drm/i915: Init some CHV workarounds via LRIs in ring->init_context()
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 struct drm_device *dev = ring->dev;
40
41 if (!dev)
42 return false;
43
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48 return ringbuf->obj;
49 } else
50 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 int space = head - (tail + I915_RING_FREE_SPACE);
56 if (space < 0)
57 space += size;
58 return space;
59 }
60
61 int intel_ring_space(struct intel_ringbuffer *ringbuf)
62 {
63 return __intel_ring_space(ringbuf->head & HEAD_ADDR,
64 ringbuf->tail, ringbuf->size);
65 }
66
67 bool intel_ring_stopped(struct intel_engine_cs *ring)
68 {
69 struct drm_i915_private *dev_priv = ring->dev->dev_private;
70 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
71 }
72
73 void __intel_ring_advance(struct intel_engine_cs *ring)
74 {
75 struct intel_ringbuffer *ringbuf = ring->buffer;
76 ringbuf->tail &= ringbuf->size - 1;
77 if (intel_ring_stopped(ring))
78 return;
79 ring->write_tail(ring, ringbuf->tail);
80 }
81
82 static int
83 gen2_render_ring_flush(struct intel_engine_cs *ring,
84 u32 invalidate_domains,
85 u32 flush_domains)
86 {
87 u32 cmd;
88 int ret;
89
90 cmd = MI_FLUSH;
91 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
92 cmd |= MI_NO_WRITE_FLUSH;
93
94 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
95 cmd |= MI_READ_FLUSH;
96
97 ret = intel_ring_begin(ring, 2);
98 if (ret)
99 return ret;
100
101 intel_ring_emit(ring, cmd);
102 intel_ring_emit(ring, MI_NOOP);
103 intel_ring_advance(ring);
104
105 return 0;
106 }
107
108 static int
109 gen4_render_ring_flush(struct intel_engine_cs *ring,
110 u32 invalidate_domains,
111 u32 flush_domains)
112 {
113 struct drm_device *dev = ring->dev;
114 u32 cmd;
115 int ret;
116
117 /*
118 * read/write caches:
119 *
120 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
121 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
122 * also flushed at 2d versus 3d pipeline switches.
123 *
124 * read-only caches:
125 *
126 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
127 * MI_READ_FLUSH is set, and is always flushed on 965.
128 *
129 * I915_GEM_DOMAIN_COMMAND may not exist?
130 *
131 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
132 * invalidated when MI_EXE_FLUSH is set.
133 *
134 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
135 * invalidated with every MI_FLUSH.
136 *
137 * TLBs:
138 *
139 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
140 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
141 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
142 * are flushed at any MI_FLUSH.
143 */
144
145 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
146 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
147 cmd &= ~MI_NO_WRITE_FLUSH;
148 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
149 cmd |= MI_EXE_FLUSH;
150
151 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
152 (IS_G4X(dev) || IS_GEN5(dev)))
153 cmd |= MI_INVALIDATE_ISP;
154
155 ret = intel_ring_begin(ring, 2);
156 if (ret)
157 return ret;
158
159 intel_ring_emit(ring, cmd);
160 intel_ring_emit(ring, MI_NOOP);
161 intel_ring_advance(ring);
162
163 return 0;
164 }
165
166 /**
167 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
168 * implementing two workarounds on gen6. From section 1.4.7.1
169 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
170 *
171 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
172 * produced by non-pipelined state commands), software needs to first
173 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
174 * 0.
175 *
176 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
177 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
178 *
179 * And the workaround for these two requires this workaround first:
180 *
181 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
182 * BEFORE the pipe-control with a post-sync op and no write-cache
183 * flushes.
184 *
185 * And this last workaround is tricky because of the requirements on
186 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
187 * volume 2 part 1:
188 *
189 * "1 of the following must also be set:
190 * - Render Target Cache Flush Enable ([12] of DW1)
191 * - Depth Cache Flush Enable ([0] of DW1)
192 * - Stall at Pixel Scoreboard ([1] of DW1)
193 * - Depth Stall ([13] of DW1)
194 * - Post-Sync Operation ([13] of DW1)
195 * - Notify Enable ([8] of DW1)"
196 *
197 * The cache flushes require the workaround flush that triggered this
198 * one, so we can't use it. Depth stall would trigger the same.
199 * Post-sync nonzero is what triggered this second workaround, so we
200 * can't use that one either. Notify enable is IRQs, which aren't
201 * really our business. That leaves only stall at scoreboard.
202 */
203 static int
204 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
205 {
206 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
207 int ret;
208
209
210 ret = intel_ring_begin(ring, 6);
211 if (ret)
212 return ret;
213
214 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
215 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
216 PIPE_CONTROL_STALL_AT_SCOREBOARD);
217 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
218 intel_ring_emit(ring, 0); /* low dword */
219 intel_ring_emit(ring, 0); /* high dword */
220 intel_ring_emit(ring, MI_NOOP);
221 intel_ring_advance(ring);
222
223 ret = intel_ring_begin(ring, 6);
224 if (ret)
225 return ret;
226
227 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
229 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
230 intel_ring_emit(ring, 0);
231 intel_ring_emit(ring, 0);
232 intel_ring_emit(ring, MI_NOOP);
233 intel_ring_advance(ring);
234
235 return 0;
236 }
237
238 static int
239 gen6_render_ring_flush(struct intel_engine_cs *ring,
240 u32 invalidate_domains, u32 flush_domains)
241 {
242 u32 flags = 0;
243 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
244 int ret;
245
246 /* Force SNB workarounds for PIPE_CONTROL flushes */
247 ret = intel_emit_post_sync_nonzero_flush(ring);
248 if (ret)
249 return ret;
250
251 /* Just flush everything. Experiments have shown that reducing the
252 * number of bits based on the write domains has little performance
253 * impact.
254 */
255 if (flush_domains) {
256 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
257 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
258 /*
259 * Ensure that any following seqno writes only happen
260 * when the render cache is indeed flushed.
261 */
262 flags |= PIPE_CONTROL_CS_STALL;
263 }
264 if (invalidate_domains) {
265 flags |= PIPE_CONTROL_TLB_INVALIDATE;
266 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
267 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
268 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
269 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
270 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
271 /*
272 * TLB invalidate requires a post-sync write.
273 */
274 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
275 }
276
277 ret = intel_ring_begin(ring, 4);
278 if (ret)
279 return ret;
280
281 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
282 intel_ring_emit(ring, flags);
283 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
284 intel_ring_emit(ring, 0);
285 intel_ring_advance(ring);
286
287 return 0;
288 }
289
290 static int
291 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
292 {
293 int ret;
294
295 ret = intel_ring_begin(ring, 4);
296 if (ret)
297 return ret;
298
299 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
300 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
301 PIPE_CONTROL_STALL_AT_SCOREBOARD);
302 intel_ring_emit(ring, 0);
303 intel_ring_emit(ring, 0);
304 intel_ring_advance(ring);
305
306 return 0;
307 }
308
309 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
310 {
311 int ret;
312
313 if (!ring->fbc_dirty)
314 return 0;
315
316 ret = intel_ring_begin(ring, 6);
317 if (ret)
318 return ret;
319 /* WaFbcNukeOn3DBlt:ivb/hsw */
320 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
321 intel_ring_emit(ring, MSG_FBC_REND_STATE);
322 intel_ring_emit(ring, value);
323 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
324 intel_ring_emit(ring, MSG_FBC_REND_STATE);
325 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
326 intel_ring_advance(ring);
327
328 ring->fbc_dirty = false;
329 return 0;
330 }
331
332 static int
333 gen7_render_ring_flush(struct intel_engine_cs *ring,
334 u32 invalidate_domains, u32 flush_domains)
335 {
336 u32 flags = 0;
337 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
338 int ret;
339
340 /*
341 * Ensure that any following seqno writes only happen when the render
342 * cache is indeed flushed.
343 *
344 * Workaround: 4th PIPE_CONTROL command (except the ones with only
345 * read-cache invalidate bits set) must have the CS_STALL bit set. We
346 * don't try to be clever and just set it unconditionally.
347 */
348 flags |= PIPE_CONTROL_CS_STALL;
349
350 /* Just flush everything. Experiments have shown that reducing the
351 * number of bits based on the write domains has little performance
352 * impact.
353 */
354 if (flush_domains) {
355 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
356 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
357 }
358 if (invalidate_domains) {
359 flags |= PIPE_CONTROL_TLB_INVALIDATE;
360 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
361 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
362 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
363 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
364 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
365 /*
366 * TLB invalidate requires a post-sync write.
