drm/i915: Update flush_all_caches() to take request structures
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 struct drm_device *dev = ring->dev;
40
41 if (!dev)
42 return false;
43
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48 return ringbuf->obj;
49 } else
50 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 int space = head - tail;
56 if (space <= 0)
57 space += size;
58 return space - I915_RING_FREE_SPACE;
59 }
60
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63 if (ringbuf->last_retired_head != -1) {
64 ringbuf->head = ringbuf->last_retired_head;
65 ringbuf->last_retired_head = -1;
66 }
67
68 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69 ringbuf->tail, ringbuf->size);
70 }
71
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74 intel_ring_update_space(ringbuf);
75 return ringbuf->space;
76 }
77
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80 struct drm_i915_private *dev_priv = ring->dev->dev_private;
81 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
84 static void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86 struct intel_ringbuffer *ringbuf = ring->buffer;
87 ringbuf->tail &= ringbuf->size - 1;
88 if (intel_ring_stopped(ring))
89 return;
90 ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
94 gen2_render_ring_flush(struct intel_engine_cs *ring,
95 u32 invalidate_domains,
96 u32 flush_domains)
97 {
98 u32 cmd;
99 int ret;
100
101 cmd = MI_FLUSH;
102 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
103 cmd |= MI_NO_WRITE_FLUSH;
104
105 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
106 cmd |= MI_READ_FLUSH;
107
108 ret = intel_ring_begin(ring, 2);
109 if (ret)
110 return ret;
111
112 intel_ring_emit(ring, cmd);
113 intel_ring_emit(ring, MI_NOOP);
114 intel_ring_advance(ring);
115
116 return 0;
117 }
118
119 static int
120 gen4_render_ring_flush(struct intel_engine_cs *ring,
121 u32 invalidate_domains,
122 u32 flush_domains)
123 {
124 struct drm_device *dev = ring->dev;
125 u32 cmd;
126 int ret;
127
128 /*
129 * read/write caches:
130 *
131 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
132 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
133 * also flushed at 2d versus 3d pipeline switches.
134 *
135 * read-only caches:
136 *
137 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
138 * MI_READ_FLUSH is set, and is always flushed on 965.
139 *
140 * I915_GEM_DOMAIN_COMMAND may not exist?
141 *
142 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
143 * invalidated when MI_EXE_FLUSH is set.
144 *
145 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
146 * invalidated with every MI_FLUSH.
147 *
148 * TLBs:
149 *
150 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
151 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
152 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
153 * are flushed at any MI_FLUSH.
154 */
155
156 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
157 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
158 cmd &= ~MI_NO_WRITE_FLUSH;
159 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
160 cmd |= MI_EXE_FLUSH;
161
162 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
163 (IS_G4X(dev) || IS_GEN5(dev)))
164 cmd |= MI_INVALIDATE_ISP;
165
166 ret = intel_ring_begin(ring, 2);
167 if (ret)
168 return ret;
169
170 intel_ring_emit(ring, cmd);
171 intel_ring_emit(ring, MI_NOOP);
172 intel_ring_advance(ring);
173
174 return 0;
175 }
176
177 /**
178 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
179 * implementing two workarounds on gen6. From section 1.4.7.1
180 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
181 *
182 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
183 * produced by non-pipelined state commands), software needs to first
184 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
185 * 0.
186 *
187 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
188 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
189 *
190 * And the workaround for these two requires this workaround first:
191 *
192 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
193 * BEFORE the pipe-control with a post-sync op and no write-cache
194 * flushes.
195 *
196 * And this last workaround is tricky because of the requirements on
197 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
198 * volume 2 part 1:
199 *
200 * "1 of the following must also be set:
201 * - Render Target Cache Flush Enable ([12] of DW1)
202 * - Depth Cache Flush Enable ([0] of DW1)
203 * - Stall at Pixel Scoreboard ([1] of DW1)
204 * - Depth Stall ([13] of DW1)
205 * - Post-Sync Operation ([13] of DW1)
206 * - Notify Enable ([8] of DW1)"
207 *
208 * The cache flushes require the workaround flush that triggered this
209 * one, so we can't use it. Depth stall would trigger the same.
210 * Post-sync nonzero is what triggered this second workaround, so we
211 * can't use that one either. Notify enable is IRQs, which aren't
212 * really our business. That leaves only stall at scoreboard.
213 */
214 static int
215 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
216 {
217 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
218 int ret;
219
220
221 ret = intel_ring_begin(ring, 6);
222 if (ret)
223 return ret;
224
225 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
226 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
227 PIPE_CONTROL_STALL_AT_SCOREBOARD);
228 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
229 intel_ring_emit(ring, 0); /* low dword */
230 intel_ring_emit(ring, 0); /* high dword */
231 intel_ring_emit(ring, MI_NOOP);
232 intel_ring_advance(ring);
233
234 ret = intel_ring_begin(ring, 6);
235 if (ret)
236 return ret;
237
238 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
239 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
240 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
241 intel_ring_emit(ring, 0);
242 intel_ring_emit(ring, 0);
243 intel_ring_emit(ring, MI_NOOP);
244 intel_ring_advance(ring);
245
246 return 0;
247 }
248
249 static int
250 gen6_render_ring_flush(struct intel_engine_cs *ring,
251 u32 invalidate_domains, u32 flush_domains)
252 {
253 u32 flags = 0;
254 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
255 int ret;
256
257 /* Force SNB workarounds for PIPE_CONTROL flushes */
258 ret = intel_emit_post_sync_nonzero_flush(ring);
259 if (ret)
260 return ret;
261
262 /* Just flush everything. Experiments have shown that reducing the
263 * number of bits based on the write domains has little performance
264 * impact.
265 */
266 if (flush_domains) {
267 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
268 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
269 /*
270 * Ensure that any following seqno writes only happen
271 * when the render cache is indeed flushed.
272 */
273 flags |= PIPE_CONTROL_CS_STALL;
274 }
275 if (invalidate_domains) {
276 flags |= PIPE_CONTROL_TLB_INVALIDATE;
277 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
278 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
279 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
280 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
281 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
282 /*
283 * TLB invalidate requires a post-sync write.
284 */
285 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
286 }
287
288 ret = intel_ring_begin(ring, 4);
289 if (ret)
290 return ret;
291
292 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
293 intel_ring_emit(ring, flags);
294 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
295 intel_ring_emit(ring, 0);
296 intel_ring_advance(ring);
297
298 return 0;
299 }
300
301 static int
302 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
303 {
304 int ret;
305
306 ret = intel_ring_begin(ring, 4);
307 if (ret)
308 return ret;
309
310 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
311 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
312 PIPE_CONTROL_STALL_AT_SCOREBOARD);
313 intel_ring_emit(ring, 0);
314 intel_ring_emit(ring, 0);
315 intel_ring_advance(ring);
316
317 return 0;
318 }
319
320 static int
321 gen7_render_ring_flush(struct intel_engine_cs *ring,
322 u32 invalidate_domains, u32 flush_domains)
323 {
324 u32 flags = 0;
325 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
326 int ret;
327
328 /*
329 * Ensure that any following seqno writes only happen when the render
330 * cache is indeed flushed.
331 *
332 * Workaround: 4th PIPE_CONTROL command (except the ones with only
333 * read-cache invalidate bits set) must have the CS_STALL bit set. We
334 * don't try to be clever and just set it unconditionally.
335 */
336 flags |= PIPE_CONTROL_CS_STALL;
337
338 /* Just flush everything. Experiments have shown that reducing the
339 * number of bits based on the write domains has little performance
340 * impact.
341 */
342 if (flush_domains) {
343 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
344 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
345 }
346 if (invalidate_domains) {
347 flags |= PIPE_CONTROL_TLB_INVALIDATE;
348 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
349 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
350 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
351 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
352 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
353 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
354 /*
355 * TLB invalidate requires a post-sync write.
356 */
357 flags |= PIPE_CONTROL_QW_WRITE;
358 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
359
360 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
361
362 /* Workaround: we must issue a pipe_control with CS-stall bit
363 * set before a pipe_control command that has the state cache
364 * invalidate bit set. */
365 gen7_render_ring_cs_stall_wa(ring);
366 }
367
368 ret = intel_ring_begin(ring, 4);
369 if (ret)
370 return ret;
371
372 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
373 intel_ring_emit(ring, flags);
374 intel_ring_emit(ring, scratch_addr);
375 intel_ring_emit(ring, 0);
376 intel_ring_advance(ring);
377
378 return 0;
379 }
380
381 static int
382 gen8_emit_pipe_control(struct intel_engine_cs *ring,
383 u32 flags, u32 scratch_addr)
384 {
385 int ret;
386
387 ret = intel_ring_begin(ring, 6);
388 if (ret)
389 return ret;
390
391 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
392 intel_ring_emit(ring, flags);
393 intel_ring_emit(ring, scratch_addr);
394 intel_ring_emit(ring, 0);
395 intel_ring_emit(ring, 0);
396 intel_ring_emit(ring, 0);
397 intel_ring_advance(ring);
398
399 return 0;
400 }
401
402 static int
403 gen8_render_ring_flush(struct intel_engine_cs *ring,
404 u32 invalidate_domains, u32 flush_domains)
405 {
406 u32 flags = 0;
407 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
408 int ret;
409
410 flags |= PIPE_CONTROL_CS_STALL;
411
412 if (flush_domains) {
413 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
414 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
415 }
416 if (invalidate_domains) {
417 flags |= PIPE_CONTROL_TLB_INVALIDATE;
418 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
419 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
420 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
421 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
422 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
423 flags |= PIPE_CONTROL_QW_WRITE;
424 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
425
426 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
427 ret = gen8_emit_pipe_control(ring,
428 PIPE_CONTROL_CS_STALL |
429 PIPE_CONTROL_STALL_AT_SCOREBOARD,
430 0);
431 if (ret)
432 return ret;
433 }
434
435 return gen8_emit_pipe_control(ring, flags, scratch_addr);
436 }
437
438 static void ring_write_tail(struct intel_engine_cs *ring,
439 u32 value)
440 {
441 struct drm_i915_private *dev_priv = ring->dev->dev_private;
442 I915_WRITE_TAIL(ring, value);
443 }
444
445 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
446 {
447 struct drm_i915_private *dev_priv = ring->dev->dev_private;
448 u64 acthd;
449
450 if (INTEL_INFO(ring->dev)->gen >= 8)
451 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
452 RING_ACTHD_UDW(ring->mmio_base));
453 else if (INTEL_INFO(ring->dev)->gen >= 4)
454 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
455 else
456 acthd = I915_READ(ACTHD);
457
458 return acthd;
459 }
460
461 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
462 {
463 struct drm_i915_private *dev_priv = ring->dev->dev_private;
464 u32 addr;
465
466 addr = dev_priv->status_page_dmah->busaddr;
467 if (INTEL_INFO(ring->dev)->gen >= 4)
468 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
469 I915_WRITE(HWS_PGA, addr);
470 }
471
472 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
473 {
474 struct drm_device *dev = ring->dev;
475 struct drm_i915_private *dev_priv = ring->dev->dev_private;
476 u32 mmio = 0;
477
478 /* The ring status page addresses are no longer next to the rest of
479 * the ring registers as of gen7.
