drm/i915/gen9: Add HDC_CHICKEN1 to HW whitelist
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 int __intel_ring_space(int head, int tail, int size)
38 {
39 int space = head - tail;
40 if (space <= 0)
41 space += size;
42 return space - I915_RING_FREE_SPACE;
43 }
44
45 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
46 {
47 if (ringbuf->last_retired_head != -1) {
48 ringbuf->head = ringbuf->last_retired_head;
49 ringbuf->last_retired_head = -1;
50 }
51
52 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
53 ringbuf->tail, ringbuf->size);
54 }
55
56 int intel_ring_space(struct intel_ringbuffer *ringbuf)
57 {
58 intel_ring_update_space(ringbuf);
59 return ringbuf->space;
60 }
61
62 bool intel_ring_stopped(struct intel_engine_cs *ring)
63 {
64 struct drm_i915_private *dev_priv = ring->dev->dev_private;
65 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
66 }
67
68 static void __intel_ring_advance(struct intel_engine_cs *ring)
69 {
70 struct intel_ringbuffer *ringbuf = ring->buffer;
71 ringbuf->tail &= ringbuf->size - 1;
72 if (intel_ring_stopped(ring))
73 return;
74 ring->write_tail(ring, ringbuf->tail);
75 }
76
77 static int
78 gen2_render_ring_flush(struct drm_i915_gem_request *req,
79 u32 invalidate_domains,
80 u32 flush_domains)
81 {
82 struct intel_engine_cs *ring = req->ring;
83 u32 cmd;
84 int ret;
85
86 cmd = MI_FLUSH;
87 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
88 cmd |= MI_NO_WRITE_FLUSH;
89
90 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
91 cmd |= MI_READ_FLUSH;
92
93 ret = intel_ring_begin(req, 2);
94 if (ret)
95 return ret;
96
97 intel_ring_emit(ring, cmd);
98 intel_ring_emit(ring, MI_NOOP);
99 intel_ring_advance(ring);
100
101 return 0;
102 }
103
104 static int
105 gen4_render_ring_flush(struct drm_i915_gem_request *req,
106 u32 invalidate_domains,
107 u32 flush_domains)
108 {
109 struct intel_engine_cs *ring = req->ring;
110 struct drm_device *dev = ring->dev;
111 u32 cmd;
112 int ret;
113
114 /*
115 * read/write caches:
116 *
117 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
118 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
119 * also flushed at 2d versus 3d pipeline switches.
120 *
121 * read-only caches:
122 *
123 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
124 * MI_READ_FLUSH is set, and is always flushed on 965.
125 *
126 * I915_GEM_DOMAIN_COMMAND may not exist?
127 *
128 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
129 * invalidated when MI_EXE_FLUSH is set.
130 *
131 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
132 * invalidated with every MI_FLUSH.
133 *
134 * TLBs:
135 *
136 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
137 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
138 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
139 * are flushed at any MI_FLUSH.
140 */
141
142 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
143 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
144 cmd &= ~MI_NO_WRITE_FLUSH;
145 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
146 cmd |= MI_EXE_FLUSH;
147
148 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
149 (IS_G4X(dev) || IS_GEN5(dev)))
150 cmd |= MI_INVALIDATE_ISP;
151
152 ret = intel_ring_begin(req, 2);
153 if (ret)
154 return ret;
155
156 intel_ring_emit(ring, cmd);
157 intel_ring_emit(ring, MI_NOOP);
158 intel_ring_advance(ring);
159
160 return 0;
161 }
162
163 /**
164 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
165 * implementing two workarounds on gen6. From section 1.4.7.1
166 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
167 *
168 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
169 * produced by non-pipelined state commands), software needs to first
170 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
171 * 0.
172 *
173 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
174 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
175 *
176 * And the workaround for these two requires this workaround first:
177 *
178 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
179 * BEFORE the pipe-control with a post-sync op and no write-cache
180 * flushes.
181 *
182 * And this last workaround is tricky because of the requirements on
183 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
184 * volume 2 part 1:
185 *
186 * "1 of the following must also be set:
187 * - Render Target Cache Flush Enable ([12] of DW1)
188 * - Depth Cache Flush Enable ([0] of DW1)
189 * - Stall at Pixel Scoreboard ([1] of DW1)
190 * - Depth Stall ([13] of DW1)
191 * - Post-Sync Operation ([13] of DW1)
192 * - Notify Enable ([8] of DW1)"
193 *
194 * The cache flushes require the workaround flush that triggered this
195 * one, so we can't use it. Depth stall would trigger the same.
196 * Post-sync nonzero is what triggered this second workaround, so we
197 * can't use that one either. Notify enable is IRQs, which aren't
198 * really our business. That leaves only stall at scoreboard.
199 */
200 static int
201 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
202 {
203 struct intel_engine_cs *ring = req->ring;
204 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
205 int ret;
206
207 ret = intel_ring_begin(req, 6);
208 if (ret)
209 return ret;
210
211 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
212 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
213 PIPE_CONTROL_STALL_AT_SCOREBOARD);
214 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
215 intel_ring_emit(ring, 0); /* low dword */
216 intel_ring_emit(ring, 0); /* high dword */
217 intel_ring_emit(ring, MI_NOOP);
218 intel_ring_advance(ring);
219
220 ret = intel_ring_begin(req, 6);
221 if (ret)
222 return ret;
223
224 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
225 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
226 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
227 intel_ring_emit(ring, 0);
228 intel_ring_emit(ring, 0);
229 intel_ring_emit(ring, MI_NOOP);
230 intel_ring_advance(ring);
231
232 return 0;
233 }
234
235 static int
236 gen6_render_ring_flush(struct drm_i915_gem_request *req,
237 u32 invalidate_domains, u32 flush_domains)
238 {
239 struct intel_engine_cs *ring = req->ring;
240 u32 flags = 0;
241 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
242 int ret;
243
244 /* Force SNB workarounds for PIPE_CONTROL flushes */
245 ret = intel_emit_post_sync_nonzero_flush(req);
246 if (ret)
247 return ret;
248
249 /* Just flush everything. Experiments have shown that reducing the
250 * number of bits based on the write domains has little performance
251 * impact.
252 */
253 if (flush_domains) {
254 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
255 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
256 /*
257 * Ensure that any following seqno writes only happen
258 * when the render cache is indeed flushed.
259 */
260 flags |= PIPE_CONTROL_CS_STALL;
261 }
262 if (invalidate_domains) {
263 flags |= PIPE_CONTROL_TLB_INVALIDATE;
264 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
265 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
266 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
267 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
268 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
269 /*
270 * TLB invalidate requires a post-sync write.
271 */
272 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
273 }
274
275 ret = intel_ring_begin(req, 4);
276 if (ret)
277 return ret;
278
279 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
280 intel_ring_emit(ring, flags);
281 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
282 intel_ring_emit(ring, 0);
283 intel_ring_advance(ring);
284
285 return 0;
286 }
287
288 static int
289 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
290 {
291 struct intel_engine_cs *ring = req->ring;
292 int ret;
293
294 ret = intel_ring_begin(req, 4);
295 if (ret)
296 return ret;
297
298 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
299 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
300 PIPE_CONTROL_STALL_AT_SCOREBOARD);
301 intel_ring_emit(ring, 0);
302 intel_ring_emit(ring, 0);
303 intel_ring_advance(ring);
304
305 return 0;
306 }
307
308 static int
309 gen7_render_ring_flush(struct drm_i915_gem_request *req,
310 u32 invalidate_domains, u32 flush_domains)
311 {
312 struct intel_engine_cs *ring = req->ring;
313 u32 flags = 0;
314 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
315 int ret;
316
317 /*
318 * Ensure that any following seqno writes only happen when the render
319 * cache is indeed flushed.
320 *
321 * Workaround: 4th PIPE_CONTROL command (except the ones with only
322 * read-cache invalidate bits set) must have the CS_STALL bit set. We
323 * don't try to be clever and just set it unconditionally.
324 */
325 flags |= PIPE_CONTROL_CS_STALL;
326
327 /* Just flush everything. Experiments have shown that reducing the
328 * number of bits based on the write domains has little performance
329 * impact.
330 */
331 if (flush_domains) {
332 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
333 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
334 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
335 flags |= PIPE_CONTROL_FLUSH_ENABLE;
336 }
337 if (invalidate_domains) {
338 flags |= PIPE_CONTROL_TLB_INVALIDATE;
339 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
340 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
341 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
342 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
343 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
344 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
345 /*
346 * TLB invalidate requires a post-sync write.
347 */
348 flags |= PIPE_CONTROL_QW_WRITE;
349 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
350
351 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
352
353 /* Workaround: we must issue a pipe_control with CS-stall bit
354 * set before a pipe_control command that has the state cache
355 * invalidate bit set. */
356 gen7_render_ring_cs_stall_wa(req);
357 }
358
359 ret = intel_ring_begin(req, 4);
360 if (ret)
361 return ret;
362
363 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
364 intel_ring_emit(ring, flags);
365 intel_ring_emit(ring, scratch_addr);
366 intel_ring_emit(ring, 0);
367 intel_ring_advance(ring);
368
369 return 0;
370 }
371
372 static int
373 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
374 u32 flags, u32 scratch_addr)
375 {
376 struct intel_engine_cs *ring = req->ring;
377 int ret;
378
379 ret = intel_ring_begin(req, 6);
380 if (ret)
381 return ret;
382
383 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
384 intel_ring_emit(ring, flags);
385 intel_ring_emit(ring, scratch_addr);
386 intel_ring_emit(ring, 0);
387 intel_ring_emit(ring, 0);
388 intel_ring_emit(ring, 0);
389 intel_ring_advance(ring);
390
391 return 0;
392 }
393
394 static int
395 gen8_render_ring_flush(struct drm_i915_gem_request *req,
396 u32 invalidate_domains, u32 flush_domains)
397 {
398 u32 flags = 0;
399 u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
400 int ret;
401
402 flags |= PIPE_CONTROL_CS_STALL;
403
404 if (flush_domains) {
405 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
406 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
407 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
408 flags |= PIPE_CONTROL_FLUSH_ENABLE;
409 }
410 if (invalidate_domains) {
411 flags |= PIPE_CONTROL_TLB_INVALIDATE;
412 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
413 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
414 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
415 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
416 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
417 flags |= PIPE_CONTROL_QW_WRITE;
418 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
419
420 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
421 ret = gen8_emit_pipe_control(req,
422 PIPE_CONTROL_CS_STALL |
423 PIPE_CONTROL_STALL_AT_SCOREBOARD,
424 0);
425 if (ret)
426 return ret;
427 }
428
429 return gen8_emit_pipe_control(req, flags, scratch_addr);
430 }
431
432 static void ring_write_tail(struct intel_engine_cs *ring,
433 u32 value)
434 {
435 struct drm_i915_private *dev_priv = ring->dev->dev_private;
436 I915_WRITE_TAIL(ring, value);
437 }
438
439 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
440 {
441 struct drm_i915_private *dev_priv = ring->dev->dev_private;
442 u64 acthd;
443
444 if (INTEL_INFO(ring->dev)->gen >= 8)
445 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
446 RING_ACTHD_UDW(ring->mmio_base));
447 else if (INTEL_INFO(ring->dev)->gen >= 4)
448 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
449 else
450 acthd = I915_READ(ACTHD);
451
452 return acthd;
453 }
454
455 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
456 {
457 struct drm_i915_private *dev_priv = ring->dev->dev_private;
458 u32 addr;
459
460 addr = dev_priv->status_page_dmah->busaddr;
461 if (INTEL_INFO(ring->dev)->gen >= 4)
462 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
463 I915_WRITE(HWS_PGA, addr);
464 }
465
466 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
467 {
468 struct drm_device *dev = ring->dev;
469 struct drm_i915_private *dev_priv = ring->dev->dev_private;
470 i915_reg_t mmio;
471
472 /* The ring status page addresses are no longer next to the rest of
473 * the ring registers as of gen7.
