drm/i915/gen9: Handle error returned by gen9_init_workarounds
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 struct drm_device *dev = ring->dev;
40
41 if (!dev)
42 return false;
43
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48 return ringbuf->obj;
49 } else
50 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 int space = head - tail;
56 if (space <= 0)
57 space += size;
58 return space - I915_RING_FREE_SPACE;
59 }
60
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63 if (ringbuf->last_retired_head != -1) {
64 ringbuf->head = ringbuf->last_retired_head;
65 ringbuf->last_retired_head = -1;
66 }
67
68 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69 ringbuf->tail, ringbuf->size);
70 }
71
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74 intel_ring_update_space(ringbuf);
75 return ringbuf->space;
76 }
77
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80 struct drm_i915_private *dev_priv = ring->dev->dev_private;
81 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
84 static void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86 struct intel_ringbuffer *ringbuf = ring->buffer;
87 ringbuf->tail &= ringbuf->size - 1;
88 if (intel_ring_stopped(ring))
89 return;
90 ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
94 gen2_render_ring_flush(struct drm_i915_gem_request *req,
95 u32 invalidate_domains,
96 u32 flush_domains)
97 {
98 struct intel_engine_cs *ring = req->ring;
99 u32 cmd;
100 int ret;
101
102 cmd = MI_FLUSH;
103 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
104 cmd |= MI_NO_WRITE_FLUSH;
105
106 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
107 cmd |= MI_READ_FLUSH;
108
109 ret = intel_ring_begin(req, 2);
110 if (ret)
111 return ret;
112
113 intel_ring_emit(ring, cmd);
114 intel_ring_emit(ring, MI_NOOP);
115 intel_ring_advance(ring);
116
117 return 0;
118 }
119
120 static int
121 gen4_render_ring_flush(struct drm_i915_gem_request *req,
122 u32 invalidate_domains,
123 u32 flush_domains)
124 {
125 struct intel_engine_cs *ring = req->ring;
126 struct drm_device *dev = ring->dev;
127 u32 cmd;
128 int ret;
129
130 /*
131 * read/write caches:
132 *
133 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
134 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
135 * also flushed at 2d versus 3d pipeline switches.
136 *
137 * read-only caches:
138 *
139 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
140 * MI_READ_FLUSH is set, and is always flushed on 965.
141 *
142 * I915_GEM_DOMAIN_COMMAND may not exist?
143 *
144 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
145 * invalidated when MI_EXE_FLUSH is set.
146 *
147 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
148 * invalidated with every MI_FLUSH.
149 *
150 * TLBs:
151 *
152 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
153 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
154 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
155 * are flushed at any MI_FLUSH.
156 */
157
158 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
159 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
160 cmd &= ~MI_NO_WRITE_FLUSH;
161 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
162 cmd |= MI_EXE_FLUSH;
163
164 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
165 (IS_G4X(dev) || IS_GEN5(dev)))
166 cmd |= MI_INVALIDATE_ISP;
167
168 ret = intel_ring_begin(req, 2);
169 if (ret)
170 return ret;
171
172 intel_ring_emit(ring, cmd);
173 intel_ring_emit(ring, MI_NOOP);
174 intel_ring_advance(ring);
175
176 return 0;
177 }
178
179 /**
180 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
181 * implementing two workarounds on gen6. From section 1.4.7.1
182 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
183 *
184 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
185 * produced by non-pipelined state commands), software needs to first
186 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
187 * 0.
188 *
189 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
190 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
191 *
192 * And the workaround for these two requires this workaround first:
193 *
194 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
195 * BEFORE the pipe-control with a post-sync op and no write-cache
196 * flushes.
197 *
198 * And this last workaround is tricky because of the requirements on
199 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
200 * volume 2 part 1:
201 *
202 * "1 of the following must also be set:
203 * - Render Target Cache Flush Enable ([12] of DW1)
204 * - Depth Cache Flush Enable ([0] of DW1)
205 * - Stall at Pixel Scoreboard ([1] of DW1)
206 * - Depth Stall ([13] of DW1)
207 * - Post-Sync Operation ([13] of DW1)
208 * - Notify Enable ([8] of DW1)"
209 *
210 * The cache flushes require the workaround flush that triggered this
211 * one, so we can't use it. Depth stall would trigger the same.
212 * Post-sync nonzero is what triggered this second workaround, so we
213 * can't use that one either. Notify enable is IRQs, which aren't
214 * really our business. That leaves only stall at scoreboard.
215 */
216 static int
217 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
218 {
219 struct intel_engine_cs *ring = req->ring;
220 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
221 int ret;
222
223 ret = intel_ring_begin(req, 6);
224 if (ret)
225 return ret;
226
227 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
229 PIPE_CONTROL_STALL_AT_SCOREBOARD);
230 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
231 intel_ring_emit(ring, 0); /* low dword */
232 intel_ring_emit(ring, 0); /* high dword */
233 intel_ring_emit(ring, MI_NOOP);
234 intel_ring_advance(ring);
235
236 ret = intel_ring_begin(req, 6);
237 if (ret)
238 return ret;
239
240 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
241 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
242 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
243 intel_ring_emit(ring, 0);
244 intel_ring_emit(ring, 0);
245 intel_ring_emit(ring, MI_NOOP);
246 intel_ring_advance(ring);
247
248 return 0;
249 }
250
251 static int
252 gen6_render_ring_flush(struct drm_i915_gem_request *req,
253 u32 invalidate_domains, u32 flush_domains)
254 {
255 struct intel_engine_cs *ring = req->ring;
256 u32 flags = 0;
257 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
258 int ret;
259
260 /* Force SNB workarounds for PIPE_CONTROL flushes */
261 ret = intel_emit_post_sync_nonzero_flush(req);
262 if (ret)
263 return ret;
264
265 /* Just flush everything. Experiments have shown that reducing the
266 * number of bits based on the write domains has little performance
267 * impact.
268 */
269 if (flush_domains) {
270 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
271 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
272 /*
273 * Ensure that any following seqno writes only happen
274 * when the render cache is indeed flushed.
275 */
276 flags |= PIPE_CONTROL_CS_STALL;
277 }
278 if (invalidate_domains) {
279 flags |= PIPE_CONTROL_TLB_INVALIDATE;
280 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
281 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
282 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
283 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
284 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
285 /*
286 * TLB invalidate requires a post-sync write.
287 */
288 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
289 }
290
291 ret = intel_ring_begin(req, 4);
292 if (ret)
293 return ret;
294
295 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
296 intel_ring_emit(ring, flags);
297 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
298 intel_ring_emit(ring, 0);
299 intel_ring_advance(ring);
300
301 return 0;
302 }
303
304 static int
305 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
306 {
307 struct intel_engine_cs *ring = req->ring;
308 int ret;
309
310 ret = intel_ring_begin(req, 4);
311 if (ret)
312 return ret;
313
314 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
315 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
316 PIPE_CONTROL_STALL_AT_SCOREBOARD);
317 intel_ring_emit(ring, 0);
318 intel_ring_emit(ring, 0);
319 intel_ring_advance(ring);
320
321 return 0;
322 }
323
324 static int
325 gen7_render_ring_flush(struct drm_i915_gem_request *req,
326 u32 invalidate_domains, u32 flush_domains)
327 {
328 struct intel_engine_cs *ring = req->ring;
329 u32 flags = 0;
330 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
331 int ret;
332
333 /*
334 * Ensure that any following seqno writes only happen when the render
335 * cache is indeed flushed.
336 *
337 * Workaround: 4th PIPE_CONTROL command (except the ones with only
338 * read-cache invalidate bits set) must have the CS_STALL bit set. We
339 * don't try to be clever and just set it unconditionally.
340 */
341 flags |= PIPE_CONTROL_CS_STALL;
342
343 /* Just flush everything. Experiments have shown that reducing the
344 * number of bits based on the write domains has little performance
345 * impact.
346 */
347 if (flush_domains) {
348 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
349 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
350 }
351 if (invalidate_domains) {
352 flags |= PIPE_CONTROL_TLB_INVALIDATE;
353 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
354 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
355 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
356 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
357 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
358 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
359 /*
360 * TLB invalidate requires a post-sync write.
361 */
362 flags |= PIPE_CONTROL_QW_WRITE;
363 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
364
365 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
366
367 /* Workaround: we must issue a pipe_control with CS-stall bit
368 * set before a pipe_control command that has the state cache
369 * invalidate bit set. */
370 gen7_render_ring_cs_stall_wa(req);
371 }
372
373 ret = intel_ring_begin(req, 4);
374 if (ret)
375 return ret;
376
377 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
378 intel_ring_emit(ring, flags);
379 intel_ring_emit(ring, scratch_addr);
380 intel_ring_emit(ring, 0);
381 intel_ring_advance(ring);
382
383 return 0;
384 }
385
386 static int
387 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
388 u32 flags, u32 scratch_addr)
389 {
390 struct intel_engine_cs *ring = req->ring;
391 int ret;
392
393 ret = intel_ring_begin(req, 6);
394 if (ret)
395 return ret;
396
397 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
398 intel_ring_emit(ring, flags);
399 intel_ring_emit(ring, scratch_addr);
400 intel_ring_emit(ring, 0);
401 intel_ring_emit(ring, 0);
402 intel_ring_emit(ring, 0);
403 intel_ring_advance(ring);
404
405 return 0;
406 }
407
408 static int
409 gen8_render_ring_flush(struct drm_i915_gem_request *req,
410 u32 invalidate_domains, u32 flush_domains)
411 {
412 u32 flags = 0;
413 u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
414 int ret;
415
416 flags |= PIPE_CONTROL_CS_STALL;
417
418 if (flush_domains) {
419 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
420 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
421 }
422 if (invalidate_domains) {
423 flags |= PIPE_CONTROL_TLB_INVALIDATE;
424 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
425 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
426 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
427 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
428 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
429 flags |= PIPE_CONTROL_QW_WRITE;
430 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
431
432 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
433 ret = gen8_emit_pipe_control(req,
434 PIPE_CONTROL_CS_STALL |
435 PIPE_CONTROL_STALL_AT_SCOREBOARD,
436 0);
437 if (ret)
438 return ret;
439 }
440
441 return gen8_emit_pipe_control(req, flags, scratch_addr);
442 }
443
444 static void ring_write_tail(struct intel_engine_cs *ring,
445 u32 value)
446 {
447 struct drm_i915_private *dev_priv = ring->dev->dev_private;
448 I915_WRITE_TAIL(ring, value);
449 }
450
451 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
452 {
453 struct drm_i915_private *dev_priv = ring->dev->dev_private;
454 u64 acthd;
455
456 if (INTEL_INFO(ring->dev)->gen >= 8)
457 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
458 RING_ACTHD_UDW(ring->mmio_base));
459 else if (INTEL_INFO(ring->dev)->gen >= 4)
460 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
461 else
462 acthd = I915_READ(ACTHD);
463
464 return acthd;
465 }
466
467 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
468 {
469 struct drm_i915_private *dev_priv = ring->dev->dev_private;
470 u32 addr;
471
472 addr = dev_priv->status_page_dmah->busaddr;
473 if (INTEL_INFO(ring->dev)->gen >= 4)
474 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
475 I915_WRITE(HWS_PGA, addr);
476 }
477
478 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
479 {
480 struct drm_device *dev = ring->dev;
481 struct drm_i915_private *dev_priv = ring->dev->dev_private;
482 u32 mmio = 0;
483
484 /* The ring status page addresses are no longer next to the rest of
485 * the ring registers as of gen7.
