drm/modes: drop __drm_framebuffer_unregister.
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 int __intel_ring_space(int head, int tail, int size)
38 {
39 int space = head - tail;
40 if (space <= 0)
41 space += size;
42 return space - I915_RING_FREE_SPACE;
43 }
44
45 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
46 {
47 if (ringbuf->last_retired_head != -1) {
48 ringbuf->head = ringbuf->last_retired_head;
49 ringbuf->last_retired_head = -1;
50 }
51
52 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
53 ringbuf->tail, ringbuf->size);
54 }
55
56 int intel_ring_space(struct intel_ringbuffer *ringbuf)
57 {
58 intel_ring_update_space(ringbuf);
59 return ringbuf->space;
60 }
61
62 bool intel_engine_stopped(struct intel_engine_cs *engine)
63 {
64 struct drm_i915_private *dev_priv = engine->dev->dev_private;
65 return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
66 }
67
68 static void __intel_ring_advance(struct intel_engine_cs *engine)
69 {
70 struct intel_ringbuffer *ringbuf = engine->buffer;
71 ringbuf->tail &= ringbuf->size - 1;
72 if (intel_engine_stopped(engine))
73 return;
74 engine->write_tail(engine, ringbuf->tail);
75 }
76
77 static int
78 gen2_render_ring_flush(struct drm_i915_gem_request *req,
79 u32 invalidate_domains,
80 u32 flush_domains)
81 {
82 struct intel_engine_cs *engine = req->engine;
83 u32 cmd;
84 int ret;
85
86 cmd = MI_FLUSH;
87 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
88 cmd |= MI_NO_WRITE_FLUSH;
89
90 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
91 cmd |= MI_READ_FLUSH;
92
93 ret = intel_ring_begin(req, 2);
94 if (ret)
95 return ret;
96
97 intel_ring_emit(engine, cmd);
98 intel_ring_emit(engine, MI_NOOP);
99 intel_ring_advance(engine);
100
101 return 0;
102 }
103
104 static int
105 gen4_render_ring_flush(struct drm_i915_gem_request *req,
106 u32 invalidate_domains,
107 u32 flush_domains)
108 {
109 struct intel_engine_cs *engine = req->engine;
110 struct drm_device *dev = engine->dev;
111 u32 cmd;
112 int ret;
113
114 /*
115 * read/write caches:
116 *
117 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
118 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
119 * also flushed at 2d versus 3d pipeline switches.
120 *
121 * read-only caches:
122 *
123 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
124 * MI_READ_FLUSH is set, and is always flushed on 965.
125 *
126 * I915_GEM_DOMAIN_COMMAND may not exist?
127 *
128 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
129 * invalidated when MI_EXE_FLUSH is set.
130 *
131 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
132 * invalidated with every MI_FLUSH.
133 *
134 * TLBs:
135 *
136 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
137 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
138 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
139 * are flushed at any MI_FLUSH.
140 */
141
142 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
143 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
144 cmd &= ~MI_NO_WRITE_FLUSH;
145 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
146 cmd |= MI_EXE_FLUSH;
147
148 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
149 (IS_G4X(dev) || IS_GEN5(dev)))
150 cmd |= MI_INVALIDATE_ISP;
151
152 ret = intel_ring_begin(req, 2);
153 if (ret)
154 return ret;
155
156 intel_ring_emit(engine, cmd);
157 intel_ring_emit(engine, MI_NOOP);
158 intel_ring_advance(engine);
159
160 return 0;
161 }
162
163 /**
164 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
165 * implementing two workarounds on gen6. From section 1.4.7.1
166 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
167 *
168 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
169 * produced by non-pipelined state commands), software needs to first
170 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
171 * 0.
172 *
173 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
174 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
175 *
176 * And the workaround for these two requires this workaround first:
177 *
178 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
179 * BEFORE the pipe-control with a post-sync op and no write-cache
180 * flushes.
181 *
182 * And this last workaround is tricky because of the requirements on
183 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
184 * volume 2 part 1:
185 *
186 * "1 of the following must also be set:
187 * - Render Target Cache Flush Enable ([12] of DW1)
188 * - Depth Cache Flush Enable ([0] of DW1)
189 * - Stall at Pixel Scoreboard ([1] of DW1)
190 * - Depth Stall ([13] of DW1)
191 * - Post-Sync Operation ([13] of DW1)
192 * - Notify Enable ([8] of DW1)"
193 *
194 * The cache flushes require the workaround flush that triggered this
195 * one, so we can't use it. Depth stall would trigger the same.
196 * Post-sync nonzero is what triggered this second workaround, so we
197 * can't use that one either. Notify enable is IRQs, which aren't
198 * really our business. That leaves only stall at scoreboard.
199 */
200 static int
201 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
202 {
203 struct intel_engine_cs *engine = req->engine;
204 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
205 int ret;
206
207 ret = intel_ring_begin(req, 6);
208 if (ret)
209 return ret;
210
211 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
212 intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
213 PIPE_CONTROL_STALL_AT_SCOREBOARD);
214 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
215 intel_ring_emit(engine, 0); /* low dword */
216 intel_ring_emit(engine, 0); /* high dword */
217 intel_ring_emit(engine, MI_NOOP);
218 intel_ring_advance(engine);
219
220 ret = intel_ring_begin(req, 6);
221 if (ret)
222 return ret;
223
224 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
225 intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
226 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
227 intel_ring_emit(engine, 0);
228 intel_ring_emit(engine, 0);
229 intel_ring_emit(engine, MI_NOOP);
230 intel_ring_advance(engine);
231
232 return 0;
233 }
234
235 static int
236 gen6_render_ring_flush(struct drm_i915_gem_request *req,
237 u32 invalidate_domains, u32 flush_domains)
238 {
239 struct intel_engine_cs *engine = req->engine;
240 u32 flags = 0;
241 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
242 int ret;
243
244 /* Force SNB workarounds for PIPE_CONTROL flushes */
245 ret = intel_emit_post_sync_nonzero_flush(req);
246 if (ret)
247 return ret;
248
249 /* Just flush everything. Experiments have shown that reducing the
250 * number of bits based on the write domains has little performance
251 * impact.
252 */
253 if (flush_domains) {
254 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
255 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
256 /*
257 * Ensure that any following seqno writes only happen
258 * when the render cache is indeed flushed.
259 */
260 flags |= PIPE_CONTROL_CS_STALL;
261 }
262 if (invalidate_domains) {
263 flags |= PIPE_CONTROL_TLB_INVALIDATE;
264 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
265 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
266 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
267 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
268 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
269 /*
270 * TLB invalidate requires a post-sync write.
271 */
272 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
273 }
274
275 ret = intel_ring_begin(req, 4);
276 if (ret)
277 return ret;
278
279 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
280 intel_ring_emit(engine, flags);
281 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
282 intel_ring_emit(engine, 0);
283 intel_ring_advance(engine);
284
285 return 0;
286 }
287
288 static int
289 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
290 {
291 struct intel_engine_cs *engine = req->engine;
292 int ret;
293
294 ret = intel_ring_begin(req, 4);
295 if (ret)
296 return ret;
297
298 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
299 intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
300 PIPE_CONTROL_STALL_AT_SCOREBOARD);
301 intel_ring_emit(engine, 0);
302 intel_ring_emit(engine, 0);
303 intel_ring_advance(engine);
304
305 return 0;
306 }
307
308 static int
309 gen7_render_ring_flush(struct drm_i915_gem_request *req,
310 u32 invalidate_domains, u32 flush_domains)
311 {
312 struct intel_engine_cs *engine = req->engine;
313 u32 flags = 0;
314 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
315 int ret;
316
317 /*
318 * Ensure that any following seqno writes only happen when the render
319 * cache is indeed flushed.
320 *
321 * Workaround: 4th PIPE_CONTROL command (except the ones with only
322 * read-cache invalidate bits set) must have the CS_STALL bit set. We
323 * don't try to be clever and just set it unconditionally.
324 */
325 flags |= PIPE_CONTROL_CS_STALL;
326
327 /* Just flush everything. Experiments have shown that reducing the
328 * number of bits based on the write domains has little performance
329 * impact.
330 */
331 if (flush_domains) {
332 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
333 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
334 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
335 flags |= PIPE_CONTROL_FLUSH_ENABLE;
336 }
337 if (invalidate_domains) {
338 flags |= PIPE_CONTROL_TLB_INVALIDATE;
339 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
340 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
341 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
342 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
343 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
344 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
345 /*
346 * TLB invalidate requires a post-sync write.
347 */
348 flags |= PIPE_CONTROL_QW_WRITE;
349 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
350
351 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
352
353 /* Workaround: we must issue a pipe_control with CS-stall bit
354 * set before a pipe_control command that has the state cache
355 * invalidate bit set. */
356 gen7_render_ring_cs_stall_wa(req);
357 }
358
359 ret = intel_ring_begin(req, 4);
360 if (ret)
361 return ret;
362
363 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
364 intel_ring_emit(engine, flags);
365 intel_ring_emit(engine, scratch_addr);
366 intel_ring_emit(engine, 0);
367 intel_ring_advance(engine);
368
369 return 0;
370 }
371
372 static int
373 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
374 u32 flags, u32 scratch_addr)
375 {
376 struct intel_engine_cs *engine = req->engine;
377 int ret;
378
379 ret = intel_ring_begin(req, 6);
380 if (ret)
381 return ret;
382
383 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
384 intel_ring_emit(engine, flags);
385 intel_ring_emit(engine, scratch_addr);
386 intel_ring_emit(engine, 0);
387 intel_ring_emit(engine, 0);
388 intel_ring_emit(engine, 0);
389 intel_ring_advance(engine);
390
391 return 0;
392 }
393
394 static int
395 gen8_render_ring_flush(struct drm_i915_gem_request *req,
396 u32 invalidate_domains, u32 flush_domains)
397 {
398 u32 flags = 0;
399 u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
400 int ret;
401
402 flags |= PIPE_CONTROL_CS_STALL;
403
404 if (flush_domains) {
405 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
406 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
407 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
408 flags |= PIPE_CONTROL_FLUSH_ENABLE;
409 }
410 if (invalidate_domains) {
411 flags |= PIPE_CONTROL_TLB_INVALIDATE;
412 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
413 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
414 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
415 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
416 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
417 flags |= PIPE_CONTROL_QW_WRITE;
418 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
419
420 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
421 ret = gen8_emit_pipe_control(req,
422 PIPE_CONTROL_CS_STALL |
423 PIPE_CONTROL_STALL_AT_SCOREBOARD,
424 0);
425 if (ret)
426 return ret;
427 }
428
429 return gen8_emit_pipe_control(req, flags, scratch_addr);
430 }
431
432 static void ring_write_tail(struct intel_engine_cs *engine,
433 u32 value)
434 {
435 struct drm_i915_private *dev_priv = engine->dev->dev_private;
436 I915_WRITE_TAIL(engine, value);
437 }
438
439 u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
440 {
441 struct drm_i915_private *dev_priv = engine->dev->dev_private;
442 u64 acthd;
443
444 if (INTEL_INFO(engine->dev)->gen >= 8)
445 acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
446 RING_ACTHD_UDW(engine->mmio_base));
447 else if (INTEL_INFO(engine->dev)->gen >= 4)
448 acthd = I915_READ(RING_ACTHD(engine->mmio_base));
449 else
450 acthd = I915_READ(ACTHD);
451
452 return acthd;
453 }
454
455 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
456 {
457 struct drm_i915_private *dev_priv = engine->dev->dev_private;
458 u32 addr;
459
460 addr = dev_priv->status_page_dmah->busaddr;
461 if (INTEL_INFO(engine->dev)->gen >= 4)
462 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
463 I915_WRITE(HWS_PGA, addr);
464 }
465
466 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
467 {
468 struct drm_device *dev = engine->dev;
469 struct drm_i915_private *dev_priv = engine->dev->dev_private;
470 i915_reg_t mmio;
471
472 /* The ring status page addresses are no longer next to the rest of
473 * the ring registers as of gen7.
