Merge tag 'mmc-v3.17-1' of git://git.linaro.org/people/ulf.hansson/mmc
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
37 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
38 * to give some inclination as to some of the magic values used in the various
39 * workarounds!
40 */
41 #define CACHELINE_BYTES 64
42
43 static inline int __ring_space(int head, int tail, int size)
44 {
45 int space = head - (tail + I915_RING_FREE_SPACE);
46 if (space < 0)
47 space += size;
48 return space;
49 }
50
51 static inline int ring_space(struct intel_ringbuffer *ringbuf)
52 {
53 return __ring_space(ringbuf->head & HEAD_ADDR, ringbuf->tail, ringbuf->size);
54 }
55
56 static bool intel_ring_stopped(struct intel_engine_cs *ring)
57 {
58 struct drm_i915_private *dev_priv = ring->dev->dev_private;
59 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
60 }
61
62 void __intel_ring_advance(struct intel_engine_cs *ring)
63 {
64 struct intel_ringbuffer *ringbuf = ring->buffer;
65 ringbuf->tail &= ringbuf->size - 1;
66 if (intel_ring_stopped(ring))
67 return;
68 ring->write_tail(ring, ringbuf->tail);
69 }
70
71 static int
72 gen2_render_ring_flush(struct intel_engine_cs *ring,
73 u32 invalidate_domains,
74 u32 flush_domains)
75 {
76 u32 cmd;
77 int ret;
78
79 cmd = MI_FLUSH;
80 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
81 cmd |= MI_NO_WRITE_FLUSH;
82
83 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
84 cmd |= MI_READ_FLUSH;
85
86 ret = intel_ring_begin(ring, 2);
87 if (ret)
88 return ret;
89
90 intel_ring_emit(ring, cmd);
91 intel_ring_emit(ring, MI_NOOP);
92 intel_ring_advance(ring);
93
94 return 0;
95 }
96
97 static int
98 gen4_render_ring_flush(struct intel_engine_cs *ring,
99 u32 invalidate_domains,
100 u32 flush_domains)
101 {
102 struct drm_device *dev = ring->dev;
103 u32 cmd;
104 int ret;
105
106 /*
107 * read/write caches:
108 *
109 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
110 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
111 * also flushed at 2d versus 3d pipeline switches.
112 *
113 * read-only caches:
114 *
115 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
116 * MI_READ_FLUSH is set, and is always flushed on 965.
117 *
118 * I915_GEM_DOMAIN_COMMAND may not exist?
119 *
120 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
121 * invalidated when MI_EXE_FLUSH is set.
122 *
123 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
124 * invalidated with every MI_FLUSH.
125 *
126 * TLBs:
127 *
128 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
129 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
130 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
131 * are flushed at any MI_FLUSH.
132 */
133
134 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
135 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
136 cmd &= ~MI_NO_WRITE_FLUSH;
137 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
138 cmd |= MI_EXE_FLUSH;
139
140 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
141 (IS_G4X(dev) || IS_GEN5(dev)))
142 cmd |= MI_INVALIDATE_ISP;
143
144 ret = intel_ring_begin(ring, 2);
145 if (ret)
146 return ret;
147
148 intel_ring_emit(ring, cmd);
149 intel_ring_emit(ring, MI_NOOP);
150 intel_ring_advance(ring);
151
152 return 0;
153 }
154
155 /**
156 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
157 * implementing two workarounds on gen6. From section 1.4.7.1
158 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
159 *
160 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
161 * produced by non-pipelined state commands), software needs to first
162 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
163 * 0.
164 *
165 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
166 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
167 *
168 * And the workaround for these two requires this workaround first:
169 *
170 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
171 * BEFORE the pipe-control with a post-sync op and no write-cache
172 * flushes.
173 *
174 * And this last workaround is tricky because of the requirements on
175 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
176 * volume 2 part 1:
177 *
178 * "1 of the following must also be set:
179 * - Render Target Cache Flush Enable ([12] of DW1)
180 * - Depth Cache Flush Enable ([0] of DW1)
181 * - Stall at Pixel Scoreboard ([1] of DW1)
182 * - Depth Stall ([13] of DW1)
183 * - Post-Sync Operation ([13] of DW1)
184 * - Notify Enable ([8] of DW1)"
185 *
186 * The cache flushes require the workaround flush that triggered this
187 * one, so we can't use it. Depth stall would trigger the same.
188 * Post-sync nonzero is what triggered this second workaround, so we
189 * can't use that one either. Notify enable is IRQs, which aren't
190 * really our business. That leaves only stall at scoreboard.
191 */
192 static int
193 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
194 {
195 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
196 int ret;
197
198
199 ret = intel_ring_begin(ring, 6);
200 if (ret)
201 return ret;
202
203 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
204 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
205 PIPE_CONTROL_STALL_AT_SCOREBOARD);
206 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
207 intel_ring_emit(ring, 0); /* low dword */
208 intel_ring_emit(ring, 0); /* high dword */
209 intel_ring_emit(ring, MI_NOOP);
210 intel_ring_advance(ring);
211
212 ret = intel_ring_begin(ring, 6);
213 if (ret)
214 return ret;
215
216 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
217 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
218 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
219 intel_ring_emit(ring, 0);
220 intel_ring_emit(ring, 0);
221 intel_ring_emit(ring, MI_NOOP);
222 intel_ring_advance(ring);
223
224 return 0;
225 }
226
227 static int
228 gen6_render_ring_flush(struct intel_engine_cs *ring,
229 u32 invalidate_domains, u32 flush_domains)
230 {
231 u32 flags = 0;
232 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
233 int ret;
234
235 /* Force SNB workarounds for PIPE_CONTROL flushes */
236 ret = intel_emit_post_sync_nonzero_flush(ring);
237 if (ret)
238 return ret;
239
240 /* Just flush everything. Experiments have shown that reducing the
241 * number of bits based on the write domains has little performance
242 * impact.
243 */
244 if (flush_domains) {
245 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
246 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
247 /*
248 * Ensure that any following seqno writes only happen
249 * when the render cache is indeed flushed.
250 */
251 flags |= PIPE_CONTROL_CS_STALL;
252 }
253 if (invalidate_domains) {
254 flags |= PIPE_CONTROL_TLB_INVALIDATE;
255 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
256 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
257 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
258 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
259 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
260 /*
261 * TLB invalidate requires a post-sync write.
262 */
263 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
264 }
265
266 ret = intel_ring_begin(ring, 4);
267 if (ret)
268 return ret;
269
270 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
271 intel_ring_emit(ring, flags);
272 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
273 intel_ring_emit(ring, 0);
274 intel_ring_advance(ring);
275
276 return 0;
277 }
278
279 static int
280 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
281 {
282 int ret;
283
284 ret = intel_ring_begin(ring, 4);
285 if (ret)
286 return ret;
287
288 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
289 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
290 PIPE_CONTROL_STALL_AT_SCOREBOARD);
291 intel_ring_emit(ring, 0);
292 intel_ring_emit(ring, 0);
293 intel_ring_advance(ring);
294
295 return 0;
296 }
297
298 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
299 {
300 int ret;
301
302 if (!ring->fbc_dirty)
303 return 0;
304
305 ret = intel_ring_begin(ring, 6);
306 if (ret)
307 return ret;
308 /* WaFbcNukeOn3DBlt:ivb/hsw */
309 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
310 intel_ring_emit(ring, MSG_FBC_REND_STATE);
311 intel_ring_emit(ring, value);
312 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
313 intel_ring_emit(ring, MSG_FBC_REND_STATE);
314 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
315 intel_ring_advance(ring);
316
317 ring->fbc_dirty = false;
318 return 0;
319 }
320
321 static int
322 gen7_render_ring_flush(struct intel_engine_cs *ring,
323 u32 invalidate_domains, u32 flush_domains)
324 {
325 u32 flags = 0;
326 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
327 int ret;
328
329 /*
330 * Ensure that any following seqno writes only happen when the render
331 * cache is indeed flushed.
332 *
333 * Workaround: 4th PIPE_CONTROL command (except the ones with only
334 * read-cache invalidate bits set) must have the CS_STALL bit set. We
335 * don't try to be clever and just set it unconditionally.
336 */
337 flags |= PIPE_CONTROL_CS_STALL;
338
339 /* Just flush everything. Experiments have shown that reducing the
340 * number of bits based on the write domains has little performance
341 * impact.
342 */
343 if (flush_domains) {
344 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
345 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
346 }
347 if (invalidate_domains) {
348 flags |= PIPE_CONTROL_TLB_INVALIDATE;
349 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
350 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
351 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
352 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
353 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
354 /*
355 * TLB invalidate requires a post-sync write.
