339701d7a9a5069ccce00f2f171f923073d2c3b5
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 int __intel_ring_space(int head, int tail, int size)
38 {
39 int space = head - tail;
40 if (space <= 0)
41 space += size;
42 return space - I915_RING_FREE_SPACE;
43 }
44
45 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
46 {
47 if (ringbuf->last_retired_head != -1) {
48 ringbuf->head = ringbuf->last_retired_head;
49 ringbuf->last_retired_head = -1;
50 }
51
52 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
53 ringbuf->tail, ringbuf->size);
54 }
55
56 int intel_ring_space(struct intel_ringbuffer *ringbuf)
57 {
58 intel_ring_update_space(ringbuf);
59 return ringbuf->space;
60 }
61
62 bool intel_ring_stopped(struct intel_engine_cs *ring)
63 {
64 struct drm_i915_private *dev_priv = ring->dev->dev_private;
65 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
66 }
67
68 static void __intel_ring_advance(struct intel_engine_cs *ring)
69 {
70 struct intel_ringbuffer *ringbuf = ring->buffer;
71 ringbuf->tail &= ringbuf->size - 1;
72 if (intel_ring_stopped(ring))
73 return;
74 ring->write_tail(ring, ringbuf->tail);
75 }
76
77 static int
78 gen2_render_ring_flush(struct drm_i915_gem_request *req,
79 u32 invalidate_domains,
80 u32 flush_domains)
81 {
82 struct intel_engine_cs *ring = req->ring;
83 u32 cmd;
84 int ret;
85
86 cmd = MI_FLUSH;
87 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
88 cmd |= MI_NO_WRITE_FLUSH;
89
90 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
91 cmd |= MI_READ_FLUSH;
92
93 ret = intel_ring_begin(req, 2);
94 if (ret)
95 return ret;
96
97 intel_ring_emit(ring, cmd);
98 intel_ring_emit(ring, MI_NOOP);
99 intel_ring_advance(ring);
100
101 return 0;
102 }
103
104 static int
105 gen4_render_ring_flush(struct drm_i915_gem_request *req,
106 u32 invalidate_domains,
107 u32 flush_domains)
108 {
109 struct intel_engine_cs *ring = req->ring;
110 struct drm_device *dev = ring->dev;
111 u32 cmd;
112 int ret;
113
114 /*
115 * read/write caches:
116 *
117 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
118 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
119 * also flushed at 2d versus 3d pipeline switches.
120 *
121 * read-only caches:
122 *
123 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
124 * MI_READ_FLUSH is set, and is always flushed on 965.
125 *
126 * I915_GEM_DOMAIN_COMMAND may not exist?
127 *
128 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
129 * invalidated when MI_EXE_FLUSH is set.
130 *
131 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
132 * invalidated with every MI_FLUSH.
133 *
134 * TLBs:
135 *
136 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
137 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
138 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
139 * are flushed at any MI_FLUSH.
140 */
141
142 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
143 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
144 cmd &= ~MI_NO_WRITE_FLUSH;
145 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
146 cmd |= MI_EXE_FLUSH;
147
148 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
149 (IS_G4X(dev) || IS_GEN5(dev)))
150 cmd |= MI_INVALIDATE_ISP;
151
152 ret = intel_ring_begin(req, 2);
153 if (ret)
154 return ret;
155
156 intel_ring_emit(ring, cmd);
157 intel_ring_emit(ring, MI_NOOP);
158 intel_ring_advance(ring);
159
160 return 0;
161 }
162
163 /**
164 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
165 * implementing two workarounds on gen6. From section 1.4.7.1
166 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
167 *
168 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
169 * produced by non-pipelined state commands), software needs to first
170 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
171 * 0.
172 *
173 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
174 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
175 *
176 * And the workaround for these two requires this workaround first:
177 *
178 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
179 * BEFORE the pipe-control with a post-sync op and no write-cache
180 * flushes.
181 *
182 * And this last workaround is tricky because of the requirements on
183 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
184 * volume 2 part 1:
185 *
186 * "1 of the following must also be set:
187 * - Render Target Cache Flush Enable ([12] of DW1)
188 * - Depth Cache Flush Enable ([0] of DW1)
189 * - Stall at Pixel Scoreboard ([1] of DW1)
190 * - Depth Stall ([13] of DW1)
191 * - Post-Sync Operation ([13] of DW1)
192 * - Notify Enable ([8] of DW1)"
193 *
194 * The cache flushes require the workaround flush that triggered this
195 * one, so we can't use it. Depth stall would trigger the same.
196 * Post-sync nonzero is what triggered this second workaround, so we
197 * can't use that one either. Notify enable is IRQs, which aren't
198 * really our business. That leaves only stall at scoreboard.
199 */
200 static int
201 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
202 {
203 struct intel_engine_cs *ring = req->ring;
204 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
205 int ret;
206
207 ret = intel_ring_begin(req, 6);
208 if (ret)
209 return ret;
210
211 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
212 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
213 PIPE_CONTROL_STALL_AT_SCOREBOARD);
214 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
215 intel_ring_emit(ring, 0); /* low dword */
216 intel_ring_emit(ring, 0); /* high dword */
217 intel_ring_emit(ring, MI_NOOP);
218 intel_ring_advance(ring);
219
220 ret = intel_ring_begin(req, 6);
221 if (ret)
222 return ret;
223
224 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
225 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
226 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
227 intel_ring_emit(ring, 0);
228 intel_ring_emit(ring, 0);
229 intel_ring_emit(ring, MI_NOOP);
230 intel_ring_advance(ring);
231
232 return 0;
233 }
234
235 static int
236 gen6_render_ring_flush(struct drm_i915_gem_request *req,
237 u32 invalidate_domains, u32 flush_domains)
238 {
239 struct intel_engine_cs *ring = req->ring;
240 u32 flags = 0;
241 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
242 int ret;
243
244 /* Force SNB workarounds for PIPE_CONTROL flushes */
245 ret = intel_emit_post_sync_nonzero_flush(req);
246 if (ret)
247 return ret;
248
249 /* Just flush everything. Experiments have shown that reducing the
250 * number of bits based on the write domains has little performance
251 * impact.
252 */
253 if (flush_domains) {
254 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
255 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
256 /*
257 * Ensure that any following seqno writes only happen
258 * when the render cache is indeed flushed.
259 */
260 flags |= PIPE_CONTROL_CS_STALL;
261 }
262 if (invalidate_domains) {
263 flags |= PIPE_CONTROL_TLB_INVALIDATE;
264 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
265 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
266 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
267 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
268 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
269 /*
270 * TLB invalidate requires a post-sync write.
271 */
272 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
273 }
274
275 ret = intel_ring_begin(req, 4);
276 if (ret)
277 return ret;
278
279 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
280 intel_ring_emit(ring, flags);
281 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
282 intel_ring_emit(ring, 0);
283 intel_ring_advance(ring);
284
285 return 0;
286 }
287
288 static int
289 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
290 {
291 struct intel_engine_cs *ring = req->ring;
292 int ret;
293
294 ret = intel_ring_begin(req, 4);
295 if (ret)
296 return ret;
297
298 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
299 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
300 PIPE_CONTROL_STALL_AT_SCOREBOARD);
301 intel_ring_emit(ring, 0);
302 intel_ring_emit(ring, 0);
303 intel_ring_advance(ring);
304
305 return 0;
306 }
307
308 static int
309 gen7_render_ring_flush(struct drm_i915_gem_request *req,
310 u32 invalidate_domains, u32 flush_domains)
311 {
312 struct intel_engine_cs *ring = req->ring;
313 u32 flags = 0;
314 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
315 int ret;
316
317 /*
318 * Ensure that any following seqno writes only happen when the render
319 * cache is indeed flushed.
320 *
321 * Workaround: 4th PIPE_CONTROL command (except the ones with only
322 * read-cache invalidate bits set) must have the CS_STALL bit set. We
323 * don't try to be clever and just set it unconditionally.
324 */
325 flags |= PIPE_CONTROL_CS_STALL;
326
327 /* Just flush everything. Experiments have shown that reducing the
328 * number of bits based on the write domains has little performance
329 * impact.
330 */
331 if (flush_domains) {
332 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
333 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
334 flags |= PIPE_CONTROL_FLUSH_ENABLE;
335 }
336 if (invalidate_domains) {
337 flags |= PIPE_CONTROL_TLB_INVALIDATE;
338 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
339 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
340 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
341 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
342 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
343 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
344 /*
345 * TLB invalidate requires a post-sync write.
346 */
347 flags |= PIPE_CONTROL_QW_WRITE;
348 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
349
350 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
351
352 /* Workaround: we must issue a pipe_control with CS-stall bit
353 * set before a pipe_control command that has the state cache
354 * invalidate bit set. */
355 gen7_render_ring_cs_stall_wa(req);
356 }
357
358 ret = intel_ring_begin(req, 4);
359 if (ret)
360 return ret;
361
362 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
363 intel_ring_emit(ring, flags);
364 intel_ring_emit(ring, scratch_addr);
365 intel_ring_emit(ring, 0);
366 intel_ring_advance(ring);
367
368 return 0;
369 }
370
371 static int
372 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
373 u32 flags, u32 scratch_addr)
374 {
375 struct intel_engine_cs *ring = req->ring;
376 int ret;
377
378 ret = intel_ring_begin(req, 6);
379 if (ret)
380 return ret;
381
382 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
383 intel_ring_emit(ring, flags);
384 intel_ring_emit(ring, scratch_addr);
385 intel_ring_emit(ring, 0);
386 intel_ring_emit(ring, 0);
387 intel_ring_emit(ring, 0);
388 intel_ring_advance(ring);
389
390 return 0;
391 }
392
393 static int
394 gen8_render_ring_flush(struct drm_i915_gem_request *req,
395 u32 invalidate_domains, u32 flush_domains)
396 {
397 u32 flags = 0;
398 u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
399 int ret;
400
401 flags |= PIPE_CONTROL_CS_STALL;
402
403 if (flush_domains) {
404 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
405 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
406 flags |= PIPE_CONTROL_FLUSH_ENABLE;
407 }
408 if (invalidate_domains) {
409 flags |= PIPE_CONTROL_TLB_INVALIDATE;
410 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
411 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
412 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
413 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
414 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
415 flags |= PIPE_CONTROL_QW_WRITE;
416 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
417
418 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
419 ret = gen8_emit_pipe_control(req,
420 PIPE_CONTROL_CS_STALL |
421 PIPE_CONTROL_STALL_AT_SCOREBOARD,
422 0);
423 if (ret)
424 return ret;
425 }
426
427 return gen8_emit_pipe_control(req, flags, scratch_addr);
428 }
429
430 static void ring_write_tail(struct intel_engine_cs *ring,
431 u32 value)
432 {
433 struct drm_i915_private *dev_priv = ring->dev->dev_private;
434 I915_WRITE_TAIL(ring, value);
435 }
436
437 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
438 {
439 struct drm_i915_private *dev_priv = ring->dev->dev_private;
440 u64 acthd;
441
442 if (INTEL_INFO(ring->dev)->gen >= 8)
443 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
444 RING_ACTHD_UDW(ring->mmio_base));
445 else if (INTEL_INFO(ring->dev)->gen >= 4)
446 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
447 else
448 acthd = I915_READ(ACTHD);
449
450 return acthd;
451 }
452
453 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
454 {
455 struct drm_i915_private *dev_priv = ring->dev->dev_private;
456 u32 addr;
457
458 addr = dev_priv->status_page_dmah->busaddr;
459 if (INTEL_INFO(ring->dev)->gen >= 4)
460 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
461 I915_WRITE(HWS_PGA, addr);
462 }
463
464 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
465 {
466 struct drm_device *dev = ring->dev;
467 struct drm_i915_private *dev_priv = ring->dev->dev_private;
468 i915_reg_t mmio;
469
470 /* The ring status page addresses are no longer next to the rest of
471 * the ring registers as of gen7.
