drm/i915: Implement Wa4x4STCOptimizationDisable:chv
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 struct drm_device *dev = ring->dev;
40
41 if (!dev)
42 return false;
43
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48 return ringbuf->obj;
49 } else
50 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 int space = head - tail;
56 if (space <= 0)
57 space += size;
58 return space - I915_RING_FREE_SPACE;
59 }
60
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63 if (ringbuf->last_retired_head != -1) {
64 ringbuf->head = ringbuf->last_retired_head;
65 ringbuf->last_retired_head = -1;
66 }
67
68 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69 ringbuf->tail, ringbuf->size);
70 }
71
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74 intel_ring_update_space(ringbuf);
75 return ringbuf->space;
76 }
77
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80 struct drm_i915_private *dev_priv = ring->dev->dev_private;
81 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
84 void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86 struct intel_ringbuffer *ringbuf = ring->buffer;
87 ringbuf->tail &= ringbuf->size - 1;
88 if (intel_ring_stopped(ring))
89 return;
90 ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
94 gen2_render_ring_flush(struct intel_engine_cs *ring,
95 u32 invalidate_domains,
96 u32 flush_domains)
97 {
98 u32 cmd;
99 int ret;
100
101 cmd = MI_FLUSH;
102 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
103 cmd |= MI_NO_WRITE_FLUSH;
104
105 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
106 cmd |= MI_READ_FLUSH;
107
108 ret = intel_ring_begin(ring, 2);
109 if (ret)
110 return ret;
111
112 intel_ring_emit(ring, cmd);
113 intel_ring_emit(ring, MI_NOOP);
114 intel_ring_advance(ring);
115
116 return 0;
117 }
118
119 static int
120 gen4_render_ring_flush(struct intel_engine_cs *ring,
121 u32 invalidate_domains,
122 u32 flush_domains)
123 {
124 struct drm_device *dev = ring->dev;
125 u32 cmd;
126 int ret;
127
128 /*
129 * read/write caches:
130 *
131 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
132 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
133 * also flushed at 2d versus 3d pipeline switches.
134 *
135 * read-only caches:
136 *
137 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
138 * MI_READ_FLUSH is set, and is always flushed on 965.
139 *
140 * I915_GEM_DOMAIN_COMMAND may not exist?
141 *
142 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
143 * invalidated when MI_EXE_FLUSH is set.
144 *
145 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
146 * invalidated with every MI_FLUSH.
147 *
148 * TLBs:
149 *
150 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
151 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
152 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
153 * are flushed at any MI_FLUSH.
154 */
155
156 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
157 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
158 cmd &= ~MI_NO_WRITE_FLUSH;
159 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
160 cmd |= MI_EXE_FLUSH;
161
162 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
163 (IS_G4X(dev) || IS_GEN5(dev)))
164 cmd |= MI_INVALIDATE_ISP;
165
166 ret = intel_ring_begin(ring, 2);
167 if (ret)
168 return ret;
169
170 intel_ring_emit(ring, cmd);
171 intel_ring_emit(ring, MI_NOOP);
172 intel_ring_advance(ring);
173
174 return 0;
175 }
176
177 /**
178 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
179 * implementing two workarounds on gen6. From section 1.4.7.1
180 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
181 *
182 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
183 * produced by non-pipelined state commands), software needs to first
184 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
185 * 0.
186 *
187 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
188 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
189 *
190 * And the workaround for these two requires this workaround first:
191 *
192 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
193 * BEFORE the pipe-control with a post-sync op and no write-cache
194 * flushes.
195 *
196 * And this last workaround is tricky because of the requirements on
197 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
198 * volume 2 part 1:
199 *
200 * "1 of the following must also be set:
201 * - Render Target Cache Flush Enable ([12] of DW1)
202 * - Depth Cache Flush Enable ([0] of DW1)
203 * - Stall at Pixel Scoreboard ([1] of DW1)
204 * - Depth Stall ([13] of DW1)
205 * - Post-Sync Operation ([13] of DW1)
206 * - Notify Enable ([8] of DW1)"
207 *
208 * The cache flushes require the workaround flush that triggered this
209 * one, so we can't use it. Depth stall would trigger the same.
210 * Post-sync nonzero is what triggered this second workaround, so we
211 * can't use that one either. Notify enable is IRQs, which aren't
212 * really our business. That leaves only stall at scoreboard.
213 */
214 static int
215 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
216 {
217 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
218 int ret;
219
220
221 ret = intel_ring_begin(ring, 6);
222 if (ret)
223 return ret;
224
225 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
226 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
227 PIPE_CONTROL_STALL_AT_SCOREBOARD);
228 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
229 intel_ring_emit(ring, 0); /* low dword */
230 intel_ring_emit(ring, 0); /* high dword */
231 intel_ring_emit(ring, MI_NOOP);
232 intel_ring_advance(ring);
233
234 ret = intel_ring_begin(ring, 6);
235 if (ret)
236 return ret;
237
238 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
239 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
240 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
241 intel_ring_emit(ring, 0);
242 intel_ring_emit(ring, 0);
243 intel_ring_emit(ring, MI_NOOP);
244 intel_ring_advance(ring);
245
246 return 0;
247 }
248
249 static int
250 gen6_render_ring_flush(struct intel_engine_cs *ring,
251 u32 invalidate_domains, u32 flush_domains)
252 {
253 u32 flags = 0;
254 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
255 int ret;
256
257 /* Force SNB workarounds for PIPE_CONTROL flushes */
258 ret = intel_emit_post_sync_nonzero_flush(ring);
259 if (ret)
260 return ret;
261
262 /* Just flush everything. Experiments have shown that reducing the
263 * number of bits based on the write domains has little performance
264 * impact.
265 */
266 if (flush_domains) {
267 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
268 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
269 /*
270 * Ensure that any following seqno writes only happen
271 * when the render cache is indeed flushed.
272 */
273 flags |= PIPE_CONTROL_CS_STALL;
274 }
275 if (invalidate_domains) {
276 flags |= PIPE_CONTROL_TLB_INVALIDATE;
277 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
278 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
279 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
280 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
281 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
282 /*
283 * TLB invalidate requires a post-sync write.
284 */
285 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
286 }
287
288 ret = intel_ring_begin(ring, 4);
289 if (ret)
290 return ret;
291
292 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
293 intel_ring_emit(ring, flags);
294 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
295 intel_ring_emit(ring, 0);
296 intel_ring_advance(ring);
297
298 return 0;
299 }
300
301 static int
302 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
303 {
304 int ret;
305
306 ret = intel_ring_begin(ring, 4);
307 if (ret)
308 return ret;
309
310 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
311 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
312 PIPE_CONTROL_STALL_AT_SCOREBOARD);
313 intel_ring_emit(ring, 0);
314 intel_ring_emit(ring, 0);
315 intel_ring_advance(ring);
316
317 return 0;
318 }
319
320 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
321 {
322 int ret;
323
324 if (!ring->fbc_dirty)
325 return 0;
326
327 ret = intel_ring_begin(ring, 6);
328 if (ret)
329 return ret;
330 /* WaFbcNukeOn3DBlt:ivb/hsw */
331 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
332 intel_ring_emit(ring, MSG_FBC_REND_STATE);
333 intel_ring_emit(ring, value);
334 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
335 intel_ring_emit(ring, MSG_FBC_REND_STATE);
336 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
337 intel_ring_advance(ring);
338
339 ring->fbc_dirty = false;
340 return 0;
341 }
342
343 static int
344 gen7_render_ring_flush(struct intel_engine_cs *ring,
345 u32 invalidate_domains, u32 flush_domains)
346 {
347 u32 flags = 0;
348 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
349 int ret;
350
351 /*
352 * Ensure that any following seqno writes only happen when the render
353 * cache is indeed flushed.
354 *
355 * Workaround: 4th PIPE_CONTROL command (except the ones with only
356 * read-cache invalidate bits set) must have the CS_STALL bit set. We
357 * don't try to be clever and just set it unconditionally.
358 */
359 flags |= PIPE_CONTROL_CS_STALL;
360
361 /* Just flush everything. Experiments have shown that reducing the
362 * number of bits based on the write domains has little performance
363 * impact.
364 */
365 if (flush_domains) {
366 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
367 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
368 }
369 if (invalidate_domains) {
370 flags |= PIPE_CONTROL_TLB_INVALIDATE;
371 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
372 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
373 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
374 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
375 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
376 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
377 /*
378 * TLB invalidate requires a post-sync write.