474 */
475 if (IS_GEN7(dev)) {
476 switch (engine->id) {
477 case RCS:
478 mmio = RENDER_HWS_PGA_GEN7;
479 break;
480 case BCS:
481 mmio = BLT_HWS_PGA_GEN7;
482 break;
483 /*
484 * VCS2 actually doesn't exist on Gen7. Only shut up
485 * gcc switch check warning
486 */
487 case VCS2:
488 case VCS:
489 mmio = BSD_HWS_PGA_GEN7;
490 break;
491 case VECS:
492 mmio = VEBOX_HWS_PGA_GEN7;
493 break;
494 }
495 } else if (IS_GEN6(engine->dev)) {
496 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
497 } else {
498 /* XXX: gen8 returns to sanity */
499 mmio = RING_HWS_PGA(engine->mmio_base);
500 }
501
502 I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
503 POSTING_READ(mmio);
504
505 /*
506 * Flush the TLB for this page
507 *
508 * FIXME: These two bits have disappeared on gen8, so a question
509 * arises: do we still need this and if so how should we go about
510 * invalidating the TLB?
511 */
512 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
513 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
514
515 /* ring should be idle before issuing a sync flush*/
516 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
517
518 I915_WRITE(reg,
519 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
520 INSTPM_SYNC_FLUSH));
521 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
522 1000))
523 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
524 engine->name);
525 }
526 }
527
528 static bool stop_ring(struct intel_engine_cs *engine)
529 {
530 struct drm_i915_private *dev_priv = to_i915(engine->dev);
531
532 if (!IS_GEN2(engine->dev)) {
533 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
534 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
535 DRM_ERROR("%s : timed out trying to stop ring\n",
536 engine->name);
537 /* Sometimes we observe that the idle flag is not
538 * set even though the ring is empty. So double
539 * check before giving up.
540 */
541 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
542 return false;
543 }
544 }
545
546 I915_WRITE_CTL(engine, 0);
547 I915_WRITE_HEAD(engine, 0);
548 engine->write_tail(engine, 0);
549
550 if (!IS_GEN2(engine->dev)) {
551 (void)I915_READ_CTL(engine);
552 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
553 }
554
555 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
556 }
557
558 void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
559 {
560 memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
561 }
562
563 static int init_ring_common(struct intel_engine_cs *engine)
564 {
565 struct drm_device *dev = engine->dev;
566 struct drm_i915_private *dev_priv = dev->dev_private;
567 struct intel_ringbuffer *ringbuf = engine->buffer;
568 struct drm_i915_gem_object *obj = ringbuf->obj;
569 int ret = 0;
570
571 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
572
573 if (!stop_ring(engine)) {
574 /* G45 ring initialization often fails to reset head to zero */
575 DRM_DEBUG_KMS("%s head not reset to zero "
576 "ctl %08x head %08x tail %08x start %08x\n",
577 engine->name,
578 I915_READ_CTL(engine),
579 I915_READ_HEAD(engine),
580 I915_READ_TAIL(engine),
581 I915_READ_START(engine));
582
583 if (!stop_ring(engine)) {
584 DRM_ERROR("failed to set %s head to zero "
585 "ctl %08x head %08x tail %08x start %08x\n",
586 engine->name,
587 I915_READ_CTL(engine),
588 I915_READ_HEAD(engine),
589 I915_READ_TAIL(engine),
590 I915_READ_START(engine));
591 ret = -EIO;
592 goto out;
593 }
594 }
595
596 if (I915_NEED_GFX_HWS(dev))
597 intel_ring_setup_status_page(engine);
598 else
599 ring_setup_phys_status_page(engine);
600
601 /* Enforce ordering by reading HEAD register back */
602 I915_READ_HEAD(engine);
603
604 /* Initialize the ring. This must happen _after_ we've cleared the ring
605 * registers with the above sequence (the readback of the HEAD registers
606 * also enforces ordering), otherwise the hw might lose the new ring
607 * register values. */
608 I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
609
610 /* WaClearRingBufHeadRegAtInit:ctg,elk */
611 if (I915_READ_HEAD(engine))
612 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
613 engine->name, I915_READ_HEAD(engine));
614 I915_WRITE_HEAD(engine, 0);
615 (void)I915_READ_HEAD(engine);
616
617 I915_WRITE_CTL(engine,
618 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
619 | RING_VALID);
620
621 /* If the head is still not zero, the ring is dead */
622 if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
623 I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
624 (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
625 DRM_ERROR("%s initialization failed "
626 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
627 engine->name,
628 I915_READ_CTL(engine),
629 I915_READ_CTL(engine) & RING_VALID,
630 I915_READ_HEAD(engine), I915_READ_TAIL(engine),
631 I915_READ_START(engine),
632 (unsigned long)i915_gem_obj_ggtt_offset(obj));
633 ret = -EIO;
634 goto out;
635 }
636
637 ringbuf->last_retired_head = -1;
638 ringbuf->head = I915_READ_HEAD(engine);
639 ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
640 intel_ring_update_space(ringbuf);
641
642 intel_engine_init_hangcheck(engine);
643
644 out:
645 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
646
647 return ret;
648 }
649
650 void
651 intel_fini_pipe_control(struct intel_engine_cs *engine)
652 {
653 struct drm_device *dev = engine->dev;
654
655 if (engine->scratch.obj == NULL)
656 return;
657
658 if (INTEL_INFO(dev)->gen >= 5) {
659 kunmap(sg_page(engine->scratch.obj->pages->sgl));
660 i915_gem_object_ggtt_unpin(engine->scratch.obj);
661 }
662
663 drm_gem_object_unreference(&engine->scratch.obj->base);
664 engine->scratch.obj = NULL;
665 }
666
667 int
668 intel_init_pipe_control(struct intel_engine_cs *engine)
669 {
670 int ret;
671
672 WARN_ON(engine->scratch.obj);
673
674 engine->scratch.obj = i915_gem_alloc_object(engine->dev, 4096);
675 if (engine->scratch.obj == NULL) {
676 DRM_ERROR("Failed to allocate seqno page\n");
677 ret = -ENOMEM;
678 goto err;
679 }
680
681 ret = i915_gem_object_set_cache_level(engine->scratch.obj,
682 I915_CACHE_LLC);
683 if (ret)
684 goto err_unref;
685
686 ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
687 if (ret)
688 goto err_unref;
689
690 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
691 engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
692 if (engine->scratch.cpu_page == NULL) {
693 ret = -ENOMEM;
694 goto err_unpin;
695 }
696
697 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
698 engine->name, engine->scratch.gtt_offset);
699 return 0;
700
701 err_unpin:
702 i915_gem_object_ggtt_unpin(engine->scratch.obj);
703 err_unref:
704 drm_gem_object_unreference(&engine->scratch.obj->base);
705 err:
706 return ret;
707 }
708
709 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
710 {
711 int ret, i;
712 struct intel_engine_cs *engine = req->engine;
713 struct drm_device *dev = engine->dev;
714 struct drm_i915_private *dev_priv = dev->dev_private;
715 struct i915_workarounds *w = &dev_priv->workarounds;
716
717 if (w->count == 0)
718 return 0;
719
720 engine->gpu_caches_dirty = true;
721 ret = intel_ring_flush_all_caches(req);
722 if (ret)
723 return ret;
724
725 ret = intel_ring_begin(req, (w->count * 2 + 2));
726 if (ret)
727 return ret;
728
729 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
730 for (i = 0; i < w->count; i++) {
731 intel_ring_emit_reg(engine, w->reg[i].addr);
732 intel_ring_emit(engine, w->reg[i].value);
733 }
734 intel_ring_emit(engine, MI_NOOP);
735
736 intel_ring_advance(engine);
737
738 engine->gpu_caches_dirty = true;
739 ret = intel_ring_flush_all_caches(req);
740 if (ret)
741 return ret;
742
743 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
744
745 return 0;
746 }
747
748 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
749 {
750 int ret;
751
752 ret = intel_ring_workarounds_emit(req);
753 if (ret != 0)
754 return ret;
755
756 ret = i915_gem_render_state_init(req);
757 if (ret)
758 return ret;
759
760 return 0;
761 }
762
763 static int wa_add(struct drm_i915_private *dev_priv,
764 i915_reg_t addr,
765 const u32 mask, const u32 val)
766 {
767 const u32 idx = dev_priv->workarounds.count;
768
769 if (WARN_ON(idx >= I915_MAX_WA_REGS))
770 return -ENOSPC;
771
772 dev_priv->workarounds.reg[idx].addr = addr;
773 dev_priv->workarounds.reg[idx].value = val;
774 dev_priv->workarounds.reg[idx].mask = mask;
775
776 dev_priv->workarounds.count++;
777
778 return 0;
779 }
780
781 #define WA_REG(addr, mask, val) do { \
782 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
783 if (r) \
784 return r; \
785 } while (0)
786
787 #define WA_SET_BIT_MASKED(addr, mask) \
788 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
789
790 #define WA_CLR_BIT_MASKED(addr, mask) \
791 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
792
793 #define WA_SET_FIELD_MASKED(addr, mask, value) \
794 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
795
796 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
797 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
798
799 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
800
801 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
802 i915_reg_t reg)
803 {
804 struct drm_i915_private *dev_priv = engine->dev->dev_private;
805 struct i915_workarounds *wa = &dev_priv->workarounds;
806 const uint32_t index = wa->hw_whitelist_count[engine->id];
807
808 if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
809 return -EINVAL;
810
811 WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
812 i915_mmio_reg_offset(reg));
813 wa->hw_whitelist_count[engine->id]++;
814
815 return 0;
816 }
817
818 static int gen8_init_workarounds(struct intel_engine_cs *engine)
819 {
820 struct drm_device *dev = engine->dev;
821 struct drm_i915_private *dev_priv = dev->dev_private;
822
823 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
824
825 /* WaDisableAsyncFlipPerfMode:bdw,chv */
826 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
827
828 /* WaDisablePartialInstShootdown:bdw,chv */
829 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
830 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
831
832 /* Use Force Non-Coherent whenever executing a 3D context. This is a
833 * workaround for for a possible hang in the unlikely event a TLB
834 * invalidation occurs during a PSD flush.
835 */
836 /* WaForceEnableNonCoherent:bdw,chv */
837 /* WaHdcDisableFetchWhenMasked:bdw,chv */
838 WA_SET_BIT_MASKED(HDC_CHICKEN0,
839 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
840 HDC_FORCE_NON_COHERENT);
841
842 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
843 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
844 * polygons in the same 8x4 pixel/sample area to be processed without
845 * stalling waiting for the earlier ones to write to Hierarchical Z
846 * buffer."
847 *
848 * This optimization is off by default for BDW and CHV; turn it on.
849 */
850 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
851
852 /* Wa4x4STCOptimizationDisable:bdw,chv */
853 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
854
855 /*
856 * BSpec recommends 8x4 when MSAA is used,
857 * however in practice 16x4 seems fastest.