480 */
481 if (IS_GEN7(dev)) {
482 switch (ring->id) {
483 case RCS:
484 mmio = RENDER_HWS_PGA_GEN7;
485 break;
486 case BCS:
487 mmio = BLT_HWS_PGA_GEN7;
488 break;
489 /*
490 * VCS2 actually doesn't exist on Gen7. Only shut up
491 * gcc switch check warning
492 */
493 case VCS2:
494 case VCS:
495 mmio = BSD_HWS_PGA_GEN7;
496 break;
497 case VECS:
498 mmio = VEBOX_HWS_PGA_GEN7;
499 break;
500 }
501 } else if (IS_GEN6(ring->dev)) {
502 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
503 } else {
504 /* XXX: gen8 returns to sanity */
505 mmio = RING_HWS_PGA(ring->mmio_base);
506 }
507
508 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
509 POSTING_READ(mmio);
510
511 /*
512 * Flush the TLB for this page
513 *
514 * FIXME: These two bits have disappeared on gen8, so a question
515 * arises: do we still need this and if so how should we go about
516 * invalidating the TLB?
517 */
518 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
519 u32 reg = RING_INSTPM(ring->mmio_base);
520
521 /* ring should be idle before issuing a sync flush*/
522 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
523
524 I915_WRITE(reg,
525 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
526 INSTPM_SYNC_FLUSH));
527 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
528 1000))
529 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
530 ring->name);
531 }
532 }
533
534 static bool stop_ring(struct intel_engine_cs *ring)
535 {
536 struct drm_i915_private *dev_priv = to_i915(ring->dev);
537
538 if (!IS_GEN2(ring->dev)) {
539 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
540 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
541 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
542 /* Sometimes we observe that the idle flag is not
543 * set even though the ring is empty. So double
544 * check before giving up.
545 */
546 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
547 return false;
548 }
549 }
550
551 I915_WRITE_CTL(ring, 0);
552 I915_WRITE_HEAD(ring, 0);
553 ring->write_tail(ring, 0);
554
555 if (!IS_GEN2(ring->dev)) {
556 (void)I915_READ_CTL(ring);
557 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
558 }
559
560 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
561 }
562
563 static int init_ring_common(struct intel_engine_cs *ring)
564 {
565 struct drm_device *dev = ring->dev;
566 struct drm_i915_private *dev_priv = dev->dev_private;
567 struct intel_ringbuffer *ringbuf = ring->buffer;
568 struct drm_i915_gem_object *obj = ringbuf->obj;
569 int ret = 0;
570
571 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
572
573 if (!stop_ring(ring)) {
574 /* G45 ring initialization often fails to reset head to zero */
575 DRM_DEBUG_KMS("%s head not reset to zero "
576 "ctl %08x head %08x tail %08x start %08x\n",
577 ring->name,
578 I915_READ_CTL(ring),
579 I915_READ_HEAD(ring),
580 I915_READ_TAIL(ring),
581 I915_READ_START(ring));
582
583 if (!stop_ring(ring)) {
584 DRM_ERROR("failed to set %s head to zero "
585 "ctl %08x head %08x tail %08x start %08x\n",
586 ring->name,
587 I915_READ_CTL(ring),
588 I915_READ_HEAD(ring),
589 I915_READ_TAIL(ring),
590 I915_READ_START(ring));
591 ret = -EIO;
592 goto out;
593 }
594 }
595
596 if (I915_NEED_GFX_HWS(dev))
597 intel_ring_setup_status_page(ring);
598 else
599 ring_setup_phys_status_page(ring);
600
601 /* Enforce ordering by reading HEAD register back */
602 I915_READ_HEAD(ring);
603
604 /* Initialize the ring. This must happen _after_ we've cleared the ring
605 * registers with the above sequence (the readback of the HEAD registers
606 * also enforces ordering), otherwise the hw might lose the new ring
607 * register values. */
608 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
609
610 /* WaClearRingBufHeadRegAtInit:ctg,elk */
611 if (I915_READ_HEAD(ring))
612 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
613 ring->name, I915_READ_HEAD(ring));
614 I915_WRITE_HEAD(ring, 0);
615 (void)I915_READ_HEAD(ring);
616
617 I915_WRITE_CTL(ring,
618 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
619 | RING_VALID);
620
621 /* If the head is still not zero, the ring is dead */
622 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
623 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
624 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
625 DRM_ERROR("%s initialization failed "
626 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
627 ring->name,
628 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
629 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
630 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
631 ret = -EIO;
632 goto out;
633 }
634
635 ringbuf->last_retired_head = -1;
636 ringbuf->head = I915_READ_HEAD(ring);
637 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
638 intel_ring_update_space(ringbuf);
639
640 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
641
642 out:
643 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
644
645 return ret;
646 }
647
648 void
649 intel_fini_pipe_control(struct intel_engine_cs *ring)
650 {
651 struct drm_device *dev = ring->dev;
652
653 if (ring->scratch.obj == NULL)
654 return;
655
656 if (INTEL_INFO(dev)->gen >= 5) {
657 kunmap(sg_page(ring->scratch.obj->pages->sgl));
658 i915_gem_object_ggtt_unpin(ring->scratch.obj);
659 }
660
661 drm_gem_object_unreference(&ring->scratch.obj->base);
662 ring->scratch.obj = NULL;
663 }
664
665 int
666 intel_init_pipe_control(struct intel_engine_cs *ring)
667 {
668 int ret;
669
670 WARN_ON(ring->scratch.obj);
671
672 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
673 if (ring->scratch.obj == NULL) {
674 DRM_ERROR("Failed to allocate seqno page\n");
675 ret = -ENOMEM;
676 goto err;
677 }
678
679 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
680 if (ret)
681 goto err_unref;
682
683 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
684 if (ret)
685 goto err_unref;
686
687 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
688 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
689 if (ring->scratch.cpu_page == NULL) {
690 ret = -ENOMEM;
691 goto err_unpin;
692 }
693
694 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
695 ring->name, ring->scratch.gtt_offset);
696 return 0;
697
698 err_unpin:
699 i915_gem_object_ggtt_unpin(ring->scratch.obj);
700 err_unref:
701 drm_gem_object_unreference(&ring->scratch.obj->base);
702 err:
703 return ret;
704 }
705
706 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
707 {
708 int ret, i;
709 struct intel_engine_cs *ring = req->ring;
710 struct drm_device *dev = ring->dev;
711 struct drm_i915_private *dev_priv = dev->dev_private;
712 struct i915_workarounds *w = &dev_priv->workarounds;
713
714 if (WARN_ON_ONCE(w->count == 0))
715 return 0;
716
717 ring->gpu_caches_dirty = true;
718 ret = intel_ring_flush_all_caches(req);
719 if (ret)
720 return ret;
721
722 ret = intel_ring_begin(ring, (w->count * 2 + 2));
723 if (ret)
724 return ret;
725
726 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
727 for (i = 0; i < w->count; i++) {
728 intel_ring_emit(ring, w->reg[i].addr);
729 intel_ring_emit(ring, w->reg[i].value);
730 }
731 intel_ring_emit(ring, MI_NOOP);
732
733 intel_ring_advance(ring);
734
735 ring->gpu_caches_dirty = true;
736 ret = intel_ring_flush_all_caches(req);
737 if (ret)
738 return ret;
739
740 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
741
742 return 0;
743 }
744
745 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
746 {
747 int ret;
748
749 ret = intel_ring_workarounds_emit(req);
750 if (ret != 0)
751 return ret;
752
753 ret = i915_gem_render_state_init(req);
754 if (ret)
755 DRM_ERROR("init render state: %d\n", ret);
756
757 return ret;
758 }
759
760 static int wa_add(struct drm_i915_private *dev_priv,
761 const u32 addr, const u32 mask, const u32 val)
762 {
763 const u32 idx = dev_priv->workarounds.count;
764
765 if (WARN_ON(idx >= I915_MAX_WA_REGS))
766 return -ENOSPC;
767
768 dev_priv->workarounds.reg[idx].addr = addr;
769 dev_priv->workarounds.reg[idx].value = val;
770 dev_priv->workarounds.reg[idx].mask = mask;
771
772 dev_priv->workarounds.count++;
773
774 return 0;
775 }
776
777 #define WA_REG(addr, mask, val) { \
778 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
779 if (r) \
780 return r; \
781 }
782
783 #define WA_SET_BIT_MASKED(addr, mask) \
784 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
785
786 #define WA_CLR_BIT_MASKED(addr, mask) \
787 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
788
789 #define WA_SET_FIELD_MASKED(addr, mask, value) \
790 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
791
792 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
793 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
794
795 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
796
797 static int bdw_init_workarounds(struct intel_engine_cs *ring)
798 {
799 struct drm_device *dev = ring->dev;
800 struct drm_i915_private *dev_priv = dev->dev_private;
801
802 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
803
804 /* WaDisableAsyncFlipPerfMode:bdw */
805 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
806
807 /* WaDisablePartialInstShootdown:bdw */
808 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
809 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
810 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
811 STALL_DOP_GATING_DISABLE);
812
813 /* WaDisableDopClockGating:bdw */
814 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
815 DOP_CLOCK_GATING_DISABLE);
816
817 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
818 GEN8_SAMPLER_POWER_BYPASS_DIS);
819
820 /* Use Force Non-Coherent whenever executing a 3D context. This is a
821 * workaround for for a possible hang in the unlikely event a TLB
822 * invalidation occurs during a PSD flush.
823 */
824 WA_SET_BIT_MASKED(HDC_CHICKEN0,
825 /* WaForceEnableNonCoherent:bdw */
826 HDC_FORCE_NON_COHERENT |
827 /* WaForceContextSaveRestoreNonCoherent:bdw */
828 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
829 /* WaHdcDisableFetchWhenMasked:bdw */
830 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
831 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
832 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
833
834 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
835 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
836 * polygons in the same 8x4 pixel/sample area to be processed without
837 * stalling waiting for the earlier ones to write to Hierarchical Z
838 * buffer."