379 */
380 flags |= PIPE_CONTROL_QW_WRITE;
381 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
382
383 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
384
385 /* Workaround: we must issue a pipe_control with CS-stall bit
386 * set before a pipe_control command that has the state cache
387 * invalidate bit set. */
388 gen7_render_ring_cs_stall_wa(ring);
389 }
390
391 ret = intel_ring_begin(ring, 4);
392 if (ret)
393 return ret;
394
395 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
396 intel_ring_emit(ring, flags);
397 intel_ring_emit(ring, scratch_addr);
398 intel_ring_emit(ring, 0);
399 intel_ring_advance(ring);
400
401 if (!invalidate_domains && flush_domains)
402 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
403
404 return 0;
405 }
406
407 static int
408 gen8_emit_pipe_control(struct intel_engine_cs *ring,
409 u32 flags, u32 scratch_addr)
410 {
411 int ret;
412
413 ret = intel_ring_begin(ring, 6);
414 if (ret)
415 return ret;
416
417 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
418 intel_ring_emit(ring, flags);
419 intel_ring_emit(ring, scratch_addr);
420 intel_ring_emit(ring, 0);
421 intel_ring_emit(ring, 0);
422 intel_ring_emit(ring, 0);
423 intel_ring_advance(ring);
424
425 return 0;
426 }
427
428 static int
429 gen8_render_ring_flush(struct intel_engine_cs *ring,
430 u32 invalidate_domains, u32 flush_domains)
431 {
432 u32 flags = 0;
433 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
434 int ret;
435
436 flags |= PIPE_CONTROL_CS_STALL;
437
438 if (flush_domains) {
439 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
440 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
441 }
442 if (invalidate_domains) {
443 flags |= PIPE_CONTROL_TLB_INVALIDATE;
444 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
445 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
446 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
447 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
448 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
449 flags |= PIPE_CONTROL_QW_WRITE;
450 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
451
452 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
453 ret = gen8_emit_pipe_control(ring,
454 PIPE_CONTROL_CS_STALL |
455 PIPE_CONTROL_STALL_AT_SCOREBOARD,
456 0);
457 if (ret)
458 return ret;
459 }
460
461 ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
462 if (ret)
463 return ret;
464
465 if (!invalidate_domains && flush_domains)
466 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
467
468 return 0;
469 }
470
471 static void ring_write_tail(struct intel_engine_cs *ring,
472 u32 value)
473 {
474 struct drm_i915_private *dev_priv = ring->dev->dev_private;
475 I915_WRITE_TAIL(ring, value);
476 }
477
478 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
479 {
480 struct drm_i915_private *dev_priv = ring->dev->dev_private;
481 u64 acthd;
482
483 if (INTEL_INFO(ring->dev)->gen >= 8)
484 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
485 RING_ACTHD_UDW(ring->mmio_base));
486 else if (INTEL_INFO(ring->dev)->gen >= 4)
487 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
488 else
489 acthd = I915_READ(ACTHD);
490
491 return acthd;
492 }
493
494 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
495 {
496 struct drm_i915_private *dev_priv = ring->dev->dev_private;
497 u32 addr;
498
499 addr = dev_priv->status_page_dmah->busaddr;
500 if (INTEL_INFO(ring->dev)->gen >= 4)
501 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
502 I915_WRITE(HWS_PGA, addr);
503 }
504
505 static bool stop_ring(struct intel_engine_cs *ring)
506 {
507 struct drm_i915_private *dev_priv = to_i915(ring->dev);
508
509 if (!IS_GEN2(ring->dev)) {
510 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
511 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
512 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
513 /* Sometimes we observe that the idle flag is not
514 * set even though the ring is empty. So double
515 * check before giving up.
516 */
517 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
518 return false;
519 }
520 }
521
522 I915_WRITE_CTL(ring, 0);
523 I915_WRITE_HEAD(ring, 0);
524 ring->write_tail(ring, 0);
525
526 if (!IS_GEN2(ring->dev)) {
527 (void)I915_READ_CTL(ring);
528 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
529 }
530
531 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
532 }
533
534 static int init_ring_common(struct intel_engine_cs *ring)
535 {
536 struct drm_device *dev = ring->dev;
537 struct drm_i915_private *dev_priv = dev->dev_private;
538 struct intel_ringbuffer *ringbuf = ring->buffer;
539 struct drm_i915_gem_object *obj = ringbuf->obj;
540 int ret = 0;
541
542 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
543
544 if (!stop_ring(ring)) {
545 /* G45 ring initialization often fails to reset head to zero */
546 DRM_DEBUG_KMS("%s head not reset to zero "
547 "ctl %08x head %08x tail %08x start %08x\n",
548 ring->name,
549 I915_READ_CTL(ring),
550 I915_READ_HEAD(ring),
551 I915_READ_TAIL(ring),
552 I915_READ_START(ring));
553
554 if (!stop_ring(ring)) {
555 DRM_ERROR("failed to set %s head to zero "
556 "ctl %08x head %08x tail %08x start %08x\n",
557 ring->name,
558 I915_READ_CTL(ring),
559 I915_READ_HEAD(ring),
560 I915_READ_TAIL(ring),
561 I915_READ_START(ring));
562 ret = -EIO;
563 goto out;
564 }
565 }
566
567 if (I915_NEED_GFX_HWS(dev))
568 intel_ring_setup_status_page(ring);
569 else
570 ring_setup_phys_status_page(ring);
571
572 /* Enforce ordering by reading HEAD register back */
573 I915_READ_HEAD(ring);
574
575 /* Initialize the ring. This must happen _after_ we've cleared the ring
576 * registers with the above sequence (the readback of the HEAD registers
577 * also enforces ordering), otherwise the hw might lose the new ring
578 * register values. */
579 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
580
581 /* WaClearRingBufHeadRegAtInit:ctg,elk */
582 if (I915_READ_HEAD(ring))
583 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
584 ring->name, I915_READ_HEAD(ring));
585 I915_WRITE_HEAD(ring, 0);
586 (void)I915_READ_HEAD(ring);
587
588 I915_WRITE_CTL(ring,
589 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
590 | RING_VALID);
591
592 /* If the head is still not zero, the ring is dead */
593 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
594 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
595 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
596 DRM_ERROR("%s initialization failed "
597 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
598 ring->name,
599 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
600 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
601 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
602 ret = -EIO;
603 goto out;
604 }
605
606 ringbuf->last_retired_head = -1;
607 ringbuf->head = I915_READ_HEAD(ring);
608 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
609 intel_ring_update_space(ringbuf);
610
611 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
612
613 out:
614 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
615
616 return ret;
617 }
618
619 void
620 intel_fini_pipe_control(struct intel_engine_cs *ring)
621 {
622 struct drm_device *dev = ring->dev;
623
624 if (ring->scratch.obj == NULL)
625 return;
626
627 if (INTEL_INFO(dev)->gen >= 5) {
628 kunmap(sg_page(ring->scratch.obj->pages->sgl));
629 i915_gem_object_ggtt_unpin(ring->scratch.obj);
630 }
631
632 drm_gem_object_unreference(&ring->scratch.obj->base);
633 ring->scratch.obj = NULL;
634 }
635
636 int
637 intel_init_pipe_control(struct intel_engine_cs *ring)
638 {
639 int ret;
640
641 WARN_ON(ring->scratch.obj);
642
643 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
644 if (ring->scratch.obj == NULL) {
645 DRM_ERROR("Failed to allocate seqno page\n");
646 ret = -ENOMEM;
647 goto err;
648 }
649
650 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
651 if (ret)
652 goto err_unref;
653
654 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
655 if (ret)
656 goto err_unref;
657
658 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
659 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
660 if (ring->scratch.cpu_page == NULL) {
661 ret = -ENOMEM;
662 goto err_unpin;
663 }
664
665 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
666 ring->name, ring->scratch.gtt_offset);
667 return 0;
668
669 err_unpin:
670 i915_gem_object_ggtt_unpin(ring->scratch.obj);
671 err_unref:
672 drm_gem_object_unreference(&ring->scratch.obj->base);
673 err:
674 return ret;
675 }
676
677 static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
678 struct intel_context *ctx)
679 {
680 int ret, i;
681 struct drm_device *dev = ring->dev;
682 struct drm_i915_private *dev_priv = dev->dev_private;
683 struct i915_workarounds *w = &dev_priv->workarounds;
684
685 if (WARN_ON_ONCE(w->count == 0))
686 return 0;
687
688 ring->gpu_caches_dirty = true;
689 ret = intel_ring_flush_all_caches(ring);
690 if (ret)
691 return ret;
692
693 ret = intel_ring_begin(ring, (w->count * 2 + 2));
694 if (ret)
695 return ret;
696
697 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
698 for (i = 0; i < w->count; i++) {
699 intel_ring_emit(ring, w->reg[i].addr);
700 intel_ring_emit(ring, w->reg[i].value);
701 }
702 intel_ring_emit(ring, MI_NOOP);
703
704 intel_ring_advance(ring);
705
706 ring->gpu_caches_dirty = true;
707 ret = intel_ring_flush_all_caches(ring);
708 if (ret)
709 return ret;
710
711 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
712
713 return 0;
714 }
715
716 static int intel_rcs_ctx_init(struct intel_engine_cs *ring,
717 struct intel_context *ctx)
718 {
719 int ret;
720
721 ret = intel_ring_workarounds_emit(ring, ctx);
722 if (ret != 0)
723 return ret;
724
725 ret = i915_gem_render_state_init(ring);
726 if (ret)
727 DRM_ERROR("init render state: %d\n", ret);
728
729 return ret;
730 }
731
732 static int wa_add(struct drm_i915_private *dev_priv,
733 const u32 addr, const u32 mask, const u32 val)
734 {
735 const u32 idx = dev_priv->workarounds.count;
736
737 if (WARN_ON(idx >= I915_MAX_WA_REGS))
738 return -ENOSPC;
739
740 dev_priv->workarounds.reg[idx].addr = addr;
741 dev_priv->workarounds.reg[idx].value = val;
742 dev_priv->workarounds.reg[idx].mask = mask;
743
744 dev_priv->workarounds.count++;
745
746 return 0;
747 }
748
749 #define WA_REG(addr, mask, val) { \
750 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
751 if (r) \
752 return r; \
753 }
754
755 #define WA_SET_BIT_MASKED(addr, mask) \
756 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
757
758 #define WA_CLR_BIT_MASKED(addr, mask) \
759 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
760
761 #define WA_SET_FIELD_MASKED(addr, mask, value) \
762 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
763
764 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
765 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
766
767 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
768
769 static int bdw_init_workarounds(struct intel_engine_cs *ring)
770 {
771 struct drm_device *dev = ring->dev;
772 struct drm_i915_private *dev_priv = dev->dev_private;
773
774 /* WaDisablePartialInstShootdown:bdw */
775 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
776 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
777 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
778 STALL_DOP_GATING_DISABLE);
779
780 /* WaDisableDopClockGating:bdw */
781 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
782 DOP_CLOCK_GATING_DISABLE);
783
784 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
785 GEN8_SAMPLER_POWER_BYPASS_DIS);
786
787 /* Use Force Non-Coherent whenever executing a 3D context. This is a
788 * workaround for for a possible hang in the unlikely event a TLB
789 * invalidation occurs during a PSD flush.