356 */
357 flags |= PIPE_CONTROL_QW_WRITE;
358 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
359
360 /* Workaround: we must issue a pipe_control with CS-stall bit
361 * set before a pipe_control command that has the state cache
362 * invalidate bit set. */
363 gen7_render_ring_cs_stall_wa(ring);
364 }
365
366 ret = intel_ring_begin(ring, 4);
367 if (ret)
368 return ret;
369
370 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
371 intel_ring_emit(ring, flags);
372 intel_ring_emit(ring, scratch_addr);
373 intel_ring_emit(ring, 0);
374 intel_ring_advance(ring);
375
376 if (!invalidate_domains && flush_domains)
377 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
378
379 return 0;
380 }
381
382 static int
383 gen8_emit_pipe_control(struct intel_engine_cs *ring,
384 u32 flags, u32 scratch_addr)
385 {
386 int ret;
387
388 ret = intel_ring_begin(ring, 6);
389 if (ret)
390 return ret;
391
392 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
393 intel_ring_emit(ring, flags);
394 intel_ring_emit(ring, scratch_addr);
395 intel_ring_emit(ring, 0);
396 intel_ring_emit(ring, 0);
397 intel_ring_emit(ring, 0);
398 intel_ring_advance(ring);
399
400 return 0;
401 }
402
403 static int
404 gen8_render_ring_flush(struct intel_engine_cs *ring,
405 u32 invalidate_domains, u32 flush_domains)
406 {
407 u32 flags = 0;
408 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
409 int ret;
410
411 flags |= PIPE_CONTROL_CS_STALL;
412
413 if (flush_domains) {
414 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
415 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
416 }
417 if (invalidate_domains) {
418 flags |= PIPE_CONTROL_TLB_INVALIDATE;
419 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
420 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
421 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
422 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
423 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
424 flags |= PIPE_CONTROL_QW_WRITE;
425 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
426
427 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
428 ret = gen8_emit_pipe_control(ring,
429 PIPE_CONTROL_CS_STALL |
430 PIPE_CONTROL_STALL_AT_SCOREBOARD,
431 0);
432 if (ret)
433 return ret;
434 }
435
436 return gen8_emit_pipe_control(ring, flags, scratch_addr);
437 }
438
439 static void ring_write_tail(struct intel_engine_cs *ring,
440 u32 value)
441 {
442 struct drm_i915_private *dev_priv = ring->dev->dev_private;
443 I915_WRITE_TAIL(ring, value);
444 }
445
446 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
447 {
448 struct drm_i915_private *dev_priv = ring->dev->dev_private;
449 u64 acthd;
450
451 if (INTEL_INFO(ring->dev)->gen >= 8)
452 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
453 RING_ACTHD_UDW(ring->mmio_base));
454 else if (INTEL_INFO(ring->dev)->gen >= 4)
455 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
456 else
457 acthd = I915_READ(ACTHD);
458
459 return acthd;
460 }
461
462 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
463 {
464 struct drm_i915_private *dev_priv = ring->dev->dev_private;
465 u32 addr;
466
467 addr = dev_priv->status_page_dmah->busaddr;
468 if (INTEL_INFO(ring->dev)->gen >= 4)
469 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
470 I915_WRITE(HWS_PGA, addr);
471 }
472
473 static bool stop_ring(struct intel_engine_cs *ring)
474 {
475 struct drm_i915_private *dev_priv = to_i915(ring->dev);
476
477 if (!IS_GEN2(ring->dev)) {
478 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
479 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
480 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
481 return false;
482 }
483 }
484
485 I915_WRITE_CTL(ring, 0);
486 I915_WRITE_HEAD(ring, 0);
487 ring->write_tail(ring, 0);
488
489 if (!IS_GEN2(ring->dev)) {
490 (void)I915_READ_CTL(ring);
491 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
492 }
493
494 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
495 }
496
497 static int init_ring_common(struct intel_engine_cs *ring)
498 {
499 struct drm_device *dev = ring->dev;
500 struct drm_i915_private *dev_priv = dev->dev_private;
501 struct intel_ringbuffer *ringbuf = ring->buffer;
502 struct drm_i915_gem_object *obj = ringbuf->obj;
503 int ret = 0;
504
505 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
506
507 if (!stop_ring(ring)) {
508 /* G45 ring initialization often fails to reset head to zero */
509 DRM_DEBUG_KMS("%s head not reset to zero "
510 "ctl %08x head %08x tail %08x start %08x\n",
511 ring->name,
512 I915_READ_CTL(ring),
513 I915_READ_HEAD(ring),
514 I915_READ_TAIL(ring),
515 I915_READ_START(ring));
516
517 if (!stop_ring(ring)) {
518 DRM_ERROR("failed to set %s head to zero "
519 "ctl %08x head %08x tail %08x start %08x\n",
520 ring->name,
521 I915_READ_CTL(ring),
522 I915_READ_HEAD(ring),
523 I915_READ_TAIL(ring),
524 I915_READ_START(ring));
525 ret = -EIO;
526 goto out;
527 }
528 }
529
530 if (I915_NEED_GFX_HWS(dev))
531 intel_ring_setup_status_page(ring);
532 else
533 ring_setup_phys_status_page(ring);
534
535 /* Enforce ordering by reading HEAD register back */
536 I915_READ_HEAD(ring);
537
538 /* Initialize the ring. This must happen _after_ we've cleared the ring
539 * registers with the above sequence (the readback of the HEAD registers
540 * also enforces ordering), otherwise the hw might lose the new ring
541 * register values. */
542 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
543 I915_WRITE_CTL(ring,
544 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
545 | RING_VALID);
546
547 /* If the head is still not zero, the ring is dead */
548 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
549 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
550 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
551 DRM_ERROR("%s initialization failed "
552 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
553 ring->name,
554 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
555 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
556 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
557 ret = -EIO;
558 goto out;
559 }
560
561 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
562 i915_kernel_lost_context(ring->dev);
563 else {
564 ringbuf->head = I915_READ_HEAD(ring);
565 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
566 ringbuf->space = ring_space(ringbuf);
567 ringbuf->last_retired_head = -1;
568 }
569
570 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
571
572 out:
573 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
574
575 return ret;
576 }
577
578 static int
579 init_pipe_control(struct intel_engine_cs *ring)
580 {
581 int ret;
582
583 if (ring->scratch.obj)
584 return 0;
585
586 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
587 if (ring->scratch.obj == NULL) {
588 DRM_ERROR("Failed to allocate seqno page\n");
589 ret = -ENOMEM;
590 goto err;
591 }
592
593 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
594 if (ret)
595 goto err_unref;
596
597 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
598 if (ret)
599 goto err_unref;
600
601 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
602 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
603 if (ring->scratch.cpu_page == NULL) {
604 ret = -ENOMEM;
605 goto err_unpin;
606 }
607
608 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
609 ring->name, ring->scratch.gtt_offset);
610 return 0;
611
612 err_unpin:
613 i915_gem_object_ggtt_unpin(ring->scratch.obj);
614 err_unref:
615 drm_gem_object_unreference(&ring->scratch.obj->base);
616 err:
617 return ret;
618 }
619
620 static int init_render_ring(struct intel_engine_cs *ring)
621 {
622 struct drm_device *dev = ring->dev;
623 struct drm_i915_private *dev_priv = dev->dev_private;
624 int ret = init_ring_common(ring);
625 if (ret)
626 return ret;
627
628 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
629 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
630 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
631
632 /* We need to disable the AsyncFlip performance optimisations in order
633 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
634 * programmed to '1' on all products.
635 *
636 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
637 */
638 if (INTEL_INFO(dev)->gen >= 6)
639 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
640
641 /* Required for the hardware to program scanline values for waiting */
642 /* WaEnableFlushTlbInvalidationMode:snb */
643 if (INTEL_INFO(dev)->gen == 6)
644 I915_WRITE(GFX_MODE,
645 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
646
647 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
648 if (IS_GEN7(dev))
649 I915_WRITE(GFX_MODE_GEN7,
650 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
651 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
652
653 if (INTEL_INFO(dev)->gen >= 5) {
654 ret = init_pipe_control(ring);
655 if (ret)
656 return ret;
657 }
658
659 if (IS_GEN6(dev)) {
660 /* From the Sandybridge PRM, volume 1 part 3, page 24:
661 * "If this bit is set, STCunit will have LRA as replacement
662 * policy. [...] This bit must be reset. LRA replacement
663 * policy is not supported."