858 *
859 * Note that PS/WM thread counts depend on the WIZ hashing
860 * disable bit, which we don't touch here, but it's good
861 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
862 */
863 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
864 GEN6_WIZ_HASHING_MASK,
865 GEN6_WIZ_HASHING_16x4);
866
867 return 0;
868 }
869
870 static int bdw_init_workarounds(struct intel_engine_cs *engine)
871 {
872 int ret;
873 struct drm_device *dev = engine->dev;
874 struct drm_i915_private *dev_priv = dev->dev_private;
875
876 ret = gen8_init_workarounds(engine);
877 if (ret)
878 return ret;
879
880 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
881 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
882
883 /* WaDisableDopClockGating:bdw */
884 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
885 DOP_CLOCK_GATING_DISABLE);
886
887 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
888 GEN8_SAMPLER_POWER_BYPASS_DIS);
889
890 WA_SET_BIT_MASKED(HDC_CHICKEN0,
891 /* WaForceContextSaveRestoreNonCoherent:bdw */
892 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
893 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
894 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
895
896 return 0;
897 }
898
899 static int chv_init_workarounds(struct intel_engine_cs *engine)
900 {
901 int ret;
902 struct drm_device *dev = engine->dev;
903 struct drm_i915_private *dev_priv = dev->dev_private;
904
905 ret = gen8_init_workarounds(engine);
906 if (ret)
907 return ret;
908
909 /* WaDisableThreadStallDopClockGating:chv */
910 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
911
912 /* Improve HiZ throughput on CHV. */
913 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
914
915 return 0;
916 }
917
918 static int gen9_init_workarounds(struct intel_engine_cs *engine)
919 {
920 struct drm_device *dev = engine->dev;
921 struct drm_i915_private *dev_priv = dev->dev_private;
922 uint32_t tmp;
923 int ret;
924
925 /* WaEnableLbsSlaRetryTimerDecrement:skl */
926 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
927 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
928
929 /* WaDisableKillLogic:bxt,skl */
930 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
931 ECOCHK_DIS_TLB);
932
933 /* WaClearFlowControlGpgpuContextSave:skl,bxt */
934 /* WaDisablePartialInstShootdown:skl,bxt */
935 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
936 FLOW_CONTROL_ENABLE |
937 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
938
939 /* Syncing dependencies between camera and graphics:skl,bxt */
940 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
941 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
942
943 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
944 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
945 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
946 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
947 GEN9_DG_MIRROR_FIX_ENABLE);
948
949 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
950 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
951 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
952 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
953 GEN9_RHWO_OPTIMIZATION_DISABLE);
954 /*
955 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
956 * but we do that in per ctx batchbuffer as there is an issue
957 * with this register not getting restored on ctx restore
958 */
959 }
960
961 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
962 if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
963 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
964 GEN9_ENABLE_YV12_BUGFIX);
965
966 /* Wa4x4STCOptimizationDisable:skl,bxt */
967 /* WaDisablePartialResolveInVc:skl,bxt */
968 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
969 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
970
971 /* WaCcsTlbPrefetchDisable:skl,bxt */
972 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
973 GEN9_CCS_TLB_PREFETCH_ENABLE);
974
975 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
976 if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
977 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
978 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
979 PIXEL_MASK_CAMMING_DISABLE);
980
981 /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
982 tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
983 if (IS_SKL_REVID(dev, SKL_REVID_F0, SKL_REVID_F0) ||
984 IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
985 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
986 WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
987
988 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
989 if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
990 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
991 GEN8_SAMPLER_POWER_BYPASS_DIS);
992
993 /* WaDisableSTUnitPowerOptimization:skl,bxt */
994 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
995
996 /* WaOCLCoherentLineFlush:skl,bxt */
997 I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
998 GEN8_LQSC_FLUSH_COHERENT_LINES));
999
1000 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
1001 ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
1002 if (ret)
1003 return ret;
1004
1005 /* WaAllowUMDToModifyHDCChicken1:skl,bxt */
1006 ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1007 if (ret)
1008 return ret;
1009
1010 return 0;
1011 }
1012
1013 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1014 {
1015 struct drm_device *dev = engine->dev;
1016 struct drm_i915_private *dev_priv = dev->dev_private;
1017 u8 vals[3] = { 0, 0, 0 };
1018 unsigned int i;
1019
1020 for (i = 0; i < 3; i++) {
1021 u8 ss;
1022
1023 /*
1024 * Only consider slices where one, and only one, subslice has 7
1025 * EUs
1026 */
1027 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1028 continue;
1029
1030 /*
1031 * subslice_7eu[i] != 0 (because of the check above) and
1032 * ss_max == 4 (maximum number of subslices possible per slice)
1033 *
1034 * -> 0 <= ss <= 3;
1035 */
1036 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1037 vals[i] = 3 - ss;
1038 }
1039
1040 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1041 return 0;
1042
1043 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1044 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1045 GEN9_IZ_HASHING_MASK(2) |
1046 GEN9_IZ_HASHING_MASK(1) |
1047 GEN9_IZ_HASHING_MASK(0),
1048 GEN9_IZ_HASHING(2, vals[2]) |
1049 GEN9_IZ_HASHING(1, vals[1]) |
1050 GEN9_IZ_HASHING(0, vals[0]));
1051
1052 return 0;
1053 }
1054
1055 static int skl_init_workarounds(struct intel_engine_cs *engine)
1056 {
1057 int ret;
1058 struct drm_device *dev = engine->dev;
1059 struct drm_i915_private *dev_priv = dev->dev_private;
1060
1061 ret = gen9_init_workarounds(engine);
1062 if (ret)
1063 return ret;
1064
1065 /*
1066 * Actual WA is to disable percontext preemption granularity control
1067 * until D0 which is the default case so this is equivalent to
1068 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1069 */
1070 if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
1071 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1072 _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1073 }
1074
1075 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1076 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1077 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1078 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1079 }
1080
1081 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1082 * involving this register should also be added to WA batch as required.
1083 */
1084 if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1085 /* WaDisableLSQCROPERFforOCL:skl */
1086 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1087 GEN8_LQSC_RO_PERF_DIS);
1088
1089 /* WaEnableGapsTsvCreditFix:skl */
1090 if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1091 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1092 GEN9_GAPS_TSV_CREDIT_DISABLE));
1093 }
1094
1095 /* WaDisablePowerCompilerClockGating:skl */
1096 if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1097 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1098 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1099
1100 if (IS_SKL_REVID(dev, 0, SKL_REVID_F0)) {
1101 /*
1102 *Use Force Non-Coherent whenever executing a 3D context. This
1103 * is a workaround for a possible hang in the unlikely event
1104 * a TLB invalidation occurs during a PSD flush.
1105 */
1106 /* WaForceEnableNonCoherent:skl */
1107 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1108 HDC_FORCE_NON_COHERENT);
1109
1110 /* WaDisableHDCInvalidation:skl */
1111 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1112 BDW_DISABLE_HDC_INVALIDATION);
1113 }
1114
1115 /* WaBarrierPerformanceFixDisable:skl */
1116 if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1117 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1118 HDC_FENCE_DEST_SLM_DISABLE |
1119 HDC_BARRIER_PERFORMANCE_DISABLE);
1120
1121 /* WaDisableSbeCacheDispatchPortSharing:skl */
1122 if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1123 WA_SET_BIT_MASKED(
1124 GEN7_HALF_SLICE_CHICKEN1,
1125 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1126
1127 /* WaDisableLSQCROPERFforOCL:skl */
1128 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1129 if (ret)
1130 return ret;
1131
1132 return skl_tune_iz_hashing(engine);
1133 }
1134
1135 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1136 {
1137 int ret;
1138 struct drm_device *dev = engine->dev;
1139 struct drm_i915_private *dev_priv = dev->dev_private;
1140
1141 ret = gen9_init_workarounds(engine);
1142 if (ret)
1143 return ret;
1144
1145 /* WaStoreMultiplePTEenable:bxt */
1146 /* This is a requirement according to Hardware specification */
1147 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1148 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1149
1150 /* WaSetClckGatingDisableMedia:bxt */
1151 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1152 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1153 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1154 }
1155
1156 /* WaDisableThreadStallDopClockGating:bxt */
1157 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1158 STALL_DOP_GATING_DISABLE);
1159
1160 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1161 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1162 WA_SET_BIT_MASKED(
1163 GEN7_HALF_SLICE_CHICKEN1,
1164 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1165 }
1166
1167 /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1168 /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1169 /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1170 /* WaDisableLSQCROPERFforOCL:bxt */
1171 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1172 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1173 if (ret)
1174 return ret;
1175
1176 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1177 if (ret)
1178 return ret;
1179 }
1180
1181 return 0;
1182 }
1183
1184 int init_workarounds_ring(struct intel_engine_cs *engine)
1185 {
1186 struct drm_device *dev = engine->dev;
1187 struct drm_i915_private *dev_priv = dev->dev_private;
1188
1189 WARN_ON(engine->id != RCS);
1190
1191 dev_priv->workarounds.count = 0;
1192 dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1193
1194 if (IS_BROADWELL(dev))
1195 return bdw_init_workarounds(engine);
1196
1197 if (IS_CHERRYVIEW(dev))
1198 return chv_init_workarounds(engine);
1199
1200 if (IS_SKYLAKE(dev))
1201 return skl_init_workarounds(engine);
1202
1203 if (IS_BROXTON(dev))
1204 return bxt_init_workarounds(engine);
1205
1206 return 0;
1207 }
1208
1209 static int init_render_ring(struct intel_engine_cs *engine)
1210 {
1211 struct drm_device *dev = engine->dev;
1212 struct drm_i915_private *dev_priv = dev->dev_private;
1213 int ret = init_ring_common(engine);
1214 if (ret)
1215 return ret;
1216
1217 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1218 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1219 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1220
1221 /* We need to disable the AsyncFlip performance optimisations in order
1222 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1223 * programmed to '1' on all products.
1224 *
1225 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1226 */
1227 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1228 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1229
1230 /* Required for the hardware to program scanline values for waiting */
1231 /* WaEnableFlushTlbInvalidationMode:snb */
1232 if (INTEL_INFO(dev)->gen == 6)
1233 I915_WRITE(GFX_MODE,
1234 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1235
1236 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1237 if (IS_GEN7(dev))
1238 I915_WRITE(GFX_MODE_GEN7,
1239 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1240 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1241
1242 if (IS_GEN6(dev)) {
1243 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1244 * "If this bit is set, STCunit will have LRA as replacement
1245 * policy. [...] This bit must be reset. LRA replacement
1246 * policy is not supported."