790 */
791 /* WaForceEnableNonCoherent:bdw */
792 /* WaHdcDisableFetchWhenMasked:bdw */
793 /* WaDisableFenceDestinationToSLM:bdw (GT3 pre-production) */
794 WA_SET_BIT_MASKED(HDC_CHICKEN0,
795 HDC_FORCE_NON_COHERENT |
796 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
797 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
798
799 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
800 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
801 * polygons in the same 8x4 pixel/sample area to be processed without
802 * stalling waiting for the earlier ones to write to Hierarchical Z
803 * buffer."
804 *
805 * This optimization is off by default for Broadwell; turn it on.
806 */
807 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
808
809 /* Wa4x4STCOptimizationDisable:bdw */
810 WA_SET_BIT_MASKED(CACHE_MODE_1,
811 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
812
813 /*
814 * BSpec recommends 8x4 when MSAA is used,
815 * however in practice 16x4 seems fastest.
816 *
817 * Note that PS/WM thread counts depend on the WIZ hashing
818 * disable bit, which we don't touch here, but it's good
819 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
820 */
821 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
822 GEN6_WIZ_HASHING_MASK,
823 GEN6_WIZ_HASHING_16x4);
824
825 return 0;
826 }
827
828 static int chv_init_workarounds(struct intel_engine_cs *ring)
829 {
830 struct drm_device *dev = ring->dev;
831 struct drm_i915_private *dev_priv = dev->dev_private;
832
833 /* WaDisablePartialInstShootdown:chv */
834 /* WaDisableThreadStallDopClockGating:chv */
835 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
836 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
837 STALL_DOP_GATING_DISABLE);
838
839 /* Use Force Non-Coherent whenever executing a 3D context. This is a
840 * workaround for a possible hang in the unlikely event a TLB
841 * invalidation occurs during a PSD flush.
842 */
843 /* WaForceEnableNonCoherent:chv */
844 /* WaHdcDisableFetchWhenMasked:chv */
845 WA_SET_BIT_MASKED(HDC_CHICKEN0,
846 HDC_FORCE_NON_COHERENT |
847 HDC_DONOT_FETCH_MEM_WHEN_MASKED);
848
849 /* According to the CACHE_MODE_0 default value documentation, some
850 * CHV platforms disable this optimization by default. Turn it on.
851 */
852 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
853
854 /* Wa4x4STCOptimizationDisable:chv */
855 WA_SET_BIT_MASKED(CACHE_MODE_1,
856 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
857
858 /* Improve HiZ throughput on CHV. */
859 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
860
861 return 0;
862 }
863
864 int init_workarounds_ring(struct intel_engine_cs *ring)
865 {
866 struct drm_device *dev = ring->dev;
867 struct drm_i915_private *dev_priv = dev->dev_private;
868
869 WARN_ON(ring->id != RCS);
870
871 dev_priv->workarounds.count = 0;
872
873 if (IS_BROADWELL(dev))
874 return bdw_init_workarounds(ring);
875
876 if (IS_CHERRYVIEW(dev))
877 return chv_init_workarounds(ring);
878
879 return 0;
880 }
881
882 static int init_render_ring(struct intel_engine_cs *ring)
883 {
884 struct drm_device *dev = ring->dev;
885 struct drm_i915_private *dev_priv = dev->dev_private;
886 int ret = init_ring_common(ring);
887 if (ret)
888 return ret;
889
890 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
891 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
892 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
893
894 /* We need to disable the AsyncFlip performance optimisations in order
895 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
896 * programmed to '1' on all products.
897 *
898 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
899 */
900 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
901 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
902
903 /* Required for the hardware to program scanline values for waiting */
904 /* WaEnableFlushTlbInvalidationMode:snb */
905 if (INTEL_INFO(dev)->gen == 6)
906 I915_WRITE(GFX_MODE,
907 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
908
909 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
910 if (IS_GEN7(dev))
911 I915_WRITE(GFX_MODE_GEN7,
912 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
913 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
914
915 if (IS_GEN6(dev)) {
916 /* From the Sandybridge PRM, volume 1 part 3, page 24:
917 * "If this bit is set, STCunit will have LRA as replacement
918 * policy. [...] This bit must be reset. LRA replacement
919 * policy is not supported."
920 */
921 I915_WRITE(CACHE_MODE_0,
922 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
923 }
924
925 if (INTEL_INFO(dev)->gen >= 6)
926 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
927
928 if (HAS_L3_DPF(dev))
929 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
930
931 return init_workarounds_ring(ring);
932 }
933
934 static void render_ring_cleanup(struct intel_engine_cs *ring)
935 {
936 struct drm_device *dev = ring->dev;
937 struct drm_i915_private *dev_priv = dev->dev_private;
938
939 if (dev_priv->semaphore_obj) {
940 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
941 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
942 dev_priv->semaphore_obj = NULL;
943 }
944
945 intel_fini_pipe_control(ring);
946 }
947
948 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
949 unsigned int num_dwords)
950 {
951 #define MBOX_UPDATE_DWORDS 8
952 struct drm_device *dev = signaller->dev;
953 struct drm_i915_private *dev_priv = dev->dev_private;
954 struct intel_engine_cs *waiter;
955 int i, ret, num_rings;
956
957 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
958 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
959 #undef MBOX_UPDATE_DWORDS
960
961 ret = intel_ring_begin(signaller, num_dwords);
962 if (ret)
963 return ret;
964
965 for_each_ring(waiter, dev_priv, i) {
966 u32 seqno;
967 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
968 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
969 continue;
970
971 seqno = i915_gem_request_get_seqno(
972 signaller->outstanding_lazy_request);
973 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
974 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
975 PIPE_CONTROL_QW_WRITE |
976 PIPE_CONTROL_FLUSH_ENABLE);
977 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
978 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
979 intel_ring_emit(signaller, seqno);
980 intel_ring_emit(signaller, 0);
981 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
982 MI_SEMAPHORE_TARGET(waiter->id));
983 intel_ring_emit(signaller, 0);
984 }
985
986 return 0;
987 }
988
989 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
990 unsigned int num_dwords)
991 {
992 #define MBOX_UPDATE_DWORDS 6
993 struct drm_device *dev = signaller->dev;
994 struct drm_i915_private *dev_priv = dev->dev_private;
995 struct intel_engine_cs *waiter;
996 int i, ret, num_rings;
997
998 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
999 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1000 #undef MBOX_UPDATE_DWORDS
1001
1002 ret = intel_ring_begin(signaller, num_dwords);
1003 if (ret)
1004 return ret;
1005
1006 for_each_ring(waiter, dev_priv, i) {
1007 u32 seqno;
1008 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1009 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1010 continue;
1011
1012 seqno = i915_gem_request_get_seqno(
1013 signaller->outstanding_lazy_request);
1014 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1015 MI_FLUSH_DW_OP_STOREDW);
1016 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1017 MI_FLUSH_DW_USE_GTT);
1018 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1019 intel_ring_emit(signaller, seqno);
1020 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1021 MI_SEMAPHORE_TARGET(waiter->id));
1022 intel_ring_emit(signaller, 0);
1023 }
1024
1025 return 0;
1026 }
1027
1028 static int gen6_signal(struct intel_engine_cs *signaller,
1029 unsigned int num_dwords)
1030 {
1031 struct drm_device *dev = signaller->dev;
1032 struct drm_i915_private *dev_priv = dev->dev_private;
1033 struct intel_engine_cs *useless;
1034 int i, ret, num_rings;
1035
1036 #define MBOX_UPDATE_DWORDS 3
1037 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1038 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1039 #undef MBOX_UPDATE_DWORDS
1040
1041 ret = intel_ring_begin(signaller, num_dwords);
1042 if (ret)
1043 return ret;
1044
1045 for_each_ring(useless, dev_priv, i) {
1046 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1047 if (mbox_reg != GEN6_NOSYNC) {
1048 u32 seqno = i915_gem_request_get_seqno(
1049 signaller->outstanding_lazy_request);
1050 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1051 intel_ring_emit(signaller, mbox_reg);
1052 intel_ring_emit(signaller, seqno);
1053 }
1054 }
1055
1056 /* If num_dwords was rounded, make sure the tail pointer is correct */
1057 if (num_rings % 2 == 0)
1058 intel_ring_emit(signaller, MI_NOOP);
1059
1060 return 0;
1061 }
1062
1063 /**
1064 * gen6_add_request - Update the semaphore mailbox registers
1065 *
1066 * @ring - ring that is adding a request
1067 * @seqno - return seqno stuck into the ring
1068 *
1069 * Update the mailbox registers in the *other* rings with the current seqno.
1070 * This acts like a signal in the canonical semaphore.
