drm/i915: Flatten engine init control flow
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 struct drm_device *dev = ring->dev;
40
41 if (!dev)
42 return false;
43
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48 return ringbuf->obj;
49 } else
50 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 int space = head - tail;
56 if (space <= 0)
57 space += size;
58 return space - I915_RING_FREE_SPACE;
59 }
60
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63 if (ringbuf->last_retired_head != -1) {
64 ringbuf->head = ringbuf->last_retired_head;
65 ringbuf->last_retired_head = -1;
66 }
67
68 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69 ringbuf->tail, ringbuf->size);
70 }
71
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74 intel_ring_update_space(ringbuf);
75 return ringbuf->space;
76 }
77
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80 struct drm_i915_private *dev_priv = ring->dev->dev_private;
81 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
84 void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86 struct intel_ringbuffer *ringbuf = ring->buffer;
87 ringbuf->tail &= ringbuf->size - 1;
88 if (intel_ring_stopped(ring))
89 return;
90 ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
94 gen2_render_ring_flush(struct intel_engine_cs *ring,
95 u32 invalidate_domains,
96 u32 flush_domains)
97 {
98 u32 cmd;
99 int ret;
100
101 cmd = MI_FLUSH;
102 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
103 cmd |= MI_NO_WRITE_FLUSH;
104
105 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
106 cmd |= MI_READ_FLUSH;
107
108 ret = intel_ring_begin(ring, 2);
109 if (ret)
110 return ret;
111
112 intel_ring_emit(ring, cmd);
113 intel_ring_emit(ring, MI_NOOP);
114 intel_ring_advance(ring);
115
116 return 0;
117 }
118
119 static int
120 gen4_render_ring_flush(struct intel_engine_cs *ring,
121 u32 invalidate_domains,
122 u32 flush_domains)
123 {
124 struct drm_device *dev = ring->dev;
125 u32 cmd;
126 int ret;
127
128 /*
129 * read/write caches:
130 *
131 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
132 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
133 * also flushed at 2d versus 3d pipeline switches.
134 *
135 * read-only caches:
136 *
137 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
138 * MI_READ_FLUSH is set, and is always flushed on 965.
139 *
140 * I915_GEM_DOMAIN_COMMAND may not exist?
141 *
142 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
143 * invalidated when MI_EXE_FLUSH is set.
144 *
145 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
146 * invalidated with every MI_FLUSH.
147 *
148 * TLBs:
149 *
150 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
151 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
152 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
153 * are flushed at any MI_FLUSH.
154 */
155
156 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
157 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
158 cmd &= ~MI_NO_WRITE_FLUSH;
159 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
160 cmd |= MI_EXE_FLUSH;
161
162 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
163 (IS_G4X(dev) || IS_GEN5(dev)))
164 cmd |= MI_INVALIDATE_ISP;
165
166 ret = intel_ring_begin(ring, 2);
167 if (ret)
168 return ret;
169
170 intel_ring_emit(ring, cmd);
171 intel_ring_emit(ring, MI_NOOP);
172 intel_ring_advance(ring);
173
174 return 0;
175 }
176
177 /**
178 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
179 * implementing two workarounds on gen6. From section 1.4.7.1
180 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
181 *
182 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
183 * produced by non-pipelined state commands), software needs to first
184 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
185 * 0.
186 *
187 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
188 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
189 *
190 * And the workaround for these two requires this workaround first:
191 *
192 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
193 * BEFORE the pipe-control with a post-sync op and no write-cache
194 * flushes.
195 *
196 * And this last workaround is tricky because of the requirements on
197 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
198 * volume 2 part 1:
199 *
200 * "1 of the following must also be set:
201 * - Render Target Cache Flush Enable ([12] of DW1)
202 * - Depth Cache Flush Enable ([0] of DW1)
203 * - Stall at Pixel Scoreboard ([1] of DW1)
204 * - Depth Stall ([13] of DW1)
205 * - Post-Sync Operation ([13] of DW1)
206 * - Notify Enable ([8] of DW1)"
207 *
208 * The cache flushes require the workaround flush that triggered this
209 * one, so we can't use it. Depth stall would trigger the same.
210 * Post-sync nonzero is what triggered this second workaround, so we
211 * can't use that one either. Notify enable is IRQs, which aren't
212 * really our business. That leaves only stall at scoreboard.