664 */
665 I915_WRITE(CACHE_MODE_0,
666 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
667 }
668
669 if (INTEL_INFO(dev)->gen >= 6)
670 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
671
672 if (HAS_L3_DPF(dev))
673 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
674
675 return ret;
676 }
677
678 static void render_ring_cleanup(struct intel_engine_cs *ring)
679 {
680 struct drm_device *dev = ring->dev;
681 struct drm_i915_private *dev_priv = dev->dev_private;
682
683 if (dev_priv->semaphore_obj) {
684 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
685 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
686 dev_priv->semaphore_obj = NULL;
687 }
688
689 if (ring->scratch.obj == NULL)
690 return;
691
692 if (INTEL_INFO(dev)->gen >= 5) {
693 kunmap(sg_page(ring->scratch.obj->pages->sgl));
694 i915_gem_object_ggtt_unpin(ring->scratch.obj);
695 }
696
697 drm_gem_object_unreference(&ring->scratch.obj->base);
698 ring->scratch.obj = NULL;
699 }
700
701 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
702 unsigned int num_dwords)
703 {
704 #define MBOX_UPDATE_DWORDS 8
705 struct drm_device *dev = signaller->dev;
706 struct drm_i915_private *dev_priv = dev->dev_private;
707 struct intel_engine_cs *waiter;
708 int i, ret, num_rings;
709
710 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
711 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
712 #undef MBOX_UPDATE_DWORDS
713
714 ret = intel_ring_begin(signaller, num_dwords);
715 if (ret)
716 return ret;
717
718 for_each_ring(waiter, dev_priv, i) {
719 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
720 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
721 continue;
722
723 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
724 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
725 PIPE_CONTROL_QW_WRITE |
726 PIPE_CONTROL_FLUSH_ENABLE);
727 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
728 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
729 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
730 intel_ring_emit(signaller, 0);
731 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
732 MI_SEMAPHORE_TARGET(waiter->id));
733 intel_ring_emit(signaller, 0);
734 }
735
736 return 0;
737 }
738
739 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
740 unsigned int num_dwords)
741 {
742 #define MBOX_UPDATE_DWORDS 6
743 struct drm_device *dev = signaller->dev;
744 struct drm_i915_private *dev_priv = dev->dev_private;
745 struct intel_engine_cs *waiter;
746 int i, ret, num_rings;
747
748 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
749 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
750 #undef MBOX_UPDATE_DWORDS
751
752 ret = intel_ring_begin(signaller, num_dwords);
753 if (ret)
754 return ret;
755
756 for_each_ring(waiter, dev_priv, i) {
757 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
758 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
759 continue;
760
761 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
762 MI_FLUSH_DW_OP_STOREDW);
763 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
764 MI_FLUSH_DW_USE_GTT);
765 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
766 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
767 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
768 MI_SEMAPHORE_TARGET(waiter->id));
769 intel_ring_emit(signaller, 0);
770 }
771
772 return 0;
773 }
774
775 static int gen6_signal(struct intel_engine_cs *signaller,
776 unsigned int num_dwords)
777 {
778 struct drm_device *dev = signaller->dev;
779 struct drm_i915_private *dev_priv = dev->dev_private;
780 struct intel_engine_cs *useless;
781 int i, ret, num_rings;
782
783 #define MBOX_UPDATE_DWORDS 3
784 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
785 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
786 #undef MBOX_UPDATE_DWORDS
787
788 ret = intel_ring_begin(signaller, num_dwords);
789 if (ret)
790 return ret;
791
792 for_each_ring(useless, dev_priv, i) {
793 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
794 if (mbox_reg != GEN6_NOSYNC) {
795 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
796 intel_ring_emit(signaller, mbox_reg);
797 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
798 }
799 }
800
801 /* If num_dwords was rounded, make sure the tail pointer is correct */
802 if (num_rings % 2 == 0)
803 intel_ring_emit(signaller, MI_NOOP);
804
805 return 0;
806 }
807
808 /**
809 * gen6_add_request - Update the semaphore mailbox registers
810 *
811 * @ring - ring that is adding a request
812 * @seqno - return seqno stuck into the ring
813 *
814 * Update the mailbox registers in the *other* rings with the current seqno.
815 * This acts like a signal in the canonical semaphore.
816 */
817 static int
818 gen6_add_request(struct intel_engine_cs *ring)
819 {
820 int ret;
821
822 if (ring->semaphore.signal)
823 ret = ring->semaphore.signal(ring, 4);
824 else
825 ret = intel_ring_begin(ring, 4);
826
827 if (ret)
828 return ret;
829
830 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
831 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
832 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
833 intel_ring_emit(ring, MI_USER_INTERRUPT);
834 __intel_ring_advance(ring);
835
836 return 0;
837 }
838
839 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
840 u32 seqno)
841 {
842 struct drm_i915_private *dev_priv = dev->dev_private;
843 return dev_priv->last_seqno < seqno;
844 }
845
846 /**
847 * intel_ring_sync - sync the waiter to the signaller on seqno
848 *
849 * @waiter - ring that is waiting
850 * @signaller - ring which has, or will signal
851 * @seqno - seqno which the waiter will block on
852 */
853
854 static int
855 gen8_ring_sync(struct intel_engine_cs *waiter,
856 struct intel_engine_cs *signaller,
857 u32 seqno)
858 {
859 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
860 int ret;
861
862 ret = intel_ring_begin(waiter, 4);
863 if (ret)
864 return ret;
865
866 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
867 MI_SEMAPHORE_GLOBAL_GTT |
868 MI_SEMAPHORE_POLL |
869 MI_SEMAPHORE_SAD_GTE_SDD);
870 intel_ring_emit(waiter, seqno);
871 intel_ring_emit(waiter,
872 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
873 intel_ring_emit(waiter,
874 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
875 intel_ring_advance(waiter);
876 return 0;
877 }
878
879 static int
880 gen6_ring_sync(struct intel_engine_cs *waiter,
881 struct intel_engine_cs *signaller,
882 u32 seqno)
883 {
884 u32 dw1 = MI_SEMAPHORE_MBOX |
885 MI_SEMAPHORE_COMPARE |
886 MI_SEMAPHORE_REGISTER;
887 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
888 int ret;
889
890 /* Throughout all of the GEM code, seqno passed implies our current
891 * seqno is >= the last seqno executed. However for hardware the
892 * comparison is strictly greater than.
893 */
894 seqno -= 1;
895
896 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
897
898 ret = intel_ring_begin(waiter, 4);
899 if (ret)
900 return ret;
901
902 /* If seqno wrap happened, omit the wait with no-ops */
903 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
904 intel_ring_emit(waiter, dw1 | wait_mbox);
905 intel_ring_emit(waiter, seqno);
906 intel_ring_emit(waiter, 0);
907 intel_ring_emit(waiter, MI_NOOP);
908 } else {
909 intel_ring_emit(waiter, MI_NOOP);
910 intel_ring_emit(waiter, MI_NOOP);
911 intel_ring_emit(waiter, MI_NOOP);
912 intel_ring_emit(waiter, MI_NOOP);
913 }
914 intel_ring_advance(waiter);
915
916 return 0;
917 }
918
919 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
920 do { \
921 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
922 PIPE_CONTROL_DEPTH_STALL); \
923 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
924 intel_ring_emit(ring__, 0); \
925 intel_ring_emit(ring__, 0); \
926 } while (0)
927
928 static int
929 pc_render_add_request(struct intel_engine_cs *ring)
930 {
931 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
932 int ret;
933
934 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
935 * incoherent with writes to memory, i.e. completely fubar,
936 * so we need to use PIPE_NOTIFY instead.
937 *
938 * However, we also need to workaround the qword write
939 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
940 * memory before requesting an interrupt.
941 */
942 ret = intel_ring_begin(ring, 32);
943 if (ret)
944 return ret;
945
946 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
947 PIPE_CONTROL_WRITE_FLUSH |
948 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
949 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
950 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
951 intel_ring_emit(ring, 0);
952 PIPE_CONTROL_FLUSH(ring, scratch_addr);
953 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
954 PIPE_CONTROL_FLUSH(ring, scratch_addr);
955 scratch_addr += 2 * CACHELINE_BYTES;
956 PIPE_CONTROL_FLUSH(ring, scratch_addr);
957 scratch_addr += 2 * CACHELINE_BYTES;
958 PIPE_CONTROL_FLUSH(ring, scratch_addr);
959 scratch_addr += 2 * CACHELINE_BYTES;
960 PIPE_CONTROL_FLUSH(ring, scratch_addr);
961 scratch_addr += 2 * CACHELINE_BYTES;
962 PIPE_CONTROL_FLUSH(ring, scratch_addr);
963
964 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
965 PIPE_CONTROL_WRITE_FLUSH |
966 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
967 PIPE_CONTROL_NOTIFY);
968 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
969 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
970 intel_ring_emit(ring, 0);
971 __intel_ring_advance(ring);
972
973 return 0;
974 }
975
976 static u32
977 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
978 {
979 /* Workaround to force correct ordering between irq and seqno writes on
980 * ivb (and maybe also on snb) by reading from a CS register (like
981 * ACTHD) before reading the status page. */
982 if (!lazy_coherency) {
983 struct drm_i915_private *dev_priv = ring->dev->dev_private;
984 POSTING_READ(RING_ACTHD(ring->mmio_base));
985 }
986
987 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
988 }
989
990 static u32
991 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
992 {
993 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
994 }
995
996 static void
997 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
998 {
999 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1000 }
1001
1002 static u32
1003 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1004 {
1005 return ring->scratch.cpu_page[0];
1006 }
1007
1008 static void
1009 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1010 {
1011 ring->scratch.cpu_page[0] = seqno;
1012 }
1013
1014 static bool
1015 gen5_ring_get_irq(struct intel_engine_cs *ring)
1016 {
1017 struct drm_device *dev = ring->dev;
1018 struct drm_i915_private *dev_priv = dev->dev_private;
1019 unsigned long flags;
1020
1021 if (!dev->irq_enabled)
1022 return false;
1023
1024 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1025 if (ring->irq_refcount++ == 0)
1026 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1027 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1028
1029 return true;
1030 }
1031
1032 static void
1033 gen5_ring_put_irq(struct intel_engine_cs *ring)
1034 {
1035 struct drm_device *dev = ring->dev;
1036 struct drm_i915_private *dev_priv = dev->dev_private;
1037 unsigned long flags;
1038
1039 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1040 if (--ring->irq_refcount == 0)
1041 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1042 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1043 }
1044
1045 static bool
1046 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1047 {
1048 struct drm_device *dev = ring->dev;
1049 struct drm_i915_private *dev_priv = dev->dev_private;
1050 unsigned long flags;
1051
1052 if (!dev->irq_enabled)
1053 return false;
1054
1055 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1056 if (ring->irq_refcount++ == 0) {
1057 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1058 I915_WRITE(IMR, dev_priv->irq_mask);
1059 POSTING_READ(IMR);
1060 }
1061 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1062
1063 return true;
1064 }
1065
1066 static void
1067 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1068 {
1069 struct drm_device *dev = ring->dev;
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 unsigned long flags;
1072
1073 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1074 if (--ring->irq_refcount == 0) {
1075 dev_priv->irq_mask |= ring->irq_enable_mask;
1076 I915_WRITE(IMR, dev_priv->irq_mask);
1077 POSTING_READ(IMR);
1078 }
1079 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1080 }
1081
1082 static bool
1083 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1084 {
1085 struct drm_device *dev = ring->dev;
1086 struct drm_i915_private *dev_priv = dev->dev_private;
1087 unsigned long flags;
1088
1089 if (!dev->irq_enabled)
1090 return false;
1091
1092 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1093 if (ring->irq_refcount++ == 0) {
1094 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1095 I915_WRITE16(IMR, dev_priv->irq_mask);
1096 POSTING_READ16(IMR);
1097 }
1098 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1099
1100 return true;
1101 }
1102
1103 static void
1104 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1105 {
1106 struct drm_device *dev = ring->dev;
1107 struct drm_i915_private *dev_priv = dev->dev_private;
1108 unsigned long flags;
1109
1110 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1111 if (--ring->irq_refcount == 0) {
1112 dev_priv->irq_mask |= ring->irq_enable_mask;
1113 I915_WRITE16(IMR, dev_priv->irq_mask);
1114 POSTING_READ16(IMR);
1115 }
1116 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1117 }
1118
1119 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1120 {
1121 struct drm_device *dev = ring->dev;
1122 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1123 u32 mmio = 0;
1124
1125 /* The ring status page addresses are no longer next to the rest of
1126 * the ring registers as of gen7.