472 */
473 if (IS_GEN7(dev)) {
474 switch (ring->id) {
475 case RCS:
476 mmio = RENDER_HWS_PGA_GEN7;
477 break;
478 case BCS:
479 mmio = BLT_HWS_PGA_GEN7;
480 break;
481 /*
482 * VCS2 actually doesn't exist on Gen7. Only shut up
483 * gcc switch check warning
484 */
485 case VCS2:
486 case VCS:
487 mmio = BSD_HWS_PGA_GEN7;
488 break;
489 case VECS:
490 mmio = VEBOX_HWS_PGA_GEN7;
491 break;
492 }
493 } else if (IS_GEN6(ring->dev)) {
494 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
495 } else {
496 /* XXX: gen8 returns to sanity */
497 mmio = RING_HWS_PGA(ring->mmio_base);
498 }
499
500 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
501 POSTING_READ(mmio);
502
503 /*
504 * Flush the TLB for this page
505 *
506 * FIXME: These two bits have disappeared on gen8, so a question
507 * arises: do we still need this and if so how should we go about
508 * invalidating the TLB?
509 */
510 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
511 i915_reg_t reg = RING_INSTPM(ring->mmio_base);
512
513 /* ring should be idle before issuing a sync flush*/
514 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
515
516 I915_WRITE(reg,
517 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
518 INSTPM_SYNC_FLUSH));
519 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
520 1000))
521 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
522 ring->name);
523 }
524 }
525
526 static bool stop_ring(struct intel_engine_cs *ring)
527 {
528 struct drm_i915_private *dev_priv = to_i915(ring->dev);
529
530 if (!IS_GEN2(ring->dev)) {
531 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
532 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
533 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
534 /* Sometimes we observe that the idle flag is not
535 * set even though the ring is empty. So double
536 * check before giving up.
537 */
538 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
539 return false;
540 }
541 }
542
543 I915_WRITE_CTL(ring, 0);
544 I915_WRITE_HEAD(ring, 0);
545 ring->write_tail(ring, 0);
546
547 if (!IS_GEN2(ring->dev)) {
548 (void)I915_READ_CTL(ring);
549 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
550 }
551
552 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
553 }
554
555 static int init_ring_common(struct intel_engine_cs *ring)
556 {
557 struct drm_device *dev = ring->dev;
558 struct drm_i915_private *dev_priv = dev->dev_private;
559 struct intel_ringbuffer *ringbuf = ring->buffer;
560 struct drm_i915_gem_object *obj = ringbuf->obj;
561 int ret = 0;
562
563 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
564
565 if (!stop_ring(ring)) {
566 /* G45 ring initialization often fails to reset head to zero */
567 DRM_DEBUG_KMS("%s head not reset to zero "
568 "ctl %08x head %08x tail %08x start %08x\n",
569 ring->name,
570 I915_READ_CTL(ring),
571 I915_READ_HEAD(ring),
572 I915_READ_TAIL(ring),
573 I915_READ_START(ring));
574
575 if (!stop_ring(ring)) {
576 DRM_ERROR("failed to set %s head to zero "
577 "ctl %08x head %08x tail %08x start %08x\n",
578 ring->name,
579 I915_READ_CTL(ring),
580 I915_READ_HEAD(ring),
581 I915_READ_TAIL(ring),
582 I915_READ_START(ring));
583 ret = -EIO;
584 goto out;
585 }
586 }
587
588 if (I915_NEED_GFX_HWS(dev))
589 intel_ring_setup_status_page(ring);
590 else
591 ring_setup_phys_status_page(ring);
592
593 /* Enforce ordering by reading HEAD register back */
594 I915_READ_HEAD(ring);
595
596 /* Initialize the ring. This must happen _after_ we've cleared the ring
597 * registers with the above sequence (the readback of the HEAD registers
598 * also enforces ordering), otherwise the hw might lose the new ring
599 * register values. */
600 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
601
602 /* WaClearRingBufHeadRegAtInit:ctg,elk */
603 if (I915_READ_HEAD(ring))
604 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
605 ring->name, I915_READ_HEAD(ring));
606 I915_WRITE_HEAD(ring, 0);
607 (void)I915_READ_HEAD(ring);
608
609 I915_WRITE_CTL(ring,
610 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
611 | RING_VALID);
612
613 /* If the head is still not zero, the ring is dead */
614 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
615 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
616 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
617 DRM_ERROR("%s initialization failed "
618 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
619 ring->name,
620 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
621 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
622 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
623 ret = -EIO;
624 goto out;
625 }
626
627 ringbuf->last_retired_head = -1;
628 ringbuf->head = I915_READ_HEAD(ring);
629 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
630 intel_ring_update_space(ringbuf);
631
632 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
633
634 out:
635 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
636
637 return ret;
638 }
639
640 void
641 intel_fini_pipe_control(struct intel_engine_cs *ring)
642 {
643 struct drm_device *dev = ring->dev;
644
645 if (ring->scratch.obj == NULL)
646 return;
647
648 if (INTEL_INFO(dev)->gen >= 5) {
649 kunmap(sg_page(ring->scratch.obj->pages->sgl));
650 i915_gem_object_ggtt_unpin(ring->scratch.obj);
651 }
652
653 drm_gem_object_unreference(&ring->scratch.obj->base);
654 ring->scratch.obj = NULL;
655 }
656
657 int
658 intel_init_pipe_control(struct intel_engine_cs *ring)
659 {
660 int ret;
661
662 WARN_ON(ring->scratch.obj);
663
664 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
665 if (ring->scratch.obj == NULL) {
666 DRM_ERROR("Failed to allocate seqno page\n");
667 ret = -ENOMEM;
668 goto err;
669 }
670
671 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
672 if (ret)
673 goto err_unref;
674
675 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
676 if (ret)
677 goto err_unref;
678
679 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
680 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
681 if (ring->scratch.cpu_page == NULL) {
682 ret = -ENOMEM;
683 goto err_unpin;
684 }
685
686 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
687 ring->name, ring->scratch.gtt_offset);
688 return 0;
689
690 err_unpin:
691 i915_gem_object_ggtt_unpin(ring->scratch.obj);
692 err_unref:
693 drm_gem_object_unreference(&ring->scratch.obj->base);
694 err:
695 return ret;
696 }
697
698 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
699 {
700 int ret, i;
701 struct intel_engine_cs *ring = req->ring;
702 struct drm_device *dev = ring->dev;
703 struct drm_i915_private *dev_priv = dev->dev_private;
704 struct i915_workarounds *w = &dev_priv->workarounds;
705
706 if (w->count == 0)
707 return 0;
708
709 ring->gpu_caches_dirty = true;
710 ret = intel_ring_flush_all_caches(req);
711 if (ret)
712 return ret;
713
714 ret = intel_ring_begin(req, (w->count * 2 + 2));
715 if (ret)
716 return ret;
717
718 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
719 for (i = 0; i < w->count; i++) {
720 intel_ring_emit_reg(ring, w->reg[i].addr);
721 intel_ring_emit(ring, w->reg[i].value);
722 }
723 intel_ring_emit(ring, MI_NOOP);
724
725 intel_ring_advance(ring);
726
727 ring->gpu_caches_dirty = true;
728 ret = intel_ring_flush_all_caches(req);
729 if (ret)
730 return ret;
731
732 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
733
734 return 0;
735 }
736
737 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
738 {
739 int ret;
740
741 ret = intel_ring_workarounds_emit(req);
742 if (ret != 0)
743 return ret;
744
745 ret = i915_gem_render_state_init(req);
746 if (ret)
747 DRM_ERROR("init render state: %d\n", ret);
748
749 return ret;
750 }
751
752 static int wa_add(struct drm_i915_private *dev_priv,
753 i915_reg_t addr,
754 const u32 mask, const u32 val)
755 {
756 const u32 idx = dev_priv->workarounds.count;
757
758 if (WARN_ON(idx >= I915_MAX_WA_REGS))
759 return -ENOSPC;
760
761 dev_priv->workarounds.reg[idx].addr = addr;
762 dev_priv->workarounds.reg[idx].value = val;
763 dev_priv->workarounds.reg[idx].mask = mask;
764
765 dev_priv->workarounds.count++;
766
767 return 0;
768 }
769
770 #define WA_REG(addr, mask, val) do { \
771 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
772 if (r) \
773 return r; \
774 } while (0)
775
776 #define WA_SET_BIT_MASKED(addr, mask) \
777 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
778
779 #define WA_CLR_BIT_MASKED(addr, mask) \
780 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
781
782 #define WA_SET_FIELD_MASKED(addr, mask, value) \
783 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
784
785 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
786 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
787
788 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
789
790 static int gen8_init_workarounds(struct intel_engine_cs *ring)
791 {
792 struct drm_device *dev = ring->dev;
793 struct drm_i915_private *dev_priv = dev->dev_private;
794
795 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
796
797 /* WaDisableAsyncFlipPerfMode:bdw,chv */
798 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
799
800 /* WaDisablePartialInstShootdown:bdw,chv */
801 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
802 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
803
804 /* Use Force Non-Coherent whenever executing a 3D context. This is a
805 * workaround for for a possible hang in the unlikely event a TLB
806 * invalidation occurs during a PSD flush.
807 */
808 /* WaForceEnableNonCoherent:bdw,chv */
809 /* WaHdcDisableFetchWhenMasked:bdw,chv */
810 WA_SET_BIT_MASKED(HDC_CHICKEN0,
811 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
812 HDC_FORCE_NON_COHERENT);
813
814 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
815 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
816 * polygons in the same 8x4 pixel/sample area to be processed without
817 * stalling waiting for the earlier ones to write to Hierarchical Z
818 * buffer."
819 *
820 * This optimization is off by default for BDW and CHV; turn it on.
821 */
822 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
823
824 /* Wa4x4STCOptimizationDisable:bdw,chv */
825 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
826
827 /*
828 * BSpec recommends 8x4 when MSAA is used,
829 * however in practice 16x4 seems fastest.
