bytes = remain_actual + total_bytes;
2508 need_wrap = true;
2509 } else if (unlikely(total_bytes > remain_usable)) {
2510 /*
2511 * The base request will fit but the reserved space
2512 * falls off the end. So we don't need an immediate wrap
2513 * and only need to effectively wait for the reserved
2514 * size space from the start of ringbuffer.
2515 */
2516 wait_bytes = remain_actual + req->reserved_space;
2517 } else {
2518 /* No wrapping required, just waiting. */
2519 wait_bytes = total_bytes;
2520 }
2521
2522 if (wait_bytes > ringbuf->space) {
2523 int ret = wait_for_space(req, wait_bytes);
2524 if (unlikely(ret))
2525 return ret;
2526
2527 intel_ring_update_space(ringbuf);
2528 if (unlikely(ringbuf->space < wait_bytes))
2529 return -EAGAIN;
2530 }
2531
2532 if (unlikely(need_wrap)) {
2533 GEM_BUG_ON(remain_actual > ringbuf->space);
2534 GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
2535
2536 /* Fill the tail with MI_NOOP */
2537 memset(ringbuf->virtual_start + ringbuf->tail,
2538 0, remain_actual);
2539 ringbuf->tail = 0;
2540 ringbuf->space -= remain_actual;
2541 }
2542
2543 ringbuf->space -= bytes;
2544 GEM_BUG_ON(ringbuf->space < 0);
2545 return 0;
2546 }
2547
2548 /* Align the ring tail to a cacheline boundary */
2549 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2550 {
2551 struct intel_engine_cs *engine = req->engine;
2552 int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2553 int ret;
2554
2555 if (num_dwords == 0)
2556 return 0;
2557
2558 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2559 ret = intel_ring_begin(req, num_dwords);
2560 if (ret)
2561 return ret;
2562
2563 while (num_dwords--)
2564 intel_ring_emit(engine, MI_NOOP);
2565
2566 intel_ring_advance(engine);
2567
2568 return 0;
2569 }
2570
2571 void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2572 {
2573 struct drm_i915_private *dev_priv = engine->i915;
2574
2575 /* Our semaphore implementation is strictly monotonic (i.e. we proceed
2576 * so long as the semaphore value in the register/page is greater
2577 * than the sync value), so whenever we reset the seqno,
2578 * so long as we reset the tracking semaphore value to 0, it will
2579 * always be before the next request's seqno. If we don't reset
2580 * the semaphore value, then when the seqno moves backwards all
2581 * future waits will complete instantly (causing rendering corruption).
2582 */
2583 if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
2584 I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
2585 I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2586 if (HAS_VEBOX(dev_priv))
2587 I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2588 }
2589 if (dev_priv->semaphore_obj) {
2590 struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
2591 struct page *page = i915_gem_object_get_dirty_page(obj, 0);
2592 void *semaphores = kmap(page);
2593 memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
2594 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
2595 kunmap(page);
2596 }
2597 memset(engine->semaphore.sync_seqno, 0,
2598 sizeof(engine->semaphore.sync_seqno));
2599
2600 engine->set_seqno(engine, seqno);
2601 engine->last_submitted_seqno = seqno;
2602
2603 engine->hangcheck.seqno = seqno;
2604 }
2605
2606 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2607 u32 value)
2608 {
2609 struct drm_i915_private *dev_priv = engine->i915;
2610
2611 /* Every tail move must follow the sequence below */
2612
2613 /* Disable notification that the ring is IDLE. The GT
2614 * will then assume that it is busy and bring it out of rc6.
2615 */
2616 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2617 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2618
2619 /* Clear the context id. Here be magic! */
2620 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2621
2622 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2623 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2624 GEN6_BSD_SLEEP_INDICATOR) == 0,
2625 50))
2626 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2627
2628 /* Now that the ring is fully powered up, update the tail */
2629 I915_WRITE_TAIL(engine, value);
2630 POSTING_READ(RING_TAIL(engine->mmio_base));
2631
2632 /* Let the ring send IDLE messages to the GT again,
2633 * and so let it sleep to conserve power when idle.