1247 */
1248 I915_WRITE(CACHE_MODE_0,
1249 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1250 }
1251
1252 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1253 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1254
1255 if (HAS_L3_DPF(dev))
1256 I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
1257
1258 return init_workarounds_ring(engine);
1259 }
1260
1261 static void render_ring_cleanup(struct intel_engine_cs *engine)
1262 {
1263 struct drm_device *dev = engine->dev;
1264 struct drm_i915_private *dev_priv = dev->dev_private;
1265
1266 if (dev_priv->semaphore_obj) {
1267 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1268 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1269 dev_priv->semaphore_obj = NULL;
1270 }
1271
1272 intel_fini_pipe_control(engine);
1273 }
1274
1275 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1276 unsigned int num_dwords)
1277 {
1278 #define MBOX_UPDATE_DWORDS 8
1279 struct intel_engine_cs *signaller = signaller_req->engine;
1280 struct drm_device *dev = signaller->dev;
1281 struct drm_i915_private *dev_priv = dev->dev_private;
1282 struct intel_engine_cs *waiter;
1283 enum intel_engine_id id;
1284 int ret, num_rings;
1285
1286 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1287 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1288 #undef MBOX_UPDATE_DWORDS
1289
1290 ret = intel_ring_begin(signaller_req, num_dwords);
1291 if (ret)
1292 return ret;
1293
1294 for_each_engine_id(waiter, dev_priv, id) {
1295 u32 seqno;
1296 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1297 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1298 continue;
1299
1300 seqno = i915_gem_request_get_seqno(signaller_req);
1301 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1302 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1303 PIPE_CONTROL_QW_WRITE |
1304 PIPE_CONTROL_FLUSH_ENABLE);
1305 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1306 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1307 intel_ring_emit(signaller, seqno);
1308 intel_ring_emit(signaller, 0);
1309 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1310 MI_SEMAPHORE_TARGET(waiter->id));
1311 intel_ring_emit(signaller, 0);
1312 }
1313
1314 return 0;
1315 }
1316
1317 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1318 unsigned int num_dwords)
1319 {
1320 #define MBOX_UPDATE_DWORDS 6
1321 struct intel_engine_cs *signaller = signaller_req->engine;
1322 struct drm_device *dev = signaller->dev;
1323 struct drm_i915_private *dev_priv = dev->dev_private;
1324 struct intel_engine_cs *waiter;
1325 enum intel_engine_id id;
1326 int ret, num_rings;
1327
1328 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1329 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1330 #undef MBOX_UPDATE_DWORDS
1331
1332 ret = intel_ring_begin(signaller_req, num_dwords);
1333 if (ret)
1334 return ret;
1335
1336 for_each_engine_id(waiter, dev_priv, id) {
1337 u32 seqno;
1338 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1339 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1340 continue;
1341
1342 seqno = i915_gem_request_get_seqno(signaller_req);
1343 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1344 MI_FLUSH_DW_OP_STOREDW);
1345 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1346 MI_FLUSH_DW_USE_GTT);
1347 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1348 intel_ring_emit(signaller, seqno);
1349 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1350 MI_SEMAPHORE_TARGET(waiter->id));
1351 intel_ring_emit(signaller, 0);
1352 }
1353
1354 return 0;
1355 }
1356
1357 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1358 unsigned int num_dwords)
1359 {
1360 struct intel_engine_cs *signaller = signaller_req->engine;
1361 struct drm_device *dev = signaller->dev;
1362 struct drm_i915_private *dev_priv = dev->dev_private;
1363 struct intel_engine_cs *useless;
1364 enum intel_engine_id id;
1365 int ret, num_rings;
1366
1367 #define MBOX_UPDATE_DWORDS 3
1368 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1369 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1370 #undef MBOX_UPDATE_DWORDS
1371
1372 ret = intel_ring_begin(signaller_req, num_dwords);
1373 if (ret)
1374 return ret;
1375
1376 for_each_engine_id(useless, dev_priv, id) {
1377 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1378
1379 if (i915_mmio_reg_valid(mbox_reg)) {
1380 u32 seqno = i915_gem_request_get_seqno(signaller_req);
1381
1382 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1383 intel_ring_emit_reg(signaller, mbox_reg);
1384 intel_ring_emit(signaller, seqno);
1385 }
1386 }
1387
1388 /* If num_dwords was rounded, make sure the tail pointer is correct */
1389 if (num_rings % 2 == 0)
1390 intel_ring_emit(signaller, MI_NOOP);
1391
1392 return 0;
1393 }
1394
1395 /**
1396 * gen6_add_request - Update the semaphore mailbox registers
1397 *
1398 * @request - request to write to the ring
1399 *
1400 * Update the mailbox registers in the *other* rings with the current seqno.
1401 * This acts like a signal in the canonical semaphore.
1402 */
1403 static int
1404 gen6_add_request(struct drm_i915_gem_request *req)
1405 {
1406 struct intel_engine_cs *engine = req->engine;
1407 int ret;
1408
1409 if (engine->semaphore.signal)
1410 ret = engine->semaphore.signal(req, 4);
1411 else
1412 ret = intel_ring_begin(req, 4);
1413
1414 if (ret)
1415 return ret;
1416
1417 intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1418 intel_ring_emit(engine,
1419 I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1420 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1421 intel_ring_emit(engine, MI_USER_INTERRUPT);
1422 __intel_ring_advance(engine);
1423
1424 return 0;
1425 }
1426
1427 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1428 u32 seqno)
1429 {
1430 struct drm_i915_private *dev_priv = dev->dev_private;
1431 return dev_priv->last_seqno < seqno;
1432 }
1433
1434 /**
1435 * intel_ring_sync - sync the waiter to the signaller on seqno
1436 *
1437 * @waiter - ring that is waiting
1438 * @signaller - ring which has, or will signal
1439 * @seqno - seqno which the waiter will block on
1440 */
1441
1442 static int
1443 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1444 struct intel_engine_cs *signaller,
1445 u32 seqno)
1446 {
1447 struct intel_engine_cs *waiter = waiter_req->engine;
1448 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1449 int ret;
1450
1451 ret = intel_ring_begin(waiter_req, 4);
1452 if (ret)
1453 return ret;
1454
1455 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1456 MI_SEMAPHORE_GLOBAL_GTT |
1457 MI_SEMAPHORE_POLL |
1458 MI_SEMAPHORE_SAD_GTE_SDD);
1459 intel_ring_emit(waiter, seqno);
1460 intel_ring_emit(waiter,
1461 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1462 intel_ring_emit(waiter,
1463 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1464 intel_ring_advance(waiter);
1465 return 0;
1466 }
1467
1468 static int
1469 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1470 struct intel_engine_cs *signaller,
1471 u32 seqno)
1472 {
1473 struct intel_engine_cs *waiter = waiter_req->engine;
1474 u32 dw1 = MI_SEMAPHORE_MBOX |
1475 MI_SEMAPHORE_COMPARE |
1476 MI_SEMAPHORE_REGISTER;
1477 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1478 int ret;
1479
1480 /* Throughout all of the GEM code, seqno passed implies our current
1481 * seqno is >= the last seqno executed. However for hardware the
1482 * comparison is strictly greater than.
1483 */
1484 seqno -= 1;
1485
1486 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1487
1488 ret = intel_ring_begin(waiter_req, 4);
1489 if (ret)
1490 return ret;
1491
1492 /* If seqno wrap happened, omit the wait with no-ops */
1493 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1494 intel_ring_emit(waiter, dw1 | wait_mbox);
1495 intel_ring_emit(waiter, seqno);
1496 intel_ring_emit(waiter, 0);
1497 intel_ring_emit(waiter, MI_NOOP);
1498 } else {
1499 intel_ring_emit(waiter, MI_NOOP);
1500 intel_ring_emit(waiter, MI_NOOP);
1501 intel_ring_emit(waiter, MI_NOOP);
1502 intel_ring_emit(waiter, MI_NOOP);
1503 }
1504 intel_ring_advance(waiter);
1505
1506 return 0;
1507 }
1508
1509 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1510 do { \
1511 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1512 PIPE_CONTROL_DEPTH_STALL); \
1513 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1514 intel_ring_emit(ring__, 0); \
1515 intel_ring_emit(ring__, 0); \
1516 } while (0)
1517
1518 static int
1519 pc_render_add_request(struct drm_i915_gem_request *req)
1520 {
1521 struct intel_engine_cs *engine = req->engine;
1522 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1523 int ret;
1524
1525 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1526 * incoherent with writes to memory, i.e. completely fubar,
1527 * so we need to use PIPE_NOTIFY instead.
1528 *
1529 * However, we also need to workaround the qword write
1530 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1531 * memory before requesting an interrupt.
1532 */
1533 ret = intel_ring_begin(req, 32);
1534 if (ret)
1535 return ret;
1536
1537 intel_ring_emit(engine,
1538 GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1539 PIPE_CONTROL_WRITE_FLUSH |
1540 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1541 intel_ring_emit(engine,
1542 engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1543 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1544 intel_ring_emit(engine, 0);
1545 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1546 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1547 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1548 scratch_addr += 2 * CACHELINE_BYTES;
1549 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1550 scratch_addr += 2 * CACHELINE_BYTES;
1551 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1552 scratch_addr += 2 * CACHELINE_BYTES;
1553 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1554 scratch_addr += 2 * CACHELINE_BYTES;
1555 PIPE_CONTROL_FLUSH(engine, scratch_addr);
1556
1557 intel_ring_emit(engine,
1558 GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1559 PIPE_CONTROL_WRITE_FLUSH |
1560 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1561 PIPE_CONTROL_NOTIFY);
1562 intel_ring_emit(engine,
1563 engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1564 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1565 intel_ring_emit(engine, 0);
1566 __intel_ring_advance(engine);
1567
1568 return 0;
1569 }
1570
1571 static void
1572 gen6_seqno_barrier(struct intel_engine_cs *engine)
1573 {
1574 /* Workaround to force correct ordering between irq and seqno writes on
1575 * ivb (and maybe also on snb) by reading from a CS register (like
1576 * ACTHD) before reading the status page.
1577 *
1578 * Note that this effectively stalls the read by the time it takes to
1579 * do a memory transaction, which more or less ensures that the write
1580 * from the GPU has sufficient time to invalidate the CPU cacheline.
1581 * Alternatively we could delay the interrupt from the CS ring to give
1582 * the write time to land, but that would incur a delay after every
1583 * batch i.e. much more frequent than a delay when waiting for the
1584 * interrupt (with the same net latency).