1127 */
1128 if (IS_GEN7(dev)) {
1129 switch (ring->id) {
1130 case RCS:
1131 mmio = RENDER_HWS_PGA_GEN7;
1132 break;
1133 case BCS:
1134 mmio = BLT_HWS_PGA_GEN7;
1135 break;
1136 /*
1137 * VCS2 actually doesn't exist on Gen7. Only shut up
1138 * gcc switch check warning
1139 */
1140 case VCS2:
1141 case VCS:
1142 mmio = BSD_HWS_PGA_GEN7;
1143 break;
1144 case VECS:
1145 mmio = VEBOX_HWS_PGA_GEN7;
1146 break;
1147 }
1148 } else if (IS_GEN6(ring->dev)) {
1149 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1150 } else {
1151 /* XXX: gen8 returns to sanity */
1152 mmio = RING_HWS_PGA(ring->mmio_base);
1153 }
1154
1155 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1156 POSTING_READ(mmio);
1157
1158 /*
1159 * Flush the TLB for this page
1160 *
1161 * FIXME: These two bits have disappeared on gen8, so a question
1162 * arises: do we still need this and if so how should we go about
1163 * invalidating the TLB?
1164 */
1165 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1166 u32 reg = RING_INSTPM(ring->mmio_base);
1167
1168 /* ring should be idle before issuing a sync flush*/
1169 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1170
1171 I915_WRITE(reg,
1172 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1173 INSTPM_SYNC_FLUSH));
1174 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1175 1000))
1176 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1177 ring->name);
1178 }
1179 }
1180
1181 static int
1182 bsd_ring_flush(struct intel_engine_cs *ring,
1183 u32 invalidate_domains,
1184 u32 flush_domains)
1185 {
1186 int ret;
1187
1188 ret = intel_ring_begin(ring, 2);
1189 if (ret)
1190 return ret;
1191
1192 intel_ring_emit(ring, MI_FLUSH);
1193 intel_ring_emit(ring, MI_NOOP);
1194 intel_ring_advance(ring);
1195 return 0;
1196 }
1197
1198 static int
1199 i9xx_add_request(struct intel_engine_cs *ring)
1200 {
1201 int ret;
1202
1203 ret = intel_ring_begin(ring, 4);
1204 if (ret)
1205 return ret;
1206
1207 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1208 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1209 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1210 intel_ring_emit(ring, MI_USER_INTERRUPT);
1211 __intel_ring_advance(ring);
1212
1213 return 0;
1214 }
1215
1216 static bool
1217 gen6_ring_get_irq(struct intel_engine_cs *ring)
1218 {
1219 struct drm_device *dev = ring->dev;
1220 struct drm_i915_private *dev_priv = dev->dev_private;
1221 unsigned long flags;
1222
1223 if (!dev->irq_enabled)
1224 return false;
1225
1226 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1227 if (ring->irq_refcount++ == 0) {
1228 if (HAS_L3_DPF(dev) && ring->id == RCS)
1229 I915_WRITE_IMR(ring,
1230 ~(ring->irq_enable_mask |
1231 GT_PARITY_ERROR(dev)));
1232 else
1233 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1234 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1235 }
1236 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1237
1238 return true;
1239 }
1240
1241 static void
1242 gen6_ring_put_irq(struct intel_engine_cs *ring)
1243 {
1244 struct drm_device *dev = ring->dev;
1245 struct drm_i915_private *dev_priv = dev->dev_private;
1246 unsigned long flags;
1247
1248 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1249 if (--ring->irq_refcount == 0) {
1250 if (HAS_L3_DPF(dev) && ring->id == RCS)
1251 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1252 else
1253 I915_WRITE_IMR(ring, ~0);
1254 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1255 }
1256 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1257 }
1258
1259 static bool
1260 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1261 {
1262 struct drm_device *dev = ring->dev;
1263 struct drm_i915_private *dev_priv = dev->dev_private;
1264 unsigned long flags;
1265
1266 if (!dev->irq_enabled)
1267 return false;
1268
1269 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1270 if (ring->irq_refcount++ == 0) {
1271 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1272 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1273 }
1274 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1275
1276 return true;
1277 }
1278
1279 static void
1280 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1281 {
1282 struct drm_device *dev = ring->dev;
1283 struct drm_i915_private *dev_priv = dev->dev_private;
1284 unsigned long flags;
1285
1286 if (!dev->irq_enabled)
1287 return;
1288
1289 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1290 if (--ring->irq_refcount == 0) {
1291 I915_WRITE_IMR(ring, ~0);
1292 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1293 }
1294 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1295 }
1296
1297 static bool
1298 gen8_ring_get_irq(struct intel_engine_cs *ring)
1299 {
1300 struct drm_device *dev = ring->dev;
1301 struct drm_i915_private *dev_priv = dev->dev_private;
1302 unsigned long flags;
1303
1304 if (!dev->irq_enabled)
1305 return false;
1306
1307 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1308 if (ring->irq_refcount++ == 0) {
1309 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1310 I915_WRITE_IMR(ring,
1311 ~(ring->irq_enable_mask |
1312 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1313 } else {
1314 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1315 }
1316 POSTING_READ(RING_IMR(ring->mmio_base));
1317 }
1318 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1319
1320 return true;
1321 }
1322
1323 static void
1324 gen8_ring_put_irq(struct intel_engine_cs *ring)
1325 {
1326 struct drm_device *dev = ring->dev;
1327 struct drm_i915_private *dev_priv = dev->dev_private;
1328 unsigned long flags;
1329
1330 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1331 if (--ring->irq_refcount == 0) {
1332 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1333 I915_WRITE_IMR(ring,
1334 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1335 } else {
1336 I915_WRITE_IMR(ring, ~0);
1337 }
1338 POSTING_READ(RING_IMR(ring->mmio_base));
1339 }
1340 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1341 }
1342
1343 static int
1344 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1345 u64 offset, u32 length,
1346 unsigned flags)
1347 {
1348 int ret;
1349
1350 ret = intel_ring_begin(ring, 2);
1351 if (ret)
1352 return ret;
1353
1354 intel_ring_emit(ring,
1355 MI_BATCH_BUFFER_START |
1356 MI_BATCH_GTT |
1357 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1358 intel_ring_emit(ring, offset);
1359 intel_ring_advance(ring);
1360
1361 return 0;
1362 }
1363
1364 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1365 #define I830_BATCH_LIMIT (256*1024)
1366 static int
1367 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1368 u64 offset, u32 len,
1369 unsigned flags)
1370 {
1371 int ret;
1372
1373 if (flags & I915_DISPATCH_PINNED) {
1374 ret = intel_ring_begin(ring, 4);
1375 if (ret)
1376 return ret;
1377
1378 intel_ring_emit(ring, MI_BATCH_BUFFER);
1379 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1380 intel_ring_emit(ring, offset + len - 8);
1381 intel_ring_emit(ring, MI_NOOP);
1382 intel_ring_advance(ring);
1383 } else {
1384 u32 cs_offset = ring->scratch.gtt_offset;
1385
1386 if (len > I830_BATCH_LIMIT)
1387 return -ENOSPC;
1388
1389 ret = intel_ring_begin(ring, 9+3);
1390 if (ret)
1391 return ret;
1392 /* Blit the batch (which has now all relocs applied) to the stable batch
1393 * scratch bo area (so that the CS never stumbles over its tlb
1394 * invalidation bug) ... */
1395 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1396 XY_SRC_COPY_BLT_WRITE_ALPHA |
1397 XY_SRC_COPY_BLT_WRITE_RGB);
1398 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1399 intel_ring_emit(ring, 0);
1400 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1401 intel_ring_emit(ring, cs_offset);
1402 intel_ring_emit(ring, 0);
1403 intel_ring_emit(ring, 4096);
1404 intel_ring_emit(ring, offset);
1405 intel_ring_emit(ring, MI_FLUSH);
1406
1407 /* ... and execute it. */
1408 intel_ring_emit(ring, MI_BATCH_BUFFER);
1409 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1410 intel_ring_emit(ring, cs_offset + len - 8);
1411 intel_ring_advance(ring);
1412 }
1413
1414 return 0;
1415 }
1416
1417 static int
1418 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1419 u64 offset, u32 len,
1420 unsigned flags)
1421 {
1422 int ret;
1423
1424 ret = intel_ring_begin(ring, 2);
1425 if (ret)
1426 return ret;
1427
1428 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1429 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1430 intel_ring_advance(ring);
1431
1432 return 0;
1433 }
1434
1435 static void cleanup_status_page(struct intel_engine_cs *ring)
1436 {
1437 struct drm_i915_gem_object *obj;
1438
1439 obj = ring->status_page.obj;
1440 if (obj == NULL)
1441 return;
1442
1443 kunmap(sg_page(obj->pages->sgl));
1444 i915_gem_object_ggtt_unpin(obj);
1445 drm_gem_object_unreference(&obj->base);
1446 ring->status_page.obj = NULL;
1447 }
1448
1449 static int init_status_page(struct intel_engine_cs *ring)
1450 {
1451 struct drm_i915_gem_object *obj;
1452
1453 if ((obj = ring->status_page.obj) == NULL) {
1454 unsigned flags;
1455 int ret;
1456
1457 obj = i915_gem_alloc_object(ring->dev, 4096);
1458 if (obj == NULL) {
1459 DRM_ERROR("Failed to allocate status page\n");
1460 return -ENOMEM;
1461 }
1462
1463 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1464 if (ret)
1465 goto err_unref;
1466
1467 flags = 0;
1468 if (!HAS_LLC(ring->dev))
1469 /* On g33, we cannot place HWS above 256MiB, so
1470 * restrict its pinning to the low mappable arena.