213 */
214 static int
215 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
216 {
217 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
218 int ret;
219
220
221 ret = intel_ring_begin(ring, 6);
222 if (ret)
223 return ret;
224
225 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
226 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
227 PIPE_CONTROL_STALL_AT_SCOREBOARD);
228 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
229 intel_ring_emit(ring, 0); /* low dword */
230 intel_ring_emit(ring, 0); /* high dword */
231 intel_ring_emit(ring, MI_NOOP);
232 intel_ring_advance(ring);
233
234 ret = intel_ring_begin(ring, 6);
235 if (ret)
236 return ret;
237
238 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
239 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
240 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
241 intel_ring_emit(ring, 0);
242 intel_ring_emit(ring, 0);
243 intel_ring_emit(ring, MI_NOOP);
244 intel_ring_advance(ring);
245
246 return 0;
247 }
248
249 static int
250 gen6_render_ring_flush(struct intel_engine_cs *ring,
251 u32 invalidate_domains, u32 flush_domains)
252 {
253 u32 flags = 0;
254 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
255 int ret;
256
257 /* Force SNB workarounds for PIPE_CONTROL flushes */
258 ret = intel_emit_post_sync_nonzero_flush(ring);
259 if (ret)
260 return ret;
261
262 /* Just flush everything. Experiments have shown that reducing the
263 * number of bits based on the write domains has little performance
264 * impact.
265 */
266 if (flush_domains) {
267 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
268 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
269 /*
270 * Ensure that any following seqno writes only happen
271 * when the render cache is indeed flushed.
272 */
273 flags |= PIPE_CONTROL_CS_STALL;
274 }
275 if (invalidate_domains) {
276 flags |= PIPE_CONTROL_TLB_INVALIDATE;
277 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
278 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
279 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
280 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
281 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
282 /*
283 * TLB invalidate requires a post-sync write.
284 */
285 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
286 }
287
288 ret = intel_ring_begin(ring, 4);
289 if (ret)
290 return ret;
291
292 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
293 intel_ring_emit(ring, flags);
294 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
295 intel_ring_emit(ring, 0);
296 intel_ring_advance(ring);
297
298 return 0;
299 }
300
301 static int
302 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
303 {
304 int ret;
305
306 ret = intel_ring_begin(ring, 4);
307 if (ret)
308 return ret;
309
310 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
311 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
312 PIPE_CONTROL_STALL_AT_SCOREBOARD);
313 intel_ring_emit(ring, 0);
314 intel_ring_emit(ring, 0);
315 intel_ring_advance(ring);
316
317 return 0;
318 }
319
320 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
321 {
322 int ret;
323
324 if (!ring->fbc_dirty)
325 return 0;
326
327 ret = intel_ring_begin(ring, 6);
328 if (ret)
329 return ret;
330 /* WaFbcNukeOn3DBlt:ivb/hsw */
331 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
332 intel_ring_emit(ring, MSG_FBC_REND_STATE);
333 intel_ring_emit(ring, value);
334 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
335 intel_ring_emit(ring, MSG_FBC_REND_STATE);
336 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
337 intel_ring_advance(ring);
338
339 ring->fbc_dirty = false;
340 return 0;
341 }
342
343 static int
344 gen7_render_ring_flush(struct intel_engine_cs *ring,
345 u32 invalidate_domains, u32 flush_domains)
346 {
347 u32 flags = 0;
348 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
349 int ret;
350
351 /*
352 * Ensure that any following seqno writes only happen when the render
353 * cache is indeed flushed.
354 *
355 * Workaround: 4th PIPE_CONTROL command (except the ones with only
356 * read-cache invalidate bits set) must have the CS_STALL bit set. We
357 * don't try to be clever and just set it unconditionally.
358 */
359 flags |= PIPE_CONTROL_CS_STALL;
360
361 /* Just flush everything. Experiments have shown that reducing the
362 * number of bits based on the write domains has little performance
363 * impact.
364 */
365 if (flush_domains) {
366 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
367 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
368 }
369 if (invalidate_domains) {
370 flags |= PIPE_CONTROL_TLB_INVALIDATE;
371 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
372 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
373 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
374 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
375 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
376 /*
377 * TLB invalidate requires a post-sync write.
