6adc7f11056844476cad0bc4726014c0ed3df87f
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 struct drm_device *dev = ring->dev;
40
41 if (!dev)
42 return false;
43
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48 return ringbuf->obj;
49 } else
50 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 int space = head - tail;
56 if (space <= 0)
57 space += size;
58 return space - I915_RING_FREE_SPACE;
59 }
60
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63 if (ringbuf->last_retired_head != -1) {
64 ringbuf->head = ringbuf->last_retired_head;
65 ringbuf->last_retired_head = -1;
66 }
67
68 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69 ringbuf->tail, ringbuf->size);
70 }
71
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74 intel_ring_update_space(ringbuf);
75 return ringbuf->space;
76 }
77
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80 struct drm_i915_private *dev_priv = ring->dev->dev_private;
81 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
84 static void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86 struct intel_ringbuffer *ringbuf = ring->buffer;
87 ringbuf->tail &= ringbuf->size - 1;
88 if (intel_ring_stopped(ring))
89 return;
90 ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
94 gen2_render_ring_flush(struct drm_i915_gem_request *req,
95 u32 invalidate_domains,
96 u32 flush_domains)
97 {
98 struct intel_engine_cs *ring = req->ring;
99 u32 cmd;
100 int ret;
101
102 cmd = MI_FLUSH;
103 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
104 cmd |= MI_NO_WRITE_FLUSH;
105
106 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
107 cmd |= MI_READ_FLUSH;
108
109 ret = intel_ring_begin(req, 2);
110 if (ret)
111 return ret;
112
113 intel_ring_emit(ring, cmd);
114 intel_ring_emit(ring, MI_NOOP);
115 intel_ring_advance(ring);
116
117 return 0;
118 }
119
120 static int
121 gen4_render_ring_flush(struct drm_i915_gem_request *req,
122 u32 invalidate_domains,
123 u32 flush_domains)
124 {
125 struct intel_engine_cs *ring = req->ring;
126 struct drm_device *dev = ring->dev;
127 u32 cmd;
128 int ret;
129
130 /*
131 * read/write caches:
132 *
133 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
134 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
135 * also flushed at 2d versus 3d pipeline switches.
136 *
137 * read-only caches:
138 *
139 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
140 * MI_READ_FLUSH is set, and is always flushed on 965.
141 *
142 * I915_GEM_DOMAIN_COMMAND may not exist?
143 *
144 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
145 * invalidated when MI_EXE_FLUSH is set.
146 *
147 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
148 * invalidated with every MI_FLUSH.
149 *
150 * TLBs:
151 *
152 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
153 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
154 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
155 * are flushed at any MI_FLUSH.
156 */
157
158 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
159 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
160 cmd &= ~MI_NO_WRITE_FLUSH;
161 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
162 cmd |= MI_EXE_FLUSH;
163
164 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
165 (IS_G4X(dev) || IS_GEN5(dev)))
166 cmd |= MI_INVALIDATE_ISP;
167
168 ret = intel_ring_begin(req, 2);
169 if (ret)
170 return ret;
171
172 intel_ring_emit(ring, cmd);
173 intel_ring_emit(ring, MI_NOOP);
174 intel_ring_advance(ring);
175
176 return 0;
177 }
178
179 /**
180 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
181 * implementing two workarounds on gen6. From section 1.4.7.1
182 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
183 *
184 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
185 * produced by non-pipelined state commands), software needs to first
186 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
187 * 0.
188 *
189 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
190 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
191 *
192 * And the workaround for these two requires this workaround first:
193 *
194 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
195 * BEFORE the pipe-control with a post-sync op and no write-cache
196 * flushes.
197 *
198 * And this last workaround is tricky because of the requirements on
199 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
200 * volume 2 part 1:
201 *
202 * "1 of the following must also be set:
203 * - Render Target Cache Flush Enable ([12] of DW1)
204 * - Depth Cache Flush Enable ([0] of DW1)
205 * - Stall at Pixel Scoreboard ([1] of DW1)
206 * - Depth Stall ([13] of DW1)
207 * - Post-Sync Operation ([13] of DW1)
208 * - Notify Enable ([8] of DW1)"
209 *
210 * The cache flushes require the workaround flush that triggered this
211 * one, so we can't use it. Depth stall would trigger the same.
212 * Post-sync nonzero is what triggered this second workaround, so we
213 * can't use that one either. Notify enable is IRQs, which aren't
214 * really our business. That leaves only stall at scoreboard.
215 */
216 static int
217 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
218 {
219 struct intel_engine_cs *ring = req->ring;
220 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
221 int ret;
222
223 ret = intel_ring_begin(req, 6);
224 if (ret)
225 return ret;
226
227 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
229 PIPE_CONTROL_STALL_AT_SCOREBOARD);
230 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
231 intel_ring_emit(ring, 0); /* low dword */
232 intel_ring_emit(ring, 0); /* high dword */
233 intel_ring_emit(ring, MI_NOOP);
234 intel_ring_advance(ring);
235
236 ret = intel_ring_begin(req, 6);
237 if (ret)
238 return ret;
239
240 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
241 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
242 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
243 intel_ring_emit(ring, 0);
244 intel_ring_emit(ring, 0);
245 intel_ring_emit(ring, MI_NOOP);
246 intel_ring_advance(ring);
247
248 return 0;
249 }
250
251 static int
252 gen6_render_ring_flush(struct drm_i915_gem_request *req,
253 u32 invalidate_domains, u32 flush_domains)
254 {
255 struct intel_engine_cs *ring = req->ring;
256 u32 flags = 0;
257 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
258 int ret;
259
260 /* Force SNB workarounds for PIPE_CONTROL flushes */
261 ret = intel_emit_post_sync_nonzero_flush(req);
262 if (ret)
263 return ret;
264
265 /* Just flush everything. Experiments have shown that reducing the
266 * number of bits based on the write domains has little performance
267 * impact.
268 */
269 if (flush_domains) {
270 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
271 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
272 /*
273 * Ensure that any following seqno writes only happen
274 * when the render cache is indeed flushed.
275 */
276 flags |= PIPE_CONTROL_CS_STALL;
277 }
278 if (invalidate_domains) {
279 flags |= PIPE_CONTROL_TLB_INVALIDATE;
280 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
281 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
282 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
283 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
284 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
285 /*
286 * TLB invalidate requires a post-sync write.
287 */
288 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
289 }
290
291 ret = intel_ring_begin(req, 4);
292 if (ret)
293 return ret;
294
295 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
296 intel_ring_emit(ring, flags);
297 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
298 intel_ring_emit(ring, 0);
299 intel_ring_advance(ring);
300
301 return 0;
302 }
303
304 static int
305 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
306 {
307 struct intel_engine_cs *ring = req->ring;
308 int ret;
309
310 ret = intel_ring_begin(req, 4);
311 if (ret)
312 return ret;
313
314 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
315 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
316 PIPE_CONTROL_STALL_AT_SCOREBOARD);
317 intel_ring_emit(ring, 0);
318 intel_ring_emit(ring, 0);
319 intel_ring_advance(ring);
320
321 return 0;
322 }
323
324 static int
325 gen7_render_ring_flush(struct drm_i915_gem_request *req,
326 u32 invalidate_domains, u32 flush_domains)
327 {
328 struct intel_engine_cs *ring = req->ring;
329 u32 flags = 0;
330 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
331 int ret;
332
333 /*
334 * Ensure that any following seqno writes only happen when the render
335 * cache is indeed flushed.
336 *
337 * Workaround: 4th PIPE_CONTROL command (except the ones with only
338 * read-cache invalidate bits set) must have the CS_STALL bit set. We
339 * don't try to be clever and just set it unconditionally.
340 */
341 flags |= PIPE_CONTROL_CS_STALL;
342
343 /* Just flush everything. Experiments have shown that reducing the
344 * number of bits based on the write domains has little performance
345 * impact.
346 */
347 if (flush_domains) {
348 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
349 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
350 }
351 if (invalidate_domains) {
352 flags |= PIPE_CONTROL_TLB_INVALIDATE;
353 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
354 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
355 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
356 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
357 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
358 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
359 /*
360 * TLB invalidate requires a post-sync write.
361 */
362 flags |= PIPE_CONTROL_QW_WRITE;
363 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
364
365 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
366
367 /* Workaround: we must issue a pipe_control with CS-stall bit
368 * set before a pipe_control command that has the state cache
369 * invalidate bit set. */
370 gen7_render_ring_cs_stall_wa(req);
371 }
372
373 ret = intel_ring_begin(req, 4);
374 if (ret)
375 return ret;
376
377 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
378 intel_ring_emit(ring, flags);
379 intel_ring_emit(ring, scratch_addr);
380 intel_ring_emit(ring, 0);
381 intel_ring_advance(ring);
382
383 return 0;
384 }
385
386 static int
387 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
388 u32 flags, u32 scratch_addr)
389 {
390 struct intel_engine_cs *ring = req->ring;
391 int ret;
392
393 ret = intel_ring_begin(req, 6);
394 if (ret)
395 return ret;
396
397 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
398 intel_ring_emit(ring, flags);
399 intel_ring_emit(ring, scratch_addr);
400 intel_ring_emit(ring, 0);
401 intel_ring_emit(ring, 0);
402 intel_ring_emit(ring, 0);
403 intel_ring_advance(ring);
404
405 return 0;
406 }
407
408 static int
409 gen8_render_ring_flush(struct drm_i915_gem_request *req,
410 u32 invalidate_domains, u32 flush_domains)
411 {
412 u32 flags = 0;
413 u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
414 int ret;
415
416 flags |= PIPE_CONTROL_CS_STALL;
417
418 if (flush_domains) {
419 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
420 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
421 }
422 if (invalidate_domains) {
423 flags |= PIPE_CONTROL_TLB_INVALIDATE;
424 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
425 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
426 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
427 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
428 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
429 flags |= PIPE_CONTROL_QW_WRITE;
430 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
431
432 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
433 ret = gen8_emit_pipe_control(req,
434 PIPE_CONTROL_CS_STALL |
435 PIPE_CONTROL_STALL_AT_SCOREBOARD,
436 0);
437 if (ret)
438 return ret;
439 }
440
441 return gen8_emit_pipe_control(req, flags, scratch_addr);
442 }
443
444 static void ring_write_tail(struct intel_engine_cs *ring,
445 u32 value)
446 {
447 struct drm_i915_private *dev_priv = ring->dev->dev_private;
448 I915_WRITE_TAIL(ring, value);
449 }
450
451 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
452 {
453 struct drm_i915_private *dev_priv = ring->dev->dev_private;
454 u64 acthd;
455
456 if (INTEL_INFO(ring->dev)->gen >= 8)
457 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
458 RING_ACTHD_UDW(ring->mmio_base));
459 else if (INTEL_INFO(ring->dev)->gen >= 4)
460 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
461 else
462 acthd = I915_READ(ACTHD);
463
464 return acthd;
465 }
466
467 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
468 {
469 struct drm_i915_private *dev_priv = ring->dev->dev_private;
470 u32 addr;
471
472 addr = dev_priv->status_page_dmah->busaddr;
473 if (INTEL_INFO(ring->dev)->gen >= 4)
474 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
475 I915_WRITE(HWS_PGA, addr);
476 }
477
478 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
479 {
480 struct drm_device *dev = ring->dev;
481 struct drm_i915_private *dev_priv = ring->dev->dev_private;
482 u32 mmio = 0;
483
484 /* The ring status page addresses are no longer next to the rest of
485 * the ring registers as of gen7.