1471 * Though this restriction is not documented for
1472 * gen4, gen5, or byt, they also behave similarly
1473 * and hang if the HWS is placed at the top of the
1474 * GTT. To generalise, it appears that all !llc
1475 * platforms have issues with us placing the HWS
1476 * above the mappable region (even though we never
1477 * actualy map it).
1478 */
1479 flags |= PIN_MAPPABLE;
1480 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1481 if (ret) {
1482 err_unref:
1483 drm_gem_object_unreference(&obj->base);
1484 return ret;
1485 }
1486
1487 ring->status_page.obj = obj;
1488 }
1489
1490 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1491 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1492 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1493
1494 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1495 ring->name, ring->status_page.gfx_addr);
1496
1497 return 0;
1498 }
1499
1500 static int init_phys_status_page(struct intel_engine_cs *ring)
1501 {
1502 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1503
1504 if (!dev_priv->status_page_dmah) {
1505 dev_priv->status_page_dmah =
1506 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1507 if (!dev_priv->status_page_dmah)
1508 return -ENOMEM;
1509 }
1510
1511 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1512 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1513
1514 return 0;
1515 }
1516
1517 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1518 {
1519 if (!ringbuf->obj)
1520 return;
1521
1522 iounmap(ringbuf->virtual_start);
1523 i915_gem_object_ggtt_unpin(ringbuf->obj);
1524 drm_gem_object_unreference(&ringbuf->obj->base);
1525 ringbuf->obj = NULL;
1526 }
1527
1528 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1529 struct intel_ringbuffer *ringbuf)
1530 {
1531 struct drm_i915_private *dev_priv = to_i915(dev);
1532 struct drm_i915_gem_object *obj;
1533 int ret;
1534
1535 if (ringbuf->obj)
1536 return 0;
1537
1538 obj = NULL;
1539 if (!HAS_LLC(dev))
1540 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1541 if (obj == NULL)
1542 obj = i915_gem_alloc_object(dev, ringbuf->size);
1543 if (obj == NULL)
1544 return -ENOMEM;
1545
1546 /* mark ring buffers as read-only from GPU side by default */
1547 obj->gt_ro = 1;
1548
1549 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1550 if (ret)
1551 goto err_unref;
1552
1553 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1554 if (ret)
1555 goto err_unpin;
1556
1557 ringbuf->virtual_start =
1558 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1559 ringbuf->size);
1560 if (ringbuf->virtual_start == NULL) {
1561 ret = -EINVAL;
1562 goto err_unpin;
1563 }
1564
1565 ringbuf->obj = obj;
1566 return 0;
1567
1568 err_unpin:
1569 i915_gem_object_ggtt_unpin(obj);
1570 err_unref:
1571 drm_gem_object_unreference(&obj->base);
1572 return ret;
1573 }
1574
1575 static int intel_init_ring_buffer(struct drm_device *dev,
1576 struct intel_engine_cs *ring)
1577 {
1578 struct intel_ringbuffer *ringbuf = ring->buffer;
1579 int ret;
1580
1581 if (ringbuf == NULL) {
1582 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1583 if (!ringbuf)
1584 return -ENOMEM;
1585 ring->buffer = ringbuf;
1586 }
1587
1588 ring->dev = dev;
1589 INIT_LIST_HEAD(&ring->active_list);
1590 INIT_LIST_HEAD(&ring->request_list);
1591 ringbuf->size = 32 * PAGE_SIZE;
1592 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1593
1594 init_waitqueue_head(&ring->irq_queue);
1595
1596 if (I915_NEED_GFX_HWS(dev)) {
1597 ret = init_status_page(ring);
1598 if (ret)
1599 goto error;
1600 } else {
1601 BUG_ON(ring->id != RCS);
1602 ret = init_phys_status_page(ring);
1603 if (ret)
1604 goto error;
1605 }
1606
1607 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1608 if (ret) {
1609 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1610 goto error;
1611 }
1612
1613 /* Workaround an erratum on the i830 which causes a hang if
1614 * the TAIL pointer points to within the last 2 cachelines
1615 * of the buffer.