378 */
379 flags |= PIPE_CONTROL_QW_WRITE;
380 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
381
382 /* Workaround: we must issue a pipe_control with CS-stall bit
383 * set before a pipe_control command that has the state cache
384 * invalidate bit set. */
385 gen7_render_ring_cs_stall_wa(ring);
386 }
387
388 ret = intel_ring_begin(ring, 4);
389 if (ret)
390 return ret;
391
392 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
393 intel_ring_emit(ring, flags);
394 intel_ring_emit(ring, scratch_addr);
395 intel_ring_emit(ring, 0);
396 intel_ring_advance(ring);
397
398 if (!invalidate_domains && flush_domains)
399 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
400
401 return 0;
402 }
403
404 static int
405 gen8_emit_pipe_control(struct intel_engine_cs *ring,
406 u32 flags, u32 scratch_addr)
407 {
408 int ret;
409
410 ret = intel_ring_begin(ring, 6);
411 if (ret)
412 return ret;
413
414 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
415 intel_ring_emit(ring, flags);
416 intel_ring_emit(ring, scratch_addr);
417 intel_ring_emit(ring, 0);
418 intel_ring_emit(ring, 0);
419 intel_ring_emit(ring, 0);
420 intel_ring_advance(ring);
421
422 return 0;
423 }
424
425 static int
426 gen8_render_ring_flush(struct intel_engine_cs *ring,
427 u32 invalidate_domains, u32 flush_domains)
428 {
429 u32 flags = 0;
430 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
431 int ret;
432
433 flags |= PIPE_CONTROL_CS_STALL;
434
435 if (flush_domains) {
436 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
437 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
438 }
439 if (invalidate_domains) {
440 flags |= PIPE_CONTROL_TLB_INVALIDATE;
441 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
442 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
443 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
444 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
445 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
446 flags |= PIPE_CONTROL_QW_WRITE;
447 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
448
449 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
450 ret = gen8_emit_pipe_control(ring,
451 PIPE_CONTROL_CS_STALL |
452 PIPE_CONTROL_STALL_AT_SCOREBOARD,
453 0);
454 if (ret)
455 return ret;
456 }
457
458 ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
459 if (ret)
460 return ret;
461
462 if (!invalidate_domains && flush_domains)
463 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
464
465 return 0;
466 }
467
468 static void ring_write_tail(struct intel_engine_cs *ring,
469 u32 value)
470 {
471 struct drm_i915_private *dev_priv = ring->dev->dev_private;
472 I915_WRITE_TAIL(ring, value);
473 }
474
475 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
476 {
477 struct drm_i915_private *dev_priv = ring->dev->dev_private;
478 u64 acthd;
479
480 if (INTEL_INFO(ring->dev)->gen >= 8)
481 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
482 RING_ACTHD_UDW(ring->mmio_base));
483 else if (INTEL_INFO(ring->dev)->gen >= 4)
484 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
485 else
486 acthd = I915_READ(ACTHD);
487
488 return acthd;
489 }
490
491 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
492 {
493 struct drm_i915_private *dev_priv = ring->dev->dev_private;
494 u32 addr;
495
496 addr = dev_priv->status_page_dmah->busaddr;
497 if (INTEL_INFO(ring->dev)->gen >= 4)
498 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
499 I915_WRITE(HWS_PGA, addr);
500 }
501
502 static bool stop_ring(struct intel_engine_cs *ring)
503 {
504 struct drm_i915_private *dev_priv = to_i915(ring->dev);
505
506 if (!IS_GEN2(ring->dev)) {
507 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
508 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
509 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
510 /* Sometimes we observe that the idle flag is not
511 * set even though the ring is empty. So double
512 * check before giving up.