839 *
840 * This optimization is off by default for Broadwell; turn it on.
841 */
842 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
843
844 /* Wa4x4STCOptimizationDisable:bdw */
845 WA_SET_BIT_MASKED(CACHE_MODE_1,
846 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
847
848 /*
849 * BSpec recommends 8x4 when MSAA is used,
850 * however in practice 16x4 seems fastest.
851 *
852 * Note that PS/WM thread counts depend on the WIZ hashing
853 * disable bit, which we don't touch here, but it's good
854 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
855 */
856 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
857 GEN6_WIZ_HASHING_MASK,
858 GEN6_WIZ_HASHING_16x4);
859
860 return 0;
861 }
862
863 static int chv_init_workarounds(struct intel_engine_cs *ring)
864 {
865 struct drm_device *dev = ring->dev;
866 struct drm_i915_private *dev_priv = dev->dev_private;
867
868 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
869
870 /* WaDisableAsyncFlipPerfMode:chv */
871 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
872
873 /* WaDisablePartialInstShootdown:chv */
874 /* WaDisableThreadStallDopClockGating:chv */
875 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
876 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
877 STALL_DOP_GATING_DISABLE);
878
879 /* Use Force Non-Coherent whenever executing a 3D context. This is a
880 * workaround for a possible hang in the unlikely event a TLB
881 * invalidation occurs during a PSD flush.
882 */
883 /* WaForceEnableNonCoherent:chv */
884 /* WaHdcDisableFetchWhenMasked:chv */
885 WA_SET_BIT_MASKED(HDC_CHICKEN0,
886 HDC_FORCE_NON_COHERENT |
887 HDC_DONOT_FETCH_MEM_WHEN_MASKED);
888
889 /* According to the CACHE_MODE_0 default value documentation, some
890 * CHV platforms disable this optimization by default. Turn it on.
891 */
892 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
893
894 /* Wa4x4STCOptimizationDisable:chv */
895 WA_SET_BIT_MASKED(CACHE_MODE_1,
896 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
897
898 /* Improve HiZ throughput on CHV. */
899 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
900
901 /*
902 * BSpec recommends 8x4 when MSAA is used,
903 * however in practice 16x4 seems fastest.
904 *
905 * Note that PS/WM thread counts depend on the WIZ hashing
906 * disable bit, which we don't touch here, but it's good
907 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
908 */
909 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
910 GEN6_WIZ_HASHING_MASK,
911 GEN6_WIZ_HASHING_16x4);
912
913 return 0;
914 }
915
916 static int gen9_init_workarounds(struct intel_engine_cs *ring)
917 {
918 struct drm_device *dev = ring->dev;
919 struct drm_i915_private *dev_priv = dev->dev_private;
920 uint32_t tmp;
921
922 /* WaDisablePartialInstShootdown:skl,bxt */
923 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
924 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
925
926 /* Syncing dependencies between camera and graphics:skl,bxt */
927 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
928 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
929
930 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
931 INTEL_REVID(dev) == SKL_REVID_B0)) ||
932 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
933 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
934 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
935 GEN9_DG_MIRROR_FIX_ENABLE);
936 }
937
938 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
939 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
940 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
941 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
942 GEN9_RHWO_OPTIMIZATION_DISABLE);
943 WA_SET_BIT_MASKED(GEN9_SLICE_COMMON_ECO_CHICKEN0,
944 DISABLE_PIXEL_MASK_CAMMING);
945 }
946
947 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
948 IS_BROXTON(dev)) {
949 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
950 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
951 GEN9_ENABLE_YV12_BUGFIX);
952 }
953
954 /* Wa4x4STCOptimizationDisable:skl,bxt */
955 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
956
957 /* WaDisablePartialResolveInVc:skl,bxt */
958 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
959
960 /* WaCcsTlbPrefetchDisable:skl,bxt */
961 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
962 GEN9_CCS_TLB_PREFETCH_ENABLE);
963
964 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
965 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
966 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
967 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
968 PIXEL_MASK_CAMMING_DISABLE);
969
970 /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
971 tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
972 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
973 (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
974 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
975 WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
976
977 return 0;
978 }
979
980 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
981 {
982 struct drm_device *dev = ring->dev;
983 struct drm_i915_private *dev_priv = dev->dev_private;
984 u8 vals[3] = { 0, 0, 0 };
985 unsigned int i;
986
987 for (i = 0; i < 3; i++) {
988 u8 ss;
989
990 /*
991 * Only consider slices where one, and only one, subslice has 7
992 * EUs
993 */
994 if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
995 continue;
996
997 /*
998 * subslice_7eu[i] != 0 (because of the check above) and
999 * ss_max == 4 (maximum number of subslices possible per slice)
1000 *
1001 * -> 0 <= ss <= 3;
1002 */
1003 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1004 vals[i] = 3 - ss;
1005 }
1006
1007 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1008 return 0;
1009
1010 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1011 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1012 GEN9_IZ_HASHING_MASK(2) |
1013 GEN9_IZ_HASHING_MASK(1) |
1014 GEN9_IZ_HASHING_MASK(0),
1015 GEN9_IZ_HASHING(2, vals[2]) |
1016 GEN9_IZ_HASHING(1, vals[1]) |
1017 GEN9_IZ_HASHING(0, vals[0]));
1018
1019 return 0;
1020 }
1021
1022
1023 static int skl_init_workarounds(struct intel_engine_cs *ring)
1024 {
1025 struct drm_device *dev = ring->dev;
1026 struct drm_i915_private *dev_priv = dev->dev_private;
1027
1028 gen9_init_workarounds(ring);
1029
1030 /* WaDisablePowerCompilerClockGating:skl */
1031 if (INTEL_REVID(dev) == SKL_REVID_B0)
1032 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1033 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1034
1035 if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1036 /*
1037 *Use Force Non-Coherent whenever executing a 3D context. This
1038 * is a workaround for a possible hang in the unlikely event
1039 * a TLB invalidation occurs during a PSD flush.
1040 */
1041 /* WaForceEnableNonCoherent:skl */
1042 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1043 HDC_FORCE_NON_COHERENT);
1044 }
1045
1046 if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1047 INTEL_REVID(dev) == SKL_REVID_D0)
1048 /* WaBarrierPerformanceFixDisable:skl */
1049 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1050 HDC_FENCE_DEST_SLM_DISABLE |
1051 HDC_BARRIER_PERFORMANCE_DISABLE);
1052
1053 return skl_tune_iz_hashing(ring);
1054 }
1055
1056 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1057 {
1058 struct drm_device *dev = ring->dev;
1059 struct drm_i915_private *dev_priv = dev->dev_private;
1060
1061 gen9_init_workarounds(ring);
1062
1063 /* WaDisableThreadStallDopClockGating:bxt */
1064 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1065 STALL_DOP_GATING_DISABLE);
1066
1067 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1068 if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1069 WA_SET_BIT_MASKED(
1070 GEN7_HALF_SLICE_CHICKEN1,
1071 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1072 }
1073
1074 return 0;
1075 }
1076
1077 int init_workarounds_ring(struct intel_engine_cs *ring)
1078 {
1079 struct drm_device *dev = ring->dev;
1080 struct drm_i915_private *dev_priv = dev->dev_private;
1081
1082 WARN_ON(ring->id != RCS);
1083
1084 dev_priv->workarounds.count = 0;
1085
1086 if (IS_BROADWELL(dev))
1087 return bdw_init_workarounds(ring);
1088
1089 if (IS_CHERRYVIEW(dev))
1090 return chv_init_workarounds(ring);
1091
1092 if (IS_SKYLAKE(dev))
1093 return skl_init_workarounds(ring);
1094
1095 if (IS_BROXTON(dev))
1096 return bxt_init_workarounds(ring);
1097
1098 return 0;
1099 }
1100
1101 static int init_render_ring(struct intel_engine_cs *ring)
1102 {
1103 struct drm_device *dev = ring->dev;
1104 struct drm_i915_private *dev_priv = dev->dev_private;
1105 int ret = init_ring_common(ring);
1106 if (ret)
1107 return ret;
1108
1109 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1110 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1111 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1112
1113 /* We need to disable the AsyncFlip performance optimisations in order
1114 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1115 * programmed to '1' on all products.
1116 *
1117 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1118 */
1119 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1120 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1121
1122 /* Required for the hardware to program scanline values for waiting */
1123 /* WaEnableFlushTlbInvalidationMode:snb */
1124 if (INTEL_INFO(dev)->gen == 6)
1125 I915_WRITE(GFX_MODE,
1126 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1127
1128 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1129 if (IS_GEN7(dev))
1130 I915_WRITE(GFX_MODE_GEN7,
1131 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1132 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1133
1134 if (IS_GEN6(dev)) {
1135 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1136 * "If this bit is set, STCunit will have LRA as replacement
1137 * policy. [...] This bit must be reset. LRA replacement
1138 * policy is not supported."