1616 */
1617 ringbuf->effective_size = ringbuf->size;
1618 if (IS_I830(dev) || IS_845G(dev))
1619 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1620
1621 ret = i915_cmd_parser_init_ring(ring);
1622 if (ret)
1623 goto error;
1624
1625 ret = ring->init(ring);
1626 if (ret)
1627 goto error;
1628
1629 return 0;
1630
1631 error:
1632 kfree(ringbuf);
1633 ring->buffer = NULL;
1634 return ret;
1635 }
1636
1637 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1638 {
1639 struct drm_i915_private *dev_priv = to_i915(ring->dev);
1640 struct intel_ringbuffer *ringbuf = ring->buffer;
1641
1642 if (!intel_ring_initialized(ring))
1643 return;
1644
1645 intel_stop_ring_buffer(ring);
1646 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1647
1648 intel_destroy_ringbuffer_obj(ringbuf);
1649 ring->preallocated_lazy_request = NULL;
1650 ring->outstanding_lazy_seqno = 0;
1651
1652 if (ring->cleanup)
1653 ring->cleanup(ring);
1654
1655 cleanup_status_page(ring);
1656
1657 i915_cmd_parser_fini_ring(ring);
1658
1659 kfree(ringbuf);
1660 ring->buffer = NULL;
1661 }
1662
1663 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1664 {
1665 struct intel_ringbuffer *ringbuf = ring->buffer;
1666 struct drm_i915_gem_request *request;
1667 u32 seqno = 0;
1668 int ret;
1669
1670 if (ringbuf->last_retired_head != -1) {
1671 ringbuf->head = ringbuf->last_retired_head;
1672 ringbuf->last_retired_head = -1;
1673
1674 ringbuf->space = ring_space(ringbuf);
1675 if (ringbuf->space >= n)
1676 return 0;
1677 }
1678
1679 list_for_each_entry(request, &ring->request_list, list) {
1680 if (__ring_space(request->tail, ringbuf->tail, ringbuf->size) >= n) {
1681 seqno = request->seqno;
1682 break;
1683 }
1684 }
1685
1686 if (seqno == 0)
1687 return -ENOSPC;
1688
1689 ret = i915_wait_seqno(ring, seqno);
1690 if (ret)
1691 return ret;
1692
1693 i915_gem_retire_requests_ring(ring);
1694 ringbuf->head = ringbuf->last_retired_head;
1695 ringbuf->last_retired_head = -1;
1696
1697 ringbuf->space = ring_space(ringbuf);
1698 return 0;
1699 }
1700
1701 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1702 {
1703 struct drm_device *dev = ring->dev;
1704 struct drm_i915_private *dev_priv = dev->dev_private;
1705 struct intel_ringbuffer *ringbuf = ring->buffer;
1706 unsigned long end;
1707 int ret;
1708
1709 ret = intel_ring_wait_request(ring, n);
1710 if (ret != -ENOSPC)
1711 return ret;
1712
1713 /* force the tail write in case we have been skipping them */
1714 __intel_ring_advance(ring);
1715
1716 /* With GEM the hangcheck timer should kick us out of the loop,
1717 * leaving it early runs the risk of corrupting GEM state (due
1718 * to running on almost untested codepaths). But on resume
1719 * timers don't work yet, so prevent a complete hang in that
1720 * case by choosing an insanely large timeout. */
1721 end = jiffies + 60 * HZ;
1722
1723 trace_i915_ring_wait_begin(ring);
1724 do {
1725 ringbuf->head = I915_READ_HEAD(ring);
1726 ringbuf->space = ring_space(ringbuf);
1727 if (ringbuf->space >= n) {
1728 ret = 0;
1729 break;
1730 }
1731
1732 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1733 dev->primary->master) {
1734 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1735 if (master_priv->sarea_priv)
1736 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1737 }
1738
1739 msleep(1);
1740
1741 if (dev_priv->mm.interruptible && signal_pending(current)) {
1742 ret = -ERESTARTSYS;
1743 break;
1744 }
1745
1746 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1747 dev_priv->mm.interruptible);
1748 if (ret)
1749 break;
1750
1751 if (time_after(jiffies, end)) {
1752 ret = -EBUSY;
1753 break;
1754 }
1755 } while (1);
1756 trace_i915_ring_wait_end(ring);
1757 return ret;
1758 }
1759
1760 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1761 {
1762 uint32_t __iomem *virt;
1763 struct intel_ringbuffer *ringbuf = ring->buffer;
1764 int rem = ringbuf->size - ringbuf->tail;
1765
1766 if (ringbuf->space < rem) {
1767 int ret = ring_wait_for_space(ring, rem);
1768 if (ret)
1769 return ret;
1770 }
1771
1772 virt = ringbuf->virtual_start + ringbuf->tail;
1773 rem /= 4;
1774 while (rem--)
1775 iowrite32(MI_NOOP, virt++);
1776
1777 ringbuf->tail = 0;
1778 ringbuf->space = ring_space(ringbuf);
1779
1780 return 0;
1781 }
1782
1783 int intel_ring_idle(struct intel_engine_cs *ring)
1784 {
1785 u32 seqno;
1786 int ret;
1787
1788 /* We need to add any requests required to flush the objects and ring */
1789 if (ring->outstanding_lazy_seqno) {
1790 ret = i915_add_request(ring, NULL);
1791 if (ret)
1792 return ret;
1793 }
1794
1795 /* Wait upon the last request to be completed */
1796 if (list_empty(&ring->request_list))
1797 return 0;
1798
1799 seqno = list_entry(ring->request_list.prev,
1800 struct drm_i915_gem_request,
1801 list)->seqno;
1802
1803 return i915_wait_seqno(ring, seqno);
1804 }
1805
1806 static int
1807 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
1808 {
1809 if (ring->outstanding_lazy_seqno)
1810 return 0;
1811
1812 if (ring->preallocated_lazy_request == NULL) {
1813 struct drm_i915_gem_request *request;
1814
1815 request = kmalloc(sizeof(*request), GFP_KERNEL);
1816 if (request == NULL)
1817 return -ENOMEM;
1818
1819 ring->preallocated_lazy_request = request;
1820 }
1821
1822 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1823 }
1824
1825 static int __intel_ring_prepare(struct intel_engine_cs *ring,
1826 int bytes)
1827 {
1828 struct intel_ringbuffer *ringbuf = ring->buffer;
1829 int ret;
1830
1831 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1832 ret = intel_wrap_ring_buffer(ring);
1833 if (unlikely(ret))
1834 return ret;
1835 }
1836
1837 if (unlikely(ringbuf->space < bytes)) {
1838 ret = ring_wait_for_space(ring, bytes);
1839 if (unlikely(ret))
1840 return ret;
1841 }
1842
1843 return 0;
1844 }
1845
1846 int intel_ring_begin(struct intel_engine_cs *ring,
1847 int num_dwords)
1848 {
1849 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1850 int ret;
1851
1852 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1853 dev_priv->mm.interruptible);
1854 if (ret)
1855 return ret;
1856
1857 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1858 if (ret)
1859 return ret;
1860
1861 /* Preallocate the olr before touching the ring */
1862 ret = intel_ring_alloc_seqno(ring);
1863 if (ret)
1864 return ret;
1865
1866 ring->buffer->space -= num_dwords * sizeof(uint32_t);
1867 return 0;
1868 }
1869
1870 /* Align the ring tail to a cacheline boundary */
1871 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
1872 {
1873 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1874 int ret;
1875
1876 if (num_dwords == 0)
1877 return 0;
1878
1879 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1880 ret = intel_ring_begin(ring, num_dwords);
1881 if (ret)
1882 return ret;
1883
1884 while (num_dwords--)
1885 intel_ring_emit(ring, MI_NOOP);
1886
1887 intel_ring_advance(ring);
1888
1889 return 0;
1890 }
1891
1892 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
1893 {
1894 struct drm_device *dev = ring->dev;
1895 struct drm_i915_private *dev_priv = dev->dev_private;
1896
1897 BUG_ON(ring->outstanding_lazy_seqno);
1898
1899 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
1900 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1901 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1902 if (HAS_VEBOX(dev))
1903 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1904 }
1905
1906 ring->set_seqno(ring, seqno);
1907 ring->hangcheck.seqno = seqno;
1908 }
1909
1910 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
1911 u32 value)
1912 {
1913 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1914
1915 /* Every tail move must follow the sequence below */
1916
1917 /* Disable notification that the ring is IDLE. The GT
1918 * will then assume that it is busy and bring it out of rc6.
1919 */
1920 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1921 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1922
1923 /* Clear the context id. Here be magic! */
1924 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1925
1926 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1927 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1928 GEN6_BSD_SLEEP_INDICATOR) == 0,
1929 50))
1930 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1931
1932 /* Now that the ring is fully powered up, update the tail */
1933 I915_WRITE_TAIL(ring, value);
1934 POSTING_READ(RING_TAIL(ring->mmio_base));
1935
1936 /* Let the ring send IDLE messages to the GT again,
1937 * and so let it sleep to conserve power when idle.
1938 */
1939 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1940 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1941 }
1942
1943 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
1944 u32 invalidate, u32 flush)
1945 {
1946 uint32_t cmd;
1947 int ret;
1948
1949 ret = intel_ring_begin(ring, 4);
1950 if (ret)
1951 return ret;
1952
1953 cmd = MI_FLUSH_DW;
1954 if (INTEL_INFO(ring->dev)->gen >= 8)
1955 cmd += 1;
1956 /*
1957 * Bspec vol 1c.5 - video engine command streamer:
1958 * "If ENABLED, all TLBs will be invalidated once the flush
1959 * operation is complete. This bit is only valid when the
1960 * Post-Sync Operation field is a value of 1h or 3h."
1961 */
1962 if (invalidate & I915_GEM_GPU_DOMAINS)
1963 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1964 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1965 intel_ring_emit(ring, cmd);
1966 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1967 if (INTEL_INFO(ring->dev)->gen >= 8) {
1968 intel_ring_emit(ring, 0); /* upper addr */
1969 intel_ring_emit(ring, 0); /* value */
1970 } else {
1971 intel_ring_emit(ring, 0);
1972 intel_ring_emit(ring, MI_NOOP);
1973 }
1974 intel_ring_advance(ring);
1975 return 0;
1976 }
1977
1978 static int
1979 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1980 u64 offset, u32 len,
1981 unsigned flags)
1982 {
1983 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1984 bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1985 !(flags & I915_DISPATCH_SECURE);
1986 int ret;
1987
1988 ret = intel_ring_begin(ring, 4);
1989 if (ret)
1990 return ret;
1991
1992 /* FIXME(BDW): Address space and security selectors. */
1993 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1994 intel_ring_emit(ring, lower_32_bits(offset));
1995 intel_ring_emit(ring, upper_32_bits(offset));
1996 intel_ring_emit(ring, MI_NOOP);
1997 intel_ring_advance(ring);
1998
1999 return 0;
2000 }
2001
2002 static int
2003 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2004 u64 offset, u32 len,
2005 unsigned flags)
2006 {
2007 int ret;
2008
2009 ret = intel_ring_begin(ring, 2);
2010 if (ret)
2011 return ret;
2012
2013 intel_ring_emit(ring,
2014 MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
2015 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
2016 /* bit0-7 is the length on GEN6+ */
2017 intel_ring_emit(ring, offset);
2018 intel_ring_advance(ring);
2019
2020 return 0;
2021 }
2022
2023 static int
2024 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2025 u64 offset, u32 len,
2026 unsigned flags)
2027 {
2028 int ret;
2029
2030 ret = intel_ring_begin(ring, 2);
2031 if (ret)
2032 return ret;
2033
2034 intel_ring_emit(ring,
2035 MI_BATCH_BUFFER_START |
2036 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2037 /* bit0-7 is the length on GEN6+ */
2038 intel_ring_emit(ring, offset);
2039 intel_ring_advance(ring);
2040
2041 return 0;
2042 }
2043
2044 /* Blitter support (SandyBridge+) */
2045
2046 static int gen6_ring_flush(struct intel_engine_cs *ring,
2047 u32 invalidate, u32 flush)
2048 {
2049 struct drm_device *dev = ring->dev;
2050 uint32_t cmd;
2051 int ret;
2052
2053 ret = intel_ring_begin(ring, 4);
2054 if (ret)
2055 return ret;
2056
2057 cmd = MI_FLUSH_DW;
2058 if (INTEL_INFO(ring->dev)->gen >= 8)
2059 cmd += 1;
2060 /*
2061 * Bspec vol 1c.3 - blitter engine command streamer:
2062 * "If ENABLED, all TLBs will be invalidated once the flush
2063 * operation is complete. This bit is only valid when the
2064 * Post-Sync Operation field is a value of 1h or 3h."