1071 */
1072 static int
1073 gen6_add_request(struct intel_engine_cs *ring)
1074 {
1075 int ret;
1076
1077 if (ring->semaphore.signal)
1078 ret = ring->semaphore.signal(ring, 4);
1079 else
1080 ret = intel_ring_begin(ring, 4);
1081
1082 if (ret)
1083 return ret;
1084
1085 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1086 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1087 intel_ring_emit(ring,
1088 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1089 intel_ring_emit(ring, MI_USER_INTERRUPT);
1090 __intel_ring_advance(ring);
1091
1092 return 0;
1093 }
1094
1095 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1096 u32 seqno)
1097 {
1098 struct drm_i915_private *dev_priv = dev->dev_private;
1099 return dev_priv->last_seqno < seqno;
1100 }
1101
1102 /**
1103 * intel_ring_sync - sync the waiter to the signaller on seqno
1104 *
1105 * @waiter - ring that is waiting
1106 * @signaller - ring which has, or will signal
1107 * @seqno - seqno which the waiter will block on
1108 */
1109
1110 static int
1111 gen8_ring_sync(struct intel_engine_cs *waiter,
1112 struct intel_engine_cs *signaller,
1113 u32 seqno)
1114 {
1115 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1116 int ret;
1117
1118 ret = intel_ring_begin(waiter, 4);
1119 if (ret)
1120 return ret;
1121
1122 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1123 MI_SEMAPHORE_GLOBAL_GTT |
1124 MI_SEMAPHORE_POLL |
1125 MI_SEMAPHORE_SAD_GTE_SDD);
1126 intel_ring_emit(waiter, seqno);
1127 intel_ring_emit(waiter,
1128 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1129 intel_ring_emit(waiter,
1130 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1131 intel_ring_advance(waiter);
1132 return 0;
1133 }
1134
1135 static int
1136 gen6_ring_sync(struct intel_engine_cs *waiter,
1137 struct intel_engine_cs *signaller,
1138 u32 seqno)
1139 {
1140 u32 dw1 = MI_SEMAPHORE_MBOX |
1141 MI_SEMAPHORE_COMPARE |
1142 MI_SEMAPHORE_REGISTER;
1143 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1144 int ret;
1145
1146 /* Throughout all of the GEM code, seqno passed implies our current
1147 * seqno is >= the last seqno executed. However for hardware the
1148 * comparison is strictly greater than.
1149 */
1150 seqno -= 1;
1151
1152 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1153
1154 ret = intel_ring_begin(waiter, 4);
1155 if (ret)
1156 return ret;
1157
1158 /* If seqno wrap happened, omit the wait with no-ops */
1159 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1160 intel_ring_emit(waiter, dw1 | wait_mbox);
1161 intel_ring_emit(waiter, seqno);
1162 intel_ring_emit(waiter, 0);
1163 intel_ring_emit(waiter, MI_NOOP);
1164 } else {
1165 intel_ring_emit(waiter, MI_NOOP);
1166 intel_ring_emit(waiter, MI_NOOP);
1167 intel_ring_emit(waiter, MI_NOOP);
1168 intel_ring_emit(waiter, MI_NOOP);
1169 }
1170 intel_ring_advance(waiter);
1171
1172 return 0;
1173 }
1174
1175 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1176 do { \
1177 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1178 PIPE_CONTROL_DEPTH_STALL); \
1179 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1180 intel_ring_emit(ring__, 0); \
1181 intel_ring_emit(ring__, 0); \
1182 } while (0)
1183
1184 static int
1185 pc_render_add_request(struct intel_engine_cs *ring)
1186 {
1187 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1188 int ret;
1189
1190 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1191 * incoherent with writes to memory, i.e. completely fubar,
1192 * so we need to use PIPE_NOTIFY instead.
1193 *
1194 * However, we also need to workaround the qword write
1195 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1196 * memory before requesting an interrupt.
1197 */
1198 ret = intel_ring_begin(ring, 32);
1199 if (ret)
1200 return ret;
1201
1202 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1203 PIPE_CONTROL_WRITE_FLUSH |
1204 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1205 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1206 intel_ring_emit(ring,
1207 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1208 intel_ring_emit(ring, 0);
1209 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1210 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1211 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1212 scratch_addr += 2 * CACHELINE_BYTES;
1213 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1214 scratch_addr += 2 * CACHELINE_BYTES;
1215 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1216 scratch_addr += 2 * CACHELINE_BYTES;
1217 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1218 scratch_addr += 2 * CACHELINE_BYTES;
1219 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1220
1221 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1222 PIPE_CONTROL_WRITE_FLUSH |
1223 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1224 PIPE_CONTROL_NOTIFY);
1225 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1226 intel_ring_emit(ring,
1227 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1228 intel_ring_emit(ring, 0);
1229 __intel_ring_advance(ring);
1230
1231 return 0;
1232 }
1233
1234 static u32
1235 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1236 {
1237 /* Workaround to force correct ordering between irq and seqno writes on
1238 * ivb (and maybe also on snb) by reading from a CS register (like
1239 * ACTHD) before reading the status page. */
1240 if (!lazy_coherency) {
1241 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1242 POSTING_READ(RING_ACTHD(ring->mmio_base));
1243 }
1244
1245 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1246 }
1247
1248 static u32
1249 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1250 {
1251 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1252 }
1253
1254 static void
1255 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1256 {
1257 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1258 }
1259
1260 static u32
1261 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1262 {
1263 return ring->scratch.cpu_page[0];
1264 }
1265
1266 static void
1267 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1268 {
1269 ring->scratch.cpu_page[0] = seqno;
1270 }
1271
1272 static bool
1273 gen5_ring_get_irq(struct intel_engine_cs *ring)
1274 {
1275 struct drm_device *dev = ring->dev;
1276 struct drm_i915_private *dev_priv = dev->dev_private;
1277 unsigned long flags;
1278
1279 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1280 return false;
1281
1282 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1283 if (ring->irq_refcount++ == 0)
1284 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1285 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1286
1287 return true;
1288 }
1289
1290 static void
1291 gen5_ring_put_irq(struct intel_engine_cs *ring)
1292 {
1293 struct drm_device *dev = ring->dev;
1294 struct drm_i915_private *dev_priv = dev->dev_private;
1295 unsigned long flags;
1296
1297 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1298 if (--ring->irq_refcount == 0)
1299 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1300 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1301 }
1302
1303 static bool
1304 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1305 {
1306 struct drm_device *dev = ring->dev;
1307 struct drm_i915_private *dev_priv = dev->dev_private;
1308 unsigned long flags;
1309
1310 if (!intel_irqs_enabled(dev_priv))
1311 return false;
1312
1313 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1314 if (ring->irq_refcount++ == 0) {
1315 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1316 I915_WRITE(IMR, dev_priv->irq_mask);
1317 POSTING_READ(IMR);
1318 }
1319 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1320
1321 return true;
1322 }
1323
1324 static void
1325 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1326 {
1327 struct drm_device *dev = ring->dev;
1328 struct drm_i915_private *dev_priv = dev->dev_private;
1329 unsigned long flags;
1330
1331 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1332 if (--ring->irq_refcount == 0) {
1333 dev_priv->irq_mask |= ring->irq_enable_mask;
1334 I915_WRITE(IMR, dev_priv->irq_mask);
1335 POSTING_READ(IMR);
1336 }
1337 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1338 }
1339
1340 static bool
1341 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1342 {
1343 struct drm_device *dev = ring->dev;
1344 struct drm_i915_private *dev_priv = dev->dev_private;
1345 unsigned long flags;
1346
1347 if (!intel_irqs_enabled(dev_priv))
1348 return false;
1349
1350 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1351 if (ring->irq_refcount++ == 0) {
1352 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1353 I915_WRITE16(IMR, dev_priv->irq_mask);
1354 POSTING_READ16(IMR);
1355 }
1356 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1357
1358 return true;
1359 }
1360
1361 static void
1362 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1363 {
1364 struct drm_device *dev = ring->dev;
1365 struct drm_i915_private *dev_priv = dev->dev_private;
1366 unsigned long flags;
1367
1368 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1369 if (--ring->irq_refcount == 0) {
1370 dev_priv->irq_mask |= ring->irq_enable_mask;
1371 I915_WRITE16(IMR, dev_priv->irq_mask);
1372 POSTING_READ16(IMR);
1373 }
1374 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1375 }
1376
1377 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1378 {
1379 struct drm_device *dev = ring->dev;
1380 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1381 u32 mmio = 0;
1382
1383 /* The ring status page addresses are no longer next to the rest of
1384 * the ring registers as of gen7.
1385 */
1386 if (IS_GEN7(dev)) {
1387 switch (ring->id) {
1388 case RCS:
1389 mmio = RENDER_HWS_PGA_GEN7;
1390 break;
1391 case BCS:
1392 mmio = BLT_HWS_PGA_GEN7;
1393 break;
1394 /*
1395 * VCS2 actually doesn't exist on Gen7. Only shut up
1396 * gcc switch check warning
1397 */
1398 case VCS2:
1399 case VCS:
1400 mmio = BSD_HWS_PGA_GEN7;
1401 break;
1402 case VECS:
1403 mmio = VEBOX_HWS_PGA_GEN7;
1404 break;
1405 }
1406 } else if (IS_GEN6(ring->dev)) {
1407 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1408 } else {
1409 /* XXX: gen8 returns to sanity */
1410 mmio = RING_HWS_PGA(ring->mmio_base);
1411 }
1412
1413 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1414 POSTING_READ(mmio);
1415
1416 /*
1417 * Flush the TLB for this page
1418 *
1419 * FIXME: These two bits have disappeared on gen8, so a question
1420 * arises: do we still need this and if so how should we go about
1421 * invalidating the TLB?