1585 */
1586 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1587 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1588 }
1589
1590 static u32
1591 ring_get_seqno(struct intel_engine_cs *engine)
1592 {
1593 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1594 }
1595
1596 static void
1597 ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1598 {
1599 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1600 }
1601
1602 static u32
1603 pc_render_get_seqno(struct intel_engine_cs *engine)
1604 {
1605 return engine->scratch.cpu_page[0];
1606 }
1607
1608 static void
1609 pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1610 {
1611 engine->scratch.cpu_page[0] = seqno;
1612 }
1613
1614 static bool
1615 gen5_ring_get_irq(struct intel_engine_cs *engine)
1616 {
1617 struct drm_device *dev = engine->dev;
1618 struct drm_i915_private *dev_priv = dev->dev_private;
1619 unsigned long flags;
1620
1621 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1622 return false;
1623
1624 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1625 if (engine->irq_refcount++ == 0)
1626 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1627 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1628
1629 return true;
1630 }
1631
1632 static void
1633 gen5_ring_put_irq(struct intel_engine_cs *engine)
1634 {
1635 struct drm_device *dev = engine->dev;
1636 struct drm_i915_private *dev_priv = dev->dev_private;
1637 unsigned long flags;
1638
1639 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1640 if (--engine->irq_refcount == 0)
1641 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1642 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1643 }
1644
1645 static bool
1646 i9xx_ring_get_irq(struct intel_engine_cs *engine)
1647 {
1648 struct drm_device *dev = engine->dev;
1649 struct drm_i915_private *dev_priv = dev->dev_private;
1650 unsigned long flags;
1651
1652 if (!intel_irqs_enabled(dev_priv))
1653 return false;
1654
1655 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1656 if (engine->irq_refcount++ == 0) {
1657 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1658 I915_WRITE(IMR, dev_priv->irq_mask);
1659 POSTING_READ(IMR);
1660 }
1661 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1662
1663 return true;
1664 }
1665
1666 static void
1667 i9xx_ring_put_irq(struct intel_engine_cs *engine)
1668 {
1669 struct drm_device *dev = engine->dev;
1670 struct drm_i915_private *dev_priv = dev->dev_private;
1671 unsigned long flags;
1672
1673 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1674 if (--engine->irq_refcount == 0) {
1675 dev_priv->irq_mask |= engine->irq_enable_mask;
1676 I915_WRITE(IMR, dev_priv->irq_mask);
1677 POSTING_READ(IMR);
1678 }
1679 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1680 }
1681
1682 static bool
1683 i8xx_ring_get_irq(struct intel_engine_cs *engine)
1684 {
1685 struct drm_device *dev = engine->dev;
1686 struct drm_i915_private *dev_priv = dev->dev_private;
1687 unsigned long flags;
1688
1689 if (!intel_irqs_enabled(dev_priv))
1690 return false;
1691
1692 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1693 if (engine->irq_refcount++ == 0) {
1694 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1695 I915_WRITE16(IMR, dev_priv->irq_mask);
1696 POSTING_READ16(IMR);
1697 }
1698 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1699
1700 return true;
1701 }
1702
1703 static void
1704 i8xx_ring_put_irq(struct intel_engine_cs *engine)
1705 {
1706 struct drm_device *dev = engine->dev;
1707 struct drm_i915_private *dev_priv = dev->dev_private;
1708 unsigned long flags;
1709
1710 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1711 if (--engine->irq_refcount == 0) {
1712 dev_priv->irq_mask |= engine->irq_enable_mask;
1713 I915_WRITE16(IMR, dev_priv->irq_mask);
1714 POSTING_READ16(IMR);
1715 }
1716 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1717 }
1718
1719 static int
1720 bsd_ring_flush(struct drm_i915_gem_request *req,
1721 u32 invalidate_domains,
1722 u32 flush_domains)
1723 {
1724 struct intel_engine_cs *engine = req->engine;
1725 int ret;
1726
1727 ret = intel_ring_begin(req, 2);
1728 if (ret)
1729 return ret;
1730
1731 intel_ring_emit(engine, MI_FLUSH);
1732 intel_ring_emit(engine, MI_NOOP);
1733 intel_ring_advance(engine);
1734 return 0;
1735 }
1736
1737 static int
1738 i9xx_add_request(struct drm_i915_gem_request *req)
1739 {
1740 struct intel_engine_cs *engine = req->engine;
1741 int ret;
1742
1743 ret = intel_ring_begin(req, 4);
1744 if (ret)
1745 return ret;
1746
1747 intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1748 intel_ring_emit(engine,
1749 I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1750 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1751 intel_ring_emit(engine, MI_USER_INTERRUPT);
1752 __intel_ring_advance(engine);
1753
1754 return 0;
1755 }
1756
1757 static bool
1758 gen6_ring_get_irq(struct intel_engine_cs *engine)
1759 {
1760 struct drm_device *dev = engine->dev;
1761 struct drm_i915_private *dev_priv = dev->dev_private;
1762 unsigned long flags;
1763
1764 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1765 return false;
1766
1767 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1768 if (engine->irq_refcount++ == 0) {
1769 if (HAS_L3_DPF(dev) && engine->id == RCS)
1770 I915_WRITE_IMR(engine,
1771 ~(engine->irq_enable_mask |
1772 GT_PARITY_ERROR(dev)));
1773 else
1774 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1775 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1776 }
1777 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1778
1779 return true;
1780 }
1781
1782 static void
1783 gen6_ring_put_irq(struct intel_engine_cs *engine)
1784 {
1785 struct drm_device *dev = engine->dev;
1786 struct drm_i915_private *dev_priv = dev->dev_private;
1787 unsigned long flags;
1788
1789 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1790 if (--engine->irq_refcount == 0) {
1791 if (HAS_L3_DPF(dev) && engine->id == RCS)
1792 I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
1793 else
1794 I915_WRITE_IMR(engine, ~0);
1795 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1796 }
1797 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1798 }
1799
1800 static bool
1801 hsw_vebox_get_irq(struct intel_engine_cs *engine)
1802 {
1803 struct drm_device *dev = engine->dev;
1804 struct drm_i915_private *dev_priv = dev->dev_private;
1805 unsigned long flags;
1806
1807 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1808 return false;
1809
1810 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1811 if (engine->irq_refcount++ == 0) {
1812 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1813 gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
1814 }
1815 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1816
1817 return true;
1818 }
1819
1820 static void
1821 hsw_vebox_put_irq(struct intel_engine_cs *engine)
1822 {
1823 struct drm_device *dev = engine->dev;
1824 struct drm_i915_private *dev_priv = dev->dev_private;
1825 unsigned long flags;
1826
1827 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1828 if (--engine->irq_refcount == 0) {
1829 I915_WRITE_IMR(engine, ~0);
1830 gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
1831 }
1832 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1833 }
1834
1835 static bool
1836 gen8_ring_get_irq(struct intel_engine_cs *engine)
1837 {
1838 struct drm_device *dev = engine->dev;
1839 struct drm_i915_private *dev_priv = dev->dev_private;
1840 unsigned long flags;
1841
1842 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1843 return false;
1844
1845 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1846 if (engine->irq_refcount++ == 0) {
1847 if (HAS_L3_DPF(dev) && engine->id == RCS) {
1848 I915_WRITE_IMR(engine,
1849 ~(engine->irq_enable_mask |
1850 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1851 } else {
1852 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1853 }
1854 POSTING_READ(RING_IMR(engine->mmio_base));
1855 }
1856 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1857
1858 return true;
1859 }
1860
1861 static void
1862 gen8_ring_put_irq(struct intel_engine_cs *engine)
1863 {
1864 struct drm_device *dev = engine->dev;
1865 struct drm_i915_private *dev_priv = dev->dev_private;
1866 unsigned long flags;
1867
1868 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1869 if (--engine->irq_refcount == 0) {
1870 if (HAS_L3_DPF(dev) && engine->id == RCS) {
1871 I915_WRITE_IMR(engine,
1872 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1873 } else {
1874 I915_WRITE_IMR(engine, ~0);
1875 }
1876 POSTING_READ(RING_IMR(engine->mmio_base));
1877 }
1878 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1879 }
1880
1881 static int
1882 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1883 u64 offset, u32 length,
1884 unsigned dispatch_flags)
1885 {
1886 struct intel_engine_cs *engine = req->engine;
1887 int ret;
1888
1889 ret = intel_ring_begin(req, 2);
1890 if (ret)
1891 return ret;
1892
1893 intel_ring_emit(engine,
1894 MI_BATCH_BUFFER_START |
1895 MI_BATCH_GTT |
1896 (dispatch_flags & I915_DISPATCH_SECURE ?
1897 0 : MI_BATCH_NON_SECURE_I965));
1898 intel_ring_emit(engine, offset);
1899 intel_ring_advance(engine);
1900
1901 return 0;
1902 }
1903
1904 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1905 #define I830_BATCH_LIMIT (256*1024)
1906 #define I830_TLB_ENTRIES (2)
1907 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1908 static int
1909 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1910 u64 offset, u32 len,
1911 unsigned dispatch_flags)
1912 {
1913 struct intel_engine_cs *engine = req->engine;
1914 u32 cs_offset = engine->scratch.gtt_offset;
1915 int ret;
1916
1917 ret = intel_ring_begin(req, 6);
1918 if (ret)
1919 return ret;
1920
1921 /* Evict the invalid PTE TLBs */
1922 intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1923 intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1924 intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1925 intel_ring_emit(engine, cs_offset);
1926 intel_ring_emit(engine, 0xdeadbeef);
1927 intel_ring_emit(engine, MI_NOOP);
1928 intel_ring_advance(engine);
1929
1930 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1931 if (len > I830_BATCH_LIMIT)
1932 return -ENOSPC;
1933
1934 ret = intel_ring_begin(req, 6 + 2);
1935 if (ret)
1936 return ret;
1937
1938 /* Blit the batch (which has now all relocs applied) to the
1939 * stable batch scratch bo area (so that the CS never
1940 * stumbles over its tlb invalidation bug) ...
1941 */
1942 intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1943 intel_ring_emit(engine,
1944 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1945 intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1946 intel_ring_emit(engine, cs_offset);
1947 intel_ring_emit(engine, 4096);
1948 intel_ring_emit(engine, offset);
1949
1950 intel_ring_emit(engine, MI_FLUSH);
1951 intel_ring_emit(engine, MI_NOOP);
1952 intel_ring_advance(engine);
1953
1954 /* ... and execute it. */
1955 offset = cs_offset;
1956 }
1957
1958 ret = intel_ring_begin(req, 2);
1959 if (ret)
1960 return ret;
1961
1962 intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1963 intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1964 0 : MI_BATCH_NON_SECURE));
1965 intel_ring_advance(engine);
1966
1967 return 0;
1968 }
1969
1970 static int
1971 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1972 u64 offset, u32 len,
1973 unsigned dispatch_flags)
1974 {
1975 struct intel_engine_cs *engine = req->engine;
1976 int ret;
1977
1978 ret = intel_ring_begin(req, 2);
1979 if (ret)
1980 return ret;
1981
1982 intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1983 intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1984 0 : MI_BATCH_NON_SECURE));
1985 intel_ring_advance(engine);
1986
1987 return 0;
1988 }
1989
1990 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1991 {
1992 struct drm_i915_private *dev_priv = to_i915(engine->dev);
1993
1994 if (!dev_priv->status_page_dmah)
1995 return;
1996
1997 drm_pci_free(engine->dev, dev_priv->status_page_dmah);
1998 engine->status_page.page_addr = NULL;
1999 }
2000
2001 static void cleanup_status_page(struct intel_engine_cs *engine)
2002 {
2003 struct drm_i915_gem_object *obj;
2004
2005 obj = engine->status_page.obj;
2006 if (obj == NULL)
2007 return;
2008
2009 kunmap(sg_page(obj->pages->sgl));
2010 i915_gem_object_ggtt_unpin(obj);
2011 drm_gem_object_unreference(&obj->base);
2012 engine->status_page.obj = NULL;
2013 }
2014
2015 static int init_status_page(struct intel_engine_cs *engine)
2016 {
2017 struct drm_i915_gem_object *obj = engine->status_page.obj;
2018
2019 if (obj == NULL) {
2020 unsigned flags;
2021 int ret;
2022
2023 obj = i915_gem_alloc_object(engine->dev, 4096);
2024 if (obj == NULL) {
2025 DRM_ERROR("Failed to allocate status page\n");
2026 return -ENOMEM;
2027 }
2028
2029 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2030 if (ret)
2031 goto err_unref;
2032
2033 flags = 0;
2034 if (!HAS_LLC(engine->dev))
2035 /* On g33, we cannot place HWS above 256MiB, so
2036 * restrict its pinning to the low mappable arena.
2037 * Though this restriction is not documented for
2038 * gen4, gen5, or byt, they also behave similarly
2039 * and hang if the HWS is placed at the top of the
2040 * GTT. To generalise, it appears that all !llc
2041 * platforms have issues with us placing the HWS
2042 * above the mappable region (even though we never
2043 * actualy map it).
2044 */
2045 flags |= PIN_MAPPABLE;
2046 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2047 if (ret) {
2048 err_unref:
2049 drm_gem_object_unreference(&obj->base);
2050 return ret;
2051 }
2052
2053 engine->status_page.obj = obj;
2054 }
2055
2056 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
2057 engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
2058 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2059
2060 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2061 engine->name, engine->status_page.gfx_addr);
2062
2063 return 0;
2064 }
2065
2066 static int init_phys_status_page(struct intel_engine_cs *engine)
2067 {
2068 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2069
2070 if (!dev_priv->status_page_dmah) {
2071 dev_priv->status_page_dmah =
2072 drm_pci_alloc(engine->dev, PAGE_SIZE, PAGE_SIZE);
2073 if (!dev_priv->status_page_dmah)
2074 return -ENOMEM;
2075 }
2076
2077 engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2078 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2079
2080 return 0;
2081 }
2082
2083 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2084 {
2085 if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2086 i915_gem_object_unpin_map(ringbuf->obj);
2087 else
2088 iounmap(ringbuf->virtual_start);
2089 ringbuf->vma = NULL;
2090 i915_gem_object_ggtt_unpin(ringbuf->obj);
2091 }
2092
2093 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2094 struct intel_ringbuffer *ringbuf)
2095 {
2096 struct drm_i915_private *dev_priv = to_i915(dev);
2097 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2098 struct drm_i915_gem_object *obj = ringbuf->obj;
2099 int ret;
2100
2101 if (HAS_LLC(dev_priv) && !obj->stolen) {
2102 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, 0);
2103 if (ret)
2104 return ret;
2105
2106 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2107 if (ret)
2108 goto err_unpin;
2109
2110 ringbuf->virtual_start = i915_gem_object_pin_map(obj);
2111 if (ringbuf->virtual_start == NULL) {
2112 ret = -ENOMEM;
2113 goto err_unpin;
2114 }
2115 } else {
2116 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2117 if (ret)
2118 return ret;
2119
2120 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2121 if (ret)
2122 goto err_unpin;
2123
2124 /* Access through the GTT requires the device to be awake. */
2125 assert_rpm_wakelock_held(dev_priv);
2126
2127 ringbuf->virtual_start = ioremap_wc(ggtt->mappable_base +
2128 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2129 if (ringbuf->virtual_start == NULL) {
2130 ret = -ENOMEM;
2131 goto err_unpin;
2132 }
2133 }
2134
2135 ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2136 return 0;
2137
2138 err_unpin:
2139 i915_gem_object_ggtt_unpin(obj);
2140 return ret;
2141 }
2142
2143 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2144 {
2145 drm_gem_object_unreference(&ringbuf->obj->base);
2146 ringbuf->obj = NULL;
2147 }
2148
2149 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2150 struct intel_ringbuffer *ringbuf)
2151 {
2152 struct drm_i915_gem_object *obj;
2153
2154 obj = NULL;
2155 if (!HAS_LLC(dev))
2156 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2157 if (obj == NULL)
2158 obj = i915_gem_alloc_object(dev, ringbuf->size);
2159 if (obj == NULL)
2160 return -ENOMEM;
2161
2162 /* mark ring buffers as read-only from GPU side by default */
2163 obj->gt_ro = 1;
2164
2165 ringbuf->obj = obj;
2166
2167 return 0;
2168 }
2169
2170 struct intel_ringbuffer *
2171 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2172 {
2173 struct intel_ringbuffer *ring;
2174 int ret;
2175
2176 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2177 if (ring == NULL) {
2178 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2179 engine->name);
2180 return ERR_PTR(-ENOMEM);
2181 }
2182
2183 ring->engine = engine;
2184 list_add(&ring->link, &engine->buffers);
2185
2186 ring->size = size;
2187 /* Workaround an erratum on the i830 which causes a hang if
2188 * the TAIL pointer points to within the last 2 cachelines
2189 * of the buffer.