2065 */
2066 if (invalidate & I915_GEM_DOMAIN_RENDER)
2067 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2068 MI_FLUSH_DW_OP_STOREDW;
2069 intel_ring_emit(ring, cmd);
2070 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2071 if (INTEL_INFO(ring->dev)->gen >= 8) {
2072 intel_ring_emit(ring, 0); /* upper addr */
2073 intel_ring_emit(ring, 0); /* value */
2074 } else {
2075 intel_ring_emit(ring, 0);
2076 intel_ring_emit(ring, MI_NOOP);
2077 }
2078 intel_ring_advance(ring);
2079
2080 if (IS_GEN7(dev) && !invalidate && flush)
2081 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2082
2083 return 0;
2084 }
2085
2086 int intel_init_render_ring_buffer(struct drm_device *dev)
2087 {
2088 struct drm_i915_private *dev_priv = dev->dev_private;
2089 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2090 struct drm_i915_gem_object *obj;
2091 int ret;
2092
2093 ring->name = "render ring";
2094 ring->id = RCS;
2095 ring->mmio_base = RENDER_RING_BASE;
2096
2097 if (INTEL_INFO(dev)->gen >= 8) {
2098 if (i915_semaphore_is_enabled(dev)) {
2099 obj = i915_gem_alloc_object(dev, 4096);
2100 if (obj == NULL) {
2101 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2102 i915.semaphores = 0;
2103 } else {
2104 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2105 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2106 if (ret != 0) {
2107 drm_gem_object_unreference(&obj->base);
2108 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2109 i915.semaphores = 0;
2110 } else
2111 dev_priv->semaphore_obj = obj;
2112 }
2113 }
2114 ring->add_request = gen6_add_request;
2115 ring->flush = gen8_render_ring_flush;
2116 ring->irq_get = gen8_ring_get_irq;
2117 ring->irq_put = gen8_ring_put_irq;
2118 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2119 ring->get_seqno = gen6_ring_get_seqno;
2120 ring->set_seqno = ring_set_seqno;
2121 if (i915_semaphore_is_enabled(dev)) {
2122 WARN_ON(!dev_priv->semaphore_obj);
2123 ring->semaphore.sync_to = gen8_ring_sync;
2124 ring->semaphore.signal = gen8_rcs_signal;
2125 GEN8_RING_SEMAPHORE_INIT;
2126 }
2127 } else if (INTEL_INFO(dev)->gen >= 6) {
2128 ring->add_request = gen6_add_request;
2129 ring->flush = gen7_render_ring_flush;
2130 if (INTEL_INFO(dev)->gen == 6)
2131 ring->flush = gen6_render_ring_flush;
2132 ring->irq_get = gen6_ring_get_irq;
2133 ring->irq_put = gen6_ring_put_irq;
2134 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2135 ring->get_seqno = gen6_ring_get_seqno;
2136 ring->set_seqno = ring_set_seqno;
2137 if (i915_semaphore_is_enabled(dev)) {
2138 ring->semaphore.sync_to = gen6_ring_sync;
2139 ring->semaphore.signal = gen6_signal;
2140 /*
2141 * The current semaphore is only applied on pre-gen8
2142 * platform. And there is no VCS2 ring on the pre-gen8
2143 * platform. So the semaphore between RCS and VCS2 is
2144 * initialized as INVALID. Gen8 will initialize the
2145 * sema between VCS2 and RCS later.
2146 */
2147 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2148 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2149 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2150 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2151 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2152 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2153 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2154 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2155 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2156 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2157 }
2158 } else if (IS_GEN5(dev)) {
2159 ring->add_request = pc_render_add_request;
2160 ring->flush = gen4_render_ring_flush;
2161 ring->get_seqno = pc_render_get_seqno;
2162 ring->set_seqno = pc_render_set_seqno;
2163 ring->irq_get = gen5_ring_get_irq;
2164 ring->irq_put = gen5_ring_put_irq;
2165 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2166 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2167 } else {
2168 ring->add_request = i9xx_add_request;
2169 if (INTEL_INFO(dev)->gen < 4)
2170 ring->flush = gen2_render_ring_flush;
2171 else
2172 ring->flush = gen4_render_ring_flush;
2173 ring->get_seqno = ring_get_seqno;
2174 ring->set_seqno = ring_set_seqno;
2175 if (IS_GEN2(dev)) {
2176 ring->irq_get = i8xx_ring_get_irq;
2177 ring->irq_put = i8xx_ring_put_irq;
2178 } else {
2179 ring->irq_get = i9xx_ring_get_irq;
2180 ring->irq_put = i9xx_ring_put_irq;
2181 }
2182 ring->irq_enable_mask = I915_USER_INTERRUPT;
2183 }
2184 ring->write_tail = ring_write_tail;
2185
2186 if (IS_HASWELL(dev))
2187 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2188 else if (IS_GEN8(dev))
2189 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2190 else if (INTEL_INFO(dev)->gen >= 6)
2191 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2192 else if (INTEL_INFO(dev)->gen >= 4)
2193 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2194 else if (IS_I830(dev) || IS_845G(dev))
2195 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2196 else
2197 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2198 ring->init = init_render_ring;
2199 ring->cleanup = render_ring_cleanup;
2200
2201 /* Workaround batchbuffer to combat CS tlb bug. */
2202 if (HAS_BROKEN_CS_TLB(dev)) {
2203 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
2204 if (obj == NULL) {
2205 DRM_ERROR("Failed to allocate batch bo\n");
2206 return -ENOMEM;
2207 }
2208
2209 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2210 if (ret != 0) {
2211 drm_gem_object_unreference(&obj->base);
2212 DRM_ERROR("Failed to ping batch bo\n");
2213 return ret;
2214 }
2215
2216 ring->scratch.obj = obj;
2217 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2218 }
2219
2220 return intel_init_ring_buffer(dev, ring);
2221 }
2222
2223 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2224 {
2225 struct drm_i915_private *dev_priv = dev->dev_private;
2226 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2227 struct intel_ringbuffer *ringbuf = ring->buffer;
2228 int ret;
2229
2230 if (ringbuf == NULL) {
2231 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2232 if (!ringbuf)
2233 return -ENOMEM;
2234 ring->buffer = ringbuf;
2235 }
2236
2237 ring->name = "render ring";
2238 ring->id = RCS;
2239 ring->mmio_base = RENDER_RING_BASE;
2240
2241 if (INTEL_INFO(dev)->gen >= 6) {
2242 /* non-kms not supported on gen6+ */
2243 ret = -ENODEV;
2244 goto err_ringbuf;
2245 }
2246
2247 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2248 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2249 * the special gen5 functions. */
2250 ring->add_request = i9xx_add_request;
2251 if (INTEL_INFO(dev)->gen < 4)
2252 ring->flush = gen2_render_ring_flush;
2253 else
2254 ring->flush = gen4_render_ring_flush;
2255 ring->get_seqno = ring_get_seqno;
2256 ring->set_seqno = ring_set_seqno;
2257 if (IS_GEN2(dev)) {
2258 ring->irq_get = i8xx_ring_get_irq;
2259 ring->irq_put = i8xx_ring_put_irq;
2260 } else {
2261 ring->irq_get = i9xx_ring_get_irq;
2262 ring->irq_put = i9xx_ring_put_irq;
2263 }
2264 ring->irq_enable_mask = I915_USER_INTERRUPT;
2265 ring->write_tail = ring_write_tail;
2266 if (INTEL_INFO(dev)->gen >= 4)
2267 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2268 else if (IS_I830(dev) || IS_845G(dev))
2269 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2270 else
2271 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2272 ring->init = init_render_ring;
2273 ring->cleanup = render_ring_cleanup;
2274
2275 ring->dev = dev;
2276 INIT_LIST_HEAD(&ring->active_list);
2277 INIT_LIST_HEAD(&ring->request_list);
2278
2279 ringbuf->size = size;
2280 ringbuf->effective_size = ringbuf->size;
2281 if (IS_I830(ring->dev) || IS_845G(ring->dev))
2282 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2283
2284 ringbuf->virtual_start = ioremap_wc(start, size);
2285 if (ringbuf->virtual_start == NULL) {
2286 DRM_ERROR("can not ioremap virtual address for"
2287 " ring buffer\n");
2288 ret = -ENOMEM;
2289 goto err_ringbuf;
2290 }
2291
2292 if (!I915_NEED_GFX_HWS(dev)) {
2293 ret = init_phys_status_page(ring);
2294 if (ret)
2295 goto err_vstart;
2296 }
2297
2298 return 0;
2299
2300 err_vstart:
2301 iounmap(ringbuf->virtual_start);
2302 err_ringbuf:
2303 kfree(ringbuf);
2304 ring->buffer = NULL;
2305 return ret;
2306 }
2307
2308 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2309 {
2310 struct drm_i915_private *dev_priv = dev->dev_private;
2311 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2312
2313 ring->name = "bsd ring";
2314 ring->id = VCS;
2315
2316 ring->write_tail = ring_write_tail;
2317 if (INTEL_INFO(dev)->gen >= 6) {
2318 ring->mmio_base = GEN6_BSD_RING_BASE;
2319 /* gen6 bsd needs a special wa for tail updates */
2320 if (IS_GEN6(dev))
2321 ring->write_tail = gen6_bsd_ring_write_tail;
2322 ring->flush = gen6_bsd_ring_flush;
2323 ring->add_request = gen6_add_request;
2324 ring->get_seqno = gen6_ring_get_seqno;