830 *
831 * Note that PS/WM thread counts depend on the WIZ hashing
832 * disable bit, which we don't touch here, but it's good
833 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
834 */
835 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
836 GEN6_WIZ_HASHING_MASK,
837 GEN6_WIZ_HASHING_16x4);
838
839 return 0;
840 }
841
842 static int bdw_init_workarounds(struct intel_engine_cs *ring)
843 {
844 int ret;
845 struct drm_device *dev = ring->dev;
846 struct drm_i915_private *dev_priv = dev->dev_private;
847
848 ret = gen8_init_workarounds(ring);
849 if (ret)
850 return ret;
851
852 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
853 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
854
855 /* WaDisableDopClockGating:bdw */
856 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
857 DOP_CLOCK_GATING_DISABLE);
858
859 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
860 GEN8_SAMPLER_POWER_BYPASS_DIS);
861
862 WA_SET_BIT_MASKED(HDC_CHICKEN0,
863 /* WaForceContextSaveRestoreNonCoherent:bdw */
864 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
865 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
866 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
867
868 return 0;
869 }
870
871 static int chv_init_workarounds(struct intel_engine_cs *ring)
872 {
873 int ret;
874 struct drm_device *dev = ring->dev;
875 struct drm_i915_private *dev_priv = dev->dev_private;
876
877 ret = gen8_init_workarounds(ring);
878 if (ret)
879 return ret;
880
881 /* WaDisableThreadStallDopClockGating:chv */
882 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
883
884 /* Improve HiZ throughput on CHV. */
885 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
886
887 return 0;
888 }
889
890 static int gen9_init_workarounds(struct intel_engine_cs *ring)
891 {
892 struct drm_device *dev = ring->dev;
893 struct drm_i915_private *dev_priv = dev->dev_private;
894 uint32_t tmp;
895
896 /* WaEnableLbsSlaRetryTimerDecrement:skl */
897 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
898 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
899
900 /* WaDisableKillLogic:bxt,skl */
901 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
902 ECOCHK_DIS_TLB);
903
904 /* WaDisablePartialInstShootdown:skl,bxt */
905 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
906 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
907
908 /* Syncing dependencies between camera and graphics:skl,bxt */
909 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
910 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
911
912 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
913 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
914 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
915 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
916 GEN9_DG_MIRROR_FIX_ENABLE);
917
918 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
919 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
920 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
921 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
922 GEN9_RHWO_OPTIMIZATION_DISABLE);
923 /*
924 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
925 * but we do that in per ctx batchbuffer as there is an issue
926 * with this register not getting restored on ctx restore
927 */
928 }
929
930 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
931 if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
932 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
933 GEN9_ENABLE_YV12_BUGFIX);
934
935 /* Wa4x4STCOptimizationDisable:skl,bxt */
936 /* WaDisablePartialResolveInVc:skl,bxt */
937 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
938 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
939
940 /* WaCcsTlbPrefetchDisable:skl,bxt */
941 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
942 GEN9_CCS_TLB_PREFETCH_ENABLE);
943
944 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
945 if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
946 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
947 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
948 PIXEL_MASK_CAMMING_DISABLE);
949
950 /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
951 tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
952 if (IS_SKL_REVID(dev, SKL_REVID_F0, SKL_REVID_F0) ||
953 IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
954 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
955 WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
956
957 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
958 if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
959 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
960 GEN8_SAMPLER_POWER_BYPASS_DIS);
961
962 /* WaDisableSTUnitPowerOptimization:skl,bxt */
963 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
964
965 return 0;
966 }
967
968 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
969 {
970 struct drm_device *dev = ring->dev;
971 struct drm_i915_private *dev_priv = dev->dev_private;
972 u8 vals[3] = { 0, 0, 0 };
973 unsigned int i;
974
975 for (i = 0; i < 3; i++) {
976 u8 ss;
977
978 /*
979 * Only consider slices where one, and only one, subslice has 7
980 * EUs
981 */
982 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
983 continue;
984
985 /*
986 * subslice_7eu[i] != 0 (because of the check above) and
987 * ss_max == 4 (maximum number of subslices possible per slice)
988 *
989 * -> 0 <= ss <= 3;
990 */
991 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
992 vals[i] = 3 - ss;
993 }
994
995 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
996 return 0;
997
998 /* Tune IZ hashing. See intel_device_info_runtime_init() */
999 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1000 GEN9_IZ_HASHING_MASK(2) |
1001 GEN9_IZ_HASHING_MASK(1) |
1002 GEN9_IZ_HASHING_MASK(0),
1003 GEN9_IZ_HASHING(2, vals[2]) |
1004 GEN9_IZ_HASHING(1, vals[1]) |
1005 GEN9_IZ_HASHING(0, vals[0]));
1006
1007 return 0;
1008 }
1009
1010 static int skl_init_workarounds(struct intel_engine_cs *ring)
1011 {
1012 int ret;
1013 struct drm_device *dev = ring->dev;
1014 struct drm_i915_private *dev_priv = dev->dev_private;
1015
1016 ret = gen9_init_workarounds(ring);
1017 if (ret)
1018 return ret;
1019
1020 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1021 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1022 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1023 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1024 }
1025
1026 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1027 * involving this register should also be added to WA batch as required.
1028 */
1029 if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1030 /* WaDisableLSQCROPERFforOCL:skl */
1031 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1032 GEN8_LQSC_RO_PERF_DIS);
1033
1034 /* WaEnableGapsTsvCreditFix:skl */
1035 if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1036 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1037 GEN9_GAPS_TSV_CREDIT_DISABLE));
1038 }
1039
1040 /* WaDisablePowerCompilerClockGating:skl */
1041 if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1042 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1043 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1044
1045 if (IS_SKL_REVID(dev, 0, SKL_REVID_F0)) {
1046 /*
1047 *Use Force Non-Coherent whenever executing a 3D context. This
1048 * is a workaround for a possible hang in the unlikely event
1049 * a TLB invalidation occurs during a PSD flush.
1050 */
1051 /* WaForceEnableNonCoherent:skl */
1052 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1053 HDC_FORCE_NON_COHERENT);
1054
1055 /* WaDisableHDCInvalidation:skl */
1056 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1057 BDW_DISABLE_HDC_INVALIDATION);
1058 }
1059
1060 /* WaBarrierPerformanceFixDisable:skl */
1061 if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1062 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1063 HDC_FENCE_DEST_SLM_DISABLE |
1064 HDC_BARRIER_PERFORMANCE_DISABLE);
1065
1066 /* WaDisableSbeCacheDispatchPortSharing:skl */
1067 if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1068 WA_SET_BIT_MASKED(
1069 GEN7_HALF_SLICE_CHICKEN1,
1070 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1071
1072 return skl_tune_iz_hashing(ring);
1073 }
1074
1075 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1076 {
1077 int ret;
1078 struct drm_device *dev = ring->dev;
1079 struct drm_i915_private *dev_priv = dev->dev_private;
1080
1081 ret = gen9_init_workarounds(ring);
1082 if (ret)
1083 return ret;
1084
1085 /* WaStoreMultiplePTEenable:bxt */
1086 /* This is a requirement according to Hardware specification */
1087 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1088 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1089
1090 /* WaSetClckGatingDisableMedia:bxt */
1091 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1092 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1093 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1094 }
1095
1096 /* WaDisableThreadStallDopClockGating:bxt */
1097 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1098 STALL_DOP_GATING_DISABLE);
1099
1100 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1101 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1102 WA_SET_BIT_MASKED(
1103 GEN7_HALF_SLICE_CHICKEN1,
1104 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1105 }
1106
1107 return 0;
1108 }
1109
1110 int init_workarounds_ring(struct intel_engine_cs *ring)
1111 {
1112 struct drm_device *dev = ring->dev;
1113 struct drm_i915_private *dev_priv = dev->dev_private;
1114
1115 WARN_ON(ring->id != RCS);
1116
1117 dev_priv->workarounds.count = 0;
1118
1119 if (IS_BROADWELL(dev))
1120 return bdw_init_workarounds(ring);
1121
1122 if (IS_CHERRYVIEW(dev))
1123 return chv_init_workarounds(ring);
1124
1125 if (IS_SKYLAKE(dev))
1126 return skl_init_workarounds(ring);
1127
1128 if (IS_BROXTON(dev))
1129 return bxt_init_workarounds(ring);
1130
1131 return 0;
1132 }
1133
1134 static int init_render_ring(struct intel_engine_cs *ring)
1135 {
1136 struct drm_device *dev = ring->dev;
1137 struct drm_i915_private *dev_priv = dev->dev_private;
1138 int ret = init_ring_common(ring);
1139 if (ret)
1140 return ret;
1141
1142 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1143 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1144 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1145
1146 /* We need to disable the AsyncFlip performance optimisations in order
1147 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1148 * programmed to '1' on all products.
1149 *
1150 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1151 */
1152 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1153 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1154
1155 /* Required for the hardware to program scanline values for waiting */
1156 /* WaEnableFlushTlbInvalidationMode:snb */
1157 if (INTEL_INFO(dev)->gen == 6)
1158 I915_WRITE(GFX_MODE,
1159 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1160
1161 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1162 if (IS_GEN7(dev))
1163 I915_WRITE(GFX_MODE_GEN7,
1164 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1165 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1166
1167 if (IS_GEN6(dev)) {
1168 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1169 * "If this bit is set, STCunit will have LRA as replacement
1170 * policy. [...] This bit must be reset. LRA replacement
1171 * policy is not supported."