2634 */
2635 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2636 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2637 }
2638
2639 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2640 u32 invalidate, u32 flush)
2641 {
2642 struct intel_engine_cs *engine = req->engine;
2643 uint32_t cmd;
2644 int ret;
2645
2646 ret = intel_ring_begin(req, 4);
2647 if (ret)
2648 return ret;
2649
2650 cmd = MI_FLUSH_DW;
2651 if (INTEL_GEN(req->i915) >= 8)
2652 cmd += 1;
2653
2654 /* We always require a command barrier so that subsequent
2655 * commands, such as breadcrumb interrupts, are strictly ordered
2656 * wrt the contents of the write cache being flushed to memory
2657 * (and thus being coherent from the CPU).
2658 */
2659 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2660
2661 /*
2662 * Bspec vol 1c.5 - video engine command streamer:
2663 * "If ENABLED, all TLBs will be invalidated once the flush
2664 * operation is complete. This bit is only valid when the
2665 * Post-Sync Operation field is a value of 1h or 3h."
2666 */
2667 if (invalidate & I915_GEM_GPU_DOMAINS)
2668 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2669
2670 intel_ring_emit(engine, cmd);
2671 intel_ring_emit(engine,
2672 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2673 if (INTEL_GEN(req->i915) >= 8) {
2674 intel_ring_emit(engine, 0); /* upper addr */
2675 intel_ring_emit(engine, 0); /* value */
2676 } else {
2677 intel_ring_emit(engine, 0);
2678 intel_ring_emit(engine, MI_NOOP);
2679 }
2680 intel_ring_advance(engine);
2681 return 0;
2682 }
2683
2684 static int
2685 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2686 u64 offset, u32 len,
2687 unsigned dispatch_flags)
2688 {
2689 struct intel_engine_cs *engine = req->engine;
2690 bool ppgtt = USES_PPGTT(engine->dev) &&
2691 !(dispatch_flags & I915_DISPATCH_SECURE);
2692 int ret;
2693
2694 ret = intel_ring_begin(req, 4);
2695 if (ret)
2696 return ret;
2697
2698 /* FIXME(BDW): Address space and security selectors. */
2699 intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2700 (dispatch_flags & I915_DISPATCH_RS ?
2701 MI_BATCH_RESOURCE_STREAMER : 0));
2702 intel_ring_emit(engine, lower_32_bits(offset));
2703 intel_ring_emit(engine, upper_32_bits(offset));
2704 intel_ring_emit(engine, MI_NOOP);
2705 intel_ring_advance(engine);
2706
2707 return 0;
2708 }
2709
2710 static int
2711 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2712 u64 offset, u32 len,
2713 unsigned dispatch_flags)
2714 {
2715 struct intel_engine_cs *engine = req->engine;
2716 int ret;
2717
2718 ret = intel_ring_begin(req, 2);
2719 if (ret)
2720 return ret;
2721
2722 intel_ring_emit(engine,
2723 MI_BATCH_BUFFER_START |
2724 (dispatch_flags & I915_DISPATCH_SECURE ?
2725 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2726 (dispatch_flags & I915_DISPATCH_RS ?
2727 MI_BATCH_RESOURCE_STREAMER : 0));
2728 /* bit0-7 is the length on GEN6+ */
2729 intel_ring_emit(engine, offset);
2730 intel_ring_advance(engine);
2731
2732 return 0;
2733 }
2734
2735 static int
2736 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2737 u64 offset, u32 len,
2738 unsigned dispatch_flags)
2739 {
2740 struct intel_engine_cs *engine = req->engine;
2741 int ret;
2742
2743 ret = intel_ring_begin(req, 2);
2744 if (ret)
2745 return ret;
2746
2747 intel_ring_emit(engine,
2748 MI_BATCH_BUFFER_START |
2749 (dispatch_flags & I915_DISPATCH_SECURE ?
2750 0 : MI_BATCH_NON_SECURE_I965));
2751 /* bit0-7 is the length on GEN6+ */
2752 intel_ring_emit(engine, offset);
2753 intel_ring_advance(engine);
2754
2755 return 0;
2756 }
2757
2758 /* Blitter support (SandyBridge+) */
2759
2760 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2761 u32 invalidate, u32 flush)
2762 {
2763 struct intel_engine_cs *engine = req->engine;
2764 uint32_t cmd;
2765 int ret;
2766
2767 ret = intel_ring_begin(req, 4);
2768 if (ret)
2769 return ret;
2770
2771 cmd = MI_FLUSH_DW;
2772 if (INTEL_GEN(req->i915) >= 8)
2773 cmd += 1;
2774
2775 /* We always require a command barrier so that subsequent
2776 * commands, such as breadcrumb interrupts, are strictly ordered
2777 * wrt the contents of the write cache being flushed to memory
2778 * (and thus being coherent from the CPU).