486 */
487 if (IS_GEN7(dev)) {
488 switch (ring->id) {
489 case RCS:
490 mmio = RENDER_HWS_PGA_GEN7;
491 break;
492 case BCS:
493 mmio = BLT_HWS_PGA_GEN7;
494 break;
495 /*
496 * VCS2 actually doesn't exist on Gen7. Only shut up
497 * gcc switch check warning
498 */
499 case VCS2:
500 case VCS:
501 mmio = BSD_HWS_PGA_GEN7;
502 break;
503 case VECS:
504 mmio = VEBOX_HWS_PGA_GEN7;
505 break;
506 }
507 } else if (IS_GEN6(ring->dev)) {
508 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
509 } else {
510 /* XXX: gen8 returns to sanity */
511 mmio = RING_HWS_PGA(ring->mmio_base);
512 }
513
514 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
515 POSTING_READ(mmio);
516
517 /*
518 * Flush the TLB for this page
519 *
520 * FIXME: These two bits have disappeared on gen8, so a question
521 * arises: do we still need this and if so how should we go about
522 * invalidating the TLB?
523 */
524 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
525 u32 reg = RING_INSTPM(ring->mmio_base);
526
527 /* ring should be idle before issuing a sync flush*/
528 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
529
530 I915_WRITE(reg,
531 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
532 INSTPM_SYNC_FLUSH));
533 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
534 1000))
535 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
536 ring->name);
537 }
538 }
539
540 static bool stop_ring(struct intel_engine_cs *ring)
541 {
542 struct drm_i915_private *dev_priv = to_i915(ring->dev);
543
544 if (!IS_GEN2(ring->dev)) {
545 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
546 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
547 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
548 /* Sometimes we observe that the idle flag is not
549 * set even though the ring is empty. So double
550 * check before giving up.
551 */
552 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
553 return false;
554 }
555 }
556
557 I915_WRITE_CTL(ring, 0);
558 I915_WRITE_HEAD(ring, 0);
559 ring->write_tail(ring, 0);
560
561 if (!IS_GEN2(ring->dev)) {
562 (void)I915_READ_CTL(ring);
563 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
564 }
565
566 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
567 }
568
569 static int init_ring_common(struct intel_engine_cs *ring)
570 {
571 struct drm_device *dev = ring->dev;
572 struct drm_i915_private *dev_priv = dev->dev_private;
573 struct intel_ringbuffer *ringbuf = ring->buffer;
574 struct drm_i915_gem_object *obj = ringbuf->obj;
575 int ret = 0;
576
577 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
578
579 if (!stop_ring(ring)) {
580 /* G45 ring initialization often fails to reset head to zero */
581 DRM_DEBUG_KMS("%s head not reset to zero "
582 "ctl %08x head %08x tail %08x start %08x\n",
583 ring->name,
584 I915_READ_CTL(ring),
585 I915_READ_HEAD(ring),
586 I915_READ_TAIL(ring),
587 I915_READ_START(ring));
588
589 if (!stop_ring(ring)) {
590 DRM_ERROR("failed to set %s head to zero "
591 "ctl %08x head %08x tail %08x start %08x\n",
592 ring->name,
593 I915_READ_CTL(ring),
594 I915_READ_HEAD(ring),
595 I915_READ_TAIL(ring),
596 I915_READ_START(ring));
597 ret = -EIO;
598 goto out;
599 }
600 }
601
602 if (I915_NEED_GFX_HWS(dev))
603 intel_ring_setup_status_page(ring);
604 else
605 ring_setup_phys_status_page(ring);
606
607 /* Enforce ordering by reading HEAD register back */
608 I915_READ_HEAD(ring);
609
610 /* Initialize the ring. This must happen _after_ we've cleared the ring
611 * registers with the above sequence (the readback of the HEAD registers
612 * also enforces ordering), otherwise the hw might lose the new ring
613 * register values. */
614 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
615
616 /* WaClearRingBufHeadRegAtInit:ctg,elk */
617 if (I915_READ_HEAD(ring))
618 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
619 ring->name, I915_READ_HEAD(ring));
620 I915_WRITE_HEAD(ring, 0);
621 (void)I915_READ_HEAD(ring);
622
623 I915_WRITE_CTL(ring,
624 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
625 | RING_VALID);
626
627 /* If the head is still not zero, the ring is dead */
628 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
629 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
630 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
631 DRM_ERROR("%s initialization failed "
632 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
633 ring->name,
634 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
635 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
636 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
637 ret = -EIO;
638 goto out;
639 }
640
641 ringbuf->last_retired_head = -1;
642 ringbuf->head = I915_READ_HEAD(ring);
643 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
644 intel_ring_update_space(ringbuf);
645
646 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
647
648 out:
649 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
650
651 return ret;
652 }
653
654 void
655 intel_fini_pipe_control(struct intel_engine_cs *ring)
656 {
657 struct drm_device *dev = ring->dev;
658
659 if (ring->scratch.obj == NULL)
660 return;
661
662 if (INTEL_INFO(dev)->gen >= 5) {
663 kunmap(sg_page(ring->scratch.obj->pages->sgl));
664 i915_gem_object_ggtt_unpin(ring->scratch.obj);
665 }
666
667 drm_gem_object_unreference(&ring->scratch.obj->base);
668 ring->scratch.obj = NULL;
669 }
670
671 int
672 intel_init_pipe_control(struct intel_engine_cs *ring)
673 {
674 int ret;
675
676 WARN_ON(ring->scratch.obj);
677
678 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
679 if (ring->scratch.obj == NULL) {
680 DRM_ERROR("Failed to allocate seqno page\n");
681 ret = -ENOMEM;
682 goto err;
683 }
684
685 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
686 if (ret)
687 goto err_unref;
688
689 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
690 if (ret)
691 goto err_unref;
692
693 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
694 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
695 if (ring->scratch.cpu_page == NULL) {
696 ret = -ENOMEM;
697 goto err_unpin;
698 }
699
700 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
701 ring->name, ring->scratch.gtt_offset);
702 return 0;
703
704 err_unpin:
705 i915_gem_object_ggtt_unpin(ring->scratch.obj);
706 err_unref:
707 drm_gem_object_unreference(&ring->scratch.obj->base);
708 err:
709 return ret;
710 }
711
712 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
713 {
714 int ret, i;
715 struct intel_engine_cs *ring = req->ring;
716 struct drm_device *dev = ring->dev;
717 struct drm_i915_private *dev_priv = dev->dev_private;
718 struct i915_workarounds *w = &dev_priv->workarounds;
719
720 if (WARN_ON_ONCE(w->count == 0))
721 return 0;
722
723 ring->gpu_caches_dirty = true;
724 ret = intel_ring_flush_all_caches(req);
725 if (ret)
726 return ret;
727
728 ret = intel_ring_begin(req, (w->count * 2 + 2));
729 if (ret)
730 return ret;
731
732 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
733 for (i = 0; i < w->count; i++) {
734 intel_ring_emit(ring, w->reg[i].addr);
735 intel_ring_emit(ring, w->reg[i].value);
736 }
737 intel_ring_emit(ring, MI_NOOP);
738
739 intel_ring_advance(ring);
740
741 ring->gpu_caches_dirty = true;
742 ret = intel_ring_flush_all_caches(req);
743 if (ret)
744 return ret;
745
746 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
747
748 return 0;
749 }
750
751 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
752 {
753 int ret;
754
755 ret = intel_ring_workarounds_emit(req);
756 if (ret != 0)
757 return ret;
758
759 ret = i915_gem_render_state_init(req);
760 if (ret)
761 DRM_ERROR("init render state: %d\n", ret);
762
763 return ret;
764 }
765
766 static int wa_add(struct drm_i915_private *dev_priv,
767 const u32 addr, const u32 mask, const u32 val)
768 {
769 const u32 idx = dev_priv->workarounds.count;
770
771 if (WARN_ON(idx >= I915_MAX_WA_REGS))
772 return -ENOSPC;
773
774 dev_priv->workarounds.reg[idx].addr = addr;
775 dev_priv->workarounds.reg[idx].value = val;
776 dev_priv->workarounds.reg[idx].mask = mask;
777
778 dev_priv->workarounds.count++;
779
780 return 0;
781 }
782
783 #define WA_REG(addr, mask, val) do { \
784 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
785 if (r) \
786 return r; \
787 } while (0)
788
789 #define WA_SET_BIT_MASKED(addr, mask) \
790 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
791
792 #define WA_CLR_BIT_MASKED(addr, mask) \
793 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
794
795 #define WA_SET_FIELD_MASKED(addr, mask, value) \
796 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
797
798 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
799 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
800
801 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
802
803 static int bdw_init_workarounds(struct intel_engine_cs *ring)
804 {
805 struct drm_device *dev = ring->dev;
806 struct drm_i915_private *dev_priv = dev->dev_private;
807
808 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
809
810 /* WaDisableAsyncFlipPerfMode:bdw */
811 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
812
813 /* WaDisablePartialInstShootdown:bdw */
814 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
815 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
816 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
817 STALL_DOP_GATING_DISABLE);
818
819 /* WaDisableDopClockGating:bdw */
820 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
821 DOP_CLOCK_GATING_DISABLE);
822
823 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
824 GEN8_SAMPLER_POWER_BYPASS_DIS);
825
826 /* Use Force Non-Coherent whenever executing a 3D context. This is a
827 * workaround for for a possible hang in the unlikely event a TLB
828 * invalidation occurs during a PSD flush.
829 */
830 WA_SET_BIT_MASKED(HDC_CHICKEN0,
831 /* WaForceEnableNonCoherent:bdw */
832 HDC_FORCE_NON_COHERENT |
833 /* WaForceContextSaveRestoreNonCoherent:bdw */
834 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
835 /* WaHdcDisableFetchWhenMasked:bdw */
836 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
837 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
838 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
839
840 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
841 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
842 * polygons in the same 8x4 pixel/sample area to be processed without
843 * stalling waiting for the earlier ones to write to Hierarchical Z
844 * buffer."
845 *
846 * This optimization is off by default for Broadwell; turn it on.