1172 */
1173 I915_WRITE(CACHE_MODE_0,
1174 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1175 }
1176
1177 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1178 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1179
1180 if (HAS_L3_DPF(dev))
1181 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1182
1183 return init_workarounds_ring(ring);
1184 }
1185
1186 static void render_ring_cleanup(struct intel_engine_cs *ring)
1187 {
1188 struct drm_device *dev = ring->dev;
1189 struct drm_i915_private *dev_priv = dev->dev_private;
1190
1191 if (dev_priv->semaphore_obj) {
1192 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1193 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1194 dev_priv->semaphore_obj = NULL;
1195 }
1196
1197 intel_fini_pipe_control(ring);
1198 }
1199
1200 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1201 unsigned int num_dwords)
1202 {
1203 #define MBOX_UPDATE_DWORDS 8
1204 struct intel_engine_cs *signaller = signaller_req->ring;
1205 struct drm_device *dev = signaller->dev;
1206 struct drm_i915_private *dev_priv = dev->dev_private;
1207 struct intel_engine_cs *waiter;
1208 int i, ret, num_rings;
1209
1210 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1211 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1212 #undef MBOX_UPDATE_DWORDS
1213
1214 ret = intel_ring_begin(signaller_req, num_dwords);
1215 if (ret)
1216 return ret;
1217
1218 for_each_ring(waiter, dev_priv, i) {
1219 u32 seqno;
1220 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1221 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1222 continue;
1223
1224 seqno = i915_gem_request_get_seqno(signaller_req);
1225 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1226 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1227 PIPE_CONTROL_QW_WRITE |
1228 PIPE_CONTROL_FLUSH_ENABLE);
1229 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1230 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1231 intel_ring_emit(signaller, seqno);
1232 intel_ring_emit(signaller, 0);
1233 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1234 MI_SEMAPHORE_TARGET(waiter->id));
1235 intel_ring_emit(signaller, 0);
1236 }
1237
1238 return 0;
1239 }
1240
1241 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1242 unsigned int num_dwords)
1243 {
1244 #define MBOX_UPDATE_DWORDS 6
1245 struct intel_engine_cs *signaller = signaller_req->ring;
1246 struct drm_device *dev = signaller->dev;
1247 struct drm_i915_private *dev_priv = dev->dev_private;
1248 struct intel_engine_cs *waiter;
1249 int i, ret, num_rings;
1250
1251 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1252 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1253 #undef MBOX_UPDATE_DWORDS
1254
1255 ret = intel_ring_begin(signaller_req, num_dwords);
1256 if (ret)
1257 return ret;
1258
1259 for_each_ring(waiter, dev_priv, i) {
1260 u32 seqno;
1261 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1262 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1263 continue;
1264
1265 seqno = i915_gem_request_get_seqno(signaller_req);
1266 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1267 MI_FLUSH_DW_OP_STOREDW);
1268 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1269 MI_FLUSH_DW_USE_GTT);
1270 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1271 intel_ring_emit(signaller, seqno);
1272 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1273 MI_SEMAPHORE_TARGET(waiter->id));
1274 intel_ring_emit(signaller, 0);
1275 }
1276
1277 return 0;
1278 }
1279
1280 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1281 unsigned int num_dwords)
1282 {
1283 struct intel_engine_cs *signaller = signaller_req->ring;
1284 struct drm_device *dev = signaller->dev;
1285 struct drm_i915_private *dev_priv = dev->dev_private;
1286 struct intel_engine_cs *useless;
1287 int i, ret, num_rings;
1288
1289 #define MBOX_UPDATE_DWORDS 3
1290 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1291 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1292 #undef MBOX_UPDATE_DWORDS
1293
1294 ret = intel_ring_begin(signaller_req, num_dwords);
1295 if (ret)
1296 return ret;
1297
1298 for_each_ring(useless, dev_priv, i) {
1299 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[i];
1300
1301 if (i915_mmio_reg_valid(mbox_reg)) {
1302 u32 seqno = i915_gem_request_get_seqno(signaller_req);
1303
1304 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1305 intel_ring_emit_reg(signaller, mbox_reg);
1306 intel_ring_emit(signaller, seqno);
1307 }
1308 }
1309
1310 /* If num_dwords was rounded, make sure the tail pointer is correct */
1311 if (num_rings % 2 == 0)
1312 intel_ring_emit(signaller, MI_NOOP);
1313
1314 return 0;
1315 }
1316
1317 /**
1318 * gen6_add_request - Update the semaphore mailbox registers
1319 *
1320 * @request - request to write to the ring
1321 *
1322 * Update the mailbox registers in the *other* rings with the current seqno.
1323 * This acts like a signal in the canonical semaphore.
1324 */
1325 static int
1326 gen6_add_request(struct drm_i915_gem_request *req)
1327 {
1328 struct intel_engine_cs *ring = req->ring;
1329 int ret;
1330
1331 if (ring->semaphore.signal)
1332 ret = ring->semaphore.signal(req, 4);
1333 else
1334 ret = intel_ring_begin(req, 4);
1335
1336 if (ret)
1337 return ret;
1338
1339 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1340 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1341 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1342 intel_ring_emit(ring, MI_USER_INTERRUPT);
1343 __intel_ring_advance(ring);
1344
1345 return 0;
1346 }
1347
1348 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1349 u32 seqno)
1350 {
1351 struct drm_i915_private *dev_priv = dev->dev_private;
1352 return dev_priv->last_seqno < seqno;
1353 }
1354
1355 /**
1356 * intel_ring_sync - sync the waiter to the signaller on seqno
1357 *
1358 * @waiter - ring that is waiting
1359 * @signaller - ring which has, or will signal
1360 * @seqno - seqno which the waiter will block on
1361 */
1362
1363 static int
1364 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1365 struct intel_engine_cs *signaller,
1366 u32 seqno)
1367 {
1368 struct intel_engine_cs *waiter = waiter_req->ring;
1369 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1370 int ret;
1371
1372 ret = intel_ring_begin(waiter_req, 4);
1373 if (ret)
1374 return ret;
1375
1376 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1377 MI_SEMAPHORE_GLOBAL_GTT |
1378 MI_SEMAPHORE_POLL |
1379 MI_SEMAPHORE_SAD_GTE_SDD);
1380 intel_ring_emit(waiter, seqno);
1381 intel_ring_emit(waiter,
1382 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1383 intel_ring_emit(waiter,
1384 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1385 intel_ring_advance(waiter);
1386 return 0;
1387 }
1388
1389 static int
1390 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1391 struct intel_engine_cs *signaller,
1392 u32 seqno)
1393 {
1394 struct intel_engine_cs *waiter = waiter_req->ring;
1395 u32 dw1 = MI_SEMAPHORE_MBOX |
1396 MI_SEMAPHORE_COMPARE |
1397 MI_SEMAPHORE_REGISTER;
1398 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1399 int ret;
1400
1401 /* Throughout all of the GEM code, seqno passed implies our current
1402 * seqno is >= the last seqno executed. However for hardware the
1403 * comparison is strictly greater than.
1404 */
1405 seqno -= 1;
1406
1407 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1408
1409 ret = intel_ring_begin(waiter_req, 4);
1410 if (ret)
1411 return ret;
1412
1413 /* If seqno wrap happened, omit the wait with no-ops */
1414 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1415 intel_ring_emit(waiter, dw1 | wait_mbox);
1416 intel_ring_emit(waiter, seqno);
1417 intel_ring_emit(waiter, 0);
1418 intel_ring_emit(waiter, MI_NOOP);
1419 } else {
1420 intel_ring_emit(waiter, MI_NOOP);
1421 intel_ring_emit(waiter, MI_NOOP);
1422 intel_ring_emit(waiter, MI_NOOP);
1423 intel_ring_emit(waiter, MI_NOOP);
1424 }
1425 intel_ring_advance(waiter);
1426
1427 return 0;
1428 }
1429
1430 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1431 do { \
1432 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1433 PIPE_CONTROL_DEPTH_STALL); \
1434 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1435 intel_ring_emit(ring__, 0); \
1436 intel_ring_emit(ring__, 0); \
1437 } while (0)
1438
1439 static int
1440 pc_render_add_request(struct drm_i915_gem_request *req)
1441 {
1442 struct intel_engine_cs *ring = req->ring;
1443 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1444 int ret;
1445
1446 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1447 * incoherent with writes to memory, i.e. completely fubar,
1448 * so we need to use PIPE_NOTIFY instead.
1449 *
1450 * However, we also need to workaround the qword write
1451 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1452 * memory before requesting an interrupt.
1453 */
1454 ret = intel_ring_begin(req, 32);
1455 if (ret)
1456 return ret;
1457
1458 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1459 PIPE_CONTROL_WRITE_FLUSH |
1460 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1461 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1462 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1463 intel_ring_emit(ring, 0);
1464 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1465 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1466 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1467 scratch_addr += 2 * CACHELINE_BYTES;
1468 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1469 scratch_addr += 2 * CACHELINE_BYTES;
1470 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1471 scratch_addr += 2 * CACHELINE_BYTES;
1472 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1473 scratch_addr += 2 * CACHELINE_BYTES;
1474 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1475
1476 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1477 PIPE_CONTROL_WRITE_FLUSH |
1478 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1479 PIPE_CONTROL_NOTIFY);
1480 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1481 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1482 intel_ring_emit(ring, 0);
1483 __intel_ring_advance(ring);
1484
1485 return 0;
1486 }
1487
1488 static u32
1489 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1490 {
1491 /* Workaround to force correct ordering between irq and seqno writes on
1492 * ivb (and maybe also on snb) by reading from a CS register (like
1493 * ACTHD) before reading the status page. */
1494 if (!lazy_coherency) {
1495 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1496 POSTING_READ(RING_ACTHD(ring->mmio_base));
1497 }
1498
1499 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1500 }
1501
1502 static u32
1503 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1504 {
1505 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1506 }
1507
1508 static void
1509 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1510 {
1511 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1512 }
1513
1514 static u32
1515 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1516 {
1517 return ring->scratch.cpu_page[0];
1518 }
1519
1520 static void
1521 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1522 {
1523 ring->scratch.cpu_page[0] = seqno;
1524 }
1525
1526 static bool
1527 gen5_ring_get_irq(struct intel_engine_cs *ring)
1528 {
1529 struct drm_device *dev = ring->dev;
1530 struct drm_i915_private *dev_priv = dev->dev_private;
1531 unsigned long flags;
1532
1533 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1534 return false;
1535
1536 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1537 if (ring->irq_refcount++ == 0)
1538 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1539 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1540
1541 return true;
1542 }
