drm/i915: Refactor Broadwell PIPE_CONTROL emission into a helper.
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
37 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
38 * to give some inclination as to some of the magic values used in the various
39 * workarounds!
40 */
41 #define CACHELINE_BYTES 64
42
43 static inline int __ring_space(int head, int tail, int size)
44 {
45 int space = head - (tail + I915_RING_FREE_SPACE);
46 if (space < 0)
47 space += size;
48 return space;
49 }
50
51 static inline int ring_space(struct intel_ringbuffer *ringbuf)
52 {
53 return __ring_space(ringbuf->head & HEAD_ADDR, ringbuf->tail, ringbuf->size);
54 }
55
56 static bool intel_ring_stopped(struct intel_engine_cs *ring)
57 {
58 struct drm_i915_private *dev_priv = ring->dev->dev_private;
59 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
60 }
61
62 void __intel_ring_advance(struct intel_engine_cs *ring)
63 {
64 struct intel_ringbuffer *ringbuf = ring->buffer;
65 ringbuf->tail &= ringbuf->size - 1;
66 if (intel_ring_stopped(ring))
67 return;
68 ring->write_tail(ring, ringbuf->tail);
69 }
70
71 static int
72 gen2_render_ring_flush(struct intel_engine_cs *ring,
73 u32 invalidate_domains,
74 u32 flush_domains)
75 {
76 u32 cmd;
77 int ret;
78
79 cmd = MI_FLUSH;
80 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
81 cmd |= MI_NO_WRITE_FLUSH;
82
83 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
84 cmd |= MI_READ_FLUSH;
85
86 ret = intel_ring_begin(ring, 2);
87 if (ret)
88 return ret;
89
90 intel_ring_emit(ring, cmd);
91 intel_ring_emit(ring, MI_NOOP);
92 intel_ring_advance(ring);
93
94 return 0;
95 }
96
97 static int
98 gen4_render_ring_flush(struct intel_engine_cs *ring,
99 u32 invalidate_domains,
100 u32 flush_domains)
101 {
102 struct drm_device *dev = ring->dev;
103 u32 cmd;
104 int ret;
105
106 /*
107 * read/write caches:
108 *
109 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
110 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
111 * also flushed at 2d versus 3d pipeline switches.
112 *
113 * read-only caches:
114 *
115 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
116 * MI_READ_FLUSH is set, and is always flushed on 965.
117 *
118 * I915_GEM_DOMAIN_COMMAND may not exist?
119 *
120 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
121 * invalidated when MI_EXE_FLUSH is set.
122 *
123 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
124 * invalidated with every MI_FLUSH.
125 *
126 * TLBs:
127 *
128 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
129 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
130 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
131 * are flushed at any MI_FLUSH.
132 */
133
134 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
135 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
136 cmd &= ~MI_NO_WRITE_FLUSH;
137 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
138 cmd |= MI_EXE_FLUSH;
139
140 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
141 (IS_G4X(dev) || IS_GEN5(dev)))
142 cmd |= MI_INVALIDATE_ISP;
143
144 ret = intel_ring_begin(ring, 2);
145 if (ret)
146 return ret;
147
148 intel_ring_emit(ring, cmd);
149 intel_ring_emit(ring, MI_NOOP);
150 intel_ring_advance(ring);
151
152 return 0;
153 }
154
155 /**
156 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
157 * implementing two workarounds on gen6. From section 1.4.7.1
158 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
159 *
160 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
161 * produced by non-pipelined state commands), software needs to first
162 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
163 * 0.
164 *
165 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
166 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
167 *
168 * And the workaround for these two requires this workaround first:
169 *
170 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
171 * BEFORE the pipe-control with a post-sync op and no write-cache
172 * flushes.
173 *
174 * And this last workaround is tricky because of the requirements on
175 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
176 * volume 2 part 1:
177 *
178 * "1 of the following must also be set:
179 * - Render Target Cache Flush Enable ([12] of DW1)
180 * - Depth Cache Flush Enable ([0] of DW1)
181 * - Stall at Pixel Scoreboard ([1] of DW1)
182 * - Depth Stall ([13] of DW1)
183 * - Post-Sync Operation ([13] of DW1)
184 * - Notify Enable ([8] of DW1)"
185 *
186 * The cache flushes require the workaround flush that triggered this
187 * one, so we can't use it. Depth stall would trigger the same.
188 * Post-sync nonzero is what triggered this second workaround, so we
189 * can't use that one either. Notify enable is IRQs, which aren't
190 * really our business. That leaves only stall at scoreboard.
191 */
192 static int
193 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
194 {
195 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
196 int ret;
197
198
199 ret = intel_ring_begin(ring, 6);
200 if (ret)
201 return ret;
202
203 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
204 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
205 PIPE_CONTROL_STALL_AT_SCOREBOARD);
206 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
207 intel_ring_emit(ring, 0); /* low dword */
208 intel_ring_emit(ring, 0); /* high dword */
209 intel_ring_emit(ring, MI_NOOP);
210 intel_ring_advance(ring);
211
212 ret = intel_ring_begin(ring, 6);
213 if (ret)
214 return ret;
215
216 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
217 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
218 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
219 intel_ring_emit(ring, 0);
220 intel_ring_emit(ring, 0);
221 intel_ring_emit(ring, MI_NOOP);
222 intel_ring_advance(ring);
223
224 return 0;
225 }
226
227 static int
228 gen6_render_ring_flush(struct intel_engine_cs *ring,
229 u32 invalidate_domains, u32 flush_domains)
230 {
231 u32 flags = 0;
232 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
233 int ret;
234
235 /* Force SNB workarounds for PIPE_CONTROL flushes */
236 ret = intel_emit_post_sync_nonzero_flush(ring);
237 if (ret)
238 return ret;
239
240 /* Just flush everything. Experiments have shown that reducing the
241 * number of bits based on the write domains has little performance
242 * impact.
243 */
244 if (flush_domains) {
245 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
246 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
247 /*
248 * Ensure that any following seqno writes only happen
249 * when the render cache is indeed flushed.
250 */
251 flags |= PIPE_CONTROL_CS_STALL;
252 }
253 if (invalidate_domains) {
254 flags |= PIPE_CONTROL_TLB_INVALIDATE;
255 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
256 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
257 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
258 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
259 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
260 /*
261 * TLB invalidate requires a post-sync write.
262 */
263 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
264 }
265
266 ret = intel_ring_begin(ring, 4);
267 if (ret)
268 return ret;
269
270 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
271 intel_ring_emit(ring, flags);
272 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
273 intel_ring_emit(ring, 0);
274 intel_ring_advance(ring);
275
276 return 0;
277 }
278
279 static int
280 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
281 {
282 int ret;
283
284 ret = intel_ring_begin(ring, 4);
285 if (ret)
286 return ret;
287
288 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
289 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
290 PIPE_CONTROL_STALL_AT_SCOREBOARD);
291 intel_ring_emit(ring, 0);
292 intel_ring_emit(ring, 0);
293 intel_ring_advance(ring);
294
295 return 0;
296 }
297
298 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
299 {
300 int ret;
301
302 if (!ring->fbc_dirty)
303 return 0;
304
305 ret = intel_ring_begin(ring, 6);
306 if (ret)
307 return ret;
308 /* WaFbcNukeOn3DBlt:ivb/hsw */
309 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
310 intel_ring_emit(ring, MSG_FBC_REND_STATE);
311 intel_ring_emit(ring, value);
312 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
313 intel_ring_emit(ring, MSG_FBC_REND_STATE);
314 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
315 intel_ring_advance(ring);
316
317 ring->fbc_dirty = false;
318 return 0;
319 }
320
321 static int
322 gen7_render_ring_flush(struct intel_engine_cs *ring,
323 u32 invalidate_domains, u32 flush_domains)
324 {
325 u32 flags = 0;
326 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
327 int ret;
328
329 /*
330 * Ensure that any following seqno writes only happen when the render
331 * cache is indeed flushed.
332 *
333 * Workaround: 4th PIPE_CONTROL command (except the ones with only
334 * read-cache invalidate bits set) must have the CS_STALL bit set. We
335 * don't try to be clever and just set it unconditionally.
336 */
337 flags |= PIPE_CONTROL_CS_STALL;
338
339 /* Just flush everything. Experiments have shown that reducing the
340 * number of bits based on the write domains has little performance
341 * impact.
342 */
343 if (flush_domains) {
344 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
345 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
346 }
347 if (invalidate_domains) {
348 flags |= PIPE_CONTROL_TLB_INVALIDATE;
349 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
350 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
351 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
352 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
353 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
354 /*
355 * TLB invalidate requires a post-sync write.