1139 */
1140 I915_WRITE(CACHE_MODE_0,
1141 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1142 }
1143
1144 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1145 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1146
1147 if (HAS_L3_DPF(dev))
1148 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1149
1150 return init_workarounds_ring(ring);
1151 }
1152
1153 static void render_ring_cleanup(struct intel_engine_cs *ring)
1154 {
1155 struct drm_device *dev = ring->dev;
1156 struct drm_i915_private *dev_priv = dev->dev_private;
1157
1158 if (dev_priv->semaphore_obj) {
1159 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1160 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1161 dev_priv->semaphore_obj = NULL;
1162 }
1163
1164 intel_fini_pipe_control(ring);
1165 }
1166
1167 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
1168 unsigned int num_dwords)
1169 {
1170 #define MBOX_UPDATE_DWORDS 8
1171 struct drm_device *dev = signaller->dev;
1172 struct drm_i915_private *dev_priv = dev->dev_private;
1173 struct intel_engine_cs *waiter;
1174 int i, ret, num_rings;
1175
1176 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1177 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1178 #undef MBOX_UPDATE_DWORDS
1179
1180 ret = intel_ring_begin(signaller, num_dwords);
1181 if (ret)
1182 return ret;
1183
1184 for_each_ring(waiter, dev_priv, i) {
1185 u32 seqno;
1186 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1187 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1188 continue;
1189
1190 seqno = i915_gem_request_get_seqno(
1191 signaller->outstanding_lazy_request);
1192 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1193 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1194 PIPE_CONTROL_QW_WRITE |
1195 PIPE_CONTROL_FLUSH_ENABLE);
1196 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1197 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1198 intel_ring_emit(signaller, seqno);
1199 intel_ring_emit(signaller, 0);
1200 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1201 MI_SEMAPHORE_TARGET(waiter->id));
1202 intel_ring_emit(signaller, 0);
1203 }
1204
1205 return 0;
1206 }
1207
1208 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
1209 unsigned int num_dwords)
1210 {
1211 #define MBOX_UPDATE_DWORDS 6
1212 struct drm_device *dev = signaller->dev;
1213 struct drm_i915_private *dev_priv = dev->dev_private;
1214 struct intel_engine_cs *waiter;
1215 int i, ret, num_rings;
1216
1217 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1218 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1219 #undef MBOX_UPDATE_DWORDS
1220
1221 ret = intel_ring_begin(signaller, num_dwords);
1222 if (ret)
1223 return ret;
1224
1225 for_each_ring(waiter, dev_priv, i) {
1226 u32 seqno;
1227 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1228 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1229 continue;
1230
1231 seqno = i915_gem_request_get_seqno(
1232 signaller->outstanding_lazy_request);
1233 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1234 MI_FLUSH_DW_OP_STOREDW);
1235 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1236 MI_FLUSH_DW_USE_GTT);
1237 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1238 intel_ring_emit(signaller, seqno);
1239 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1240 MI_SEMAPHORE_TARGET(waiter->id));
1241 intel_ring_emit(signaller, 0);
1242 }
1243
1244 return 0;
1245 }
1246
1247 static int gen6_signal(struct intel_engine_cs *signaller,
1248 unsigned int num_dwords)
1249 {
1250 struct drm_device *dev = signaller->dev;
1251 struct drm_i915_private *dev_priv = dev->dev_private;
1252 struct intel_engine_cs *useless;
1253 int i, ret, num_rings;
1254
1255 #define MBOX_UPDATE_DWORDS 3
1256 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1257 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1258 #undef MBOX_UPDATE_DWORDS
1259
1260 ret = intel_ring_begin(signaller, num_dwords);
1261 if (ret)
1262 return ret;
1263
1264 for_each_ring(useless, dev_priv, i) {
1265 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1266 if (mbox_reg != GEN6_NOSYNC) {
1267 u32 seqno = i915_gem_request_get_seqno(
1268 signaller->outstanding_lazy_request);
1269 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1270 intel_ring_emit(signaller, mbox_reg);
1271 intel_ring_emit(signaller, seqno);
1272 }
1273 }
1274
1275 /* If num_dwords was rounded, make sure the tail pointer is correct */
1276 if (num_rings % 2 == 0)
1277 intel_ring_emit(signaller, MI_NOOP);
1278
1279 return 0;
1280 }
1281
1282 /**
1283 * gen6_add_request - Update the semaphore mailbox registers
1284 *
1285 * @ring - ring that is adding a request
1286 * @seqno - return seqno stuck into the ring
1287 *
1288 * Update the mailbox registers in the *other* rings with the current seqno.
1289 * This acts like a signal in the canonical semaphore.
1290 */
1291 static int
1292 gen6_add_request(struct intel_engine_cs *ring)
1293 {
1294 int ret;
1295
1296 if (ring->semaphore.signal)
1297 ret = ring->semaphore.signal(ring, 4);
1298 else
1299 ret = intel_ring_begin(ring, 4);
1300
1301 if (ret)
1302 return ret;
1303
1304 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1305 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1306 intel_ring_emit(ring,
1307 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1308 intel_ring_emit(ring, MI_USER_INTERRUPT);
1309 __intel_ring_advance(ring);
1310
1311 return 0;
1312 }
1313
1314 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1315 u32 seqno)
1316 {
1317 struct drm_i915_private *dev_priv = dev->dev_private;
1318 return dev_priv->last_seqno < seqno;
1319 }
1320
1321 /**
1322 * intel_ring_sync - sync the waiter to the signaller on seqno
1323 *
1324 * @waiter - ring that is waiting
1325 * @signaller - ring which has, or will signal
1326 * @seqno - seqno which the waiter will block on
1327 */
1328
1329 static int
1330 gen8_ring_sync(struct intel_engine_cs *waiter,
1331 struct intel_engine_cs *signaller,
1332 u32 seqno)
1333 {
1334 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1335 int ret;
1336
1337 ret = intel_ring_begin(waiter, 4);
1338 if (ret)
1339 return ret;
1340
1341 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1342 MI_SEMAPHORE_GLOBAL_GTT |
1343 MI_SEMAPHORE_POLL |
1344 MI_SEMAPHORE_SAD_GTE_SDD);
1345 intel_ring_emit(waiter, seqno);
1346 intel_ring_emit(waiter,
1347 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1348 intel_ring_emit(waiter,
1349 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1350 intel_ring_advance(waiter);
1351 return 0;
1352 }
1353
1354 static int
1355 gen6_ring_sync(struct intel_engine_cs *waiter,
1356 struct intel_engine_cs *signaller,
1357 u32 seqno)
1358 {
1359 u32 dw1 = MI_SEMAPHORE_MBOX |
1360 MI_SEMAPHORE_COMPARE |
1361 MI_SEMAPHORE_REGISTER;
1362 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1363 int ret;
1364
1365 /* Throughout all of the GEM code, seqno passed implies our current
1366 * seqno is >= the last seqno executed. However for hardware the
1367 * comparison is strictly greater than.
1368 */
1369 seqno -= 1;
1370
1371 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1372
1373 ret = intel_ring_begin(waiter, 4);
1374 if (ret)
1375 return ret;
1376
1377 /* If seqno wrap happened, omit the wait with no-ops */
1378 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1379 intel_ring_emit(waiter, dw1 | wait_mbox);
1380 intel_ring_emit(waiter, seqno);
1381 intel_ring_emit(waiter, 0);
1382 intel_ring_emit(waiter, MI_NOOP);
1383 } else {
1384 intel_ring_emit(waiter, MI_NOOP);
1385 intel_ring_emit(waiter, MI_NOOP);
1386 intel_ring_emit(waiter, MI_NOOP);
1387 intel_ring_emit(waiter, MI_NOOP);
1388 }
1389 intel_ring_advance(waiter);
1390
1391 return 0;
1392 }
1393
1394 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1395 do { \
1396 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1397 PIPE_CONTROL_DEPTH_STALL); \
1398 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1399 intel_ring_emit(ring__, 0); \
1400 intel_ring_emit(ring__, 0); \
1401 } while (0)
1402
1403 static int
1404 pc_render_add_request(struct intel_engine_cs *ring)
1405 {
1406 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1407 int ret;
1408
1409 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1410 * incoherent with writes to memory, i.e. completely fubar,
1411 * so we need to use PIPE_NOTIFY instead.
1412 *
1413 * However, we also need to workaround the qword write
1414 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1415 * memory before requesting an interrupt.
1416 */
1417 ret = intel_ring_begin(ring, 32);
1418 if (ret)
1419 return ret;
1420
1421 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1422 PIPE_CONTROL_WRITE_FLUSH |
1423 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1424 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1425 intel_ring_emit(ring,
1426 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1427 intel_ring_emit(ring, 0);
1428 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1429 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1430 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1431 scratch_addr += 2 * CACHELINE_BYTES;
1432 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1433 scratch_addr += 2 * CACHELINE_BYTES;
1434 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1435 scratch_addr += 2 * CACHELINE_BYTES;
1436 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1437 scratch_addr += 2 * CACHELINE_BYTES;
1438 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1439
1440 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1441 PIPE_CONTROL_WRITE_FLUSH |
1442 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1443 PIPE_CONTROL_NOTIFY);
1444 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1445 intel_ring_emit(ring,
1446 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1447 intel_ring_emit(ring, 0);
1448 __intel_ring_advance(ring);
1449
1450 return 0;
1451 }
1452
1453 static u32
1454 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1455 {
1456 /* Workaround to force correct ordering between irq and seqno writes on
1457 * ivb (and maybe also on snb) by reading from a CS register (like
1458 * ACTHD) before reading the status page. */
1459 if (!lazy_coherency) {
1460 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1461 POSTING_READ(RING_ACTHD(ring->mmio_base));
1462 }
1463
1464 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1465 }
1466
1467 static u32
1468 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1469 {
1470 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1471 }
1472
1473 static void
1474 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1475 {
1476 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1477 }
1478
1479 static u32
1480 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1481 {
1482 return ring->scratch.cpu_page[0];
1483 }
1484
1485 static void
1486 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1487 {
1488 ring->scratch.cpu_page[0] = seqno;
1489 }
1490
1491 static bool
1492 gen5_ring_get_irq(struct intel_engine_cs *ring)
1493 {
1494 struct drm_device *dev = ring->dev;
1495 struct drm_i915_private *dev_priv = dev->dev_private;
1496 unsigned long flags;
1497
1498 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1499 return false;
1500
1501 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1502 if (ring->irq_refcount++ == 0)
1503 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1504 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1505
1506 return true;
1507 }
1508