2779 */
2780 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2781
2782 /*
2783 * Bspec vol 1c.3 - blitter engine command streamer:
2784 * "If ENABLED, all TLBs will be invalidated once the flush
2785 * operation is complete. This bit is only valid when the
2786 * Post-Sync Operation field is a value of 1h or 3h."
2787 */
2788 if (invalidate & I915_GEM_DOMAIN_RENDER)
2789 cmd |= MI_INVALIDATE_TLB;
2790 intel_ring_emit(engine, cmd);
2791 intel_ring_emit(engine,
2792 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2793 if (INTEL_GEN(req->i915) >= 8) {
2794 intel_ring_emit(engine, 0); /* upper addr */
2795 intel_ring_emit(engine, 0); /* value */
2796 } else {
2797 intel_ring_emit(engine, 0);
2798 intel_ring_emit(engine, MI_NOOP);
2799 }
2800 intel_ring_advance(engine);
2801
2802 return 0;
2803 }
2804
2805 int intel_init_render_ring_buffer(struct drm_device *dev)
2806 {
2807 struct drm_i915_private *dev_priv = dev->dev_private;
2808 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2809 struct drm_i915_gem_object *obj;
2810 int ret;
2811
2812 engine->name = "render ring";
2813 engine->id = RCS;
2814 engine->exec_id = I915_EXEC_RENDER;
2815 engine->hw_id = 0;
2816 engine->mmio_base = RENDER_RING_BASE;
2817
2818 if (INTEL_GEN(dev_priv) >= 8) {
2819 if (i915_semaphore_is_enabled(dev_priv)) {
2820 obj = i915_gem_object_create(dev, 4096);
2821 if (IS_ERR(obj)) {
2822 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2823 i915.semaphores = 0;
2824 } else {
2825 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2826 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2827 if (ret != 0) {
2828 drm_gem_object_unreference(&obj->base);
2829 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2830 i915.semaphores = 0;
2831 } else
2832 dev_priv->semaphore_obj = obj;
2833 }
2834 }
2835
2836 engine->init_context = intel_rcs_ctx_init;
2837 engine->add_request = gen8_render_add_request;
2838 engine->flush = gen8_render_ring_flush;
2839 engine->irq_get = gen8_ring_get_irq;
2840 engine->irq_put = gen8_ring_put_irq;
2841 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2842 engine->get_seqno = ring_get_seqno;
2843 engine->set_seqno = ring_set_seqno;
2844 if (i915_semaphore_is_enabled(dev_priv)) {
2845 WARN_ON(!dev_priv->semaphore_obj);
2846 engine->semaphore.sync_to = gen8_ring_sync;
2847 engine->semaphore.signal = gen8_rcs_signal;
2848 GEN8_RING_SEMAPHORE_INIT(engine);
2849 }
2850 } else if (INTEL_GEN(dev_priv) >= 6) {
2851 engine->init_context = intel_rcs_ctx_init;
2852 engine->add_request = gen6_add_request;
2853 engine->flush = gen7_render_ring_flush;
2854 if (IS_GEN6(dev_priv))
2855 engine->flush = gen6_render_ring_flush;
2856 engine->irq_get = gen6_ring_get_irq;
2857 engine->irq_put = gen6_ring_put_irq;
2858 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2859 engine->irq_seqno_barrier = gen6_seqno_barrier;
2860 engine->get_seqno = ring_get_seqno;
2861 engine->set_seqno = ring_set_seqno;
2862 if (i915_semaphore_is_enabled(dev_priv)) {
2863 engine->semaphore.sync_to = gen6_ring_sync;
2864 engine->semaphore.signal = gen6_signal;
2865 /*
2866 * The current semaphore is only applied on pre-gen8
2867 * platform. And there is no VCS2 ring on the pre-gen8
2868 * platform. So the semaphore between RCS and VCS2 is
2869 * initialized as INVALID. Gen8 will initialize the
2870 * sema between VCS2 and RCS later.