356 */
357 flags |= PIPE_CONTROL_QW_WRITE;
358 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
359
360 /* Workaround: we must issue a pipe_control with CS-stall bit
361 * set before a pipe_control command that has the state cache
362 * invalidate bit set. */
363 gen7_render_ring_cs_stall_wa(ring);
364 }
365
366 ret = intel_ring_begin(ring, 4);
367 if (ret)
368 return ret;
369
370 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
371 intel_ring_emit(ring, flags);
372 intel_ring_emit(ring, scratch_addr);
373 intel_ring_emit(ring, 0);
374 intel_ring_advance(ring);
375
376 if (!invalidate_domains && flush_domains)
377 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
378
379 return 0;
380 }
381
382 static int
383 gen8_emit_pipe_control(struct intel_engine_cs *ring,
384 u32 flags, u32 scratch_addr)
385 {
386 int ret;
387
388 ret = intel_ring_begin(ring, 6);
389 if (ret)
390 return ret;
391
392 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
393 intel_ring_emit(ring, flags);
394 intel_ring_emit(ring, scratch_addr);
395 intel_ring_emit(ring, 0);
396 intel_ring_emit(ring, 0);
397 intel_ring_emit(ring, 0);
398 intel_ring_advance(ring);
399
400 return 0;
401 }
402
403 static int
404 gen8_render_ring_flush(struct intel_engine_cs *ring,
405 u32 invalidate_domains, u32 flush_domains)
406 {
407 u32 flags = 0;
408 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
409
410 flags |= PIPE_CONTROL_CS_STALL;
411
412 if (flush_domains) {
413 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
414 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
415 }
416 if (invalidate_domains) {
417 flags |= PIPE_CONTROL_TLB_INVALIDATE;
418 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
419 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
420 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
421 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
422 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
423 flags |= PIPE_CONTROL_QW_WRITE;
424 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
425 }
426
427 return gen8_emit_pipe_control(ring, flags, scratch_addr);
428 }
429
430 static void ring_write_tail(struct intel_engine_cs *ring,
431 u32 value)
432 {
433 struct drm_i915_private *dev_priv = ring->dev->dev_private;
434 I915_WRITE_TAIL(ring, value);
435 }
436
437 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
438 {
439 struct drm_i915_private *dev_priv = ring->dev->dev_private;
440 u64 acthd;
441
442 if (INTEL_INFO(ring->dev)->gen >= 8)
443 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
444 RING_ACTHD_UDW(ring->mmio_base));
445 else if (INTEL_INFO(ring->dev)->gen >= 4)
446 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
447 else
448 acthd = I915_READ(ACTHD);
449
450 return acthd;
451 }
452
453 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
454 {
455 struct drm_i915_private *dev_priv = ring->dev->dev_private;
456 u32 addr;
457
458 addr = dev_priv->status_page_dmah->busaddr;
459 if (INTEL_INFO(ring->dev)->gen >= 4)
460 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
461 I915_WRITE(HWS_PGA, addr);
462 }
463
464 static bool stop_ring(struct intel_engine_cs *ring)
465 {
466 struct drm_i915_private *dev_priv = to_i915(ring->dev);
467
468 if (!IS_GEN2(ring->dev)) {
469 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
470 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
471 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
472 return false;
473 }
474 }
475
476 I915_WRITE_CTL(ring, 0);
477 I915_WRITE_HEAD(ring, 0);
478 ring->write_tail(ring, 0);
479
480 if (!IS_GEN2(ring->dev)) {
481 (void)I915_READ_CTL(ring);
482 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
483 }
484
485 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
486 }
487
488 static int init_ring_common(struct intel_engine_cs *ring)
489 {
490 struct drm_device *dev = ring->dev;
491 struct drm_i915_private *dev_priv = dev->dev_private;
492 struct intel_ringbuffer *ringbuf = ring->buffer;
493 struct drm_i915_gem_object *obj = ringbuf->obj;
494 int ret = 0;
495
496 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
497
498 if (!stop_ring(ring)) {
499 /* G45 ring initialization often fails to reset head to zero */
500 DRM_DEBUG_KMS("%s head not reset to zero "
501 "ctl %08x head %08x tail %08x start %08x\n",
502 ring->name,
503 I915_READ_CTL(ring),
504 I915_READ_HEAD(ring),
505 I915_READ_TAIL(ring),
506 I915_READ_START(ring));
507
508 if (!stop_ring(ring)) {
509 DRM_ERROR("failed to set %s head to zero "
510 "ctl %08x head %08x tail %08x start %08x\n",
511 ring->name,
512 I915_READ_CTL(ring),
513 I915_READ_HEAD(ring),
514 I915_READ_TAIL(ring),
515 I915_READ_START(ring));
516 ret = -EIO;
517 goto out;
518 }
519 }
520
521 if (I915_NEED_GFX_HWS(dev))
522 intel_ring_setup_status_page(ring);
523 else
524 ring_setup_phys_status_page(ring);
525
526 /* Initialize the ring. This must happen _after_ we've cleared the ring
527 * registers with the above sequence (the readback of the HEAD registers
528 * also enforces ordering), otherwise the hw might lose the new ring
529 * register values. */
530 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
531 I915_WRITE_CTL(ring,
532 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
533 | RING_VALID);
534
535 /* If the head is still not zero, the ring is dead */
536 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
537 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
538 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
539 DRM_ERROR("%s initialization failed "
540 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
541 ring->name,
542 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
543 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
544 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
545 ret = -EIO;
546 goto out;
547 }
548
549 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
550 i915_kernel_lost_context(ring->dev);
551 else {
552 ringbuf->head = I915_READ_HEAD(ring);
553 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
554 ringbuf->space = ring_space(ringbuf);
555 ringbuf->last_retired_head = -1;
556 }
557
558 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
559
560 out:
561 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
562
563 return ret;
564 }
565
566 static int
567 init_pipe_control(struct intel_engine_cs *ring)
568 {
569 int ret;
570
571 if (ring->scratch.obj)
572 return 0;
573
574 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
575 if (ring->scratch.obj == NULL) {
576 DRM_ERROR("Failed to allocate seqno page\n");
577 ret = -ENOMEM;
578 goto err;
579 }
580
581 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
582 if (ret)
583 goto err_unref;
584
585 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
586 if (ret)
587 goto err_unref;
588
589 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
590 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
591 if (ring->scratch.cpu_page == NULL) {
592 ret = -ENOMEM;
593 goto err_unpin;
594 }
595
596 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
597 ring->name, ring->scratch.gtt_offset);
598 return 0;
599
600 err_unpin:
601 i915_gem_object_ggtt_unpin(ring->scratch.obj);
602 err_unref:
603 drm_gem_object_unreference(&ring->scratch.obj->base);
604 err:
605 return ret;
606 }
607
608 static int init_render_ring(struct intel_engine_cs *ring)
609 {
610 struct drm_device *dev = ring->dev;
611 struct drm_i915_private *dev_priv = dev->dev_private;
612 int ret = init_ring_common(ring);
613 if (ret)
614 return ret;
615
616 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
617 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
618 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
619
620 /* We need to disable the AsyncFlip performance optimisations in order
621 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
622 * programmed to '1' on all products.
623 *
624 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
625 */
626 if (INTEL_INFO(dev)->gen >= 6)
627 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
628
629 /* Required for the hardware to program scanline values for waiting */
630 /* WaEnableFlushTlbInvalidationMode:snb */
631 if (INTEL_INFO(dev)->gen == 6)
632 I915_WRITE(GFX_MODE,
633 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
634
635 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
636 if (IS_GEN7(dev))
637 I915_WRITE(GFX_MODE_GEN7,
638 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
639 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
640
641 if (INTEL_INFO(dev)->gen >= 5) {
642 ret = init_pipe_control(ring);
643 if (ret)
644 return ret;
645 }
646
647 if (IS_GEN6(dev)) {
648 /* From the Sandybridge PRM, volume 1 part 3, page 24:
649 * "If this bit is set, STCunit will have LRA as replacement
650 * policy. [...] This bit must be reset. LRA replacement
651 * policy is not supported."