367 */
368 flags |= PIPE_CONTROL_QW_WRITE;
369 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
370
371 /* Workaround: we must issue a pipe_control with CS-stall bit
372 * set before a pipe_control command that has the state cache
373 * invalidate bit set. */
374 gen7_render_ring_cs_stall_wa(ring);
375 }
376
377 ret = intel_ring_begin(ring, 4);
378 if (ret)
379 return ret;
380
381 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
382 intel_ring_emit(ring, flags);
383 intel_ring_emit(ring, scratch_addr);
384 intel_ring_emit(ring, 0);
385 intel_ring_advance(ring);
386
387 if (!invalidate_domains && flush_domains)
388 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
389
390 return 0;
391 }
392
393 static int
394 gen8_emit_pipe_control(struct intel_engine_cs *ring,
395 u32 flags, u32 scratch_addr)
396 {
397 int ret;
398
399 ret = intel_ring_begin(ring, 6);
400 if (ret)
401 return ret;
402
403 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
404 intel_ring_emit(ring, flags);
405 intel_ring_emit(ring, scratch_addr);
406 intel_ring_emit(ring, 0);
407 intel_ring_emit(ring, 0);
408 intel_ring_emit(ring, 0);
409 intel_ring_advance(ring);
410
411 return 0;
412 }
413
414 static int
415 gen8_render_ring_flush(struct intel_engine_cs *ring,
416 u32 invalidate_domains, u32 flush_domains)
417 {
418 u32 flags = 0;
419 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
420 int ret;
421
422 flags |= PIPE_CONTROL_CS_STALL;
423
424 if (flush_domains) {
425 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
426 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
427 }
428 if (invalidate_domains) {
429 flags |= PIPE_CONTROL_TLB_INVALIDATE;
430 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
431 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
432 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
433 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
434 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
435 flags |= PIPE_CONTROL_QW_WRITE;
436 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
437
438 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
439 ret = gen8_emit_pipe_control(ring,
440 PIPE_CONTROL_CS_STALL |
441 PIPE_CONTROL_STALL_AT_SCOREBOARD,
442 0);
443 if (ret)
444 return ret;
445 }
446
447 ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
448 if (ret)
449 return ret;
450
451 if (!invalidate_domains && flush_domains)
452 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
453
454 return 0;
455 }
456
457 static void ring_write_tail(struct intel_engine_cs *ring,
458 u32 value)
459 {
460 struct drm_i915_private *dev_priv = ring->dev->dev_private;
461 I915_WRITE_TAIL(ring, value);
462 }
463
464 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
465 {
466 struct drm_i915_private *dev_priv = ring->dev->dev_private;
467 u64 acthd;
468
469 if (INTEL_INFO(ring->dev)->gen >= 8)
470 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
471 RING_ACTHD_UDW(ring->mmio_base));
472 else if (INTEL_INFO(ring->dev)->gen >= 4)
473 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
474 else
475 acthd = I915_READ(ACTHD);
476
477 return acthd;
478 }
479
480 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
481 {
482 struct drm_i915_private *dev_priv = ring->dev->dev_private;
483 u32 addr;
484
485 addr = dev_priv->status_page_dmah->busaddr;
486 if (INTEL_INFO(ring->dev)->gen >= 4)
487 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
488 I915_WRITE(HWS_PGA, addr);
489 }
490
491 static bool stop_ring(struct intel_engine_cs *ring)
492 {
493 struct drm_i915_private *dev_priv = to_i915(ring->dev);
494
495 if (!IS_GEN2(ring->dev)) {
496 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
497 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
498 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
499 /* Sometimes we observe that the idle flag is not
500 * set even though the ring is empty. So double
501 * check before giving up.
502 */
503 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
504 return false;
505 }
506 }
507
508 I915_WRITE_CTL(ring, 0);
509 I915_WRITE_HEAD(ring, 0);
510 ring->write_tail(ring, 0);
511
512 if (!IS_GEN2(ring->dev)) {
513 (void)I915_READ_CTL(ring);
514 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
515 }
516
517 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
518 }
519
520 static int init_ring_common(struct intel_engine_cs *ring)
521 {
522 struct drm_device *dev = ring->dev;
523 struct drm_i915_private *dev_priv = dev->dev_private;
524 struct intel_ringbuffer *ringbuf = ring->buffer;
525 struct drm_i915_gem_object *obj = ringbuf->obj;
526 int ret = 0;
527
528 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
529
530 if (!stop_ring(ring)) {
531 /* G45 ring initialization often fails to reset head to zero */
532 DRM_DEBUG_KMS("%s head not reset to zero "
533 "ctl %08x head %08x tail %08x start %08x\n",
534 ring->name,
535 I915_READ_CTL(ring),
536 I915_READ_HEAD(ring),
537 I915_READ_TAIL(ring),
538 I915_READ_START(ring));
539
540 if (!stop_ring(ring)) {
541 DRM_ERROR("failed to set %s head to zero "
542 "ctl %08x head %08x tail %08x start %08x\n",
543 ring->name,
544 I915_READ_CTL(ring),
545 I915_READ_HEAD(ring),
546 I915_READ_TAIL(ring),
547 I915_READ_START(ring));
548 ret = -EIO;
549 goto out;
550 }
551 }
552
553 if (I915_NEED_GFX_HWS(dev))
554 intel_ring_setup_status_page(ring);
555 else
556 ring_setup_phys_status_page(ring);
557
558 /* Enforce ordering by reading HEAD register back */
559 I915_READ_HEAD(ring);
560
561 /* Initialize the ring. This must happen _after_ we've cleared the ring
562 * registers with the above sequence (the readback of the HEAD registers
563 * also enforces ordering), otherwise the hw might lose the new ring
564 * register values. */
565 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
566 I915_WRITE_CTL(ring,
567 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
568 | RING_VALID);
569
570 /* If the head is still not zero, the ring is dead */
571 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
572 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
573 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
574 DRM_ERROR("%s initialization failed "
575 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
576 ring->name,
577 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
578 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
579 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
580 ret = -EIO;
581 goto out;
582 }
583
584 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
585 i915_kernel_lost_context(ring->dev);
586 else {
587 ringbuf->head = I915_READ_HEAD(ring);
588 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
589 ringbuf->space = intel_ring_space(ringbuf);
590 ringbuf->last_retired_head = -1;
591 }
592
593 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
594
595 out:
596 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
597
598 return ret;
599 }
600
601 void
602 intel_fini_pipe_control(struct intel_engine_cs *ring)
603 {
604 struct drm_device *dev = ring->dev;
605
606 if (ring->scratch.obj == NULL)
607 return;
608
609 if (INTEL_INFO(dev)->gen >= 5) {
610 kunmap(sg_page(ring->scratch.obj->pages->sgl));
611 i915_gem_object_ggtt_unpin(ring->scratch.obj);
612 }
613
614 drm_gem_object_unreference(&ring->scratch.obj->base);
615 ring->scratch.obj = NULL;
616 }
617
618 int
619 intel_init_pipe_control(struct intel_engine_cs *ring)
620 {
621 int ret;
622
623 if (ring->scratch.obj)
624 return 0;
625
626 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
627 if (ring->scratch.obj == NULL) {
628 DRM_ERROR("Failed to allocate seqno page\n");
629 ret = -ENOMEM;
630 goto err;
631 }
632
633 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
634 if (ret)
635 goto err_unref;
636
637 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
638 if (ret)
639 goto err_unref;
640
641 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
642 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
643 if (ring->scratch.cpu_page == NULL) {
644 ret = -ENOMEM;
645 goto err_unpin;
646 }
647
648 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
649 ring->name, ring->scratch.gtt_offset);
650 return 0;
651
652 err_unpin:
653 i915_gem_object_ggtt_unpin(ring->scratch.obj);
654 err_unref:
655 drm_gem_object_unreference(&ring->scratch.obj->base);
656 err:
657 return ret;
658 }
659
660 static inline void intel_ring_emit_wa(struct intel_engine_cs *ring,
661 u32 addr, u32 value)
662 {
663 struct drm_device *dev = ring->dev;
664 struct drm_i915_private *dev_priv = dev->dev_private;
665
666 if (dev_priv->num_wa_regs > I915_MAX_WA_REGS)
667 return;
668
669 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
670 intel_ring_emit(ring, addr);
671 intel_ring_emit(ring, value);
672
673 dev_priv->intel_wa_regs[dev_priv->num_wa_regs].addr = addr;
674 dev_priv->intel_wa_regs[dev_priv->num_wa_regs].mask = (value) & 0xFFFF;
675 /* value is updated with the status of remaining bits of this
676 * register when it is read from debugfs file
677 */
678 dev_priv->intel_wa_regs[dev_priv->num_wa_regs].value = value;
679 dev_priv->num_wa_regs++;
680
681 return;
682 }
683
684 static int bdw_init_workarounds(struct intel_engine_cs *ring)
685 {
686 int ret;
687 struct drm_device *dev = ring->dev;
688 struct drm_i915_private *dev_priv = dev->dev_private;
689
690 /*
691 * workarounds applied in this fn are part of register state context,
692 * they need to be re-initialized followed by gpu reset, suspend/resume,
693 * module reload.
694 */
695 dev_priv->num_wa_regs = 0;
696 memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
697
698 /*
699 * update the number of dwords required based on the
700 * actual number of workarounds applied
701 */
702 ret = intel_ring_begin(ring, 24);
703 if (ret)
704 return ret;
705
706 /* WaDisablePartialInstShootdown:bdw */
707 /* WaDisableThreadStallDopClockGating:bdw */
708 /* FIXME: Unclear whether we really need this on production bdw. */
709 intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
710 _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE
711 | STALL_DOP_GATING_DISABLE));
712
713 /* WaDisableDopClockGating:bdw May not be needed for production */
714 intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
715 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
716
717 /*
718 * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
719 * pre-production hardware
720 */
721 intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
722 _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS
723 | GEN8_SAMPLER_POWER_BYPASS_DIS));
724
725 intel_ring_emit_wa(ring, GEN7_HALF_SLICE_CHICKEN1,
726 _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
727
728 intel_ring_emit_wa(ring, COMMON_SLICE_CHICKEN2,
729 _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
730
731 /* Use Force Non-Coherent whenever executing a 3D context. This is a
732 * workaround for for a possible hang in the unlikely event a TLB
733 * invalidation occurs during a PSD flush.
734 */
735 intel_ring_emit_wa(ring, HDC_CHICKEN0,
736 _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
737
738 /* Wa4x4STCOptimizationDisable:bdw */
739 intel_ring_emit_wa(ring, CACHE_MODE_1,
740 _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
741
742 /*
743 * BSpec recommends 8x4 when MSAA is used,
744 * however in practice 16x4 seems fastest.