2871 */
2872 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2873 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2874 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2875 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2876 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2877 engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2878 engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2879 engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2880 engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2881 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2882 }
2883 } else if (IS_GEN5(dev_priv)) {
2884 engine->add_request = pc_render_add_request;
2885 engine->flush = gen4_render_ring_flush;
2886 engine->get_seqno = pc_render_get_seqno;
2887 engine->set_seqno = pc_render_set_seqno;
2888 engine->irq_get = gen5_ring_get_irq;
2889 engine->irq_put = gen5_ring_put_irq;
2890 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2891 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2892 } else {
2893 engine->add_request = i9xx_add_request;
2894 if (INTEL_GEN(dev_priv) < 4)
2895 engine->flush = gen2_render_ring_flush;
2896 else
2897 engine->flush = gen4_render_ring_flush;
2898 engine->get_seqno = ring_get_seqno;
2899 engine->set_seqno = ring_set_seqno;
2900 if (IS_GEN2(dev_priv)) {
2901 engine->irq_get = i8xx_ring_get_irq;
2902 engine->irq_put = i8xx_ring_put_irq;
2903 } else {
2904 engine->irq_get = i9xx_ring_get_irq;
2905 engine->irq_put = i9xx_ring_put_irq;
2906 }
2907 engine->irq_enable_mask = I915_USER_INTERRUPT;
2908 }
2909 engine->write_tail = ring_write_tail;
2910
2911 if (IS_HASWELL(dev_priv))
2912 engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2913 else if (IS_GEN8(dev_priv))
2914 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2915 else if (INTEL_GEN(dev_priv) >= 6)
2916 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2917 else if (INTEL_GEN(dev_priv) >= 4)
2918 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2919 else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2920 engine->dispatch_execbuffer = i830_dispatch_execbuffer;
2921 else
2922 engine->dispatch_execbuffer = i915_dispatch_execbuffer;
2923 engine->init_hw = init_render_ring;
2924 engine->cleanup = render_ring_cleanup;
2925
2926 /* Workaround batchbuffer to combat CS tlb bug. */
2927 if (HAS_BROKEN_CS_TLB(dev_priv)) {
2928 obj = i915_gem_object_create(dev, I830_WA_SIZE);
2929 if (IS_ERR(obj)) {
2930 DRM_ERROR("Failed to allocate batch bo\n");
2931 return PTR_ERR(obj);
2932 }
2933
2934 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2935 if (ret != 0) {
2936 drm_gem_object_unreference(&obj->base);
2937 DRM_ERROR("Failed to ping batch bo\n");
2938 return ret;
2939 }
2940
2941 engine->scratch.obj = obj;
2942 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2943 }
2944
2945 ret = intel_init_ring_buffer(dev, engine);
2946 if (ret)
2947 return ret;
2948
2949 if (INTEL_GEN(dev_priv) >= 5) {
2950 ret = intel_init_pipe_control(engine);
2951 if (ret)
2952 return ret;
2953 }
2954
2955 return 0;
2956 }
2957
2958 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2959 {
2960 struct drm_i915_private *dev_priv = dev->dev_private;
2961 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2962
2963 engine->name = "bsd ring";
2964 engine->id = VCS;
2965 engine->exec_id = I915_EXEC_BSD;
2966 engine->hw_id = 1;
2967
2968 engine->write_tail = ring_write_tail;
2969 if (INTEL_GEN(dev_priv) >= 6) {
2970 engine->mmio_base = GEN6_BSD_RING_BASE;
2971 /* gen6 bsd needs a special wa for tail updates */
2972 if (IS_GEN6(dev_priv))
2973 engine->write_tail = gen6_bsd_ring_write_tail;
2974 engine->flush = gen6_bsd_ring_flush;
2975 engine->add_request = gen6_add_request;
2976 engine->irq_seqno_barrier = gen6_seqno_barrier;
2977 engine->get_seqno = ring_get_seqno;
2978 engine->set_seqno = ring_set_seqno;
2979 if (INTEL_GEN(dev_priv) >= 8) {
2980 engine->irq_enable_mask =
2981 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2982 engine->irq_get = gen8_ring_get_irq;
2983 engine->irq_put = gen8_ring_put_irq;
2984 engine->dispatch_execbuffer =
2985 gen8_ring_dispatch_execbuffer;
2986 if (i915_semaphore_is_enabled(dev_priv)) {
2987 engine->semaphore.sync_to = gen8_ring_sync;
2988 engine->semaphore.signal = gen8_xcs_signal;
2989 GEN8_RING_SEMAPHORE_INIT(engine);
2990 }
2991 } else {
2992 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2993 engine->irq_get = gen6_ring_get_irq;
2994 engine->irq_put = gen6_ring_put_irq;