652 */
653 I915_WRITE(CACHE_MODE_0,
654 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
655 }
656
657 if (INTEL_INFO(dev)->gen >= 6)
658 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
659
660 if (HAS_L3_DPF(dev))
661 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
662
663 return ret;
664 }
665
666 static void render_ring_cleanup(struct intel_engine_cs *ring)
667 {
668 struct drm_device *dev = ring->dev;
669 struct drm_i915_private *dev_priv = dev->dev_private;
670
671 if (dev_priv->semaphore_obj) {
672 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
673 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
674 dev_priv->semaphore_obj = NULL;
675 }
676
677 if (ring->scratch.obj == NULL)
678 return;
679
680 if (INTEL_INFO(dev)->gen >= 5) {
681 kunmap(sg_page(ring->scratch.obj->pages->sgl));
682 i915_gem_object_ggtt_unpin(ring->scratch.obj);
683 }
684
685 drm_gem_object_unreference(&ring->scratch.obj->base);
686 ring->scratch.obj = NULL;
687 }
688
689 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
690 unsigned int num_dwords)
691 {
692 #define MBOX_UPDATE_DWORDS 8
693 struct drm_device *dev = signaller->dev;
694 struct drm_i915_private *dev_priv = dev->dev_private;
695 struct intel_engine_cs *waiter;
696 int i, ret, num_rings;
697
698 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
699 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
700 #undef MBOX_UPDATE_DWORDS
701
702 ret = intel_ring_begin(signaller, num_dwords);
703 if (ret)
704 return ret;
705
706 for_each_ring(waiter, dev_priv, i) {
707 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
708 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
709 continue;
710
711 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
712 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
713 PIPE_CONTROL_QW_WRITE |
714 PIPE_CONTROL_FLUSH_ENABLE);
715 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
716 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
717 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
718 intel_ring_emit(signaller, 0);
719 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
720 MI_SEMAPHORE_TARGET(waiter->id));
721 intel_ring_emit(signaller, 0);
722 }
723
724 return 0;
725 }
726
727 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
728 unsigned int num_dwords)
729 {
730 #define MBOX_UPDATE_DWORDS 6
731 struct drm_device *dev = signaller->dev;
732 struct drm_i915_private *dev_priv = dev->dev_private;
733 struct intel_engine_cs *waiter;
734 int i, ret, num_rings;
735
736 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
737 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
738 #undef MBOX_UPDATE_DWORDS
739
740 ret = intel_ring_begin(signaller, num_dwords);
741 if (ret)
742 return ret;
743
744 for_each_ring(waiter, dev_priv, i) {
745 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
746 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
747 continue;
748
749 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
750 MI_FLUSH_DW_OP_STOREDW);
751 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
752 MI_FLUSH_DW_USE_GTT);
753 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
754 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
755 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
756 MI_SEMAPHORE_TARGET(waiter->id));
757 intel_ring_emit(signaller, 0);
758 }
759
760 return 0;
761 }
762
763 static int gen6_signal(struct intel_engine_cs *signaller,
764 unsigned int num_dwords)
765 {
766 struct drm_device *dev = signaller->dev;
767 struct drm_i915_private *dev_priv = dev->dev_private;
768 struct intel_engine_cs *useless;
769 int i, ret, num_rings;
770
771 #define MBOX_UPDATE_DWORDS 3
772 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
773 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
774 #undef MBOX_UPDATE_DWORDS
775
776 ret = intel_ring_begin(signaller, num_dwords);
777 if (ret)
778 return ret;
779
780 for_each_ring(useless, dev_priv, i) {
781 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
782 if (mbox_reg != GEN6_NOSYNC) {
783 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
784 intel_ring_emit(signaller, mbox_reg);
785 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
786 }
787 }
788
789 /* If num_dwords was rounded, make sure the tail pointer is correct */
790 if (num_rings % 2 == 0)
791 intel_ring_emit(signaller, MI_NOOP);
792
793 return 0;
794 }
795
796 /**
797 * gen6_add_request - Update the semaphore mailbox registers
798 *
799 * @ring - ring that is adding a request
800 * @seqno - return seqno stuck into the ring
801 *
802 * Update the mailbox registers in the *other* rings with the current seqno.
803 * This acts like a signal in the canonical semaphore.
804 */
805 static int
806 gen6_add_request(struct intel_engine_cs *ring)
807 {
808 int ret;
809
810 if (ring->semaphore.signal)
811 ret = ring->semaphore.signal(ring, 4);
812 else
813 ret = intel_ring_begin(ring, 4);
814
815 if (ret)
816 return ret;
817
818 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
819 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
820 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
821 intel_ring_emit(ring, MI_USER_INTERRUPT);
822 __intel_ring_advance(ring);
823
824 return 0;
825 }
826
827 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
828 u32 seqno)
829 {
830 struct drm_i915_private *dev_priv = dev->dev_private;
831 return dev_priv->last_seqno < seqno;
832 }
833
834 /**
835 * intel_ring_sync - sync the waiter to the signaller on seqno
836 *
837 * @waiter - ring that is waiting
838 * @signaller - ring which has, or will signal
839 * @seqno - seqno which the waiter will block on
840 */
841
842 static int
843 gen8_ring_sync(struct intel_engine_cs *waiter,
844 struct intel_engine_cs *signaller,
845 u32 seqno)
846 {
847 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
848 int ret;
849
850 ret = intel_ring_begin(waiter, 4);
851 if (ret)
852 return ret;
853
854 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
855 MI_SEMAPHORE_GLOBAL_GTT |
856 MI_SEMAPHORE_POLL |
857 MI_SEMAPHORE_SAD_GTE_SDD);
858 intel_ring_emit(waiter, seqno);
859 intel_ring_emit(waiter,
860 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
861 intel_ring_emit(waiter,
862 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
863 intel_ring_advance(waiter);
864 return 0;
865 }
866
867 static int
868 gen6_ring_sync(struct intel_engine_cs *waiter,
869 struct intel_engine_cs *signaller,
870 u32 seqno)
871 {
872 u32 dw1 = MI_SEMAPHORE_MBOX |
873 MI_SEMAPHORE_COMPARE |
874 MI_SEMAPHORE_REGISTER;
875 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
876 int ret;
877
878 /* Throughout all of the GEM code, seqno passed implies our current
879 * seqno is >= the last seqno executed. However for hardware the
880 * comparison is strictly greater than.
881 */
882 seqno -= 1;
883
884 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
885
886 ret = intel_ring_begin(waiter, 4);
887 if (ret)
888 return ret;
889
890 /* If seqno wrap happened, omit the wait with no-ops */
891 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
892 intel_ring_emit(waiter, dw1 | wait_mbox);
893 intel_ring_emit(waiter, seqno);
894 intel_ring_emit(waiter, 0);
895 intel_ring_emit(waiter, MI_NOOP);
896 } else {
897 intel_ring_emit(waiter, MI_NOOP);
898 intel_ring_emit(waiter, MI_NOOP);
899 intel_ring_emit(waiter, MI_NOOP);
900 intel_ring_emit(waiter, MI_NOOP);
901 }
902 intel_ring_advance(waiter);
903
904 return 0;
905 }
906
907 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
908 do { \
909 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
910 PIPE_CONTROL_DEPTH_STALL); \
911 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
912 intel_ring_emit(ring__, 0); \
913 intel_ring_emit(ring__, 0); \
914 } while (0)
915
916 static int
917 pc_render_add_request(struct intel_engine_cs *ring)
918 {
919 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
920 int ret;
921
922 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
923 * incoherent with writes to memory, i.e. completely fubar,
924 * so we need to use PIPE_NOTIFY instead.
925 *
926 * However, we also need to workaround the qword write
927 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
928 * memory before requesting an interrupt.
929 */
930 ret = intel_ring_begin(ring, 32);
931 if (ret)
932 return ret;
933
934 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
935 PIPE_CONTROL_WRITE_FLUSH |
936 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
937 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
938 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
939 intel_ring_emit(ring, 0);
940 PIPE_CONTROL_FLUSH(ring, scratch_addr);
941 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
942 PIPE_CONTROL_FLUSH(ring, scratch_addr);
943 scratch_addr += 2 * CACHELINE_BYTES;
944 PIPE_CONTROL_FLUSH(ring, scratch_addr);
945 scratch_addr += 2 * CACHELINE_BYTES;
946 PIPE_CONTROL_FLUSH(ring, scratch_addr);
947 scratch_addr += 2 * CACHELINE_BYTES;
948 PIPE_CONTROL_FLUSH(ring, scratch_addr);
949 scratch_addr += 2 * CACHELINE_BYTES;
950 PIPE_CONTROL_FLUSH(ring, scratch_addr);
951
952 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
953 PIPE_CONTROL_WRITE_FLUSH |
954 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
955 PIPE_CONTROL_NOTIFY);
956 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
957 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
958 intel_ring_emit(ring, 0);
959 __intel_ring_advance(ring);
960
961 return 0;
962 }
963
964 static u32
965 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
966 {
967 /* Workaround to force correct ordering between irq and seqno writes on
968 * ivb (and maybe also on snb) by reading from a CS register (like
969 * ACTHD) before reading the status page. */
970 if (!lazy_coherency) {
971 struct drm_i915_private *dev_priv = ring->dev->dev_private;
972 POSTING_READ(RING_ACTHD(ring->mmio_base));
973 }
974
975 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
976 }
977
978 static u32
979 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
980 {
981 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
982 }
983
984 static void
985 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
986 {
987 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
988 }
989
990 static u32
991 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
992 {
993 return ring->scratch.cpu_page[0];
994 }
995
996 static void
997 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
998 {
999 ring->scratch.cpu_page[0] = seqno;
1000 }
1001
1002 static bool
1003 gen5_ring_get_irq(struct intel_engine_cs *ring)
1004 {
1005 struct drm_device *dev = ring->dev;
1006 struct drm_i915_private *dev_priv = dev->dev_private;
1007 unsigned long flags;
1008
1009 if (!dev->irq_enabled)
1010 return false;
1011
1012 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1013 if (ring->irq_refcount++ == 0)
1014 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1015 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1016
1017 return true;
1018 }
1019
1020 static void
1021 gen5_ring_put_irq(struct intel_engine_cs *ring)
1022 {
1023 struct drm_device *dev = ring->dev;
1024 struct drm_i915_private *dev_priv = dev->dev_private;
1025 unsigned long flags;
1026
1027 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1028 if (--ring->irq_refcount == 0)
1029 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1030 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1031 }
1032
1033 static bool
1034 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1035 {
1036 struct drm_device *dev = ring->dev;
1037 struct drm_i915_private *dev_priv = dev->dev_private;
1038 unsigned long flags;
1039
1040 if (!dev->irq_enabled)
1041 return false;
1042
1043 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1044 if (ring->irq_refcount++ == 0) {
1045 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1046 I915_WRITE(IMR, dev_priv->irq_mask);
1047 POSTING_READ(IMR);
1048 }
1049 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1050
1051 return true;
1052 }
1053
1054 static void
1055 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1056 {
1057 struct drm_device *dev = ring->dev;
1058 struct drm_i915_private *dev_priv = dev->dev_private;
1059 unsigned long flags;
1060
1061 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1062 if (--ring->irq_refcount == 0) {
1063 dev_priv->irq_mask |= ring->irq_enable_mask;
1064 I915_WRITE(IMR, dev_priv->irq_mask);
1065 POSTING_READ(IMR);
1066 }
1067 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1068 }
1069
1070 static bool
1071 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1072 {
1073 struct drm_device *dev = ring->dev;
1074 struct drm_i915_private *dev_priv = dev->dev_private;
1075 unsigned long flags;
1076
1077 if (!dev->irq_enabled)
1078 return false;
1079
1080 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1081 if (ring->irq_refcount++ == 0) {
1082 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1083 I915_WRITE16(IMR, dev_priv->irq_mask);
1084 POSTING_READ16(IMR);
1085 }
1086 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1087
1088 return true;
1089 }
1090
1091 static void
1092 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1093 {
1094 struct drm_device *dev = ring->dev;
1095 struct drm_i915_private *dev_priv = dev->dev_private;
1096 unsigned long flags;
1097
1098 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1099 if (--ring->irq_refcount == 0) {
1100 dev_priv->irq_mask |= ring->irq_enable_mask;
1101 I915_WRITE16(IMR, dev_priv->irq_mask);
1102 POSTING_READ16(IMR);
1103 }
1104 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1105 }
1106
1107 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1108 {
1109 struct drm_device *dev = ring->dev;
1110 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1111 u32 mmio = 0;
1112
1113 /* The ring status page addresses are no longer next to the rest of
1114 * the ring registers as of gen7.