1422 */
1423 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1424 u32 reg = RING_INSTPM(ring->mmio_base);
1425
1426 /* ring should be idle before issuing a sync flush*/
1427 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1428
1429 I915_WRITE(reg,
1430 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1431 INSTPM_SYNC_FLUSH));
1432 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1433 1000))
1434 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1435 ring->name);
1436 }
1437 }
1438
1439 static int
1440 bsd_ring_flush(struct intel_engine_cs *ring,
1441 u32 invalidate_domains,
1442 u32 flush_domains)
1443 {
1444 int ret;
1445
1446 ret = intel_ring_begin(ring, 2);
1447 if (ret)
1448 return ret;
1449
1450 intel_ring_emit(ring, MI_FLUSH);
1451 intel_ring_emit(ring, MI_NOOP);
1452 intel_ring_advance(ring);
1453 return 0;
1454 }
1455
1456 static int
1457 i9xx_add_request(struct intel_engine_cs *ring)
1458 {
1459 int ret;
1460
1461 ret = intel_ring_begin(ring, 4);
1462 if (ret)
1463 return ret;
1464
1465 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1466 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1467 intel_ring_emit(ring,
1468 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1469 intel_ring_emit(ring, MI_USER_INTERRUPT);
1470 __intel_ring_advance(ring);
1471
1472 return 0;
1473 }
1474
1475 static bool
1476 gen6_ring_get_irq(struct intel_engine_cs *ring)
1477 {
1478 struct drm_device *dev = ring->dev;
1479 struct drm_i915_private *dev_priv = dev->dev_private;
1480 unsigned long flags;
1481
1482 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1483 return false;
1484
1485 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1486 if (ring->irq_refcount++ == 0) {
1487 if (HAS_L3_DPF(dev) && ring->id == RCS)
1488 I915_WRITE_IMR(ring,
1489 ~(ring->irq_enable_mask |
1490 GT_PARITY_ERROR(dev)));
1491 else
1492 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1493 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1494 }
1495 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1496
1497 return true;
1498 }
1499
1500 static void
1501 gen6_ring_put_irq(struct intel_engine_cs *ring)
1502 {
1503 struct drm_device *dev = ring->dev;
1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505 unsigned long flags;
1506
1507 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1508 if (--ring->irq_refcount == 0) {
1509 if (HAS_L3_DPF(dev) && ring->id == RCS)
1510 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1511 else
1512 I915_WRITE_IMR(ring, ~0);
1513 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1514 }
1515 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1516 }
1517
1518 static bool
1519 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1520 {
1521 struct drm_device *dev = ring->dev;
1522 struct drm_i915_private *dev_priv = dev->dev_private;
1523 unsigned long flags;
1524
1525 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1526 return false;
1527
1528 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1529 if (ring->irq_refcount++ == 0) {
1530 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1531 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1532 }
1533 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1534
1535 return true;
1536 }
1537
1538 static void
1539 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1540 {
1541 struct drm_device *dev = ring->dev;
1542 struct drm_i915_private *dev_priv = dev->dev_private;
1543 unsigned long flags;
1544
1545 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1546 if (--ring->irq_refcount == 0) {
1547 I915_WRITE_IMR(ring, ~0);
1548 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1549 }
1550 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1551 }
1552
1553 static bool
1554 gen8_ring_get_irq(struct intel_engine_cs *ring)
1555 {
1556 struct drm_device *dev = ring->dev;
1557 struct drm_i915_private *dev_priv = dev->dev_private;
1558 unsigned long flags;
1559
1560 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1561 return false;
1562
1563 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1564 if (ring->irq_refcount++ == 0) {
1565 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1566 I915_WRITE_IMR(ring,
1567 ~(ring->irq_enable_mask |
1568 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1569 } else {
1570 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1571 }
1572 POSTING_READ(RING_IMR(ring->mmio_base));
1573 }
1574 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1575
1576 return true;
1577 }
1578
1579 static void
1580 gen8_ring_put_irq(struct intel_engine_cs *ring)
1581 {
1582 struct drm_device *dev = ring->dev;
1583 struct drm_i915_private *dev_priv = dev->dev_private;
1584 unsigned long flags;
1585
1586 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1587 if (--ring->irq_refcount == 0) {
1588 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1589 I915_WRITE_IMR(ring,
1590 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1591 } else {
1592 I915_WRITE_IMR(ring, ~0);
1593 }
1594 POSTING_READ(RING_IMR(ring->mmio_base));
1595 }
1596 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1597 }
1598
1599 static int
1600 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1601 u64 offset, u32 length,
1602 unsigned flags)
1603 {
1604 int ret;
1605
1606 ret = intel_ring_begin(ring, 2);
1607 if (ret)
1608 return ret;
1609
1610 intel_ring_emit(ring,
1611 MI_BATCH_BUFFER_START |
1612 MI_BATCH_GTT |
1613 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1614 intel_ring_emit(ring, offset);
1615 intel_ring_advance(ring);
1616
1617 return 0;
1618 }
1619
1620 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1621 #define I830_BATCH_LIMIT (256*1024)
1622 #define I830_TLB_ENTRIES (2)
1623 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1624 static int
1625 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1626 u64 offset, u32 len,
1627 unsigned flags)
1628 {
1629 u32 cs_offset = ring->scratch.gtt_offset;
1630 int ret;
1631
1632 ret = intel_ring_begin(ring, 6);
1633 if (ret)
1634 return ret;
1635
1636 /* Evict the invalid PTE TLBs */
1637 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1638 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1639 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1640 intel_ring_emit(ring, cs_offset);
1641 intel_ring_emit(ring, 0xdeadbeef);
1642 intel_ring_emit(ring, MI_NOOP);
1643 intel_ring_advance(ring);
1644
1645 if ((flags & I915_DISPATCH_PINNED) == 0) {
1646 if (len > I830_BATCH_LIMIT)
1647 return -ENOSPC;
1648
1649 ret = intel_ring_begin(ring, 6 + 2);
1650 if (ret)
1651 return ret;
1652
1653 /* Blit the batch (which has now all relocs applied) to the
1654 * stable batch scratch bo area (so that the CS never
1655 * stumbles over its tlb invalidation bug) ...
1656 */
1657 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1658 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1659 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1660 intel_ring_emit(ring, cs_offset);
1661 intel_ring_emit(ring, 4096);
1662 intel_ring_emit(ring, offset);
1663
1664 intel_ring_emit(ring, MI_FLUSH);
1665 intel_ring_emit(ring, MI_NOOP);
1666 intel_ring_advance(ring);
1667
1668 /* ... and execute it. */
1669 offset = cs_offset;
1670 }
1671
1672 ret = intel_ring_begin(ring, 4);
1673 if (ret)
1674 return ret;
1675
1676 intel_ring_emit(ring, MI_BATCH_BUFFER);
1677 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1678 intel_ring_emit(ring, offset + len - 8);
1679 intel_ring_emit(ring, MI_NOOP);
1680 intel_ring_advance(ring);
1681
1682 return 0;
1683 }
1684
1685 static int
1686 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1687 u64 offset, u32 len,
1688 unsigned flags)
1689 {
1690 int ret;
1691
1692 ret = intel_ring_begin(ring, 2);
1693 if (ret)
1694 return ret;
1695
1696 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1697 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1698 intel_ring_advance(ring);
1699
1700 return 0;
1701 }
1702
1703 static void cleanup_status_page(struct intel_engine_cs *ring)
1704 {
1705 struct drm_i915_gem_object *obj;
1706
1707 obj = ring->status_page.obj;
1708 if (obj == NULL)
1709 return;
1710
1711 kunmap(sg_page(obj->pages->sgl));
1712 i915_gem_object_ggtt_unpin(obj);
1713 drm_gem_object_unreference(&obj->base);
1714 ring->status_page.obj = NULL;
1715 }
1716
1717 static int init_status_page(struct intel_engine_cs *ring)
1718 {
1719 struct drm_i915_gem_object *obj;
1720
1721 if ((obj = ring->status_page.obj) == NULL) {
1722 unsigned flags;
1723 int ret;
1724
1725 obj = i915_gem_alloc_object(ring->dev, 4096);
1726 if (obj == NULL) {
1727 DRM_ERROR("Failed to allocate status page\n");
1728 return -ENOMEM;
1729 }
1730
1731 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1732 if (ret)
1733 goto err_unref;
1734
1735 flags = 0;
1736 if (!HAS_LLC(ring->dev))
1737 /* On g33, we cannot place HWS above 256MiB, so
1738 * restrict its pinning to the low mappable arena.
1739 * Though this restriction is not documented for
1740 * gen4, gen5, or byt, they also behave similarly
1741 * and hang if the HWS is placed at the top of the
1742 * GTT. To generalise, it appears that all !llc
1743 * platforms have issues with us placing the HWS
1744 * above the mappable region (even though we never
1745 * actualy map it).
1746 */
1747 flags |= PIN_MAPPABLE;
1748 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1749 if (ret) {
1750 err_unref:
1751 drm_gem_object_unreference(&obj->base);
1752 return ret;
1753 }
1754
1755 ring->status_page.obj = obj;
1756 }
1757
1758 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1759 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1760 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1761
1762 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1763 ring->name, ring->status_page.gfx_addr);
1764
1765 return 0;
1766 }
1767
1768 static int init_phys_status_page(struct intel_engine_cs *ring)
1769 {
1770 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1771
1772 if (!dev_priv->status_page_dmah) {
1773 dev_priv->status_page_dmah =
1774 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1775 if (!dev_priv->status_page_dmah)
1776 return -ENOMEM;
1777 }
1778
1779 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1780 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1781
1782 return 0;
1783 }
1784
1785 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1786 {
1787 iounmap(ringbuf->virtual_start);
1788 ringbuf->virtual_start = NULL;
1789 i915_gem_object_ggtt_unpin(ringbuf->obj);
1790 }
1791
1792 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1793 struct intel_ringbuffer *ringbuf)
1794 {
1795 struct drm_i915_private *dev_priv = to_i915(dev);
1796 struct drm_i915_gem_object *obj = ringbuf->obj;
1797 int ret;
1798
1799 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1800 if (ret)
1801 return ret;
1802
1803 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1804 if (ret) {
1805 i915_gem_object_ggtt_unpin(obj);
1806 return ret;
1807 }
1808
1809 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1810 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1811 if (ringbuf->virtual_start == NULL) {
1812 i915_gem_object_ggtt_unpin(obj);
1813 return -EINVAL;
1814 }
1815
1816 return 0;
1817 }
1818
1819 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1820 {
1821 drm_gem_object_unreference(&ringbuf->obj->base);
1822 ringbuf->obj = NULL;
1823 }
1824
1825 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1826 struct intel_ringbuffer *ringbuf)
1827 {
1828 struct drm_i915_gem_object *obj;
1829
1830 obj = NULL;
1831 if (!HAS_LLC(dev))
1832 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1833 if (obj == NULL)
1834 obj = i915_gem_alloc_object(dev, ringbuf->size);
1835 if (obj == NULL)
1836 return -ENOMEM;
1837
1838 /* mark ring buffers as read-only from GPU side by default */
1839 obj->gt_ro = 1;
1840
1841 ringbuf->obj = obj;
1842
1843 return 0;
1844 }
1845
1846 static int intel_init_ring_buffer(struct drm_device *dev,
1847 struct intel_engine_cs *ring)
1848 {
1849 struct intel_ringbuffer *ringbuf;
1850 int ret;
1851
1852 WARN_ON(ring->buffer);
1853
1854 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1855 if (!ringbuf)
1856 return -ENOMEM;
1857 ring->buffer = ringbuf;
1858
1859 ring->dev = dev;
1860 INIT_LIST_HEAD(&ring->active_list);
1861 INIT_LIST_HEAD(&ring->request_list);
1862 INIT_LIST_HEAD(&ring->execlist_queue);
1863 ringbuf->size = 32 * PAGE_SIZE;
1864 ringbuf->ring = ring;
1865 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1866
1867 init_waitqueue_head(&ring->irq_queue);
1868
1869 if (I915_NEED_GFX_HWS(dev)) {
1870 ret = init_status_page(ring);
1871 if (ret)
1872 goto error;
1873 } else {
1874 BUG_ON(ring->id != RCS);
1875 ret = init_phys_status_page(ring);
1876 if (ret)
1877 goto error;
1878 }
1879
1880 WARN_ON(ringbuf->obj);
1881
1882 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1883 if (ret) {
1884 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
1885 ring->name, ret);
1886 goto error;
1887 }
1888
1889 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1890 if (ret) {
1891 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
1892 ring->name, ret);
1893 intel_destroy_ringbuffer_obj(ringbuf);
1894 goto error;
1895 }
1896
1897 /* Workaround an erratum on the i830 which causes a hang if
1898 * the TAIL pointer points to within the last 2 cachelines
1899 * of the buffer.