1509 static void
1510 gen5_ring_put_irq(struct intel_engine_cs *ring)
1511 {
1512 struct drm_device *dev = ring->dev;
1513 struct drm_i915_private *dev_priv = dev->dev_private;
1514 unsigned long flags;
1515
1516 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1517 if (--ring->irq_refcount == 0)
1518 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1519 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1520 }
1521
1522 static bool
1523 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1524 {
1525 struct drm_device *dev = ring->dev;
1526 struct drm_i915_private *dev_priv = dev->dev_private;
1527 unsigned long flags;
1528
1529 if (!intel_irqs_enabled(dev_priv))
1530 return false;
1531
1532 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1533 if (ring->irq_refcount++ == 0) {
1534 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1535 I915_WRITE(IMR, dev_priv->irq_mask);
1536 POSTING_READ(IMR);
1537 }
1538 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1539
1540 return true;
1541 }
1542
1543 static void
1544 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1545 {
1546 struct drm_device *dev = ring->dev;
1547 struct drm_i915_private *dev_priv = dev->dev_private;
1548 unsigned long flags;
1549
1550 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1551 if (--ring->irq_refcount == 0) {
1552 dev_priv->irq_mask |= ring->irq_enable_mask;
1553 I915_WRITE(IMR, dev_priv->irq_mask);
1554 POSTING_READ(IMR);
1555 }
1556 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1557 }
1558
1559 static bool
1560 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1561 {
1562 struct drm_device *dev = ring->dev;
1563 struct drm_i915_private *dev_priv = dev->dev_private;
1564 unsigned long flags;
1565
1566 if (!intel_irqs_enabled(dev_priv))
1567 return false;
1568
1569 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1570 if (ring->irq_refcount++ == 0) {
1571 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1572 I915_WRITE16(IMR, dev_priv->irq_mask);
1573 POSTING_READ16(IMR);
1574 }
1575 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1576
1577 return true;
1578 }
1579
1580 static void
1581 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1582 {
1583 struct drm_device *dev = ring->dev;
1584 struct drm_i915_private *dev_priv = dev->dev_private;
1585 unsigned long flags;
1586
1587 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1588 if (--ring->irq_refcount == 0) {
1589 dev_priv->irq_mask |= ring->irq_enable_mask;
1590 I915_WRITE16(IMR, dev_priv->irq_mask);
1591 POSTING_READ16(IMR);
1592 }
1593 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1594 }
1595
1596 static int
1597 bsd_ring_flush(struct intel_engine_cs *ring,
1598 u32 invalidate_domains,
1599 u32 flush_domains)
1600 {
1601 int ret;
1602
1603 ret = intel_ring_begin(ring, 2);
1604 if (ret)
1605 return ret;
1606
1607 intel_ring_emit(ring, MI_FLUSH);
1608 intel_ring_emit(ring, MI_NOOP);
1609 intel_ring_advance(ring);
1610 return 0;
1611 }
1612
1613 static int
1614 i9xx_add_request(struct intel_engine_cs *ring)
1615 {
1616 int ret;
1617
1618 ret = intel_ring_begin(ring, 4);
1619 if (ret)
1620 return ret;
1621
1622 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1623 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1624 intel_ring_emit(ring,
1625 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1626 intel_ring_emit(ring, MI_USER_INTERRUPT);
1627 __intel_ring_advance(ring);
1628
1629 return 0;
1630 }
1631
1632 static bool
1633 gen6_ring_get_irq(struct intel_engine_cs *ring)
1634 {
1635 struct drm_device *dev = ring->dev;
1636 struct drm_i915_private *dev_priv = dev->dev_private;
1637 unsigned long flags;
1638
1639 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1640 return false;
1641
1642 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1643 if (ring->irq_refcount++ == 0) {
1644 if (HAS_L3_DPF(dev) && ring->id == RCS)
1645 I915_WRITE_IMR(ring,
1646 ~(ring->irq_enable_mask |
1647 GT_PARITY_ERROR(dev)));
1648 else
1649 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1650 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1651 }
1652 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1653
1654 return true;
1655 }
1656
1657 static void
1658 gen6_ring_put_irq(struct intel_engine_cs *ring)
1659 {
1660 struct drm_device *dev = ring->dev;
1661 struct drm_i915_private *dev_priv = dev->dev_private;
1662 unsigned long flags;
1663
1664 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1665 if (--ring->irq_refcount == 0) {
1666 if (HAS_L3_DPF(dev) && ring->id == RCS)
1667 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1668 else
1669 I915_WRITE_IMR(ring, ~0);
1670 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1671 }
1672 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1673 }
1674
1675 static bool
1676 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1677 {
1678 struct drm_device *dev = ring->dev;
1679 struct drm_i915_private *dev_priv = dev->dev_private;
1680 unsigned long flags;
1681
1682 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1683 return false;
1684
1685 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1686 if (ring->irq_refcount++ == 0) {
1687 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1688 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1689 }
1690 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1691
1692 return true;
1693 }
1694
1695 static void
1696 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1697 {
1698 struct drm_device *dev = ring->dev;
1699 struct drm_i915_private *dev_priv = dev->dev_private;
1700 unsigned long flags;
1701
1702 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1703 if (--ring->irq_refcount == 0) {
1704 I915_WRITE_IMR(ring, ~0);
1705 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1706 }
1707 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1708 }
1709
1710 static bool
1711 gen8_ring_get_irq(struct intel_engine_cs *ring)
1712 {
1713 struct drm_device *dev = ring->dev;
1714 struct drm_i915_private *dev_priv = dev->dev_private;
1715 unsigned long flags;
1716
1717 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1718 return false;
1719
1720 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1721 if (ring->irq_refcount++ == 0) {
1722 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1723 I915_WRITE_IMR(ring,
1724 ~(ring->irq_enable_mask |
1725 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1726 } else {
1727 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1728 }
1729 POSTING_READ(RING_IMR(ring->mmio_base));
1730 }
1731 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1732
1733 return true;
1734 }
1735
1736 static void
1737 gen8_ring_put_irq(struct intel_engine_cs *ring)
1738 {
1739 struct drm_device *dev = ring->dev;
1740 struct drm_i915_private *dev_priv = dev->dev_private;
1741 unsigned long flags;
1742
1743 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1744 if (--ring->irq_refcount == 0) {
1745 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1746 I915_WRITE_IMR(ring,
1747 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1748 } else {
1749 I915_WRITE_IMR(ring, ~0);
1750 }
1751 POSTING_READ(RING_IMR(ring->mmio_base));
1752 }
1753 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1754 }
1755
1756 static int
1757 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1758 u64 offset, u32 length,
1759 unsigned dispatch_flags)
1760 {
1761 int ret;
1762
1763 ret = intel_ring_begin(ring, 2);
1764 if (ret)
1765 return ret;
1766
1767 intel_ring_emit(ring,
1768 MI_BATCH_BUFFER_START |
1769 MI_BATCH_GTT |
1770 (dispatch_flags & I915_DISPATCH_SECURE ?
1771 0 : MI_BATCH_NON_SECURE_I965));
1772 intel_ring_emit(ring, offset);
1773 intel_ring_advance(ring);
1774
1775 return 0;
1776 }
1777
1778 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1779 #define I830_BATCH_LIMIT (256*1024)
1780 #define I830_TLB_ENTRIES (2)
1781 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1782 static int
1783 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1784 u64 offset, u32 len,
1785 unsigned dispatch_flags)
1786 {
1787 u32 cs_offset = ring->scratch.gtt_offset;
1788 int ret;
1789
1790 ret = intel_ring_begin(ring, 6);
1791 if (ret)
1792 return ret;
1793
1794 /* Evict the invalid PTE TLBs */
1795 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1796 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1797 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1798 intel_ring_emit(ring, cs_offset);
1799 intel_ring_emit(ring, 0xdeadbeef);
1800 intel_ring_emit(ring, MI_NOOP);
1801 intel_ring_advance(ring);
1802
1803 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1804 if (len > I830_BATCH_LIMIT)
1805 return -ENOSPC;
1806
1807 ret = intel_ring_begin(ring, 6 + 2);
1808 if (ret)
1809 return ret;
1810
1811 /* Blit the batch (which has now all relocs applied) to the
1812 * stable batch scratch bo area (so that the CS never
1813 * stumbles over its tlb invalidation bug) ...
1814 */
1815 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1816 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1817 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1818 intel_ring_emit(ring, cs_offset);
1819 intel_ring_emit(ring, 4096);
1820 intel_ring_emit(ring, offset);
1821
1822 intel_ring_emit(ring, MI_FLUSH);
1823 intel_ring_emit(ring, MI_NOOP);
1824 intel_ring_advance(ring);
1825
1826 /* ... and execute it. */
1827 offset = cs_offset;
1828 }
1829
1830 ret = intel_ring_begin(ring, 4);
1831 if (ret)
1832 return ret;
1833
1834 intel_ring_emit(ring, MI_BATCH_BUFFER);
1835 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1836 0 : MI_BATCH_NON_SECURE));
1837 intel_ring_emit(ring, offset + len - 8);
1838 intel_ring_emit(ring, MI_NOOP);
1839 intel_ring_advance(ring);
1840
1841 return 0;
1842 }
1843
1844 static int
1845 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1846 u64 offset, u32 len,
1847 unsigned dispatch_flags)
1848 {
1849 int ret;
1850
1851 ret = intel_ring_begin(ring, 2);
1852 if (ret)
1853 return ret;
1854
1855 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1856 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1857 0 : MI_BATCH_NON_SECURE));
1858 intel_ring_advance(ring);
1859
1860 return 0;
1861 }
1862
1863 static void cleanup_status_page(struct intel_engine_cs *ring)
1864 {
1865 struct drm_i915_gem_object *obj;
1866
1867 obj = ring->status_page.obj;
1868 if (obj == NULL)
1869 return;
1870
1871 kunmap(sg_page(obj->pages->sgl));
1872 i915_gem_object_ggtt_unpin(obj);
1873 drm_gem_object_unreference(&obj->base);
1874 ring->status_page.obj = NULL;
1875 }
1876
1877 static int init_status_page(struct intel_engine_cs *ring)
1878 {
1879 struct drm_i915_gem_object *obj;
1880
1881 if ((obj = ring->status_page.obj) == NULL) {
1882 unsigned flags;
1883 int ret;
1884
1885 obj = i915_gem_alloc_object(ring->dev, 4096);
1886 if (obj == NULL) {
1887 DRM_ERROR("Failed to allocate status page\n");
1888 return -ENOMEM;
1889 }
1890
1891 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1892 if (ret)
1893 goto err_unref;
1894
1895 flags = 0;
1896 if (!HAS_LLC(ring->dev))
1897 /* On g33, we cannot place HWS above 256MiB, so
1898 * restrict its pinning to the low mappable arena.
1899 * Though this restriction is not documented for
1900 * gen4, gen5, or byt, they also behave similarly
1901 * and hang if the HWS is placed at the top of the
1902 * GTT. To generalise, it appears that all !llc
1903 * platforms have issues with us placing the HWS
1904 * above the mappable region (even though we never
1905 * actualy map it).