513 */
514 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
515 return false;
516 }
517 }
518
519 I915_WRITE_CTL(ring, 0);
520 I915_WRITE_HEAD(ring, 0);
521 ring->write_tail(ring, 0);
522
523 if (!IS_GEN2(ring->dev)) {
524 (void)I915_READ_CTL(ring);
525 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
526 }
527
528 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
529 }
530
531 static int init_ring_common(struct intel_engine_cs *ring)
532 {
533 struct drm_device *dev = ring->dev;
534 struct drm_i915_private *dev_priv = dev->dev_private;
535 struct intel_ringbuffer *ringbuf = ring->buffer;
536 struct drm_i915_gem_object *obj = ringbuf->obj;
537 int ret = 0;
538
539 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
540
541 if (!stop_ring(ring)) {
542 /* G45 ring initialization often fails to reset head to zero */
543 DRM_DEBUG_KMS("%s head not reset to zero "
544 "ctl %08x head %08x tail %08x start %08x\n",
545 ring->name,
546 I915_READ_CTL(ring),
547 I915_READ_HEAD(ring),
548 I915_READ_TAIL(ring),
549 I915_READ_START(ring));
550
551 if (!stop_ring(ring)) {
552 DRM_ERROR("failed to set %s head to zero "
553 "ctl %08x head %08x tail %08x start %08x\n",
554 ring->name,
555 I915_READ_CTL(ring),
556 I915_READ_HEAD(ring),
557 I915_READ_TAIL(ring),
558 I915_READ_START(ring));
559 ret = -EIO;
560 goto out;
561 }
562 }
563
564 if (I915_NEED_GFX_HWS(dev))
565 intel_ring_setup_status_page(ring);
566 else
567 ring_setup_phys_status_page(ring);
568
569 /* Enforce ordering by reading HEAD register back */
570 I915_READ_HEAD(ring);
571
572 /* Initialize the ring. This must happen _after_ we've cleared the ring
573 * registers with the above sequence (the readback of the HEAD registers
574 * also enforces ordering), otherwise the hw might lose the new ring
575 * register values. */
576 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
577
578 /* WaClearRingBufHeadRegAtInit:ctg,elk */
579 if (I915_READ_HEAD(ring))
580 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
581 ring->name, I915_READ_HEAD(ring));
582 I915_WRITE_HEAD(ring, 0);
583 (void)I915_READ_HEAD(ring);
584
585 I915_WRITE_CTL(ring,
586 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
587 | RING_VALID);
588
589 /* If the head is still not zero, the ring is dead */
590 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
591 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
592 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
593 DRM_ERROR("%s initialization failed "
594 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
595 ring->name,
596 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
597 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
598 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
599 ret = -EIO;
600 goto out;
601 }
602
603 ringbuf->last_retired_head = -1;
604 ringbuf->head = I915_READ_HEAD(ring);
605 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
606 intel_ring_update_space(ringbuf);
607
608 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
609
610 out:
611 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
612
613 return ret;
614 }
615
616 void
617 intel_fini_pipe_control(struct intel_engine_cs *ring)
618 {
619 struct drm_device *dev = ring->dev;
620
621 if (ring->scratch.obj == NULL)
622 return;
623
624 if (INTEL_INFO(dev)->gen >= 5) {
625 kunmap(sg_page(ring->scratch.obj->pages->sgl));
626 i915_gem_object_ggtt_unpin(ring->scratch.obj);
627 }
628
629 drm_gem_object_unreference(&ring->scratch.obj->base);
630 ring->scratch.obj = NULL;
631 }
632
633 int
634 intel_init_pipe_control(struct intel_engine_cs *ring)
635 {
636 int ret;
637
638 WARN_ON(ring->scratch.obj);
639
640 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
641 if (ring->scratch.obj == NULL) {
642 DRM_ERROR("Failed to allocate seqno page\n");
643 ret = -ENOMEM;
644 goto err;
645 }
646
647 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
648 if (ret)
649 goto err_unref;
650
651 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
652 if (ret)
653 goto err_unref;
654
655 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
656 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
657 if (ring->scratch.cpu_page == NULL) {
658 ret = -ENOMEM;
659 goto err_unpin;
660 }
661
662 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
663 ring->name, ring->scratch.gtt_offset);
664 return 0;
665
666 err_unpin:
667 i915_gem_object_ggtt_unpin(ring->scratch.obj);
668 err_unref:
669 drm_gem_object_unreference(&ring->scratch.obj->base);
670 err:
671 return ret;
672 }
673
674 static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
675 struct intel_context *ctx)
676 {
677 int ret, i;
678 struct drm_device *dev = ring->dev;
679 struct drm_i915_private *dev_priv = dev->dev_private;
680 struct i915_workarounds *w = &dev_priv->workarounds;
681
682 if (WARN_ON(w->count == 0))
683 return 0;
684
685 ring->gpu_caches_dirty = true;
686 ret = intel_ring_flush_all_caches(ring);
687 if (ret)
688 return ret;
689
690 ret = intel_ring_begin(ring, (w->count * 2 + 2));
691 if (ret)
692 return ret;
693
694 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
695 for (i = 0; i < w->count; i++) {
696 intel_ring_emit(ring, w->reg[i].addr);
697 intel_ring_emit(ring, w->reg[i].value);
698 }
699 intel_ring_emit(ring, MI_NOOP);
700
701 intel_ring_advance(ring);
702
703 ring->gpu_caches_dirty = true;
704 ret = intel_ring_flush_all_caches(ring);
705 if (ret)
706 return ret;
707
708 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
709
710 return 0;
711 }
712
713 static int wa_add(struct drm_i915_private *dev_priv,
714 const u32 addr, const u32 val, const u32 mask)
715 {
716 const u32 idx = dev_priv->workarounds.count;
717
718 if (WARN_ON(idx >= I915_MAX_WA_REGS))
719 return -ENOSPC;
720
721 dev_priv->workarounds.reg[idx].addr = addr;
722 dev_priv->workarounds.reg[idx].value = val;
723 dev_priv->workarounds.reg[idx].mask = mask;
724
725 dev_priv->workarounds.count++;
726
727 return 0;
728 }
729
730 #define WA_REG(addr, val, mask) { \
731 const int r = wa_add(dev_priv, (addr), (val), (mask)); \
732 if (r) \
733 return r; \
734 }
735
736 #define WA_SET_BIT_MASKED(addr, mask) \
737 WA_REG(addr, _MASKED_BIT_ENABLE(mask), (mask) & 0xffff)
738
739 #define WA_CLR_BIT_MASKED(addr, mask) \
740 WA_REG(addr, _MASKED_BIT_DISABLE(mask), (mask) & 0xffff)
741
742 #define WA_SET_BIT(addr, mask) WA_REG(addr, I915_READ(addr) | (mask), mask)
743 #define WA_CLR_BIT(addr, mask) WA_REG(addr, I915_READ(addr) & ~(mask), mask)
744
745 #define WA_WRITE(addr, val) WA_REG(addr, val, 0xffffffff)
746
747 static int bdw_init_workarounds(struct intel_engine_cs *ring)
748 {
749 struct drm_device *dev = ring->dev;
750 struct drm_i915_private *dev_priv = dev->dev_private;
751
752 /* WaDisablePartialInstShootdown:bdw */
753 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
754 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
755 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
756 STALL_DOP_GATING_DISABLE);
757
758 /* WaDisableDopClockGating:bdw */
759 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
760 DOP_CLOCK_GATING_DISABLE);
761
762 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
763 GEN8_SAMPLER_POWER_BYPASS_DIS);
764
765 /* Use Force Non-Coherent whenever executing a 3D context. This is a
766 * workaround for for a possible hang in the unlikely event a TLB
767 * invalidation occurs during a PSD flush.
768 */
769 /* WaDisableFenceDestinationToSLM:bdw (GT3 pre-production) */
770 WA_SET_BIT_MASKED(HDC_CHICKEN0,
771 HDC_FORCE_NON_COHERENT |
772 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
773
774 /* Wa4x4STCOptimizationDisable:bdw */
775 WA_SET_BIT_MASKED(CACHE_MODE_1,
776 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
777
778 /*
779 * BSpec recommends 8x4 when MSAA is used,
780 * however in practice 16x4 seems fastest.
781 *
782 * Note that PS/WM thread counts depend on the WIZ hashing
783 * disable bit, which we don't touch here, but it's good
784 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
785 */
786 WA_SET_BIT_MASKED(GEN7_GT_MODE,
787 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
788
789 return 0;
790 }
791
792 static int chv_init_workarounds(struct intel_engine_cs *ring)
793 {
794 struct drm_device *dev = ring->dev;
795 struct drm_i915_private *dev_priv = dev->dev_private;
796
797 /* WaDisablePartialInstShootdown:chv */
798 /* WaDisableThreadStallDopClockGating:chv */
799 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
800 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
801 STALL_DOP_GATING_DISABLE);
802
803 /* Use Force Non-Coherent whenever executing a 3D context. This is a
804 * workaround for a possible hang in the unlikely event a TLB
805 * invalidation occurs during a PSD flush.