486 */
487 if (IS_GEN7(dev)) {
488 switch (ring->id) {
489 case RCS:
490 mmio = RENDER_HWS_PGA_GEN7;
491 break;
492 case BCS:
493 mmio = BLT_HWS_PGA_GEN7;
494 break;
495 /*
496 * VCS2 actually doesn't exist on Gen7. Only shut up
497 * gcc switch check warning
498 */
499 case VCS2:
500 case VCS:
501 mmio = BSD_HWS_PGA_GEN7;
502 break;
503 case VECS:
504 mmio = VEBOX_HWS_PGA_GEN7;
505 break;
506 }
507 } else if (IS_GEN6(ring->dev)) {
508 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
509 } else {
510 /* XXX: gen8 returns to sanity */
511 mmio = RING_HWS_PGA(ring->mmio_base);
512 }
513
514 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
515 POSTING_READ(mmio);
516
517 /*
518 * Flush the TLB for this page
519 *
520 * FIXME: These two bits have disappeared on gen8, so a question
521 * arises: do we still need this and if so how should we go about
522 * invalidating the TLB?
523 */
524 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
525 u32 reg = RING_INSTPM(ring->mmio_base);
526
527 /* ring should be idle before issuing a sync flush*/
528 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
529
530 I915_WRITE(reg,
531 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
532 INSTPM_SYNC_FLUSH));
533 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
534 1000))
535 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
536 ring->name);
537 }
538 }
539
540 static bool stop_ring(struct intel_engine_cs *ring)
541 {
542 struct drm_i915_private *dev_priv = to_i915(ring->dev);
543
544 if (!IS_GEN2(ring->dev)) {
545 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
546 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
547 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
548 /* Sometimes we observe that the idle flag is not
549 * set even though the ring is empty. So double
550 * check before giving up.
551 */
552 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
553 return false;
554 }
555 }
556
557 I915_WRITE_CTL(ring, 0);
558 I915_WRITE_HEAD(ring, 0);
559 ring->write_tail(ring, 0);
560
561 if (!IS_GEN2(ring->dev)) {
562 (void)I915_READ_CTL(ring);
563 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
564 }
565
566 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
567 }
568
569 static int init_ring_common(struct intel_engine_cs *ring)
570 {
571 struct drm_device *dev = ring->dev;
572 struct drm_i915_private *dev_priv = dev->dev_private;
573 struct intel_ringbuffer *ringbuf = ring->buffer;
574 struct drm_i915_gem_object *obj = ringbuf->obj;
575 int ret = 0;
576
577 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
578
579 if (!stop_ring(ring)) {
580 /* G45 ring initialization often fails to reset head to zero */
581 DRM_DEBUG_KMS("%s head not reset to zero "
582 "ctl %08x head %08x tail %08x start %08x\n",
583 ring->name,
584 I915_READ_CTL(ring),
585 I915_READ_HEAD(ring),
586 I915_READ_TAIL(ring),
587 I915_READ_START(ring));
588
589 if (!stop_ring(ring)) {
590 DRM_ERROR("failed to set %s head to zero "
591 "ctl %08x head %08x tail %08x start %08x\n",
592 ring->name,
593 I915_READ_CTL(ring),
594 I915_READ_HEAD(ring),
595 I915_READ_TAIL(ring),
596 I915_READ_START(ring));
597 ret = -EIO;
598 goto out;
599 }
600 }
601
602 if (I915_NEED_GFX_HWS(dev))
603 intel_ring_setup_status_page(ring);
604 else
605 ring_setup_phys_status_page(ring);
606
607 /* Enforce ordering by reading HEAD register back */
608 I915_READ_HEAD(ring);
609
610 /* Initialize the ring. This must happen _after_ we've cleared the ring
611 * registers with the above sequence (the readback of the HEAD registers
612 * also enforces ordering), otherwise the hw might lose the new ring
613 * register values. */
614 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
615
616 /* WaClearRingBufHeadRegAtInit:ctg,elk */
617 if (I915_READ_HEAD(ring))
618 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
619 ring->name, I915_READ_HEAD(ring));
620 I915_WRITE_HEAD(ring, 0);
621 (void)I915_READ_HEAD(ring);
622
623 I915_WRITE_CTL(ring,
624 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
625 | RING_VALID);
626
627 /* If the head is still not zero, the ring is dead */
628 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
629 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
630 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
631 DRM_ERROR("%s initialization failed "
632 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
633 ring->name,
634 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
635 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
636 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
637 ret = -EIO;
638 goto out;
639 }
640
641 ringbuf->last_retired_head = -1;
642 ringbuf->head = I915_READ_HEAD(ring);
643 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
644 intel_ring_update_space(ringbuf);
645
646 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
647
648 out:
649 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
650
651 return ret;
652 }
653
654 void
655 intel_fini_pipe_control(struct intel_engine_cs *ring)
656 {
657 struct drm_device *dev = ring->dev;
658
659 if (ring->scratch.obj == NULL)
660 return;
661
662 if (INTEL_INFO(dev)->gen >= 5) {
663 kunmap(sg_page(ring->scratch.obj->pages->sgl));
664 i915_gem_object_ggtt_unpin(ring->scratch.obj);
665 }
666
667 drm_gem_object_unreference(&ring->scratch.obj->base);
668 ring->scratch.obj = NULL;
669 }
670
671 int
672 intel_init_pipe_control(struct intel_engine_cs *ring)
673 {
674 int ret;
675
676 WARN_ON(ring->scratch.obj);
677
678 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
679 if (ring->scratch.obj == NULL) {
680 DRM_ERROR("Failed to allocate seqno page\n");
681 ret = -ENOMEM;
682 goto err;
683 }
684
685 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
686 if (ret)
687 goto err_unref;
688
689 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
690 if (ret)
691 goto err_unref;
692
693 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
694 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
695 if (ring->scratch.cpu_page == NULL) {
696 ret = -ENOMEM;
697 goto err_unpin;
698 }
699
700 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
701 ring->name, ring->scratch.gtt_offset);
702 return 0;
703
704 err_unpin:
705 i915_gem_object_ggtt_unpin(ring->scratch.obj);
706 err_unref:
707 drm_gem_object_unreference(&ring->scratch.obj->base);
708 err:
709 return ret;
710 }
711
712 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
713 {
714 int ret, i;
715 struct intel_engine_cs *ring = req->ring;
716 struct drm_device *dev = ring->dev;
717 struct drm_i915_private *dev_priv = dev->dev_private;
718 struct i915_workarounds *w = &dev_priv->workarounds;
719
720 if (WARN_ON_ONCE(w->count == 0))
721 return 0;
722
723 ring->gpu_caches_dirty = true;
724 ret = intel_ring_flush_all_caches(req);
725 if (ret)
726 return ret;
727
728 ret = intel_ring_begin(req, (w->count * 2 + 2));
729 if (ret)
730 return ret;
731
732 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
733 for (i = 0; i < w->count; i++) {
734 intel_ring_emit(ring, w->reg[i].addr);
735 intel_ring_emit(ring, w->reg[i].value);
736 }
737 intel_ring_emit(ring, MI_NOOP);
738
739 intel_ring_advance(ring);
740
741 ring->gpu_caches_dirty = true;
742 ret = intel_ring_flush_all_caches(req);
743 if (ret)
744 return ret;
745
746 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
747
748 return 0;
749 }
750
751 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
752 {
753 int ret;
754
755 ret = intel_ring_workarounds_emit(req);
756 if (ret != 0)
757 return ret;
758
759 ret = i915_gem_render_state_init(req);
760 if (ret)
761 DRM_ERROR("init render state: %d\n", ret);
762
763 return ret;
764 }
765
766 static int wa_add(struct drm_i915_private *dev_priv,
767 const u32 addr, const u32 mask, const u32 val)
768 {
769 const u32 idx = dev_priv->workarounds.count;
770
771 if (WARN_ON(idx >= I915_MAX_WA_REGS))
772 return -ENOSPC;
773
774 dev_priv->workarounds.reg[idx].addr = addr;
775 dev_priv->workarounds.reg[idx].value = val;
776 dev_priv->workarounds.reg[idx].mask = mask;
777
778 dev_priv->workarounds.count++;
779
780 return 0;
781 }
782
783 #define WA_REG(addr, mask, val) do { \
784 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
785 if (r) \
786 return r; \
787 } while (0)
788
789 #define WA_SET_BIT_MASKED(addr, mask) \
790 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
791
792 #define WA_CLR_BIT_MASKED(addr, mask) \
793 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
794
795 #define WA_SET_FIELD_MASKED(addr, mask, value) \
796 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
797
798 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
799 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
800
801 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
802
803 static int gen8_init_workarounds(struct intel_engine_cs *ring)
804 {
805 struct drm_device *dev = ring->dev;
806 struct drm_i915_private *dev_priv = dev->dev_private;
807
808 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
809
810 /* WaDisableAsyncFlipPerfMode:bdw,chv */
811 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
812
813 /* WaDisablePartialInstShootdown:bdw,chv */
814 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
815 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
816
817 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
818 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
819 * polygons in the same 8x4 pixel/sample area to be processed without
820 * stalling waiting for the earlier ones to write to Hierarchical Z
821 * buffer."
822 *
823 * This optimization is off by default for BDW and CHV; turn it on.
824 */
825 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
826
827 return 0;
828 }
829
830 static int bdw_init_workarounds(struct intel_engine_cs *ring)
831 {
832 int ret;
833 struct drm_device *dev = ring->dev;
834 struct drm_i915_private *dev_priv = dev->dev_private;
835
836 ret = gen8_init_workarounds(ring);
837 if (ret)
838 return ret;
839
840 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
841 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
842
843 /* WaDisableDopClockGating:bdw */
844 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
845 DOP_CLOCK_GATING_DISABLE);
846
847 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
848 GEN8_SAMPLER_POWER_BYPASS_DIS);
849
850 /* Use Force Non-Coherent whenever executing a 3D context. This is a
851 * workaround for for a possible hang in the unlikely event a TLB
852 * invalidation occurs during a PSD flush.