1543
1544 static void
1545 gen5_ring_put_irq(struct intel_engine_cs *ring)
1546 {
1547 struct drm_device *dev = ring->dev;
1548 struct drm_i915_private *dev_priv = dev->dev_private;
1549 unsigned long flags;
1550
1551 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1552 if (--ring->irq_refcount == 0)
1553 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1554 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1555 }
1556
1557 static bool
1558 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1559 {
1560 struct drm_device *dev = ring->dev;
1561 struct drm_i915_private *dev_priv = dev->dev_private;
1562 unsigned long flags;
1563
1564 if (!intel_irqs_enabled(dev_priv))
1565 return false;
1566
1567 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1568 if (ring->irq_refcount++ == 0) {
1569 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1570 I915_WRITE(IMR, dev_priv->irq_mask);
1571 POSTING_READ(IMR);
1572 }
1573 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1574
1575 return true;
1576 }
1577
1578 static void
1579 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1580 {
1581 struct drm_device *dev = ring->dev;
1582 struct drm_i915_private *dev_priv = dev->dev_private;
1583 unsigned long flags;
1584
1585 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1586 if (--ring->irq_refcount == 0) {
1587 dev_priv->irq_mask |= ring->irq_enable_mask;
1588 I915_WRITE(IMR, dev_priv->irq_mask);
1589 POSTING_READ(IMR);
1590 }
1591 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1592 }
1593
1594 static bool
1595 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1596 {
1597 struct drm_device *dev = ring->dev;
1598 struct drm_i915_private *dev_priv = dev->dev_private;
1599 unsigned long flags;
1600
1601 if (!intel_irqs_enabled(dev_priv))
1602 return false;
1603
1604 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1605 if (ring->irq_refcount++ == 0) {
1606 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1607 I915_WRITE16(IMR, dev_priv->irq_mask);
1608 POSTING_READ16(IMR);
1609 }
1610 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1611
1612 return true;
1613 }
1614
1615 static void
1616 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1617 {
1618 struct drm_device *dev = ring->dev;
1619 struct drm_i915_private *dev_priv = dev->dev_private;
1620 unsigned long flags;
1621
1622 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1623 if (--ring->irq_refcount == 0) {
1624 dev_priv->irq_mask |= ring->irq_enable_mask;
1625 I915_WRITE16(IMR, dev_priv->irq_mask);
1626 POSTING_READ16(IMR);
1627 }
1628 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1629 }
1630
1631 static int
1632 bsd_ring_flush(struct drm_i915_gem_request *req,
1633 u32 invalidate_domains,
1634 u32 flush_domains)
1635 {
1636 struct intel_engine_cs *ring = req->ring;
1637 int ret;
1638
1639 ret = intel_ring_begin(req, 2);
1640 if (ret)
1641 return ret;
1642
1643 intel_ring_emit(ring, MI_FLUSH);
1644 intel_ring_emit(ring, MI_NOOP);
1645 intel_ring_advance(ring);
1646 return 0;
1647 }
1648
1649 static int
1650 i9xx_add_request(struct drm_i915_gem_request *req)
1651 {
1652 struct intel_engine_cs *ring = req->ring;
1653 int ret;
1654
1655 ret = intel_ring_begin(req, 4);
1656 if (ret)
1657 return ret;
1658
1659 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1660 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1661 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1662 intel_ring_emit(ring, MI_USER_INTERRUPT);
1663 __intel_ring_advance(ring);
1664
1665 return 0;
1666 }
1667
1668 static bool
1669 gen6_ring_get_irq(struct intel_engine_cs *ring)
1670 {
1671 struct drm_device *dev = ring->dev;
1672 struct drm_i915_private *dev_priv = dev->dev_private;
1673 unsigned long flags;
1674
1675 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1676 return false;
1677
1678 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1679 if (ring->irq_refcount++ == 0) {
1680 if (HAS_L3_DPF(dev) && ring->id == RCS)
1681 I915_WRITE_IMR(ring,
1682 ~(ring->irq_enable_mask |
1683 GT_PARITY_ERROR(dev)));
1684 else
1685 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1686 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1687 }
1688 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1689
1690 return true;
1691 }
1692
1693 static void
1694 gen6_ring_put_irq(struct intel_engine_cs *ring)
1695 {
1696 struct drm_device *dev = ring->dev;
1697 struct drm_i915_private *dev_priv = dev->dev_private;
1698 unsigned long flags;
1699
1700 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1701 if (--ring->irq_refcount == 0) {
1702 if (HAS_L3_DPF(dev) && ring->id == RCS)
1703 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1704 else
1705 I915_WRITE_IMR(ring, ~0);
1706 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1707 }
1708 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1709 }
1710
1711 static bool
1712 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1713 {
1714 struct drm_device *dev = ring->dev;
1715 struct drm_i915_private *dev_priv = dev->dev_private;
1716 unsigned long flags;
1717
1718 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1719 return false;
1720
1721 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1722 if (ring->irq_refcount++ == 0) {
1723 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1724 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1725 }
1726 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1727
1728 return true;
1729 }
1730
1731 static void
1732 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1733 {
1734 struct drm_device *dev = ring->dev;
1735 struct drm_i915_private *dev_priv = dev->dev_private;
1736 unsigned long flags;
1737
1738 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1739 if (--ring->irq_refcount == 0) {
1740 I915_WRITE_IMR(ring, ~0);
1741 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1742 }
1743 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1744 }
1745
1746 static bool
1747 gen8_ring_get_irq(struct intel_engine_cs *ring)
1748 {
1749 struct drm_device *dev = ring->dev;
1750 struct drm_i915_private *dev_priv = dev->dev_private;
1751 unsigned long flags;
1752
1753 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1754 return false;
1755
1756 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1757 if (ring->irq_refcount++ == 0) {
1758 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1759 I915_WRITE_IMR(ring,
1760 ~(ring->irq_enable_mask |
1761 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1762 } else {
1763 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1764 }
1765 POSTING_READ(RING_IMR(ring->mmio_base));
1766 }
1767 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1768
1769 return true;
1770 }
1771
1772 static void
1773 gen8_ring_put_irq(struct intel_engine_cs *ring)
1774 {
1775 struct drm_device *dev = ring->dev;
1776 struct drm_i915_private *dev_priv = dev->dev_private;
1777 unsigned long flags;
1778
1779 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1780 if (--ring->irq_refcount == 0) {
1781 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1782 I915_WRITE_IMR(ring,
1783 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1784 } else {
1785 I915_WRITE_IMR(ring, ~0);
1786 }
1787 POSTING_READ(RING_IMR(ring->mmio_base));
1788 }
1789 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1790 }
1791
1792 static int
1793 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1794 u64 offset, u32 length,
1795 unsigned dispatch_flags)
1796 {
1797 struct intel_engine_cs *ring = req->ring;
1798 int ret;
1799
1800 ret = intel_ring_begin(req, 2);
1801 if (ret)
1802 return ret;
1803
1804 intel_ring_emit(ring,
1805 MI_BATCH_BUFFER_START |
1806 MI_BATCH_GTT |
1807 (dispatch_flags & I915_DISPATCH_SECURE ?
1808 0 : MI_BATCH_NON_SECURE_I965));
1809 intel_ring_emit(ring, offset);
1810 intel_ring_advance(ring);
1811
1812 return 0;
1813 }
1814
1815 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1816 #define I830_BATCH_LIMIT (256*1024)
1817 #define I830_TLB_ENTRIES (2)
1818 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1819 static int
1820 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1821 u64 offset, u32 len,
1822 unsigned dispatch_flags)
1823 {
1824 struct intel_engine_cs *ring = req->ring;
1825 u32 cs_offset = ring->scratch.gtt_offset;
1826 int ret;
1827
1828 ret = intel_ring_begin(req, 6);
1829 if (ret)
1830 return ret;
1831
1832 /* Evict the invalid PTE TLBs */
1833 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1834 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1835 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1836 intel_ring_emit(ring, cs_offset);
1837 intel_ring_emit(ring, 0xdeadbeef);
1838 intel_ring_emit(ring, MI_NOOP);
1839 intel_ring_advance(ring);
1840
1841 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1842 if (len > I830_BATCH_LIMIT)
1843 return -ENOSPC;
1844
1845 ret = intel_ring_begin(req, 6 + 2);
1846 if (ret)
1847 return ret;
1848
1849 /* Blit the batch (which has now all relocs applied) to the
1850 * stable batch scratch bo area (so that the CS never
1851 * stumbles over its tlb invalidation bug) ...
1852 */
1853 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1854 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1855 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1856 intel_ring_emit(ring, cs_offset);
1857 intel_ring_emit(ring, 4096);
1858 intel_ring_emit(ring, offset);
1859
1860 intel_ring_emit(ring, MI_FLUSH);
1861 intel_ring_emit(ring, MI_NOOP);
1862 intel_ring_advance(ring);
1863
1864 /* ... and execute it. */
1865 offset = cs_offset;
1866 }
1867
1868 ret = intel_ring_begin(req, 4);
1869 if (ret)
1870 return ret;
1871
1872 intel_ring_emit(ring, MI_BATCH_BUFFER);
1873 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1874 0 : MI_BATCH_NON_SECURE));
1875 intel_ring_emit(ring, offset + len - 8);
1876 intel_ring_emit(ring, MI_NOOP);
1877 intel_ring_advance(ring);
1878
1879 return 0;
1880 }
1881
1882 static int
1883 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1884 u64 offset, u32 len,
1885 unsigned dispatch_flags)
1886 {
1887 struct intel_engine_cs *ring = req->ring;
1888 int ret;
1889
1890 ret = intel_ring_begin(req, 2);
1891 if (ret)
1892 return ret;
1893
1894 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1895 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1896 0 : MI_BATCH_NON_SECURE));
1897 intel_ring_advance(ring);
1898
1899 return 0;
1900 }
1901
1902 static void cleanup_status_page(struct intel_engine_cs *ring)
1903 {
1904 struct drm_i915_gem_object *obj;
1905
1906 obj = ring->status_page.obj;
1907 if (obj == NULL)
1908 return;
1909
1910 kunmap(sg_page(obj->pages->sgl));
1911 i915_gem_object_ggtt_unpin(obj);
1912 drm_gem_object_unreference(&obj->base);
1913 ring->status_page.obj = NULL;
1914 }
1915
1916 static int init_status_page(struct intel_engine_cs *ring)
1917 {
1918 struct drm_i915_gem_object *obj;
1919
1920 if ((obj = ring->status_page.obj) == NULL) {
1921 unsigned flags;
1922 int ret;
1923
1924 obj = i915_gem_alloc_object(ring->dev, 4096);
1925 if (obj == NULL) {
1926 DRM_ERROR("Failed to allocate status page\n");
1927 return -ENOMEM;
1928 }
1929
1930 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1931 if (ret)
1932 goto err_unref;
1933
1934 flags = 0;
1935 if (!HAS_LLC(ring->dev))
1936 /* On g33, we cannot place HWS above 256MiB, so
1937 * restrict its pinning to the low mappable arena.
1938 * Though this restriction is not documented for
1939 * gen4, gen5, or byt, they also behave similarly
1940 * and hang if the HWS is placed at the top of the
1941 * GTT. To generalise, it appears that all !llc
1942 * platforms have issues with us placing the HWS
1943 * above the mappable region (even though we never
1944 * actualy map it).