1115 */
1116 if (IS_GEN7(dev)) {
1117 switch (ring->id) {
1118 case RCS:
1119 mmio = RENDER_HWS_PGA_GEN7;
1120 break;
1121 case BCS:
1122 mmio = BLT_HWS_PGA_GEN7;
1123 break;
1124 /*
1125 * VCS2 actually doesn't exist on Gen7. Only shut up
1126 * gcc switch check warning
1127 */
1128 case VCS2:
1129 case VCS:
1130 mmio = BSD_HWS_PGA_GEN7;
1131 break;
1132 case VECS:
1133 mmio = VEBOX_HWS_PGA_GEN7;
1134 break;
1135 }
1136 } else if (IS_GEN6(ring->dev)) {
1137 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1138 } else {
1139 /* XXX: gen8 returns to sanity */
1140 mmio = RING_HWS_PGA(ring->mmio_base);
1141 }
1142
1143 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1144 POSTING_READ(mmio);
1145
1146 /*
1147 * Flush the TLB for this page
1148 *
1149 * FIXME: These two bits have disappeared on gen8, so a question
1150 * arises: do we still need this and if so how should we go about
1151 * invalidating the TLB?
1152 */
1153 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1154 u32 reg = RING_INSTPM(ring->mmio_base);
1155
1156 /* ring should be idle before issuing a sync flush*/
1157 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1158
1159 I915_WRITE(reg,
1160 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1161 INSTPM_SYNC_FLUSH));
1162 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1163 1000))
1164 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1165 ring->name);
1166 }
1167 }
1168
1169 static int
1170 bsd_ring_flush(struct intel_engine_cs *ring,
1171 u32 invalidate_domains,
1172 u32 flush_domains)
1173 {
1174 int ret;
1175
1176 ret = intel_ring_begin(ring, 2);
1177 if (ret)
1178 return ret;
1179
1180 intel_ring_emit(ring, MI_FLUSH);
1181 intel_ring_emit(ring, MI_NOOP);
1182 intel_ring_advance(ring);
1183 return 0;
1184 }
1185
1186 static int
1187 i9xx_add_request(struct intel_engine_cs *ring)
1188 {
1189 int ret;
1190
1191 ret = intel_ring_begin(ring, 4);
1192 if (ret)
1193 return ret;
1194
1195 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1196 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1197 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1198 intel_ring_emit(ring, MI_USER_INTERRUPT);
1199 __intel_ring_advance(ring);
1200
1201 return 0;
1202 }
1203
1204 static bool
1205 gen6_ring_get_irq(struct intel_engine_cs *ring)
1206 {
1207 struct drm_device *dev = ring->dev;
1208 struct drm_i915_private *dev_priv = dev->dev_private;
1209 unsigned long flags;
1210
1211 if (!dev->irq_enabled)
1212 return false;
1213
1214 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1215 if (ring->irq_refcount++ == 0) {
1216 if (HAS_L3_DPF(dev) && ring->id == RCS)
1217 I915_WRITE_IMR(ring,
1218 ~(ring->irq_enable_mask |
1219 GT_PARITY_ERROR(dev)));
1220 else
1221 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1222 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1223 }
1224 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1225
1226 return true;
1227 }
1228
1229 static void
1230 gen6_ring_put_irq(struct intel_engine_cs *ring)
1231 {
1232 struct drm_device *dev = ring->dev;
1233 struct drm_i915_private *dev_priv = dev->dev_private;
1234 unsigned long flags;
1235
1236 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1237 if (--ring->irq_refcount == 0) {
1238 if (HAS_L3_DPF(dev) && ring->id == RCS)
1239 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1240 else
1241 I915_WRITE_IMR(ring, ~0);
1242 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1243 }
1244 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1245 }
1246
1247 static bool
1248 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1249 {
1250 struct drm_device *dev = ring->dev;
1251 struct drm_i915_private *dev_priv = dev->dev_private;
1252 unsigned long flags;
1253
1254 if (!dev->irq_enabled)
1255 return false;
1256
1257 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1258 if (ring->irq_refcount++ == 0) {
1259 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1260 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1261 }
1262 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1263
1264 return true;
1265 }
1266
1267 static void
1268 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1269 {
1270 struct drm_device *dev = ring->dev;
1271 struct drm_i915_private *dev_priv = dev->dev_private;
1272 unsigned long flags;
1273
1274 if (!dev->irq_enabled)
1275 return;
1276
1277 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1278 if (--ring->irq_refcount == 0) {
1279 I915_WRITE_IMR(ring, ~0);
1280 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1281 }
1282 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1283 }
1284
1285 static bool
1286 gen8_ring_get_irq(struct intel_engine_cs *ring)
1287 {
1288 struct drm_device *dev = ring->dev;
1289 struct drm_i915_private *dev_priv = dev->dev_private;
1290 unsigned long flags;
1291
1292 if (!dev->irq_enabled)
1293 return false;
1294
1295 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1296 if (ring->irq_refcount++ == 0) {
1297 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1298 I915_WRITE_IMR(ring,
1299 ~(ring->irq_enable_mask |
1300 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1301 } else {
1302 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1303 }
1304 POSTING_READ(RING_IMR(ring->mmio_base));
1305 }
1306 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1307
1308 return true;
1309 }
1310
1311 static void
1312 gen8_ring_put_irq(struct intel_engine_cs *ring)
1313 {
1314 struct drm_device *dev = ring->dev;
1315 struct drm_i915_private *dev_priv = dev->dev_private;
1316 unsigned long flags;
1317
1318 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1319 if (--ring->irq_refcount == 0) {
1320 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1321 I915_WRITE_IMR(ring,
1322 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1323 } else {
1324 I915_WRITE_IMR(ring, ~0);
1325 }
1326 POSTING_READ(RING_IMR(ring->mmio_base));
1327 }
1328 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1329 }
1330
1331 static int
1332 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1333 u64 offset, u32 length,
1334 unsigned flags)
1335 {
1336 int ret;
1337
1338 ret = intel_ring_begin(ring, 2);
1339 if (ret)
1340 return ret;
1341
1342 intel_ring_emit(ring,
1343 MI_BATCH_BUFFER_START |
1344 MI_BATCH_GTT |
1345 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1346 intel_ring_emit(ring, offset);
1347 intel_ring_advance(ring);
1348
1349 return 0;
1350 }
1351
1352 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1353 #define I830_BATCH_LIMIT (256*1024)
1354 static int
1355 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1356 u64 offset, u32 len,
1357 unsigned flags)
1358 {
1359 int ret;
1360
1361 if (flags & I915_DISPATCH_PINNED) {
1362 ret = intel_ring_begin(ring, 4);
1363 if (ret)
1364 return ret;
1365
1366 intel_ring_emit(ring, MI_BATCH_BUFFER);
1367 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1368 intel_ring_emit(ring, offset + len - 8);
1369 intel_ring_emit(ring, MI_NOOP);
1370 intel_ring_advance(ring);
1371 } else {
1372 u32 cs_offset = ring->scratch.gtt_offset;
1373
1374 if (len > I830_BATCH_LIMIT)
1375 return -ENOSPC;
1376
1377 ret = intel_ring_begin(ring, 9+3);
1378 if (ret)
1379 return ret;
1380 /* Blit the batch (which has now all relocs applied) to the stable batch
1381 * scratch bo area (so that the CS never stumbles over its tlb
1382 * invalidation bug) ... */
1383 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1384 XY_SRC_COPY_BLT_WRITE_ALPHA |
1385 XY_SRC_COPY_BLT_WRITE_RGB);
1386 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1387 intel_ring_emit(ring, 0);
1388 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1389 intel_ring_emit(ring, cs_offset);
1390 intel_ring_emit(ring, 0);
1391 intel_ring_emit(ring, 4096);
1392 intel_ring_emit(ring, offset);
1393 intel_ring_emit(ring, MI_FLUSH);
1394
1395 /* ... and execute it. */
1396 intel_ring_emit(ring, MI_BATCH_BUFFER);
1397 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1398 intel_ring_emit(ring, cs_offset + len - 8);
1399 intel_ring_advance(ring);
1400 }
1401
1402 return 0;
1403 }
1404
1405 static int
1406 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1407 u64 offset, u32 len,
1408 unsigned flags)
1409 {
1410 int ret;
1411
1412 ret = intel_ring_begin(ring, 2);
1413 if (ret)
1414 return ret;
1415
1416 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1417 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1418 intel_ring_advance(ring);
1419
1420 return 0;
1421 }
1422
1423 static void cleanup_status_page(struct intel_engine_cs *ring)
1424 {
1425 struct drm_i915_gem_object *obj;
1426
1427 obj = ring->status_page.obj;
1428 if (obj == NULL)
1429 return;
1430
1431 kunmap(sg_page(obj->pages->sgl));
1432 i915_gem_object_ggtt_unpin(obj);
1433 drm_gem_object_unreference(&obj->base);
1434 ring->status_page.obj = NULL;
1435 }
1436
1437 static int init_status_page(struct intel_engine_cs *ring)
1438 {
1439 struct drm_i915_gem_object *obj;
1440
1441 if ((obj = ring->status_page.obj) == NULL) {
1442 unsigned flags;
1443 int ret;
1444
1445 obj = i915_gem_alloc_object(ring->dev, 4096);
1446 if (obj == NULL) {
1447 DRM_ERROR("Failed to allocate status page\n");
1448 return -ENOMEM;
1449 }
1450
1451 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1452 if (ret)
1453 goto err_unref;
1454
1455 flags = 0;
1456 if (!HAS_LLC(ring->dev))
1457 /* On g33, we cannot place HWS above 256MiB, so
1458 * restrict its pinning to the low mappable arena.