847 */
848 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
849
850 /* Wa4x4STCOptimizationDisable:bdw */
851 WA_SET_BIT_MASKED(CACHE_MODE_1,
852 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
853
854 /*
855 * BSpec recommends 8x4 when MSAA is used,
856 * however in practice 16x4 seems fastest.
857 *
858 * Note that PS/WM thread counts depend on the WIZ hashing
859 * disable bit, which we don't touch here, but it's good
860 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
861 */
862 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
863 GEN6_WIZ_HASHING_MASK,
864 GEN6_WIZ_HASHING_16x4);
865
866 return 0;
867 }
868
869 static int chv_init_workarounds(struct intel_engine_cs *ring)
870 {
871 struct drm_device *dev = ring->dev;
872 struct drm_i915_private *dev_priv = dev->dev_private;
873
874 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
875
876 /* WaDisableAsyncFlipPerfMode:chv */
877 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
878
879 /* WaDisablePartialInstShootdown:chv */
880 /* WaDisableThreadStallDopClockGating:chv */
881 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
882 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
883 STALL_DOP_GATING_DISABLE);
884
885 /* Use Force Non-Coherent whenever executing a 3D context. This is a
886 * workaround for a possible hang in the unlikely event a TLB
887 * invalidation occurs during a PSD flush.
888 */
889 /* WaForceEnableNonCoherent:chv */
890 /* WaHdcDisableFetchWhenMasked:chv */
891 WA_SET_BIT_MASKED(HDC_CHICKEN0,
892 HDC_FORCE_NON_COHERENT |
893 HDC_DONOT_FETCH_MEM_WHEN_MASKED);
894
895 /* According to the CACHE_MODE_0 default value documentation, some
896 * CHV platforms disable this optimization by default. Turn it on.
897 */
898 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
899
900 /* Wa4x4STCOptimizationDisable:chv */
901 WA_SET_BIT_MASKED(CACHE_MODE_1,
902 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
903
904 /* Improve HiZ throughput on CHV. */
905 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
906
907 /*
908 * BSpec recommends 8x4 when MSAA is used,
909 * however in practice 16x4 seems fastest.
910 *
911 * Note that PS/WM thread counts depend on the WIZ hashing
912 * disable bit, which we don't touch here, but it's good
913 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
914 */
915 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
916 GEN6_WIZ_HASHING_MASK,
917 GEN6_WIZ_HASHING_16x4);
918
919 return 0;
920 }
921
922 static int gen9_init_workarounds(struct intel_engine_cs *ring)
923 {
924 struct drm_device *dev = ring->dev;
925 struct drm_i915_private *dev_priv = dev->dev_private;
926 uint32_t tmp;
927
928 /* WaDisablePartialInstShootdown:skl,bxt */
929 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
930 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
931
932 /* Syncing dependencies between camera and graphics:skl,bxt */
933 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
934 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
935
936 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
937 INTEL_REVID(dev) == SKL_REVID_B0)) ||
938 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
939 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
940 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
941 GEN9_DG_MIRROR_FIX_ENABLE);
942 }
943
944 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
945 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
946 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
947 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
948 GEN9_RHWO_OPTIMIZATION_DISABLE);
949 /*
950 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
951 * but we do that in per ctx batchbuffer as there is an issue
952 * with this register not getting restored on ctx restore
953 */
954 }
955
956 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
957 IS_BROXTON(dev)) {
958 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
959 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
960 GEN9_ENABLE_YV12_BUGFIX);
961 }
962
963 /* Wa4x4STCOptimizationDisable:skl,bxt */
964 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
965
966 /* WaDisablePartialResolveInVc:skl,bxt */
967 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
968
969 /* WaCcsTlbPrefetchDisable:skl,bxt */
970 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
971 GEN9_CCS_TLB_PREFETCH_ENABLE);
972
973 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
974 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
975 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
976 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
977 PIXEL_MASK_CAMMING_DISABLE);
978
979 /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
980 tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
981 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
982 (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
983 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
984 WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
985
986 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
987 if (IS_SKYLAKE(dev) ||
988 (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_B0)) {
989 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
990 GEN8_SAMPLER_POWER_BYPASS_DIS);
991 }
992
993 /* WaDisableSTUnitPowerOptimization:skl,bxt */
994 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
995
996 return 0;
997 }
998
999 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
1000 {
1001 struct drm_device *dev = ring->dev;
1002 struct drm_i915_private *dev_priv = dev->dev_private;
1003 u8 vals[3] = { 0, 0, 0 };
1004 unsigned int i;
1005
1006 for (i = 0; i < 3; i++) {
1007 u8 ss;
1008
1009 /*
1010 * Only consider slices where one, and only one, subslice has 7
1011 * EUs
1012 */
1013 if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
1014 continue;
1015
1016 /*
1017 * subslice_7eu[i] != 0 (because of the check above) and
1018 * ss_max == 4 (maximum number of subslices possible per slice)
1019 *
1020 * -> 0 <= ss <= 3;
1021 */
1022 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1023 vals[i] = 3 - ss;
1024 }
1025
1026 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1027 return 0;
1028
1029 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1030 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1031 GEN9_IZ_HASHING_MASK(2) |
1032 GEN9_IZ_HASHING_MASK(1) |
1033 GEN9_IZ_HASHING_MASK(0),
1034 GEN9_IZ_HASHING(2, vals[2]) |
1035 GEN9_IZ_HASHING(1, vals[1]) |
1036 GEN9_IZ_HASHING(0, vals[0]));
1037
1038 return 0;
1039 }
1040
1041
1042 static int skl_init_workarounds(struct intel_engine_cs *ring)
1043 {
1044 int ret;
1045 struct drm_device *dev = ring->dev;
1046 struct drm_i915_private *dev_priv = dev->dev_private;
1047
1048 ret = gen9_init_workarounds(ring);
1049 if (ret)
1050 return ret;
1051
1052 /* WaDisablePowerCompilerClockGating:skl */
1053 if (INTEL_REVID(dev) == SKL_REVID_B0)
1054 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1055 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1056
1057 if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1058 /*
1059 *Use Force Non-Coherent whenever executing a 3D context. This
1060 * is a workaround for a possible hang in the unlikely event
1061 * a TLB invalidation occurs during a PSD flush.
1062 */
1063 /* WaForceEnableNonCoherent:skl */
1064 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1065 HDC_FORCE_NON_COHERENT);
1066 }
1067
1068 if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1069 INTEL_REVID(dev) == SKL_REVID_D0)
1070 /* WaBarrierPerformanceFixDisable:skl */
1071 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1072 HDC_FENCE_DEST_SLM_DISABLE |
1073 HDC_BARRIER_PERFORMANCE_DISABLE);
1074
1075 /* WaDisableSbeCacheDispatchPortSharing:skl */
1076 if (INTEL_REVID(dev) <= SKL_REVID_F0) {
1077 WA_SET_BIT_MASKED(
1078 GEN7_HALF_SLICE_CHICKEN1,
1079 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1080 }
1081
1082 return skl_tune_iz_hashing(ring);
1083 }
1084
1085 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1086 {
1087 int ret;
1088 struct drm_device *dev = ring->dev;
1089 struct drm_i915_private *dev_priv = dev->dev_private;
1090
1091 ret = gen9_init_workarounds(ring);
1092 if (ret)
1093 return ret;
1094
1095 /* WaDisableThreadStallDopClockGating:bxt */
1096 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1097 STALL_DOP_GATING_DISABLE);
1098
1099 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1100 if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1101 WA_SET_BIT_MASKED(
1102 GEN7_HALF_SLICE_CHICKEN1,
1103 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1104 }
1105
1106 return 0;
1107 }
1108
1109 int init_workarounds_ring(struct intel_engine_cs *ring)
1110 {
1111 struct drm_device *dev = ring->dev;
1112 struct drm_i915_private *dev_priv = dev->dev_private;
1113
1114 WARN_ON(ring->id != RCS);
1115
1116 dev_priv->workarounds.count = 0;
1117
1118 if (IS_BROADWELL(dev))
1119 return bdw_init_workarounds(ring);
1120
1121 if (IS_CHERRYVIEW(dev))
1122 return chv_init_workarounds(ring);
1123
1124 if (IS_SKYLAKE(dev))
1125 return skl_init_workarounds(ring);
1126
1127 if (IS_BROXTON(dev))
1128 return bxt_init_workarounds(ring);
1129
1130 return 0;
1131 }
1132
1133 static int init_render_ring(struct intel_engine_cs *ring)
1134 {
1135 struct drm_device *dev = ring->dev;
1136 struct drm_i915_private *dev_priv = dev->dev_private;
1137 int ret = init_ring_common(ring);
1138 if (ret)
1139 return ret;
1140
1141 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1142 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1143 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1144
1145 /* We need to disable the AsyncFlip performance optimisations in order
1146 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1147 * programmed to '1' on all products.
1148 *
1149 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1150 */
1151 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1152 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1153
1154 /* Required for the hardware to program scanline values for waiting */
1155 /* WaEnableFlushTlbInvalidationMode:snb */
1156 if (INTEL_INFO(dev)->gen == 6)
1157 I915_WRITE(GFX_MODE,
1158 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1159
1160 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1161 if (IS_GEN7(dev))
1162 I915_WRITE(GFX_MODE_GEN7,
1163 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1164 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1165
1166 if (IS_GEN6(dev)) {
1167 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1168 * "If this bit is set, STCunit will have LRA as replacement
1169 * policy. [...] This bit must be reset. LRA replacement
1170 * policy is not supported."