1945 */
1946 flags |= PIN_MAPPABLE;
1947 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1948 if (ret) {
1949 err_unref:
1950 drm_gem_object_unreference(&obj->base);
1951 return ret;
1952 }
1953
1954 ring->status_page.obj = obj;
1955 }
1956
1957 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1958 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1959 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1960
1961 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1962 ring->name, ring->status_page.gfx_addr);
1963
1964 return 0;
1965 }
1966
1967 static int init_phys_status_page(struct intel_engine_cs *ring)
1968 {
1969 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1970
1971 if (!dev_priv->status_page_dmah) {
1972 dev_priv->status_page_dmah =
1973 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1974 if (!dev_priv->status_page_dmah)
1975 return -ENOMEM;
1976 }
1977
1978 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1979 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1980
1981 return 0;
1982 }
1983
1984 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1985 {
1986 if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
1987 vunmap(ringbuf->virtual_start);
1988 else
1989 iounmap(ringbuf->virtual_start);
1990 ringbuf->virtual_start = NULL;
1991 i915_gem_object_ggtt_unpin(ringbuf->obj);
1992 }
1993
1994 static u32 *vmap_obj(struct drm_i915_gem_object *obj)
1995 {
1996 struct sg_page_iter sg_iter;
1997 struct page **pages;
1998 void *addr;
1999 int i;
2000
2001 pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
2002 if (pages == NULL)
2003 return NULL;
2004
2005 i = 0;
2006 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
2007 pages[i++] = sg_page_iter_page(&sg_iter);
2008
2009 addr = vmap(pages, i, 0, PAGE_KERNEL);
2010 drm_free_large(pages);
2011
2012 return addr;
2013 }
2014
2015 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2016 struct intel_ringbuffer *ringbuf)
2017 {
2018 struct drm_i915_private *dev_priv = to_i915(dev);
2019 struct drm_i915_gem_object *obj = ringbuf->obj;
2020 int ret;
2021
2022 if (HAS_LLC(dev_priv) && !obj->stolen) {
2023 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, 0);
2024 if (ret)
2025 return ret;
2026
2027 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2028 if (ret) {
2029 i915_gem_object_ggtt_unpin(obj);
2030 return ret;
2031 }
2032
2033 ringbuf->virtual_start = vmap_obj(obj);
2034 if (ringbuf->virtual_start == NULL) {
2035 i915_gem_object_ggtt_unpin(obj);
2036 return -ENOMEM;
2037 }
2038 } else {
2039 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2040 if (ret)
2041 return ret;
2042
2043 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2044 if (ret) {
2045 i915_gem_object_ggtt_unpin(obj);
2046 return ret;
2047 }
2048
2049 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2050 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2051 if (ringbuf->virtual_start == NULL) {
2052 i915_gem_object_ggtt_unpin(obj);
2053 return -EINVAL;
2054 }
2055 }
2056
2057 return 0;
2058 }
2059
2060 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2061 {
2062 drm_gem_object_unreference(&ringbuf->obj->base);
2063 ringbuf->obj = NULL;
2064 }
2065
2066 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2067 struct intel_ringbuffer *ringbuf)
2068 {
2069 struct drm_i915_gem_object *obj;
2070
2071 obj = NULL;
2072 if (!HAS_LLC(dev))
2073 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2074 if (obj == NULL)
2075 obj = i915_gem_alloc_object(dev, ringbuf->size);
2076 if (obj == NULL)
2077 return -ENOMEM;
2078
2079 /* mark ring buffers as read-only from GPU side by default */
2080 obj->gt_ro = 1;
2081
2082 ringbuf->obj = obj;
2083
2084 return 0;
2085 }
2086
2087 struct intel_ringbuffer *
2088 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2089 {
2090 struct intel_ringbuffer *ring;
2091 int ret;
2092
2093 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2094 if (ring == NULL) {
2095 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2096 engine->name);
2097 return ERR_PTR(-ENOMEM);
2098 }
2099
2100 ring->ring = engine;
2101 list_add(&ring->link, &engine->buffers);
2102
2103 ring->size = size;
2104 /* Workaround an erratum on the i830 which causes a hang if
2105 * the TAIL pointer points to within the last 2 cachelines
2106 * of the buffer.
2107 */
2108 ring->effective_size = size;
2109 if (IS_I830(engine->dev) || IS_845G(engine->dev))
2110 ring->effective_size -= 2 * CACHELINE_BYTES;
2111
2112 ring->last_retired_head = -1;
2113 intel_ring_update_space(ring);
2114
2115 ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2116 if (ret) {
2117 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2118 engine->name, ret);
2119 list_del(&ring->link);
2120 kfree(ring);
2121 return ERR_PTR(ret);
2122 }
2123
2124 return ring;
2125 }
2126
2127 void
2128 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2129 {
2130 intel_destroy_ringbuffer_obj(ring);
2131 list_del(&ring->link);
2132 kfree(ring);
2133 }
2134
2135 static int intel_init_ring_buffer(struct drm_device *dev,
2136 struct intel_engine_cs *ring)
2137 {
2138 struct intel_ringbuffer *ringbuf;
2139 int ret;
2140
2141 WARN_ON(ring->buffer);
2142
2143 ring->dev = dev;
2144 INIT_LIST_HEAD(&ring->active_list);
2145 INIT_LIST_HEAD(&ring->request_list);
2146 INIT_LIST_HEAD(&ring->execlist_queue);
2147 INIT_LIST_HEAD(&ring->buffers);
2148 i915_gem_batch_pool_init(dev, &ring->batch_pool);
2149 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2150
2151 init_waitqueue_head(&ring->irq_queue);
2152
2153 ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2154 if (IS_ERR(ringbuf)) {
2155 ret = PTR_ERR(ringbuf);
2156 goto error;
2157 }
2158 ring->buffer = ringbuf;
2159
2160 if (I915_NEED_GFX_HWS(dev)) {
2161 ret = init_status_page(ring);
2162 if (ret)
2163 goto error;
2164 } else {
2165 BUG_ON(ring->id != RCS);
2166 ret = init_phys_status_page(ring);
2167 if (ret)
2168 goto error;
2169 }
2170
2171 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2172 if (ret) {
2173 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2174 ring->name, ret);
2175 intel_destroy_ringbuffer_obj(ringbuf);
2176 goto error;
2177 }
2178
2179 ret = i915_cmd_parser_init_ring(ring);
2180 if (ret)
2181 goto error;
2182
2183 return 0;
2184
2185 error:
2186 intel_cleanup_ring_buffer(ring);
2187 return ret;
2188 }
2189
2190 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2191 {
2192 struct drm_i915_private *dev_priv;
2193
2194 if (!intel_ring_initialized(ring))
2195 return;
2196
2197 dev_priv = to_i915(ring->dev);
2198
2199 if (ring->buffer) {
2200 intel_stop_ring_buffer(ring);
2201 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2202
2203 intel_unpin_ringbuffer_obj(ring->buffer);
2204 intel_ringbuffer_free(ring->buffer);
2205 ring->buffer = NULL;
2206 }
2207
2208 if (ring->cleanup)
2209 ring->cleanup(ring);
2210
2211 cleanup_status_page(ring);
2212
2213 i915_cmd_parser_fini_ring(ring);
2214 i915_gem_batch_pool_fini(&ring->batch_pool);
2215 ring->dev = NULL;
2216 }
2217
2218 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2219 {
2220 struct intel_ringbuffer *ringbuf = ring->buffer;
2221 struct drm_i915_gem_request *request;
2222 unsigned space;
2223 int ret;
2224
2225 if (intel_ring_space(ringbuf) >= n)
2226 return 0;
2227
2228 /* The whole point of reserving space is to not wait! */
2229 WARN_ON(ringbuf->reserved_in_use);
2230
2231 list_for_each_entry(request, &ring->request_list, list) {
2232 space = __intel_ring_space(request->postfix, ringbuf->tail,
2233 ringbuf->size);
2234 if (space >= n)
2235 break;
2236 }
2237
2238 if (WARN_ON(&request->list == &ring->request_list))
2239 return -ENOSPC;
2240
2241 ret = i915_wait_request(request);
2242 if (ret)
2243 return ret;
2244
2245 ringbuf->space = space;
2246 return 0;
2247 }
2248
2249 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2250 {
2251 uint32_t __iomem *virt;
2252 int rem = ringbuf->size - ringbuf->tail;
2253
2254 virt = ringbuf->virtual_start + ringbuf->tail;
2255 rem /= 4;
2256 while (rem--)
2257 iowrite32(MI_NOOP, virt++);
2258
2259 ringbuf->tail = 0;
2260 intel_ring_update_space(ringbuf);
2261 }
2262
2263 int intel_ring_idle(struct intel_engine_cs *ring)
2264 {
2265 struct drm_i915_gem_request *req;
2266
2267 /* Wait upon the last request to be completed */
2268 if (list_empty(&ring->request_list))
2269 return 0;
2270
2271 req = list_entry(ring->request_list.prev,
2272 struct drm_i915_gem_request,
2273 list);
2274
2275 /* Make sure we do not trigger any retires */
2276 return __i915_wait_request(req,
2277 atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2278 to_i915(ring->dev)->mm.interruptible,
2279 NULL, NULL);
2280 }
2281
2282 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2283 {
2284 request->ringbuf = request->ring->buffer;
2285 return 0;
2286 }
2287
2288 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2289 {
2290 /*
2291 * The first call merely notes the reserve request and is common for
2292 * all back ends. The subsequent localised _begin() call actually
2293 * ensures that the reservation is available. Without the begin, if
2294 * the request creator immediately submitted the request without
2295 * adding any commands to it then there might not actually be
2296 * sufficient room for the submission commands.
2297 */
2298 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2299
2300 return intel_ring_begin(request, 0);
2301 }
2302
2303 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2304 {
2305 WARN_ON(ringbuf->reserved_size);
2306 WARN_ON(ringbuf->reserved_in_use);
2307
2308 ringbuf->reserved_size = size;
2309 }
2310
2311 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2312 {
2313 WARN_ON(ringbuf->reserved_in_use);
2314
2315 ringbuf->reserved_size = 0;
2316 ringbuf->reserved_in_use = false;
2317 }
2318
2319 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2320 {
2321 WARN_ON(ringbuf->reserved_in_use);
2322
2323 ringbuf->reserved_in_use = true;
2324 ringbuf->reserved_tail = ringbuf->tail;
2325 }
2326
2327 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2328 {
2329 WARN_ON(!ringbuf->reserved_in_use);
2330 if (ringbuf->tail > ringbuf->reserved_tail) {
2331 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2332 "request reserved size too small: %d vs %d!\n",
2333 ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2334 } else {
2335 /*
2336 * The ring was wrapped while the reserved space was in use.
2337 * That means that some unknown amount of the ring tail was
2338 * no-op filled and skipped. Thus simply adding the ring size
2339 * to the tail and doing the above space check will not work.
2340 * Rather than attempt to track how much tail was skipped,
2341 * it is much simpler to say that also skipping the sanity
2342 * check every once in a while is not a big issue.
2343 */
2344 }
2345
2346 ringbuf->reserved_size = 0;
2347 ringbuf->reserved_in_use = false;
2348 }
2349
2350 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2351 {
2352 struct intel_ringbuffer *ringbuf = ring->buffer;
2353 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2354 int remain_actual = ringbuf->size - ringbuf->tail;
2355 int ret, total_bytes, wait_bytes = 0;
2356 bool need_wrap = false;
2357
2358 if (ringbuf->reserved_in_use)
2359 total_bytes = bytes;
2360 else
2361 total_bytes = bytes + ringbuf->reserved_size;
2362
2363 if (unlikely(bytes > remain_usable)) {
2364 /*
2365 * Not enough space for the basic request. So need to flush
2366 * out the remainder and then wait for base + reserved.
2367 */
2368 wait_bytes = remain_actual + total_bytes;
2369 need_wrap = true;
2370 } else {
2371 if (unlikely(total_bytes > remain_usable)) {
2372 /*
2373 * The base request will fit but the reserved space
2374 * falls off the end. So only need to to wait for the
2375 * reserved size after flushing out the remainder.