853 */
854 WA_SET_BIT_MASKED(HDC_CHICKEN0,
855 /* WaForceEnableNonCoherent:bdw */
856 HDC_FORCE_NON_COHERENT |
857 /* WaForceContextSaveRestoreNonCoherent:bdw */
858 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
859 /* WaHdcDisableFetchWhenMasked:bdw */
860 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
861 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
862 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
863
864 /* Wa4x4STCOptimizationDisable:bdw */
865 WA_SET_BIT_MASKED(CACHE_MODE_1,
866 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
867
868 /*
869 * BSpec recommends 8x4 when MSAA is used,
870 * however in practice 16x4 seems fastest.
871 *
872 * Note that PS/WM thread counts depend on the WIZ hashing
873 * disable bit, which we don't touch here, but it's good
874 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
875 */
876 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
877 GEN6_WIZ_HASHING_MASK,
878 GEN6_WIZ_HASHING_16x4);
879
880 return 0;
881 }
882
883 static int chv_init_workarounds(struct intel_engine_cs *ring)
884 {
885 int ret;
886 struct drm_device *dev = ring->dev;
887 struct drm_i915_private *dev_priv = dev->dev_private;
888
889 ret = gen8_init_workarounds(ring);
890 if (ret)
891 return ret;
892
893 /* WaDisableThreadStallDopClockGating:chv */
894 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
895
896 /* Use Force Non-Coherent whenever executing a 3D context. This is a
897 * workaround for a possible hang in the unlikely event a TLB
898 * invalidation occurs during a PSD flush.
899 */
900 /* WaForceEnableNonCoherent:chv */
901 /* WaHdcDisableFetchWhenMasked:chv */
902 WA_SET_BIT_MASKED(HDC_CHICKEN0,
903 HDC_FORCE_NON_COHERENT |
904 HDC_DONOT_FETCH_MEM_WHEN_MASKED);
905
906 /* Wa4x4STCOptimizationDisable:chv */
907 WA_SET_BIT_MASKED(CACHE_MODE_1,
908 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
909
910 /* Improve HiZ throughput on CHV. */
911 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
912
913 /*
914 * BSpec recommends 8x4 when MSAA is used,
915 * however in practice 16x4 seems fastest.
916 *
917 * Note that PS/WM thread counts depend on the WIZ hashing
918 * disable bit, which we don't touch here, but it's good
919 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
920 */
921 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
922 GEN6_WIZ_HASHING_MASK,
923 GEN6_WIZ_HASHING_16x4);
924
925 return 0;
926 }
927
928 static int gen9_init_workarounds(struct intel_engine_cs *ring)
929 {
930 struct drm_device *dev = ring->dev;
931 struct drm_i915_private *dev_priv = dev->dev_private;
932 uint32_t tmp;
933
934 /* WaDisablePartialInstShootdown:skl,bxt */
935 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
936 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
937
938 /* Syncing dependencies between camera and graphics:skl,bxt */
939 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
940 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
941
942 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
943 INTEL_REVID(dev) == SKL_REVID_B0)) ||
944 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
945 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
946 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
947 GEN9_DG_MIRROR_FIX_ENABLE);
948 }
949
950 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
951 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
952 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
953 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
954 GEN9_RHWO_OPTIMIZATION_DISABLE);
955 /*
956 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
957 * but we do that in per ctx batchbuffer as there is an issue
958 * with this register not getting restored on ctx restore
959 */
960 }
961
962 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
963 IS_BROXTON(dev)) {
964 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
965 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
966 GEN9_ENABLE_YV12_BUGFIX);
967 }
968
969 /* Wa4x4STCOptimizationDisable:skl,bxt */
970 /* WaDisablePartialResolveInVc:skl,bxt */
971 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
972 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
973
974 /* WaCcsTlbPrefetchDisable:skl,bxt */
975 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
976 GEN9_CCS_TLB_PREFETCH_ENABLE);
977
978 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
979 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
980 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
981 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
982 PIXEL_MASK_CAMMING_DISABLE);
983
984 /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
985 tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
986 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
987 (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
988 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
989 WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
990
991 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
992 if (IS_SKYLAKE(dev) ||
993 (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_B0)) {
994 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
995 GEN8_SAMPLER_POWER_BYPASS_DIS);
996 }
997
998 /* WaDisableSTUnitPowerOptimization:skl,bxt */
999 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
1000
1001 return 0;
1002 }
1003
1004 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
1005 {
1006 struct drm_device *dev = ring->dev;
1007 struct drm_i915_private *dev_priv = dev->dev_private;
1008 u8 vals[3] = { 0, 0, 0 };
1009 unsigned int i;
1010
1011 for (i = 0; i < 3; i++) {
1012 u8 ss;
1013
1014 /*
1015 * Only consider slices where one, and only one, subslice has 7
1016 * EUs
1017 */
1018 if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
1019 continue;
1020
1021 /*
1022 * subslice_7eu[i] != 0 (because of the check above) and
1023 * ss_max == 4 (maximum number of subslices possible per slice)
1024 *
1025 * -> 0 <= ss <= 3;
1026 */
1027 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1028 vals[i] = 3 - ss;
1029 }
1030
1031 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1032 return 0;
1033
1034 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1035 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1036 GEN9_IZ_HASHING_MASK(2) |
1037 GEN9_IZ_HASHING_MASK(1) |
1038 GEN9_IZ_HASHING_MASK(0),
1039 GEN9_IZ_HASHING(2, vals[2]) |
1040 GEN9_IZ_HASHING(1, vals[1]) |
1041 GEN9_IZ_HASHING(0, vals[0]));
1042
1043 return 0;
1044 }
1045
1046
1047 static int skl_init_workarounds(struct intel_engine_cs *ring)
1048 {
1049 int ret;
1050 struct drm_device *dev = ring->dev;
1051 struct drm_i915_private *dev_priv = dev->dev_private;
1052
1053 ret = gen9_init_workarounds(ring);
1054 if (ret)
1055 return ret;
1056
1057 /* WaDisablePowerCompilerClockGating:skl */
1058 if (INTEL_REVID(dev) == SKL_REVID_B0)
1059 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1060 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1061
1062 if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1063 /*
1064 *Use Force Non-Coherent whenever executing a 3D context. This
1065 * is a workaround for a possible hang in the unlikely event
1066 * a TLB invalidation occurs during a PSD flush.
1067 */
1068 /* WaForceEnableNonCoherent:skl */
1069 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1070 HDC_FORCE_NON_COHERENT);
1071 }
1072
1073 if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1074 INTEL_REVID(dev) == SKL_REVID_D0)
1075 /* WaBarrierPerformanceFixDisable:skl */
1076 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1077 HDC_FENCE_DEST_SLM_DISABLE |
1078 HDC_BARRIER_PERFORMANCE_DISABLE);
1079
1080 /* WaDisableSbeCacheDispatchPortSharing:skl */
1081 if (INTEL_REVID(dev) <= SKL_REVID_F0) {
1082 WA_SET_BIT_MASKED(
1083 GEN7_HALF_SLICE_CHICKEN1,
1084 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1085 }
1086
1087 return skl_tune_iz_hashing(ring);
1088 }
1089
1090 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1091 {
1092 int ret;
1093 struct drm_device *dev = ring->dev;
1094 struct drm_i915_private *dev_priv = dev->dev_private;
1095
1096 ret = gen9_init_workarounds(ring);
1097 if (ret)
1098 return ret;
1099
1100 /* WaDisableThreadStallDopClockGating:bxt */
1101 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1102 STALL_DOP_GATING_DISABLE);
1103
1104 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1105 if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1106 WA_SET_BIT_MASKED(
1107 GEN7_HALF_SLICE_CHICKEN1,
1108 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1109 }
1110
1111 return 0;
1112 }
1113
1114 int init_workarounds_ring(struct intel_engine_cs *ring)
1115 {
1116 struct drm_device *dev = ring->dev;
1117 struct drm_i915_private *dev_priv = dev->dev_private;
1118
1119 WARN_ON(ring->id != RCS);
1120
1121 dev_priv->workarounds.count = 0;
1122
1123 if (IS_BROADWELL(dev))
1124 return bdw_init_workarounds(ring);
1125
1126 if (IS_CHERRYVIEW(dev))
1127 return chv_init_workarounds(ring);
1128
1129 if (IS_SKYLAKE(dev))
1130 return skl_init_workarounds(ring);
1131
1132 if (IS_BROXTON(dev))
1133 return bxt_init_workarounds(ring);
1134
1135 return 0;
1136 }
1137
1138 static int init_render_ring(struct intel_engine_cs *ring)
1139 {
1140 struct drm_device *dev = ring->dev;
1141 struct drm_i915_private *dev_priv = dev->dev_private;
1142 int ret = init_ring_common(ring);
1143 if (ret)
1144 return ret;
1145
1146 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1147 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1148 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1149
1150 /* We need to disable the AsyncFlip performance optimisations in order
1151 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1152 * programmed to '1' on all products.
1153 *
1154 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1155 */
1156 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1157 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1158
1159 /* Required for the hardware to program scanline values for waiting */
1160 /* WaEnableFlushTlbInvalidationMode:snb */
1161 if (INTEL_INFO(dev)->gen == 6)
1162 I915_WRITE(GFX_MODE,
1163 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1164
1165 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1166 if (IS_GEN7(dev))
1167 I915_WRITE(GFX_MODE_GEN7,
1168 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1169 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1170
1171 if (IS_GEN6(dev)) {
1172 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1173 * "If this bit is set, STCunit will have LRA as replacement
1174 * policy. [...] This bit must be reset. LRA replacement
1175 * policy is not supported."