1459 * Though this restriction is not documented for
1460 * gen4, gen5, or byt, they also behave similarly
1461 * and hang if the HWS is placed at the top of the
1462 * GTT. To generalise, it appears that all !llc
1463 * platforms have issues with us placing the HWS
1464 * above the mappable region (even though we never
1465 * actualy map it).
1466 */
1467 flags |= PIN_MAPPABLE;
1468 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1469 if (ret) {
1470 err_unref:
1471 drm_gem_object_unreference(&obj->base);
1472 return ret;
1473 }
1474
1475 ring->status_page.obj = obj;
1476 }
1477
1478 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1479 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1480 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1481
1482 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1483 ring->name, ring->status_page.gfx_addr);
1484
1485 return 0;
1486 }
1487
1488 static int init_phys_status_page(struct intel_engine_cs *ring)
1489 {
1490 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1491
1492 if (!dev_priv->status_page_dmah) {
1493 dev_priv->status_page_dmah =
1494 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1495 if (!dev_priv->status_page_dmah)
1496 return -ENOMEM;
1497 }
1498
1499 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1500 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1501
1502 return 0;
1503 }
1504
1505 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1506 {
1507 if (!ringbuf->obj)
1508 return;
1509
1510 iounmap(ringbuf->virtual_start);
1511 i915_gem_object_ggtt_unpin(ringbuf->obj);
1512 drm_gem_object_unreference(&ringbuf->obj->base);
1513 ringbuf->obj = NULL;
1514 }
1515
1516 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1517 struct intel_ringbuffer *ringbuf)
1518 {
1519 struct drm_i915_private *dev_priv = to_i915(dev);
1520 struct drm_i915_gem_object *obj;
1521 int ret;
1522
1523 if (ringbuf->obj)
1524 return 0;
1525
1526 obj = NULL;
1527 if (!HAS_LLC(dev))
1528 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1529 if (obj == NULL)
1530 obj = i915_gem_alloc_object(dev, ringbuf->size);
1531 if (obj == NULL)
1532 return -ENOMEM;
1533
1534 /* mark ring buffers as read-only from GPU side by default */
1535 obj->gt_ro = 1;
1536
1537 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1538 if (ret)
1539 goto err_unref;
1540
1541 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1542 if (ret)
1543 goto err_unpin;
1544
1545 ringbuf->virtual_start =
1546 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1547 ringbuf->size);
1548 if (ringbuf->virtual_start == NULL) {
1549 ret = -EINVAL;
1550 goto err_unpin;
1551 }
1552
1553 ringbuf->obj = obj;
1554 return 0;
1555
1556 err_unpin:
1557 i915_gem_object_ggtt_unpin(obj);
1558 err_unref:
1559 drm_gem_object_unreference(&obj->base);
1560 return ret;
1561 }
1562
1563 static int intel_init_ring_buffer(struct drm_device *dev,
1564 struct intel_engine_cs *ring)
1565 {
1566 struct intel_ringbuffer *ringbuf = ring->buffer;
1567 int ret;
1568
1569 if (ringbuf == NULL) {
1570 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1571 if (!ringbuf)
1572 return -ENOMEM;
1573 ring->buffer = ringbuf;
1574 }
1575
1576 ring->dev = dev;
1577 INIT_LIST_HEAD(&ring->active_list);
1578 INIT_LIST_HEAD(&ring->request_list);
1579 ringbuf->size = 32 * PAGE_SIZE;
1580 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1581
1582 init_waitqueue_head(&ring->irq_queue);
1583
1584 if (I915_NEED_GFX_HWS(dev)) {
1585 ret = init_status_page(ring);
1586 if (ret)
1587 goto error;
1588 } else {
1589 BUG_ON(ring->id != RCS);
1590 ret = init_phys_status_page(ring);
1591 if (ret)
1592 goto error;
1593 }
1594
1595 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1596 if (ret) {
1597 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1598 goto error;
1599 }
1600
1601 /* Workaround an erratum on the i830 which causes a hang if
1602 * the TAIL pointer points to within the last 2 cachelines
1603 * of the buffer.
1604 */
1605 ringbuf->effective_size = ringbuf->size;
1606 if (IS_I830(dev) || IS_845G(dev))
1607 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1608
1609 ret = i915_cmd_parser_init_ring(ring);
1610 if (ret)
1611 goto error;
1612
1613 ret = ring->init(ring);
1614 if (ret)
1615 goto error;
1616
1617 return 0;
1618
1619 error:
1620 kfree(ringbuf);
1621 ring->buffer = NULL;
1622 return ret;
1623 }
1624
1625 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1626 {
1627 struct drm_i915_private *dev_priv = to_i915(ring->dev);
1628 struct intel_ringbuffer *ringbuf = ring->buffer;
1629
1630 if (!intel_ring_initialized(ring))
1631 return;
1632
1633 intel_stop_ring_buffer(ring);
1634 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1635
1636 intel_destroy_ringbuffer_obj(ringbuf);
1637 ring->preallocated_lazy_request = NULL;
1638 ring->outstanding_lazy_seqno = 0;
1639
1640 if (ring->cleanup)
1641 ring->cleanup(ring);
1642
1643 cleanup_status_page(ring);
1644
1645 i915_cmd_parser_fini_ring(ring);
1646
1647 kfree(ringbuf);
1648 ring->buffer = NULL;
1649 }
1650
1651 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1652 {
1653 struct intel_ringbuffer *ringbuf = ring->buffer;
1654 struct drm_i915_gem_request *request;
1655 u32 seqno = 0;
1656 int ret;
1657
1658 if (ringbuf->last_retired_head != -1) {
1659 ringbuf->head = ringbuf->last_retired_head;
1660 ringbuf->last_retired_head = -1;
1661
1662 ringbuf->space = ring_space(ringbuf);
1663 if (ringbuf->space >= n)
1664 return 0;
1665 }
1666
1667 list_for_each_entry(request, &ring->request_list, list) {
1668 if (__ring_space(request->tail, ringbuf->tail, ringbuf->size) >= n) {
1669 seqno = request->seqno;
1670 break;
1671 }
1672 }
1673
1674 if (seqno == 0)
1675 return -ENOSPC;
1676
1677 ret = i915_wait_seqno(ring, seqno);
1678 if (ret)
1679 return ret;
1680
1681 i915_gem_retire_requests_ring(ring);
1682 ringbuf->head = ringbuf->last_retired_head;
1683 ringbuf->last_retired_head = -1;
1684
1685 ringbuf->space = ring_space(ringbuf);
1686 return 0;
1687 }
1688
1689 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1690 {
1691 struct drm_device *dev = ring->dev;
1692 struct drm_i915_private *dev_priv = dev->dev_private;
1693 struct intel_ringbuffer *ringbuf = ring->buffer;
1694 unsigned long end;
1695 int ret;
1696
1697 ret = intel_ring_wait_request(ring, n);
1698 if (ret != -ENOSPC)
1699 return ret;
1700
1701 /* force the tail write in case we have been skipping them */
1702 __intel_ring_advance(ring);
1703
1704 /* With GEM the hangcheck timer should kick us out of the loop,
1705 * leaving it early runs the risk of corrupting GEM state (due
1706 * to running on almost untested codepaths). But on resume
1707 * timers don't work yet, so prevent a complete hang in that
1708 * case by choosing an insanely large timeout. */
1709 end = jiffies + 60 * HZ;
1710
1711 trace_i915_ring_wait_begin(ring);
1712 do {
1713 ringbuf->head = I915_READ_HEAD(ring);
1714 ringbuf->space = ring_space(ringbuf);
1715 if (ringbuf->space >= n) {
1716 ret = 0;
1717 break;
1718 }
1719
1720 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1721 dev->primary->master) {
1722 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1723 if (master_priv->sarea_priv)
1724 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1725 }
1726
1727 msleep(1);
1728
1729 if (dev_priv->mm.interruptible && signal_pending(current)) {
1730 ret = -ERESTARTSYS;
1731 break;
1732 }
1733
1734 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1735 dev_priv->mm.interruptible);
1736 if (ret)
1737 break;
1738
1739 if (time_after(jiffies, end)) {
1740 ret = -EBUSY;
1741 break;
1742 }
1743 } while (1);
1744 trace_i915_ring_wait_end(ring);
1745 return ret;
1746 }
1747
1748 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1749 {
1750 uint32_t __iomem *virt;
1751 struct intel_ringbuffer *ringbuf = ring->buffer;
1752 int rem = ringbuf->size - ringbuf->tail;
1753
1754 if (ringbuf->space < rem) {
1755 int ret = ring_wait_for_space(ring, rem);
1756 if (ret)
1757 return ret;
1758 }
1759