474 */
475 if (IS_GEN7(dev)) {
476 switch (ring->id) {
477 case RCS:
478 mmio = RENDER_HWS_PGA_GEN7;
479 break;
480 case BCS:
481 mmio = BLT_HWS_PGA_GEN7;
482 break;
483 /*
484 * VCS2 actually doesn't exist on Gen7. Only shut up
485 * gcc switch check warning
486 */
487 case VCS2:
488 case VCS:
489 mmio = BSD_HWS_PGA_GEN7;
490 break;
491 case VECS:
492 mmio = VEBOX_HWS_PGA_GEN7;
493 break;
494 }
495 } else if (IS_GEN6(ring->dev)) {
496 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
497 } else {
498 /* XXX: gen8 returns to sanity */
499 mmio = RING_HWS_PGA(ring->mmio_base);
500 }
501
502 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
503 POSTING_READ(mmio);
504
505 /*
506 * Flush the TLB for this page
507 *
508 * FIXME: These two bits have disappeared on gen8, so a question
509 * arises: do we still need this and if so how should we go about
510 * invalidating the TLB?
511 */
512 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
513 i915_reg_t reg = RING_INSTPM(ring->mmio_base);
514
515 /* ring should be idle before issuing a sync flush*/
516 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
517
518 I915_WRITE(reg,
519 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
520 INSTPM_SYNC_FLUSH));
521 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
522 1000))
523 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
524 ring->name);
525 }
526 }
527
528 static bool stop_ring(struct intel_engine_cs *ring)
529 {
530 struct drm_i915_private *dev_priv = to_i915(ring->dev);
531
532 if (!IS_GEN2(ring->dev)) {
533 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
534 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
535 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
536 /* Sometimes we observe that the idle flag is not
537 * set even though the ring is empty. So double
538 * check before giving up.
539 */
540 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
541 return false;
542 }
543 }
544
545 I915_WRITE_CTL(ring, 0);
546 I915_WRITE_HEAD(ring, 0);
547 ring->write_tail(ring, 0);
548
549 if (!IS_GEN2(ring->dev)) {
550 (void)I915_READ_CTL(ring);
551 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
552 }
553
554 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
555 }
556
557 static int init_ring_common(struct intel_engine_cs *ring)
558 {
559 struct drm_device *dev = ring->dev;
560 struct drm_i915_private *dev_priv = dev->dev_private;
561 struct intel_ringbuffer *ringbuf = ring->buffer;
562 struct drm_i915_gem_object *obj = ringbuf->obj;
563 int ret = 0;
564
565 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
566
567 if (!stop_ring(ring)) {
568 /* G45 ring initialization often fails to reset head to zero */
569 DRM_DEBUG_KMS("%s head not reset to zero "
570 "ctl %08x head %08x tail %08x start %08x\n",
571 ring->name,
572 I915_READ_CTL(ring),
573 I915_READ_HEAD(ring),
574 I915_READ_TAIL(ring),
575 I915_READ_START(ring));
576
577 if (!stop_ring(ring)) {
578 DRM_ERROR("failed to set %s head to zero "
579 "ctl %08x head %08x tail %08x start %08x\n",
580 ring->name,
581 I915_READ_CTL(ring),
582 I915_READ_HEAD(ring),
583 I915_READ_TAIL(ring),
584 I915_READ_START(ring));
585 ret = -EIO;
586 goto out;
587 }
588 }
589
590 if (I915_NEED_GFX_HWS(dev))
591 intel_ring_setup_status_page(ring);
592 else
593 ring_setup_phys_status_page(ring);
594
595 /* Enforce ordering by reading HEAD register back */
596 I915_READ_HEAD(ring);
597
598 /* Initialize the ring. This must happen _after_ we've cleared the ring
599 * registers with the above sequence (the readback of the HEAD registers
600 * also enforces ordering), otherwise the hw might lose the new ring
601 * register values. */
602 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
603
604 /* WaClearRingBufHeadRegAtInit:ctg,elk */
605 if (I915_READ_HEAD(ring))
606 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
607 ring->name, I915_READ_HEAD(ring));
608 I915_WRITE_HEAD(ring, 0);
609 (void)I915_READ_HEAD(ring);
610
611 I915_WRITE_CTL(ring,
612 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
613 | RING_VALID);
614
615 /* If the head is still not zero, the ring is dead */
616 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
617 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
618 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
619 DRM_ERROR("%s initialization failed "
620 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
621 ring->name,
622 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
623 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
624 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
625 ret = -EIO;
626 goto out;
627 }
628
629 ringbuf->last_retired_head = -1;
630 ringbuf->head = I915_READ_HEAD(ring);
631 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
632 intel_ring_update_space(ringbuf);
633
634 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
635
636 out:
637 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
638
639 return ret;
640 }
641
642 void
643 intel_fini_pipe_control(struct intel_engine_cs *ring)
644 {
645 struct drm_device *dev = ring->dev;
646
647 if (ring->scratch.obj == NULL)
648 return;
649
650 if (INTEL_INFO(dev)->gen >= 5) {
651 kunmap(sg_page(ring->scratch.obj->pages->sgl));
652 i915_gem_object_ggtt_unpin(ring->scratch.obj);
653 }
654
655 drm_gem_object_unreference(&ring->scratch.obj->base);
656 ring->scratch.obj = NULL;
657 }
658
659 int
660 intel_init_pipe_control(struct intel_engine_cs *ring)
661 {
662 int ret;
663
664 WARN_ON(ring->scratch.obj);
665
666 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
667 if (ring->scratch.obj == NULL) {
668 DRM_ERROR("Failed to allocate seqno page\n");
669 ret = -ENOMEM;
670 goto err;
671 }
672
673 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
674 if (ret)
675 goto err_unref;
676
677 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
678 if (ret)
679 goto err_unref;
680
681 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
682 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
683 if (ring->scratch.cpu_page == NULL) {
684 ret = -ENOMEM;
685 goto err_unpin;
686 }
687
688 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
689 ring->name, ring->scratch.gtt_offset);
690 return 0;
691
692 err_unpin:
693 i915_gem_object_ggtt_unpin(ring->scratch.obj);
694 err_unref:
695 drm_gem_object_unreference(&ring->scratch.obj->base);
696 err:
697 return ret;
698 }
699
700 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
701 {
702 int ret, i;
703 struct intel_engine_cs *ring = req->ring;
704 struct drm_device *dev = ring->dev;
705 struct drm_i915_private *dev_priv = dev->dev_private;
706 struct i915_workarounds *w = &dev_priv->workarounds;
707
708 if (w->count == 0)
709 return 0;
710
711 ring->gpu_caches_dirty = true;
712 ret = intel_ring_flush_all_caches(req);
713 if (ret)
714 return ret;
715
716 ret = intel_ring_begin(req, (w->count * 2 + 2));
717 if (ret)
718 return ret;
719
720 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
721 for (i = 0; i < w->count; i++) {
722 intel_ring_emit_reg(ring, w->reg[i].addr);
723 intel_ring_emit(ring, w->reg[i].value);
724 }
725 intel_ring_emit(ring, MI_NOOP);
726
727 intel_ring_advance(ring);
728
729 ring->gpu_caches_dirty = true;
730 ret = intel_ring_flush_all_caches(req);
731 if (ret)
732 return ret;
733
734 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
735
736 return 0;
737 }
738
739 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
740 {
741 int ret;
742
743 ret = intel_ring_workarounds_emit(req);
744 if (ret != 0)
745 return ret;
746
747 ret = i915_gem_render_state_init(req);
748 if (ret)
749 DRM_ERROR("init render state: %d\n", ret);
750
751 return ret;
752 }
753
754 static int wa_add(struct drm_i915_private *dev_priv,
755 i915_reg_t addr,
756 const u32 mask, const u32 val)
757 {
758 const u32 idx = dev_priv->workarounds.count;
759
760 if (WARN_ON(idx >= I915_MAX_WA_REGS))
761 return -ENOSPC;
762
763 dev_priv->workarounds.reg[idx].addr = addr;
764 dev_priv->workarounds.reg[idx].value = val;
765 dev_priv->workarounds.reg[idx].mask = mask;
766
767 dev_priv->workarounds.count++;
768
769 return 0;
770 }
771
772 #define WA_REG(addr, mask, val) do { \
773 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
774 if (r) \
775 return r; \
776 } while (0)
777
778 #define WA_SET_BIT_MASKED(addr, mask) \
779 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
780
781 #define WA_CLR_BIT_MASKED(addr, mask) \
782 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
783
784 #define WA_SET_FIELD_MASKED(addr, mask, value) \
785 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
786
787 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
788 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
789
790 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
791
792 static int wa_ring_whitelist_reg(struct intel_engine_cs *ring, i915_reg_t reg)
793 {
794 struct drm_i915_private *dev_priv = ring->dev->dev_private;
795 struct i915_workarounds *wa = &dev_priv->workarounds;
796 const uint32_t index = wa->hw_whitelist_count[ring->id];
797
798 if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
799 return -EINVAL;
800
801 WA_WRITE(RING_FORCE_TO_NONPRIV(ring->mmio_base, index),
802 i915_mmio_reg_offset(reg));
803 wa->hw_whitelist_count[ring->id]++;
804
805 return 0;
806 }
807
808 static int gen8_init_workarounds(struct intel_engine_cs *ring)
809 {
810 struct drm_device *dev = ring->dev;
811 struct drm_i915_private *dev_priv = dev->dev_private;
812
813 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
814
815 /* WaDisableAsyncFlipPerfMode:bdw,chv */
816 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
817
818 /* WaDisablePartialInstShootdown:bdw,chv */
819 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
820 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
821
822 /* Use Force Non-Coherent whenever executing a 3D context. This is a
823 * workaround for for a possible hang in the unlikely event a TLB
824 * invalidation occurs during a PSD flush.
825 */
826 /* WaForceEnableNonCoherent:bdw,chv */
827 /* WaHdcDisableFetchWhenMasked:bdw,chv */
828 WA_SET_BIT_MASKED(HDC_CHICKEN0,
829 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
830 HDC_FORCE_NON_COHERENT);
831
832 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
833 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
834 * polygons in the same 8x4 pixel/sample area to be processed without
835 * stalling waiting for the earlier ones to write to Hierarchical Z
836 * buffer."
837 *
838 * This optimization is off by default for BDW and CHV; turn it on.
839 */
840 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
841
842 /* Wa4x4STCOptimizationDisable:bdw,chv */
843 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
844
845 /*
846 * BSpec recommends 8x4 when MSAA is used,
847 * however in practice 16x4 seems fastest.