1176 */
1177 I915_WRITE(CACHE_MODE_0,
1178 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1179 }
1180
1181 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1182 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1183
1184 if (HAS_L3_DPF(dev))
1185 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1186
1187 return init_workarounds_ring(ring);
1188 }
1189
1190 static void render_ring_cleanup(struct intel_engine_cs *ring)
1191 {
1192 struct drm_device *dev = ring->dev;
1193 struct drm_i915_private *dev_priv = dev->dev_private;
1194
1195 if (dev_priv->semaphore_obj) {
1196 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1197 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1198 dev_priv->semaphore_obj = NULL;
1199 }
1200
1201 intel_fini_pipe_control(ring);
1202 }
1203
1204 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1205 unsigned int num_dwords)
1206 {
1207 #define MBOX_UPDATE_DWORDS 8
1208 struct intel_engine_cs *signaller = signaller_req->ring;
1209 struct drm_device *dev = signaller->dev;
1210 struct drm_i915_private *dev_priv = dev->dev_private;
1211 struct intel_engine_cs *waiter;
1212 int i, ret, num_rings;
1213
1214 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1215 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1216 #undef MBOX_UPDATE_DWORDS
1217
1218 ret = intel_ring_begin(signaller_req, num_dwords);
1219 if (ret)
1220 return ret;
1221
1222 for_each_ring(waiter, dev_priv, i) {
1223 u32 seqno;
1224 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1225 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1226 continue;
1227
1228 seqno = i915_gem_request_get_seqno(signaller_req);
1229 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1230 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1231 PIPE_CONTROL_QW_WRITE |
1232 PIPE_CONTROL_FLUSH_ENABLE);
1233 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1234 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1235 intel_ring_emit(signaller, seqno);
1236 intel_ring_emit(signaller, 0);
1237 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1238 MI_SEMAPHORE_TARGET(waiter->id));
1239 intel_ring_emit(signaller, 0);
1240 }
1241
1242 return 0;
1243 }
1244
1245 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1246 unsigned int num_dwords)
1247 {
1248 #define MBOX_UPDATE_DWORDS 6
1249 struct intel_engine_cs *signaller = signaller_req->ring;
1250 struct drm_device *dev = signaller->dev;
1251 struct drm_i915_private *dev_priv = dev->dev_private;
1252 struct intel_engine_cs *waiter;
1253 int i, ret, num_rings;
1254
1255 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1256 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1257 #undef MBOX_UPDATE_DWORDS
1258
1259 ret = intel_ring_begin(signaller_req, num_dwords);
1260 if (ret)
1261 return ret;
1262
1263 for_each_ring(waiter, dev_priv, i) {
1264 u32 seqno;
1265 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1266 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1267 continue;
1268
1269 seqno = i915_gem_request_get_seqno(signaller_req);
1270 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1271 MI_FLUSH_DW_OP_STOREDW);
1272 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1273 MI_FLUSH_DW_USE_GTT);
1274 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1275 intel_ring_emit(signaller, seqno);
1276 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1277 MI_SEMAPHORE_TARGET(waiter->id));
1278 intel_ring_emit(signaller, 0);
1279 }
1280
1281 return 0;
1282 }
1283
1284 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1285 unsigned int num_dwords)
1286 {
1287 struct intel_engine_cs *signaller = signaller_req->ring;
1288 struct drm_device *dev = signaller->dev;
1289 struct drm_i915_private *dev_priv = dev->dev_private;
1290 struct intel_engine_cs *useless;
1291 int i, ret, num_rings;
1292
1293 #define MBOX_UPDATE_DWORDS 3
1294 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1295 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1296 #undef MBOX_UPDATE_DWORDS
1297
1298 ret = intel_ring_begin(signaller_req, num_dwords);
1299 if (ret)
1300 return ret;
1301
1302 for_each_ring(useless, dev_priv, i) {
1303 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1304 if (mbox_reg != GEN6_NOSYNC) {
1305 u32 seqno = i915_gem_request_get_seqno(signaller_req);
1306 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1307 intel_ring_emit(signaller, mbox_reg);
1308 intel_ring_emit(signaller, seqno);
1309 }
1310 }
1311
1312 /* If num_dwords was rounded, make sure the tail pointer is correct */
1313 if (num_rings % 2 == 0)
1314 intel_ring_emit(signaller, MI_NOOP);
1315
1316 return 0;
1317 }
1318
1319 /**
1320 * gen6_add_request - Update the semaphore mailbox registers
1321 *
1322 * @request - request to write to the ring
1323 *
1324 * Update the mailbox registers in the *other* rings with the current seqno.
1325 * This acts like a signal in the canonical semaphore.
1326 */
1327 static int
1328 gen6_add_request(struct drm_i915_gem_request *req)
1329 {
1330 struct intel_engine_cs *ring = req->ring;
1331 int ret;
1332
1333 if (ring->semaphore.signal)
1334 ret = ring->semaphore.signal(req, 4);
1335 else
1336 ret = intel_ring_begin(req, 4);
1337
1338 if (ret)
1339 return ret;
1340
1341 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1342 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1343 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1344 intel_ring_emit(ring, MI_USER_INTERRUPT);
1345 __intel_ring_advance(ring);
1346
1347 return 0;
1348 }
1349
1350 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1351 u32 seqno)
1352 {
1353 struct drm_i915_private *dev_priv = dev->dev_private;
1354 return dev_priv->last_seqno < seqno;
1355 }
1356
1357 /**
1358 * intel_ring_sync - sync the waiter to the signaller on seqno
1359 *
1360 * @waiter - ring that is waiting
1361 * @signaller - ring which has, or will signal
1362 * @seqno - seqno which the waiter will block on
1363 */
1364
1365 static int
1366 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1367 struct intel_engine_cs *signaller,
1368 u32 seqno)
1369 {
1370 struct intel_engine_cs *waiter = waiter_req->ring;
1371 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1372 int ret;
1373
1374 ret = intel_ring_begin(waiter_req, 4);
1375 if (ret)
1376 return ret;
1377
1378 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1379 MI_SEMAPHORE_GLOBAL_GTT |
1380 MI_SEMAPHORE_POLL |
1381 MI_SEMAPHORE_SAD_GTE_SDD);
1382 intel_ring_emit(waiter, seqno);
1383 intel_ring_emit(waiter,
1384 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1385 intel_ring_emit(waiter,
1386 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1387 intel_ring_advance(waiter);
1388 return 0;
1389 }
1390
1391 static int
1392 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1393 struct intel_engine_cs *signaller,
1394 u32 seqno)
1395 {
1396 struct intel_engine_cs *waiter = waiter_req->ring;
1397 u32 dw1 = MI_SEMAPHORE_MBOX |
1398 MI_SEMAPHORE_COMPARE |
1399 MI_SEMAPHORE_REGISTER;
1400 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1401 int ret;
1402
1403 /* Throughout all of the GEM code, seqno passed implies our current
1404 * seqno is >= the last seqno executed. However for hardware the
1405 * comparison is strictly greater than.
1406 */
1407 seqno -= 1;
1408
1409 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1410
1411 ret = intel_ring_begin(waiter_req, 4);
1412 if (ret)
1413 return ret;
1414
1415 /* If seqno wrap happened, omit the wait with no-ops */
1416 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1417 intel_ring_emit(waiter, dw1 | wait_mbox);
1418 intel_ring_emit(waiter, seqno);
1419 intel_ring_emit(waiter, 0);
1420 intel_ring_emit(waiter, MI_NOOP);
1421 } else {
1422 intel_ring_emit(waiter, MI_NOOP);
1423 intel_ring_emit(waiter, MI_NOOP);
1424 intel_ring_emit(waiter, MI_NOOP);
1425 intel_ring_emit(waiter, MI_NOOP);
1426 }
1427 intel_ring_advance(waiter);
1428
1429 return 0;
1430 }
1431
1432 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1433 do { \
1434 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1435 PIPE_CONTROL_DEPTH_STALL); \
1436 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1437 intel_ring_emit(ring__, 0); \
1438 intel_ring_emit(ring__, 0); \
1439 } while (0)
1440
1441 static int
1442 pc_render_add_request(struct drm_i915_gem_request *req)
1443 {
1444 struct intel_engine_cs *ring = req->ring;
1445 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1446 int ret;
1447
1448 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1449 * incoherent with writes to memory, i.e. completely fubar,
1450 * so we need to use PIPE_NOTIFY instead.
1451 *
1452 * However, we also need to workaround the qword write
1453 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1454 * memory before requesting an interrupt.
1455 */
1456 ret = intel_ring_begin(req, 32);
1457 if (ret)
1458 return ret;
1459
1460 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1461 PIPE_CONTROL_WRITE_FLUSH |
1462 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1463 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1464 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1465 intel_ring_emit(ring, 0);
1466 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1467 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1468 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1469 scratch_addr += 2 * CACHELINE_BYTES;
1470 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1471 scratch_addr += 2 * CACHELINE_BYTES;
1472 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1473 scratch_addr += 2 * CACHELINE_BYTES;
1474 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1475 scratch_addr += 2 * CACHELINE_BYTES;
1476 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1477
1478 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1479 PIPE_CONTROL_WRITE_FLUSH |
1480 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1481 PIPE_CONTROL_NOTIFY);
1482 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1483 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1484 intel_ring_emit(ring, 0);
1485 __intel_ring_advance(ring);
1486
1487 return 0;
1488 }
1489
1490 static u32
1491 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1492 {
1493 /* Workaround to force correct ordering between irq and seqno writes on
1494 * ivb (and maybe also on snb) by reading from a CS register (like
1495 * ACTHD) before reading the status page. */
1496 if (!lazy_coherency) {
1497 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1498 POSTING_READ(RING_ACTHD(ring->mmio_base));
1499 }
1500
1501 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1502 }
1503
1504 static u32
1505 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1506 {
1507 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1508 }
1509
1510 static void
1511 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1512 {
1513 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1514 }
1515
1516 static u32
1517 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1518 {
1519 return ring->scratch.cpu_page[0];
1520 }
1521
1522 static void
1523 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1524 {
1525 ring->scratch.cpu_page[0] = seqno;
1526 }
1527
1528 static bool
1529 gen5_ring_get_irq(struct intel_engine_cs *ring)
1530 {
1531 struct drm_device *dev = ring->dev;
1532 struct drm_i915_private *dev_priv = dev->dev_private;
1533 unsigned long flags;
1534
1535 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1536 return false;
1537
1538 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1539 if (ring->irq_refcount++ == 0)
1540 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1541 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1542
1543 return true;
1544 }
1545