1171 */
1172 I915_WRITE(CACHE_MODE_0,
1173 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1174 }
1175
1176 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1177 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1178
1179 if (HAS_L3_DPF(dev))
1180 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1181
1182 return init_workarounds_ring(ring);
1183 }
1184
1185 static void render_ring_cleanup(struct intel_engine_cs *ring)
1186 {
1187 struct drm_device *dev = ring->dev;
1188 struct drm_i915_private *dev_priv = dev->dev_private;
1189
1190 if (dev_priv->semaphore_obj) {
1191 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1192 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1193 dev_priv->semaphore_obj = NULL;
1194 }
1195
1196 intel_fini_pipe_control(ring);
1197 }
1198
1199 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1200 unsigned int num_dwords)
1201 {
1202 #define MBOX_UPDATE_DWORDS 8
1203 struct intel_engine_cs *signaller = signaller_req->ring;
1204 struct drm_device *dev = signaller->dev;
1205 struct drm_i915_private *dev_priv = dev->dev_private;
1206 struct intel_engine_cs *waiter;
1207 int i, ret, num_rings;
1208
1209 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1210 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1211 #undef MBOX_UPDATE_DWORDS
1212
1213 ret = intel_ring_begin(signaller_req, num_dwords);
1214 if (ret)
1215 return ret;
1216
1217 for_each_ring(waiter, dev_priv, i) {
1218 u32 seqno;
1219 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1220 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1221 continue;
1222
1223 seqno = i915_gem_request_get_seqno(signaller_req);
1224 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1225 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1226 PIPE_CONTROL_QW_WRITE |
1227 PIPE_CONTROL_FLUSH_ENABLE);
1228 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1229 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1230 intel_ring_emit(signaller, seqno);
1231 intel_ring_emit(signaller, 0);
1232 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1233 MI_SEMAPHORE_TARGET(waiter->id));
1234 intel_ring_emit(signaller, 0);
1235 }
1236
1237 return 0;
1238 }
1239
1240 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1241 unsigned int num_dwords)
1242 {
1243 #define MBOX_UPDATE_DWORDS 6
1244 struct intel_engine_cs *signaller = signaller_req->ring;
1245 struct drm_device *dev = signaller->dev;
1246 struct drm_i915_private *dev_priv = dev->dev_private;
1247 struct intel_engine_cs *waiter;
1248 int i, ret, num_rings;
1249
1250 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1251 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1252 #undef MBOX_UPDATE_DWORDS
1253
1254 ret = intel_ring_begin(signaller_req, num_dwords);
1255 if (ret)
1256 return ret;
1257
1258 for_each_ring(waiter, dev_priv, i) {
1259 u32 seqno;
1260 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1261 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1262 continue;
1263
1264 seqno = i915_gem_request_get_seqno(signaller_req);
1265 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1266 MI_FLUSH_DW_OP_STOREDW);
1267 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1268 MI_FLUSH_DW_USE_GTT);
1269 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1270 intel_ring_emit(signaller, seqno);
1271 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1272 MI_SEMAPHORE_TARGET(waiter->id));
1273 intel_ring_emit(signaller, 0);
1274 }
1275
1276 return 0;
1277 }
1278
1279 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1280 unsigned int num_dwords)
1281 {
1282 struct intel_engine_cs *signaller = signaller_req->ring;
1283 struct drm_device *dev = signaller->dev;
1284 struct drm_i915_private *dev_priv = dev->dev_private;
1285 struct intel_engine_cs *useless;
1286 int i, ret, num_rings;
1287
1288 #define MBOX_UPDATE_DWORDS 3
1289 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1290 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1291 #undef MBOX_UPDATE_DWORDS
1292
1293 ret = intel_ring_begin(signaller_req, num_dwords);
1294 if (ret)
1295 return ret;
1296
1297 for_each_ring(useless, dev_priv, i) {
1298 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1299 if (mbox_reg != GEN6_NOSYNC) {
1300 u32 seqno = i915_gem_request_get_seqno(signaller_req);
1301 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1302 intel_ring_emit(signaller, mbox_reg);
1303 intel_ring_emit(signaller, seqno);
1304 }
1305 }
1306
1307 /* If num_dwords was rounded, make sure the tail pointer is correct */
1308 if (num_rings % 2 == 0)
1309 intel_ring_emit(signaller, MI_NOOP);
1310
1311 return 0;
1312 }
1313
1314 /**
1315 * gen6_add_request - Update the semaphore mailbox registers
1316 *
1317 * @request - request to write to the ring
1318 *
1319 * Update the mailbox registers in the *other* rings with the current seqno.
1320 * This acts like a signal in the canonical semaphore.
1321 */
1322 static int
1323 gen6_add_request(struct drm_i915_gem_request *req)
1324 {
1325 struct intel_engine_cs *ring = req->ring;
1326 int ret;
1327
1328 if (ring->semaphore.signal)
1329 ret = ring->semaphore.signal(req, 4);
1330 else
1331 ret = intel_ring_begin(req, 4);
1332
1333 if (ret)
1334 return ret;
1335
1336 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1337 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1338 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1339 intel_ring_emit(ring, MI_USER_INTERRUPT);
1340 __intel_ring_advance(ring);
1341
1342 return 0;
1343 }
1344
1345 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1346 u32 seqno)
1347 {
1348 struct drm_i915_private *dev_priv = dev->dev_private;
1349 return dev_priv->last_seqno < seqno;
1350 }
1351
1352 /**
1353 * intel_ring_sync - sync the waiter to the signaller on seqno
1354 *
1355 * @waiter - ring that is waiting
1356 * @signaller - ring which has, or will signal
1357 * @seqno - seqno which the waiter will block on
1358 */
1359
1360 static int
1361 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1362 struct intel_engine_cs *signaller,
1363 u32 seqno)
1364 {
1365 struct intel_engine_cs *waiter = waiter_req->ring;
1366 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1367 int ret;
1368
1369 ret = intel_ring_begin(waiter_req, 4);
1370 if (ret)
1371 return ret;
1372
1373 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1374 MI_SEMAPHORE_GLOBAL_GTT |
1375 MI_SEMAPHORE_POLL |
1376 MI_SEMAPHORE_SAD_GTE_SDD);
1377 intel_ring_emit(waiter, seqno);
1378 intel_ring_emit(waiter,
1379 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1380 intel_ring_emit(waiter,
1381 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1382 intel_ring_advance(waiter);
1383 return 0;
1384 }
1385
1386 static int
1387 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1388 struct intel_engine_cs *signaller,
1389 u32 seqno)
1390 {
1391 struct intel_engine_cs *waiter = waiter_req->ring;
1392 u32 dw1 = MI_SEMAPHORE_MBOX |
1393 MI_SEMAPHORE_COMPARE |
1394 MI_SEMAPHORE_REGISTER;
1395 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1396 int ret;
1397
1398 /* Throughout all of the GEM code, seqno passed implies our current
1399 * seqno is >= the last seqno executed. However for hardware the
1400 * comparison is strictly greater than.
1401 */
1402 seqno -= 1;
1403
1404 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1405
1406 ret = intel_ring_begin(waiter_req, 4);
1407 if (ret)
1408 return ret;
1409
1410 /* If seqno wrap happened, omit the wait with no-ops */
1411 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1412 intel_ring_emit(waiter, dw1 | wait_mbox);
1413 intel_ring_emit(waiter, seqno);
1414 intel_ring_emit(waiter, 0);
1415 intel_ring_emit(waiter, MI_NOOP);
1416 } else {
1417 intel_ring_emit(waiter, MI_NOOP);
1418 intel_ring_emit(waiter, MI_NOOP);
1419 intel_ring_emit(waiter, MI_NOOP);
1420 intel_ring_emit(waiter, MI_NOOP);
1421 }
1422 intel_ring_advance(waiter);
1423
1424 return 0;
1425 }
1426
1427 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1428 do { \
1429 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1430 PIPE_CONTROL_DEPTH_STALL); \
1431 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1432 intel_ring_emit(ring__, 0); \
1433 intel_ring_emit(ring__, 0); \
1434 } while (0)
1435
1436 static int
1437 pc_render_add_request(struct drm_i915_gem_request *req)
1438 {
1439 struct intel_engine_cs *ring = req->ring;
1440 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1441 int ret;
1442
1443 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1444 * incoherent with writes to memory, i.e. completely fubar,
1445 * so we need to use PIPE_NOTIFY instead.
1446 *
1447 * However, we also need to workaround the qword write
1448 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1449 * memory before requesting an interrupt.
1450 */
1451 ret = intel_ring_begin(req, 32);
1452 if (ret)
1453 return ret;
1454
1455 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1456 PIPE_CONTROL_WRITE_FLUSH |
1457 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1458 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1459 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1460 intel_ring_emit(ring, 0);
1461 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1462 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1463 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1464 scratch_addr += 2 * CACHELINE_BYTES;
1465 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1466 scratch_addr += 2 * CACHELINE_BYTES;
1467 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1468 scratch_addr += 2 * CACHELINE_BYTES;
1469 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1470 scratch_addr += 2 * CACHELINE_BYTES;
1471 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1472
1473 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1474 PIPE_CONTROL_WRITE_FLUSH |
1475 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1476 PIPE_CONTROL_NOTIFY);
1477 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1478 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1479 intel_ring_emit(ring, 0);
1480 __intel_ring_advance(ring);
1481
1482 return 0;
1483 }
1484
1485 static u32
1486 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1487 {
1488 /* Workaround to force correct ordering between irq and seqno writes on
1489 * ivb (and maybe also on snb) by reading from a CS register (like
1490 * ACTHD) before reading the status page. */
1491 if (!lazy_coherency) {
1492 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1493 POSTING_READ(RING_ACTHD(ring->mmio_base));
1494 }
1495
1496 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1497 }
1498
1499 static u32
1500 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1501 {
1502 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1503 }
1504
1505 static void
1506 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1507 {
1508 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1509 }
1510
1511 static u32
1512 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1513 {
1514 return ring->scratch.cpu_page[0];
1515 }
1516
1517 static void
1518 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1519 {
1520 ring->scratch.cpu_page[0] = seqno;
1521 }
1522
1523 static bool
1524 gen5_ring_get_irq(struct intel_engine_cs *ring)
1525 {
1526 struct drm_device *dev = ring->dev;
1527 struct drm_i915_private *dev_priv = dev->dev_private;
1528 unsigned long flags;
1529
1530 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1531 return false;
1532
1533 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1534 if (ring->irq_refcount++ == 0)
1535 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1536 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1537
1538 return true;
1539 }
1540