2376 */
2377 wait_bytes = remain_actual + ringbuf->reserved_size;
2378 need_wrap = true;
2379 } else if (total_bytes > ringbuf->space) {
2380 /* No wrapping required, just waiting. */
2381 wait_bytes = total_bytes;
2382 }
2383 }
2384
2385 if (wait_bytes) {
2386 ret = ring_wait_for_space(ring, wait_bytes);
2387 if (unlikely(ret))
2388 return ret;
2389
2390 if (need_wrap)
2391 __wrap_ring_buffer(ringbuf);
2392 }
2393
2394 return 0;
2395 }
2396
2397 int intel_ring_begin(struct drm_i915_gem_request *req,
2398 int num_dwords)
2399 {
2400 struct intel_engine_cs *ring;
2401 struct drm_i915_private *dev_priv;
2402 int ret;
2403
2404 WARN_ON(req == NULL);
2405 ring = req->ring;
2406 dev_priv = ring->dev->dev_private;
2407
2408 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2409 dev_priv->mm.interruptible);
2410 if (ret)
2411 return ret;
2412
2413 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2414 if (ret)
2415 return ret;
2416
2417 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2418 return 0;
2419 }
2420
2421 /* Align the ring tail to a cacheline boundary */
2422 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2423 {
2424 struct intel_engine_cs *ring = req->ring;
2425 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2426 int ret;
2427
2428 if (num_dwords == 0)
2429 return 0;
2430
2431 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2432 ret = intel_ring_begin(req, num_dwords);
2433 if (ret)
2434 return ret;
2435
2436 while (num_dwords--)
2437 intel_ring_emit(ring, MI_NOOP);
2438
2439 intel_ring_advance(ring);
2440
2441 return 0;
2442 }
2443
2444 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2445 {
2446 struct drm_device *dev = ring->dev;
2447 struct drm_i915_private *dev_priv = dev->dev_private;
2448
2449 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2450 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2451 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2452 if (HAS_VEBOX(dev))
2453 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2454 }
2455
2456 ring->set_seqno(ring, seqno);
2457 ring->hangcheck.seqno = seqno;
2458 }
2459
2460 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2461 u32 value)
2462 {
2463 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2464
2465 /* Every tail move must follow the sequence below */
2466
2467 /* Disable notification that the ring is IDLE. The GT
2468 * will then assume that it is busy and bring it out of rc6.
2469 */
2470 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2471 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2472
2473 /* Clear the context id. Here be magic! */
2474 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2475
2476 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2477 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2478 GEN6_BSD_SLEEP_INDICATOR) == 0,
2479 50))
2480 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2481
2482 /* Now that the ring is fully powered up, update the tail */
2483 I915_WRITE_TAIL(ring, value);
2484 POSTING_READ(RING_TAIL(ring->mmio_base));
2485
2486 /* Let the ring send IDLE messages to the GT again,
2487 * and so let it sleep to conserve power when idle.
2488 */
2489 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2490 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2491 }
2492
2493 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2494 u32 invalidate, u32 flush)
2495 {
2496 struct intel_engine_cs *ring = req->ring;
2497 uint32_t cmd;
2498 int ret;
2499
2500 ret = intel_ring_begin(req, 4);
2501 if (ret)
2502 return ret;
2503
2504 cmd = MI_FLUSH_DW;
2505 if (INTEL_INFO(ring->dev)->gen >= 8)
2506 cmd += 1;
2507
2508 /* We always require a command barrier so that subsequent
2509 * commands, such as breadcrumb interrupts, are strictly ordered
2510 * wrt the contents of the write cache being flushed to memory
2511 * (and thus being coherent from the CPU).
2512 */
2513 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2514
2515 /*
2516 * Bspec vol 1c.5 - video engine command streamer:
2517 * "If ENABLED, all TLBs will be invalidated once the flush
2518 * operation is complete. This bit is only valid when the
2519 * Post-Sync Operation field is a value of 1h or 3h."
2520 */
2521 if (invalidate & I915_GEM_GPU_DOMAINS)
2522 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2523
2524 intel_ring_emit(ring, cmd);
2525 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2526 if (INTEL_INFO(ring->dev)->gen >= 8) {
2527 intel_ring_emit(ring, 0); /* upper addr */
2528 intel_ring_emit(ring, 0); /* value */
2529 } else {
2530 intel_ring_emit(ring, 0);
2531 intel_ring_emit(ring, MI_NOOP);
2532 }
2533 intel_ring_advance(ring);
2534 return 0;
2535 }
2536
2537 static int
2538 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2539 u64 offset, u32 len,
2540 unsigned dispatch_flags)
2541 {
2542 struct intel_engine_cs *ring = req->ring;
2543 bool ppgtt = USES_PPGTT(ring->dev) &&
2544 !(dispatch_flags & I915_DISPATCH_SECURE);
2545 int ret;
2546
2547 ret = intel_ring_begin(req, 4);
2548 if (ret)
2549 return ret;
2550
2551 /* FIXME(BDW): Address space and security selectors. */
2552 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2553 (dispatch_flags & I915_DISPATCH_RS ?
2554 MI_BATCH_RESOURCE_STREAMER : 0));
2555 intel_ring_emit(ring, lower_32_bits(offset));
2556 intel_ring_emit(ring, upper_32_bits(offset));
2557 intel_ring_emit(ring, MI_NOOP);
2558 intel_ring_advance(ring);
2559
2560 return 0;
2561 }
2562
2563 static int
2564 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2565 u64 offset, u32 len,
2566 unsigned dispatch_flags)
2567 {
2568 struct intel_engine_cs *ring = req->ring;
2569 int ret;
2570
2571 ret = intel_ring_begin(req, 2);
2572 if (ret)
2573 return ret;
2574
2575 intel_ring_emit(ring,
2576 MI_BATCH_BUFFER_START |
2577 (dispatch_flags & I915_DISPATCH_SECURE ?
2578 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2579 (dispatch_flags & I915_DISPATCH_RS ?
2580 MI_BATCH_RESOURCE_STREAMER : 0));
2581 /* bit0-7 is the length on GEN6+ */
2582 intel_ring_emit(ring, offset);
2583 intel_ring_advance(ring);
2584
2585 return 0;
2586 }
2587
2588 static int
2589 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2590 u64 offset, u32 len,
2591 unsigned dispatch_flags)
2592 {
2593 struct intel_engine_cs *ring = req->ring;
2594 int ret;
2595
2596 ret = intel_ring_begin(req, 2);
2597 if (ret)
2598 return ret;
2599
2600 intel_ring_emit(ring,
2601 MI_BATCH_BUFFER_START |
2602 (dispatch_flags & I915_DISPATCH_SECURE ?
2603 0 : MI_BATCH_NON_SECURE_I965));
2604 /* bit0-7 is the length on GEN6+ */
2605 intel_ring_emit(ring, offset);
2606 intel_ring_advance(ring);
2607
2608 return 0;
2609 }
2610
2611 /* Blitter support (SandyBridge+) */
2612
2613 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2614 u32 invalidate, u32 flush)
2615 {
2616 struct intel_engine_cs *ring = req->ring;
2617 struct drm_device *dev = ring->dev;
2618 uint32_t cmd;
2619 int ret;
2620
2621 ret = intel_ring_begin(req, 4);
2622 if (ret)
2623 return ret;
2624
2625 cmd = MI_FLUSH_DW;
2626 if (INTEL_INFO(dev)->gen >= 8)
2627 cmd += 1;
2628
2629 /* We always require a command barrier so that subsequent
2630 * commands, such as breadcrumb interrupts, are strictly ordered
2631 * wrt the contents of the write cache being flushed to memory
2632 * (and thus being coherent from the CPU).
2633 */
2634 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2635
2636 /*
2637 * Bspec vol 1c.3 - blitter engine command streamer:
2638 * "If ENABLED, all TLBs will be invalidated once the flush
2639 * operation is complete. This bit is only valid when the
2640 * Post-Sync Operation field is a value of 1h or 3h."
2641 */
2642 if (invalidate & I915_GEM_DOMAIN_RENDER)
2643 cmd |= MI_INVALIDATE_TLB;
2644 intel_ring_emit(ring, cmd);
2645 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2646 if (INTEL_INFO(dev)->gen >= 8) {
2647 intel_ring_emit(ring, 0); /* upper addr */
2648 intel_ring_emit(ring, 0); /* value */
2649 } else {
2650 intel_ring_emit(ring, 0);
2651 intel_ring_emit(ring, MI_NOOP);
2652 }
2653 intel_ring_advance(ring);
2654
2655 return 0;
2656 }
2657
2658 int intel_init_render_ring_buffer(struct drm_device *dev)
2659 {
2660 struct drm_i915_private *dev_priv = dev->dev_private;
2661 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2662 struct drm_i915_gem_object *obj;
2663 int ret;
2664
2665 ring->name = "render ring";
2666 ring->id = RCS;
2667 ring->mmio_base = RENDER_RING_BASE;
2668
2669 if (INTEL_INFO(dev)->gen >= 8) {
2670 if (i915_semaphore_is_enabled(dev)) {
2671 obj = i915_gem_alloc_object(dev, 4096);
2672 if (obj == NULL) {
2673 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2674 i915.semaphores = 0;
2675 } else {
2676 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2677 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2678 if (ret != 0) {
2679 drm_gem_object_unreference(&obj->base);
2680 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2681 i915.semaphores = 0;
2682 } else
2683 dev_priv->semaphore_obj = obj;
2684 }
2685 }
2686
2687 ring->init_context = intel_rcs_ctx_init;
2688 ring->add_request = gen6_add_request;
2689 ring->flush = gen8_render_ring_flush;
2690 ring->irq_get = gen8_ring_get_irq;
2691 ring->irq_put = gen8_ring_put_irq;
2692 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2693 ring->get_seqno = gen6_ring_get_seqno;
2694 ring->set_seqno = ring_set_seqno;
2695 if (i915_semaphore_is_enabled(dev)) {
2696 WARN_ON(!dev_priv->semaphore_obj);
2697 ring->semaphore.sync_to = gen8_ring_sync;
2698 ring->semaphore.signal = gen8_rcs_signal;
2699 GEN8_RING_SEMAPHORE_INIT;
2700 }
2701 } else if (INTEL_INFO(dev)->gen >= 6) {
2702 ring->init_context = intel_rcs_ctx_init;
2703 ring->add_request = gen6_add_request;
2704 ring->flush = gen7_render_ring_flush;
2705 if (INTEL_INFO(dev)->gen == 6)
2706 ring->flush = gen6_render_ring_flush;
2707 ring->irq_get = gen6_ring_get_irq;
2708 ring->irq_put = gen6_ring_put_irq;
2709 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2710 ring->get_seqno = gen6_ring_get_seqno;
2711 ring->set_seqno = ring_set_seqno;
2712 if (i915_semaphore_is_enabled(dev)) {
2713 ring->semaphore.sync_to = gen6_ring_sync;
2714 ring->semaphore.signal = gen6_signal;
2715 /*
2716 * The current semaphore is only applied on pre-gen8
2717 * platform. And there is no VCS2 ring on the pre-gen8
2718 * platform. So the semaphore between RCS and VCS2 is
2719 * initialized as INVALID. Gen8 will initialize the
2720 * sema between VCS2 and RCS later.