1546 static void
1547 gen5_ring_put_irq(struct intel_engine_cs *ring)
1548 {
1549 struct drm_device *dev = ring->dev;
1550 struct drm_i915_private *dev_priv = dev->dev_private;
1551 unsigned long flags;
1552
1553 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1554 if (--ring->irq_refcount == 0)
1555 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1556 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1557 }
1558
1559 static bool
1560 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1561 {
1562 struct drm_device *dev = ring->dev;
1563 struct drm_i915_private *dev_priv = dev->dev_private;
1564 unsigned long flags;
1565
1566 if (!intel_irqs_enabled(dev_priv))
1567 return false;
1568
1569 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1570 if (ring->irq_refcount++ == 0) {
1571 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1572 I915_WRITE(IMR, dev_priv->irq_mask);
1573 POSTING_READ(IMR);
1574 }
1575 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1576
1577 return true;
1578 }
1579
1580 static void
1581 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1582 {
1583 struct drm_device *dev = ring->dev;
1584 struct drm_i915_private *dev_priv = dev->dev_private;
1585 unsigned long flags;
1586
1587 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1588 if (--ring->irq_refcount == 0) {
1589 dev_priv->irq_mask |= ring->irq_enable_mask;
1590 I915_WRITE(IMR, dev_priv->irq_mask);
1591 POSTING_READ(IMR);
1592 }
1593 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1594 }
1595
1596 static bool
1597 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1598 {
1599 struct drm_device *dev = ring->dev;
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 unsigned long flags;
1602
1603 if (!intel_irqs_enabled(dev_priv))
1604 return false;
1605
1606 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1607 if (ring->irq_refcount++ == 0) {
1608 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1609 I915_WRITE16(IMR, dev_priv->irq_mask);
1610 POSTING_READ16(IMR);
1611 }
1612 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1613
1614 return true;
1615 }
1616
1617 static void
1618 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1619 {
1620 struct drm_device *dev = ring->dev;
1621 struct drm_i915_private *dev_priv = dev->dev_private;
1622 unsigned long flags;
1623
1624 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1625 if (--ring->irq_refcount == 0) {
1626 dev_priv->irq_mask |= ring->irq_enable_mask;
1627 I915_WRITE16(IMR, dev_priv->irq_mask);
1628 POSTING_READ16(IMR);
1629 }
1630 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1631 }
1632
1633 static int
1634 bsd_ring_flush(struct drm_i915_gem_request *req,
1635 u32 invalidate_domains,
1636 u32 flush_domains)
1637 {
1638 struct intel_engine_cs *ring = req->ring;
1639 int ret;
1640
1641 ret = intel_ring_begin(req, 2);
1642 if (ret)
1643 return ret;
1644
1645 intel_ring_emit(ring, MI_FLUSH);
1646 intel_ring_emit(ring, MI_NOOP);
1647 intel_ring_advance(ring);
1648 return 0;
1649 }
1650
1651 static int
1652 i9xx_add_request(struct drm_i915_gem_request *req)
1653 {
1654 struct intel_engine_cs *ring = req->ring;
1655 int ret;
1656
1657 ret = intel_ring_begin(req, 4);
1658 if (ret)
1659 return ret;
1660
1661 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1662 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1663 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1664 intel_ring_emit(ring, MI_USER_INTERRUPT);
1665 __intel_ring_advance(ring);
1666
1667 return 0;
1668 }
1669
1670 static bool
1671 gen6_ring_get_irq(struct intel_engine_cs *ring)
1672 {
1673 struct drm_device *dev = ring->dev;
1674 struct drm_i915_private *dev_priv = dev->dev_private;
1675 unsigned long flags;
1676
1677 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1678 return false;
1679
1680 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1681 if (ring->irq_refcount++ == 0) {
1682 if (HAS_L3_DPF(dev) && ring->id == RCS)
1683 I915_WRITE_IMR(ring,
1684 ~(ring->irq_enable_mask |
1685 GT_PARITY_ERROR(dev)));
1686 else
1687 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1688 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1689 }
1690 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1691
1692 return true;
1693 }
1694
1695 static void
1696 gen6_ring_put_irq(struct intel_engine_cs *ring)
1697 {
1698 struct drm_device *dev = ring->dev;
1699 struct drm_i915_private *dev_priv = dev->dev_private;
1700 unsigned long flags;
1701
1702 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1703 if (--ring->irq_refcount == 0) {
1704 if (HAS_L3_DPF(dev) && ring->id == RCS)
1705 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1706 else
1707 I915_WRITE_IMR(ring, ~0);
1708 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1709 }
1710 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1711 }
1712
1713 static bool
1714 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1715 {
1716 struct drm_device *dev = ring->dev;
1717 struct drm_i915_private *dev_priv = dev->dev_private;
1718 unsigned long flags;
1719
1720 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1721 return false;
1722
1723 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1724 if (ring->irq_refcount++ == 0) {
1725 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1726 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1727 }
1728 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1729
1730 return true;
1731 }
1732
1733 static void
1734 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1735 {
1736 struct drm_device *dev = ring->dev;
1737 struct drm_i915_private *dev_priv = dev->dev_private;
1738 unsigned long flags;
1739
1740 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1741 if (--ring->irq_refcount == 0) {
1742 I915_WRITE_IMR(ring, ~0);
1743 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1744 }
1745 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1746 }
1747
1748 static bool
1749 gen8_ring_get_irq(struct intel_engine_cs *ring)
1750 {
1751 struct drm_device *dev = ring->dev;
1752 struct drm_i915_private *dev_priv = dev->dev_private;
1753 unsigned long flags;
1754
1755 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1756 return false;
1757
1758 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1759 if (ring->irq_refcount++ == 0) {
1760 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1761 I915_WRITE_IMR(ring,
1762 ~(ring->irq_enable_mask |
1763 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1764 } else {
1765 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1766 }
1767 POSTING_READ(RING_IMR(ring->mmio_base));
1768 }
1769 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1770
1771 return true;
1772 }
1773
1774 static void
1775 gen8_ring_put_irq(struct intel_engine_cs *ring)
1776 {
1777 struct drm_device *dev = ring->dev;
1778 struct drm_i915_private *dev_priv = dev->dev_private;
1779 unsigned long flags;
1780
1781 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1782 if (--ring->irq_refcount == 0) {
1783 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1784 I915_WRITE_IMR(ring,
1785 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1786 } else {
1787 I915_WRITE_IMR(ring, ~0);
1788 }
1789 POSTING_READ(RING_IMR(ring->mmio_base));
1790 }
1791 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1792 }
1793
1794 static int
1795 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1796 u64 offset, u32 length,
1797 unsigned dispatch_flags)
1798 {
1799 struct intel_engine_cs *ring = req->ring;
1800 int ret;
1801
1802 ret = intel_ring_begin(req, 2);
1803 if (ret)
1804 return ret;
1805
1806 intel_ring_emit(ring,
1807 MI_BATCH_BUFFER_START |
1808 MI_BATCH_GTT |
1809 (dispatch_flags & I915_DISPATCH_SECURE ?
1810 0 : MI_BATCH_NON_SECURE_I965));
1811 intel_ring_emit(ring, offset);
1812 intel_ring_advance(ring);
1813
1814 return 0;
1815 }
1816
1817 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1818 #define I830_BATCH_LIMIT (256*1024)
1819 #define I830_TLB_ENTRIES (2)
1820 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1821 static int
1822 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1823 u64 offset, u32 len,
1824 unsigned dispatch_flags)
1825 {
1826 struct intel_engine_cs *ring = req->ring;
1827 u32 cs_offset = ring->scratch.gtt_offset;
1828 int ret;
1829
1830 ret = intel_ring_begin(req, 6);
1831 if (ret)
1832 return ret;
1833
1834 /* Evict the invalid PTE TLBs */
1835 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1836 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1837 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1838 intel_ring_emit(ring, cs_offset);
1839 intel_ring_emit(ring, 0xdeadbeef);
1840 intel_ring_emit(ring, MI_NOOP);
1841 intel_ring_advance(ring);
1842
1843 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1844 if (len > I830_BATCH_LIMIT)
1845 return -ENOSPC;
1846
1847 ret = intel_ring_begin(req, 6 + 2);
1848 if (ret)
1849 return ret;
1850
1851 /* Blit the batch (which has now all relocs applied) to the
1852 * stable batch scratch bo area (so that the CS never
1853 * stumbles over its tlb invalidation bug) ...
1854 */
1855 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1856 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1857 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1858 intel_ring_emit(ring, cs_offset);
1859 intel_ring_emit(ring, 4096);
1860 intel_ring_emit(ring, offset);
1861
1862 intel_ring_emit(ring, MI_FLUSH);
1863 intel_ring_emit(ring, MI_NOOP);
1864 intel_ring_advance(ring);
1865
1866 /* ... and execute it. */
1867 offset = cs_offset;
1868 }
1869
1870 ret = intel_ring_begin(req, 4);
1871 if (ret)
1872 return ret;
1873
1874 intel_ring_emit(ring, MI_BATCH_BUFFER);
1875 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1876 0 : MI_BATCH_NON_SECURE));
1877 intel_ring_emit(ring, offset + len - 8);
1878 intel_ring_emit(ring, MI_NOOP);
1879 intel_ring_advance(ring);
1880
1881 return 0;
1882 }
1883
1884 static int
1885 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1886 u64 offset, u32 len,
1887 unsigned dispatch_flags)
1888 {
1889 struct intel_engine_cs *ring = req->ring;
1890 int ret;
1891
1892 ret = intel_ring_begin(req, 2);
1893 if (ret)
1894 return ret;
1895
1896 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1897 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1898 0 : MI_BATCH_NON_SECURE));
1899 intel_ring_advance(ring);
1900
1901 return 0;
1902 }
1903
1904 static void cleanup_status_page(struct intel_engine_cs *ring)
1905 {
1906 struct drm_i915_gem_object *obj;
1907
1908 obj = ring->status_page.obj;
1909 if (obj == NULL)
1910 return;
1911
1912 kunmap(sg_page(obj->pages->sgl));
1913 i915_gem_object_ggtt_unpin(obj);
1914 drm_gem_object_unreference(&obj->base);
1915 ring->status_page.obj = NULL;
1916 }
1917
1918 static int init_status_page(struct intel_engine_cs *ring)
1919 {
1920 struct drm_i915_gem_object *obj;
1921
1922 if ((obj = ring->status_page.obj) == NULL) {
1923 unsigned flags;
1924 int ret;
1925
1926 obj = i915_gem_alloc_object(ring->dev, 4096);
1927 if (obj == NULL) {
1928 DRM_ERROR("Failed to allocate status page\n");
1929 return -ENOMEM;
1930 }
1931
1932 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1933 if (ret)
1934 goto err_unref;
1935
1936 flags = 0;
1937 if (!HAS_LLC(ring->dev))
1938 /* On g33, we cannot place HWS above 256MiB, so
1939 * restrict its pinning to the low mappable arena.
1940 * Though this restriction is not documented for
1941 * gen4, gen5, or byt, they also behave similarly
1942 * and hang if the HWS is placed at the top of the
1943 * GTT. To generalise, it appears that all !llc
1944 * platforms have issues with us placing the HWS
1945 * above the mappable region (even though we never
1946 * actualy map it).