1541 static void
1542 gen5_ring_put_irq(struct intel_engine_cs *ring)
1543 {
1544 struct drm_device *dev = ring->dev;
1545 struct drm_i915_private *dev_priv = dev->dev_private;
1546 unsigned long flags;
1547
1548 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1549 if (--ring->irq_refcount == 0)
1550 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1551 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1552 }
1553
1554 static bool
1555 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1556 {
1557 struct drm_device *dev = ring->dev;
1558 struct drm_i915_private *dev_priv = dev->dev_private;
1559 unsigned long flags;
1560
1561 if (!intel_irqs_enabled(dev_priv))
1562 return false;
1563
1564 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1565 if (ring->irq_refcount++ == 0) {
1566 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1567 I915_WRITE(IMR, dev_priv->irq_mask);
1568 POSTING_READ(IMR);
1569 }
1570 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1571
1572 return true;
1573 }
1574
1575 static void
1576 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1577 {
1578 struct drm_device *dev = ring->dev;
1579 struct drm_i915_private *dev_priv = dev->dev_private;
1580 unsigned long flags;
1581
1582 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1583 if (--ring->irq_refcount == 0) {
1584 dev_priv->irq_mask |= ring->irq_enable_mask;
1585 I915_WRITE(IMR, dev_priv->irq_mask);
1586 POSTING_READ(IMR);
1587 }
1588 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1589 }
1590
1591 static bool
1592 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1593 {
1594 struct drm_device *dev = ring->dev;
1595 struct drm_i915_private *dev_priv = dev->dev_private;
1596 unsigned long flags;
1597
1598 if (!intel_irqs_enabled(dev_priv))
1599 return false;
1600
1601 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1602 if (ring->irq_refcount++ == 0) {
1603 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1604 I915_WRITE16(IMR, dev_priv->irq_mask);
1605 POSTING_READ16(IMR);
1606 }
1607 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1608
1609 return true;
1610 }
1611
1612 static void
1613 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1614 {
1615 struct drm_device *dev = ring->dev;
1616 struct drm_i915_private *dev_priv = dev->dev_private;
1617 unsigned long flags;
1618
1619 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1620 if (--ring->irq_refcount == 0) {
1621 dev_priv->irq_mask |= ring->irq_enable_mask;
1622 I915_WRITE16(IMR, dev_priv->irq_mask);
1623 POSTING_READ16(IMR);
1624 }
1625 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1626 }
1627
1628 static int
1629 bsd_ring_flush(struct drm_i915_gem_request *req,
1630 u32 invalidate_domains,
1631 u32 flush_domains)
1632 {
1633 struct intel_engine_cs *ring = req->ring;
1634 int ret;
1635
1636 ret = intel_ring_begin(req, 2);
1637 if (ret)
1638 return ret;
1639
1640 intel_ring_emit(ring, MI_FLUSH);
1641 intel_ring_emit(ring, MI_NOOP);
1642 intel_ring_advance(ring);
1643 return 0;
1644 }
1645
1646 static int
1647 i9xx_add_request(struct drm_i915_gem_request *req)
1648 {
1649 struct intel_engine_cs *ring = req->ring;
1650 int ret;
1651
1652 ret = intel_ring_begin(req, 4);
1653 if (ret)
1654 return ret;
1655
1656 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1657 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1658 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1659 intel_ring_emit(ring, MI_USER_INTERRUPT);
1660 __intel_ring_advance(ring);
1661
1662 return 0;
1663 }
1664
1665 static bool
1666 gen6_ring_get_irq(struct intel_engine_cs *ring)
1667 {
1668 struct drm_device *dev = ring->dev;
1669 struct drm_i915_private *dev_priv = dev->dev_private;
1670 unsigned long flags;
1671
1672 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1673 return false;
1674
1675 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1676 if (ring->irq_refcount++ == 0) {
1677 if (HAS_L3_DPF(dev) && ring->id == RCS)
1678 I915_WRITE_IMR(ring,
1679 ~(ring->irq_enable_mask |
1680 GT_PARITY_ERROR(dev)));
1681 else
1682 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1683 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1684 }
1685 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1686
1687 return true;
1688 }
1689
1690 static void
1691 gen6_ring_put_irq(struct intel_engine_cs *ring)
1692 {
1693 struct drm_device *dev = ring->dev;
1694 struct drm_i915_private *dev_priv = dev->dev_private;
1695 unsigned long flags;
1696
1697 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1698 if (--ring->irq_refcount == 0) {
1699 if (HAS_L3_DPF(dev) && ring->id == RCS)
1700 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1701 else
1702 I915_WRITE_IMR(ring, ~0);
1703 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1704 }
1705 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1706 }
1707
1708 static bool
1709 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1710 {
1711 struct drm_device *dev = ring->dev;
1712 struct drm_i915_private *dev_priv = dev->dev_private;
1713 unsigned long flags;
1714
1715 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1716 return false;
1717
1718 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1719 if (ring->irq_refcount++ == 0) {
1720 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1721 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1722 }
1723 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1724
1725 return true;
1726 }
1727
1728 static void
1729 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1730 {
1731 struct drm_device *dev = ring->dev;
1732 struct drm_i915_private *dev_priv = dev->dev_private;
1733 unsigned long flags;
1734
1735 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1736 if (--ring->irq_refcount == 0) {
1737 I915_WRITE_IMR(ring, ~0);
1738 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1739 }
1740 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1741 }
1742
1743 static bool
1744 gen8_ring_get_irq(struct intel_engine_cs *ring)
1745 {
1746 struct drm_device *dev = ring->dev;
1747 struct drm_i915_private *dev_priv = dev->dev_private;
1748 unsigned long flags;
1749
1750 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1751 return false;
1752
1753 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1754 if (ring->irq_refcount++ == 0) {
1755 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1756 I915_WRITE_IMR(ring,
1757 ~(ring->irq_enable_mask |
1758 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1759 } else {
1760 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1761 }
1762 POSTING_READ(RING_IMR(ring->mmio_base));
1763 }
1764 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1765
1766 return true;
1767 }
1768
1769 static void
1770 gen8_ring_put_irq(struct intel_engine_cs *ring)
1771 {
1772 struct drm_device *dev = ring->dev;
1773 struct drm_i915_private *dev_priv = dev->dev_private;
1774 unsigned long flags;
1775
1776 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1777 if (--ring->irq_refcount == 0) {
1778 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1779 I915_WRITE_IMR(ring,
1780 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1781 } else {
1782 I915_WRITE_IMR(ring, ~0);
1783 }
1784 POSTING_READ(RING_IMR(ring->mmio_base));
1785 }
1786 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1787 }
1788
1789 static int
1790 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1791 u64 offset, u32 length,
1792 unsigned dispatch_flags)
1793 {
1794 struct intel_engine_cs *ring = req->ring;
1795 int ret;
1796
1797 ret = intel_ring_begin(req, 2);
1798 if (ret)
1799 return ret;
1800
1801 intel_ring_emit(ring,
1802 MI_BATCH_BUFFER_START |
1803 MI_BATCH_GTT |
1804 (dispatch_flags & I915_DISPATCH_SECURE ?
1805 0 : MI_BATCH_NON_SECURE_I965));
1806 intel_ring_emit(ring, offset);
1807 intel_ring_advance(ring);
1808
1809 return 0;
1810 }
1811
1812 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1813 #define I830_BATCH_LIMIT (256*1024)
1814 #define I830_TLB_ENTRIES (2)
1815 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1816 static int
1817 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1818 u64 offset, u32 len,
1819 unsigned dispatch_flags)
1820 {
1821 struct intel_engine_cs *ring = req->ring;
1822 u32 cs_offset = ring->scratch.gtt_offset;
1823 int ret;
1824
1825 ret = intel_ring_begin(req, 6);
1826 if (ret)
1827 return ret;
1828
1829 /* Evict the invalid PTE TLBs */
1830 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1831 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1832 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1833 intel_ring_emit(ring, cs_offset);
1834 intel_ring_emit(ring, 0xdeadbeef);
1835 intel_ring_emit(ring, MI_NOOP);
1836 intel_ring_advance(ring);
1837
1838 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1839 if (len > I830_BATCH_LIMIT)
1840 return -ENOSPC;
1841
1842 ret = intel_ring_begin(req, 6 + 2);
1843 if (ret)
1844 return ret;
1845
1846 /* Blit the batch (which has now all relocs applied) to the
1847 * stable batch scratch bo area (so that the CS never
1848 * stumbles over its tlb invalidation bug) ...
1849 */
1850 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1851 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1852 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1853 intel_ring_emit(ring, cs_offset);
1854 intel_ring_emit(ring, 4096);
1855 intel_ring_emit(ring, offset);
1856
1857 intel_ring_emit(ring, MI_FLUSH);
1858 intel_ring_emit(ring, MI_NOOP);
1859 intel_ring_advance(ring);
1860
1861 /* ... and execute it. */
1862 offset = cs_offset;
1863 }
1864
1865 ret = intel_ring_begin(req, 4);
1866 if (ret)
1867 return ret;
1868
1869 intel_ring_emit(ring, MI_BATCH_BUFFER);
1870 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1871 0 : MI_BATCH_NON_SECURE));
1872 intel_ring_emit(ring, offset + len - 8);
1873 intel_ring_emit(ring, MI_NOOP);
1874 intel_ring_advance(ring);
1875
1876 return 0;
1877 }
1878
1879 static int
1880 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1881 u64 offset, u32 len,
1882 unsigned dispatch_flags)
1883 {
1884 struct intel_engine_cs *ring = req->ring;
1885 int ret;
1886
1887 ret = intel_ring_begin(req, 2);
1888 if (ret)
1889 return ret;
1890
1891 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1892 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1893 0 : MI_BATCH_NON_SECURE));
1894 intel_ring_advance(ring);
1895
1896 return 0;
1897 }
1898
1899 static void cleanup_status_page(struct intel_engine_cs *ring)
1900 {
1901 struct drm_i915_gem_object *obj;
1902
1903 obj = ring->status_page.obj;
1904 if (obj == NULL)
1905 return;
1906
1907 kunmap(sg_page(obj->pages->sgl));
1908 i915_gem_object_ggtt_unpin(obj);
1909 drm_gem_object_unreference(&obj->base);
1910 ring->status_page.obj = NULL;
1911 }
1912
1913 static int init_status_page(struct intel_engine_cs *ring)
1914 {
1915 struct drm_i915_gem_object *obj;
1916
1917 if ((obj = ring->status_page.obj) == NULL) {
1918 unsigned flags;
1919 int ret;
1920
1921 obj = i915_gem_alloc_object(ring->dev, 4096);
1922 if (obj == NULL) {
1923 DRM_ERROR("Failed to allocate status page\n");
1924 return -ENOMEM;
1925 }
1926
1927 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1928 if (ret)
1929 goto err_unref;
1930
1931 flags = 0;
1932 if (!HAS_LLC(ring->dev))
1933 /* On g33, we cannot place HWS above 256MiB, so
1934 * restrict its pinning to the low mappable arena.
1935 * Though this restriction is not documented for
1936 * gen4, gen5, or byt, they also behave similarly
1937 * and hang if the HWS is placed at the top of the
1938 * GTT. To generalise, it appears that all !llc
1939 * platforms have issues with us placing the HWS
1940 * above the mappable region (even though we never
1941 * actualy map it).