848 *
849 * Note that PS/WM thread counts depend on the WIZ hashing
850 * disable bit, which we don't touch here, but it's good
851 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
852 */
853 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
854 GEN6_WIZ_HASHING_MASK,
855 GEN6_WIZ_HASHING_16x4);
856
857 return 0;
858 }
859
860 static int bdw_init_workarounds(struct intel_engine_cs *ring)
861 {
862 int ret;
863 struct drm_device *dev = ring->dev;
864 struct drm_i915_private *dev_priv = dev->dev_private;
865
866 ret = gen8_init_workarounds(ring);
867 if (ret)
868 return ret;
869
870 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
871 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
872
873 /* WaDisableDopClockGating:bdw */
874 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
875 DOP_CLOCK_GATING_DISABLE);
876
877 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
878 GEN8_SAMPLER_POWER_BYPASS_DIS);
879
880 WA_SET_BIT_MASKED(HDC_CHICKEN0,
881 /* WaForceContextSaveRestoreNonCoherent:bdw */
882 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
883 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
884 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
885
886 return 0;
887 }
888
889 static int chv_init_workarounds(struct intel_engine_cs *ring)
890 {
891 int ret;
892 struct drm_device *dev = ring->dev;
893 struct drm_i915_private *dev_priv = dev->dev_private;
894
895 ret = gen8_init_workarounds(ring);
896 if (ret)
897 return ret;
898
899 /* WaDisableThreadStallDopClockGating:chv */
900 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
901
902 /* Improve HiZ throughput on CHV. */
903 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
904
905 return 0;
906 }
907
908 static int gen9_init_workarounds(struct intel_engine_cs *ring)
909 {
910 struct drm_device *dev = ring->dev;
911 struct drm_i915_private *dev_priv = dev->dev_private;
912 uint32_t tmp;
913 int ret;
914
915 /* WaEnableLbsSlaRetryTimerDecrement:skl */
916 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
917 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
918
919 /* WaDisableKillLogic:bxt,skl */
920 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
921 ECOCHK_DIS_TLB);
922
923 /* WaDisablePartialInstShootdown:skl,bxt */
924 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
925 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
926
927 /* Syncing dependencies between camera and graphics:skl,bxt */
928 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
929 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
930
931 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
932 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
933 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
934 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
935 GEN9_DG_MIRROR_FIX_ENABLE);
936
937 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
938 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
939 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
940 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
941 GEN9_RHWO_OPTIMIZATION_DISABLE);
942 /*
943 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
944 * but we do that in per ctx batchbuffer as there is an issue
945 * with this register not getting restored on ctx restore
946 */
947 }
948
949 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
950 if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
951 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
952 GEN9_ENABLE_YV12_BUGFIX);
953
954 /* Wa4x4STCOptimizationDisable:skl,bxt */
955 /* WaDisablePartialResolveInVc:skl,bxt */
956 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
957 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
958
959 /* WaCcsTlbPrefetchDisable:skl,bxt */
960 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
961 GEN9_CCS_TLB_PREFETCH_ENABLE);
962
963 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
964 if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
965 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
966 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
967 PIXEL_MASK_CAMMING_DISABLE);
968
969 /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
970 tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
971 if (IS_SKL_REVID(dev, SKL_REVID_F0, SKL_REVID_F0) ||
972 IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
973 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
974 WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
975
976 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
977 if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
978 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
979 GEN8_SAMPLER_POWER_BYPASS_DIS);
980
981 /* WaDisableSTUnitPowerOptimization:skl,bxt */
982 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
983
984 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
985 ret= wa_ring_whitelist_reg(ring, GEN8_CS_CHICKEN1);
986 if (ret)
987 return ret;
988
989 /* WaAllowUMDToModifyHDCChicken1:skl,bxt */
990 ret = wa_ring_whitelist_reg(ring, GEN8_HDC_CHICKEN1);
991 if (ret)
992 return ret;
993
994 return 0;
995 }
996
997 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
998 {
999 struct drm_device *dev = ring->dev;
1000 struct drm_i915_private *dev_priv = dev->dev_private;
1001 u8 vals[3] = { 0, 0, 0 };
1002 unsigned int i;
1003
1004 for (i = 0; i < 3; i++) {
1005 u8 ss;
1006
1007 /*
1008 * Only consider slices where one, and only one, subslice has 7
1009 * EUs
1010 */
1011 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1012 continue;
1013
1014 /*
1015 * subslice_7eu[i] != 0 (because of the check above) and
1016 * ss_max == 4 (maximum number of subslices possible per slice)
1017 *
1018 * -> 0 <= ss <= 3;
1019 */
1020 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1021 vals[i] = 3 - ss;
1022 }
1023
1024 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1025 return 0;
1026
1027 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1028 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1029 GEN9_IZ_HASHING_MASK(2) |
1030 GEN9_IZ_HASHING_MASK(1) |
1031 GEN9_IZ_HASHING_MASK(0),
1032 GEN9_IZ_HASHING(2, vals[2]) |
1033 GEN9_IZ_HASHING(1, vals[1]) |
1034 GEN9_IZ_HASHING(0, vals[0]));
1035
1036 return 0;
1037 }
1038
1039 static int skl_init_workarounds(struct intel_engine_cs *ring)
1040 {
1041 int ret;
1042 struct drm_device *dev = ring->dev;
1043 struct drm_i915_private *dev_priv = dev->dev_private;
1044
1045 ret = gen9_init_workarounds(ring);
1046 if (ret)
1047 return ret;
1048
1049 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1050 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1051 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1052 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1053 }
1054
1055 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1056 * involving this register should also be added to WA batch as required.
1057 */
1058 if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1059 /* WaDisableLSQCROPERFforOCL:skl */
1060 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1061 GEN8_LQSC_RO_PERF_DIS);
1062
1063 /* WaEnableGapsTsvCreditFix:skl */
1064 if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1065 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1066 GEN9_GAPS_TSV_CREDIT_DISABLE));
1067 }
1068
1069 /* WaDisablePowerCompilerClockGating:skl */
1070 if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1071 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1072 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1073
1074 if (IS_SKL_REVID(dev, 0, SKL_REVID_F0)) {
1075 /*
1076 *Use Force Non-Coherent whenever executing a 3D context. This
1077 * is a workaround for a possible hang in the unlikely event
1078 * a TLB invalidation occurs during a PSD flush.
1079 */
1080 /* WaForceEnableNonCoherent:skl */
1081 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1082 HDC_FORCE_NON_COHERENT);
1083
1084 /* WaDisableHDCInvalidation:skl */
1085 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1086 BDW_DISABLE_HDC_INVALIDATION);
1087 }
1088
1089 /* WaBarrierPerformanceFixDisable:skl */
1090 if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1091 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1092 HDC_FENCE_DEST_SLM_DISABLE |
1093 HDC_BARRIER_PERFORMANCE_DISABLE);
1094
1095 /* WaDisableSbeCacheDispatchPortSharing:skl */
1096 if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1097 WA_SET_BIT_MASKED(
1098 GEN7_HALF_SLICE_CHICKEN1,
1099 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1100
1101 return skl_tune_iz_hashing(ring);
1102 }
1103
1104 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1105 {
1106 int ret;
1107 struct drm_device *dev = ring->dev;
1108 struct drm_i915_private *dev_priv = dev->dev_private;
1109
1110 ret = gen9_init_workarounds(ring);
1111 if (ret)
1112 return ret;
1113
1114 /* WaStoreMultiplePTEenable:bxt */
1115 /* This is a requirement according to Hardware specification */
1116 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1117 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1118
1119 /* WaSetClckGatingDisableMedia:bxt */
1120 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1121 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1122 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1123 }
1124
1125 /* WaDisableThreadStallDopClockGating:bxt */
1126 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1127 STALL_DOP_GATING_DISABLE);
1128
1129 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1130 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1131 WA_SET_BIT_MASKED(
1132 GEN7_HALF_SLICE_CHICKEN1,
1133 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1134 }
1135
1136 return 0;
1137 }
1138
1139 int init_workarounds_ring(struct intel_engine_cs *ring)
1140 {
1141 struct drm_device *dev = ring->dev;
1142 struct drm_i915_private *dev_priv = dev->dev_private;
1143
1144 WARN_ON(ring->id != RCS);
1145
1146 dev_priv->workarounds.count = 0;
1147 dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1148
1149 if (IS_BROADWELL(dev))
1150 return bdw_init_workarounds(ring);
1151
1152 if (IS_CHERRYVIEW(dev))
1153 return chv_init_workarounds(ring);
1154
1155 if (IS_SKYLAKE(dev))
1156 return skl_init_workarounds(ring);
1157
1158 if (IS_BROXTON(dev))
1159 return bxt_init_workarounds(ring);
1160
1161 return 0;
1162 }
1163
1164 static int init_render_ring(struct intel_engine_cs *ring)
1165 {
1166 struct drm_device *dev = ring->dev;
1167 struct drm_i915_private *dev_priv = dev->dev_private;
1168 int ret = init_ring_common(ring);
1169 if (ret)
1170 return ret;
1171
1172 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1173 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1174 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1175
1176 /* We need to disable the AsyncFlip performance optimisations in order
1177 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1178 * programmed to '1' on all products.
1179 *
1180 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1181 */
1182 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1183 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1184
1185 /* Required for the hardware to program scanline values for waiting */
1186 /* WaEnableFlushTlbInvalidationMode:snb */
1187 if (INTEL_INFO(dev)->gen == 6)
1188 I915_WRITE(GFX_MODE,
1189 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1190
1191 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1192 if (IS_GEN7(dev))
1193 I915_WRITE(GFX_MODE_GEN7,
1194 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1195 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1196
1197 if (IS_GEN6(dev)) {
1198 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1199 * "If this bit is set, STCunit will have LRA as replacement
1200 * policy. [...] This bit must be reset. LRA replacement
1201 * policy is not supported."