1906 */
1907 flags |= PIN_MAPPABLE;
1908 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1909 if (ret) {
1910 err_unref:
1911 drm_gem_object_unreference(&obj->base);
1912 return ret;
1913 }
1914
1915 ring->status_page.obj = obj;
1916 }
1917
1918 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1919 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1920 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1921
1922 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1923 ring->name, ring->status_page.gfx_addr);
1924
1925 return 0;
1926 }
1927
1928 static int init_phys_status_page(struct intel_engine_cs *ring)
1929 {
1930 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1931
1932 if (!dev_priv->status_page_dmah) {
1933 dev_priv->status_page_dmah =
1934 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1935 if (!dev_priv->status_page_dmah)
1936 return -ENOMEM;
1937 }
1938
1939 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1940 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1941
1942 return 0;
1943 }
1944
1945 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1946 {
1947 iounmap(ringbuf->virtual_start);
1948 ringbuf->virtual_start = NULL;
1949 i915_gem_object_ggtt_unpin(ringbuf->obj);
1950 }
1951
1952 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1953 struct intel_ringbuffer *ringbuf)
1954 {
1955 struct drm_i915_private *dev_priv = to_i915(dev);
1956 struct drm_i915_gem_object *obj = ringbuf->obj;
1957 int ret;
1958
1959 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1960 if (ret)
1961 return ret;
1962
1963 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1964 if (ret) {
1965 i915_gem_object_ggtt_unpin(obj);
1966 return ret;
1967 }
1968
1969 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1970 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1971 if (ringbuf->virtual_start == NULL) {
1972 i915_gem_object_ggtt_unpin(obj);
1973 return -EINVAL;
1974 }
1975
1976 return 0;
1977 }
1978
1979 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1980 {
1981 drm_gem_object_unreference(&ringbuf->obj->base);
1982 ringbuf->obj = NULL;
1983 }
1984
1985 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1986 struct intel_ringbuffer *ringbuf)
1987 {
1988 struct drm_i915_gem_object *obj;
1989
1990 obj = NULL;
1991 if (!HAS_LLC(dev))
1992 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1993 if (obj == NULL)
1994 obj = i915_gem_alloc_object(dev, ringbuf->size);
1995 if (obj == NULL)
1996 return -ENOMEM;
1997
1998 /* mark ring buffers as read-only from GPU side by default */
1999 obj->gt_ro = 1;
2000
2001 ringbuf->obj = obj;
2002
2003 return 0;
2004 }
2005
2006 static int intel_init_ring_buffer(struct drm_device *dev,
2007 struct intel_engine_cs *ring)
2008 {
2009 struct intel_ringbuffer *ringbuf;
2010 int ret;
2011
2012 WARN_ON(ring->buffer);
2013
2014 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2015 if (!ringbuf)
2016 return -ENOMEM;
2017 ring->buffer = ringbuf;
2018
2019 ring->dev = dev;
2020 INIT_LIST_HEAD(&ring->active_list);
2021 INIT_LIST_HEAD(&ring->request_list);
2022 INIT_LIST_HEAD(&ring->execlist_queue);
2023 i915_gem_batch_pool_init(dev, &ring->batch_pool);
2024 ringbuf->size = 32 * PAGE_SIZE;
2025 ringbuf->ring = ring;
2026 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2027
2028 init_waitqueue_head(&ring->irq_queue);
2029
2030 if (I915_NEED_GFX_HWS(dev)) {
2031 ret = init_status_page(ring);
2032 if (ret)
2033 goto error;
2034 } else {
2035 BUG_ON(ring->id != RCS);
2036 ret = init_phys_status_page(ring);
2037 if (ret)
2038 goto error;
2039 }
2040
2041 WARN_ON(ringbuf->obj);
2042
2043 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2044 if (ret) {
2045 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2046 ring->name, ret);
2047 goto error;
2048 }
2049
2050 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2051 if (ret) {
2052 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2053 ring->name, ret);
2054 intel_destroy_ringbuffer_obj(ringbuf);
2055 goto error;
2056 }
2057
2058 /* Workaround an erratum on the i830 which causes a hang if
2059 * the TAIL pointer points to within the last 2 cachelines
2060 * of the buffer.
2061 */
2062 ringbuf->effective_size = ringbuf->size;
2063 if (IS_I830(dev) || IS_845G(dev))
2064 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2065
2066 ret = i915_cmd_parser_init_ring(ring);
2067 if (ret)
2068 goto error;
2069
2070 return 0;
2071
2072 error:
2073 kfree(ringbuf);
2074 ring->buffer = NULL;
2075 return ret;
2076 }
2077
2078 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2079 {
2080 struct drm_i915_private *dev_priv;
2081 struct intel_ringbuffer *ringbuf;
2082
2083 if (!intel_ring_initialized(ring))
2084 return;
2085
2086 dev_priv = to_i915(ring->dev);
2087 ringbuf = ring->buffer;
2088
2089 intel_stop_ring_buffer(ring);
2090 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2091
2092 intel_unpin_ringbuffer_obj(ringbuf);
2093 intel_destroy_ringbuffer_obj(ringbuf);
2094 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2095
2096 if (ring->cleanup)
2097 ring->cleanup(ring);
2098
2099 cleanup_status_page(ring);
2100
2101 i915_cmd_parser_fini_ring(ring);
2102 i915_gem_batch_pool_fini(&ring->batch_pool);
2103
2104 kfree(ringbuf);
2105 ring->buffer = NULL;
2106 }
2107
2108 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2109 {
2110 struct intel_ringbuffer *ringbuf = ring->buffer;
2111 struct drm_i915_gem_request *request;
2112 unsigned space;
2113 int ret;
2114
2115 /* The whole point of reserving space is to not wait! */
2116 WARN_ON(ringbuf->reserved_in_use);
2117
2118 if (intel_ring_space(ringbuf) >= n)
2119 return 0;
2120
2121 list_for_each_entry(request, &ring->request_list, list) {
2122 space = __intel_ring_space(request->postfix, ringbuf->tail,
2123 ringbuf->size);
2124 if (space >= n)
2125 break;
2126 }
2127
2128 if (WARN_ON(&request->list == &ring->request_list))
2129 return -ENOSPC;
2130
2131 ret = i915_wait_request(request);
2132 if (ret)
2133 return ret;
2134
2135 ringbuf->space = space;
2136 return 0;
2137 }
2138
2139 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
2140 {
2141 uint32_t __iomem *virt;
2142 struct intel_ringbuffer *ringbuf = ring->buffer;
2143 int rem = ringbuf->size - ringbuf->tail;
2144
2145 /* Can't wrap if space has already been reserved! */
2146 WARN_ON(ringbuf->reserved_in_use);
2147
2148 if (ringbuf->space < rem) {
2149 int ret = ring_wait_for_space(ring, rem);
2150 if (ret)
2151 return ret;
2152 }
2153
2154 virt = ringbuf->virtual_start + ringbuf->tail;
2155 rem /= 4;
2156 while (rem--)
2157 iowrite32(MI_NOOP, virt++);
2158
2159 ringbuf->tail = 0;
2160 intel_ring_update_space(ringbuf);
2161
2162 return 0;
2163 }
2164
2165 int intel_ring_idle(struct intel_engine_cs *ring)
2166 {
2167 struct drm_i915_gem_request *req;
2168
2169 /* We need to add any requests required to flush the objects and ring */
2170 WARN_ON(ring->outstanding_lazy_request);
2171 if (ring->outstanding_lazy_request)
2172 i915_add_request(ring->outstanding_lazy_request);
2173
2174 /* Wait upon the last request to be completed */
2175 if (list_empty(&ring->request_list))
2176 return 0;
2177
2178 req = list_entry(ring->request_list.prev,
2179 struct drm_i915_gem_request,
2180 list);
2181
2182 /* Make sure we do not trigger any retires */
2183 return __i915_wait_request(req,
2184 atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2185 to_i915(ring->dev)->mm.interruptible,
2186 NULL, NULL);
2187 }
2188
2189 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2190 {
2191 request->ringbuf = request->ring->buffer;
2192 return 0;
2193 }
2194
2195 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2196 {
2197 /* NB: Until request management is fully tidied up and the OLR is
2198 * removed, there are too many ways for get false hits on this
2199 * anti-recursion check! */
2200 /*WARN_ON(ringbuf->reserved_size);*/
2201 WARN_ON(ringbuf->reserved_in_use);
2202
2203 ringbuf->reserved_size = size;
2204
2205 /*
2206 * Really need to call _begin() here but that currently leads to
2207 * recursion problems! This will be fixed later but for now just
2208 * return and hope for the best. Note that there is only a real
2209 * problem if the create of the request never actually calls _begin()
2210 * but if they are not submitting any work then why did they create
2211 * the request in the first place?
2212 */
2213 }
2214
2215 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2216 {
2217 WARN_ON(ringbuf->reserved_in_use);
2218
2219 ringbuf->reserved_size = 0;
2220 ringbuf->reserved_in_use = false;
2221 }
2222
2223 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2224 {
2225 WARN_ON(ringbuf->reserved_in_use);
2226
2227 ringbuf->reserved_in_use = true;
2228 ringbuf->reserved_tail = ringbuf->tail;
2229 }
2230
2231 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2232 {
2233 WARN_ON(!ringbuf->reserved_in_use);
2234 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2235 "request reserved size too small: %d vs %d!\n",
2236 ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2237
2238 ringbuf->reserved_size = 0;
2239 ringbuf->reserved_in_use = false;
2240 }
2241
2242 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2243 {
2244 struct intel_ringbuffer *ringbuf = ring->buffer;
2245 int ret;
2246
2247 /*
2248 * Add on the reserved size to the request to make sure that after
2249 * the intended commands have been emitted, there is guaranteed to
2250 * still be enough free space to send them to the hardware.
2251 */
2252 if (!ringbuf->reserved_in_use)
2253 bytes += ringbuf->reserved_size;
2254
2255 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2256 ret = intel_wrap_ring_buffer(ring);
2257 if (unlikely(ret))
2258 return ret;
2259
2260 if(ringbuf->reserved_size) {
2261 uint32_t size = ringbuf->reserved_size;
2262
2263 intel_ring_reserved_space_cancel(ringbuf);
2264 intel_ring_reserved_space_reserve(ringbuf, size);
2265 }
2266 }
2267
2268 if (unlikely(ringbuf->space < bytes)) {
2269 ret = ring_wait_for_space(ring, bytes);
2270 if (unlikely(ret))
2271 return ret;
2272 }
2273
2274 return 0;
2275 }
2276
2277 int intel_ring_begin(struct intel_engine_cs *ring,
2278 int num_dwords)
2279 {
2280 struct drm_i915_gem_request *req;
2281 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2282 int ret;
2283
2284 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2285 dev_priv->mm.interruptible);
2286 if (ret)
2287 return ret;
2288
2289 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2290 if (ret)
2291 return ret;
2292
2293 /* Preallocate the olr before touching the ring */
2294 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
2295 if (ret)
2296 return ret;
2297
2298 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2299 return 0;
2300 }
2301
2302 /* Align the ring tail to a cacheline boundary */
2303 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2304 {
2305 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2306 int ret;
2307
2308 if (num_dwords == 0)
2309 return 0;
2310
2311 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2312 ret = intel_ring_begin(ring, num_dwords);
2313 if (ret)
2314 return ret;
2315
2316 while (num_dwords--)
2317 intel_ring_emit(ring, MI_NOOP);
2318
2319 intel_ring_advance(ring);
2320
2321 return 0;
2322 }
2323
2324 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2325 {
2326 struct drm_device *dev = ring->dev;
2327 struct drm_i915_private *dev_priv = dev->dev_private;
2328
2329 BUG_ON(ring->outstanding_lazy_request);
2330
2331 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2332 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2333 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2334 if (HAS_VEBOX(dev))
2335 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2336 }
2337
2338 ring->set_seqno(ring, seqno);
2339 ring->hangcheck.seqno = seqno;
2340 }
2341
2342 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2343 u32 value)
2344 {
2345 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2346
2347 /* Every tail move must follow the sequence below */
2348
2349 /* Disable notification that the ring is IDLE. The GT
2350 * will then assume that it is busy and bring it out of rc6.