2721 */
2722 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2723 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2724 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2725 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2726 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2727 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2728 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2729 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2730 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2731 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2732 }
2733 } else if (IS_GEN5(dev)) {
2734 ring->add_request = pc_render_add_request;
2735 ring->flush = gen4_render_ring_flush;
2736 ring->get_seqno = pc_render_get_seqno;
2737 ring->set_seqno = pc_render_set_seqno;
2738 ring->irq_get = gen5_ring_get_irq;
2739 ring->irq_put = gen5_ring_put_irq;
2740 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2741 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2742 } else {
2743 ring->add_request = i9xx_add_request;
2744 if (INTEL_INFO(dev)->gen < 4)
2745 ring->flush = gen2_render_ring_flush;
2746 else
2747 ring->flush = gen4_render_ring_flush;
2748 ring->get_seqno = ring_get_seqno;
2749 ring->set_seqno = ring_set_seqno;
2750 if (IS_GEN2(dev)) {
2751 ring->irq_get = i8xx_ring_get_irq;
2752 ring->irq_put = i8xx_ring_put_irq;
2753 } else {
2754 ring->irq_get = i9xx_ring_get_irq;
2755 ring->irq_put = i9xx_ring_put_irq;
2756 }
2757 ring->irq_enable_mask = I915_USER_INTERRUPT;
2758 }
2759 ring->write_tail = ring_write_tail;
2760
2761 if (IS_HASWELL(dev))
2762 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2763 else if (IS_GEN8(dev))
2764 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2765 else if (INTEL_INFO(dev)->gen >= 6)
2766 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2767 else if (INTEL_INFO(dev)->gen >= 4)
2768 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2769 else if (IS_I830(dev) || IS_845G(dev))
2770 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2771 else
2772 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2773 ring->init_hw = init_render_ring;
2774 ring->cleanup = render_ring_cleanup;
2775
2776 /* Workaround batchbuffer to combat CS tlb bug. */
2777 if (HAS_BROKEN_CS_TLB(dev)) {
2778 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2779 if (obj == NULL) {
2780 DRM_ERROR("Failed to allocate batch bo\n");
2781 return -ENOMEM;
2782 }
2783
2784 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2785 if (ret != 0) {
2786 drm_gem_object_unreference(&obj->base);
2787 DRM_ERROR("Failed to ping batch bo\n");
2788 return ret;
2789 }
2790
2791 ring->scratch.obj = obj;
2792 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2793 }
2794
2795 ret = intel_init_ring_buffer(dev, ring);
2796 if (ret)
2797 return ret;
2798
2799 if (INTEL_INFO(dev)->gen >= 5) {
2800 ret = intel_init_pipe_control(ring);
2801 if (ret)
2802 return ret;
2803 }
2804
2805 return 0;
2806 }
2807
2808 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2809 {
2810 struct drm_i915_private *dev_priv = dev->dev_private;
2811 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2812
2813 ring->name = "bsd ring";
2814 ring->id = VCS;
2815
2816 ring->write_tail = ring_write_tail;
2817 if (INTEL_INFO(dev)->gen >= 6) {
2818 ring->mmio_base = GEN6_BSD_RING_BASE;
2819 /* gen6 bsd needs a special wa for tail updates */
2820 if (IS_GEN6(dev))
2821 ring->write_tail = gen6_bsd_ring_write_tail;
2822 ring->flush = gen6_bsd_ring_flush;
2823 ring->add_request = gen6_add_request;
2824 ring->get_seqno = gen6_ring_get_seqno;
2825 ring->set_seqno = ring_set_seqno;
2826 if (INTEL_INFO(dev)->gen >= 8) {
2827 ring->irq_enable_mask =
2828 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2829 ring->irq_get = gen8_ring_get_irq;
2830 ring->irq_put = gen8_ring_put_irq;
2831 ring->dispatch_execbuffer =
2832 gen8_ring_dispatch_execbuffer;
2833 if (i915_semaphore_is_enabled(dev)) {
2834 ring->semaphore.sync_to = gen8_ring_sync;
2835 ring->semaphore.signal = gen8_xcs_signal;
2836 GEN8_RING_SEMAPHORE_INIT;
2837 }
2838 } else {
2839 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2840 ring->irq_get = gen6_ring_get_irq;
2841 ring->irq_put = gen6_ring_put_irq;
2842 ring->dispatch_execbuffer =
2843 gen6_ring_dispatch_execbuffer;
2844 if (i915_semaphore_is_enabled(dev)) {
2845 ring->semaphore.sync_to = gen6_ring_sync;
2846 ring->semaphore.signal = gen6_signal;
2847 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2848 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2849 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2850 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2851 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2852 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2853 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2854 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2855 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2856 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2857 }
2858 }
2859 } else {
2860 ring->mmio_base = BSD_RING_BASE;
2861 ring->flush = bsd_ring_flush;
2862 ring->add_request = i9xx_add_request;
2863 ring->get_seqno = ring_get_seqno;
2864 ring->set_seqno = ring_set_seqno;
2865 if (IS_GEN5(dev)) {
2866 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2867 ring->irq_get = gen5_ring_get_irq;
2868 ring->irq_put = gen5_ring_put_irq;
2869 } else {
2870 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2871 ring->irq_get = i9xx_ring_get_irq;
2872 ring->irq_put = i9xx_ring_put_irq;
2873 }
2874 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2875 }
2876 ring->init_hw = init_ring_common;
2877
2878 return intel_init_ring_buffer(dev, ring);
2879 }
2880
2881 /**
2882 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2883 */
2884 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2885 {
2886 struct drm_i915_private *dev_priv = dev->dev_private;
2887 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2888
2889 ring->name = "bsd2 ring";
2890 ring->id = VCS2;
2891
2892 ring->write_tail = ring_write_tail;
2893 ring->mmio_base = GEN8_BSD2_RING_BASE;
2894 ring->flush = gen6_bsd_ring_flush;
2895 ring->add_request = gen6_add_request;
2896 ring->get_seqno = gen6_ring_get_seqno;
2897 ring->set_seqno = ring_set_seqno;
2898 ring->irq_enable_mask =
2899 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2900 ring->irq_get = gen8_ring_get_irq;
2901 ring->irq_put = gen8_ring_put_irq;
2902 ring->dispatch_execbuffer =
2903 gen8_ring_dispatch_execbuffer;
2904 if (i915_semaphore_is_enabled(dev)) {
2905 ring->semaphore.sync_to = gen8_ring_sync;
2906 ring->semaphore.signal = gen8_xcs_signal;
2907 GEN8_RING_SEMAPHORE_INIT;
2908 }
2909 ring->init_hw = init_ring_common;
2910
2911 return intel_init_ring_buffer(dev, ring);
2912 }
2913
2914 int intel_init_blt_ring_buffer(struct drm_device *dev)
2915 {
2916 struct drm_i915_private *dev_priv = dev->dev_private;
2917 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2918
2919 ring->name = "blitter ring";
2920 ring->id = BCS;
2921
2922 ring->mmio_base = BLT_RING_BASE;
2923 ring->write_tail = ring_write_tail;
2924 ring->flush = gen6_ring_flush;
2925 ring->add_request = gen6_add_request;
2926 ring->get_seqno = gen6_ring_get_seqno;
2927 ring->set_seqno = ring_set_seqno;
2928 if (INTEL_INFO(dev)->gen >= 8) {
2929 ring->irq_enable_mask =
2930 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2931 ring->irq_get = gen8_ring_get_irq;
2932 ring->irq_put = gen8_ring_put_irq;
2933 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2934 if (i915_semaphore_is_enabled(dev)) {
2935 ring->semaphore.sync_to = gen8_ring_sync;
2936 ring->semaphore.signal = gen8_xcs_signal;
2937 GEN8_RING_SEMAPHORE_INIT;
2938 }
2939 } else {
2940 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2941 ring->irq_get = gen6_ring_get_irq;
2942 ring->irq_put = gen6_ring_put_irq;
2943 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2944 if (i915_semaphore_is_enabled(dev)) {
2945 ring->semaphore.signal = gen6_signal;
2946 ring->semaphore.sync_to = gen6_ring_sync;
2947 /*
2948 * The current semaphore is only applied on pre-gen8
2949 * platform. And there is no VCS2 ring on the pre-gen8
2950 * platform. So the semaphore between BCS and VCS2 is
2951 * initialized as INVALID. Gen8 will initialize the
2952 * sema between BCS and VCS2 later.
2953 */
2954 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2955 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2956 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2957 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2958 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2959 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2960 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2961 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2962 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2963 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2964 }
2965 }
2966 ring->init_hw = init_ring_common;
2967
2968 return intel_init_ring_buffer(dev, ring);
2969 }
2970
2971 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2972 {
2973 struct drm_i915_private *dev_priv = dev->dev_private;
2974 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2975
2976 ring->name = "video enhancement ring";
2977 ring->id = VECS;
2978
2979 ring->mmio_base = VEBOX_RING_BASE;
2980 ring->write_tail = ring_write_tail;
2981 ring->flush = gen6_ring_flush;
2982 ring->add_request = gen6_add_request;
2983 ring->get_seqno = gen6_ring_get_seqno;
2984 ring->set_seqno = ring_set_seqno;
2985
2986 if (INTEL_INFO(dev)->gen >= 8) {
2987 ring->irq_enable_mask =
2988 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2989 ring->irq_get = gen8_ring_get_irq;
2990 ring->irq_put = gen8_ring_put_irq;
2991 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2992 if (i915_semaphore_is_enabled(dev)) {
2993 ring->semaphore.sync_to = gen8_ring_sync;
2994 ring->semaphore.signal = gen8_xcs_signal;
2995 GEN8_RING_SEMAPHORE_INIT;
2996 }
2997 } else {
2998 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2999 ring->irq_get = hsw_vebox_get_irq;
3000 ring->irq_put = hsw_vebox_put_irq;
3001 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3002 if (i915_semaphore_is_enabled(dev)) {
3003 ring->semaphore.sync_to = gen6_ring_sync;
3004 ring->semaphore.signal = gen6_signal;
3005 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3006 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3007 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3008 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3009 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3010 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3011 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3012 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3013 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3014 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3015 }
3016 }
3017 ring->init_hw = init_ring_common;
3018
3019 return intel_init_ring_buffer(dev, ring);
3020 }
3021
3022 int
3023 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3024 {
3025 struct intel_engine_cs *ring = req->ring;
3026 int ret;
3027
3028 if (!ring->gpu_caches_dirty)
3029 return 0;
3030
3031 ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3032 if (ret)
3033 return ret;
3034
3035 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3036
3037 ring->gpu_caches_dirty = false;
3038 return 0;
3039 }
3040
3041 int
3042 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3043 {
3044 struct intel_engine_cs *ring = req->ring;
3045 uint32_t flush_domains;
3046 int ret;
3047
3048 flush_domains = 0;
3049 if (ring->gpu_caches_dirty)
3050 flush_domains = I915_GEM_GPU_DOMAINS;
3051
3052 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3053 if (ret)
3054 return ret;
3055
3056 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3057
3058 ring->gpu_caches_dirty = false;
3059 return 0;
3060 }
3061
3062 void
3063 intel_stop_ring_buffer(struct intel_engine_cs *ring)
3064 {
3065 int ret;
3066
3067 if (!intel_ring_initialized(ring))
3068 return;
3069
3070 ret = intel_ring_idle(ring);
3071 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3072 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3073 ring->name, ret);
3074
3075 stop_ring(ring);
3076 }
This page took 0.099384 seconds and 4 git commands to generate.