745 *
746 * Note that PS/WM thread counts depend on the WIZ hashing
747 * disable bit, which we don't touch here, but it's good
748 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
749 */
750 intel_ring_emit_wa(ring, GEN7_GT_MODE,
751 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
752
753 intel_ring_advance(ring);
754
755 DRM_DEBUG_DRIVER("Number of Workarounds applied: %d\n",
756 dev_priv->num_wa_regs);
757
758 return 0;
759 }
760
761 static int chv_init_workarounds(struct intel_engine_cs *ring)
762 {
763 int ret;
764 struct drm_device *dev = ring->dev;
765 struct drm_i915_private *dev_priv = dev->dev_private;
766
767 /*
768 * workarounds applied in this fn are part of register state context,
769 * they need to be re-initialized followed by gpu reset, suspend/resume,
770 * module reload.
771 */
772 dev_priv->num_wa_regs = 0;
773 memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
774
775 ret = intel_ring_begin(ring, 12);
776 if (ret)
777 return ret;
778
779 /* WaDisablePartialInstShootdown:chv */
780 intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
781 _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
782
783 /* WaDisableThreadStallDopClockGating:chv */
784 intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
785 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
786
787 /* WaDisableDopClockGating:chv (pre-production hw) */
788 intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
789 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
790
791 /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
792 intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
793 _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
794
795 intel_ring_advance(ring);
796
797 return 0;
798 }
799
800 static int init_render_ring(struct intel_engine_cs *ring)
801 {
802 struct drm_device *dev = ring->dev;
803 struct drm_i915_private *dev_priv = dev->dev_private;
804 int ret = init_ring_common(ring);
805 if (ret)
806 return ret;
807
808 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
809 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
810 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
811
812 /* We need to disable the AsyncFlip performance optimisations in order
813 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
814 * programmed to '1' on all products.
815 *
816 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
817 */
818 if (INTEL_INFO(dev)->gen >= 6)
819 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
820
821 /* Required for the hardware to program scanline values for waiting */
822 /* WaEnableFlushTlbInvalidationMode:snb */
823 if (INTEL_INFO(dev)->gen == 6)
824 I915_WRITE(GFX_MODE,
825 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
826
827 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
828 if (IS_GEN7(dev))
829 I915_WRITE(GFX_MODE_GEN7,
830 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
831 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
832
833 if (INTEL_INFO(dev)->gen >= 5) {
834 ret = intel_init_pipe_control(ring);
835 if (ret)
836 return ret;
837 }
838
839 if (IS_GEN6(dev)) {
840 /* From the Sandybridge PRM, volume 1 part 3, page 24:
841 * "If this bit is set, STCunit will have LRA as replacement
842 * policy. [...] This bit must be reset. LRA replacement
843 * policy is not supported."
844 */
845 I915_WRITE(CACHE_MODE_0,
846 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
847 }
848
849 if (INTEL_INFO(dev)->gen >= 6)
850 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
851
852 if (HAS_L3_DPF(dev))
853 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
854
855 return ret;
856 }
857
858 static void render_ring_cleanup(struct intel_engine_cs *ring)
859 {
860 struct drm_device *dev = ring->dev;
861 struct drm_i915_private *dev_priv = dev->dev_private;
862
863 if (dev_priv->semaphore_obj) {
864 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
865 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
866 dev_priv->semaphore_obj = NULL;
867 }
868
869 intel_fini_pipe_control(ring);
870 }
871
872 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
873 unsigned int num_dwords)
874 {
875 #define MBOX_UPDATE_DWORDS 8
876 struct drm_device *dev = signaller->dev;
877 struct drm_i915_private *dev_priv = dev->dev_private;
878 struct intel_engine_cs *waiter;
879 int i, ret, num_rings;
880
881 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
882 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
883 #undef MBOX_UPDATE_DWORDS
884
885 ret = intel_ring_begin(signaller, num_dwords);
886 if (ret)
887 return ret;
888
889 for_each_ring(waiter, dev_priv, i) {
890 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
891 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
892 continue;
893
894 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
895 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
896 PIPE_CONTROL_QW_WRITE |
897 PIPE_CONTROL_FLUSH_ENABLE);
898 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
899 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
900 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
901 intel_ring_emit(signaller, 0);
902 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
903 MI_SEMAPHORE_TARGET(waiter->id));
904 intel_ring_emit(signaller, 0);
905 }
906
907 return 0;
908 }
909
910 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
911 unsigned int num_dwords)
912 {
913 #define MBOX_UPDATE_DWORDS 6
914 struct drm_device *dev = signaller->dev;
915 struct drm_i915_private *dev_priv = dev->dev_private;
916 struct intel_engine_cs *waiter;
917 int i, ret, num_rings;
918
919 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
920 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
921 #undef MBOX_UPDATE_DWORDS
922
923 ret = intel_ring_begin(signaller, num_dwords);
924 if (ret)
925 return ret;
926
927 for_each_ring(waiter, dev_priv, i) {
928 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
929 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
930 continue;
931
932 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
933 MI_FLUSH_DW_OP_STOREDW);
934 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
935 MI_FLUSH_DW_USE_GTT);
936 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
937 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
938 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
939 MI_SEMAPHORE_TARGET(waiter->id));
940 intel_ring_emit(signaller, 0);
941 }
942
943 return 0;
944 }
945
946 static int gen6_signal(struct intel_engine_cs *signaller,
947 unsigned int num_dwords)
948 {
949 struct drm_device *dev = signaller->dev;
950 struct drm_i915_private *dev_priv = dev->dev_private;
951 struct intel_engine_cs *useless;
952 int i, ret, num_rings;
953
954 #define MBOX_UPDATE_DWORDS 3
955 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
956 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
957 #undef MBOX_UPDATE_DWORDS
958
959 ret = intel_ring_begin(signaller, num_dwords);
960 if (ret)
961 return ret;
962
963 for_each_ring(useless, dev_priv, i) {
964 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
965 if (mbox_reg != GEN6_NOSYNC) {
966 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
967 intel_ring_emit(signaller, mbox_reg);
968 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
969 }
970 }
971
972 /* If num_dwords was rounded, make sure the tail pointer is correct */
973 if (num_rings % 2 == 0)
974 intel_ring_emit(signaller, MI_NOOP);
975
976 return 0;
977 }
978
979 /**
980 * gen6_add_request - Update the semaphore mailbox registers
981 *
982 * @ring - ring that is adding a request
983 * @seqno - return seqno stuck into the ring
984 *
985 * Update the mailbox registers in the *other* rings with the current seqno.
986 * This acts like a signal in the canonical semaphore.
987 */
988 static int
989 gen6_add_request(struct intel_engine_cs *ring)
990 {
991 int ret;
992
993 if (ring->semaphore.signal)
994 ret = ring->semaphore.signal(ring, 4);
995 else
996 ret = intel_ring_begin(ring, 4);
997
998 if (ret)
999 return ret;
1000
1001 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1002 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1003 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1004 intel_ring_emit(ring, MI_USER_INTERRUPT);
1005 __intel_ring_advance(ring);
1006
1007 return 0;
1008 }
1009
1010 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1011 u32 seqno)
1012 {
1013 struct drm_i915_private *dev_priv = dev->dev_private;
1014 return dev_priv->last_seqno < seqno;
1015 }
1016
1017 /**
1018 * intel_ring_sync - sync the waiter to the signaller on seqno
1019 *
1020 * @waiter - ring that is waiting
1021 * @signaller - ring which has, or will signal
1022 * @seqno - seqno which the waiter will block on
1023 */
1024
1025 static int
1026 gen8_ring_sync(struct intel_engine_cs *waiter,
1027 struct intel_engine_cs *signaller,
1028 u32 seqno)
1029 {
1030 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1031 int ret;
1032
1033 ret = intel_ring_begin(waiter, 4);
1034 if (ret)
1035 return ret;
1036
1037 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1038 MI_SEMAPHORE_GLOBAL_GTT |
1039 MI_SEMAPHORE_POLL |
1040 MI_SEMAPHORE_SAD_GTE_SDD);
1041 intel_ring_emit(waiter, seqno);
1042 intel_ring_emit(waiter,
1043 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1044 intel_ring_emit(waiter,
1045 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1046 intel_ring_advance(waiter);
1047 return 0;
1048 }
1049
1050 static int
1051 gen6_ring_sync(struct intel_engine_cs *waiter,
1052 struct intel_engine_cs *signaller,
1053 u32 seqno)
1054 {
1055 u32 dw1 = MI_SEMAPHORE_MBOX |
1056 MI_SEMAPHORE_COMPARE |
1057 MI_SEMAPHORE_REGISTER;
1058 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1059 int ret;
1060
1061 /* Throughout all of the GEM code, seqno passed implies our current
1062 * seqno is >= the last seqno executed. However for hardware the
1063 * comparison is strictly greater than.
1064 */
1065 seqno -= 1;
1066
1067 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1068
1069 ret = intel_ring_begin(waiter, 4);
1070 if (ret)
1071 return ret;
1072
1073 /* If seqno wrap happened, omit the wait with no-ops */
1074 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1075 intel_ring_emit(waiter, dw1 | wait_mbox);
1076 intel_ring_emit(waiter, seqno);
1077 intel_ring_emit(waiter, 0);
1078 intel_ring_emit(waiter, MI_NOOP);
1079 } else {
1080 intel_ring_emit(waiter, MI_NOOP);
1081 intel_ring_emit(waiter, MI_NOOP);
1082 intel_ring_emit(waiter, MI_NOOP);
1083 intel_ring_emit(waiter, MI_NOOP);
1084 }
1085 intel_ring_advance(waiter);
1086
1087 return 0;
1088 }
1089
1090 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1091 do { \
1092 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1093 PIPE_CONTROL_DEPTH_STALL); \
1094 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1095 intel_ring_emit(ring__, 0); \
1096 intel_ring_emit(ring__, 0); \
1097 } while (0)
1098
1099 static int
1100 pc_render_add_request(struct intel_engine_cs *ring)
1101 {
1102 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1103 int ret;
1104
1105 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1106 * incoherent with writes to memory, i.e. completely fubar,
1107 * so we need to use PIPE_NOTIFY instead.