1947 */
1948 flags |= PIN_MAPPABLE;
1949 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1950 if (ret) {
1951 err_unref:
1952 drm_gem_object_unreference(&obj->base);
1953 return ret;
1954 }
1955
1956 ring->status_page.obj = obj;
1957 }
1958
1959 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1960 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1961 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1962
1963 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1964 ring->name, ring->status_page.gfx_addr);
1965
1966 return 0;
1967 }
1968
1969 static int init_phys_status_page(struct intel_engine_cs *ring)
1970 {
1971 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1972
1973 if (!dev_priv->status_page_dmah) {
1974 dev_priv->status_page_dmah =
1975 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1976 if (!dev_priv->status_page_dmah)
1977 return -ENOMEM;
1978 }
1979
1980 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1981 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1982
1983 return 0;
1984 }
1985
1986 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1987 {
1988 iounmap(ringbuf->virtual_start);
1989 ringbuf->virtual_start = NULL;
1990 i915_gem_object_ggtt_unpin(ringbuf->obj);
1991 }
1992
1993 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1994 struct intel_ringbuffer *ringbuf)
1995 {
1996 struct drm_i915_private *dev_priv = to_i915(dev);
1997 struct drm_i915_gem_object *obj = ringbuf->obj;
1998 int ret;
1999
2000 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2001 if (ret)
2002 return ret;
2003
2004 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2005 if (ret) {
2006 i915_gem_object_ggtt_unpin(obj);
2007 return ret;
2008 }
2009
2010 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2011 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2012 if (ringbuf->virtual_start == NULL) {
2013 i915_gem_object_ggtt_unpin(obj);
2014 return -EINVAL;
2015 }
2016
2017 return 0;
2018 }
2019
2020 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2021 {
2022 drm_gem_object_unreference(&ringbuf->obj->base);
2023 ringbuf->obj = NULL;
2024 }
2025
2026 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2027 struct intel_ringbuffer *ringbuf)
2028 {
2029 struct drm_i915_gem_object *obj;
2030
2031 obj = NULL;
2032 if (!HAS_LLC(dev))
2033 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2034 if (obj == NULL)
2035 obj = i915_gem_alloc_object(dev, ringbuf->size);
2036 if (obj == NULL)
2037 return -ENOMEM;
2038
2039 /* mark ring buffers as read-only from GPU side by default */
2040 obj->gt_ro = 1;
2041
2042 ringbuf->obj = obj;
2043
2044 return 0;
2045 }
2046
2047 struct intel_ringbuffer *
2048 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2049 {
2050 struct intel_ringbuffer *ring;
2051 int ret;
2052
2053 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2054 if (ring == NULL)
2055 return ERR_PTR(-ENOMEM);
2056
2057 ring->ring = engine;
2058
2059 ring->size = size;
2060 /* Workaround an erratum on the i830 which causes a hang if
2061 * the TAIL pointer points to within the last 2 cachelines
2062 * of the buffer.
2063 */
2064 ring->effective_size = size;
2065 if (IS_I830(engine->dev) || IS_845G(engine->dev))
2066 ring->effective_size -= 2 * CACHELINE_BYTES;
2067
2068 ring->last_retired_head = -1;
2069 intel_ring_update_space(ring);
2070
2071 ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2072 if (ret) {
2073 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2074 engine->name, ret);
2075 kfree(ring);
2076 return ERR_PTR(ret);
2077 }
2078
2079 return ring;
2080 }
2081
2082 void
2083 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2084 {
2085 intel_destroy_ringbuffer_obj(ring);
2086 kfree(ring);
2087 }
2088
2089 static int intel_init_ring_buffer(struct drm_device *dev,
2090 struct intel_engine_cs *ring)
2091 {
2092 struct intel_ringbuffer *ringbuf;
2093 int ret;
2094
2095 WARN_ON(ring->buffer);
2096
2097 ring->dev = dev;
2098 INIT_LIST_HEAD(&ring->active_list);
2099 INIT_LIST_HEAD(&ring->request_list);
2100 INIT_LIST_HEAD(&ring->execlist_queue);
2101 i915_gem_batch_pool_init(dev, &ring->batch_pool);
2102 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2103
2104 init_waitqueue_head(&ring->irq_queue);
2105
2106 ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2107 if (IS_ERR(ringbuf))
2108 return PTR_ERR(ringbuf);
2109 ring->buffer = ringbuf;
2110
2111 if (I915_NEED_GFX_HWS(dev)) {
2112 ret = init_status_page(ring);
2113 if (ret)
2114 goto error;
2115 } else {
2116 BUG_ON(ring->id != RCS);
2117 ret = init_phys_status_page(ring);
2118 if (ret)
2119 goto error;
2120 }
2121
2122 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2123 if (ret) {
2124 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2125 ring->name, ret);
2126 intel_destroy_ringbuffer_obj(ringbuf);
2127 goto error;
2128 }
2129
2130 ret = i915_cmd_parser_init_ring(ring);
2131 if (ret)
2132 goto error;
2133
2134 return 0;
2135
2136 error:
2137 intel_ringbuffer_free(ringbuf);
2138 ring->buffer = NULL;
2139 return ret;
2140 }
2141
2142 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2143 {
2144 struct drm_i915_private *dev_priv;
2145
2146 if (!intel_ring_initialized(ring))
2147 return;
2148
2149 dev_priv = to_i915(ring->dev);
2150
2151 intel_stop_ring_buffer(ring);
2152 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2153
2154 intel_unpin_ringbuffer_obj(ring->buffer);
2155 intel_ringbuffer_free(ring->buffer);
2156 ring->buffer = NULL;
2157
2158 if (ring->cleanup)
2159 ring->cleanup(ring);
2160
2161 cleanup_status_page(ring);
2162
2163 i915_cmd_parser_fini_ring(ring);
2164 i915_gem_batch_pool_fini(&ring->batch_pool);
2165 }
2166
2167 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2168 {
2169 struct intel_ringbuffer *ringbuf = ring->buffer;
2170 struct drm_i915_gem_request *request;
2171 unsigned space;
2172 int ret;
2173
2174 if (intel_ring_space(ringbuf) >= n)
2175 return 0;
2176
2177 /* The whole point of reserving space is to not wait! */
2178 WARN_ON(ringbuf->reserved_in_use);
2179
2180 list_for_each_entry(request, &ring->request_list, list) {
2181 space = __intel_ring_space(request->postfix, ringbuf->tail,
2182 ringbuf->size);
2183 if (space >= n)
2184 break;
2185 }
2186
2187 if (WARN_ON(&request->list == &ring->request_list))
2188 return -ENOSPC;
2189
2190 ret = i915_wait_request(request);
2191 if (ret)
2192 return ret;
2193
2194 ringbuf->space = space;
2195 return 0;
2196 }
2197
2198 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2199 {
2200 uint32_t __iomem *virt;
2201 int rem = ringbuf->size - ringbuf->tail;
2202
2203 virt = ringbuf->virtual_start + ringbuf->tail;
2204 rem /= 4;
2205 while (rem--)
2206 iowrite32(MI_NOOP, virt++);
2207
2208 ringbuf->tail = 0;
2209 intel_ring_update_space(ringbuf);
2210 }
2211
2212 int intel_ring_idle(struct intel_engine_cs *ring)
2213 {
2214 struct drm_i915_gem_request *req;
2215
2216 /* Wait upon the last request to be completed */
2217 if (list_empty(&ring->request_list))
2218 return 0;
2219
2220 req = list_entry(ring->request_list.prev,
2221 struct drm_i915_gem_request,
2222 list);
2223
2224 /* Make sure we do not trigger any retires */
2225 return __i915_wait_request(req,
2226 atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2227 to_i915(ring->dev)->mm.interruptible,
2228 NULL, NULL);
2229 }
2230
2231 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2232 {
2233 request->ringbuf = request->ring->buffer;
2234 return 0;
2235 }
2236
2237 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2238 {
2239 /*
2240 * The first call merely notes the reserve request and is common for
2241 * all back ends. The subsequent localised _begin() call actually
2242 * ensures that the reservation is available. Without the begin, if
2243 * the request creator immediately submitted the request without
2244 * adding any commands to it then there might not actually be
2245 * sufficient room for the submission commands.
2246 */
2247 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2248
2249 return intel_ring_begin(request, 0);
2250 }
2251
2252 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2253 {
2254 WARN_ON(ringbuf->reserved_size);
2255 WARN_ON(ringbuf->reserved_in_use);
2256
2257 ringbuf->reserved_size = size;
2258 }
2259
2260 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2261 {
2262 WARN_ON(ringbuf->reserved_in_use);
2263
2264 ringbuf->reserved_size = 0;
2265 ringbuf->reserved_in_use = false;
2266 }
2267
2268 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2269 {
2270 WARN_ON(ringbuf->reserved_in_use);
2271
2272 ringbuf->reserved_in_use = true;
2273 ringbuf->reserved_tail = ringbuf->tail;
2274 }
2275
2276 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2277 {
2278 WARN_ON(!ringbuf->reserved_in_use);
2279 if (ringbuf->tail > ringbuf->reserved_tail) {
2280 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2281 "request reserved size too small: %d vs %d!\n",
2282 ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2283 } else {
2284 /*
2285 * The ring was wrapped while the reserved space was in use.
2286 * That means that some unknown amount of the ring tail was
2287 * no-op filled and skipped. Thus simply adding the ring size
2288 * to the tail and doing the above space check will not work.
2289 * Rather than attempt to track how much tail was skipped,
2290 * it is much simpler to say that also skipping the sanity
2291 * check every once in a while is not a big issue.
2292 */
2293 }
2294
2295 ringbuf->reserved_size = 0;
2296 ringbuf->reserved_in_use = false;
2297 }
2298
2299 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2300 {
2301 struct intel_ringbuffer *ringbuf = ring->buffer;
2302 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2303 int remain_actual = ringbuf->size - ringbuf->tail;
2304 int ret, total_bytes, wait_bytes = 0;
2305 bool need_wrap = false;
2306
2307 if (ringbuf->reserved_in_use)
2308 total_bytes = bytes;
2309 else
2310 total_bytes = bytes + ringbuf->reserved_size;
2311
2312 if (unlikely(bytes > remain_usable)) {
2313 /*
2314 * Not enough space for the basic request. So need to flush
2315 * out the remainder and then wait for base + reserved.
2316 */
2317 wait_bytes = remain_actual + total_bytes;
2318 need_wrap = true;
2319 } else {
2320 if (unlikely(total_bytes > remain_usable)) {
2321 /*
2322 * The base request will fit but the reserved space
2323 * falls off the end. So only need to to wait for the
2324 * reserved size after flushing out the remainder.
2325 */
2326 wait_bytes = remain_actual + ringbuf->reserved_size;
2327 need_wrap = true;
2328 } else if (total_bytes > ringbuf->space) {
2329 /* No wrapping required, just waiting. */
2330 wait_bytes = total_bytes;
2331 }
2332 }
2333
2334 if (wait_bytes) {
2335 ret = ring_wait_for_space(ring, wait_bytes);
2336 if (unlikely(ret))
2337 return ret;
2338
2339 if (need_wrap)
2340 __wrap_ring_buffer(ringbuf);
2341 }
2342
2343 return 0;
2344 }
2345
2346 int intel_ring_begin(struct drm_i915_gem_request *req,
2347 int num_dwords)
2348 {
2349 struct intel_engine_cs *ring;
2350 struct drm_i915_private *dev_priv;
2351 int ret;
2352
2353 WARN_ON(req == NULL);
2354 ring = req->ring;
2355 dev_priv = ring->dev->dev_private;
2356
2357 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2358 dev_priv->mm.interruptible);
2359 if (ret)
2360 return ret;
2361
2362 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2363 if (ret)
2364 return ret;
2365
2366 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2367 return 0;
2368 }
2369
2370 /* Align the ring tail to a cacheline boundary */
2371 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2372 {
2373 struct intel_engine_cs *ring = req->ring;
2374 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2375 int ret;
2376
2377 if (num_dwords == 0)
2378 return 0;
2379
2380 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2381 ret = intel_ring_begin(req, num_dwords);
2382 if (ret)
2383 return ret;
2384
2385 while (num_dwords--)
2386 intel_ring_emit(ring, MI_NOOP);
2387
2388 intel_ring_advance(ring);
2389
2390 return 0;
2391 }
2392
2393 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2394 {
2395 struct drm_device *dev = ring->dev;
2396 struct drm_i915_private *dev_priv = dev->dev_private;
2397
2398 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2399 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2400 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2401 if (HAS_VEBOX(dev))
2402 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2403 }
2404
2405 ring->set_seqno(ring, seqno);
2406 ring->hangcheck.seqno = seqno;
2407 }
2408
2409 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2410 u32 value)
2411 {
2412 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2413
2414 /* Every tail move must follow the sequence below */
2415
2416 /* Disable notification that the ring is IDLE. The GT
2417 * will then assume that it is busy and bring it out of rc6.