1942 */
1943 flags |= PIN_MAPPABLE;
1944 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1945 if (ret) {
1946 err_unref:
1947 drm_gem_object_unreference(&obj->base);
1948 return ret;
1949 }
1950
1951 ring->status_page.obj = obj;
1952 }
1953
1954 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1955 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1956 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1957
1958 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1959 ring->name, ring->status_page.gfx_addr);
1960
1961 return 0;
1962 }
1963
1964 static int init_phys_status_page(struct intel_engine_cs *ring)
1965 {
1966 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1967
1968 if (!dev_priv->status_page_dmah) {
1969 dev_priv->status_page_dmah =
1970 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1971 if (!dev_priv->status_page_dmah)
1972 return -ENOMEM;
1973 }
1974
1975 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1976 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1977
1978 return 0;
1979 }
1980
1981 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1982 {
1983 iounmap(ringbuf->virtual_start);
1984 ringbuf->virtual_start = NULL;
1985 i915_gem_object_ggtt_unpin(ringbuf->obj);
1986 }
1987
1988 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1989 struct intel_ringbuffer *ringbuf)
1990 {
1991 struct drm_i915_private *dev_priv = to_i915(dev);
1992 struct drm_i915_gem_object *obj = ringbuf->obj;
1993 int ret;
1994
1995 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1996 if (ret)
1997 return ret;
1998
1999 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2000 if (ret) {
2001 i915_gem_object_ggtt_unpin(obj);
2002 return ret;
2003 }
2004
2005 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2006 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2007 if (ringbuf->virtual_start == NULL) {
2008 i915_gem_object_ggtt_unpin(obj);
2009 return -EINVAL;
2010 }
2011
2012 return 0;
2013 }
2014
2015 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2016 {
2017 drm_gem_object_unreference(&ringbuf->obj->base);
2018 ringbuf->obj = NULL;
2019 }
2020
2021 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2022 struct intel_ringbuffer *ringbuf)
2023 {
2024 struct drm_i915_gem_object *obj;
2025
2026 obj = NULL;
2027 if (!HAS_LLC(dev))
2028 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2029 if (obj == NULL)
2030 obj = i915_gem_alloc_object(dev, ringbuf->size);
2031 if (obj == NULL)
2032 return -ENOMEM;
2033
2034 /* mark ring buffers as read-only from GPU side by default */
2035 obj->gt_ro = 1;
2036
2037 ringbuf->obj = obj;
2038
2039 return 0;
2040 }
2041
2042 struct intel_ringbuffer *
2043 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2044 {
2045 struct intel_ringbuffer *ring;
2046 int ret;
2047
2048 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2049 if (ring == NULL)
2050 return ERR_PTR(-ENOMEM);
2051
2052 ring->ring = engine;
2053
2054 ring->size = size;
2055 /* Workaround an erratum on the i830 which causes a hang if
2056 * the TAIL pointer points to within the last 2 cachelines
2057 * of the buffer.
2058 */
2059 ring->effective_size = size;
2060 if (IS_I830(engine->dev) || IS_845G(engine->dev))
2061 ring->effective_size -= 2 * CACHELINE_BYTES;
2062
2063 ring->last_retired_head = -1;
2064 intel_ring_update_space(ring);
2065
2066 ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2067 if (ret) {
2068 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2069 engine->name, ret);
2070 kfree(ring);
2071 return ERR_PTR(ret);
2072 }
2073
2074 return ring;
2075 }
2076
2077 void
2078 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2079 {
2080 intel_destroy_ringbuffer_obj(ring);
2081 kfree(ring);
2082 }
2083
2084 static int intel_init_ring_buffer(struct drm_device *dev,
2085 struct intel_engine_cs *ring)
2086 {
2087 struct intel_ringbuffer *ringbuf;
2088 int ret;
2089
2090 WARN_ON(ring->buffer);
2091
2092 ring->dev = dev;
2093 INIT_LIST_HEAD(&ring->active_list);
2094 INIT_LIST_HEAD(&ring->request_list);
2095 INIT_LIST_HEAD(&ring->execlist_queue);
2096 i915_gem_batch_pool_init(dev, &ring->batch_pool);
2097 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2098
2099 init_waitqueue_head(&ring->irq_queue);
2100
2101 ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2102 if (IS_ERR(ringbuf))
2103 return PTR_ERR(ringbuf);
2104 ring->buffer = ringbuf;
2105
2106 if (I915_NEED_GFX_HWS(dev)) {
2107 ret = init_status_page(ring);
2108 if (ret)
2109 goto error;
2110 } else {
2111 BUG_ON(ring->id != RCS);
2112 ret = init_phys_status_page(ring);
2113 if (ret)
2114 goto error;
2115 }
2116
2117 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2118 if (ret) {
2119 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2120 ring->name, ret);
2121 intel_destroy_ringbuffer_obj(ringbuf);
2122 goto error;
2123 }
2124
2125 ret = i915_cmd_parser_init_ring(ring);
2126 if (ret)
2127 goto error;
2128
2129 return 0;
2130
2131 error:
2132 intel_ringbuffer_free(ringbuf);
2133 ring->buffer = NULL;
2134 return ret;
2135 }
2136
2137 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2138 {
2139 struct drm_i915_private *dev_priv;
2140
2141 if (!intel_ring_initialized(ring))
2142 return;
2143
2144 dev_priv = to_i915(ring->dev);
2145
2146 intel_stop_ring_buffer(ring);
2147 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2148
2149 intel_unpin_ringbuffer_obj(ring->buffer);
2150 intel_ringbuffer_free(ring->buffer);
2151 ring->buffer = NULL;
2152
2153 if (ring->cleanup)
2154 ring->cleanup(ring);
2155
2156 cleanup_status_page(ring);
2157
2158 i915_cmd_parser_fini_ring(ring);
2159 i915_gem_batch_pool_fini(&ring->batch_pool);
2160 }
2161
2162 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2163 {
2164 struct intel_ringbuffer *ringbuf = ring->buffer;
2165 struct drm_i915_gem_request *request;
2166 unsigned space;
2167 int ret;
2168
2169 if (intel_ring_space(ringbuf) >= n)
2170 return 0;
2171
2172 /* The whole point of reserving space is to not wait! */
2173 WARN_ON(ringbuf->reserved_in_use);
2174
2175 list_for_each_entry(request, &ring->request_list, list) {
2176 space = __intel_ring_space(request->postfix, ringbuf->tail,
2177 ringbuf->size);
2178 if (space >= n)
2179 break;
2180 }
2181
2182 if (WARN_ON(&request->list == &ring->request_list))
2183 return -ENOSPC;
2184
2185 ret = i915_wait_request(request);
2186 if (ret)
2187 return ret;
2188
2189 ringbuf->space = space;
2190 return 0;
2191 }
2192
2193 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2194 {
2195 uint32_t __iomem *virt;
2196 int rem = ringbuf->size - ringbuf->tail;
2197
2198 virt = ringbuf->virtual_start + ringbuf->tail;
2199 rem /= 4;
2200 while (rem--)
2201 iowrite32(MI_NOOP, virt++);
2202
2203 ringbuf->tail = 0;
2204 intel_ring_update_space(ringbuf);
2205 }
2206
2207 int intel_ring_idle(struct intel_engine_cs *ring)
2208 {
2209 struct drm_i915_gem_request *req;
2210
2211 /* Wait upon the last request to be completed */
2212 if (list_empty(&ring->request_list))
2213 return 0;
2214
2215 req = list_entry(ring->request_list.prev,
2216 struct drm_i915_gem_request,
2217 list);
2218
2219 /* Make sure we do not trigger any retires */
2220 return __i915_wait_request(req,
2221 atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2222 to_i915(ring->dev)->mm.interruptible,
2223 NULL, NULL);
2224 }
2225
2226 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2227 {
2228 request->ringbuf = request->ring->buffer;
2229 return 0;
2230 }
2231
2232 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2233 {
2234 /*
2235 * The first call merely notes the reserve request and is common for
2236 * all back ends. The subsequent localised _begin() call actually
2237 * ensures that the reservation is available. Without the begin, if
2238 * the request creator immediately submitted the request without
2239 * adding any commands to it then there might not actually be
2240 * sufficient room for the submission commands.
2241 */
2242 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2243
2244 return intel_ring_begin(request, 0);
2245 }
2246
2247 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2248 {
2249 WARN_ON(ringbuf->reserved_size);
2250 WARN_ON(ringbuf->reserved_in_use);
2251
2252 ringbuf->reserved_size = size;
2253 }
2254
2255 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2256 {
2257 WARN_ON(ringbuf->reserved_in_use);
2258
2259 ringbuf->reserved_size = 0;
2260 ringbuf->reserved_in_use = false;
2261 }
2262
2263 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2264 {
2265 WARN_ON(ringbuf->reserved_in_use);
2266
2267 ringbuf->reserved_in_use = true;
2268 ringbuf->reserved_tail = ringbuf->tail;
2269 }
2270
2271 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2272 {
2273 WARN_ON(!ringbuf->reserved_in_use);
2274 if (ringbuf->tail > ringbuf->reserved_tail) {
2275 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2276 "request reserved size too small: %d vs %d!\n",
2277 ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2278 } else {
2279 /*
2280 * The ring was wrapped while the reserved space was in use.
2281 * That means that some unknown amount of the ring tail was
2282 * no-op filled and skipped. Thus simply adding the ring size
2283 * to the tail and doing the above space check will not work.
2284 * Rather than attempt to track how much tail was skipped,
2285 * it is much simpler to say that also skipping the sanity
2286 * check every once in a while is not a big issue.
2287 */
2288 }
2289
2290 ringbuf->reserved_size = 0;
2291 ringbuf->reserved_in_use = false;
2292 }
2293
2294 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2295 {
2296 struct intel_ringbuffer *ringbuf = ring->buffer;
2297 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2298 int remain_actual = ringbuf->size - ringbuf->tail;
2299 int ret, total_bytes, wait_bytes = 0;
2300 bool need_wrap = false;
2301
2302 if (ringbuf->reserved_in_use)
2303 total_bytes = bytes;
2304 else
2305 total_bytes = bytes + ringbuf->reserved_size;
2306
2307 if (unlikely(bytes > remain_usable)) {
2308 /*
2309 * Not enough space for the basic request. So need to flush
2310 * out the remainder and then wait for base + reserved.
2311 */
2312 wait_bytes = remain_actual + total_bytes;
2313 need_wrap = true;
2314 } else {
2315 if (unlikely(total_bytes > remain_usable)) {
2316 /*
2317 * The base request will fit but the reserved space
2318 * falls off the end. So only need to to wait for the
2319 * reserved size after flushing out the remainder.
2320 */
2321 wait_bytes = remain_actual + ringbuf->reserved_size;
2322 need_wrap = true;
2323 } else if (total_bytes > ringbuf->space) {
2324 /* No wrapping required, just waiting. */
2325 wait_bytes = total_bytes;
2326 }
2327 }
2328
2329 if (wait_bytes) {
2330 ret = ring_wait_for_space(ring, wait_bytes);
2331 if (unlikely(ret))
2332 return ret;
2333
2334 if (need_wrap)
2335 __wrap_ring_buffer(ringbuf);
2336 }
2337
2338 return 0;
2339 }
2340
2341 int intel_ring_begin(struct drm_i915_gem_request *req,
2342 int num_dwords)
2343 {
2344 struct intel_engine_cs *ring;
2345 struct drm_i915_private *dev_priv;
2346 int ret;
2347
2348 WARN_ON(req == NULL);
2349 ring = req->ring;
2350 dev_priv = ring->dev->dev_private;
2351
2352 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2353 dev_priv->mm.interruptible);
2354 if (ret)
2355 return ret;
2356
2357 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2358 if (ret)
2359 return ret;
2360
2361 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2362 return 0;
2363 }
2364
2365 /* Align the ring tail to a cacheline boundary */
2366 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2367 {
2368 struct intel_engine_cs *ring = req->ring;
2369 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2370 int ret;
2371
2372 if (num_dwords == 0)
2373 return 0;
2374
2375 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2376 ret = intel_ring_begin(req, num_dwords);
2377 if (ret)
2378 return ret;
2379
2380 while (num_dwords--)
2381 intel_ring_emit(ring, MI_NOOP);
2382
2383 intel_ring_advance(ring);
2384
2385 return 0;
2386 }
2387
2388 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2389 {
2390 struct drm_device *dev = ring->dev;
2391 struct drm_i915_private *dev_priv = dev->dev_private;
2392
2393 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2394 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2395 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2396 if (HAS_VEBOX(dev))
2397 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2398 }
2399
2400 ring->set_seqno(ring, seqno);
2401 ring->hangcheck.seqno = seqno;
2402 }
2403
2404 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2405 u32 value)
2406 {
2407 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2408
2409 /* Every tail move must follow the sequence below */
2410
2411 /* Disable notification that the ring is IDLE. The GT
2412 * will then assume that it is busy and bring it out of rc6.