2351 */
2352 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2353 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2354
2355 /* Clear the context id. Here be magic! */
2356 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2357
2358 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2359 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2360 GEN6_BSD_SLEEP_INDICATOR) == 0,
2361 50))
2362 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2363
2364 /* Now that the ring is fully powered up, update the tail */
2365 I915_WRITE_TAIL(ring, value);
2366 POSTING_READ(RING_TAIL(ring->mmio_base));
2367
2368 /* Let the ring send IDLE messages to the GT again,
2369 * and so let it sleep to conserve power when idle.
2370 */
2371 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2372 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2373 }
2374
2375 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2376 u32 invalidate, u32 flush)
2377 {
2378 uint32_t cmd;
2379 int ret;
2380
2381 ret = intel_ring_begin(ring, 4);
2382 if (ret)
2383 return ret;
2384
2385 cmd = MI_FLUSH_DW;
2386 if (INTEL_INFO(ring->dev)->gen >= 8)
2387 cmd += 1;
2388
2389 /* We always require a command barrier so that subsequent
2390 * commands, such as breadcrumb interrupts, are strictly ordered
2391 * wrt the contents of the write cache being flushed to memory
2392 * (and thus being coherent from the CPU).
2393 */
2394 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2395
2396 /*
2397 * Bspec vol 1c.5 - video engine command streamer:
2398 * "If ENABLED, all TLBs will be invalidated once the flush
2399 * operation is complete. This bit is only valid when the
2400 * Post-Sync Operation field is a value of 1h or 3h."
2401 */
2402 if (invalidate & I915_GEM_GPU_DOMAINS)
2403 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2404
2405 intel_ring_emit(ring, cmd);
2406 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2407 if (INTEL_INFO(ring->dev)->gen >= 8) {
2408 intel_ring_emit(ring, 0); /* upper addr */
2409 intel_ring_emit(ring, 0); /* value */
2410 } else {
2411 intel_ring_emit(ring, 0);
2412 intel_ring_emit(ring, MI_NOOP);
2413 }
2414 intel_ring_advance(ring);
2415 return 0;
2416 }
2417
2418 static int
2419 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2420 u64 offset, u32 len,
2421 unsigned dispatch_flags)
2422 {
2423 bool ppgtt = USES_PPGTT(ring->dev) &&
2424 !(dispatch_flags & I915_DISPATCH_SECURE);
2425 int ret;
2426
2427 ret = intel_ring_begin(ring, 4);
2428 if (ret)
2429 return ret;
2430
2431 /* FIXME(BDW): Address space and security selectors. */
2432 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2433 intel_ring_emit(ring, lower_32_bits(offset));
2434 intel_ring_emit(ring, upper_32_bits(offset));
2435 intel_ring_emit(ring, MI_NOOP);
2436 intel_ring_advance(ring);
2437
2438 return 0;
2439 }
2440
2441 static int
2442 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2443 u64 offset, u32 len,
2444 unsigned dispatch_flags)
2445 {
2446 int ret;
2447
2448 ret = intel_ring_begin(ring, 2);
2449 if (ret)
2450 return ret;
2451
2452 intel_ring_emit(ring,
2453 MI_BATCH_BUFFER_START |
2454 (dispatch_flags & I915_DISPATCH_SECURE ?
2455 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2456 /* bit0-7 is the length on GEN6+ */
2457 intel_ring_emit(ring, offset);
2458 intel_ring_advance(ring);
2459
2460 return 0;
2461 }
2462
2463 static int
2464 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2465 u64 offset, u32 len,
2466 unsigned dispatch_flags)
2467 {
2468 int ret;
2469
2470 ret = intel_ring_begin(ring, 2);
2471 if (ret)
2472 return ret;
2473
2474 intel_ring_emit(ring,
2475 MI_BATCH_BUFFER_START |
2476 (dispatch_flags & I915_DISPATCH_SECURE ?
2477 0 : MI_BATCH_NON_SECURE_I965));
2478 /* bit0-7 is the length on GEN6+ */
2479 intel_ring_emit(ring, offset);
2480 intel_ring_advance(ring);
2481
2482 return 0;
2483 }
2484
2485 /* Blitter support (SandyBridge+) */
2486
2487 static int gen6_ring_flush(struct intel_engine_cs *ring,
2488 u32 invalidate, u32 flush)
2489 {
2490 struct drm_device *dev = ring->dev;
2491 uint32_t cmd;
2492 int ret;
2493
2494 ret = intel_ring_begin(ring, 4);
2495 if (ret)
2496 return ret;
2497
2498 cmd = MI_FLUSH_DW;
2499 if (INTEL_INFO(dev)->gen >= 8)
2500 cmd += 1;
2501
2502 /* We always require a command barrier so that subsequent
2503 * commands, such as breadcrumb interrupts, are strictly ordered
2504 * wrt the contents of the write cache being flushed to memory
2505 * (and thus being coherent from the CPU).
2506 */
2507 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2508
2509 /*
2510 * Bspec vol 1c.3 - blitter engine command streamer:
2511 * "If ENABLED, all TLBs will be invalidated once the flush
2512 * operation is complete. This bit is only valid when the
2513 * Post-Sync Operation field is a value of 1h or 3h."
2514 */
2515 if (invalidate & I915_GEM_DOMAIN_RENDER)
2516 cmd |= MI_INVALIDATE_TLB;
2517 intel_ring_emit(ring, cmd);
2518 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2519 if (INTEL_INFO(dev)->gen >= 8) {
2520 intel_ring_emit(ring, 0); /* upper addr */
2521 intel_ring_emit(ring, 0); /* value */
2522 } else {
2523 intel_ring_emit(ring, 0);
2524 intel_ring_emit(ring, MI_NOOP);
2525 }
2526 intel_ring_advance(ring);
2527
2528 return 0;
2529 }
2530
2531 int intel_init_render_ring_buffer(struct drm_device *dev)
2532 {
2533 struct drm_i915_private *dev_priv = dev->dev_private;
2534 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2535 struct drm_i915_gem_object *obj;
2536 int ret;
2537
2538 ring->name = "render ring";
2539 ring->id = RCS;
2540 ring->mmio_base = RENDER_RING_BASE;
2541
2542 if (INTEL_INFO(dev)->gen >= 8) {
2543 if (i915_semaphore_is_enabled(dev)) {
2544 obj = i915_gem_alloc_object(dev, 4096);
2545 if (obj == NULL) {
2546 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2547 i915.semaphores = 0;
2548 } else {
2549 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2550 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2551 if (ret != 0) {
2552 drm_gem_object_unreference(&obj->base);
2553 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2554 i915.semaphores = 0;
2555 } else
2556 dev_priv->semaphore_obj = obj;
2557 }
2558 }
2559
2560 ring->init_context = intel_rcs_ctx_init;
2561 ring->add_request = gen6_add_request;
2562 ring->flush = gen8_render_ring_flush;
2563 ring->irq_get = gen8_ring_get_irq;
2564 ring->irq_put = gen8_ring_put_irq;
2565 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2566 ring->get_seqno = gen6_ring_get_seqno;
2567 ring->set_seqno = ring_set_seqno;
2568 if (i915_semaphore_is_enabled(dev)) {
2569 WARN_ON(!dev_priv->semaphore_obj);
2570 ring->semaphore.sync_to = gen8_ring_sync;
2571 ring->semaphore.signal = gen8_rcs_signal;
2572 GEN8_RING_SEMAPHORE_INIT;
2573 }
2574 } else if (INTEL_INFO(dev)->gen >= 6) {
2575 ring->add_request = gen6_add_request;
2576 ring->flush = gen7_render_ring_flush;
2577 if (INTEL_INFO(dev)->gen == 6)
2578 ring->flush = gen6_render_ring_flush;
2579 ring->irq_get = gen6_ring_get_irq;
2580 ring->irq_put = gen6_ring_put_irq;
2581 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2582 ring->get_seqno = gen6_ring_get_seqno;
2583 ring->set_seqno = ring_set_seqno;
2584 if (i915_semaphore_is_enabled(dev)) {
2585 ring->semaphore.sync_to = gen6_ring_sync;
2586 ring->semaphore.signal = gen6_signal;
2587 /*
2588 * The current semaphore is only applied on pre-gen8
2589 * platform. And there is no VCS2 ring on the pre-gen8
2590 * platform. So the semaphore between RCS and VCS2 is
2591 * initialized as INVALID. Gen8 will initialize the
2592 * sema between VCS2 and RCS later.