1108 *
1109 * However, we also need to workaround the qword write
1110 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1111 * memory before requesting an interrupt.
1112 */
1113 ret = intel_ring_begin(ring, 32);
1114 if (ret)
1115 return ret;
1116
1117 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1118 PIPE_CONTROL_WRITE_FLUSH |
1119 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1120 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1121 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1122 intel_ring_emit(ring, 0);
1123 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1124 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1125 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1126 scratch_addr += 2 * CACHELINE_BYTES;
1127 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1128 scratch_addr += 2 * CACHELINE_BYTES;
1129 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1130 scratch_addr += 2 * CACHELINE_BYTES;
1131 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1132 scratch_addr += 2 * CACHELINE_BYTES;
1133 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1134
1135 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1136 PIPE_CONTROL_WRITE_FLUSH |
1137 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1138 PIPE_CONTROL_NOTIFY);
1139 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1140 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1141 intel_ring_emit(ring, 0);
1142 __intel_ring_advance(ring);
1143
1144 return 0;
1145 }
1146
1147 static u32
1148 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1149 {
1150 /* Workaround to force correct ordering between irq and seqno writes on
1151 * ivb (and maybe also on snb) by reading from a CS register (like
1152 * ACTHD) before reading the status page. */
1153 if (!lazy_coherency) {
1154 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1155 POSTING_READ(RING_ACTHD(ring->mmio_base));
1156 }
1157
1158 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1159 }
1160
1161 static u32
1162 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1163 {
1164 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1165 }
1166
1167 static void
1168 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1169 {
1170 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1171 }
1172
1173 static u32
1174 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1175 {
1176 return ring->scratch.cpu_page[0];
1177 }
1178
1179 static void
1180 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1181 {
1182 ring->scratch.cpu_page[0] = seqno;
1183 }
1184
1185 static bool
1186 gen5_ring_get_irq(struct intel_engine_cs *ring)
1187 {
1188 struct drm_device *dev = ring->dev;
1189 struct drm_i915_private *dev_priv = dev->dev_private;
1190 unsigned long flags;
1191
1192 if (!dev->irq_enabled)
1193 return false;
1194
1195 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1196 if (ring->irq_refcount++ == 0)
1197 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1198 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1199
1200 return true;
1201 }
1202
1203 static void
1204 gen5_ring_put_irq(struct intel_engine_cs *ring)
1205 {
1206 struct drm_device *dev = ring->dev;
1207 struct drm_i915_private *dev_priv = dev->dev_private;
1208 unsigned long flags;
1209
1210 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1211 if (--ring->irq_refcount == 0)
1212 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1213 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1214 }
1215
1216 static bool
1217 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1218 {
1219 struct drm_device *dev = ring->dev;
1220 struct drm_i915_private *dev_priv = dev->dev_private;
1221 unsigned long flags;
1222
1223 if (!dev->irq_enabled)
1224 return false;
1225
1226 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1227 if (ring->irq_refcount++ == 0) {
1228 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1229 I915_WRITE(IMR, dev_priv->irq_mask);
1230 POSTING_READ(IMR);
1231 }
1232 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1233
1234 return true;
1235 }
1236
1237 static void
1238 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1239 {
1240 struct drm_device *dev = ring->dev;
1241 struct drm_i915_private *dev_priv = dev->dev_private;
1242 unsigned long flags;
1243
1244 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1245 if (--ring->irq_refcount == 0) {
1246 dev_priv->irq_mask |= ring->irq_enable_mask;
1247 I915_WRITE(IMR, dev_priv->irq_mask);
1248 POSTING_READ(IMR);
1249 }
1250 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1251 }
1252
1253 static bool
1254 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1255 {
1256 struct drm_device *dev = ring->dev;
1257 struct drm_i915_private *dev_priv = dev->dev_private;
1258 unsigned long flags;
1259
1260 if (!dev->irq_enabled)
1261 return false;
1262
1263 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1264 if (ring->irq_refcount++ == 0) {
1265 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1266 I915_WRITE16(IMR, dev_priv->irq_mask);
1267 POSTING_READ16(IMR);
1268 }
1269 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1270
1271 return true;
1272 }
1273
1274 static void
1275 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1276 {
1277 struct drm_device *dev = ring->dev;
1278 struct drm_i915_private *dev_priv = dev->dev_private;
1279 unsigned long flags;
1280
1281 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1282 if (--ring->irq_refcount == 0) {
1283 dev_priv->irq_mask |= ring->irq_enable_mask;
1284 I915_WRITE16(IMR, dev_priv->irq_mask);
1285 POSTING_READ16(IMR);
1286 }
1287 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1288 }
1289
1290 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1291 {
1292 struct drm_device *dev = ring->dev;
1293 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1294 u32 mmio = 0;
1295
1296 /* The ring status page addresses are no longer next to the rest of
1297 * the ring registers as of gen7.
1298 */
1299 if (IS_GEN7(dev)) {
1300 switch (ring->id) {
1301 case RCS:
1302 mmio = RENDER_HWS_PGA_GEN7;
1303 break;
1304 case BCS:
1305 mmio = BLT_HWS_PGA_GEN7;
1306 break;
1307 /*
1308 * VCS2 actually doesn't exist on Gen7. Only shut up
1309 * gcc switch check warning
1310 */
1311 case VCS2:
1312 case VCS:
1313 mmio = BSD_HWS_PGA_GEN7;
1314 break;
1315 case VECS:
1316 mmio = VEBOX_HWS_PGA_GEN7;
1317 break;
1318 }
1319 } else if (IS_GEN6(ring->dev)) {
1320 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1321 } else {
1322 /* XXX: gen8 returns to sanity */
1323 mmio = RING_HWS_PGA(ring->mmio_base);
1324 }
1325
1326 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1327 POSTING_READ(mmio);
1328
1329 /*
1330 * Flush the TLB for this page
1331 *
1332 * FIXME: These two bits have disappeared on gen8, so a question
1333 * arises: do we still need this and if so how should we go about
1334 * invalidating the TLB?
1335 */
1336 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1337 u32 reg = RING_INSTPM(ring->mmio_base);
1338
1339 /* ring should be idle before issuing a sync flush*/
1340 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1341
1342 I915_WRITE(reg,
1343 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1344 INSTPM_SYNC_FLUSH));
1345 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1346 1000))
1347 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1348 ring->name);
1349 }
1350 }
1351
1352 static int
1353 bsd_ring_flush(struct intel_engine_cs *ring,
1354 u32 invalidate_domains,
1355 u32 flush_domains)
1356 {
1357 int ret;
1358
1359 ret = intel_ring_begin(ring, 2);
1360 if (ret)
1361 return ret;
1362
1363 intel_ring_emit(ring, MI_FLUSH);
1364 intel_ring_emit(ring, MI_NOOP);
1365 intel_ring_advance(ring);
1366 return 0;
1367 }
1368
1369 static int
1370 i9xx_add_request(struct intel_engine_cs *ring)
1371 {
1372 int ret;
1373
1374 ret = intel_ring_begin(ring, 4);
1375 if (ret)
1376 return ret;
1377
1378 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1379 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1380 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1381 intel_ring_emit(ring, MI_USER_INTERRUPT);
1382 __intel_ring_advance(ring);
1383
1384 return 0;
1385 }
1386
1387 static bool
1388 gen6_ring_get_irq(struct intel_engine_cs *ring)
1389 {
1390 struct drm_device *dev = ring->dev;
1391 struct drm_i915_private *dev_priv = dev->dev_private;
1392 unsigned long flags;
1393
1394 if (!dev->irq_enabled)
1395 return false;
1396
1397 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1398 if (ring->irq_refcount++ == 0) {
1399 if (HAS_L3_DPF(dev) && ring->id == RCS)
1400 I915_WRITE_IMR(ring,
1401 ~(ring->irq_enable_mask |
1402 GT_PARITY_ERROR(dev)));
1403 else
1404 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1405 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1406 }
1407 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1408
1409 return true;
1410 }
1411
1412 static void
1413 gen6_ring_put_irq(struct intel_engine_cs *ring)
1414 {
1415 struct drm_device *dev = ring->dev;
1416 struct drm_i915_private *dev_priv = dev->dev_private;
1417 unsigned long flags;
1418
1419 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1420 if (--ring->irq_refcount == 0) {
1421 if (HAS_L3_DPF(dev) && ring->id == RCS)
1422 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1423 else
1424 I915_WRITE_IMR(ring, ~0);
1425 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1426 }
1427 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1428 }
1429
1430 static bool
1431 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1432 {
1433 struct drm_device *dev = ring->dev;
1434 struct drm_i915_private *dev_priv = dev->dev_private;
1435 unsigned long flags;
1436
1437 if (!dev->irq_enabled)