1760 virt = ringbuf->virtual_start + ringbuf->tail;
1761 rem /= 4;
1762 while (rem--)
1763 iowrite32(MI_NOOP, virt++);
1764
1765 ringbuf->tail = 0;
1766 ringbuf->space = ring_space(ringbuf);
1767
1768 return 0;
1769 }
1770
1771 int intel_ring_idle(struct intel_engine_cs *ring)
1772 {
1773 u32 seqno;
1774 int ret;
1775
1776 /* We need to add any requests required to flush the objects and ring */
1777 if (ring->outstanding_lazy_seqno) {
1778 ret = i915_add_request(ring, NULL);
1779 if (ret)
1780 return ret;
1781 }
1782
1783 /* Wait upon the last request to be completed */
1784 if (list_empty(&ring->request_list))
1785 return 0;
1786
1787 seqno = list_entry(ring->request_list.prev,
1788 struct drm_i915_gem_request,
1789 list)->seqno;
1790
1791 return i915_wait_seqno(ring, seqno);
1792 }
1793
1794 static int
1795 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
1796 {
1797 if (ring->outstanding_lazy_seqno)
1798 return 0;
1799
1800 if (ring->preallocated_lazy_request == NULL) {
1801 struct drm_i915_gem_request *request;
1802
1803 request = kmalloc(sizeof(*request), GFP_KERNEL);
1804 if (request == NULL)
1805 return -ENOMEM;
1806
1807 ring->preallocated_lazy_request = request;
1808 }
1809
1810 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1811 }
1812
1813 static int __intel_ring_prepare(struct intel_engine_cs *ring,
1814 int bytes)
1815 {
1816 struct intel_ringbuffer *ringbuf = ring->buffer;
1817 int ret;
1818
1819 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1820 ret = intel_wrap_ring_buffer(ring);
1821 if (unlikely(ret))
1822 return ret;
1823 }
1824
1825 if (unlikely(ringbuf->space < bytes)) {
1826 ret = ring_wait_for_space(ring, bytes);
1827 if (unlikely(ret))
1828 return ret;
1829 }
1830
1831 return 0;
1832 }
1833
1834 int intel_ring_begin(struct intel_engine_cs *ring,
1835 int num_dwords)
1836 {
1837 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1838 int ret;
1839
1840 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1841 dev_priv->mm.interruptible);
1842 if (ret)
1843 return ret;
1844
1845 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1846 if (ret)
1847 return ret;
1848
1849 /* Preallocate the olr before touching the ring */
1850 ret = intel_ring_alloc_seqno(ring);
1851 if (ret)
1852 return ret;
1853
1854 ring->buffer->space -= num_dwords * sizeof(uint32_t);
1855 return 0;
1856 }
1857
1858 /* Align the ring tail to a cacheline boundary */
1859 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
1860 {
1861 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1862 int ret;
1863
1864 if (num_dwords == 0)
1865 return 0;
1866
1867 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1868 ret = intel_ring_begin(ring, num_dwords);
1869 if (ret)
1870 return ret;
1871
1872 while (num_dwords--)
1873 intel_ring_emit(ring, MI_NOOP);
1874
1875 intel_ring_advance(ring);
1876
1877 return 0;
1878 }
1879
1880 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
1881 {
1882 struct drm_device *dev = ring->dev;
1883 struct drm_i915_private *dev_priv = dev->dev_private;
1884
1885 BUG_ON(ring->outstanding_lazy_seqno);
1886
1887 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
1888 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1889 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1890 if (HAS_VEBOX(dev))
1891 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1892 }
1893
1894 ring->set_seqno(ring, seqno);
1895 ring->hangcheck.seqno = seqno;
1896 }
1897
1898 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
1899 u32 value)
1900 {
1901 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1902
1903 /* Every tail move must follow the sequence below */
1904
1905 /* Disable notification that the ring is IDLE. The GT
1906 * will then assume that it is busy and bring it out of rc6.
1907 */
1908 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1909 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1910
1911 /* Clear the context id. Here be magic! */
1912 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1913
1914 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1915 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1916 GEN6_BSD_SLEEP_INDICATOR) == 0,
1917 50))
1918 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1919
1920 /* Now that the ring is fully powered up, update the tail */
1921 I915_WRITE_TAIL(ring, value);
1922 POSTING_READ(RING_TAIL(ring->mmio_base));
1923
1924 /* Let the ring send IDLE messages to the GT again,
1925 * and so let it sleep to conserve power when idle.
1926 */
1927 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1928 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1929 }
1930
1931 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
1932 u32 invalidate, u32 flush)
1933 {
1934 uint32_t cmd;
1935 int ret;
1936
1937 ret = intel_ring_begin(ring, 4);
1938 if (ret)
1939 return ret;
1940
1941 cmd = MI_FLUSH_DW;
1942 if (INTEL_INFO(ring->dev)->gen >= 8)
1943 cmd += 1;
1944 /*
1945 * Bspec vol 1c.5 - video engine command streamer:
1946 * "If ENABLED, all TLBs will be invalidated once the flush
1947 * operation is complete. This bit is only valid when the
1948 * Post-Sync Operation field is a value of 1h or 3h."
1949 */
1950 if (invalidate & I915_GEM_GPU_DOMAINS)
1951 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1952 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1953 intel_ring_emit(ring, cmd);
1954 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1955 if (INTEL_INFO(ring->dev)->gen >= 8) {
1956 intel_ring_emit(ring, 0); /* upper addr */
1957 intel_ring_emit(ring, 0); /* value */
1958 } else {
1959 intel_ring_emit(ring, 0);
1960 intel_ring_emit(ring, MI_NOOP);
1961 }
1962 intel_ring_advance(ring);
1963 return 0;
1964 }
1965
1966 static int
1967 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1968 u64 offset, u32 len,
1969 unsigned flags)
1970 {
1971 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1972 bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1973 !(flags & I915_DISPATCH_SECURE);
1974 int ret;
1975
1976 ret = intel_ring_begin(ring, 4);
1977 if (ret)
1978 return ret;
1979
1980 /* FIXME(BDW): Address space and security selectors. */
1981 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1982 intel_ring_emit(ring, lower_32_bits(offset));
1983 intel_ring_emit(ring, upper_32_bits(offset));
1984 intel_ring_emit(ring, MI_NOOP);
1985 intel_ring_advance(ring);
1986
1987 return 0;
1988 }
1989
1990 static int
1991 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1992 u64 offset, u32 len,
1993 unsigned flags)
1994 {
1995 int ret;
1996
1997 ret = intel_ring_begin(ring, 2);
1998 if (ret)
1999 return ret;
2000
2001 intel_ring_emit(ring,
2002 MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
2003 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
2004 /* bit0-7 is the length on GEN6+ */
2005 intel_ring_emit(ring, offset);
2006 intel_ring_advance(ring);
2007
2008 return 0;
2009 }
2010
2011 static int
2012 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2013 u64 offset, u32 len,
2014 unsigned flags)
2015 {
2016 int ret;
2017
2018 ret = intel_ring_begin(ring, 2);
2019 if (ret)
2020 return ret;
2021
2022 intel_ring_emit(ring,
2023 MI_BATCH_BUFFER_START |
2024 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2025 /* bit0-7 is the length on GEN6+ */
2026 intel_ring_emit(ring, offset);
2027 intel_ring_advance(ring);
2028
2029 return 0;
2030 }
2031
2032 /* Blitter support (SandyBridge+) */
2033
2034 static int gen6_ring_flush(struct intel_engine_cs *ring,
2035 u32 invalidate, u32 flush)
2036 {
2037 struct drm_device *dev = ring->dev;
2038 uint32_t cmd;
2039 int ret;
2040
2041 ret = intel_ring_begin(ring, 4);
2042 if (ret)
2043 return ret;
2044
2045 cmd = MI_FLUSH_DW;
2046 if (INTEL_INFO(ring->dev)->gen >= 8)
2047 cmd += 1;
2048 /*
2049 * Bspec vol 1c.3 - blitter engine command streamer:
2050 * "If ENABLED, all TLBs will be invalidated once the flush
2051 * operation is complete. This bit is only valid when the
2052 * Post-Sync Operation field is a value of 1h or 3h."