1202 */
1203 I915_WRITE(CACHE_MODE_0,
1204 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1205 }
1206
1207 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1208 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1209
1210 if (HAS_L3_DPF(dev))
1211 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1212
1213 return init_workarounds_ring(ring);
1214 }
1215
1216 static void render_ring_cleanup(struct intel_engine_cs *ring)
1217 {
1218 struct drm_device *dev = ring->dev;
1219 struct drm_i915_private *dev_priv = dev->dev_private;
1220
1221 if (dev_priv->semaphore_obj) {
1222 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1223 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1224 dev_priv->semaphore_obj = NULL;
1225 }
1226
1227 intel_fini_pipe_control(ring);
1228 }
1229
1230 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1231 unsigned int num_dwords)
1232 {
1233 #define MBOX_UPDATE_DWORDS 8
1234 struct intel_engine_cs *signaller = signaller_req->ring;
1235 struct drm_device *dev = signaller->dev;
1236 struct drm_i915_private *dev_priv = dev->dev_private;
1237 struct intel_engine_cs *waiter;
1238 int i, ret, num_rings;
1239
1240 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1241 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1242 #undef MBOX_UPDATE_DWORDS
1243
1244 ret = intel_ring_begin(signaller_req, num_dwords);
1245 if (ret)
1246 return ret;
1247
1248 for_each_ring(waiter, dev_priv, i) {
1249 u32 seqno;
1250 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1251 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1252 continue;
1253
1254 seqno = i915_gem_request_get_seqno(signaller_req);
1255 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1256 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1257 PIPE_CONTROL_QW_WRITE |
1258 PIPE_CONTROL_FLUSH_ENABLE);
1259 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1260 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1261 intel_ring_emit(signaller, seqno);
1262 intel_ring_emit(signaller, 0);
1263 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1264 MI_SEMAPHORE_TARGET(waiter->id));
1265 intel_ring_emit(signaller, 0);
1266 }
1267
1268 return 0;
1269 }
1270
1271 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1272 unsigned int num_dwords)
1273 {
1274 #define MBOX_UPDATE_DWORDS 6
1275 struct intel_engine_cs *signaller = signaller_req->ring;
1276 struct drm_device *dev = signaller->dev;
1277 struct drm_i915_private *dev_priv = dev->dev_private;
1278 struct intel_engine_cs *waiter;
1279 int i, ret, num_rings;
1280
1281 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1282 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1283 #undef MBOX_UPDATE_DWORDS
1284
1285 ret = intel_ring_begin(signaller_req, num_dwords);
1286 if (ret)
1287 return ret;
1288
1289 for_each_ring(waiter, dev_priv, i) {
1290 u32 seqno;
1291 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1292 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1293 continue;
1294
1295 seqno = i915_gem_request_get_seqno(signaller_req);
1296 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1297 MI_FLUSH_DW_OP_STOREDW);
1298 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1299 MI_FLUSH_DW_USE_GTT);
1300 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1301 intel_ring_emit(signaller, seqno);
1302 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1303 MI_SEMAPHORE_TARGET(waiter->id));
1304 intel_ring_emit(signaller, 0);
1305 }
1306
1307 return 0;
1308 }
1309
1310 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1311 unsigned int num_dwords)
1312 {
1313 struct intel_engine_cs *signaller = signaller_req->ring;
1314 struct drm_device *dev = signaller->dev;
1315 struct drm_i915_private *dev_priv = dev->dev_private;
1316 struct intel_engine_cs *useless;
1317 int i, ret, num_rings;
1318
1319 #define MBOX_UPDATE_DWORDS 3
1320 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1321 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1322 #undef MBOX_UPDATE_DWORDS
1323
1324 ret = intel_ring_begin(signaller_req, num_dwords);
1325 if (ret)
1326 return ret;
1327
1328 for_each_ring(useless, dev_priv, i) {
1329 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[i];
1330
1331 if (i915_mmio_reg_valid(mbox_reg)) {
1332 u32 seqno = i915_gem_request_get_seqno(signaller_req);
1333
1334 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1335 intel_ring_emit_reg(signaller, mbox_reg);
1336 intel_ring_emit(signaller, seqno);
1337 }
1338 }
1339
1340 /* If num_dwords was rounded, make sure the tail pointer is correct */
1341 if (num_rings % 2 == 0)
1342 intel_ring_emit(signaller, MI_NOOP);
1343
1344 return 0;
1345 }
1346
1347 /**
1348 * gen6_add_request - Update the semaphore mailbox registers
1349 *
1350 * @request - request to write to the ring
1351 *
1352 * Update the mailbox registers in the *other* rings with the current seqno.
1353 * This acts like a signal in the canonical semaphore.
1354 */
1355 static int
1356 gen6_add_request(struct drm_i915_gem_request *req)
1357 {
1358 struct intel_engine_cs *ring = req->ring;
1359 int ret;
1360
1361 if (ring->semaphore.signal)
1362 ret = ring->semaphore.signal(req, 4);
1363 else
1364 ret = intel_ring_begin(req, 4);
1365
1366 if (ret)
1367 return ret;
1368
1369 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1370 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1371 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1372 intel_ring_emit(ring, MI_USER_INTERRUPT);
1373 __intel_ring_advance(ring);
1374
1375 return 0;
1376 }
1377
1378 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1379 u32 seqno)
1380 {
1381 struct drm_i915_private *dev_priv = dev->dev_private;
1382 return dev_priv->last_seqno < seqno;
1383 }
1384
1385 /**
1386 * intel_ring_sync - sync the waiter to the signaller on seqno
1387 *
1388 * @waiter - ring that is waiting
1389 * @signaller - ring which has, or will signal
1390 * @seqno - seqno which the waiter will block on
1391 */
1392
1393 static int
1394 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1395 struct intel_engine_cs *signaller,
1396 u32 seqno)
1397 {
1398 struct intel_engine_cs *waiter = waiter_req->ring;
1399 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1400 int ret;
1401
1402 ret = intel_ring_begin(waiter_req, 4);
1403 if (ret)
1404 return ret;
1405
1406 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1407 MI_SEMAPHORE_GLOBAL_GTT |
1408 MI_SEMAPHORE_POLL |
1409 MI_SEMAPHORE_SAD_GTE_SDD);
1410 intel_ring_emit(waiter, seqno);
1411 intel_ring_emit(waiter,
1412 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1413 intel_ring_emit(waiter,
1414 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1415 intel_ring_advance(waiter);
1416 return 0;
1417 }
1418
1419 static int
1420 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1421 struct intel_engine_cs *signaller,
1422 u32 seqno)
1423 {
1424 struct intel_engine_cs *waiter = waiter_req->ring;
1425 u32 dw1 = MI_SEMAPHORE_MBOX |
1426 MI_SEMAPHORE_COMPARE |
1427 MI_SEMAPHORE_REGISTER;
1428 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1429 int ret;
1430
1431 /* Throughout all of the GEM code, seqno passed implies our current
1432 * seqno is >= the last seqno executed. However for hardware the
1433 * comparison is strictly greater than.
1434 */
1435 seqno -= 1;
1436
1437 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1438
1439 ret = intel_ring_begin(waiter_req, 4);
1440 if (ret)
1441 return ret;
1442
1443 /* If seqno wrap happened, omit the wait with no-ops */
1444 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1445 intel_ring_emit(waiter, dw1 | wait_mbox);
1446 intel_ring_emit(waiter, seqno);
1447 intel_ring_emit(waiter, 0);
1448 intel_ring_emit(waiter, MI_NOOP);
1449 } else {
1450 intel_ring_emit(waiter, MI_NOOP);
1451 intel_ring_emit(waiter, MI_NOOP);
1452 intel_ring_emit(waiter, MI_NOOP);
1453 intel_ring_emit(waiter, MI_NOOP);
1454 }
1455 intel_ring_advance(waiter);
1456
1457 return 0;
1458 }
1459
1460 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1461 do { \
1462 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1463 PIPE_CONTROL_DEPTH_STALL); \
1464 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1465 intel_ring_emit(ring__, 0); \
1466 intel_ring_emit(ring__, 0); \
1467 } while (0)
1468
1469 static int
1470 pc_render_add_request(struct drm_i915_gem_request *req)
1471 {
1472 struct intel_engine_cs *ring = req->ring;
1473 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1474 int ret;
1475
1476 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1477 * incoherent with writes to memory, i.e. completely fubar,
1478 * so we need to use PIPE_NOTIFY instead.
1479 *
1480 * However, we also need to workaround the qword write
1481 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1482 * memory before requesting an interrupt.
1483 */
1484 ret = intel_ring_begin(req, 32);
1485 if (ret)
1486 return ret;
1487
1488 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1489 PIPE_CONTROL_WRITE_FLUSH |
1490 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1491 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1492 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1493 intel_ring_emit(ring, 0);
1494 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1495 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1496 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1497 scratch_addr += 2 * CACHELINE_BYTES;
1498 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1499 scratch_addr += 2 * CACHELINE_BYTES;
1500 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1501 scratch_addr += 2 * CACHELINE_BYTES;
1502 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1503 scratch_addr += 2 * CACHELINE_BYTES;
1504 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1505
1506 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1507 PIPE_CONTROL_WRITE_FLUSH |
1508 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1509 PIPE_CONTROL_NOTIFY);
1510 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1511 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1512 intel_ring_emit(ring, 0);
1513 __intel_ring_advance(ring);
1514
1515 return 0;
1516 }
1517
1518 static u32
1519 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1520 {
1521 /* Workaround to force correct ordering between irq and seqno writes on
1522 * ivb (and maybe also on snb) by reading from a CS register (like
1523 * ACTHD) before reading the status page. */
1524 if (!lazy_coherency) {
1525 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1526 POSTING_READ(RING_ACTHD(ring->mmio_base));
1527 }
1528
1529 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1530 }
1531
1532 static u32
1533 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1534 {
1535 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1536 }
1537
1538 static void
1539 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1540 {
1541 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1542 }
1543
1544 static u32
1545 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1546 {
1547 return ring->scratch.cpu_page[0];
1548 }
1549
1550 static void
1551 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1552 {
1553 ring->scratch.cpu_page[0] = seqno;
1554 }
1555
1556 static bool
1557 gen5_ring_get_irq(struct intel_engine_cs *ring)
1558 {
1559 struct drm_device *dev = ring->dev;
1560 struct drm_i915_private *dev_priv = dev->dev_private;
1561 unsigned long flags;
1562
1563 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1564 return false;
1565
1566 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1567 if (ring->irq_refcount++ == 0)
1568 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1569 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1570
1571 return true;
1572 }
1573
1574 static void
1575 gen5_ring_put_irq(struct intel_engine_cs *ring)
1576 {
1577 struct drm_device *dev = ring->dev;