1438 return false;
1439
1440 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1441 if (ring->irq_refcount++ == 0) {
1442 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1443 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1444 }
1445 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1446
1447 return true;
1448 }
1449
1450 static void
1451 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1452 {
1453 struct drm_device *dev = ring->dev;
1454 struct drm_i915_private *dev_priv = dev->dev_private;
1455 unsigned long flags;
1456
1457 if (!dev->irq_enabled)
1458 return;
1459
1460 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1461 if (--ring->irq_refcount == 0) {
1462 I915_WRITE_IMR(ring, ~0);
1463 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1464 }
1465 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1466 }
1467
1468 static bool
1469 gen8_ring_get_irq(struct intel_engine_cs *ring)
1470 {
1471 struct drm_device *dev = ring->dev;
1472 struct drm_i915_private *dev_priv = dev->dev_private;
1473 unsigned long flags;
1474
1475 if (!dev->irq_enabled)
1476 return false;
1477
1478 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1479 if (ring->irq_refcount++ == 0) {
1480 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1481 I915_WRITE_IMR(ring,
1482 ~(ring->irq_enable_mask |
1483 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1484 } else {
1485 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1486 }
1487 POSTING_READ(RING_IMR(ring->mmio_base));
1488 }
1489 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1490
1491 return true;
1492 }
1493
1494 static void
1495 gen8_ring_put_irq(struct intel_engine_cs *ring)
1496 {
1497 struct drm_device *dev = ring->dev;
1498 struct drm_i915_private *dev_priv = dev->dev_private;
1499 unsigned long flags;
1500
1501 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1502 if (--ring->irq_refcount == 0) {
1503 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1504 I915_WRITE_IMR(ring,
1505 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1506 } else {
1507 I915_WRITE_IMR(ring, ~0);
1508 }
1509 POSTING_READ(RING_IMR(ring->mmio_base));
1510 }
1511 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1512 }
1513
1514 static int
1515 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1516 u64 offset, u32 length,
1517 unsigned flags)
1518 {
1519 int ret;
1520
1521 ret = intel_ring_begin(ring, 2);
1522 if (ret)
1523 return ret;
1524
1525 intel_ring_emit(ring,
1526 MI_BATCH_BUFFER_START |
1527 MI_BATCH_GTT |
1528 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1529 intel_ring_emit(ring, offset);
1530 intel_ring_advance(ring);
1531
1532 return 0;
1533 }
1534
1535 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1536 #define I830_BATCH_LIMIT (256*1024)
1537 static int
1538 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1539 u64 offset, u32 len,
1540 unsigned flags)
1541 {
1542 int ret;
1543
1544 if (flags & I915_DISPATCH_PINNED) {
1545 ret = intel_ring_begin(ring, 4);
1546 if (ret)
1547 return ret;
1548
1549 intel_ring_emit(ring, MI_BATCH_BUFFER);
1550 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1551 intel_ring_emit(ring, offset + len - 8);
1552 intel_ring_emit(ring, MI_NOOP);
1553 intel_ring_advance(ring);
1554 } else {
1555 u32 cs_offset = ring->scratch.gtt_offset;
1556
1557 if (len > I830_BATCH_LIMIT)
1558 return -ENOSPC;
1559
1560 ret = intel_ring_begin(ring, 9+3);
1561 if (ret)
1562 return ret;
1563 /* Blit the batch (which has now all relocs applied) to the stable batch
1564 * scratch bo area (so that the CS never stumbles over its tlb
1565 * invalidation bug) ... */
1566 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1567 XY_SRC_COPY_BLT_WRITE_ALPHA |
1568 XY_SRC_COPY_BLT_WRITE_RGB);
1569 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1570 intel_ring_emit(ring, 0);
1571 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1572 intel_ring_emit(ring, cs_offset);
1573 intel_ring_emit(ring, 0);
1574 intel_ring_emit(ring, 4096);
1575 intel_ring_emit(ring, offset);
1576 intel_ring_emit(ring, MI_FLUSH);
1577
1578 /* ... and execute it. */
1579 intel_ring_emit(ring, MI_BATCH_BUFFER);
1580 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1581 intel_ring_emit(ring, cs_offset + len - 8);
1582 intel_ring_advance(ring);
1583 }
1584
1585 return 0;
1586 }
1587
1588 static int
1589 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1590 u64 offset, u32 len,
1591 unsigned flags)
1592 {
1593 int ret;
1594
1595 ret = intel_ring_begin(ring, 2);
1596 if (ret)
1597 return ret;
1598
1599 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1600 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1601 intel_ring_advance(ring);
1602
1603 return 0;
1604 }
1605
1606 static void cleanup_status_page(struct intel_engine_cs *ring)
1607 {
1608 struct drm_i915_gem_object *obj;
1609
1610 obj = ring->status_page.obj;
1611 if (obj == NULL)
1612 return;
1613
1614 kunmap(sg_page(obj->pages->sgl));
1615 i915_gem_object_ggtt_unpin(obj);
1616 drm_gem_object_unreference(&obj->base);
1617 ring->status_page.obj = NULL;
1618 }
1619
1620 static int init_status_page(struct intel_engine_cs *ring)
1621 {
1622 struct drm_i915_gem_object *obj;
1623
1624 if ((obj = ring->status_page.obj) == NULL) {
1625 unsigned flags;
1626 int ret;
1627
1628 obj = i915_gem_alloc_object(ring->dev, 4096);
1629 if (obj == NULL) {
1630 DRM_ERROR("Failed to allocate status page\n");
1631 return -ENOMEM;
1632 }
1633
1634 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1635 if (ret)
1636 goto err_unref;
1637
1638 flags = 0;
1639 if (!HAS_LLC(ring->dev))
1640 /* On g33, we cannot place HWS above 256MiB, so
1641 * restrict its pinning to the low mappable arena.
1642 * Though this restriction is not documented for
1643 * gen4, gen5, or byt, they also behave similarly
1644 * and hang if the HWS is placed at the top of the
1645 * GTT. To generalise, it appears that all !llc
1646 * platforms have issues with us placing the HWS
1647 * above the mappable region (even though we never
1648 * actualy map it).
1649 */
1650 flags |= PIN_MAPPABLE;
1651 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1652 if (ret) {
1653 err_unref:
1654 drm_gem_object_unreference(&obj->base);
1655 return ret;
1656 }
1657
1658 ring->status_page.obj = obj;
1659 }
1660
1661 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1662 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1663 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1664
1665 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1666 ring->name, ring->status_page.gfx_addr);
1667
1668 return 0;
1669 }
1670
1671 static int init_phys_status_page(struct intel_engine_cs *ring)
1672 {
1673 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1674
1675 if (!dev_priv->status_page_dmah) {
1676 dev_priv->status_page_dmah =
1677 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1678 if (!dev_priv->status_page_dmah)
1679 return -ENOMEM;
1680 }
1681
1682 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1683 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1684
1685 return 0;
1686 }
1687
1688 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1689 {
1690 if (!ringbuf->obj)
1691 return;
1692
1693 iounmap(ringbuf->virtual_start);
1694 i915_gem_object_ggtt_unpin(ringbuf->obj);
1695 drm_gem_object_unreference(&ringbuf->obj->base);
1696 ringbuf->obj = NULL;
1697 }
1698
1699 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1700 struct intel_ringbuffer *ringbuf)
1701 {
1702 struct drm_i915_private *dev_priv = to_i915(dev);
1703 struct drm_i915_gem_object *obj;
1704 int ret;
1705
1706 if (ringbuf->obj)
1707 return 0;
1708
1709 obj = NULL;
1710 if (!HAS_LLC(dev))
1711 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1712 if (obj == NULL)
1713 obj = i915_gem_alloc_object(dev, ringbuf->size);
1714 if (obj == NULL)
1715 return -ENOMEM;
1716
1717 /* mark ring buffers as read-only from GPU side by default */
1718 obj->gt_ro = 1;
1719
1720 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1721 if (ret)
1722 goto err_unref;
1723
1724 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1725 if (ret)
1726 goto err_unpin;
1727
1728 ringbuf->virtual_start =
1729 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1730 ringbuf->size);
1731 if (ringbuf->virtual_start == NULL) {
1732 ret = -EINVAL;
1733 goto err_unpin;
1734 }
1735
1736 ringbuf->obj = obj;
1737 return 0;
1738
1739 err_unpin:
1740 i915_gem_object_ggtt_unpin(obj);
1741 err_unref:
1742 drm_gem_object_unreference(&obj->base);
1743 return ret;
1744 }
1745
1746 static int intel_init_ring_buffer(struct drm_device *dev,
1747 struct intel_engine_cs *ring)
1748 {
1749 struct intel_ringbuffer *ringbuf = ring->buffer;
1750 int ret;
1751
1752 if (ringbuf == NULL) {
1753 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1754 if (!ringbuf)
1755 return -ENOMEM;
1756 ring->buffer = ringbuf;
1757 }
1758
1759 ring->dev = dev;
1760 INIT_LIST_HEAD(&ring->active_list);
1761 INIT_LIST_HEAD(&ring->request_list);
1762 INIT_LIST_HEAD(&ring->execlist_queue);
1763 ringbuf->size = 32 * PAGE_SIZE;
1764 ringbuf->ring = ring;
1765 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1766
1767 init_waitqueue_head(&ring->irq_queue);
1768
1769 if (I915_NEED_GFX_HWS(dev)) {
1770 ret = init_status_page(ring);
1771 if (ret)
1772 goto error;
1773 } else {
1774 BUG_ON(ring->id != RCS);
1775 ret = init_phys_status_page(ring);
1776 if (ret)
1777 goto error;
1778 }
1779
1780 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1781 if (ret) {
1782 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1783 goto error;
1784 }
1785
1786 /* Workaround an erratum on the i830 which causes a hang if
1787 * the TAIL pointer points to within the last 2 cachelines
1788 * of the buffer.