2413 */
2414 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2415 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2416
2417 /* Clear the context id. Here be magic! */
2418 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2419
2420 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2421 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2422 GEN6_BSD_SLEEP_INDICATOR) == 0,
2423 50))
2424 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2425
2426 /* Now that the ring is fully powered up, update the tail */
2427 I915_WRITE_TAIL(ring, value);
2428 POSTING_READ(RING_TAIL(ring->mmio_base));
2429
2430 /* Let the ring send IDLE messages to the GT again,
2431 * and so let it sleep to conserve power when idle.
2432 */
2433 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2434 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2435 }
2436
2437 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2438 u32 invalidate, u32 flush)
2439 {
2440 struct intel_engine_cs *ring = req->ring;
2441 uint32_t cmd;
2442 int ret;
2443
2444 ret = intel_ring_begin(req, 4);
2445 if (ret)
2446 return ret;
2447
2448 cmd = MI_FLUSH_DW;
2449 if (INTEL_INFO(ring->dev)->gen >= 8)
2450 cmd += 1;
2451
2452 /* We always require a command barrier so that subsequent
2453 * commands, such as breadcrumb interrupts, are strictly ordered
2454 * wrt the contents of the write cache being flushed to memory
2455 * (and thus being coherent from the CPU).
2456 */
2457 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2458
2459 /*
2460 * Bspec vol 1c.5 - video engine command streamer:
2461 * "If ENABLED, all TLBs will be invalidated once the flush
2462 * operation is complete. This bit is only valid when the
2463 * Post-Sync Operation field is a value of 1h or 3h."
2464 */
2465 if (invalidate & I915_GEM_GPU_DOMAINS)
2466 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2467
2468 intel_ring_emit(ring, cmd);
2469 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2470 if (INTEL_INFO(ring->dev)->gen >= 8) {
2471 intel_ring_emit(ring, 0); /* upper addr */
2472 intel_ring_emit(ring, 0); /* value */
2473 } else {
2474 intel_ring_emit(ring, 0);
2475 intel_ring_emit(ring, MI_NOOP);
2476 }
2477 intel_ring_advance(ring);
2478 return 0;
2479 }
2480
2481 static int
2482 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2483 u64 offset, u32 len,
2484 unsigned dispatch_flags)
2485 {
2486 struct intel_engine_cs *ring = req->ring;
2487 bool ppgtt = USES_PPGTT(ring->dev) &&
2488 !(dispatch_flags & I915_DISPATCH_SECURE);
2489 int ret;
2490
2491 ret = intel_ring_begin(req, 4);
2492 if (ret)
2493 return ret;
2494
2495 /* FIXME(BDW): Address space and security selectors. */
2496 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2497 (dispatch_flags & I915_DISPATCH_RS ?
2498 MI_BATCH_RESOURCE_STREAMER : 0));
2499 intel_ring_emit(ring, lower_32_bits(offset));
2500 intel_ring_emit(ring, upper_32_bits(offset));
2501 intel_ring_emit(ring, MI_NOOP);
2502 intel_ring_advance(ring);
2503
2504 return 0;
2505 }
2506
2507 static int
2508 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2509 u64 offset, u32 len,
2510 unsigned dispatch_flags)
2511 {
2512 struct intel_engine_cs *ring = req->ring;
2513 int ret;
2514
2515 ret = intel_ring_begin(req, 2);
2516 if (ret)
2517 return ret;
2518
2519 intel_ring_emit(ring,
2520 MI_BATCH_BUFFER_START |
2521 (dispatch_flags & I915_DISPATCH_SECURE ?
2522 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2523 (dispatch_flags & I915_DISPATCH_RS ?
2524 MI_BATCH_RESOURCE_STREAMER : 0));
2525 /* bit0-7 is the length on GEN6+ */
2526 intel_ring_emit(ring, offset);
2527 intel_ring_advance(ring);
2528
2529 return 0;
2530 }
2531
2532 static int
2533 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2534 u64 offset, u32 len,
2535 unsigned dispatch_flags)
2536 {
2537 struct intel_engine_cs *ring = req->ring;
2538 int ret;
2539
2540 ret = intel_ring_begin(req, 2);
2541 if (ret)
2542 return ret;
2543
2544 intel_ring_emit(ring,
2545 MI_BATCH_BUFFER_START |
2546 (dispatch_flags & I915_DISPATCH_SECURE ?
2547 0 : MI_BATCH_NON_SECURE_I965));
2548 /* bit0-7 is the length on GEN6+ */
2549 intel_ring_emit(ring, offset);
2550 intel_ring_advance(ring);
2551
2552 return 0;
2553 }
2554
2555 /* Blitter support (SandyBridge+) */
2556
2557 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2558 u32 invalidate, u32 flush)
2559 {
2560 struct intel_engine_cs *ring = req->ring;
2561 struct drm_device *dev = ring->dev;
2562 uint32_t cmd;
2563 int ret;
2564
2565 ret = intel_ring_begin(req, 4);
2566 if (ret)
2567 return ret;
2568
2569 cmd = MI_FLUSH_DW;
2570 if (INTEL_INFO(dev)->gen >= 8)
2571 cmd += 1;
2572
2573 /* We always require a command barrier so that subsequent
2574 * commands, such as breadcrumb interrupts, are strictly ordered
2575 * wrt the contents of the write cache being flushed to memory
2576 * (and thus being coherent from the CPU).
2577 */
2578 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2579
2580 /*
2581 * Bspec vol 1c.3 - blitter engine command streamer:
2582 * "If ENABLED, all TLBs will be invalidated once the flush
2583 * operation is complete. This bit is only valid when the
2584 * Post-Sync Operation field is a value of 1h or 3h."
2585 */
2586 if (invalidate & I915_GEM_DOMAIN_RENDER)
2587 cmd |= MI_INVALIDATE_TLB;
2588 intel_ring_emit(ring, cmd);
2589 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2590 if (INTEL_INFO(dev)->gen >= 8) {
2591 intel_ring_emit(ring, 0); /* upper addr */
2592 intel_ring_emit(ring, 0); /* value */
2593 } else {
2594 intel_ring_emit(ring, 0);
2595 intel_ring_emit(ring, MI_NOOP);
2596 }
2597 intel_ring_advance(ring);
2598
2599 return 0;
2600 }
2601
2602 int intel_init_render_ring_buffer(struct drm_device *dev)
2603 {
2604 struct drm_i915_private *dev_priv = dev->dev_private;
2605 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2606 struct drm_i915_gem_object *obj;
2607 int ret;
2608
2609 ring->name = "render ring";
2610 ring->id = RCS;
2611 ring->mmio_base = RENDER_RING_BASE;
2612
2613 if (INTEL_INFO(dev)->gen >= 8) {
2614 if (i915_semaphore_is_enabled(dev)) {
2615 obj = i915_gem_alloc_object(dev, 4096);
2616 if (obj == NULL) {
2617 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2618 i915.semaphores = 0;
2619 } else {
2620 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2621 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2622 if (ret != 0) {
2623 drm_gem_object_unreference(&obj->base);
2624 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2625 i915.semaphores = 0;
2626 } else
2627 dev_priv->semaphore_obj = obj;
2628 }
2629 }
2630
2631 ring->init_context = intel_rcs_ctx_init;
2632 ring->add_request = gen6_add_request;
2633 ring->flush = gen8_render_ring_flush;
2634 ring->irq_get = gen8_ring_get_irq;
2635 ring->irq_put = gen8_ring_put_irq;
2636 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2637 ring->get_seqno = gen6_ring_get_seqno;
2638 ring->set_seqno = ring_set_seqno;
2639 if (i915_semaphore_is_enabled(dev)) {
2640 WARN_ON(!dev_priv->semaphore_obj);
2641 ring->semaphore.sync_to = gen8_ring_sync;
2642 ring->semaphore.signal = gen8_rcs_signal;
2643 GEN8_RING_SEMAPHORE_INIT;
2644 }
2645 } else if (INTEL_INFO(dev)->gen >= 6) {
2646 ring->add_request = gen6_add_request;
2647 ring->flush = gen7_render_ring_flush;
2648 if (INTEL_INFO(dev)->gen == 6)
2649 ring->flush = gen6_render_ring_flush;
2650 ring->irq_get = gen6_ring_get_irq;
2651 ring->irq_put = gen6_ring_put_irq;
2652 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2653 ring->get_seqno = gen6_ring_get_seqno;
2654 ring->set_seqno = ring_set_seqno;
2655 if (i915_semaphore_is_enabled(dev)) {
2656 ring->semaphore.sync_to = gen6_ring_sync;
2657 ring->semaphore.signal = gen6_signal;
2658 /*
2659 * The current semaphore is only applied on pre-gen8
2660 * platform. And there is no VCS2 ring on the pre-gen8
2661 * platform. So the semaphore between RCS and VCS2 is
2662 * initialized as INVALID. Gen8 will initialize the
2663 * sema between VCS2 and RCS later.