1578 struct drm_i915_private *dev_priv = dev->dev_private;
1579 unsigned long flags;
1580
1581 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1582 if (--ring->irq_refcount == 0)
1583 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1584 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1585 }
1586
1587 static bool
1588 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1589 {
1590 struct drm_device *dev = ring->dev;
1591 struct drm_i915_private *dev_priv = dev->dev_private;
1592 unsigned long flags;
1593
1594 if (!intel_irqs_enabled(dev_priv))
1595 return false;
1596
1597 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1598 if (ring->irq_refcount++ == 0) {
1599 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1600 I915_WRITE(IMR, dev_priv->irq_mask);
1601 POSTING_READ(IMR);
1602 }
1603 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1604
1605 return true;
1606 }
1607
1608 static void
1609 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1610 {
1611 struct drm_device *dev = ring->dev;
1612 struct drm_i915_private *dev_priv = dev->dev_private;
1613 unsigned long flags;
1614
1615 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1616 if (--ring->irq_refcount == 0) {
1617 dev_priv->irq_mask |= ring->irq_enable_mask;
1618 I915_WRITE(IMR, dev_priv->irq_mask);
1619 POSTING_READ(IMR);
1620 }
1621 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1622 }
1623
1624 static bool
1625 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1626 {
1627 struct drm_device *dev = ring->dev;
1628 struct drm_i915_private *dev_priv = dev->dev_private;
1629 unsigned long flags;
1630
1631 if (!intel_irqs_enabled(dev_priv))
1632 return false;
1633
1634 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1635 if (ring->irq_refcount++ == 0) {
1636 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1637 I915_WRITE16(IMR, dev_priv->irq_mask);
1638 POSTING_READ16(IMR);
1639 }
1640 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1641
1642 return true;
1643 }
1644
1645 static void
1646 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1647 {
1648 struct drm_device *dev = ring->dev;
1649 struct drm_i915_private *dev_priv = dev->dev_private;
1650 unsigned long flags;
1651
1652 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1653 if (--ring->irq_refcount == 0) {
1654 dev_priv->irq_mask |= ring->irq_enable_mask;
1655 I915_WRITE16(IMR, dev_priv->irq_mask);
1656 POSTING_READ16(IMR);
1657 }
1658 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1659 }
1660
1661 static int
1662 bsd_ring_flush(struct drm_i915_gem_request *req,
1663 u32 invalidate_domains,
1664 u32 flush_domains)
1665 {
1666 struct intel_engine_cs *ring = req->ring;
1667 int ret;
1668
1669 ret = intel_ring_begin(req, 2);
1670 if (ret)
1671 return ret;
1672
1673 intel_ring_emit(ring, MI_FLUSH);
1674 intel_ring_emit(ring, MI_NOOP);
1675 intel_ring_advance(ring);
1676 return 0;
1677 }
1678
1679 static int
1680 i9xx_add_request(struct drm_i915_gem_request *req)
1681 {
1682 struct intel_engine_cs *ring = req->ring;
1683 int ret;
1684
1685 ret = intel_ring_begin(req, 4);
1686 if (ret)
1687 return ret;
1688
1689 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1690 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1691 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1692 intel_ring_emit(ring, MI_USER_INTERRUPT);
1693 __intel_ring_advance(ring);
1694
1695 return 0;
1696 }
1697
1698 static bool
1699 gen6_ring_get_irq(struct intel_engine_cs *ring)
1700 {
1701 struct drm_device *dev = ring->dev;
1702 struct drm_i915_private *dev_priv = dev->dev_private;
1703 unsigned long flags;
1704
1705 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1706 return false;
1707
1708 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1709 if (ring->irq_refcount++ == 0) {
1710 if (HAS_L3_DPF(dev) && ring->id == RCS)
1711 I915_WRITE_IMR(ring,
1712 ~(ring->irq_enable_mask |
1713 GT_PARITY_ERROR(dev)));
1714 else
1715 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1716 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1717 }
1718 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1719
1720 return true;
1721 }
1722
1723 static void
1724 gen6_ring_put_irq(struct intel_engine_cs *ring)
1725 {
1726 struct drm_device *dev = ring->dev;
1727 struct drm_i915_private *dev_priv = dev->dev_private;
1728 unsigned long flags;
1729
1730 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1731 if (--ring->irq_refcount == 0) {
1732 if (HAS_L3_DPF(dev) && ring->id == RCS)
1733 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1734 else
1735 I915_WRITE_IMR(ring, ~0);
1736 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1737 }
1738 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1739 }
1740
1741 static bool
1742 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1743 {
1744 struct drm_device *dev = ring->dev;
1745 struct drm_i915_private *dev_priv = dev->dev_private;
1746 unsigned long flags;
1747
1748 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1749 return false;
1750
1751 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1752 if (ring->irq_refcount++ == 0) {
1753 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1754 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1755 }
1756 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1757
1758 return true;
1759 }
1760
1761 static void
1762 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1763 {
1764 struct drm_device *dev = ring->dev;
1765 struct drm_i915_private *dev_priv = dev->dev_private;
1766 unsigned long flags;
1767
1768 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1769 if (--ring->irq_refcount == 0) {
1770 I915_WRITE_IMR(ring, ~0);
1771 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1772 }
1773 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1774 }
1775
1776 static bool
1777 gen8_ring_get_irq(struct intel_engine_cs *ring)
1778 {
1779 struct drm_device *dev = ring->dev;
1780 struct drm_i915_private *dev_priv = dev->dev_private;
1781 unsigned long flags;
1782
1783 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1784 return false;
1785
1786 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1787 if (ring->irq_refcount++ == 0) {
1788 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1789 I915_WRITE_IMR(ring,
1790 ~(ring->irq_enable_mask |
1791 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1792 } else {
1793 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1794 }
1795 POSTING_READ(RING_IMR(ring->mmio_base));
1796 }
1797 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1798
1799 return true;
1800 }
1801
1802 static void
1803 gen8_ring_put_irq(struct intel_engine_cs *ring)
1804 {
1805 struct drm_device *dev = ring->dev;
1806 struct drm_i915_private *dev_priv = dev->dev_private;
1807 unsigned long flags;
1808
1809 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1810 if (--ring->irq_refcount == 0) {
1811 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1812 I915_WRITE_IMR(ring,
1813 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1814 } else {
1815 I915_WRITE_IMR(ring, ~0);
1816 }
1817 POSTING_READ(RING_IMR(ring->mmio_base));
1818 }
1819 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1820 }
1821
1822 static int
1823 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1824 u64 offset, u32 length,
1825 unsigned dispatch_flags)
1826 {
1827 struct intel_engine_cs *ring = req->ring;
1828 int ret;
1829
1830 ret = intel_ring_begin(req, 2);
1831 if (ret)
1832 return ret;
1833
1834 intel_ring_emit(ring,
1835 MI_BATCH_BUFFER_START |
1836 MI_BATCH_GTT |
1837 (dispatch_flags & I915_DISPATCH_SECURE ?
1838 0 : MI_BATCH_NON_SECURE_I965));
1839 intel_ring_emit(ring, offset);
1840 intel_ring_advance(ring);
1841
1842 return 0;
1843 }
1844
1845 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1846 #define I830_BATCH_LIMIT (256*1024)
1847 #define I830_TLB_ENTRIES (2)
1848 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1849 static int
1850 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1851 u64 offset, u32 len,
1852 unsigned dispatch_flags)
1853 {
1854 struct intel_engine_cs *ring = req->ring;
1855 u32 cs_offset = ring->scratch.gtt_offset;
1856 int ret;
1857
1858 ret = intel_ring_begin(req, 6);
1859 if (ret)
1860 return ret;
1861
1862 /* Evict the invalid PTE TLBs */
1863 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1864 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1865 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1866 intel_ring_emit(ring, cs_offset);
1867 intel_ring_emit(ring, 0xdeadbeef);
1868 intel_ring_emit(ring, MI_NOOP);
1869 intel_ring_advance(ring);
1870
1871 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1872 if (len > I830_BATCH_LIMIT)
1873 return -ENOSPC;
1874
1875 ret = intel_ring_begin(req, 6 + 2);
1876 if (ret)
1877 return ret;
1878
1879 /* Blit the batch (which has now all relocs applied) to the
1880 * stable batch scratch bo area (so that the CS never
1881 * stumbles over its tlb invalidation bug) ...
1882 */
1883 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1884 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1885 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1886 intel_ring_emit(ring, cs_offset);
1887 intel_ring_emit(ring, 4096);
1888 intel_ring_emit(ring, offset);
1889
1890 intel_ring_emit(ring, MI_FLUSH);
1891 intel_ring_emit(ring, MI_NOOP);
1892 intel_ring_advance(ring);
1893
1894 /* ... and execute it. */
1895 offset = cs_offset;
1896 }
1897
1898 ret = intel_ring_begin(req, 2);
1899 if (ret)
1900 return ret;
1901
1902 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1903 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1904 0 : MI_BATCH_NON_SECURE));
1905 intel_ring_advance(ring);
1906
1907 return 0;
1908 }
1909
1910 static int
1911 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1912 u64 offset, u32 len,
1913 unsigned dispatch_flags)
1914 {
1915 struct intel_engine_cs *ring = req->ring;
1916 int ret;
1917
1918 ret = intel_ring_begin(req, 2);
1919 if (ret)
1920 return ret;
1921
1922 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1923 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1924 0 : MI_BATCH_NON_SECURE));
1925 intel_ring_advance(ring);
1926
1927 return 0;
1928 }
1929
1930 static void cleanup_phys_status_page(struct intel_engine_cs *ring)
1931 {
1932 struct drm_i915_private *dev_priv = to_i915(ring->dev);
1933
1934 if (!dev_priv->status_page_dmah)
1935 return;
1936
1937 drm_pci_free(ring->dev, dev_priv->status_page_dmah);
1938 ring->status_page.page_addr = NULL;
1939 }
1940
1941 static void cleanup_status_page(struct intel_engine_cs *ring)
1942 {
1943 struct drm_i915_gem_object *obj;
1944
1945 obj = ring->status_page.obj;
1946 if (obj == NULL)
1947 return;
1948
1949 kunmap(sg_page(obj->pages->sgl));
1950 i915_gem_object_ggtt_unpin(obj);
1951 drm_gem_object_unreference(&obj->base);
1952 ring->status_page.obj = NULL;
1953 }
1954
1955 static int init_status_page(struct intel_engine_cs *ring)
1956 {
1957 struct drm_i915_gem_object *obj = ring->status_page.obj;
1958
1959 if (obj == NULL) {
1960 unsigned flags;
1961 int ret;
1962
1963 obj = i915_gem_alloc_object(ring->dev, 4096);
1964 if (obj == NULL) {
1965 DRM_ERROR("Failed to allocate status page\n");
1966 return -ENOMEM;
1967 }
1968
1969 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1970 if (ret)
1971 goto err_unref;
1972
1973 flags = 0;
1974 if (!HAS_LLC(ring->dev))
1975 /* On g33, we cannot place HWS above 256MiB, so
1976 * restrict its pinning to the low mappable arena.
1977 * Though this restriction is not documented for
1978 * gen4, gen5, or byt, they also behave similarly
1979 * and hang if the HWS is placed at the top of the
1980 * GTT. To generalise, it appears that all !llc
1981 * platforms have issues with us placing the HWS
1982 * above the mappable region (even though we never
1983 * actualy map it).