1789 */
1790 ringbuf->effective_size = ringbuf->size;
1791 if (IS_I830(dev) || IS_845G(dev))
1792 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1793
1794 ret = i915_cmd_parser_init_ring(ring);
1795 if (ret)
1796 goto error;
1797
1798 ret = ring->init(ring);
1799 if (ret)
1800 goto error;
1801
1802 return 0;
1803
1804 error:
1805 kfree(ringbuf);
1806 ring->buffer = NULL;
1807 return ret;
1808 }
1809
1810 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1811 {
1812 struct drm_i915_private *dev_priv = to_i915(ring->dev);
1813 struct intel_ringbuffer *ringbuf = ring->buffer;
1814
1815 if (!intel_ring_initialized(ring))
1816 return;
1817
1818 intel_stop_ring_buffer(ring);
1819 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1820
1821 intel_destroy_ringbuffer_obj(ringbuf);
1822 ring->preallocated_lazy_request = NULL;
1823 ring->outstanding_lazy_seqno = 0;
1824
1825 if (ring->cleanup)
1826 ring->cleanup(ring);
1827
1828 cleanup_status_page(ring);
1829
1830 i915_cmd_parser_fini_ring(ring);
1831
1832 kfree(ringbuf);
1833 ring->buffer = NULL;
1834 }
1835
1836 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1837 {
1838 struct intel_ringbuffer *ringbuf = ring->buffer;
1839 struct drm_i915_gem_request *request;
1840 u32 seqno = 0;
1841 int ret;
1842
1843 if (ringbuf->last_retired_head != -1) {
1844 ringbuf->head = ringbuf->last_retired_head;
1845 ringbuf->last_retired_head = -1;
1846
1847 ringbuf->space = intel_ring_space(ringbuf);
1848 if (ringbuf->space >= n)
1849 return 0;
1850 }
1851
1852 list_for_each_entry(request, &ring->request_list, list) {
1853 if (__intel_ring_space(request->tail, ringbuf->tail,
1854 ringbuf->size) >= n) {
1855 seqno = request->seqno;
1856 break;
1857 }
1858 }
1859
1860 if (seqno == 0)
1861 return -ENOSPC;
1862
1863 ret = i915_wait_seqno(ring, seqno);
1864 if (ret)
1865 return ret;
1866
1867 i915_gem_retire_requests_ring(ring);
1868 ringbuf->head = ringbuf->last_retired_head;
1869 ringbuf->last_retired_head = -1;
1870
1871 ringbuf->space = intel_ring_space(ringbuf);
1872 return 0;
1873 }
1874
1875 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1876 {
1877 struct drm_device *dev = ring->dev;
1878 struct drm_i915_private *dev_priv = dev->dev_private;
1879 struct intel_ringbuffer *ringbuf = ring->buffer;
1880 unsigned long end;
1881 int ret;
1882
1883 ret = intel_ring_wait_request(ring, n);
1884 if (ret != -ENOSPC)
1885 return ret;
1886
1887 /* force the tail write in case we have been skipping them */
1888 __intel_ring_advance(ring);
1889
1890 /* With GEM the hangcheck timer should kick us out of the loop,
1891 * leaving it early runs the risk of corrupting GEM state (due
1892 * to running on almost untested codepaths). But on resume
1893 * timers don't work yet, so prevent a complete hang in that
1894 * case by choosing an insanely large timeout. */
1895 end = jiffies + 60 * HZ;
1896
1897 trace_i915_ring_wait_begin(ring);
1898 do {
1899 ringbuf->head = I915_READ_HEAD(ring);
1900 ringbuf->space = intel_ring_space(ringbuf);
1901 if (ringbuf->space >= n) {
1902 ret = 0;
1903 break;
1904 }
1905
1906 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1907 dev->primary->master) {
1908 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1909 if (master_priv->sarea_priv)
1910 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1911 }
1912
1913 msleep(1);
1914
1915 if (dev_priv->mm.interruptible && signal_pending(current)) {
1916 ret = -ERESTARTSYS;
1917 break;
1918 }
1919
1920 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1921 dev_priv->mm.interruptible);
1922 if (ret)
1923 break;
1924
1925 if (time_after(jiffies, end)) {
1926 ret = -EBUSY;
1927 break;
1928 }
1929 } while (1);
1930 trace_i915_ring_wait_end(ring);
1931 return ret;
1932 }
1933
1934 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1935 {
1936 uint32_t __iomem *virt;
1937 struct intel_ringbuffer *ringbuf = ring->buffer;
1938 int rem = ringbuf->size - ringbuf->tail;
1939
1940 if (ringbuf->space < rem) {
1941 int ret = ring_wait_for_space(ring, rem);
1942 if (ret)
1943 return ret;
1944 }
1945
1946 virt = ringbuf->virtual_start + ringbuf->tail;
1947 rem /= 4;
1948 while (rem--)
1949 iowrite32(MI_NOOP, virt++);
1950
1951 ringbuf->tail = 0;
1952 ringbuf->space = intel_ring_space(ringbuf);
1953
1954 return 0;
1955 }
1956
1957 int intel_ring_idle(struct intel_engine_cs *ring)
1958 {
1959 u32 seqno;
1960 int ret;
1961
1962 /* We need to add any requests required to flush the objects and ring */
1963 if (ring->outstanding_lazy_seqno) {
1964 ret = i915_add_request(ring, NULL);
1965 if (ret)
1966 return ret;
1967 }
1968
1969 /* Wait upon the last request to be completed */
1970 if (list_empty(&ring->request_list))
1971 return 0;
1972
1973 seqno = list_entry(ring->request_list.prev,
1974 struct drm_i915_gem_request,
1975 list)->seqno;
1976
1977 return i915_wait_seqno(ring, seqno);
1978 }
1979
1980 static int
1981 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
1982 {
1983 if (ring->outstanding_lazy_seqno)
1984 return 0;
1985
1986 if (ring->preallocated_lazy_request == NULL) {
1987 struct drm_i915_gem_request *request;
1988
1989 request = kmalloc(sizeof(*request), GFP_KERNEL);
1990 if (request == NULL)
1991 return -ENOMEM;
1992
1993 ring->preallocated_lazy_request = request;
1994 }
1995
1996 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1997 }
1998
1999 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2000 int bytes)
2001 {
2002 struct intel_ringbuffer *ringbuf = ring->buffer;
2003 int ret;
2004
2005 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2006 ret = intel_wrap_ring_buffer(ring);
2007 if (unlikely(ret))
2008 return ret;
2009 }
2010
2011 if (unlikely(ringbuf->space < bytes)) {
2012 ret = ring_wait_for_space(ring, bytes);
2013 if (unlikely(ret))
2014 return ret;
2015 }
2016
2017 return 0;
2018 }
2019
2020 int intel_ring_begin(struct intel_engine_cs *ring,
2021 int num_dwords)
2022 {
2023 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2024 int ret;
2025
2026 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2027 dev_priv->mm.interruptible);
2028 if (ret)
2029 return ret;
2030
2031 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2032 if (ret)
2033 return ret;
2034
2035 /* Preallocate the olr before touching the ring */
2036 ret = intel_ring_alloc_seqno(ring);
2037 if (ret)
2038 return ret;
2039
2040 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2041 return 0;
2042 }
2043
2044 /* Align the ring tail to a cacheline boundary */
2045 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2046 {
2047 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2048 int ret;
2049
2050 if (num_dwords == 0)
2051 return 0;
2052
2053 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2054 ret = intel_ring_begin(ring, num_dwords);
2055 if (ret)
2056 return ret;
2057
2058 while (num_dwords--)
2059 intel_ring_emit(ring, MI_NOOP);
2060
2061 intel_ring_advance(ring);
2062
2063 return 0;
2064 }
2065
2066 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2067 {
2068 struct drm_device *dev = ring->dev;
2069 struct drm_i915_private *dev_priv = dev->dev_private;
2070
2071 BUG_ON(ring->outstanding_lazy_seqno);
2072
2073 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2074 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2075 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2076 if (HAS_VEBOX(dev))
2077 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2078 }
2079
2080 ring->set_seqno(ring, seqno);
2081 ring->hangcheck.seqno = seqno;
2082 }
2083
2084 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2085 u32 value)
2086 {
2087 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2088
2089 /* Every tail move must follow the sequence below */
2090
2091 /* Disable notification that the ring is IDLE. The GT
2092 * will then assume that it is busy and bring it out of rc6.
2093 */
2094 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2095 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2096
2097 /* Clear the context id. Here be magic! */
2098 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2099
2100 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2101 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2102 GEN6_BSD_SLEEP_INDICATOR) == 0,
2103 50))
2104 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2105
2106 /* Now that the ring is fully powered up, update the tail */
2107 I915_WRITE_TAIL(ring, value);
2108 POSTING_READ(RING_TAIL(ring->mmio_base));
2109
2110 /* Let the ring send IDLE messages to the GT again,
2111 * and so let it sleep to conserve power when idle.
2112 */
2113 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2114 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2115 }
2116
2117 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2118 u32 invalidate, u32 flush)
2119 {
2120 uint32_t cmd;
2121 int ret;
2122
2123 ret = intel_ring_begin(ring, 4);
2124 if (ret)
2125 return ret;
2126
2127 cmd = MI_FLUSH_DW;
2128 if (INTEL_INFO(ring->dev)->gen >= 8)
2129 cmd += 1;
2130 /*
2131 * Bspec vol 1c.5 - video engine command streamer:
2132 * "If ENABLED, all TLBs will be invalidated once the flush
2133 * operation is complete. This bit is only valid when the
2134 * Post-Sync Operation field is a value of 1h or 3h."