2190 */
2191 ring->effective_size = size;
2192 if (IS_I830(engine->dev) || IS_845G(engine->dev))
2193 ring->effective_size -= 2 * CACHELINE_BYTES;
2194
2195 ring->last_retired_head = -1;
2196 intel_ring_update_space(ring);
2197
2198 ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2199 if (ret) {
2200 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2201 engine->name, ret);
2202 list_del(&ring->link);
2203 kfree(ring);
2204 return ERR_PTR(ret);
2205 }
2206
2207 return ring;
2208 }
2209
2210 void
2211 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2212 {
2213 intel_destroy_ringbuffer_obj(ring);
2214 list_del(&ring->link);
2215 kfree(ring);
2216 }
2217
2218 static int intel_init_ring_buffer(struct drm_device *dev,
2219 struct intel_engine_cs *engine)
2220 {
2221 struct intel_ringbuffer *ringbuf;
2222 int ret;
2223
2224 WARN_ON(engine->buffer);
2225
2226 engine->dev = dev;
2227 INIT_LIST_HEAD(&engine->active_list);
2228 INIT_LIST_HEAD(&engine->request_list);
2229 INIT_LIST_HEAD(&engine->execlist_queue);
2230 INIT_LIST_HEAD(&engine->buffers);
2231 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2232 memset(engine->semaphore.sync_seqno, 0,
2233 sizeof(engine->semaphore.sync_seqno));
2234
2235 init_waitqueue_head(&engine->irq_queue);
2236
2237 ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2238 if (IS_ERR(ringbuf)) {
2239 ret = PTR_ERR(ringbuf);
2240 goto error;
2241 }
2242 engine->buffer = ringbuf;
2243
2244 if (I915_NEED_GFX_HWS(dev)) {
2245 ret = init_status_page(engine);
2246 if (ret)
2247 goto error;
2248 } else {
2249 WARN_ON(engine->id != RCS);
2250 ret = init_phys_status_page(engine);
2251 if (ret)
2252 goto error;
2253 }
2254
2255 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2256 if (ret) {
2257 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2258 engine->name, ret);
2259 intel_destroy_ringbuffer_obj(ringbuf);
2260 goto error;
2261 }
2262
2263 ret = i915_cmd_parser_init_ring(engine);
2264 if (ret)
2265 goto error;
2266
2267 return 0;
2268
2269 error:
2270 intel_cleanup_engine(engine);
2271 return ret;
2272 }
2273
2274 void intel_cleanup_engine(struct intel_engine_cs *engine)
2275 {
2276 struct drm_i915_private *dev_priv;
2277
2278 if (!intel_engine_initialized(engine))
2279 return;
2280
2281 dev_priv = to_i915(engine->dev);
2282
2283 if (engine->buffer) {
2284 intel_stop_engine(engine);
2285 WARN_ON(!IS_GEN2(engine->dev) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2286
2287 intel_unpin_ringbuffer_obj(engine->buffer);
2288 intel_ringbuffer_free(engine->buffer);
2289 engine->buffer = NULL;
2290 }
2291
2292 if (engine->cleanup)
2293 engine->cleanup(engine);
2294
2295 if (I915_NEED_GFX_HWS(engine->dev)) {
2296 cleanup_status_page(engine);
2297 } else {
2298 WARN_ON(engine->id != RCS);
2299 cleanup_phys_status_page(engine);
2300 }
2301
2302 i915_cmd_parser_fini_ring(engine);
2303 i915_gem_batch_pool_fini(&engine->batch_pool);
2304 engine->dev = NULL;
2305 }
2306
2307 static int ring_wait_for_space(struct intel_engine_cs *engine, int n)
2308 {
2309 struct intel_ringbuffer *ringbuf = engine->buffer;
2310 struct drm_i915_gem_request *request;
2311 unsigned space;
2312 int ret;
2313
2314 if (intel_ring_space(ringbuf) >= n)
2315 return 0;
2316
2317 /* The whole point of reserving space is to not wait! */
2318 WARN_ON(ringbuf->reserved_in_use);
2319
2320 list_for_each_entry(request, &engine->request_list, list) {
2321 space = __intel_ring_space(request->postfix, ringbuf->tail,
2322 ringbuf->size);
2323 if (space >= n)
2324 break;
2325 }
2326
2327 if (WARN_ON(&request->list == &engine->request_list))
2328 return -ENOSPC;
2329
2330 ret = i915_wait_request(request);
2331 if (ret)
2332 return ret;
2333
2334 ringbuf->space = space;
2335 return 0;
2336 }
2337
2338 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2339 {
2340 uint32_t __iomem *virt;
2341 int rem = ringbuf->size - ringbuf->tail;
2342
2343 virt = ringbuf->virtual_start + ringbuf->tail;
2344 rem /= 4;
2345 while (rem--)
2346 iowrite32(MI_NOOP, virt++);
2347
2348 ringbuf->tail = 0;
2349 intel_ring_update_space(ringbuf);
2350 }
2351
2352 int intel_engine_idle(struct intel_engine_cs *engine)
2353 {
2354 struct drm_i915_gem_request *req;
2355
2356 /* Wait upon the last request to be completed */
2357 if (list_empty(&engine->request_list))
2358 return 0;
2359
2360 req = list_entry(engine->request_list.prev,
2361 struct drm_i915_gem_request,
2362 list);
2363
2364 /* Make sure we do not trigger any retires */
2365 return __i915_wait_request(req,
2366 atomic_read(&to_i915(engine->dev)->gpu_error.reset_counter),
2367 to_i915(engine->dev)->mm.interruptible,
2368 NULL, NULL);
2369 }
2370
2371 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2372 {
2373 request->ringbuf = request->engine->buffer;
2374 return 0;
2375 }
2376
2377 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2378 {
2379 /*
2380 * The first call merely notes the reserve request and is common for
2381 * all back ends. The subsequent localised _begin() call actually
2382 * ensures that the reservation is available. Without the begin, if
2383 * the request creator immediately submitted the request without
2384 * adding any commands to it then there might not actually be
2385 * sufficient room for the submission commands.
2386 */
2387 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2388
2389 return intel_ring_begin(request, 0);
2390 }
2391
2392 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2393 {
2394 WARN_ON(ringbuf->reserved_size);
2395 WARN_ON(ringbuf->reserved_in_use);
2396
2397 ringbuf->reserved_size = size;
2398 }
2399
2400 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2401 {
2402 WARN_ON(ringbuf->reserved_in_use);
2403
2404 ringbuf->reserved_size = 0;
2405 ringbuf->reserved_in_use = false;
2406 }
2407
2408 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2409 {
2410 WARN_ON(ringbuf->reserved_in_use);
2411
2412 ringbuf->reserved_in_use = true;
2413 ringbuf->reserved_tail = ringbuf->tail;
2414 }
2415
2416 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2417 {
2418 WARN_ON(!ringbuf->reserved_in_use);
2419 if (ringbuf->tail > ringbuf->reserved_tail) {
2420 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2421 "request reserved size too small: %d vs %d!\n",
2422 ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2423 } else {
2424 /*
2425 * The ring was wrapped while the reserved space was in use.
2426 * That means that some unknown amount of the ring tail was
2427 * no-op filled and skipped. Thus simply adding the ring size
2428 * to the tail and doing the above space check will not work.
2429 * Rather than attempt to track how much tail was skipped,
2430 * it is much simpler to say that also skipping the sanity
2431 * check every once in a while is not a big issue.
2432 */
2433 }
2434
2435 ringbuf->reserved_size = 0;
2436 ringbuf->reserved_in_use = false;
2437 }
2438
2439 static int __intel_ring_prepare(struct intel_engine_cs *engine, int bytes)
2440 {
2441 struct intel_ringbuffer *ringbuf = engine->buffer;
2442 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2443 int remain_actual = ringbuf->size - ringbuf->tail;
2444 int ret, total_bytes, wait_bytes = 0;
2445 bool need_wrap = false;
2446
2447 if (ringbuf->reserved_in_use)
2448 total_bytes = bytes;
2449 else
2450 total_bytes = bytes + ringbuf->reserved_size;
2451
2452 if (unlikely(bytes > remain_usable)) {
2453 /*
2454 * Not enough space for the basic request. So need to flush
2455 * out the remainder and then wait for base + reserved.
2456 */
2457 wait_bytes = remain_actual + total_bytes;
2458 need_wrap = true;
2459 } else {
2460 if (unlikely(total_bytes > remain_usable)) {
2461 /*
2462 * The base request will fit but the reserved space
2463 * falls off the end. So don't need an immediate wrap
2464 * and only need to effectively wait for the reserved
2465 * size space from the start of ringbuffer.
2466 */
2467 wait_bytes = remain_actual + ringbuf->reserved_size;
2468 } else if (total_bytes > ringbuf->space) {
2469 /* No wrapping required, just waiting. */
2470 wait_bytes = total_bytes;
2471 }
2472 }
2473
2474 if (wait_bytes) {
2475 ret = ring_wait_for_space(engine, wait_bytes);
2476 if (unlikely(ret))
2477 return ret;
2478
2479 if (need_wrap)
2480 __wrap_ring_buffer(ringbuf);
2481 }
2482
2483 return 0;
2484 }
2485
2486 int intel_ring_begin(struct drm_i915_gem_request *req,
2487 int num_dwords)
2488 {
2489 struct intel_engine_cs *engine;
2490 struct drm_i915_private *dev_priv;
2491 int ret;
2492
2493 WARN_ON(req == NULL);
2494 engine = req->engine;
2495 dev_priv = req->i915;
2496
2497 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2498 dev_priv->mm.interruptible);
2499 if (ret)
2500 return ret;
2501
2502 ret = __intel_ring_prepare(engine, num_dwords * sizeof(uint32_t));
2503 if (ret)
2504 return ret;
2505
2506 engine->buffer->space -= num_dwords * sizeof(uint32_t);
2507 return 0;
2508 }
2509
2510 /* Align the ring tail to a cacheline boundary */
2511 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2512 {
2513 struct intel_engine_cs *engine = req->engine;
2514 int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2515 int ret;
2516
2517 if (num_dwords == 0)
2518 return 0;
2519
2520 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2521 ret = intel_ring_begin(req, num_dwords);
2522 if (ret)
2523 return ret;
2524
2525 while (num_dwords--)
2526 intel_ring_emit(engine, MI_NOOP);
2527
2528 intel_ring_advance(engine);
2529
2530 return 0;
2531 }
2532
2533 void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2534 {
2535 struct drm_i915_private *dev_priv = to_i915(engine->dev);
2536
2537 /* Our semaphore implementation is strictly monotonic (i.e. we proceed
2538 * so long as the semaphore value in the register/page is greater
2539 * than the sync value), so whenever we reset the seqno,
2540 * so long as we reset the tracking semaphore value to 0, it will
2541 * always be before the next request's seqno. If we don't reset
2542 * the semaphore value, then when the seqno moves backwards all
2543 * future waits will complete instantly (causing rendering corruption).