2325 ring->set_seqno = ring_set_seqno;
2326 if (INTEL_INFO(dev)->gen >= 8) {
2327 ring->irq_enable_mask =
2328 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2329 ring->irq_get = gen8_ring_get_irq;
2330 ring->irq_put = gen8_ring_put_irq;
2331 ring->dispatch_execbuffer =
2332 gen8_ring_dispatch_execbuffer;
2333 if (i915_semaphore_is_enabled(dev)) {
2334 ring->semaphore.sync_to = gen8_ring_sync;
2335 ring->semaphore.signal = gen8_xcs_signal;
2336 GEN8_RING_SEMAPHORE_INIT;
2337 }
2338 } else {
2339 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2340 ring->irq_get = gen6_ring_get_irq;
2341 ring->irq_put = gen6_ring_put_irq;
2342 ring->dispatch_execbuffer =
2343 gen6_ring_dispatch_execbuffer;
2344 if (i915_semaphore_is_enabled(dev)) {
2345 ring->semaphore.sync_to = gen6_ring_sync;
2346 ring->semaphore.signal = gen6_signal;
2347 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2348 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2349 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2350 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2351 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2352 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2353 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2354 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2355 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2356 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2357 }
2358 }
2359 } else {
2360 ring->mmio_base = BSD_RING_BASE;
2361 ring->flush = bsd_ring_flush;
2362 ring->add_request = i9xx_add_request;
2363 ring->get_seqno = ring_get_seqno;
2364 ring->set_seqno = ring_set_seqno;
2365 if (IS_GEN5(dev)) {
2366 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2367 ring->irq_get = gen5_ring_get_irq;
2368 ring->irq_put = gen5_ring_put_irq;
2369 } else {
2370 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2371 ring->irq_get = i9xx_ring_get_irq;
2372 ring->irq_put = i9xx_ring_put_irq;
2373 }
2374 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2375 }
2376 ring->init = init_ring_common;
2377
2378 return intel_init_ring_buffer(dev, ring);
2379 }
2380
2381 /**
2382 * Initialize the second BSD ring for Broadwell GT3.
2383 * It is noted that this only exists on Broadwell GT3.
2384 */
2385 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2386 {
2387 struct drm_i915_private *dev_priv = dev->dev_private;
2388 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2389
2390 if ((INTEL_INFO(dev)->gen != 8)) {
2391 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2392 return -EINVAL;
2393 }
2394
2395 ring->name = "bsd2 ring";
2396 ring->id = VCS2;
2397
2398 ring->write_tail = ring_write_tail;
2399 ring->mmio_base = GEN8_BSD2_RING_BASE;
2400 ring->flush = gen6_bsd_ring_flush;
2401 ring->add_request = gen6_add_request;
2402 ring->get_seqno = gen6_ring_get_seqno;
2403 ring->set_seqno = ring_set_seqno;
2404 ring->irq_enable_mask =
2405 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2406 ring->irq_get = gen8_ring_get_irq;
2407 ring->irq_put = gen8_ring_put_irq;
2408 ring->dispatch_execbuffer =
2409 gen8_ring_dispatch_execbuffer;
2410 if (i915_semaphore_is_enabled(dev)) {
2411 ring->semaphore.sync_to = gen8_ring_sync;
2412 ring->semaphore.signal = gen8_xcs_signal;
2413 GEN8_RING_SEMAPHORE_INIT;
2414 }
2415 ring->init = init_ring_common;
2416
2417 return intel_init_ring_buffer(dev, ring);
2418 }
2419
2420 int intel_init_blt_ring_buffer(struct drm_device *dev)
2421 {
2422 struct drm_i915_private *dev_priv = dev->dev_private;
2423 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2424
2425 ring->name = "blitter ring";
2426 ring->id = BCS;
2427
2428 ring->mmio_base = BLT_RING_BASE;
2429 ring->write_tail = ring_write_tail;
2430 ring->flush = gen6_ring_flush;
2431 ring->add_request = gen6_add_request;
2432 ring->get_seqno = gen6_ring_get_seqno;
2433 ring->set_seqno = ring_set_seqno;
2434 if (INTEL_INFO(dev)->gen >= 8) {
2435 ring->irq_enable_mask =
2436 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2437 ring->irq_get = gen8_ring_get_irq;
2438 ring->irq_put = gen8_ring_put_irq;
2439 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2440 if (i915_semaphore_is_enabled(dev)) {
2441 ring->semaphore.sync_to = gen8_ring_sync;
2442 ring->semaphore.signal = gen8_xcs_signal;
2443 GEN8_RING_SEMAPHORE_INIT;
2444 }
2445 } else {
2446 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2447 ring->irq_get = gen6_ring_get_irq;
2448 ring->irq_put = gen6_ring_put_irq;
2449 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2450 if (i915_semaphore_is_enabled(dev)) {
2451 ring->semaphore.signal = gen6_signal;
2452 ring->semaphore.sync_to = gen6_ring_sync;
2453 /*
2454 * The current semaphore is only applied on pre-gen8
2455 * platform. And there is no VCS2 ring on the pre-gen8
2456 * platform. So the semaphore between BCS and VCS2 is
2457 * initialized as INVALID. Gen8 will initialize the
2458 * sema between BCS and VCS2 later.
2459 */
2460 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2461 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2462 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2463 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2464 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2465 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2466 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2467 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2468 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2469 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2470 }
2471 }
2472 ring->init = init_ring_common;
2473
2474 return intel_init_ring_buffer(dev, ring);
2475 }
2476
2477 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2478 {
2479 struct drm_i915_private *dev_priv = dev->dev_private;
2480 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2481
2482 ring->name = "video enhancement ring";
2483 ring->id = VECS;
2484
2485 ring->mmio_base = VEBOX_RING_BASE;
2486 ring->write_tail = ring_write_tail;
2487 ring->flush = gen6_ring_flush;
2488 ring->add_request = gen6_add_request;
2489 ring->get_seqno = gen6_ring_get_seqno;
2490 ring->set_seqno = ring_set_seqno;
2491
2492 if (INTEL_INFO(dev)->gen >= 8) {
2493 ring->irq_enable_mask =
2494 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2495 ring->irq_get = gen8_ring_get_irq;
2496 ring->irq_put = gen8_ring_put_irq;
2497 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2498 if (i915_semaphore_is_enabled(dev)) {
2499 ring->semaphore.sync_to = gen8_ring_sync;
2500 ring->semaphore.signal = gen8_xcs_signal;
2501 GEN8_RING_SEMAPHORE_INIT;
2502 }
2503 } else {
2504 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2505 ring->irq_get = hsw_vebox_get_irq;
2506 ring->irq_put = hsw_vebox_put_irq;
2507 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2508 if (i915_semaphore_is_enabled(dev)) {
2509 ring->semaphore.sync_to = gen6_ring_sync;
2510 ring->semaphore.signal = gen6_signal;
2511 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2512 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2513 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2514 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2515 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2516 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2517 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2518 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2519 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2520 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2521 }
2522 }
2523 ring->init = init_ring_common;
2524
2525 return intel_init_ring_buffer(dev, ring);
2526 }
2527
2528 int
2529 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2530 {
2531 int ret;
2532
2533 if (!ring->gpu_caches_dirty)
2534 return 0;
2535
2536 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2537 if (ret)
2538 return ret;
2539
2540 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2541
2542 ring->gpu_caches_dirty = false;
2543 return 0;
2544 }
2545
2546 int
2547 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2548 {
2549 uint32_t flush_domains;
2550 int ret;
2551
2552 flush_domains = 0;
2553 if (ring->gpu_caches_dirty)
2554 flush_domains = I915_GEM_GPU_DOMAINS;
2555
2556 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2557 if (ret)
2558 return ret;
2559
2560 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2561
2562 ring->gpu_caches_dirty = false;
2563 return 0;
2564 }
2565
2566 void
2567 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2568 {
2569 int ret;
2570
2571 if (!intel_ring_initialized(ring))
2572 return;
2573
2574 ret = intel_ring_idle(ring);
2575 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2576 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2577 ring->name, ret);
2578
2579 stop_ring(ring);
2580 }
This page took 0.120627 seconds and 5 git commands to generate.