2418 */
2419 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2420 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2421
2422 /* Clear the context id. Here be magic! */
2423 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2424
2425 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2426 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2427 GEN6_BSD_SLEEP_INDICATOR) == 0,
2428 50))
2429 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2430
2431 /* Now that the ring is fully powered up, update the tail */
2432 I915_WRITE_TAIL(ring, value);
2433 POSTING_READ(RING_TAIL(ring->mmio_base));
2434
2435 /* Let the ring send IDLE messages to the GT again,
2436 * and so let it sleep to conserve power when idle.
2437 */
2438 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2439 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2440 }
2441
2442 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2443 u32 invalidate, u32 flush)
2444 {
2445 struct intel_engine_cs *ring = req->ring;
2446 uint32_t cmd;
2447 int ret;
2448
2449 ret = intel_ring_begin(req, 4);
2450 if (ret)
2451 return ret;
2452
2453 cmd = MI_FLUSH_DW;
2454 if (INTEL_INFO(ring->dev)->gen >= 8)
2455 cmd += 1;
2456
2457 /* We always require a command barrier so that subsequent
2458 * commands, such as breadcrumb interrupts, are strictly ordered
2459 * wrt the contents of the write cache being flushed to memory
2460 * (and thus being coherent from the CPU).
2461 */
2462 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2463
2464 /*
2465 * Bspec vol 1c.5 - video engine command streamer:
2466 * "If ENABLED, all TLBs will be invalidated once the flush
2467 * operation is complete. This bit is only valid when the
2468 * Post-Sync Operation field is a value of 1h or 3h."
2469 */
2470 if (invalidate & I915_GEM_GPU_DOMAINS)
2471 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2472
2473 intel_ring_emit(ring, cmd);
2474 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2475 if (INTEL_INFO(ring->dev)->gen >= 8) {
2476 intel_ring_emit(ring, 0); /* upper addr */
2477 intel_ring_emit(ring, 0); /* value */
2478 } else {
2479 intel_ring_emit(ring, 0);
2480 intel_ring_emit(ring, MI_NOOP);
2481 }
2482 intel_ring_advance(ring);
2483 return 0;
2484 }
2485
2486 static int
2487 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2488 u64 offset, u32 len,
2489 unsigned dispatch_flags)
2490 {
2491 struct intel_engine_cs *ring = req->ring;
2492 bool ppgtt = USES_PPGTT(ring->dev) &&
2493 !(dispatch_flags & I915_DISPATCH_SECURE);
2494 int ret;
2495
2496 ret = intel_ring_begin(req, 4);
2497 if (ret)
2498 return ret;
2499
2500 /* FIXME(BDW): Address space and security selectors. */
2501 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2502 (dispatch_flags & I915_DISPATCH_RS ?
2503 MI_BATCH_RESOURCE_STREAMER : 0));
2504 intel_ring_emit(ring, lower_32_bits(offset));
2505 intel_ring_emit(ring, upper_32_bits(offset));
2506 intel_ring_emit(ring, MI_NOOP);
2507 intel_ring_advance(ring);
2508
2509 return 0;
2510 }
2511
2512 static int
2513 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2514 u64 offset, u32 len,
2515 unsigned dispatch_flags)
2516 {
2517 struct intel_engine_cs *ring = req->ring;
2518 int ret;
2519
2520 ret = intel_ring_begin(req, 2);
2521 if (ret)
2522 return ret;
2523
2524 intel_ring_emit(ring,
2525 MI_BATCH_BUFFER_START |
2526 (dispatch_flags & I915_DISPATCH_SECURE ?
2527 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2528 (dispatch_flags & I915_DISPATCH_RS ?
2529 MI_BATCH_RESOURCE_STREAMER : 0));
2530 /* bit0-7 is the length on GEN6+ */
2531 intel_ring_emit(ring, offset);
2532 intel_ring_advance(ring);
2533
2534 return 0;
2535 }
2536
2537 static int
2538 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2539 u64 offset, u32 len,
2540 unsigned dispatch_flags)
2541 {
2542 struct intel_engine_cs *ring = req->ring;
2543 int ret;
2544
2545 ret = intel_ring_begin(req, 2);
2546 if (ret)
2547 return ret;
2548
2549 intel_ring_emit(ring,
2550 MI_BATCH_BUFFER_START |
2551 (dispatch_flags & I915_DISPATCH_SECURE ?
2552 0 : MI_BATCH_NON_SECURE_I965));
2553 /* bit0-7 is the length on GEN6+ */
2554 intel_ring_emit(ring, offset);
2555 intel_ring_advance(ring);
2556
2557 return 0;
2558 }
2559
2560 /* Blitter support (SandyBridge+) */
2561
2562 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2563 u32 invalidate, u32 flush)
2564 {
2565 struct intel_engine_cs *ring = req->ring;
2566 struct drm_device *dev = ring->dev;
2567 uint32_t cmd;
2568 int ret;
2569
2570 ret = intel_ring_begin(req, 4);
2571 if (ret)
2572 return ret;
2573
2574 cmd = MI_FLUSH_DW;
2575 if (INTEL_INFO(dev)->gen >= 8)
2576 cmd += 1;
2577
2578 /* We always require a command barrier so that subsequent
2579 * commands, such as breadcrumb interrupts, are strictly ordered
2580 * wrt the contents of the write cache being flushed to memory
2581 * (and thus being coherent from the CPU).
2582 */
2583 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2584
2585 /*
2586 * Bspec vol 1c.3 - blitter engine command streamer:
2587 * "If ENABLED, all TLBs will be invalidated once the flush
2588 * operation is complete. This bit is only valid when the
2589 * Post-Sync Operation field is a value of 1h or 3h."
2590 */
2591 if (invalidate & I915_GEM_DOMAIN_RENDER)
2592 cmd |= MI_INVALIDATE_TLB;
2593 intel_ring_emit(ring, cmd);
2594 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2595 if (INTEL_INFO(dev)->gen >= 8) {
2596 intel_ring_emit(ring, 0); /* upper addr */
2597 intel_ring_emit(ring, 0); /* value */
2598 } else {
2599 intel_ring_emit(ring, 0);
2600 intel_ring_emit(ring, MI_NOOP);
2601 }
2602 intel_ring_advance(ring);
2603
2604 return 0;
2605 }
2606
2607 int intel_init_render_ring_buffer(struct drm_device *dev)
2608 {
2609 struct drm_i915_private *dev_priv = dev->dev_private;
2610 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2611 struct drm_i915_gem_object *obj;
2612 int ret;
2613
2614 ring->name = "render ring";
2615 ring->id = RCS;
2616 ring->mmio_base = RENDER_RING_BASE;
2617
2618 if (INTEL_INFO(dev)->gen >= 8) {
2619 if (i915_semaphore_is_enabled(dev)) {
2620 obj = i915_gem_alloc_object(dev, 4096);
2621 if (obj == NULL) {
2622 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2623 i915.semaphores = 0;
2624 } else {
2625 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2626 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2627 if (ret != 0) {
2628 drm_gem_object_unreference(&obj->base);
2629 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2630 i915.semaphores = 0;
2631 } else
2632 dev_priv->semaphore_obj = obj;
2633 }
2634 }
2635
2636 ring->init_context = intel_rcs_ctx_init;
2637 ring->add_request = gen6_add_request;
2638 ring->flush = gen8_render_ring_flush;
2639 ring->irq_get = gen8_ring_get_irq;
2640 ring->irq_put = gen8_ring_put_irq;
2641 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2642 ring->get_seqno = gen6_ring_get_seqno;
2643 ring->set_seqno = ring_set_seqno;
2644 if (i915_semaphore_is_enabled(dev)) {
2645 WARN_ON(!dev_priv->semaphore_obj);
2646 ring->semaphore.sync_to = gen8_ring_sync;
2647 ring->semaphore.signal = gen8_rcs_signal;
2648 GEN8_RING_SEMAPHORE_INIT;
2649 }
2650 } else if (INTEL_INFO(dev)->gen >= 6) {
2651 ring->add_request = gen6_add_request;
2652 ring->flush = gen7_render_ring_flush;
2653 if (INTEL_INFO(dev)->gen == 6)
2654 ring->flush = gen6_render_ring_flush;
2655 ring->irq_get = gen6_ring_get_irq;
2656 ring->irq_put = gen6_ring_put_irq;
2657 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2658 ring->get_seqno = gen6_ring_get_seqno;
2659 ring->set_seqno = ring_set_seqno;
2660 if (i915_semaphore_is_enabled(dev)) {
2661 ring->semaphore.sync_to = gen6_ring_sync;
2662 ring->semaphore.signal = gen6_signal;
2663 /*
2664 * The current semaphore is only applied on pre-gen8
2665 * platform. And there is no VCS2 ring on the pre-gen8
2666 * platform. So the semaphore between RCS and VCS2 is
2667 * initialized as INVALID. Gen8 will initialize the
2668 * sema between VCS2 and RCS later.