2053 */
2054 if (invalidate & I915_GEM_DOMAIN_RENDER)
2055 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2056 MI_FLUSH_DW_OP_STOREDW;
2057 intel_ring_emit(ring, cmd);
2058 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2059 if (INTEL_INFO(ring->dev)->gen >= 8) {
2060 intel_ring_emit(ring, 0); /* upper addr */
2061 intel_ring_emit(ring, 0); /* value */
2062 } else {
2063 intel_ring_emit(ring, 0);
2064 intel_ring_emit(ring, MI_NOOP);
2065 }
2066 intel_ring_advance(ring);
2067
2068 if (IS_GEN7(dev) && !invalidate && flush)
2069 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2070
2071 return 0;
2072 }
2073
2074 int intel_init_render_ring_buffer(struct drm_device *dev)
2075 {
2076 struct drm_i915_private *dev_priv = dev->dev_private;
2077 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2078 struct drm_i915_gem_object *obj;
2079 int ret;
2080
2081 ring->name = "render ring";
2082 ring->id = RCS;
2083 ring->mmio_base = RENDER_RING_BASE;
2084
2085 if (INTEL_INFO(dev)->gen >= 8) {
2086 if (i915_semaphore_is_enabled(dev)) {
2087 obj = i915_gem_alloc_object(dev, 4096);
2088 if (obj == NULL) {
2089 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2090 i915.semaphores = 0;
2091 } else {
2092 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2093 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2094 if (ret != 0) {
2095 drm_gem_object_unreference(&obj->base);
2096 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2097 i915.semaphores = 0;
2098 } else
2099 dev_priv->semaphore_obj = obj;
2100 }
2101 }
2102 ring->add_request = gen6_add_request;
2103 ring->flush = gen8_render_ring_flush;
2104 ring->irq_get = gen8_ring_get_irq;
2105 ring->irq_put = gen8_ring_put_irq;
2106 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2107 ring->get_seqno = gen6_ring_get_seqno;
2108 ring->set_seqno = ring_set_seqno;
2109 if (i915_semaphore_is_enabled(dev)) {
2110 WARN_ON(!dev_priv->semaphore_obj);
2111 ring->semaphore.sync_to = gen8_ring_sync;
2112 ring->semaphore.signal = gen8_rcs_signal;
2113 GEN8_RING_SEMAPHORE_INIT;
2114 }
2115 } else if (INTEL_INFO(dev)->gen >= 6) {
2116 ring->add_request = gen6_add_request;
2117 ring->flush = gen7_render_ring_flush;
2118 if (INTEL_INFO(dev)->gen == 6)
2119 ring->flush = gen6_render_ring_flush;
2120 ring->irq_get = gen6_ring_get_irq;
2121 ring->irq_put = gen6_ring_put_irq;
2122 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2123 ring->get_seqno = gen6_ring_get_seqno;
2124 ring->set_seqno = ring_set_seqno;
2125 if (i915_semaphore_is_enabled(dev)) {
2126 ring->semaphore.sync_to = gen6_ring_sync;
2127 ring->semaphore.signal = gen6_signal;
2128 /*
2129 * The current semaphore is only applied on pre-gen8
2130 * platform. And there is no VCS2 ring on the pre-gen8
2131 * platform. So the semaphore between RCS and VCS2 is
2132 * initialized as INVALID. Gen8 will initialize the
2133 * sema between VCS2 and RCS later.
2134 */
2135 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2136 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2137 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2138 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2139 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2140 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2141 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2142 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2143 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2144 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2145 }
2146 } else if (IS_GEN5(dev)) {
2147 ring->add_request = pc_render_add_request;
2148 ring->flush = gen4_render_ring_flush;
2149 ring->get_seqno = pc_render_get_seqno;
2150 ring->set_seqno = pc_render_set_seqno;
2151 ring->irq_get = gen5_ring_get_irq;
2152 ring->irq_put = gen5_ring_put_irq;
2153 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2154 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2155 } else {
2156 ring->add_request = i9xx_add_request;
2157 if (INTEL_INFO(dev)->gen < 4)
2158 ring->flush = gen2_render_ring_flush;
2159 else
2160 ring->flush = gen4_render_ring_flush;
2161 ring->get_seqno = ring_get_seqno;
2162 ring->set_seqno = ring_set_seqno;
2163 if (IS_GEN2(dev)) {
2164 ring->irq_get = i8xx_ring_get_irq;
2165 ring->irq_put = i8xx_ring_put_irq;
2166 } else {
2167 ring->irq_get = i9xx_ring_get_irq;
2168 ring->irq_put = i9xx_ring_put_irq;
2169 }
2170 ring->irq_enable_mask = I915_USER_INTERRUPT;
2171 }
2172 ring->write_tail = ring_write_tail;
2173
2174 if (IS_HASWELL(dev))
2175 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2176 else if (IS_GEN8(dev))
2177 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2178 else if (INTEL_INFO(dev)->gen >= 6)
2179 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2180 else if (INTEL_INFO(dev)->gen >= 4)
2181 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2182 else if (IS_I830(dev) || IS_845G(dev))
2183 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2184 else
2185 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2186 ring->init = init_render_ring;
2187 ring->cleanup = render_ring_cleanup;
2188
2189 /* Workaround batchbuffer to combat CS tlb bug. */
2190 if (HAS_BROKEN_CS_TLB(dev)) {
2191 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
2192 if (obj == NULL) {
2193 DRM_ERROR("Failed to allocate batch bo\n");
2194 return -ENOMEM;
2195 }
2196
2197 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2198 if (ret != 0) {
2199 drm_gem_object_unreference(&obj->base);
2200 DRM_ERROR("Failed to ping batch bo\n");
2201 return ret;
2202 }
2203
2204 ring->scratch.obj = obj;
2205 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2206 }
2207
2208 return intel_init_ring_buffer(dev, ring);
2209 }
2210
2211 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2212 {
2213 struct drm_i915_private *dev_priv = dev->dev_private;
2214 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2215 struct intel_ringbuffer *ringbuf = ring->buffer;
2216 int ret;
2217
2218 if (ringbuf == NULL) {
2219 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2220 if (!ringbuf)
2221 return -ENOMEM;
2222 ring->buffer = ringbuf;
2223 }
2224
2225 ring->name = "render ring";
2226 ring->id = RCS;
2227 ring->mmio_base = RENDER_RING_BASE;
2228
2229 if (INTEL_INFO(dev)->gen >= 6) {
2230 /* non-kms not supported on gen6+ */
2231 ret = -ENODEV;
2232 goto err_ringbuf;
2233 }
2234
2235 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2236 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2237 * the special gen5 functions. */
2238 ring->add_request = i9xx_add_request;
2239 if (INTEL_INFO(dev)->gen < 4)
2240 ring->flush = gen2_render_ring_flush;
2241 else
2242 ring->flush = gen4_render_ring_flush;
2243 ring->get_seqno = ring_get_seqno;
2244 ring->set_seqno = ring_set_seqno;
2245 if (IS_GEN2(dev)) {
2246 ring->irq_get = i8xx_ring_get_irq;
2247 ring->irq_put = i8xx_ring_put_irq;
2248 } else {
2249 ring->irq_get = i9xx_ring_get_irq;
2250 ring->irq_put = i9xx_ring_put_irq;
2251 }
2252 ring->irq_enable_mask = I915_USER_INTERRUPT;
2253 ring->write_tail = ring_write_tail;
2254 if (INTEL_INFO(dev)->gen >= 4)
2255 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2256 else if (IS_I830(dev) || IS_845G(dev))
2257 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2258 else
2259 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2260 ring->init = init_render_ring;
2261 ring->cleanup = render_ring_cleanup;
2262
2263 ring->dev = dev;
2264 INIT_LIST_HEAD(&ring->active_list);
2265 INIT_LIST_HEAD(&ring->request_list);
2266
2267 ringbuf->size = size;
2268 ringbuf->effective_size = ringbuf->size;
2269 if (IS_I830(ring->dev) || IS_845G(ring->dev))
2270 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2271
2272 ringbuf->virtual_start = ioremap_wc(start, size);
2273 if (ringbuf->virtual_start == NULL) {
2274 DRM_ERROR("can not ioremap virtual address for"
2275 " ring buffer\n");
2276 ret = -ENOMEM;
2277 goto err_ringbuf;
2278 }
2279
2280 if (!I915_NEED_GFX_HWS(dev)) {
2281 ret = init_phys_status_page(ring);
2282 if (ret)
2283 goto err_vstart;
2284 }
2285
2286 return 0;
2287
2288 err_vstart:
2289 iounmap(ringbuf->virtual_start);
2290 err_ringbuf:
2291 kfree(ringbuf);
2292 ring->buffer = NULL;
2293 return ret;
2294 }
2295
2296 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2297 {
2298 struct drm_i915_private *dev_priv = dev->dev_private;
2299 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2300
2301 ring->name = "bsd ring";
2302 ring->id = VCS;
2303
2304 ring->write_tail = ring_write_tail;
2305 if (INTEL_INFO(dev)->gen >= 6) {
2306 ring->mmio_base = GEN6_BSD_RING_BASE;
2307 /* gen6 bsd needs a special wa for tail updates */
2308 if (IS_GEN6(dev))
2309 ring->write_tail = gen6_bsd_ring_write_tail;
2310 ring->flush = gen6_bsd_ring_flush;
2311 ring->add_request = gen6_add_request;
2312 ring->get_seqno = gen6_ring_get_seqno;