806 */
807 /* WaForceEnableNonCoherent:chv */
808 /* WaHdcDisableFetchWhenMasked:chv */
809 WA_SET_BIT_MASKED(HDC_CHICKEN0,
810 HDC_FORCE_NON_COHERENT |
811 HDC_DONOT_FETCH_MEM_WHEN_MASKED);
812
813 return 0;
814 }
815
816 int init_workarounds_ring(struct intel_engine_cs *ring)
817 {
818 struct drm_device *dev = ring->dev;
819 struct drm_i915_private *dev_priv = dev->dev_private;
820
821 WARN_ON(ring->id != RCS);
822
823 dev_priv->workarounds.count = 0;
824
825 if (IS_BROADWELL(dev))
826 return bdw_init_workarounds(ring);
827
828 if (IS_CHERRYVIEW(dev))
829 return chv_init_workarounds(ring);
830
831 return 0;
832 }
833
834 static int init_render_ring(struct intel_engine_cs *ring)
835 {
836 struct drm_device *dev = ring->dev;
837 struct drm_i915_private *dev_priv = dev->dev_private;
838 int ret = init_ring_common(ring);
839 if (ret)
840 return ret;
841
842 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
843 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
844 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
845
846 /* We need to disable the AsyncFlip performance optimisations in order
847 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
848 * programmed to '1' on all products.
849 *
850 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
851 */
852 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
853 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
854
855 /* Required for the hardware to program scanline values for waiting */
856 /* WaEnableFlushTlbInvalidationMode:snb */
857 if (INTEL_INFO(dev)->gen == 6)
858 I915_WRITE(GFX_MODE,
859 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
860
861 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
862 if (IS_GEN7(dev))
863 I915_WRITE(GFX_MODE_GEN7,
864 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
865 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
866
867 if (IS_GEN6(dev)) {
868 /* From the Sandybridge PRM, volume 1 part 3, page 24:
869 * "If this bit is set, STCunit will have LRA as replacement
870 * policy. [...] This bit must be reset. LRA replacement
871 * policy is not supported."
872 */
873 I915_WRITE(CACHE_MODE_0,
874 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
875 }
876
877 if (INTEL_INFO(dev)->gen >= 6)
878 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
879
880 if (HAS_L3_DPF(dev))
881 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
882
883 return init_workarounds_ring(ring);
884 }
885
886 static void render_ring_cleanup(struct intel_engine_cs *ring)
887 {
888 struct drm_device *dev = ring->dev;
889 struct drm_i915_private *dev_priv = dev->dev_private;
890
891 if (dev_priv->semaphore_obj) {
892 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
893 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
894 dev_priv->semaphore_obj = NULL;
895 }
896
897 intel_fini_pipe_control(ring);
898 }
899
900 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
901 unsigned int num_dwords)
902 {
903 #define MBOX_UPDATE_DWORDS 8
904 struct drm_device *dev = signaller->dev;
905 struct drm_i915_private *dev_priv = dev->dev_private;
906 struct intel_engine_cs *waiter;
907 int i, ret, num_rings;
908
909 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
910 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
911 #undef MBOX_UPDATE_DWORDS
912
913 ret = intel_ring_begin(signaller, num_dwords);
914 if (ret)
915 return ret;
916
917 for_each_ring(waiter, dev_priv, i) {
918 u32 seqno;
919 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
920 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
921 continue;
922
923 seqno = i915_gem_request_get_seqno(
924 signaller->outstanding_lazy_request);
925 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
926 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
927 PIPE_CONTROL_QW_WRITE |
928 PIPE_CONTROL_FLUSH_ENABLE);
929 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
930 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
931 intel_ring_emit(signaller, seqno);
932 intel_ring_emit(signaller, 0);
933 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
934 MI_SEMAPHORE_TARGET(waiter->id));
935 intel_ring_emit(signaller, 0);
936 }
937
938 return 0;
939 }
940
941 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
942 unsigned int num_dwords)
943 {
944 #define MBOX_UPDATE_DWORDS 6
945 struct drm_device *dev = signaller->dev;
946 struct drm_i915_private *dev_priv = dev->dev_private;
947 struct intel_engine_cs *waiter;
948 int i, ret, num_rings;
949