1984 */
1985 flags |= PIN_MAPPABLE;
1986 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1987 if (ret) {
1988 err_unref:
1989 drm_gem_object_unreference(&obj->base);
1990 return ret;
1991 }
1992
1993 ring->status_page.obj = obj;
1994 }
1995
1996 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1997 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1998 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1999
2000 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2001 ring->name, ring->status_page.gfx_addr);
2002
2003 return 0;
2004 }
2005
2006 static int init_phys_status_page(struct intel_engine_cs *ring)
2007 {
2008 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2009
2010 if (!dev_priv->status_page_dmah) {
2011 dev_priv->status_page_dmah =
2012 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
2013 if (!dev_priv->status_page_dmah)
2014 return -ENOMEM;
2015 }
2016
2017 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2018 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
2019
2020 return 0;
2021 }
2022
2023 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2024 {
2025 if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2026 vunmap(ringbuf->virtual_start);
2027 else
2028 iounmap(ringbuf->virtual_start);
2029 ringbuf->virtual_start = NULL;
2030 ringbuf->vma = NULL;
2031 i915_gem_object_ggtt_unpin(ringbuf->obj);
2032 }
2033
2034 static u32 *vmap_obj(struct drm_i915_gem_object *obj)
2035 {
2036 struct sg_page_iter sg_iter;
2037 struct page **pages;
2038 void *addr;
2039 int i;
2040
2041 pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
2042 if (pages == NULL)
2043 return NULL;
2044
2045 i = 0;
2046 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
2047 pages[i++] = sg_page_iter_page(&sg_iter);
2048
2049 addr = vmap(pages, i, 0, PAGE_KERNEL);
2050 drm_free_large(pages);
2051
2052 return addr;
2053 }
2054
2055 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2056 struct intel_ringbuffer *ringbuf)
2057 {
2058 struct drm_i915_private *dev_priv = to_i915(dev);
2059 struct drm_i915_gem_object *obj = ringbuf->obj;
2060 int ret;
2061
2062 if (HAS_LLC(dev_priv) && !obj->stolen) {
2063 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, 0);
2064 if (ret)
2065 return ret;
2066
2067 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2068 if (ret) {
2069 i915_gem_object_ggtt_unpin(obj);
2070 return ret;
2071 }
2072
2073 ringbuf->virtual_start = vmap_obj(obj);
2074 if (ringbuf->virtual_start == NULL) {
2075 i915_gem_object_ggtt_unpin(obj);
2076 return -ENOMEM;
2077 }
2078 } else {
2079 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2080 if (ret)
2081 return ret;
2082
2083 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2084 if (ret) {
2085 i915_gem_object_ggtt_unpin(obj);
2086 return ret;
2087 }
2088
2089 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2090 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2091 if (ringbuf->virtual_start == NULL) {
2092 i915_gem_object_ggtt_unpin(obj);
2093 return -EINVAL;
2094 }
2095 }
2096
2097 ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2098
2099 return 0;
2100 }
2101
2102 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2103 {
2104 drm_gem_object_unreference(&ringbuf->obj->base);
2105 ringbuf->obj = NULL;
2106 }
2107
2108 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2109 struct intel_ringbuffer *ringbuf)
2110 {
2111 struct drm_i915_gem_object *obj;
2112
2113 obj = NULL;
2114 if (!HAS_LLC(dev))
2115 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2116 if (obj == NULL)
2117 obj = i915_gem_alloc_object(dev, ringbuf->size);
2118 if (obj == NULL)
2119 return -ENOMEM;
2120
2121 /* mark ring buffers as read-only from GPU side by default */
2122 obj->gt_ro = 1;
2123
2124 ringbuf->obj = obj;
2125
2126 return 0;
2127 }
2128
2129 struct intel_ringbuffer *
2130 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2131 {
2132 struct intel_ringbuffer *ring;
2133 int ret;
2134
2135 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2136 if (ring == NULL) {
2137 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2138 engine->name);
2139 return ERR_PTR(-ENOMEM);
2140 }
2141
2142 ring->ring = engine;
2143 list_add(&ring->link, &engine->buffers);
2144
2145 ring->size = size;
2146 /* Workaround an erratum on the i830 which causes a hang if
2147 * the TAIL pointer points to within the last 2 cachelines
2148 * of the buffer.
2149 */
2150 ring->effective_size = size;
2151 if (IS_I830(engine->dev) || IS_845G(engine->dev))
2152 ring->effective_size -= 2 * CACHELINE_BYTES;
2153
2154 ring->last_retired_head = -1;
2155 intel_ring_update_space(ring);
2156
2157 ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2158 if (ret) {
2159 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2160 engine->name, ret);
2161 list_del(&ring->link);
2162 kfree(ring);
2163 return ERR_PTR(ret);
2164 }
2165
2166 return ring;
2167 }
2168
2169 void
2170 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2171 {
2172 intel_destroy_ringbuffer_obj(ring);
2173 list_del(&ring->link);
2174 kfree(ring);
2175 }
2176
2177 static int intel_init_ring_buffer(struct drm_device *dev,
2178 struct intel_engine_cs *ring)
2179 {
2180 struct intel_ringbuffer *ringbuf;
2181 int ret;
2182
2183 WARN_ON(ring->buffer);
2184
2185 ring->dev = dev;
2186 INIT_LIST_HEAD(&ring->active_list);
2187 INIT_LIST_HEAD(&ring->request_list);
2188 INIT_LIST_HEAD(&ring->execlist_queue);
2189 INIT_LIST_HEAD(&ring->buffers);
2190 i915_gem_batch_pool_init(dev, &ring->batch_pool);
2191 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2192
2193 init_waitqueue_head(&ring->irq_queue);
2194
2195 ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2196 if (IS_ERR(ringbuf)) {
2197 ret = PTR_ERR(ringbuf);
2198 goto error;
2199 }
2200 ring->buffer = ringbuf;
2201
2202 if (I915_NEED_GFX_HWS(dev)) {
2203 ret = init_status_page(ring);
2204 if (ret)
2205 goto error;
2206 } else {
2207 WARN_ON(ring->id != RCS);
2208 ret = init_phys_status_page(ring);
2209 if (ret)
2210 goto error;
2211 }
2212
2213 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2214 if (ret) {
2215 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2216 ring->name, ret);
2217 intel_destroy_ringbuffer_obj(ringbuf);
2218 goto error;
2219 }
2220
2221 ret = i915_cmd_parser_init_ring(ring);
2222 if (ret)
2223 goto error;
2224
2225 return 0;
2226
2227 error:
2228 intel_cleanup_ring_buffer(ring);
2229 return ret;
2230 }
2231
2232 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2233 {
2234 struct drm_i915_private *dev_priv;
2235
2236 if (!intel_ring_initialized(ring))
2237 return;
2238
2239 dev_priv = to_i915(ring->dev);
2240
2241 if (ring->buffer) {
2242 intel_stop_ring_buffer(ring);
2243 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2244
2245 intel_unpin_ringbuffer_obj(ring->buffer);
2246 intel_ringbuffer_free(ring->buffer);
2247 ring->buffer = NULL;
2248 }
2249
2250 if (ring->cleanup)
2251 ring->cleanup(ring);
2252
2253 if (I915_NEED_GFX_HWS(ring->dev)) {
2254 cleanup_status_page(ring);
2255 } else {
2256 WARN_ON(ring->id != RCS);
2257 cleanup_phys_status_page(ring);
2258 }
2259
2260 i915_cmd_parser_fini_ring(ring);
2261 i915_gem_batch_pool_fini(&ring->batch_pool);
2262 ring->dev = NULL;
2263 }
2264
2265 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2266 {
2267 struct intel_ringbuffer *ringbuf = ring->buffer;
2268 struct drm_i915_gem_request *request;
2269 unsigned space;
2270 int ret;
2271
2272 if (intel_ring_space(ringbuf) >= n)
2273 return 0;
2274
2275 /* The whole point of reserving space is to not wait! */
2276 WARN_ON(ringbuf->reserved_in_use);
2277
2278 list_for_each_entry(request, &ring->request_list, list) {
2279 space = __intel_ring_space(request->postfix, ringbuf->tail,
2280 ringbuf->size);
2281 if (space >= n)
2282 break;
2283 }
2284
2285 if (WARN_ON(&request->list == &ring->request_list))
2286 return -ENOSPC;
2287
2288 ret = i915_wait_request(request);
2289 if (ret)
2290 return ret;
2291
2292 ringbuf->space = space;
2293 return 0;
2294 }
2295
2296 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2297 {
2298 uint32_t __iomem *virt;
2299 int rem = ringbuf->size - ringbuf->tail;
2300
2301 virt = ringbuf->virtual_start + ringbuf->tail;
2302 rem /= 4;
2303 while (rem--)
2304 iowrite32(MI_NOOP, virt++);
2305
2306 ringbuf->tail = 0;
2307 intel_ring_update_space(ringbuf);
2308 }
2309
2310 int intel_ring_idle(struct intel_engine_cs *ring)
2311 {
2312 struct drm_i915_gem_request *req;
2313
2314 /* Wait upon the last request to be completed */
2315 if (list_empty(&ring->request_list))
2316 return 0;
2317
2318 req = list_entry(ring->request_list.prev,
2319 struct drm_i915_gem_request,
2320 list);
2321
2322 /* Make sure we do not trigger any retires */
2323 return __i915_wait_request(req,
2324 atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2325 to_i915(ring->dev)->mm.interruptible,
2326 NULL, NULL);
2327 }
2328
2329 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2330 {
2331 request->ringbuf = request->ring->buffer;
2332 return 0;
2333 }
2334
2335 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2336 {
2337 /*
2338 * The first call merely notes the reserve request and is common for
2339 * all back ends. The subsequent localised _begin() call actually
2340 * ensures that the reservation is available. Without the begin, if
2341 * the request creator immediately submitted the request without
2342 * adding any commands to it then there might not actually be
2343 * sufficient room for the submission commands.
2344 */
2345 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2346
2347 return intel_ring_begin(request, 0);
2348 }
2349
2350 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2351 {
2352 WARN_ON(ringbuf->reserved_size);
2353 WARN_ON(ringbuf->reserved_in_use);
2354
2355 ringbuf->reserved_size = size;
2356 }
2357
2358 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2359 {
2360 WARN_ON(ringbuf->reserved_in_use);
2361
2362 ringbuf->reserved_size = 0;
2363 ringbuf->reserved_in_use = false;
2364 }
2365
2366 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2367 {
2368 WARN_ON(ringbuf->reserved_in_use);
2369
2370 ringbuf->reserved_in_use = true;
2371 ringbuf->reserved_tail = ringbuf->tail;
2372 }
2373
2374 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2375 {
2376 WARN_ON(!ringbuf->reserved_in_use);
2377 if (ringbuf->tail > ringbuf->reserved_tail) {
2378 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2379 "request reserved size too small: %d vs %d!\n",
2380 ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2381 } else {
2382 /*
2383 * The ring was wrapped while the reserved space was in use.
2384 * That means that some unknown amount of the ring tail was
2385 * no-op filled and skipped. Thus simply adding the ring size
2386 * to the tail and doing the above space check will not work.
2387 * Rather than attempt to track how much tail was skipped,
2388 * it is much simpler to say that also skipping the sanity
2389 * check every once in a while is not a big issue.
2390 */
2391 }
2392
2393 ringbuf->reserved_size = 0;
2394 ringbuf->reserved_in_use = false;
2395 }
2396
2397 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2398 {
2399 struct intel_ringbuffer *ringbuf = ring->buffer;
2400 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2401 int remain_actual = ringbuf->size - ringbuf->tail;
2402 int ret, total_bytes, wait_bytes = 0;
2403 bool need_wrap = false;
2404
2405 if (ringbuf->reserved_in_use)
2406 total_bytes = bytes;
2407 else
2408 total_bytes = bytes + ringbuf->reserved_size;
2409
2410 if (unlikely(bytes > remain_usable)) {
2411 /*
2412 * Not enough space for the basic request. So need to flush
2413 * out the remainder and then wait for base + reserved.
2414 */
2415 wait_bytes = remain_actual + total_bytes;
2416 need_wrap = true;
2417 } else {
2418 if (unlikely(total_bytes > remain_usable)) {
2419 /*
2420 * The base request will fit but the reserved space
2421 * falls off the end. So only need to to wait for the
2422 * reserved size after flushing out the remainder.