2135 */
2136 if (invalidate & I915_GEM_GPU_DOMAINS)
2137 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
2138 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2139 intel_ring_emit(ring, cmd);
2140 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2141 if (INTEL_INFO(ring->dev)->gen >= 8) {
2142 intel_ring_emit(ring, 0); /* upper addr */
2143 intel_ring_emit(ring, 0); /* value */
2144 } else {
2145 intel_ring_emit(ring, 0);
2146 intel_ring_emit(ring, MI_NOOP);
2147 }
2148 intel_ring_advance(ring);
2149 return 0;
2150 }
2151
2152 static int
2153 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2154 u64 offset, u32 len,
2155 unsigned flags)
2156 {
2157 bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
2158 int ret;
2159
2160 ret = intel_ring_begin(ring, 4);
2161 if (ret)
2162 return ret;
2163
2164 /* FIXME(BDW): Address space and security selectors. */
2165 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2166 intel_ring_emit(ring, lower_32_bits(offset));
2167 intel_ring_emit(ring, upper_32_bits(offset));
2168 intel_ring_emit(ring, MI_NOOP);
2169 intel_ring_advance(ring);
2170
2171 return 0;
2172 }
2173
2174 static int
2175 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2176 u64 offset, u32 len,
2177 unsigned flags)
2178 {
2179 int ret;
2180
2181 ret = intel_ring_begin(ring, 2);
2182 if (ret)
2183 return ret;
2184
2185 intel_ring_emit(ring,
2186 MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
2187 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
2188 /* bit0-7 is the length on GEN6+ */
2189 intel_ring_emit(ring, offset);
2190 intel_ring_advance(ring);
2191
2192 return 0;
2193 }
2194
2195 static int
2196 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2197 u64 offset, u32 len,
2198 unsigned flags)
2199 {
2200 int ret;
2201
2202 ret = intel_ring_begin(ring, 2);
2203 if (ret)
2204 return ret;
2205
2206 intel_ring_emit(ring,
2207 MI_BATCH_BUFFER_START |
2208 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2209 /* bit0-7 is the length on GEN6+ */
2210 intel_ring_emit(ring, offset);
2211 intel_ring_advance(ring);
2212
2213 return 0;
2214 }
2215
2216 /* Blitter support (SandyBridge+) */
2217
2218 static int gen6_ring_flush(struct intel_engine_cs *ring,
2219 u32 invalidate, u32 flush)
2220 {
2221 struct drm_device *dev = ring->dev;
2222 uint32_t cmd;
2223 int ret;
2224
2225 ret = intel_ring_begin(ring, 4);
2226 if (ret)
2227 return ret;
2228
2229 cmd = MI_FLUSH_DW;
2230 if (INTEL_INFO(ring->dev)->gen >= 8)
2231 cmd += 1;
2232 /*
2233 * Bspec vol 1c.3 - blitter engine command streamer:
2234 * "If ENABLED, all TLBs will be invalidated once the flush
2235 * operation is complete. This bit is only valid when the
2236 * Post-Sync Operation field is a value of 1h or 3h."
2237 */
2238 if (invalidate & I915_GEM_DOMAIN_RENDER)
2239 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2240 MI_FLUSH_DW_OP_STOREDW;
2241 intel_ring_emit(ring, cmd);
2242 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2243 if (INTEL_INFO(ring->dev)->gen >= 8) {
2244 intel_ring_emit(ring, 0); /* upper addr */
2245 intel_ring_emit(ring, 0); /* value */
2246 } else {
2247 intel_ring_emit(ring, 0);
2248 intel_ring_emit(ring, MI_NOOP);
2249 }
2250 intel_ring_advance(ring);
2251
2252 if (IS_GEN7(dev) && !invalidate && flush)
2253 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2254
2255 return 0;
2256 }
2257
2258 int intel_init_render_ring_buffer(struct drm_device *dev)
2259 {
2260 struct drm_i915_private *dev_priv = dev->dev_private;
2261 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2262 struct drm_i915_gem_object *obj;
2263 int ret;
2264
2265 ring->name = "render ring";
2266 ring->id = RCS;
2267 ring->mmio_base = RENDER_RING_BASE;
2268
2269 if (INTEL_INFO(dev)->gen >= 8) {
2270 if (i915_semaphore_is_enabled(dev)) {
2271 obj = i915_gem_alloc_object(dev, 4096);
2272 if (obj == NULL) {
2273 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2274 i915.semaphores = 0;
2275 } else {
2276 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2277 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2278 if (ret != 0) {
2279 drm_gem_object_unreference(&obj->base);
2280 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2281 i915.semaphores = 0;
2282 } else
2283 dev_priv->semaphore_obj = obj;
2284 }
2285 }
2286 if (IS_CHERRYVIEW(dev))
2287 ring->init_context = chv_init_workarounds;
2288 else
2289 ring->init_context = bdw_init_workarounds;
2290 ring->add_request = gen6_add_request;
2291 ring->flush = gen8_render_ring_flush;
2292 ring->irq_get = gen8_ring_get_irq;
2293 ring->irq_put = gen8_ring_put_irq;
2294 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2295 ring->get_seqno = gen6_ring_get_seqno;
2296 ring->set_seqno = ring_set_seqno;
2297 if (i915_semaphore_is_enabled(dev)) {
2298 WARN_ON(!dev_priv->semaphore_obj);
2299 ring->semaphore.sync_to = gen8_ring_sync;
2300 ring->semaphore.signal = gen8_rcs_signal;
2301 GEN8_RING_SEMAPHORE_INIT;
2302 }
2303 } else if (INTEL_INFO(dev)->gen >= 6) {
2304 ring->add_request = gen6_add_request;
2305 ring->flush = gen7_render_ring_flush;
2306 if (INTEL_INFO(dev)->gen == 6)
2307 ring->flush = gen6_render_ring_flush;
2308 ring->irq_get = gen6_ring_get_irq;
2309 ring->irq_put = gen6_ring_put_irq;
2310 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2311 ring->get_seqno = gen6_ring_get_seqno;
2312 ring->set_seqno = ring_set_seqno;
2313 if (i915_semaphore_is_enabled(dev)) {
2314 ring->semaphore.sync_to = gen6_ring_sync;
2315 ring->semaphore.signal = gen6_signal;
2316 /*
2317 * The current semaphore is only applied on pre-gen8
2318 * platform. And there is no VCS2 ring on the pre-gen8
2319 * platform. So the semaphore between RCS and VCS2 is
2320 * initialized as INVALID. Gen8 will initialize the
2321 * sema between VCS2 and RCS later.
2322 */
2323 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2324 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2325 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2326 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2327 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2328 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2329 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2330 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2331 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2332 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2333 }
2334 } else if (IS_GEN5(dev)) {
2335 ring->add_request = pc_render_add_request;
2336 ring->flush = gen4_render_ring_flush;
2337 ring->get_seqno = pc_render_get_seqno;
2338 ring->set_seqno = pc_render_set_seqno;
2339 ring->irq_get = gen5_ring_get_irq;
2340 ring->irq_put = gen5_ring_put_irq;
2341 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2342 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2343 } else {
2344 ring->add_request = i9xx_add_request;
2345 if (INTEL_INFO(dev)->gen < 4)
2346 ring->flush = gen2_render_ring_flush;
2347 else
2348 ring->flush = gen4_render_ring_flush;
2349 ring->get_seqno = ring_get_seqno;
2350 ring->set_seqno = ring_set_seqno;
2351 if (IS_GEN2(dev)) {
2352 ring->irq_get = i8xx_ring_get_irq;
2353 ring->irq_put = i8xx_ring_put_irq;
2354 } else {
2355 ring->irq_get = i9xx_ring_get_irq;
2356 ring->irq_put = i9xx_ring_put_irq;
2357 }
2358 ring->irq_enable_mask = I915_USER_INTERRUPT;
2359 }
2360 ring->write_tail = ring_write_tail;
2361
2362 if (IS_HASWELL(dev))
2363 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2364 else if (IS_GEN8(dev))
2365 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2366 else if (INTEL_INFO(dev)->gen >= 6)
2367 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2368 else if (INTEL_INFO(dev)->gen >= 4)
2369 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2370 else if (IS_I830(dev) || IS_845G(dev))
2371 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2372 else
2373 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2374 ring->init = init_render_ring;
2375 ring->cleanup = render_ring_cleanup;
2376
2377 /* Workaround batchbuffer to combat CS tlb bug. */
2378 if (HAS_BROKEN_CS_TLB(dev)) {
2379 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
2380 if (obj == NULL) {
2381 DRM_ERROR("Failed to allocate batch bo\n");
2382 return -ENOMEM;
2383 }
2384
2385 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2386 if (ret != 0) {
2387 drm_gem_object_unreference(&obj->base);
2388 DRM_ERROR("Failed to ping batch bo\n");
2389 return ret;
2390 }
2391
2392 ring->scratch.obj = obj;
2393 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2394 }
2395
2396 return intel_init_ring_buffer(dev, ring);
2397 }
2398
2399 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2400 {
2401 struct drm_i915_private *dev_priv = dev->dev_private;
2402 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2403 struct intel_ringbuffer *ringbuf = ring->buffer;
2404 int ret;
2405
2406 if (ringbuf == NULL) {
2407 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2408 if (!ringbuf)
2409 return -ENOMEM;
2410 ring->buffer = ringbuf;
2411 }
2412
2413 ring->name = "render ring";
2414 ring->id = RCS;
2415 ring->mmio_base = RENDER_RING_BASE;
2416
2417 if (INTEL_INFO(dev)->gen >= 6) {
2418 /* non-kms not supported on gen6+ */
2419 ret = -ENODEV;
2420 goto err_ringbuf;
2421 }
2422
2423 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2424 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2425 * the special gen5 functions. */
2426 ring->add_request = i9xx_add_request;
2427 if (INTEL_INFO(dev)->gen < 4)
2428 ring->flush = gen2_render_ring_flush;
2429 else
2430 ring->flush = gen4_render_ring_flush;
2431 ring->get_seqno = ring_get_seqno;
2432 ring->set_seqno = ring_set_seqno;
2433 if (IS_GEN2(dev)) {
2434 ring->irq_get = i8xx_ring_get_irq;
2435 ring->irq_put = i8xx_ring_put_irq;
2436 } else {
2437 ring->irq_get = i9xx_ring_get_irq;
2438 ring->irq_put = i9xx_ring_put_irq;
2439 }
2440 ring->irq_enable_mask = I915_USER_INTERRUPT;
2441 ring->write_tail = ring_write_tail;
2442 if (INTEL_INFO(dev)->gen >= 4)
2443 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2444 else if (IS_I830(dev) || IS_845G(dev))
2445 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2446 else
2447 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2448 ring->init = init_render_ring;
2449 ring->cleanup = render_ring_cleanup;