2995 engine->dispatch_execbuffer =
2996 gen6_ring_dispatch_execbuffer;
2997 if (i915_semaphore_is_enabled(dev_priv)) {
2998 engine->semaphore.sync_to = gen6_ring_sync;
2999 engine->semaphore.signal = gen6_signal;
3000 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
3001 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
3002 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
3003 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
3004 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3005 engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
3006 engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
3007 engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
3008 engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
3009 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3010 }
3011 }
3012 } else {
3013 engine->mmio_base = BSD_RING_BASE;
3014 engine->flush = bsd_ring_flush;
3015 engine->add_request = i9xx_add_request;
3016 engine->get_seqno = ring_get_seqno;
3017 engine->set_seqno = ring_set_seqno;
3018 if (IS_GEN5(dev_priv)) {
3019 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
3020 engine->irq_get = gen5_ring_get_irq;
3021 engine->irq_put = gen5_ring_put_irq;
3022 } else {
3023 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
3024 engine->irq_get = i9xx_ring_get_irq;
3025 engine->irq_put = i9xx_ring_put_irq;
3026 }
3027 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
3028 }
3029 engine->init_hw = init_ring_common;
3030
3031 return intel_init_ring_buffer(dev, engine);
3032 }
3033
3034 /**
3035 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
3036 */
3037 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
3038 {
3039 struct drm_i915_private *dev_priv = dev->dev_private;
3040 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
3041
3042 engine->name = "bsd2 ring";
3043 engine->id = VCS2;
3044 engine->exec_id = I915_EXEC_BSD;
3045 engine->hw_id = 4;
3046
3047 engine->write_tail = ring_write_tail;
3048 engine->mmio_base = GEN8_BSD2_RING_BASE;
3049 engine->flush = gen6_bsd_ring_flush;
3050 engine->add_request = gen6_add_request;
3051 engine->irq_seqno_barrier = gen6_seqno_barrier;
3052 engine->get_seqno = ring_get_seqno;
3053 engine->set_seqno = ring_set_seqno;
3054 engine->irq_enable_mask =
3055 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
3056 engine->irq_get = gen8_ring_get_irq;
3057 engine->irq_put = gen8_ring_put_irq;
3058 engine->dispatch_execbuffer =
3059 gen8_ring_dispatch_execbuffer;
3060 if (i915_semaphore_is_enabled(dev_priv)) {
3061 engine->semaphore.sync_to = gen8_ring_sync;
3062 engine->semaphore.signal = gen8_xcs_signal;
3063 GEN8_RING_SEMAPHORE_INIT(engine);
3064 }
3065 engine->init_hw = init_ring_common;
3066
3067 return intel_init_ring_buffer(dev, engine);
3068 }
3069
3070 int intel_init_blt_ring_buffer(struct drm_device *dev)
3071 {
3072 struct drm_i915_private *dev_priv = dev->dev_private;
3073 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
3074
3075 engine->name = "blitter ring";
3076 engine->id = BCS;
3077 engine->exec_id = I915_EXEC_BLT;
3078 engine->hw_id = 2;
3079
3080 engine->mmio_base = BLT_RING_BASE;
3081 engine->write_tail = ring_write_tail;
3082 engine->flush = gen6_ring_flush;
3083 engine->add_request = gen6_add_request;
3084 engine->irq_seqno_barrier = gen6_seqno_barrier;
3085 engine->get_seqno = ring_get_seqno;
3086 engine->set_seqno = ring_set_seqno;
3087 if (INTEL_GEN(dev_priv) >= 8) {
3088 engine->irq_enable_mask =
3089 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3090 engine->irq_get = gen8_ring_get_irq;
3091 engine->irq_put = gen8_ring_put_irq;
3092 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3093 if (i915_semaphore_is_enabled(dev_priv)) {
3094 engine->semaphore.sync_to = gen8_ring_sync;
3095 engine->semaphore.signal = gen8_xcs_signal;
3096 GEN8_RING_SEMAPHORE_INIT(engine);
3097 }
3098 } else {
3099 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3100 engine->irq_get = gen6_ring_get_irq;
3101 engine->irq_put = gen6_ring_put_irq;
3102 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3103 if (i915_semaphore_is_enabled(dev_priv)) {
3104 engine->semaphore.signal = gen6_signal;
3105 engine->semaphore.sync_to = gen6_ring_sync;
3106 /*
3107 * The current semaphore is only applied on pre-gen8
3108 * platform. And there is no VCS2 ring on the pre-gen8
3109 * platform. So the semaphore between BCS and VCS2 is
3110 * initialized as INVALID. Gen8 will initialize the
3111 * sema between BCS and VCS2 later.