2423 */
2424 wait_bytes = remain_actual + ringbuf->reserved_size;
2425 need_wrap = true;
2426 } else if (total_bytes > ringbuf->space) {
2427 /* No wrapping required, just waiting. */
2428 wait_bytes = total_bytes;
2429 }
2430 }
2431
2432 if (wait_bytes) {
2433 ret = ring_wait_for_space(ring, wait_bytes);
2434 if (unlikely(ret))
2435 return ret;
2436
2437 if (need_wrap)
2438 __wrap_ring_buffer(ringbuf);
2439 }
2440
2441 return 0;
2442 }
2443
2444 int intel_ring_begin(struct drm_i915_gem_request *req,
2445 int num_dwords)
2446 {
2447 struct intel_engine_cs *ring;
2448 struct drm_i915_private *dev_priv;
2449 int ret;
2450
2451 WARN_ON(req == NULL);
2452 ring = req->ring;
2453 dev_priv = ring->dev->dev_private;
2454
2455 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2456 dev_priv->mm.interruptible);
2457 if (ret)
2458 return ret;
2459
2460 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2461 if (ret)
2462 return ret;
2463
2464 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2465 return 0;
2466 }
2467
2468 /* Align the ring tail to a cacheline boundary */
2469 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2470 {
2471 struct intel_engine_cs *ring = req->ring;
2472 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2473 int ret;
2474
2475 if (num_dwords == 0)
2476 return 0;
2477
2478 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2479 ret = intel_ring_begin(req, num_dwords);
2480 if (ret)
2481 return ret;
2482
2483 while (num_dwords--)
2484 intel_ring_emit(ring, MI_NOOP);
2485
2486 intel_ring_advance(ring);
2487
2488 return 0;
2489 }
2490
2491 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2492 {
2493 struct drm_device *dev = ring->dev;
2494 struct drm_i915_private *dev_priv = dev->dev_private;
2495
2496 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2497 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2498 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2499 if (HAS_VEBOX(dev))
2500 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2501 }
2502
2503 ring->set_seqno(ring, seqno);
2504 ring->hangcheck.seqno = seqno;
2505 }
2506
2507 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2508 u32 value)
2509 {
2510 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2511
2512 /* Every tail move must follow the sequence below */
2513
2514 /* Disable notification that the ring is IDLE. The GT
2515 * will then assume that it is busy and bring it out of rc6.
2516 */
2517 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2518 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2519
2520 /* Clear the context id. Here be magic! */
2521 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2522
2523 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2524 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2525 GEN6_BSD_SLEEP_INDICATOR) == 0,
2526 50))
2527 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2528
2529 /* Now that the ring is fully powered up, update the tail */
2530 I915_WRITE_TAIL(ring, value);
2531 POSTING_READ(RING_TAIL(ring->mmio_base));
2532
2533 /* Let the ring send IDLE messages to the GT again,
2534 * and so let it sleep to conserve power when idle.
2535 */
2536 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2537 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2538 }
2539
2540 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2541 u32 invalidate, u32 flush)
2542 {
2543 struct intel_engine_cs *ring = req->ring;
2544 uint32_t cmd;
2545 int ret;
2546
2547 ret = intel_ring_begin(req, 4);
2548 if (ret)
2549 return ret;
2550
2551 cmd = MI_FLUSH_DW;
2552 if (INTEL_INFO(ring->dev)->gen >= 8)
2553 cmd += 1;
2554
2555 /* We always require a command barrier so that subsequent
2556 * commands, such as breadcrumb interrupts, are strictly ordered
2557 * wrt the contents of the write cache being flushed to memory
2558 * (and thus being coherent from the CPU).
2559 */
2560 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2561
2562 /*
2563 * Bspec vol 1c.5 - video engine command streamer:
2564 * "If ENABLED, all TLBs will be invalidated once the flush
2565 * operation is complete. This bit is only valid when the
2566 * Post-Sync Operation field is a value of 1h or 3h."
2567 */
2568 if (invalidate & I915_GEM_GPU_DOMAINS)
2569 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2570
2571 intel_ring_emit(ring, cmd);
2572 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2573 if (INTEL_INFO(ring->dev)->gen >= 8) {
2574 intel_ring_emit(ring, 0); /* upper addr */
2575 intel_ring_emit(ring, 0); /* value */
2576 } else {
2577 intel_ring_emit(ring, 0);
2578 intel_ring_emit(ring, MI_NOOP);
2579 }
2580 intel_ring_advance(ring);
2581 return 0;
2582 }
2583
2584 static int
2585 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2586 u64 offset, u32 len,
2587 unsigned dispatch_flags)
2588 {
2589 struct intel_engine_cs *ring = req->ring;
2590 bool ppgtt = USES_PPGTT(ring->dev) &&
2591 !(dispatch_flags & I915_DISPATCH_SECURE);
2592 int ret;
2593
2594 ret = intel_ring_begin(req, 4);
2595 if (ret)
2596 return ret;
2597
2598 /* FIXME(BDW): Address space and security selectors. */
2599 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2600 (dispatch_flags & I915_DISPATCH_RS ?
2601 MI_BATCH_RESOURCE_STREAMER : 0));
2602 intel_ring_emit(ring, lower_32_bits(offset));
2603 intel_ring_emit(ring, upper_32_bits(offset));
2604 intel_ring_emit(ring, MI_NOOP);
2605 intel_ring_advance(ring);
2606
2607 return 0;
2608 }
2609
2610 static int
2611 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2612 u64 offset, u32 len,
2613 unsigned dispatch_flags)
2614 {
2615 struct intel_engine_cs *ring = req->ring;
2616 int ret;
2617
2618 ret = intel_ring_begin(req, 2);
2619 if (ret)
2620 return ret;
2621
2622 intel_ring_emit(ring,
2623 MI_BATCH_BUFFER_START |
2624 (dispatch_flags & I915_DISPATCH_SECURE ?
2625 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2626 (dispatch_flags & I915_DISPATCH_RS ?
2627 MI_BATCH_RESOURCE_STREAMER : 0));
2628 /* bit0-7 is the length on GEN6+ */
2629 intel_ring_emit(ring, offset);
2630 intel_ring_advance(ring);
2631
2632 return 0;
2633 }
2634
2635 static int
2636 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2637 u64 offset, u32 len,
2638 unsigned dispatch_flags)
2639 {
2640 struct intel_engine_cs *ring = req->ring;
2641 int ret;
2642
2643 ret = intel_ring_begin(req, 2);
2644 if (ret)
2645 return ret;
2646
2647 intel_ring_emit(ring,
2648 MI_BATCH_BUFFER_START |
2649 (dispatch_flags & I915_DISPATCH_SECURE ?
2650 0 : MI_BATCH_NON_SECURE_I965));
2651 /* bit0-7 is the length on GEN6+ */
2652 intel_ring_emit(ring, offset);
2653 intel_ring_advance(ring);
2654
2655 return 0;
2656 }
2657
2658 /* Blitter support (SandyBridge+) */
2659
2660 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2661 u32 invalidate, u32 flush)
2662 {
2663 struct intel_engine_cs *ring = req->ring;
2664 struct drm_device *dev = ring->dev;
2665 uint32_t cmd;
2666 int ret;
2667
2668 ret = intel_ring_begin(req, 4);
2669 if (ret)
2670 return ret;
2671
2672 cmd = MI_FLUSH_DW;
2673 if (INTEL_INFO(dev)->gen >= 8)
2674 cmd += 1;
2675
2676 /* We always require a command barrier so that subsequent
2677 * commands, such as breadcrumb interrupts, are strictly ordered
2678 * wrt the contents of the write cache being flushed to memory
2679 * (and thus being coherent from the CPU).
2680 */
2681 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2682
2683 /*
2684 * Bspec vol 1c.3 - blitter engine command streamer:
2685 * "If ENABLED, all TLBs will be invalidated once the flush
2686 * operation is complete. This bit is only valid when the
2687 * Post-Sync Operation field is a value of 1h or 3h."
2688 */
2689 if (invalidate & I915_GEM_DOMAIN_RENDER)
2690 cmd |= MI_INVALIDATE_TLB;
2691 intel_ring_emit(ring, cmd);
2692 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2693 if (INTEL_INFO(dev)->gen >= 8) {
2694 intel_ring_emit(ring, 0); /* upper addr */
2695 intel_ring_emit(ring, 0); /* value */
2696 } else {
2697 intel_ring_emit(ring, 0);
2698 intel_ring_emit(ring, MI_NOOP);
2699 }
2700 intel_ring_advance(ring);
2701
2702 return 0;
2703 }
2704
2705 int intel_init_render_ring_buffer(struct drm_device *dev)
2706 {
2707 struct drm_i915_private *dev_priv = dev->dev_private;
2708 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2709 struct drm_i915_gem_object *obj;
2710 int ret;
2711
2712 ring->name = "render ring";
2713 ring->id = RCS;
2714 ring->exec_id = I915_EXEC_RENDER;
2715 ring->mmio_base = RENDER_RING_BASE;
2716
2717 if (INTEL_INFO(dev)->gen >= 8) {
2718 if (i915_semaphore_is_enabled(dev)) {
2719 obj = i915_gem_alloc_object(dev, 4096);
2720 if (obj == NULL) {
2721 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2722 i915.semaphores = 0;
2723 } else {
2724 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2725 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2726 if (ret != 0) {
2727 drm_gem_object_unreference(&obj->base);
2728 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2729 i915.semaphores = 0;
2730 } else
2731 dev_priv->semaphore_obj = obj;
2732 }
2733 }
2734
2735 ring->init_context = intel_rcs_ctx_init;
2736 ring->add_request = gen6_add_request;
2737 ring->flush = gen8_render_ring_flush;
2738 ring->irq_get = gen8_ring_get_irq;
2739 ring->irq_put = gen8_ring_put_irq;
2740 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2741 ring->get_seqno = gen6_ring_get_seqno;
2742 ring->set_seqno = ring_set_seqno;
2743 if (i915_semaphore_is_enabled(dev)) {
2744 WARN_ON(!dev_priv->semaphore_obj);
2745 ring->semaphore.sync_to = gen8_ring_sync;
2746 ring->semaphore.signal = gen8_rcs_signal;
2747 GEN8_RING_SEMAPHORE_INIT;
2748 }
2749 } else if (INTEL_INFO(dev)->gen >= 6) {
2750 ring->init_context = intel_rcs_ctx_init;
2751 ring->add_request = gen6_add_request;
2752 ring->flush = gen7_render_ring_flush;
2753 if (INTEL_INFO(dev)->gen == 6)
2754 ring->flush = gen6_render_ring_flush;
2755 ring->irq_get = gen6_ring_get_irq;
2756 ring->irq_put = gen6_ring_put_irq;
2757 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2758 ring->get_seqno = gen6_ring_get_seqno;
2759 ring->set_seqno = ring_set_seqno;
2760 if (i915_semaphore_is_enabled(dev)) {
2761 ring->semaphore.sync_to = gen6_ring_sync;
2762 ring->semaphore.signal = gen6_signal;
2763 /*
2764 * The current semaphore is only applied on pre-gen8
2765 * platform. And there is no VCS2 ring on the pre-gen8
2766 * platform. So the semaphore between RCS and VCS2 is
2767 * initialized as INVALID. Gen8 will initialize the
2768 * sema between VCS2 and RCS later.