2450
2451 ring->dev = dev;
2452 INIT_LIST_HEAD(&ring->active_list);
2453 INIT_LIST_HEAD(&ring->request_list);
2454
2455 ringbuf->size = size;
2456 ringbuf->effective_size = ringbuf->size;
2457 if (IS_I830(ring->dev) || IS_845G(ring->dev))
2458 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2459
2460 ringbuf->virtual_start = ioremap_wc(start, size);
2461 if (ringbuf->virtual_start == NULL) {
2462 DRM_ERROR("can not ioremap virtual address for"
2463 " ring buffer\n");
2464 ret = -ENOMEM;
2465 goto err_ringbuf;
2466 }
2467
2468 if (!I915_NEED_GFX_HWS(dev)) {
2469 ret = init_phys_status_page(ring);
2470 if (ret)
2471 goto err_vstart;
2472 }
2473
2474 return 0;
2475
2476 err_vstart:
2477 iounmap(ringbuf->virtual_start);
2478 err_ringbuf:
2479 kfree(ringbuf);
2480 ring->buffer = NULL;
2481 return ret;
2482 }
2483
2484 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2485 {
2486 struct drm_i915_private *dev_priv = dev->dev_private;
2487 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2488
2489 ring->name = "bsd ring";
2490 ring->id = VCS;
2491
2492 ring->write_tail = ring_write_tail;
2493 if (INTEL_INFO(dev)->gen >= 6) {
2494 ring->mmio_base = GEN6_BSD_RING_BASE;
2495 /* gen6 bsd needs a special wa for tail updates */
2496 if (IS_GEN6(dev))
2497 ring->write_tail = gen6_bsd_ring_write_tail;
2498 ring->flush = gen6_bsd_ring_flush;
2499 ring->add_request = gen6_add_request;
2500 ring->get_seqno = gen6_ring_get_seqno;
2501 ring->set_seqno = ring_set_seqno;
2502 if (INTEL_INFO(dev)->gen >= 8) {
2503 ring->irq_enable_mask =
2504 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2505 ring->irq_get = gen8_ring_get_irq;
2506 ring->irq_put = gen8_ring_put_irq;
2507 ring->dispatch_execbuffer =
2508 gen8_ring_dispatch_execbuffer;
2509 if (i915_semaphore_is_enabled(dev)) {
2510 ring->semaphore.sync_to = gen8_ring_sync;
2511 ring->semaphore.signal = gen8_xcs_signal;
2512 GEN8_RING_SEMAPHORE_INIT;
2513 }
2514 } else {
2515 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2516 ring->irq_get = gen6_ring_get_irq;
2517 ring->irq_put = gen6_ring_put_irq;
2518 ring->dispatch_execbuffer =
2519 gen6_ring_dispatch_execbuffer;
2520 if (i915_semaphore_is_enabled(dev)) {
2521 ring->semaphore.sync_to = gen6_ring_sync;
2522 ring->semaphore.signal = gen6_signal;
2523 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2524 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2525 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2526 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2527 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2528 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2529 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2530 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2531 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2532 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2533 }
2534 }
2535 } else {
2536 ring->mmio_base = BSD_RING_BASE;
2537 ring->flush = bsd_ring_flush;
2538 ring->add_request = i9xx_add_request;
2539 ring->get_seqno = ring_get_seqno;
2540 ring->set_seqno = ring_set_seqno;
2541 if (IS_GEN5(dev)) {
2542 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2543 ring->irq_get = gen5_ring_get_irq;
2544 ring->irq_put = gen5_ring_put_irq;
2545 } else {
2546 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2547 ring->irq_get = i9xx_ring_get_irq;
2548 ring->irq_put = i9xx_ring_put_irq;
2549 }
2550 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2551 }
2552 ring->init = init_ring_common;
2553
2554 return intel_init_ring_buffer(dev, ring);
2555 }
2556
2557 /**
2558 * Initialize the second BSD ring for Broadwell GT3.
2559 * It is noted that this only exists on Broadwell GT3.
2560 */
2561 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2562 {
2563 struct drm_i915_private *dev_priv = dev->dev_private;
2564 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2565
2566 if ((INTEL_INFO(dev)->gen != 8)) {
2567 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2568 return -EINVAL;
2569 }
2570
2571 ring->name = "bsd2 ring";
2572 ring->id = VCS2;
2573
2574 ring->write_tail = ring_write_tail;
2575 ring->mmio_base = GEN8_BSD2_RING_BASE;
2576 ring->flush = gen6_bsd_ring_flush;
2577 ring->add_request = gen6_add_request;
2578 ring->get_seqno = gen6_ring_get_seqno;
2579 ring->set_seqno = ring_set_seqno;
2580 ring->irq_enable_mask =
2581 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2582 ring->irq_get = gen8_ring_get_irq;
2583 ring->irq_put = gen8_ring_put_irq;
2584 ring->dispatch_execbuffer =
2585 gen8_ring_dispatch_execbuffer;
2586 if (i915_semaphore_is_enabled(dev)) {
2587 ring->semaphore.sync_to = gen8_ring_sync;
2588 ring->semaphore.signal = gen8_xcs_signal;
2589 GEN8_RING_SEMAPHORE_INIT;
2590 }
2591 ring->init = init_ring_common;
2592
2593 return intel_init_ring_buffer(dev, ring);
2594 }
2595
2596 int intel_init_blt_ring_buffer(struct drm_device *dev)
2597 {
2598 struct drm_i915_private *dev_priv = dev->dev_private;
2599 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2600
2601 ring->name = "blitter ring";
2602 ring->id = BCS;
2603
2604 ring->mmio_base = BLT_RING_BASE;
2605 ring->write_tail = ring_write_tail;
2606 ring->flush = gen6_ring_flush;
2607 ring->add_request = gen6_add_request;
2608 ring->get_seqno = gen6_ring_get_seqno;
2609 ring->set_seqno = ring_set_seqno;
2610 if (INTEL_INFO(dev)->gen >= 8) {
2611 ring->irq_enable_mask =
2612 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2613 ring->irq_get = gen8_ring_get_irq;
2614 ring->irq_put = gen8_ring_put_irq;
2615 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2616 if (i915_semaphore_is_enabled(dev)) {
2617 ring->semaphore.sync_to = gen8_ring_sync;
2618 ring->semaphore.signal = gen8_xcs_signal;
2619 GEN8_RING_SEMAPHORE_INIT;
2620 }
2621 } else {
2622 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2623 ring->irq_get = gen6_ring_get_irq;
2624 ring->irq_put = gen6_ring_put_irq;
2625 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2626 if (i915_semaphore_is_enabled(dev)) {
2627 ring->semaphore.signal = gen6_signal;
2628 ring->semaphore.sync_to = gen6_ring_sync;
2629 /*
2630 * The current semaphore is only applied on pre-gen8
2631 * platform. And there is no VCS2 ring on the pre-gen8
2632 * platform. So the semaphore between BCS and VCS2 is
2633 * initialized as INVALID. Gen8 will initialize the
2634 * sema between BCS and VCS2 later.
2635 */
2636 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2637 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2638 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2639 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2640 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2641 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2642 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2643 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2644 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2645 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2646 }
2647 }
2648 ring->init = init_ring_common;
2649
2650 return intel_init_ring_buffer(dev, ring);
2651 }
2652
2653 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2654 {
2655 struct drm_i915_private *dev_priv = dev->dev_private;
2656 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2657
2658 ring->name = "video enhancement ring";
2659 ring->id = VECS;
2660
2661 ring->mmio_base = VEBOX_RING_BASE;
2662 ring->write_tail = ring_write_tail;
2663 ring->flush = gen6_ring_flush;
2664 ring->add_request = gen6_add_request;
2665 ring->get_seqno = gen6_ring_get_seqno;
2666 ring->set_seqno = ring_set_seqno;
2667
2668 if (INTEL_INFO(dev)->gen >= 8) {
2669 ring->irq_enable_mask =
2670 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2671 ring->irq_get = gen8_ring_get_irq;
2672 ring->irq_put = gen8_ring_put_irq;
2673 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2674 if (i915_semaphore_is_enabled(dev)) {
2675 ring->semaphore.sync_to = gen8_ring_sync;
2676 ring->semaphore.signal = gen8_xcs_signal;
2677 GEN8_RING_SEMAPHORE_INIT;
2678 }
2679 } else {
2680 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2681 ring->irq_get = hsw_vebox_get_irq;
2682 ring->irq_put = hsw_vebox_put_irq;
2683 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2684 if (i915_semaphore_is_enabled(dev)) {
2685 ring->semaphore.sync_to = gen6_ring_sync;
2686 ring->semaphore.signal = gen6_signal;
2687 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2688 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2689 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2690 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2691 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2692 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2693 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2694 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2695 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2696 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2697 }
2698 }
2699 ring->init = init_ring_common;
2700
2701 return intel_init_ring_buffer(dev, ring);
2702 }
2703
2704 int
2705 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2706 {
2707 int ret;
2708
2709 if (!ring->gpu_caches_dirty)
2710 return 0;
2711
2712 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2713 if (ret)
2714 return ret;
2715
2716 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2717
2718 ring->gpu_caches_dirty = false;
2719 return 0;
2720 }
2721
2722 int
2723 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2724 {
2725 uint32_t flush_domains;
2726 int ret;
2727
2728 flush_domains = 0;
2729 if (ring->gpu_caches_dirty)
2730 flush_domains = I915_GEM_GPU_DOMAINS;
2731
2732 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2733 if (ret)
2734 return ret;
2735
2736 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2737
2738 ring->gpu_caches_dirty = false;
2739 return 0;
2740 }
2741
2742 void
2743 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2744 {
2745 int ret;
2746
2747 if (!intel_ring_initialized(ring))
2748 return;
2749
2750 ret = intel_ring_idle(ring);
2751 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2752 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2753 ring->name, ret);
2754
2755 stop_ring(ring);
2756 }
This page took 0.124251 seconds and 5 git commands to generate.