2544 */
2545 if (INTEL_INFO(dev_priv)->gen == 6 || INTEL_INFO(dev_priv)->gen == 7) {
2546 I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
2547 I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2548 if (HAS_VEBOX(dev_priv))
2549 I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2550 }
2551 if (dev_priv->semaphore_obj) {
2552 struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
2553 struct page *page = i915_gem_object_get_dirty_page(obj, 0);
2554 void *semaphores = kmap(page);
2555 memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
2556 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
2557 kunmap(page);
2558 }
2559 memset(engine->semaphore.sync_seqno, 0,
2560 sizeof(engine->semaphore.sync_seqno));
2561
2562 engine->set_seqno(engine, seqno);
2563 engine->last_submitted_seqno = seqno;
2564
2565 engine->hangcheck.seqno = seqno;
2566 }
2567
2568 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2569 u32 value)
2570 {
2571 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2572
2573 /* Every tail move must follow the sequence below */
2574
2575 /* Disable notification that the ring is IDLE. The GT
2576 * will then assume that it is busy and bring it out of rc6.
2577 */
2578 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2579 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2580
2581 /* Clear the context id. Here be magic! */
2582 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2583
2584 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2585 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2586 GEN6_BSD_SLEEP_INDICATOR) == 0,
2587 50))
2588 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2589
2590 /* Now that the ring is fully powered up, update the tail */
2591 I915_WRITE_TAIL(engine, value);
2592 POSTING_READ(RING_TAIL(engine->mmio_base));
2593
2594 /* Let the ring send IDLE messages to the GT again,
2595 * and so let it sleep to conserve power when idle.
2596 */
2597 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2598 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2599 }
2600
2601 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2602 u32 invalidate, u32 flush)
2603 {
2604 struct intel_engine_cs *engine = req->engine;
2605 uint32_t cmd;
2606 int ret;
2607
2608 ret = intel_ring_begin(req, 4);
2609 if (ret)
2610 return ret;
2611
2612 cmd = MI_FLUSH_DW;
2613 if (INTEL_INFO(engine->dev)->gen >= 8)
2614 cmd += 1;
2615
2616 /* We always require a command barrier so that subsequent
2617 * commands, such as breadcrumb interrupts, are strictly ordered
2618 * wrt the contents of the write cache being flushed to memory
2619 * (and thus being coherent from the CPU).
2620 */
2621 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2622
2623 /*
2624 * Bspec vol 1c.5 - video engine command streamer:
2625 * "If ENABLED, all TLBs will be invalidated once the flush
2626 * operation is complete. This bit is only valid when the
2627 * Post-Sync Operation field is a value of 1h or 3h."
2628 */
2629 if (invalidate & I915_GEM_GPU_DOMAINS)
2630 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2631
2632 intel_ring_emit(engine, cmd);
2633 intel_ring_emit(engine,
2634 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2635 if (INTEL_INFO(engine->dev)->gen >= 8) {
2636 intel_ring_emit(engine, 0); /* upper addr */
2637 intel_ring_emit(engine, 0); /* value */
2638 } else {
2639 intel_ring_emit(engine, 0);
2640 intel_ring_emit(engine, MI_NOOP);
2641 }
2642 intel_ring_advance(engine);
2643 return 0;
2644 }
2645
2646 static int
2647 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2648 u64 offset, u32 len,
2649 unsigned dispatch_flags)
2650 {
2651 struct intel_engine_cs *engine = req->engine;
2652 bool ppgtt = USES_PPGTT(engine->dev) &&
2653 !(dispatch_flags & I915_DISPATCH_SECURE);
2654 int ret;
2655
2656 ret = intel_ring_begin(req, 4);
2657 if (ret)
2658 return ret;
2659
2660 /* FIXME(BDW): Address space and security selectors. */
2661 intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2662 (dispatch_flags & I915_DISPATCH_RS ?
2663 MI_BATCH_RESOURCE_STREAMER : 0));
2664 intel_ring_emit(engine, lower_32_bits(offset));
2665 intel_ring_emit(engine, upper_32_bits(offset));
2666 intel_ring_emit(engine, MI_NOOP);
2667 intel_ring_advance(engine);
2668
2669 return 0;
2670 }
2671
2672 static int
2673 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2674 u64 offset, u32 len,
2675 unsigned dispatch_flags)
2676 {
2677 struct intel_engine_cs *engine = req->engine;
2678 int ret;
2679
2680 ret = intel_ring_begin(req, 2);
2681 if (ret)
2682 return ret;
2683
2684 intel_ring_emit(engine,
2685 MI_BATCH_BUFFER_START |
2686 (dispatch_flags & I915_DISPATCH_SECURE ?
2687 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2688 (dispatch_flags & I915_DISPATCH_RS ?
2689 MI_BATCH_RESOURCE_STREAMER : 0));
2690 /* bit0-7 is the length on GEN6+ */
2691 intel_ring_emit(engine, offset);
2692 intel_ring_advance(engine);
2693
2694 return 0;
2695 }
2696
2697 static int
2698 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2699 u64 offset, u32 len,
2700 unsigned dispatch_flags)
2701 {
2702 struct intel_engine_cs *engine = req->engine;
2703 int ret;
2704
2705 ret = intel_ring_begin(req, 2);
2706 if (ret)
2707 return ret;
2708
2709 intel_ring_emit(engine,
2710 MI_BATCH_BUFFER_START |
2711 (dispatch_flags & I915_DISPATCH_SECURE ?
2712 0 : MI_BATCH_NON_SECURE_I965));
2713 /* bit0-7 is the length on GEN6+ */
2714 intel_ring_emit(engine, offset);
2715 intel_ring_advance(engine);
2716
2717 return 0;
2718 }
2719
2720 /* Blitter support (SandyBridge+) */
2721
2722 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2723 u32 invalidate, u32 flush)
2724 {
2725 struct intel_engine_cs *engine = req->engine;
2726 struct drm_device *dev = engine->dev;
2727 uint32_t cmd;
2728 int ret;
2729
2730 ret = intel_ring_begin(req, 4);
2731 if (ret)
2732 return ret;
2733
2734 cmd = MI_FLUSH_DW;
2735 if (INTEL_INFO(dev)->gen >= 8)
2736 cmd += 1;
2737
2738 /* We always require a command barrier so that subsequent
2739 * commands, such as breadcrumb interrupts, are strictly ordered
2740 * wrt the contents of the write cache being flushed to memory
2741 * (and thus being coherent from the CPU).
2742 */
2743 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2744
2745 /*
2746 * Bspec vol 1c.3 - blitter engine command streamer:
2747 * "If ENABLED, all TLBs will be invalidated once the flush
2748 * operation is complete. This bit is only valid when the
2749 * Post-Sync Operation field is a value of 1h or 3h."
2750 */
2751 if (invalidate & I915_GEM_DOMAIN_RENDER)
2752 cmd |= MI_INVALIDATE_TLB;
2753 intel_ring_emit(engine, cmd);
2754 intel_ring_emit(engine,
2755 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2756 if (INTEL_INFO(dev)->gen >= 8) {
2757 intel_ring_emit(engine, 0); /* upper addr */
2758 intel_ring_emit(engine, 0); /* value */
2759 } else {
2760 intel_ring_emit(engine, 0);
2761 intel_ring_emit(engine, MI_NOOP);
2762 }
2763 intel_ring_advance(engine);
2764
2765 return 0;
2766 }
2767
2768 int intel_init_render_ring_buffer(struct drm_device *dev)
2769 {
2770 struct drm_i915_private *dev_priv = dev->dev_private;
2771 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2772 struct drm_i915_gem_object *obj;
2773 int ret;
2774
2775 engine->name = "render ring";
2776 engine->id = RCS;
2777 engine->exec_id = I915_EXEC_RENDER;
2778 engine->mmio_base = RENDER_RING_BASE;
2779
2780 if (INTEL_INFO(dev)->gen >= 8) {
2781 if (i915_semaphore_is_enabled(dev)) {
2782 obj = i915_gem_alloc_object(dev, 4096);
2783 if (obj == NULL) {
2784 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2785 i915.semaphores = 0;
2786 } else {
2787 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2788 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2789 if (ret != 0) {
2790 drm_gem_object_unreference(&obj->base);
2791 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2792 i915.semaphores = 0;
2793 } else
2794 dev_priv->semaphore_obj = obj;
2795 }
2796 }
2797
2798 engine->init_context = intel_rcs_ctx_init;
2799 engine->add_request = gen6_add_request;
2800 engine->flush = gen8_render_ring_flush;
2801 engine->irq_get = gen8_ring_get_irq;
2802 engine->irq_put = gen8_ring_put_irq;
2803 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2804 engine->irq_seqno_barrier = gen6_seqno_barrier;
2805 engine->get_seqno = ring_get_seqno;
2806 engine->set_seqno = ring_set_seqno;
2807 if (i915_semaphore_is_enabled(dev)) {
2808 WARN_ON(!dev_priv->semaphore_obj);
2809 engine->semaphore.sync_to = gen8_ring_sync;
2810 engine->semaphore.signal = gen8_rcs_signal;
2811 GEN8_RING_SEMAPHORE_INIT(engine);
2812 }
2813 } else if (INTEL_INFO(dev)->gen >= 6) {
2814 engine->init_context = intel_rcs_ctx_init;
2815 engine->add_request = gen6_add_request;
2816 engine->flush = gen7_render_ring_flush;
2817 if (INTEL_INFO(dev)->gen == 6)
2818 engine->flush = gen6_render_ring_flush;
2819 engine->irq_get = gen6_ring_get_irq;
2820 engine->irq_put = gen6_ring_put_irq;
2821 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2822 engine->irq_seqno_barrier = gen6_seqno_barrier;
2823 engine->get_seqno = ring_get_seqno;
2824 engine->set_seqno = ring_set_seqno;
2825 if (i915_semaphore_is_enabled(dev)) {
2826 engine->semaphore.sync_to = gen6_ring_sync;
2827 engine->semaphore.signal = gen6_signal;
2828 /*
2829 * The current semaphore is only applied on pre-gen8
2830 * platform. And there is no VCS2 ring on the pre-gen8
2831 * platform. So the semaphore between RCS and VCS2 is
2832 * initialized as INVALID. Gen8 will initialize the
2833 * sema between VCS2 and RCS later.