2769 */
2770 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2771 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2772 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2773 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2774 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2775 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2776 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2777 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2778 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2779 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2780 }
2781 } else if (IS_GEN5(dev)) {
2782 ring->add_request = pc_render_add_request;
2783 ring->flush = gen4_render_ring_flush;
2784 ring->get_seqno = pc_render_get_seqno;
2785 ring->set_seqno = pc_render_set_seqno;
2786 ring->irq_get = gen5_ring_get_irq;
2787 ring->irq_put = gen5_ring_put_irq;
2788 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2789 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2790 } else {
2791 ring->add_request = i9xx_add_request;
2792 if (INTEL_INFO(dev)->gen < 4)
2793 ring->flush = gen2_render_ring_flush;
2794 else
2795 ring->flush = gen4_render_ring_flush;
2796 ring->get_seqno = ring_get_seqno;
2797 ring->set_seqno = ring_set_seqno;
2798 if (IS_GEN2(dev)) {
2799 ring->irq_get = i8xx_ring_get_irq;
2800 ring->irq_put = i8xx_ring_put_irq;
2801 } else {
2802 ring->irq_get = i9xx_ring_get_irq;
2803 ring->irq_put = i9xx_ring_put_irq;
2804 }
2805 ring->irq_enable_mask = I915_USER_INTERRUPT;
2806 }
2807 ring->write_tail = ring_write_tail;
2808
2809 if (IS_HASWELL(dev))
2810 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2811 else if (IS_GEN8(dev))
2812 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2813 else if (INTEL_INFO(dev)->gen >= 6)
2814 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2815 else if (INTEL_INFO(dev)->gen >= 4)
2816 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2817 else if (IS_I830(dev) || IS_845G(dev))
2818 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2819 else
2820 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2821 ring->init_hw = init_render_ring;
2822 ring->cleanup = render_ring_cleanup;
2823
2824 /* Workaround batchbuffer to combat CS tlb bug. */
2825 if (HAS_BROKEN_CS_TLB(dev)) {
2826 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2827 if (obj == NULL) {
2828 DRM_ERROR("Failed to allocate batch bo\n");
2829 return -ENOMEM;
2830 }
2831
2832 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2833 if (ret != 0) {
2834 drm_gem_object_unreference(&obj->base);
2835 DRM_ERROR("Failed to ping batch bo\n");
2836 return ret;
2837 }
2838
2839 ring->scratch.obj = obj;
2840 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2841 }
2842
2843 ret = intel_init_ring_buffer(dev, ring);
2844 if (ret)
2845 return ret;
2846
2847 if (INTEL_INFO(dev)->gen >= 5) {
2848 ret = intel_init_pipe_control(ring);
2849 if (ret)
2850 return ret;
2851 }
2852
2853 return 0;
2854 }
2855
2856 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2857 {
2858 struct drm_i915_private *dev_priv = dev->dev_private;
2859 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2860
2861 ring->name = "bsd ring";
2862 ring->id = VCS;
2863 ring->exec_id = I915_EXEC_BSD;
2864
2865 ring->write_tail = ring_write_tail;
2866 if (INTEL_INFO(dev)->gen >= 6) {
2867 ring->mmio_base = GEN6_BSD_RING_BASE;
2868 /* gen6 bsd needs a special wa for tail updates */
2869 if (IS_GEN6(dev))
2870 ring->write_tail = gen6_bsd_ring_write_tail;
2871 ring->flush = gen6_bsd_ring_flush;
2872 ring->add_request = gen6_add_request;
2873 ring->get_seqno = gen6_ring_get_seqno;
2874 ring->set_seqno = ring_set_seqno;
2875 if (INTEL_INFO(dev)->gen >= 8) {
2876 ring->irq_enable_mask =
2877 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2878 ring->irq_get = gen8_ring_get_irq;
2879 ring->irq_put = gen8_ring_put_irq;
2880 ring->dispatch_execbuffer =
2881 gen8_ring_dispatch_execbuffer;
2882 if (i915_semaphore_is_enabled(dev)) {
2883 ring->semaphore.sync_to = gen8_ring_sync;
2884 ring->semaphore.signal = gen8_xcs_signal;
2885 GEN8_RING_SEMAPHORE_INIT;
2886 }
2887 } else {
2888 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2889 ring->irq_get = gen6_ring_get_irq;
2890 ring->irq_put = gen6_ring_put_irq;
2891 ring->dispatch_execbuffer =
2892 gen6_ring_dispatch_execbuffer;
2893 if (i915_semaphore_is_enabled(dev)) {
2894 ring->semaphore.sync_to = gen6_ring_sync;
2895 ring->semaphore.signal = gen6_signal;
2896 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2897 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2898 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2899 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2900 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2901 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2902 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2903 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2904 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2905 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2906 }
2907 }
2908 } else {
2909 ring->mmio_base = BSD_RING_BASE;
2910 ring->flush = bsd_ring_flush;
2911 ring->add_request = i9xx_add_request;
2912 ring->get_seqno = ring_get_seqno;
2913 ring->set_seqno = ring_set_seqno;
2914 if (IS_GEN5(dev)) {
2915 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2916 ring->irq_get = gen5_ring_get_irq;
2917 ring->irq_put = gen5_ring_put_irq;
2918 } else {
2919 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2920 ring->irq_get = i9xx_ring_get_irq;
2921 ring->irq_put = i9xx_ring_put_irq;
2922 }
2923 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2924 }
2925 ring->init_hw = init_ring_common;
2926
2927 return intel_init_ring_buffer(dev, ring);
2928 }
2929
2930 /**
2931 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2932 */
2933 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2934 {
2935 struct drm_i915_private *dev_priv = dev->dev_private;
2936 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2937
2938 ring->name = "bsd2 ring";
2939 ring->id = VCS2;
2940 ring->exec_id = I915_EXEC_BSD;
2941
2942 ring->write_tail = ring_write_tail;
2943 ring->mmio_base = GEN8_BSD2_RING_BASE;
2944 ring->flush = gen6_bsd_ring_flush;
2945 ring->add_request = gen6_add_request;
2946 ring->get_seqno = gen6_ring_get_seqno;
2947 ring->set_seqno = ring_set_seqno;
2948 ring->irq_enable_mask =
2949 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2950 ring->irq_get = gen8_ring_get_irq;
2951 ring->irq_put = gen8_ring_put_irq;
2952 ring->dispatch_execbuffer =
2953 gen8_ring_dispatch_execbuffer;
2954 if (i915_semaphore_is_enabled(dev)) {
2955 ring->semaphore.sync_to = gen8_ring_sync;
2956 ring->semaphore.signal = gen8_xcs_signal;
2957 GEN8_RING_SEMAPHORE_INIT;
2958 }
2959 ring->init_hw = init_ring_common;
2960
2961 return intel_init_ring_buffer(dev, ring);
2962 }
2963
2964 int intel_init_blt_ring_buffer(struct drm_device *dev)
2965 {
2966 struct drm_i915_private *dev_priv = dev->dev_private;
2967 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2968
2969 ring->name = "blitter ring";
2970 ring->id = BCS;
2971 ring->exec_id = I915_EXEC_BLT;
2972
2973 ring->mmio_base = BLT_RING_BASE;
2974 ring->write_tail = ring_write_tail;
2975 ring->flush = gen6_ring_flush;
2976 ring->add_request = gen6_add_request;
2977 ring->get_seqno = gen6_ring_get_seqno;
2978 ring->set_seqno = ring_set_seqno;
2979 if (INTEL_INFO(dev)->gen >= 8) {
2980 ring->irq_enable_mask =
2981 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2982 ring->irq_get = gen8_ring_get_irq;
2983 ring->irq_put = gen8_ring_put_irq;
2984 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2985 if (i915_semaphore_is_enabled(dev)) {
2986 ring->semaphore.sync_to = gen8_ring_sync;
2987 ring->semaphore.signal = gen8_xcs_signal;
2988 GEN8_RING_SEMAPHORE_INIT;
2989 }
2990 } else {
2991 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2992 ring->irq_get = gen6_ring_get_irq;
2993 ring->irq_put = gen6_ring_put_irq;
2994 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2995 if (i915_semaphore_is_enabled(dev)) {
2996 ring->semaphore.signal = gen6_signal;
2997 ring->semaphore.sync_to = gen6_ring_sync;
2998 /*
2999 * The current semaphore is only applied on pre-gen8
3000 * platform. And there is no VCS2 ring on the pre-gen8
3001 * platform. So the semaphore between BCS and VCS2 is
3002 * initialized as INVALID. Gen8 will initialize the
3003 * sema between BCS and VCS2 later.
3004 */
3005 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
3006 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
3007 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
3008 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
3009 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3010 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
3011 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
3012 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
3013 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
3014 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3015 }
3016 }
3017 ring->init_hw = init_ring_common;
3018
3019 return intel_init_ring_buffer(dev, ring);
3020 }
3021
3022 int intel_init_vebox_ring_buffer(struct drm_device *dev)
3023 {
3024 struct drm_i915_private *dev_priv = dev->dev_private;
3025 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
3026
3027 ring->name = "video enhancement ring";
3028 ring->id = VECS;
3029 ring->exec_id = I915_EXEC_VEBOX;
3030
3031 ring->mmio_base = VEBOX_RING_BASE;
3032 ring->write_tail = ring_write_tail;
3033 ring->flush = gen6_ring_flush;
3034 ring->add_request = gen6_add_request;
3035 ring->get_seqno = gen6_ring_get_seqno;
3036 ring->set_seqno = ring_set_seqno;
3037
3038 if (INTEL_INFO(dev)->gen >= 8) {
3039 ring->irq_enable_mask =
3040 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3041 ring->irq_get = gen8_ring_get_irq;
3042 ring->irq_put = gen8_ring_put_irq;
3043 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3044 if (i915_semaphore_is_enabled(dev)) {
3045 ring->semaphore.sync_to = gen8_ring_sync;
3046 ring->semaphore.signal = gen8_xcs_signal;
3047 GEN8_RING_SEMAPHORE_INIT;
3048 }
3049 } else {
3050 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3051 ring->irq_get = hsw_vebox_get_irq;
3052 ring->irq_put = hsw_vebox_put_irq;
3053 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3054 if (i915_semaphore_is_enabled(dev)) {
3055 ring->semaphore.sync_to = gen6_ring_sync;
3056 ring->semaphore.signal = gen6_signal;
3057 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3058 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3059 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3060 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3061 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3062 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3063 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3064 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3065 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3066 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3067 }
3068 }
3069 ring->init_hw = init_ring_common;
3070
3071 return intel_init_ring_buffer(dev, ring);
3072 }
3073
3074 int
3075 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3076 {
3077 struct intel_engine_cs *ring = req->ring;
3078 int ret;
3079
3080 if (!ring->gpu_caches_dirty)
3081 return 0;
3082
3083 ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3084 if (ret)
3085 return ret;
3086
3087 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3088
3089 ring->gpu_caches_dirty = false;
3090 return 0;
3091 }
3092
3093 int
3094 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3095 {
3096 struct intel_engine_cs *ring = req->ring;
3097 uint32_t flush_domains;
3098 int ret;
3099
3100 flush_domains = 0;
3101 if (ring->gpu_caches_dirty)
3102 flush_domains = I915_GEM_GPU_DOMAINS;
3103
3104 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3105 if (ret)
3106 return ret;
3107
3108 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3109
3110 ring->gpu_caches_dirty = false;
3111 return 0;
3112 }
3113
3114 void
3115 intel_stop_ring_buffer(struct intel_engine_cs *ring)
3116 {
3117 int ret;
3118
3119 if (!intel_ring_initialized(ring))
3120 return;
3121
3122 ret = intel_ring_idle(ring);
3123 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3124 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3125 ring->name, ret);
3126
3127 stop_ring(ring);
3128 }
This page took 0.099401 seconds and 5 git commands to generate.