3112 */
3113 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
3114 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
3115 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
3116 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
3117 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3118 engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
3119 engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
3120 engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
3121 engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
3122 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3123 }
3124 }
3125 engine->init_hw = init_ring_common;
3126
3127 return intel_init_ring_buffer(dev, engine);
3128 }
3129
3130 int intel_init_vebox_ring_buffer(struct drm_device *dev)
3131 {
3132 struct drm_i915_private *dev_priv = dev->dev_private;
3133 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
3134
3135 engine->name = "video enhancement ring";
3136 engine->id = VECS;
3137 engine->exec_id = I915_EXEC_VEBOX;
3138 engine->hw_id = 3;
3139
3140 engine->mmio_base = VEBOX_RING_BASE;
3141 engine->write_tail = ring_write_tail;
3142 engine->flush = gen6_ring_flush;
3143 engine->add_request = gen6_add_request;
3144 engine->irq_seqno_barrier = gen6_seqno_barrier;
3145 engine->get_seqno = ring_get_seqno;
3146 engine->set_seqno = ring_set_seqno;
3147
3148 if (INTEL_GEN(dev_priv) >= 8) {
3149 engine->irq_enable_mask =
3150 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3151 engine->irq_get = gen8_ring_get_irq;
3152 engine->irq_put = gen8_ring_put_irq;
3153 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3154 if (i915_semaphore_is_enabled(dev_priv)) {
3155 engine->semaphore.sync_to = gen8_ring_sync;
3156 engine->semaphore.signal = gen8_xcs_signal;
3157 GEN8_RING_SEMAPHORE_INIT(engine);
3158 }
3159 } else {
3160 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3161 engine->irq_get = hsw_vebox_get_irq;
3162 engine->irq_put = hsw_vebox_put_irq;
3163 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3164 if (i915_semaphore_is_enabled(dev_priv)) {
3165 engine->semaphore.sync_to = gen6_ring_sync;
3166 engine->semaphore.signal = gen6_signal;
3167 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3168 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3169 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3170 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3171 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3172 engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3173 engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3174 engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3175 engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3176 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3177 }
3178 }
3179 engine->init_hw = init_ring_common;
3180
3181 return intel_init_ring_buffer(dev, engine);
3182 }
3183
3184 int
3185 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3186 {
3187 struct intel_engine_cs *engine = req->engine;
3188 int ret;
3189
3190 if (!engine->gpu_caches_dirty)
3191 return 0;
3192
3193 ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
3194 if (ret)
3195 return ret;
3196
3197 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3198
3199 engine->gpu_caches_dirty = false;
3200 return 0;
3201 }
3202
3203 int
3204 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3205 {
3206 struct intel_engine_cs *engine = req->engine;
3207 uint32_t flush_domains;
3208 int ret;
3209
3210 flush_domains = 0;
3211 if (engine->gpu_caches_dirty)
3212 flush_domains = I915_GEM_GPU_DOMAINS;
3213
3214 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3215 if (ret)
3216 return ret;
3217
3218 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3219
3220 engine->gpu_caches_dirty = false;
3221 return 0;
3222 }
3223
3224 void
3225 intel_stop_engine(struct intel_engine_cs *engine)
3226 {
3227 int ret;
3228
3229 if (!intel_engine_initialized(engine))
3230 return;
3231
3232 ret = intel_engine_idle(engine);
3233 if (ret)
3234 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3235 engine->name, ret);
3236
3237 stop_ring(engine);
3238 }
This page took 0.096324 seconds and 4 git commands to generate.