2313 ring->set_seqno = ring_set_seqno;
2314 if (INTEL_INFO(dev)->gen >= 8) {
2315 ring->irq_enable_mask =
2316 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2317 ring->irq_get = gen8_ring_get_irq;
2318 ring->irq_put = gen8_ring_put_irq;
2319 ring->dispatch_execbuffer =
2320 gen8_ring_dispatch_execbuffer;
2321 if (i915_semaphore_is_enabled(dev)) {
2322 ring->semaphore.sync_to = gen8_ring_sync;
2323 ring->semaphore.signal = gen8_xcs_signal;
2324 GEN8_RING_SEMAPHORE_INIT;
2325 }
2326 } else {
2327 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2328 ring->irq_get = gen6_ring_get_irq;
2329 ring->irq_put = gen6_ring_put_irq;
2330 ring->dispatch_execbuffer =
2331 gen6_ring_dispatch_execbuffer;
2332 if (i915_semaphore_is_enabled(dev)) {
2333 ring->semaphore.sync_to = gen6_ring_sync;
2334 ring->semaphore.signal = gen6_signal;
2335 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2336 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2337 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2338 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2339 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2340 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2341 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2342 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2343 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2344 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2345 }
2346 }
2347 } else {
2348 ring->mmio_base = BSD_RING_BASE;
2349 ring->flush = bsd_ring_flush;
2350 ring->add_request = i9xx_add_request;
2351 ring->get_seqno = ring_get_seqno;
2352 ring->set_seqno = ring_set_seqno;
2353 if (IS_GEN5(dev)) {
2354 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2355 ring->irq_get = gen5_ring_get_irq;
2356 ring->irq_put = gen5_ring_put_irq;
2357 } else {
2358 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2359 ring->irq_get = i9xx_ring_get_irq;
2360 ring->irq_put = i9xx_ring_put_irq;
2361 }
2362 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2363 }
2364 ring->init = init_ring_common;
2365
2366 return intel_init_ring_buffer(dev, ring);
2367 }
2368
2369 /**
2370 * Initialize the second BSD ring for Broadwell GT3.
2371 * It is noted that this only exists on Broadwell GT3.
2372 */
2373 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2374 {
2375 struct drm_i915_private *dev_priv = dev->dev_private;
2376 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2377
2378 if ((INTEL_INFO(dev)->gen != 8)) {
2379 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2380 return -EINVAL;
2381 }
2382
2383 ring->name = "bsd2 ring";
2384 ring->id = VCS2;
2385
2386 ring->write_tail = ring_write_tail;
2387 ring->mmio_base = GEN8_BSD2_RING_BASE;
2388 ring->flush = gen6_bsd_ring_flush;
2389 ring->add_request = gen6_add_request;
2390 ring->get_seqno = gen6_ring_get_seqno;
2391 ring->set_seqno = ring_set_seqno;
2392 ring->irq_enable_mask =
2393 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2394 ring->irq_get = gen8_ring_get_irq;
2395 ring->irq_put = gen8_ring_put_irq;
2396 ring->dispatch_execbuffer =
2397 gen8_ring_dispatch_execbuffer;
2398 if (i915_semaphore_is_enabled(dev)) {
2399 ring->semaphore.sync_to = gen8_ring_sync;
2400 ring->semaphore.signal = gen8_xcs_signal;
2401 GEN8_RING_SEMAPHORE_INIT;
2402 }
2403 ring->init = init_ring_common;
2404
2405 return intel_init_ring_buffer(dev, ring);
2406 }
2407
2408 int intel_init_blt_ring_buffer(struct drm_device *dev)
2409 {
2410 struct drm_i915_private *dev_priv = dev->dev_private;
2411 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2412
2413 ring->name = "blitter ring";
2414 ring->id = BCS;
2415
2416 ring->mmio_base = BLT_RING_BASE;
2417 ring->write_tail = ring_write_tail;
2418 ring->flush = gen6_ring_flush;
2419 ring->add_request = gen6_add_request;
2420 ring->get_seqno = gen6_ring_get_seqno;
2421 ring->set_seqno = ring_set_seqno;
2422 if (INTEL_INFO(dev)->gen >= 8) {
2423 ring->irq_enable_mask =
2424 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2425 ring->irq_get = gen8_ring_get_irq;
2426 ring->irq_put = gen8_ring_put_irq;
2427 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2428 if (i915_semaphore_is_enabled(dev)) {
2429 ring->semaphore.sync_to = gen8_ring_sync;
2430 ring->semaphore.signal = gen8_xcs_signal;
2431 GEN8_RING_SEMAPHORE_INIT;
2432 }
2433 } else {
2434 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2435 ring->irq_get = gen6_ring_get_irq;
2436 ring->irq_put = gen6_ring_put_irq;
2437 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2438 if (i915_semaphore_is_enabled(dev)) {
2439 ring->semaphore.signal = gen6_signal;
2440 ring->semaphore.sync_to = gen6_ring_sync;
2441 /*
2442 * The current semaphore is only applied on pre-gen8
2443 * platform. And there is no VCS2 ring on the pre-gen8
2444 * platform. So the semaphore between BCS and VCS2 is
2445 * initialized as INVALID. Gen8 will initialize the
2446 * sema between BCS and VCS2 later.
2447 */
2448 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2449 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2450 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2451 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2452 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2453 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2454 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2455 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2456 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2457 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2458 }
2459 }
2460 ring->init = init_ring_common;
2461
2462 return intel_init_ring_buffer(dev, ring);
2463 }
2464
2465 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2466 {
2467 struct drm_i915_private *dev_priv = dev->dev_private;
2468 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2469
2470 ring->name = "video enhancement ring";
2471 ring->id = VECS;
2472
2473 ring->mmio_base = VEBOX_RING_BASE;
2474 ring->write_tail = ring_write_tail;
2475 ring->flush = gen6_ring_flush;
2476 ring->add_request = gen6_add_request;
2477 ring->get_seqno = gen6_ring_get_seqno;
2478 ring->set_seqno = ring_set_seqno;
2479
2480 if (INTEL_INFO(dev)->gen >= 8) {
2481 ring->irq_enable_mask =
2482 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2483 ring->irq_get = gen8_ring_get_irq;
2484 ring->irq_put = gen8_ring_put_irq;
2485 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2486 if (i915_semaphore_is_enabled(dev)) {
2487 ring->semaphore.sync_to = gen8_ring_sync;
2488 ring->semaphore.signal = gen8_xcs_signal;
2489 GEN8_RING_SEMAPHORE_INIT;
2490 }
2491 } else {
2492 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2493 ring->irq_get = hsw_vebox_get_irq;
2494 ring->irq_put = hsw_vebox_put_irq;
2495 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2496 if (i915_semaphore_is_enabled(dev)) {
2497 ring->semaphore.sync_to = gen6_ring_sync;
2498 ring->semaphore.signal = gen6_signal;
2499 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2500 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2501 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2502 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2503 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2504 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2505 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2506 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2507 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2508 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2509 }
2510 }
2511 ring->init = init_ring_common;
2512
2513 return intel_init_ring_buffer(dev, ring);
2514 }
2515
2516 int
2517 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2518 {
2519 int ret;
2520
2521 if (!ring->gpu_caches_dirty)
2522 return 0;
2523
2524 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2525 if (ret)
2526 return ret;
2527
2528 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2529
2530 ring->gpu_caches_dirty = false;
2531 return 0;
2532 }
2533
2534 int
2535 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2536 {
2537 uint32_t flush_domains;
2538 int ret;
2539
2540 flush_domains = 0;
2541 if (ring->gpu_caches_dirty)
2542 flush_domains = I915_GEM_GPU_DOMAINS;
2543
2544 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2545 if (ret)
2546 return ret;
2547
2548 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2549
2550 ring->gpu_caches_dirty = false;
2551 return 0;
2552 }
2553
2554 void
2555 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2556 {
2557 int ret;
2558
2559 if (!intel_ring_initialized(ring))
2560 return;
2561
2562 ret = intel_ring_idle(ring);
2563 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2564 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2565 ring->name, ret);
2566
2567 stop_ring(ring);
2568 }
This page took 0.098565 seconds and 5 git commands to generate.