1900 */
1901 ringbuf->effective_size = ringbuf->size;
1902 if (IS_I830(dev) || IS_845G(dev))
1903 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1904
1905 ret = i915_cmd_parser_init_ring(ring);
1906 if (ret)
1907 goto error;
1908
1909 return 0;
1910
1911 error:
1912 kfree(ringbuf);
1913 ring->buffer = NULL;
1914 return ret;
1915 }
1916
1917 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1918 {
1919 struct drm_i915_private *dev_priv;
1920 struct intel_ringbuffer *ringbuf;
1921
1922 if (!intel_ring_initialized(ring))
1923 return;
1924
1925 dev_priv = to_i915(ring->dev);
1926 ringbuf = ring->buffer;
1927
1928 intel_stop_ring_buffer(ring);
1929 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1930
1931 intel_unpin_ringbuffer_obj(ringbuf);
1932 intel_destroy_ringbuffer_obj(ringbuf);
1933 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1934
1935 if (ring->cleanup)
1936 ring->cleanup(ring);
1937
1938 cleanup_status_page(ring);
1939
1940 i915_cmd_parser_fini_ring(ring);
1941
1942 kfree(ringbuf);
1943 ring->buffer = NULL;
1944 }
1945
1946 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1947 {
1948 struct intel_ringbuffer *ringbuf = ring->buffer;
1949 struct drm_i915_gem_request *request;
1950 int ret;
1951
1952 if (intel_ring_space(ringbuf) >= n)
1953 return 0;
1954
1955 list_for_each_entry(request, &ring->request_list, list) {
1956 if (__intel_ring_space(request->postfix, ringbuf->tail,
1957 ringbuf->size) >= n) {
1958 break;
1959 }
1960 }
1961
1962 if (&request->list == &ring->request_list)
1963 return -ENOSPC;
1964
1965 ret = i915_wait_request(request);
1966 if (ret)
1967 return ret;
1968
1969 i915_gem_retire_requests_ring(ring);
1970
1971 return 0;
1972 }
1973
1974 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1975 {
1976 struct drm_device *dev = ring->dev;
1977 struct drm_i915_private *dev_priv = dev->dev_private;
1978 struct intel_ringbuffer *ringbuf = ring->buffer;
1979 unsigned long end;
1980 int ret;
1981
1982 ret = intel_ring_wait_request(ring, n);
1983 if (ret != -ENOSPC)
1984 return ret;
1985
1986 /* force the tail write in case we have been skipping them */
1987 __intel_ring_advance(ring);
1988
1989 /* With GEM the hangcheck timer should kick us out of the loop,
1990 * leaving it early runs the risk of corrupting GEM state (due
1991 * to running on almost untested codepaths). But on resume
1992 * timers don't work yet, so prevent a complete hang in that
1993 * case by choosing an insanely large timeout. */
1994 end = jiffies + 60 * HZ;
1995
1996 ret = 0;
1997 trace_i915_ring_wait_begin(ring);
1998 do {
1999 if (intel_ring_space(ringbuf) >= n)
2000 break;
2001 ringbuf->head = I915_READ_HEAD(ring);
2002 if (intel_ring_space(ringbuf) >= n)
2003 break;
2004
2005 msleep(1);
2006
2007 if (dev_priv->mm.interruptible && signal_pending(current)) {
2008 ret = -ERESTARTSYS;
2009 break;
2010 }
2011
2012 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2013 dev_priv->mm.interruptible);
2014 if (ret)
2015 break;
2016
2017 if (time_after(jiffies, end)) {
2018 ret = -EBUSY;
2019 break;
2020 }
2021 } while (1);
2022 trace_i915_ring_wait_end(ring);
2023 return ret;
2024 }
2025
2026 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
2027 {
2028 uint32_t __iomem *virt;
2029 struct intel_ringbuffer *ringbuf = ring->buffer;
2030 int rem = ringbuf->size - ringbuf->tail;
2031
2032 if (ringbuf->space < rem) {
2033 int ret = ring_wait_for_space(ring, rem);
2034 if (ret)
2035 return ret;
2036 }
2037
2038 virt = ringbuf->virtual_start + ringbuf->tail;
2039 rem /= 4;
2040 while (rem--)
2041 iowrite32(MI_NOOP, virt++);
2042
2043 ringbuf->tail = 0;
2044 intel_ring_update_space(ringbuf);
2045
2046 return 0;
2047 }
2048
2049 int intel_ring_idle(struct intel_engine_cs *ring)
2050 {
2051 struct drm_i915_gem_request *req;
2052 int ret;
2053
2054 /* We need to add any requests required to flush the objects and ring */
2055 if (ring->outstanding_lazy_request) {
2056 ret = i915_add_request(ring);
2057 if (ret)
2058 return ret;
2059 }
2060
2061 /* Wait upon the last request to be completed */
2062 if (list_empty(&ring->request_list))
2063 return 0;
2064
2065 req = list_entry(ring->request_list.prev,
2066 struct drm_i915_gem_request,
2067 list);
2068
2069 return i915_wait_request(req);
2070 }
2071
2072 static int
2073 intel_ring_alloc_request(struct intel_engine_cs *ring)
2074 {
2075 int ret;
2076 struct drm_i915_gem_request *request;
2077 struct drm_i915_private *dev_private = ring->dev->dev_private;
2078
2079 if (ring->outstanding_lazy_request)
2080 return 0;
2081
2082 request = kzalloc(sizeof(*request), GFP_KERNEL);
2083 if (request == NULL)
2084 return -ENOMEM;
2085
2086 kref_init(&request->ref);
2087 request->ring = ring;
2088 request->uniq = dev_private->request_uniq++;
2089
2090 ret = i915_gem_get_seqno(ring->dev, &request->seqno);
2091 if (ret) {
2092 kfree(request);
2093 return ret;
2094 }
2095
2096 ring->outstanding_lazy_request = request;
2097 return 0;
2098 }
2099
2100 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2101 int bytes)
2102 {
2103 struct intel_ringbuffer *ringbuf = ring->buffer;
2104 int ret;
2105
2106 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2107 ret = intel_wrap_ring_buffer(ring);
2108 if (unlikely(ret))
2109 return ret;
2110 }
2111
2112 if (unlikely(ringbuf->space < bytes)) {
2113 ret = ring_wait_for_space(ring, bytes);
2114 if (unlikely(ret))
2115 return ret;
2116 }
2117
2118 return 0;
2119 }
2120
2121 int intel_ring_begin(struct intel_engine_cs *ring,
2122 int num_dwords)
2123 {
2124 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2125 int ret;
2126
2127 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2128 dev_priv->mm.interruptible);
2129 if (ret)
2130 return ret;
2131
2132 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2133 if (ret)
2134 return ret;
2135
2136 /* Preallocate the olr before touching the ring */
2137 ret = intel_ring_alloc_request(ring);
2138 if (ret)
2139 return ret;
2140
2141 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2142 return 0;
2143 }
2144
2145 /* Align the ring tail to a cacheline boundary */
2146 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2147 {
2148 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2149 int ret;
2150
2151 if (num_dwords == 0)
2152 return 0;
2153
2154 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2155 ret = intel_ring_begin(ring, num_dwords);
2156 if (ret)
2157 return ret;
2158
2159 while (num_dwords--)
2160 intel_ring_emit(ring, MI_NOOP);
2161
2162 intel_ring_advance(ring);
2163
2164 return 0;
2165 }
2166
2167 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2168 {
2169 struct drm_device *dev = ring->dev;
2170 struct drm_i915_private *dev_priv = dev->dev_private;
2171
2172 BUG_ON(ring->outstanding_lazy_request);
2173
2174 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2175 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2176 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2177 if (HAS_VEBOX(dev))
2178 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2179 }
2180
2181 ring->set_seqno(ring, seqno);
2182 ring->hangcheck.seqno = seqno;
2183 }
2184
2185 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2186 u32 value)
2187 {
2188 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2189
2190 /* Every tail move must follow the sequence below */
2191
2192 /* Disable notification that the ring is IDLE. The GT
2193 * will then assume that it is busy and bring it out of rc6.