2593 */
2594 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2595 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2596 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2597 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2598 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2599 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2600 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2601 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2602 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2603 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2604 }
2605 } else if (IS_GEN5(dev)) {
2606 ring->add_request = pc_render_add_request;
2607 ring->flush = gen4_render_ring_flush;
2608 ring->get_seqno = pc_render_get_seqno;
2609 ring->set_seqno = pc_render_set_seqno;
2610 ring->irq_get = gen5_ring_get_irq;
2611 ring->irq_put = gen5_ring_put_irq;
2612 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2613 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2614 } else {
2615 ring->add_request = i9xx_add_request;
2616 if (INTEL_INFO(dev)->gen < 4)
2617 ring->flush = gen2_render_ring_flush;
2618 else
2619 ring->flush = gen4_render_ring_flush;
2620 ring->get_seqno = ring_get_seqno;
2621 ring->set_seqno = ring_set_seqno;
2622 if (IS_GEN2(dev)) {
2623 ring->irq_get = i8xx_ring_get_irq;
2624 ring->irq_put = i8xx_ring_put_irq;
2625 } else {
2626 ring->irq_get = i9xx_ring_get_irq;
2627 ring->irq_put = i9xx_ring_put_irq;
2628 }
2629 ring->irq_enable_mask = I915_USER_INTERRUPT;
2630 }
2631 ring->write_tail = ring_write_tail;
2632
2633 if (IS_HASWELL(dev))
2634 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2635 else if (IS_GEN8(dev))
2636 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2637 else if (INTEL_INFO(dev)->gen >= 6)
2638 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2639 else if (INTEL_INFO(dev)->gen >= 4)
2640 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2641 else if (IS_I830(dev) || IS_845G(dev))
2642 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2643 else
2644 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2645 ring->init_hw = init_render_ring;
2646 ring->cleanup = render_ring_cleanup;
2647
2648 /* Workaround batchbuffer to combat CS tlb bug. */
2649 if (HAS_BROKEN_CS_TLB(dev)) {
2650 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2651 if (obj == NULL) {
2652 DRM_ERROR("Failed to allocate batch bo\n");
2653 return -ENOMEM;
2654 }
2655
2656 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2657 if (ret != 0) {
2658 drm_gem_object_unreference(&obj->base);
2659 DRM_ERROR("Failed to ping batch bo\n");
2660 return ret;
2661 }
2662
2663 ring->scratch.obj = obj;
2664 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2665 }
2666
2667 ret = intel_init_ring_buffer(dev, ring);
2668 if (ret)
2669 return ret;
2670
2671 if (INTEL_INFO(dev)->gen >= 5) {
2672 ret = intel_init_pipe_control(ring);
2673 if (ret)
2674 return ret;
2675 }
2676
2677 return 0;
2678 }
2679
2680 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2681 {
2682 struct drm_i915_private *dev_priv = dev->dev_private;
2683 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2684
2685 ring->name = "bsd ring";
2686 ring->id = VCS;
2687
2688 ring->write_tail = ring_write_tail;
2689 if (INTEL_INFO(dev)->gen >= 6) {
2690 ring->mmio_base = GEN6_BSD_RING_BASE;
2691 /* gen6 bsd needs a special wa for tail updates */
2692 if (IS_GEN6(dev))
2693 ring->write_tail = gen6_bsd_ring_write_tail;
2694 ring->flush = gen6_bsd_ring_flush;
2695 ring->add_request = gen6_add_request;
2696 ring->get_seqno = gen6_ring_get_seqno;
2697 ring->set_seqno = ring_set_seqno;
2698 if (INTEL_INFO(dev)->gen >= 8) {
2699 ring->irq_enable_mask =
2700 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2701 ring->irq_get = gen8_ring_get_irq;
2702 ring->irq_put = gen8_ring_put_irq;
2703 ring->dispatch_execbuffer =
2704 gen8_ring_dispatch_execbuffer;
2705 if (i915_semaphore_is_enabled(dev)) {
2706 ring->semaphore.sync_to = gen8_ring_sync;
2707 ring->semaphore.signal = gen8_xcs_signal;
2708 GEN8_RING_SEMAPHORE_INIT;
2709 }
2710 } else {
2711 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2712 ring->irq_get = gen6_ring_get_irq;
2713 ring->irq_put = gen6_ring_put_irq;
2714 ring->dispatch_execbuffer =
2715 gen6_ring_dispatch_execbuffer;
2716 if (i915_semaphore_is_enabled(dev)) {
2717 ring->semaphore.sync_to = gen6_ring_sync;
2718 ring->semaphore.signal = gen6_signal;
2719 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2720 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2721 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2722 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2723 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2724 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2725 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2726 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2727 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2728 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2729 }
2730 }
2731 } else {
2732 ring->mmio_base = BSD_RING_BASE;
2733 ring->flush = bsd_ring_flush;
2734 ring->add_request = i9xx_add_request;
2735 ring->get_seqno = ring_get_seqno;
2736 ring->set_seqno = ring_set_seqno;
2737 if (IS_GEN5(dev)) {
2738 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2739 ring->irq_get = gen5_ring_get_irq;
2740 ring->irq_put = gen5_ring_put_irq;
2741 } else {
2742 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2743 ring->irq_get = i9xx_ring_get_irq;
2744 ring->irq_put = i9xx_ring_put_irq;
2745 }
2746 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2747 }
2748 ring->init_hw = init_ring_common;
2749
2750 return intel_init_ring_buffer(dev, ring);
2751 }
2752
2753 /**
2754 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2755 */
2756 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2757 {
2758 struct drm_i915_private *dev_priv = dev->dev_private;
2759 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2760
2761 ring->name = "bsd2 ring";
2762 ring->id = VCS2;
2763
2764 ring->write_tail = ring_write_tail;
2765 ring->mmio_base = GEN8_BSD2_RING_BASE;
2766 ring->flush = gen6_bsd_ring_flush;
2767 ring->add_request = gen6_add_request;
2768 ring->get_seqno = gen6_ring_get_seqno;
2769 ring->set_seqno = ring_set_seqno;
2770 ring->irq_enable_mask =
2771 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2772 ring->irq_get = gen8_ring_get_irq;
2773 ring->irq_put = gen8_ring_put_irq;
2774 ring->dispatch_execbuffer =
2775 gen8_ring_dispatch_execbuffer;
2776 if (i915_semaphore_is_enabled(dev)) {
2777 ring->semaphore.sync_to = gen8_ring_sync;
2778 ring->semaphore.signal = gen8_xcs_signal;
2779 GEN8_RING_SEMAPHORE_INIT;
2780 }
2781 ring->init_hw = init_ring_common;
2782
2783 return intel_init_ring_buffer(dev, ring);
2784 }
2785
2786 int intel_init_blt_ring_buffer(struct drm_device *dev)
2787 {
2788 struct drm_i915_private *dev_priv = dev->dev_private;
2789 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2790
2791 ring->name = "blitter ring";
2792 ring->id = BCS;
2793
2794 ring->mmio_base = BLT_RING_BASE;
2795 ring->write_tail = ring_write_tail;
2796 ring->flush = gen6_ring_flush;
2797 ring->add_request = gen6_add_request;
2798 ring->get_seqno = gen6_ring_get_seqno;
2799 ring->set_seqno = ring_set_seqno;
2800 if (INTEL_INFO(dev)->gen >= 8) {
2801 ring->irq_enable_mask =
2802 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2803 ring->irq_get = gen8_ring_get_irq;
2804 ring->irq_put = gen8_ring_put_irq;
2805 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2806 if (i915_semaphore_is_enabled(dev)) {
2807 ring->semaphore.sync_to = gen8_ring_sync;
2808 ring->semaphore.signal = gen8_xcs_signal;
2809 GEN8_RING_SEMAPHORE_INIT;
2810 }
2811 } else {
2812 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2813 ring->irq_get = gen6_ring_get_irq;
2814 ring->irq_put = gen6_ring_put_irq;
2815 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2816 if (i915_semaphore_is_enabled(dev)) {
2817 ring->semaphore.signal = gen6_signal;
2818 ring->semaphore.sync_to = gen6_ring_sync;
2819 /*
2820 * The current semaphore is only applied on pre-gen8
2821 * platform. And there is no VCS2 ring on the pre-gen8
2822 * platform. So the semaphore between BCS and VCS2 is
2823 * initialized as INVALID. Gen8 will initialize the
2824 * sema between BCS and VCS2 later.
2825 */
2826 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2827 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2828 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2829 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2830 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2831 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2832 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2833 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2834 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2835 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2836 }
2837 }
2838 ring->init_hw = init_ring_common;
2839
2840 return intel_init_ring_buffer(dev, ring);
2841 }
2842
2843 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2844 {
2845 struct drm_i915_private *dev_priv = dev->dev_private;
2846 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2847
2848 ring->name = "video enhancement ring";
2849 ring->id = VECS;
2850
2851 ring->mmio_base = VEBOX_RING_BASE;
2852 ring->write_tail = ring_write_tail;
2853 ring->flush = gen6_ring_flush;
2854 ring->add_request = gen6_add_request;
2855 ring->get_seqno = gen6_ring_get_seqno;
2856 ring->set_seqno = ring_set_seqno;
2857
2858 if (INTEL_INFO(dev)->gen >= 8) {
2859 ring->irq_enable_mask =
2860 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2861 ring->irq_get = gen8_ring_get_irq;
2862 ring->irq_put = gen8_ring_put_irq;
2863 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2864 if (i915_semaphore_is_enabled(dev)) {
2865 ring->semaphore.sync_to = gen8_ring_sync;
2866 ring->semaphore.signal = gen8_xcs_signal;
2867 GEN8_RING_SEMAPHORE_INIT;
2868 }
2869 } else {
2870 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2871 ring->irq_get = hsw_vebox_get_irq;
2872 ring->irq_put = hsw_vebox_put_irq;
2873 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2874 if (i915_semaphore_is_enabled(dev)) {
2875 ring->semaphore.sync_to = gen6_ring_sync;
2876 ring->semaphore.signal = gen6_signal;
2877 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2878 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2879 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2880 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2881 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2882 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2883 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2884 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2885 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2886 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2887 }
2888 }
2889 ring->init_hw = init_ring_common;
2890
2891 return intel_init_ring_buffer(dev, ring);
2892 }
2893
2894 int
2895 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
2896 {
2897 struct intel_engine_cs *ring = req->ring;
2898 int ret;
2899
2900 if (!ring->gpu_caches_dirty)
2901 return 0;
2902
2903 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2904 if (ret)
2905 return ret;
2906
2907 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2908
2909 ring->gpu_caches_dirty = false;
2910 return 0;
2911 }
2912
2913 int
2914 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
2915 {
2916 struct intel_engine_cs *ring = req->ring;
2917 uint32_t flush_domains;
2918 int ret;
2919
2920 flush_domains = 0;
2921 if (ring->gpu_caches_dirty)
2922 flush_domains = I915_GEM_GPU_DOMAINS;
2923
2924 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2925 if (ret)
2926 return ret;
2927
2928 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2929
2930 ring->gpu_caches_dirty = false;
2931 return 0;
2932 }
2933
2934 void
2935 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2936 {
2937 int ret;
2938
2939 if (!intel_ring_initialized(ring))
2940 return;
2941
2942 ret = intel_ring_idle(ring);
2943 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2944 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2945 ring->name, ret);
2946
2947 stop_ring(ring);
2948 }
This page took 0.093043 seconds and 5 git commands to generate.