2669 */
2670 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2671 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2672 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2673 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2674 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2675 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2676 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2677 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2678 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2679 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2680 }
2681 } else if (IS_GEN5(dev)) {
2682 ring->add_request = pc_render_add_request;
2683 ring->flush = gen4_render_ring_flush;
2684 ring->get_seqno = pc_render_get_seqno;
2685 ring->set_seqno = pc_render_set_seqno;
2686 ring->irq_get = gen5_ring_get_irq;
2687 ring->irq_put = gen5_ring_put_irq;
2688 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2689 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2690 } else {
2691 ring->add_request = i9xx_add_request;
2692 if (INTEL_INFO(dev)->gen < 4)
2693 ring->flush = gen2_render_ring_flush;
2694 else
2695 ring->flush = gen4_render_ring_flush;
2696 ring->get_seqno = ring_get_seqno;
2697 ring->set_seqno = ring_set_seqno;
2698 if (IS_GEN2(dev)) {
2699 ring->irq_get = i8xx_ring_get_irq;
2700 ring->irq_put = i8xx_ring_put_irq;
2701 } else {
2702 ring->irq_get = i9xx_ring_get_irq;
2703 ring->irq_put = i9xx_ring_put_irq;
2704 }
2705 ring->irq_enable_mask = I915_USER_INTERRUPT;
2706 }
2707 ring->write_tail = ring_write_tail;
2708
2709 if (IS_HASWELL(dev))
2710 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2711 else if (IS_GEN8(dev))
2712 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2713 else if (INTEL_INFO(dev)->gen >= 6)
2714 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2715 else if (INTEL_INFO(dev)->gen >= 4)
2716 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2717 else if (IS_I830(dev) || IS_845G(dev))
2718 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2719 else
2720 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2721 ring->init_hw = init_render_ring;
2722 ring->cleanup = render_ring_cleanup;
2723
2724 /* Workaround batchbuffer to combat CS tlb bug. */
2725 if (HAS_BROKEN_CS_TLB(dev)) {
2726 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2727 if (obj == NULL) {
2728 DRM_ERROR("Failed to allocate batch bo\n");
2729 return -ENOMEM;
2730 }
2731
2732 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2733 if (ret != 0) {
2734 drm_gem_object_unreference(&obj->base);
2735 DRM_ERROR("Failed to ping batch bo\n");
2736 return ret;
2737 }
2738
2739 ring->scratch.obj = obj;
2740 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2741 }
2742
2743 ret = intel_init_ring_buffer(dev, ring);
2744 if (ret)
2745 return ret;
2746
2747 if (INTEL_INFO(dev)->gen >= 5) {
2748 ret = intel_init_pipe_control(ring);
2749 if (ret)
2750 return ret;
2751 }
2752
2753 return 0;
2754 }
2755
2756 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2757 {
2758 struct drm_i915_private *dev_priv = dev->dev_private;
2759 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2760
2761 ring->name = "bsd ring";
2762 ring->id = VCS;
2763
2764 ring->write_tail = ring_write_tail;
2765 if (INTEL_INFO(dev)->gen >= 6) {
2766 ring->mmio_base = GEN6_BSD_RING_BASE;
2767 /* gen6 bsd needs a special wa for tail updates */
2768 if (IS_GEN6(dev))
2769 ring->write_tail = gen6_bsd_ring_write_tail;
2770 ring->flush = gen6_bsd_ring_flush;
2771 ring->add_request = gen6_add_request;
2772 ring->get_seqno = gen6_ring_get_seqno;
2773 ring->set_seqno = ring_set_seqno;
2774 if (INTEL_INFO(dev)->gen >= 8) {
2775 ring->irq_enable_mask =
2776 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2777 ring->irq_get = gen8_ring_get_irq;
2778 ring->irq_put = gen8_ring_put_irq;
2779 ring->dispatch_execbuffer =
2780 gen8_ring_dispatch_execbuffer;
2781 if (i915_semaphore_is_enabled(dev)) {
2782 ring->semaphore.sync_to = gen8_ring_sync;
2783 ring->semaphore.signal = gen8_xcs_signal;
2784 GEN8_RING_SEMAPHORE_INIT;
2785 }
2786 } else {
2787 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2788 ring->irq_get = gen6_ring_get_irq;
2789 ring->irq_put = gen6_ring_put_irq;
2790 ring->dispatch_execbuffer =
2791 gen6_ring_dispatch_execbuffer;
2792 if (i915_semaphore_is_enabled(dev)) {
2793 ring->semaphore.sync_to = gen6_ring_sync;
2794 ring->semaphore.signal = gen6_signal;
2795 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2796 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2797 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2798 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2799 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2800 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2801 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2802 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2803 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2804 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2805 }
2806 }
2807 } else {
2808 ring->mmio_base = BSD_RING_BASE;
2809 ring->flush = bsd_ring_flush;
2810 ring->add_request = i9xx_add_request;
2811 ring->get_seqno = ring_get_seqno;
2812 ring->set_seqno = ring_set_seqno;
2813 if (IS_GEN5(dev)) {
2814 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2815 ring->irq_get = gen5_ring_get_irq;
2816 ring->irq_put = gen5_ring_put_irq;
2817 } else {
2818 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2819 ring->irq_get = i9xx_ring_get_irq;
2820 ring->irq_put = i9xx_ring_put_irq;
2821 }
2822 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2823 }
2824 ring->init_hw = init_ring_common;
2825
2826 return intel_init_ring_buffer(dev, ring);
2827 }
2828
2829 /**
2830 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2831 */
2832 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2833 {
2834 struct drm_i915_private *dev_priv = dev->dev_private;
2835 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2836
2837 ring->name = "bsd2 ring";
2838 ring->id = VCS2;
2839
2840 ring->write_tail = ring_write_tail;
2841 ring->mmio_base = GEN8_BSD2_RING_BASE;
2842 ring->flush = gen6_bsd_ring_flush;
2843 ring->add_request = gen6_add_request;
2844 ring->get_seqno = gen6_ring_get_seqno;
2845 ring->set_seqno = ring_set_seqno;
2846 ring->irq_enable_mask =
2847 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2848 ring->irq_get = gen8_ring_get_irq;
2849 ring->irq_put = gen8_ring_put_irq;
2850 ring->dispatch_execbuffer =
2851 gen8_ring_dispatch_execbuffer;
2852 if (i915_semaphore_is_enabled(dev)) {
2853 ring->semaphore.sync_to = gen8_ring_sync;
2854 ring->semaphore.signal = gen8_xcs_signal;
2855 GEN8_RING_SEMAPHORE_INIT;
2856 }
2857 ring->init_hw = init_ring_common;
2858
2859 return intel_init_ring_buffer(dev, ring);
2860 }
2861
2862 int intel_init_blt_ring_buffer(struct drm_device *dev)
2863 {
2864 struct drm_i915_private *dev_priv = dev->dev_private;
2865 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2866
2867 ring->name = "blitter ring";
2868 ring->id = BCS;
2869
2870 ring->mmio_base = BLT_RING_BASE;
2871 ring->write_tail = ring_write_tail;
2872 ring->flush = gen6_ring_flush;
2873 ring->add_request = gen6_add_request;
2874 ring->get_seqno = gen6_ring_get_seqno;
2875 ring->set_seqno = ring_set_seqno;
2876 if (INTEL_INFO(dev)->gen >= 8) {
2877 ring->irq_enable_mask =
2878 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2879 ring->irq_get = gen8_ring_get_irq;
2880 ring->irq_put = gen8_ring_put_irq;
2881 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2882 if (i915_semaphore_is_enabled(dev)) {
2883 ring->semaphore.sync_to = gen8_ring_sync;
2884 ring->semaphore.signal = gen8_xcs_signal;
2885 GEN8_RING_SEMAPHORE_INIT;
2886 }
2887 } else {
2888 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2889 ring->irq_get = gen6_ring_get_irq;
2890 ring->irq_put = gen6_ring_put_irq;
2891 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2892 if (i915_semaphore_is_enabled(dev)) {
2893 ring->semaphore.signal = gen6_signal;
2894 ring->semaphore.sync_to = gen6_ring_sync;
2895 /*
2896 * The current semaphore is only applied on pre-gen8
2897 * platform. And there is no VCS2 ring on the pre-gen8
2898 * platform. So the semaphore between BCS and VCS2 is
2899 * initialized as INVALID. Gen8 will initialize the
2900 * sema between BCS and VCS2 later.
2901 */
2902 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2903 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2904 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2905 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2906 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2907 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2908 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2909 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2910 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2911 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2912 }
2913 }
2914 ring->init_hw = init_ring_common;
2915
2916 return intel_init_ring_buffer(dev, ring);
2917 }
2918
2919 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2920 {
2921 struct drm_i915_private *dev_priv = dev->dev_private;
2922 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2923
2924 ring->name = "video enhancement ring";
2925 ring->id = VECS;
2926
2927 ring->mmio_base = VEBOX_RING_BASE;
2928 ring->write_tail = ring_write_tail;
2929 ring->flush = gen6_ring_flush;
2930 ring->add_request = gen6_add_request;
2931 ring->get_seqno = gen6_ring_get_seqno;
2932 ring->set_seqno = ring_set_seqno;
2933
2934 if (INTEL_INFO(dev)->gen >= 8) {
2935 ring->irq_enable_mask =
2936 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2937 ring->irq_get = gen8_ring_get_irq;
2938 ring->irq_put = gen8_ring_put_irq;
2939 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2940 if (i915_semaphore_is_enabled(dev)) {
2941 ring->semaphore.sync_to = gen8_ring_sync;
2942 ring->semaphore.signal = gen8_xcs_signal;
2943 GEN8_RING_SEMAPHORE_INIT;
2944 }
2945 } else {
2946 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2947 ring->irq_get = hsw_vebox_get_irq;
2948 ring->irq_put = hsw_vebox_put_irq;
2949 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2950 if (i915_semaphore_is_enabled(dev)) {
2951 ring->semaphore.sync_to = gen6_ring_sync;
2952 ring->semaphore.signal = gen6_signal;
2953 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2954 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2955 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2956 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2957 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2958 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2959 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2960 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2961 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2962 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2963 }
2964 }
2965 ring->init_hw = init_ring_common;
2966
2967 return intel_init_ring_buffer(dev, ring);
2968 }
2969
2970 int
2971 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
2972 {
2973 struct intel_engine_cs *ring = req->ring;
2974 int ret;
2975
2976 if (!ring->gpu_caches_dirty)
2977 return 0;
2978
2979 ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
2980 if (ret)
2981 return ret;
2982
2983 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
2984
2985 ring->gpu_caches_dirty = false;
2986 return 0;
2987 }
2988
2989 int
2990 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
2991 {
2992 struct intel_engine_cs *ring = req->ring;
2993 uint32_t flush_domains;
2994 int ret;
2995
2996 flush_domains = 0;
2997 if (ring->gpu_caches_dirty)
2998 flush_domains = I915_GEM_GPU_DOMAINS;
2999
3000 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3001 if (ret)
3002 return ret;
3003
3004 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3005
3006 ring->gpu_caches_dirty = false;
3007 return 0;
3008 }
3009
3010 void
3011 intel_stop_ring_buffer(struct intel_engine_cs *ring)
3012 {
3013 int ret;
3014
3015 if (!intel_ring_initialized(ring))
3016 return;
3017
3018 ret = intel_ring_idle(ring);
3019 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3020 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3021 ring->name, ret);
3022
3023 stop_ring(ring);
3024 }
This page took 0.128868 seconds and 5 git commands to generate.