2194 */
2195 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2196 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2197
2198 /* Clear the context id. Here be magic! */
2199 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2200
2201 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2202 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2203 GEN6_BSD_SLEEP_INDICATOR) == 0,
2204 50))
2205 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2206
2207 /* Now that the ring is fully powered up, update the tail */
2208 I915_WRITE_TAIL(ring, value);
2209 POSTING_READ(RING_TAIL(ring->mmio_base));
2210
2211 /* Let the ring send IDLE messages to the GT again,
2212 * and so let it sleep to conserve power when idle.
2213 */
2214 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2215 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2216 }
2217
2218 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2219 u32 invalidate, u32 flush)
2220 {
2221 uint32_t cmd;
2222 int ret;
2223
2224 ret = intel_ring_begin(ring, 4);
2225 if (ret)
2226 return ret;
2227
2228 cmd = MI_FLUSH_DW;
2229 if (INTEL_INFO(ring->dev)->gen >= 8)
2230 cmd += 1;
2231 /*
2232 * Bspec vol 1c.5 - video engine command streamer:
2233 * "If ENABLED, all TLBs will be invalidated once the flush
2234 * operation is complete. This bit is only valid when the
2235 * Post-Sync Operation field is a value of 1h or 3h."
2236 */
2237 if (invalidate & I915_GEM_GPU_DOMAINS)
2238 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
2239 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2240 intel_ring_emit(ring, cmd);
2241 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2242 if (INTEL_INFO(ring->dev)->gen >= 8) {
2243 intel_ring_emit(ring, 0); /* upper addr */
2244 intel_ring_emit(ring, 0); /* value */
2245 } else {
2246 intel_ring_emit(ring, 0);
2247 intel_ring_emit(ring, MI_NOOP);
2248 }
2249 intel_ring_advance(ring);
2250 return 0;
2251 }
2252
2253 static int
2254 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2255 u64 offset, u32 len,
2256 unsigned flags)
2257 {
2258 bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
2259 int ret;
2260
2261 ret = intel_ring_begin(ring, 4);
2262 if (ret)
2263 return ret;
2264
2265 /* FIXME(BDW): Address space and security selectors. */
2266 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2267 intel_ring_emit(ring, lower_32_bits(offset));
2268 intel_ring_emit(ring, upper_32_bits(offset));
2269 intel_ring_emit(ring, MI_NOOP);
2270 intel_ring_advance(ring);
2271
2272 return 0;
2273 }
2274
2275 static int
2276 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2277 u64 offset, u32 len,
2278 unsigned flags)
2279 {
2280 int ret;
2281
2282 ret = intel_ring_begin(ring, 2);
2283 if (ret)
2284 return ret;
2285
2286 intel_ring_emit(ring,
2287 MI_BATCH_BUFFER_START |
2288 (flags & I915_DISPATCH_SECURE ?
2289 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2290 /* bit0-7 is the length on GEN6+ */
2291 intel_ring_emit(ring, offset);
2292 intel_ring_advance(ring);
2293
2294 return 0;
2295 }
2296
2297 static int
2298 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2299 u64 offset, u32 len,
2300 unsigned flags)
2301 {
2302 int ret;
2303
2304 ret = intel_ring_begin(ring, 2);
2305 if (ret)
2306 return ret;
2307
2308 intel_ring_emit(ring,
2309 MI_BATCH_BUFFER_START |
2310 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2311 /* bit0-7 is the length on GEN6+ */
2312 intel_ring_emit(ring, offset);
2313 intel_ring_advance(ring);
2314
2315 return 0;
2316 }
2317
2318 /* Blitter support (SandyBridge+) */
2319
2320 static int gen6_ring_flush(struct intel_engine_cs *ring,
2321 u32 invalidate, u32 flush)
2322 {
2323 struct drm_device *dev = ring->dev;
2324 struct drm_i915_private *dev_priv = dev->dev_private;
2325 uint32_t cmd;
2326 int ret;
2327
2328 ret = intel_ring_begin(ring, 4);
2329 if (ret)
2330 return ret;
2331
2332 cmd = MI_FLUSH_DW;
2333 if (INTEL_INFO(ring->dev)->gen >= 8)
2334 cmd += 1;
2335 /*
2336 * Bspec vol 1c.3 - blitter engine command streamer:
2337 * "If ENABLED, all TLBs will be invalidated once the flush
2338 * operation is complete. This bit is only valid when the
2339 * Post-Sync Operation field is a value of 1h or 3h."
2340 */
2341 if (invalidate & I915_GEM_DOMAIN_RENDER)
2342 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2343 MI_FLUSH_DW_OP_STOREDW;
2344 intel_ring_emit(ring, cmd);
2345 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2346 if (INTEL_INFO(ring->dev)->gen >= 8) {
2347 intel_ring_emit(ring, 0); /* upper addr */
2348 intel_ring_emit(ring, 0); /* value */
2349 } else {
2350 intel_ring_emit(ring, 0);
2351 intel_ring_emit(ring, MI_NOOP);
2352 }
2353 intel_ring_advance(ring);
2354
2355 if (!invalidate && flush) {
2356 if (IS_GEN7(dev))
2357 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2358 else if (IS_BROADWELL(dev))
2359 dev_priv->fbc.need_sw_cache_clean = true;
2360 }
2361
2362 return 0;
2363 }
2364
2365 int intel_init_render_ring_buffer(struct drm_device *dev)
2366 {
2367 struct drm_i915_private *dev_priv = dev->dev_private;
2368 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2369 struct drm_i915_gem_object *obj;
2370 int ret;
2371
2372 ring->name = "render ring";
2373 ring->id = RCS;
2374 ring->mmio_base = RENDER_RING_BASE;
2375
2376 if (INTEL_INFO(dev)->gen >= 8) {
2377 if (i915_semaphore_is_enabled(dev)) {
2378 obj = i915_gem_alloc_object(dev, 4096);
2379 if (obj == NULL) {
2380 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2381 i915.semaphores = 0;
2382 } else {
2383 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2384 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2385 if (ret != 0) {
2386 drm_gem_object_unreference(&obj->base);
2387 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2388 i915.semaphores = 0;
2389 } else
2390 dev_priv->semaphore_obj = obj;
2391 }
2392 }
2393
2394 ring->init_context = intel_rcs_ctx_init;
2395 ring->add_request = gen6_add_request;
2396 ring->flush = gen8_render_ring_flush;
2397 ring->irq_get = gen8_ring_get_irq;
2398 ring->irq_put = gen8_ring_put_irq;
2399 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2400 ring->get_seqno = gen6_ring_get_seqno;
2401 ring->set_seqno = ring_set_seqno;
2402 if (i915_semaphore_is_enabled(dev)) {
2403 WARN_ON(!dev_priv->semaphore_obj);
2404 ring->semaphore.sync_to = gen8_ring_sync;
2405 ring->semaphore.signal = gen8_rcs_signal;
2406 GEN8_RING_SEMAPHORE_INIT;
2407 }
2408 } else if (INTEL_INFO(dev)->gen >= 6) {
2409 ring->add_request = gen6_add_request;
2410 ring->flush = gen7_render_ring_flush;
2411 if (INTEL_INFO(dev)->gen == 6)
2412 ring->flush = gen6_render_ring_flush;
2413 ring->irq_get = gen6_ring_get_irq;
2414 ring->irq_put = gen6_ring_put_irq;
2415 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2416 ring->get_seqno = gen6_ring_get_seqno;
2417 ring->set_seqno = ring_set_seqno;
2418 if (i915_semaphore_is_enabled(dev)) {
2419 ring->semaphore.sync_to = gen6_ring_sync;
2420 ring->semaphore.signal = gen6_signal;
2421 /*
2422 * The current semaphore is only applied on pre-gen8
2423 * platform. And there is no VCS2 ring on the pre-gen8
2424 * platform. So the semaphore between RCS and VCS2 is
2425 * initialized as INVALID. Gen8 will initialize the
2426 * sema between VCS2 and RCS later.