2664 */
2665 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2666 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2667 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2668 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2669 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2670 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2671 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2672 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2673 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2674 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2675 }
2676 } else if (IS_GEN5(dev)) {
2677 ring->add_request = pc_render_add_request;
2678 ring->flush = gen4_render_ring_flush;
2679 ring->get_seqno = pc_render_get_seqno;
2680 ring->set_seqno = pc_render_set_seqno;
2681 ring->irq_get = gen5_ring_get_irq;
2682 ring->irq_put = gen5_ring_put_irq;
2683 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2684 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2685 } else {
2686 ring->add_request = i9xx_add_request;
2687 if (INTEL_INFO(dev)->gen < 4)
2688 ring->flush = gen2_render_ring_flush;
2689 else
2690 ring->flush = gen4_render_ring_flush;
2691 ring->get_seqno = ring_get_seqno;
2692 ring->set_seqno = ring_set_seqno;
2693 if (IS_GEN2(dev)) {
2694 ring->irq_get = i8xx_ring_get_irq;
2695 ring->irq_put = i8xx_ring_put_irq;
2696 } else {
2697 ring->irq_get = i9xx_ring_get_irq;
2698 ring->irq_put = i9xx_ring_put_irq;
2699 }
2700 ring->irq_enable_mask = I915_USER_INTERRUPT;
2701 }
2702 ring->write_tail = ring_write_tail;
2703
2704 if (IS_HASWELL(dev))
2705 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2706 else if (IS_GEN8(dev))
2707 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2708 else if (INTEL_INFO(dev)->gen >= 6)
2709 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2710 else if (INTEL_INFO(dev)->gen >= 4)
2711 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2712 else if (IS_I830(dev) || IS_845G(dev))
2713 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2714 else
2715 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2716 ring->init_hw = init_render_ring;
2717 ring->cleanup = render_ring_cleanup;
2718
2719 /* Workaround batchbuffer to combat CS tlb bug. */
2720 if (HAS_BROKEN_CS_TLB(dev)) {
2721 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2722 if (obj == NULL) {
2723 DRM_ERROR("Failed to allocate batch bo\n");
2724 return -ENOMEM;
2725 }
2726
2727 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2728 if (ret != 0) {
2729 drm_gem_object_unreference(&obj->base);
2730 DRM_ERROR("Failed to ping batch bo\n");
2731 return ret;
2732 }
2733
2734 ring->scratch.obj = obj;
2735 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2736 }
2737
2738 ret = intel_init_ring_buffer(dev, ring);
2739 if (ret)
2740 return ret;
2741
2742 if (INTEL_INFO(dev)->gen >= 5) {
2743 ret = intel_init_pipe_control(ring);
2744 if (ret)
2745 return ret;
2746 }
2747
2748 return 0;
2749 }
2750
2751 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2752 {
2753 struct drm_i915_private *dev_priv = dev->dev_private;
2754 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2755
2756 ring->name = "bsd ring";
2757 ring->id = VCS;
2758
2759 ring->write_tail = ring_write_tail;
2760 if (INTEL_INFO(dev)->gen >= 6) {
2761 ring->mmio_base = GEN6_BSD_RING_BASE;
2762 /* gen6 bsd needs a special wa for tail updates */
2763 if (IS_GEN6(dev))
2764 ring->write_tail = gen6_bsd_ring_write_tail;
2765 ring->flush = gen6_bsd_ring_flush;
2766 ring->add_request = gen6_add_request;
2767 ring->get_seqno = gen6_ring_get_seqno;
2768 ring->set_seqno = ring_set_seqno;
2769 if (INTEL_INFO(dev)->gen >= 8) {
2770 ring->irq_enable_mask =
2771 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2772 ring->irq_get = gen8_ring_get_irq;
2773 ring->irq_put = gen8_ring_put_irq;
2774 ring->dispatch_execbuffer =
2775 gen8_ring_dispatch_execbuffer;
2776 if (i915_semaphore_is_enabled(dev)) {
2777 ring->semaphore.sync_to = gen8_ring_sync;
2778 ring->semaphore.signal = gen8_xcs_signal;
2779 GEN8_RING_SEMAPHORE_INIT;
2780 }
2781 } else {
2782 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2783 ring->irq_get = gen6_ring_get_irq;
2784 ring->irq_put = gen6_ring_put_irq;
2785 ring->dispatch_execbuffer =
2786 gen6_ring_dispatch_execbuffer;
2787 if (i915_semaphore_is_enabled(dev)) {
2788 ring->semaphore.sync_to = gen6_ring_sync;
2789 ring->semaphore.signal = gen6_signal;
2790 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2791 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2792 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2793 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2794 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2795 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2796 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2797 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2798 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2799 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2800 }
2801 }
2802 } else {
2803 ring->mmio_base = BSD_RING_BASE;
2804 ring->flush = bsd_ring_flush;
2805 ring->add_request = i9xx_add_request;
2806 ring->get_seqno = ring_get_seqno;
2807 ring->set_seqno = ring_set_seqno;
2808 if (IS_GEN5(dev)) {
2809 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2810 ring->irq_get = gen5_ring_get_irq;
2811 ring->irq_put = gen5_ring_put_irq;
2812 } else {
2813 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2814 ring->irq_get = i9xx_ring_get_irq;
2815 ring->irq_put = i9xx_ring_put_irq;
2816 }
2817 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2818 }
2819 ring->init_hw = init_ring_common;
2820
2821 return intel_init_ring_buffer(dev, ring);
2822 }
2823
2824 /**
2825 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2826 */
2827 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2828 {
2829 struct drm_i915_private *dev_priv = dev->dev_private;
2830 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2831
2832 ring->name = "bsd2 ring";
2833 ring->id = VCS2;
2834
2835 ring->write_tail = ring_write_tail;
2836 ring->mmio_base = GEN8_BSD2_RING_BASE;
2837 ring->flush = gen6_bsd_ring_flush;
2838 ring->add_request = gen6_add_request;
2839 ring->get_seqno = gen6_ring_get_seqno;
2840 ring->set_seqno = ring_set_seqno;
2841 ring->irq_enable_mask =
2842 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2843 ring->irq_get = gen8_ring_get_irq;
2844 ring->irq_put = gen8_ring_put_irq;
2845 ring->dispatch_execbuffer =
2846 gen8_ring_dispatch_execbuffer;
2847 if (i915_semaphore_is_enabled(dev)) {
2848 ring->semaphore.sync_to = gen8_ring_sync;
2849 ring->semaphore.signal = gen8_xcs_signal;
2850 GEN8_RING_SEMAPHORE_INIT;
2851 }
2852 ring->init_hw = init_ring_common;
2853
2854 return intel_init_ring_buffer(dev, ring);
2855 }
2856
2857 int intel_init_blt_ring_buffer(struct drm_device *dev)
2858 {
2859 struct drm_i915_private *dev_priv = dev->dev_private;
2860 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2861
2862 ring->name = "blitter ring";
2863 ring->id = BCS;
2864
2865 ring->mmio_base = BLT_RING_BASE;
2866 ring->write_tail = ring_write_tail;
2867 ring->flush = gen6_ring_flush;
2868 ring->add_request = gen6_add_request;
2869 ring->get_seqno = gen6_ring_get_seqno;
2870 ring->set_seqno = ring_set_seqno;
2871 if (INTEL_INFO(dev)->gen >= 8) {
2872 ring->irq_enable_mask =
2873 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2874 ring->irq_get = gen8_ring_get_irq;
2875 ring->irq_put = gen8_ring_put_irq;
2876 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2877 if (i915_semaphore_is_enabled(dev)) {
2878 ring->semaphore.sync_to = gen8_ring_sync;
2879 ring->semaphore.signal = gen8_xcs_signal;
2880 GEN8_RING_SEMAPHORE_INIT;
2881 }
2882 } else {
2883 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2884 ring->irq_get = gen6_ring_get_irq;
2885 ring->irq_put = gen6_ring_put_irq;
2886 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2887 if (i915_semaphore_is_enabled(dev)) {
2888 ring->semaphore.signal = gen6_signal;
2889 ring->semaphore.sync_to = gen6_ring_sync;
2890 /*
2891 * The current semaphore is only applied on pre-gen8
2892 * platform. And there is no VCS2 ring on the pre-gen8
2893 * platform. So the semaphore between BCS and VCS2 is
2894 * initialized as INVALID. Gen8 will initialize the
2895 * sema between BCS and VCS2 later.
2896 */
2897 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2898 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2899 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2900 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2901 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2902 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2903 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2904 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2905 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2906 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2907 }
2908 }
2909 ring->init_hw = init_ring_common;
2910
2911 return intel_init_ring_buffer(dev, ring);
2912 }
2913
2914 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2915 {
2916 struct drm_i915_private *dev_priv = dev->dev_private;
2917 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2918
2919 ring->name = "video enhancement ring";
2920 ring->id = VECS;
2921
2922 ring->mmio_base = VEBOX_RING_BASE;
2923 ring->write_tail = ring_write_tail;
2924 ring->flush = gen6_ring_flush;
2925 ring->add_request = gen6_add_request;
2926 ring->get_seqno = gen6_ring_get_seqno;
2927 ring->set_seqno = ring_set_seqno;
2928
2929 if (INTEL_INFO(dev)->gen >= 8) {
2930 ring->irq_enable_mask =
2931 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2932 ring->irq_get = gen8_ring_get_irq;
2933 ring->irq_put = gen8_ring_put_irq;
2934 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2935 if (i915_semaphore_is_enabled(dev)) {
2936 ring->semaphore.sync_to = gen8_ring_sync;
2937 ring->semaphore.signal = gen8_xcs_signal;
2938 GEN8_RING_SEMAPHORE_INIT;
2939 }
2940 } else {
2941 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2942 ring->irq_get = hsw_vebox_get_irq;
2943 ring->irq_put = hsw_vebox_put_irq;
2944 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2945 if (i915_semaphore_is_enabled(dev)) {
2946 ring->semaphore.sync_to = gen6_ring_sync;
2947 ring->semaphore.signal = gen6_signal;
2948 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2949 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2950 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2951 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2952 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2953 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2954 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2955 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2956 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2957 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2958 }
2959 }
2960 ring->init_hw = init_ring_common;
2961
2962 return intel_init_ring_buffer(dev, ring);
2963 }
2964
2965 int
2966 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
2967 {
2968 struct intel_engine_cs *ring = req->ring;
2969 int ret;
2970
2971 if (!ring->gpu_caches_dirty)
2972 return 0;
2973
2974 ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
2975 if (ret)
2976 return ret;
2977
2978 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
2979
2980 ring->gpu_caches_dirty = false;
2981 return 0;
2982 }
2983
2984 int
2985 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
2986 {
2987 struct intel_engine_cs *ring = req->ring;
2988 uint32_t flush_domains;
2989 int ret;
2990
2991 flush_domains = 0;
2992 if (ring->gpu_caches_dirty)
2993 flush_domains = I915_GEM_GPU_DOMAINS;
2994
2995 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2996 if (ret)
2997 return ret;
2998
2999 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3000
3001 ring->gpu_caches_dirty = false;
3002 return 0;
3003 }
3004
3005 void
3006 intel_stop_ring_buffer(struct intel_engine_cs *ring)
3007 {
3008 int ret;
3009
3010 if (!intel_ring_initialized(ring))
3011 return;
3012
3013 ret = intel_ring_idle(ring);
3014 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3015 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3016 ring->name, ret);
3017
3018 stop_ring(ring);
3019 }
This page took 0.095634 seconds and 5 git commands to generate.