2834 */
2835 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2836 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2837 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2838 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2839 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2840 engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2841 engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2842 engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2843 engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2844 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2845 }
2846 } else if (IS_GEN5(dev)) {
2847 engine->add_request = pc_render_add_request;
2848 engine->flush = gen4_render_ring_flush;
2849 engine->get_seqno = pc_render_get_seqno;
2850 engine->set_seqno = pc_render_set_seqno;
2851 engine->irq_get = gen5_ring_get_irq;
2852 engine->irq_put = gen5_ring_put_irq;
2853 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2854 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2855 } else {
2856 engine->add_request = i9xx_add_request;
2857 if (INTEL_INFO(dev)->gen < 4)
2858 engine->flush = gen2_render_ring_flush;
2859 else
2860 engine->flush = gen4_render_ring_flush;
2861 engine->get_seqno = ring_get_seqno;
2862 engine->set_seqno = ring_set_seqno;
2863 if (IS_GEN2(dev)) {
2864 engine->irq_get = i8xx_ring_get_irq;
2865 engine->irq_put = i8xx_ring_put_irq;
2866 } else {
2867 engine->irq_get = i9xx_ring_get_irq;
2868 engine->irq_put = i9xx_ring_put_irq;
2869 }
2870 engine->irq_enable_mask = I915_USER_INTERRUPT;
2871 }
2872 engine->write_tail = ring_write_tail;
2873
2874 if (IS_HASWELL(dev))
2875 engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2876 else if (IS_GEN8(dev))
2877 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2878 else if (INTEL_INFO(dev)->gen >= 6)
2879 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2880 else if (INTEL_INFO(dev)->gen >= 4)
2881 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2882 else if (IS_I830(dev) || IS_845G(dev))
2883 engine->dispatch_execbuffer = i830_dispatch_execbuffer;
2884 else
2885 engine->dispatch_execbuffer = i915_dispatch_execbuffer;
2886 engine->init_hw = init_render_ring;
2887 engine->cleanup = render_ring_cleanup;
2888
2889 /* Workaround batchbuffer to combat CS tlb bug. */
2890 if (HAS_BROKEN_CS_TLB(dev)) {
2891 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2892 if (obj == NULL) {
2893 DRM_ERROR("Failed to allocate batch bo\n");
2894 return -ENOMEM;
2895 }
2896
2897 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2898 if (ret != 0) {
2899 drm_gem_object_unreference(&obj->base);
2900 DRM_ERROR("Failed to ping batch bo\n");
2901 return ret;
2902 }
2903
2904 engine->scratch.obj = obj;
2905 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2906 }
2907
2908 ret = intel_init_ring_buffer(dev, engine);
2909 if (ret)
2910 return ret;
2911
2912 if (INTEL_INFO(dev)->gen >= 5) {
2913 ret = intel_init_pipe_control(engine);
2914 if (ret)
2915 return ret;
2916 }
2917
2918 return 0;
2919 }
2920
2921 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2922 {
2923 struct drm_i915_private *dev_priv = dev->dev_private;
2924 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2925
2926 engine->name = "bsd ring";
2927 engine->id = VCS;
2928 engine->exec_id = I915_EXEC_BSD;
2929
2930 engine->write_tail = ring_write_tail;
2931 if (INTEL_INFO(dev)->gen >= 6) {
2932 engine->mmio_base = GEN6_BSD_RING_BASE;
2933 /* gen6 bsd needs a special wa for tail updates */
2934 if (IS_GEN6(dev))
2935 engine->write_tail = gen6_bsd_ring_write_tail;
2936 engine->flush = gen6_bsd_ring_flush;
2937 engine->add_request = gen6_add_request;
2938 engine->irq_seqno_barrier = gen6_seqno_barrier;
2939 engine->get_seqno = ring_get_seqno;
2940 engine->set_seqno = ring_set_seqno;
2941 if (INTEL_INFO(dev)->gen >= 8) {
2942 engine->irq_enable_mask =
2943 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2944 engine->irq_get = gen8_ring_get_irq;
2945 engine->irq_put = gen8_ring_put_irq;
2946 engine->dispatch_execbuffer =
2947 gen8_ring_dispatch_execbuffer;
2948 if (i915_semaphore_is_enabled(dev)) {
2949 engine->semaphore.sync_to = gen8_ring_sync;
2950 engine->semaphore.signal = gen8_xcs_signal;
2951 GEN8_RING_SEMAPHORE_INIT(engine);
2952 }
2953 } else {
2954 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2955 engine->irq_get = gen6_ring_get_irq;
2956 engine->irq_put = gen6_ring_put_irq;
2957 engine->dispatch_execbuffer =
2958 gen6_ring_dispatch_execbuffer;
2959 if (i915_semaphore_is_enabled(dev)) {
2960 engine->semaphore.sync_to = gen6_ring_sync;
2961 engine->semaphore.signal = gen6_signal;
2962 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2963 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2964 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2965 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2966 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2967 engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2968 engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2969 engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2970 engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2971 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2972 }
2973 }
2974 } else {
2975 engine->mmio_base = BSD_RING_BASE;
2976 engine->flush = bsd_ring_flush;
2977 engine->add_request = i9xx_add_request;
2978 engine->get_seqno = ring_get_seqno;
2979 engine->set_seqno = ring_set_seqno;
2980 if (IS_GEN5(dev)) {
2981 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2982 engine->irq_get = gen5_ring_get_irq;
2983 engine->irq_put = gen5_ring_put_irq;
2984 } else {
2985 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2986 engine->irq_get = i9xx_ring_get_irq;
2987 engine->irq_put = i9xx_ring_put_irq;
2988 }
2989 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2990 }
2991 engine->init_hw = init_ring_common;
2992
2993 return intel_init_ring_buffer(dev, engine);
2994 }
2995
2996 /**
2997 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2998 */
2999 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
3000 {
3001 struct drm_i915_private *dev_priv = dev->dev_private;
3002 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
3003
3004 engine->name = "bsd2 ring";
3005 engine->id = VCS2;
3006 engine->exec_id = I915_EXEC_BSD;
3007
3008 engine->write_tail = ring_write_tail;
3009 engine->mmio_base = GEN8_BSD2_RING_BASE;
3010 engine->flush = gen6_bsd_ring_flush;
3011 engine->add_request = gen6_add_request;
3012 engine->irq_seqno_barrier = gen6_seqno_barrier;
3013 engine->get_seqno = ring_get_seqno;
3014 engine->set_seqno = ring_set_seqno;
3015 engine->irq_enable_mask =
3016 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
3017 engine->irq_get = gen8_ring_get_irq;
3018 engine->irq_put = gen8_ring_put_irq;
3019 engine->dispatch_execbuffer =
3020 gen8_ring_dispatch_execbuffer;
3021 if (i915_semaphore_is_enabled(dev)) {
3022 engine->semaphore.sync_to = gen8_ring_sync;
3023 engine->semaphore.signal = gen8_xcs_signal;
3024 GEN8_RING_SEMAPHORE_INIT(engine);
3025 }
3026 engine->init_hw = init_ring_common;
3027
3028 return intel_init_ring_buffer(dev, engine);
3029 }
3030
3031 int intel_init_blt_ring_buffer(struct drm_device *dev)
3032 {
3033 struct drm_i915_private *dev_priv = dev->dev_private;
3034 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
3035
3036 engine->name = "blitter ring";
3037 engine->id = BCS;
3038 engine->exec_id = I915_EXEC_BLT;
3039
3040 engine->mmio_base = BLT_RING_BASE;
3041 engine->write_tail = ring_write_tail;
3042 engine->flush = gen6_ring_flush;
3043 engine->add_request = gen6_add_request;
3044 engine->irq_seqno_barrier = gen6_seqno_barrier;
3045 engine->get_seqno = ring_get_seqno;
3046 engine->set_seqno = ring_set_seqno;
3047 if (INTEL_INFO(dev)->gen >= 8) {
3048 engine->irq_enable_mask =
3049 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3050 engine->irq_get = gen8_ring_get_irq;
3051 engine->irq_put = gen8_ring_put_irq;
3052 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3053 if (i915_semaphore_is_enabled(dev)) {
3054 engine->semaphore.sync_to = gen8_ring_sync;
3055 engine->semaphore.signal = gen8_xcs_signal;
3056 GEN8_RING_SEMAPHORE_INIT(engine);
3057 }
3058 } else {
3059 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3060 engine->irq_get = gen6_ring_get_irq;
3061 engine->irq_put = gen6_ring_put_irq;
3062 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3063 if (i915_semaphore_is_enabled(dev)) {
3064 engine->semaphore.signal = gen6_signal;
3065 engine->semaphore.sync_to = gen6_ring_sync;
3066 /*
3067 * The current semaphore is only applied on pre-gen8
3068 * platform. And there is no VCS2 ring on the pre-gen8
3069 * platform. So the semaphore between BCS and VCS2 is
3070 * initialized as INVALID. Gen8 will initialize the
3071 * sema between BCS and VCS2 later.
3072 */
3073 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
3074 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
3075 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
3076 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
3077 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3078 engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
3079 engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
3080 engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
3081 engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
3082 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3083 }
3084 }
3085 engine->init_hw = init_ring_common;
3086
3087 return intel_init_ring_buffer(dev, engine);
3088 }
3089
3090 int intel_init_vebox_ring_buffer(struct drm_device *dev)
3091 {
3092 struct drm_i915_private *dev_priv = dev->dev_private;
3093 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
3094
3095 engine->name = "video enhancement ring";
3096 engine->id = VECS;
3097 engine->exec_id = I915_EXEC_VEBOX;
3098
3099 engine->mmio_base = VEBOX_RING_BASE;
3100 engine->write_tail = ring_write_tail;
3101 engine->flush = gen6_ring_flush;
3102 engine->add_request = gen6_add_request;
3103 engine->irq_seqno_barrier = gen6_seqno_barrier;
3104 engine->get_seqno = ring_get_seqno;
3105 engine->set_seqno = ring_set_seqno;
3106
3107 if (INTEL_INFO(dev)->gen >= 8) {
3108 engine->irq_enable_mask =
3109 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3110 engine->irq_get = gen8_ring_get_irq;
3111 engine->irq_put = gen8_ring_put_irq;
3112 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3113 if (i915_semaphore_is_enabled(dev)) {
3114 engine->semaphore.sync_to = gen8_ring_sync;
3115 engine->semaphore.signal = gen8_xcs_signal;
3116 GEN8_RING_SEMAPHORE_INIT(engine);
3117 }
3118 } else {
3119 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3120 engine->irq_get = hsw_vebox_get_irq;
3121 engine->irq_put = hsw_vebox_put_irq;
3122 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3123 if (i915_semaphore_is_enabled(dev)) {
3124 engine->semaphore.sync_to = gen6_ring_sync;
3125 engine->semaphore.signal = gen6_signal;
3126 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3127 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3128 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3129 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3130 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3131 engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3132 engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3133 engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3134 engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3135 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3136 }
3137 }
3138 engine->init_hw = init_ring_common;
3139
3140 return intel_init_ring_buffer(dev, engine);
3141 }
3142
3143 int
3144 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3145 {
3146 struct intel_engine_cs *engine = req->engine;
3147 int ret;
3148
3149 if (!engine->gpu_caches_dirty)
3150 return 0;
3151
3152 ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
3153 if (ret)
3154 return ret;
3155
3156 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3157
3158 engine->gpu_caches_dirty = false;
3159 return 0;
3160 }
3161
3162 int
3163 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3164 {
3165 struct intel_engine_cs *engine = req->engine;
3166 uint32_t flush_domains;
3167 int ret;
3168
3169 flush_domains = 0;
3170 if (engine->gpu_caches_dirty)
3171 flush_domains = I915_GEM_GPU_DOMAINS;
3172
3173 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3174 if (ret)
3175 return ret;
3176
3177 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3178
3179 engine->gpu_caches_dirty = false;
3180 return 0;
3181 }
3182
3183 void
3184 intel_stop_engine(struct intel_engine_cs *engine)
3185 {
3186 int ret;
3187
3188 if (!intel_engine_initialized(engine))
3189 return;
3190
3191 ret = intel_engine_idle(engine);
3192 if (ret && !i915_reset_in_progress(&to_i915(engine->dev)->gpu_error))
3193 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3194 engine->name, ret);
3195
3196 stop_ring(engine);
3197 }
This page took 0.121862 seconds and 5 git commands to generate.