2427 */
2428 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2429 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2430 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2431 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2432 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2433 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2434 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2435 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2436 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2437 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2438 }
2439 } else if (IS_GEN5(dev)) {
2440 ring->add_request = pc_render_add_request;
2441 ring->flush = gen4_render_ring_flush;
2442 ring->get_seqno = pc_render_get_seqno;
2443 ring->set_seqno = pc_render_set_seqno;
2444 ring->irq_get = gen5_ring_get_irq;
2445 ring->irq_put = gen5_ring_put_irq;
2446 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2447 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2448 } else {
2449 ring->add_request = i9xx_add_request;
2450 if (INTEL_INFO(dev)->gen < 4)
2451 ring->flush = gen2_render_ring_flush;
2452 else
2453 ring->flush = gen4_render_ring_flush;
2454 ring->get_seqno = ring_get_seqno;
2455 ring->set_seqno = ring_set_seqno;
2456 if (IS_GEN2(dev)) {
2457 ring->irq_get = i8xx_ring_get_irq;
2458 ring->irq_put = i8xx_ring_put_irq;
2459 } else {
2460 ring->irq_get = i9xx_ring_get_irq;
2461 ring->irq_put = i9xx_ring_put_irq;
2462 }
2463 ring->irq_enable_mask = I915_USER_INTERRUPT;
2464 }
2465 ring->write_tail = ring_write_tail;
2466
2467 if (IS_HASWELL(dev))
2468 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2469 else if (IS_GEN8(dev))
2470 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2471 else if (INTEL_INFO(dev)->gen >= 6)
2472 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2473 else if (INTEL_INFO(dev)->gen >= 4)
2474 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2475 else if (IS_I830(dev) || IS_845G(dev))
2476 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2477 else
2478 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2479 ring->init_hw = init_render_ring;
2480 ring->cleanup = render_ring_cleanup;
2481
2482 /* Workaround batchbuffer to combat CS tlb bug. */
2483 if (HAS_BROKEN_CS_TLB(dev)) {
2484 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2485 if (obj == NULL) {
2486 DRM_ERROR("Failed to allocate batch bo\n");
2487 return -ENOMEM;
2488 }
2489
2490 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2491 if (ret != 0) {
2492 drm_gem_object_unreference(&obj->base);
2493 DRM_ERROR("Failed to ping batch bo\n");
2494 return ret;
2495 }
2496
2497 ring->scratch.obj = obj;
2498 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2499 }
2500
2501 ret = intel_init_ring_buffer(dev, ring);
2502 if (ret)
2503 return ret;
2504
2505 if (INTEL_INFO(dev)->gen >= 5) {
2506 ret = intel_init_pipe_control(ring);
2507 if (ret)
2508 return ret;
2509 }
2510
2511 return 0;
2512 }
2513
2514 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2515 {
2516 struct drm_i915_private *dev_priv = dev->dev_private;
2517 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2518
2519 ring->name = "bsd ring";
2520 ring->id = VCS;
2521
2522 ring->write_tail = ring_write_tail;
2523 if (INTEL_INFO(dev)->gen >= 6) {
2524 ring->mmio_base = GEN6_BSD_RING_BASE;
2525 /* gen6 bsd needs a special wa for tail updates */
2526 if (IS_GEN6(dev))
2527 ring->write_tail = gen6_bsd_ring_write_tail;
2528 ring->flush = gen6_bsd_ring_flush;
2529 ring->add_request = gen6_add_request;
2530 ring->get_seqno = gen6_ring_get_seqno;
2531 ring->set_seqno = ring_set_seqno;
2532 if (INTEL_INFO(dev)->gen >= 8) {
2533 ring->irq_enable_mask =
2534 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2535 ring->irq_get = gen8_ring_get_irq;
2536 ring->irq_put = gen8_ring_put_irq;
2537 ring->dispatch_execbuffer =
2538 gen8_ring_dispatch_execbuffer;
2539 if (i915_semaphore_is_enabled(dev)) {
2540 ring->semaphore.sync_to = gen8_ring_sync;
2541 ring->semaphore.signal = gen8_xcs_signal;
2542 GEN8_RING_SEMAPHORE_INIT;
2543 }
2544 } else {
2545 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2546 ring->irq_get = gen6_ring_get_irq;
2547 ring->irq_put = gen6_ring_put_irq;
2548 ring->dispatch_execbuffer =
2549 gen6_ring_dispatch_execbuffer;
2550 if (i915_semaphore_is_enabled(dev)) {
2551 ring->semaphore.sync_to = gen6_ring_sync;
2552 ring->semaphore.signal = gen6_signal;
2553 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2554 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2555 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2556 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2557 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2558 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2559 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2560 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2561 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2562 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2563 }
2564 }
2565 } else {
2566 ring->mmio_base = BSD_RING_BASE;
2567 ring->flush = bsd_ring_flush;
2568 ring->add_request = i9xx_add_request;
2569 ring->get_seqno = ring_get_seqno;
2570 ring->set_seqno = ring_set_seqno;
2571 if (IS_GEN5(dev)) {
2572 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2573 ring->irq_get = gen5_ring_get_irq;
2574 ring->irq_put = gen5_ring_put_irq;
2575 } else {
2576 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2577 ring->irq_get = i9xx_ring_get_irq;
2578 ring->irq_put = i9xx_ring_put_irq;
2579 }
2580 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2581 }
2582 ring->init_hw = init_ring_common;
2583
2584 return intel_init_ring_buffer(dev, ring);
2585 }
2586
2587 /**
2588 * Initialize the second BSD ring for Broadwell GT3.
2589 * It is noted that this only exists on Broadwell GT3.
2590 */
2591 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2592 {
2593 struct drm_i915_private *dev_priv = dev->dev_private;
2594 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2595
2596 if ((INTEL_INFO(dev)->gen != 8)) {
2597 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2598 return -EINVAL;
2599 }
2600
2601 ring->name = "bsd2 ring";
2602 ring->id = VCS2;
2603
2604 ring->write_tail = ring_write_tail;
2605 ring->mmio_base = GEN8_BSD2_RING_BASE;
2606 ring->flush = gen6_bsd_ring_flush;
2607 ring->add_request = gen6_add_request;
2608 ring->get_seqno = gen6_ring_get_seqno;
2609 ring->set_seqno = ring_set_seqno;
2610 ring->irq_enable_mask =
2611 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2612 ring->irq_get = gen8_ring_get_irq;
2613 ring->irq_put = gen8_ring_put_irq;
2614 ring->dispatch_execbuffer =
2615 gen8_ring_dispatch_execbuffer;
2616 if (i915_semaphore_is_enabled(dev)) {
2617 ring->semaphore.sync_to = gen8_ring_sync;
2618 ring->semaphore.signal = gen8_xcs_signal;
2619 GEN8_RING_SEMAPHORE_INIT;
2620 }
2621 ring->init_hw = init_ring_common;
2622
2623 return intel_init_ring_buffer(dev, ring);
2624 }
2625
2626 int intel_init_blt_ring_buffer(struct drm_device *dev)
2627 {
2628 struct drm_i915_private *dev_priv = dev->dev_private;
2629 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2630
2631 ring->name = "blitter ring";
2632 ring->id = BCS;
2633
2634 ring->mmio_base = BLT_RING_BASE;
2635 ring->write_tail = ring_write_tail;
2636 ring->flush = gen6_ring_flush;
2637 ring->add_request = gen6_add_request;
2638 ring->get_seqno = gen6_ring_get_seqno;
2639 ring->set_seqno = ring_set_seqno;
2640 if (INTEL_INFO(dev)->gen >= 8) {
2641 ring->irq_enable_mask =
2642 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2643 ring->irq_get = gen8_ring_get_irq;
2644 ring->irq_put = gen8_ring_put_irq;
2645 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2646 if (i915_semaphore_is_enabled(dev)) {
2647 ring->semaphore.sync_to = gen8_ring_sync;
2648 ring->semaphore.signal = gen8_xcs_signal;
2649 GEN8_RING_SEMAPHORE_INIT;
2650 }
2651 } else {
2652 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2653 ring->irq_get = gen6_ring_get_irq;
2654 ring->irq_put = gen6_ring_put_irq;
2655 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2656 if (i915_semaphore_is_enabled(dev)) {
2657 ring->semaphore.signal = gen6_signal;
2658 ring->semaphore.sync_to = gen6_ring_sync;
2659 /*
2660 * The current semaphore is only applied on pre-gen8
2661 * platform. And there is no VCS2 ring on the pre-gen8
2662 * platform. So the semaphore between BCS and VCS2 is
2663 * initialized as INVALID. Gen8 will initialize the
2664 * sema between BCS and VCS2 later.
2665 */
2666 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2667 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2668 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2669 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2670 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2671 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2672 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2673 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2674 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2675 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2676 }
2677 }
2678 ring->init_hw = init_ring_common;
2679
2680 return intel_init_ring_buffer(dev, ring);
2681 }
2682
2683 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2684 {
2685 struct drm_i915_private *dev_priv = dev->dev_private;
2686 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2687
2688 ring->name = "video enhancement ring";
2689 ring->id = VECS;
2690
2691 ring->mmio_base = VEBOX_RING_BASE;
2692 ring->write_tail = ring_write_tail;
2693 ring->flush = gen6_ring_flush;
2694 ring->add_request = gen6_add_request;
2695 ring->get_seqno = gen6_ring_get_seqno;
2696 ring->set_seqno = ring_set_seqno;
2697
2698 if (INTEL_INFO(dev)->gen >= 8) {
2699 ring->irq_enable_mask =
2700 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2701 ring->irq_get = gen8_ring_get_irq;
2702 ring->irq_put = gen8_ring_put_irq;
2703 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2704 if (i915_semaphore_is_enabled(dev)) {
2705 ring->semaphore.sync_to = gen8_ring_sync;
2706 ring->semaphore.signal = gen8_xcs_signal;
2707 GEN8_RING_SEMAPHORE_INIT;
2708 }
2709 } else {
2710 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2711 ring->irq_get = hsw_vebox_get_irq;
2712 ring->irq_put = hsw_vebox_put_irq;
2713 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2714 if (i915_semaphore_is_enabled(dev)) {
2715 ring->semaphore.sync_to = gen6_ring_sync;
2716 ring->semaphore.signal = gen6_signal;
2717 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2718 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2719 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2720 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2721 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2722 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2723 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2724 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2725 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2726 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2727 }
2728 }
2729 ring->init_hw = init_ring_common;
2730
2731 return intel_init_ring_buffer(dev, ring);
2732 }
2733
2734 int
2735 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2736 {
2737 int ret;
2738
2739 if (!ring->gpu_caches_dirty)
2740 return 0;
2741
2742 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2743 if (ret)
2744 return ret;
2745
2746 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2747
2748 ring->gpu_caches_dirty = false;
2749 return 0;
2750 }
2751
2752 int
2753 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2754 {
2755 uint32_t flush_domains;
2756 int ret;
2757
2758 flush_domains = 0;
2759 if (ring->gpu_caches_dirty)
2760 flush_domains = I915_GEM_GPU_DOMAINS;
2761
2762 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2763 if (ret)
2764 return ret;
2765
2766 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2767
2768 ring->gpu_caches_dirty = false;
2769 return 0;
2770 }
2771
2772 void
2773 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2774 {
2775 int ret;
2776
2777 if (!intel_ring_initialized(ring))
2778 return;
2779
2780 ret = intel_ring_idle(ring);
2781 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2782 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2783 ring->name, ret);
2784
2785 stop_ring(ring);
2786 }
This page took 0.134002 seconds and 5 git commands to generate.