950 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
951 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
952 #undef MBOX_UPDATE_DWORDS
953
954 ret = intel_ring_begin(signaller, num_dwords);
955 if (ret)
956 return ret;
957
958 for_each_ring(waiter, dev_priv, i) {
959 u32 seqno;
960 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
961 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
962 continue;
963
964 seqno = i915_gem_request_get_seqno(
965 signaller->outstanding_lazy_request);
966 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
967 MI_FLUSH_DW_OP_STOREDW);
968 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
969 MI_FLUSH_DW_USE_GTT);
970 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
971 intel_ring_emit(signaller, seqno);
972 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
973 MI_SEMAPHORE_TARGET(waiter->id));
974 intel_ring_emit(signaller, 0);
975 }
976
977 return 0;
978 }
979
980 static int gen6_signal(struct intel_engine_cs *signaller,
981 unsigned int num_dwords)
982 {
983 struct drm_device *dev = signaller->dev;
984 struct drm_i915_private *dev_priv = dev->dev_private;
985 struct intel_engine_cs *useless;
986 int i, ret, num_rings;
987
988 #define MBOX_UPDATE_DWORDS 3
989 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
990 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
991 #undef MBOX_UPDATE_DWORDS
992
993 ret = intel_ring_begin(signaller, num_dwords);
994 if (ret)
995 return ret;
996
997 for_each_ring(useless, dev_priv, i) {
998 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
999 if (mbox_reg != GEN6_NOSYNC) {
1000 u32 seqno = i915_gem_request_get_seqno(
1001 signaller->outstanding_lazy_request);
1002 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1003 intel_ring_emit(signaller, mbox_reg);
1004 intel_ring_emit(signaller, seqno);
1005 }
1006 }
1007
1008 /* If num_dwords was rounded, make sure the tail pointer is correct */
1009 if (num_rings % 2 == 0)
1010 intel_ring_emit(signaller, MI_NOOP);
1011
1012 return 0;
1013 }
1014
1015 /**
1016 * gen6_add_request - Update the semaphore mailbox registers
1017 *
1018 * @ring - ring that is adding a request
1019 * @seqno - return seqno stuck into the ring
1020 *
1021 * Update the mailbox registers in the *other* rings with the current seqno.
1022 * This acts like a signal in the canonical semaphore.
1023 */
1024 static int
1025 gen6_add_request(struct intel_engine_cs *ring)
1026 {
1027 int ret;
1028
1029 if (ring->semaphore.signal)
1030 ret = ring->semaphore.signal(ring, 4);
1031 else
1032 ret = intel_ring_begin(ring, 4);
1033
1034 if (ret)
1035 return ret;
1036
1037 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1038 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1039 intel_ring_emit(ring,
1040 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1041 intel_ring_emit(ring, MI_USER_INTERRUPT);
1042 __intel_ring_advance(ring);
1043
1044 return 0;
1045 }
1046
1047 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1048 u32 seqno)
1049 {
1050 struct drm_i915_private *dev_priv = dev->dev_private;
1051 return dev_priv->last_seqno < seqno;
1052 }
1053
1054 /**
1055 * intel_ring_sync - sync the waiter to the signaller on seqno
1056 *
1057 * @waiter - ring that is waiting
1058 * @signaller - ring which has, or will signal
1059 * @seqno - seqno which the waiter will block on
1060 */
1061
1062 static int
1063 gen8_ring_sync(struct intel_engine_cs *waiter,
1064 struct intel_engine_cs *signaller,
1065 u32 seqno)
1066 {
1067 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1068 int ret;
1069
1070 ret = intel_ring_begin(waiter, 4);
1071 if (ret)
1072 return ret;
1073
1074 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1075 MI_SEMAPHORE_GLOBAL_GTT |
1076 MI_SEMAPHORE_POLL |
1077 MI_SEMAPHORE_SAD_GTE_SDD);
1078 intel_ring_emit(waiter, seqno);
1079 intel_ring_emit(waiter,
1080 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1081 intel_ring_emit(waiter,
1082 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1083 intel_ring_advance(waiter);
1084 return 0;
1085 }
1086
1087 static int
1088 gen6_ring_sync(struct intel_engine_cs *waiter,
1089 struct intel_engine_cs *signaller,
1090 u32 seqno)
1091 {
1092 u32 dw1 = MI_SEMAPHORE_MBOX |
1093 MI_SEMAPHORE_COMPARE |
1094 MI_SEMAPHORE_REGISTER;
1095 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1096 int ret;
1097
1098 /* Throughout all of the GEM code, seqno passed implies our current
1099 * seqno is >= the last seqno executed. However for hardware the
1100 * comparison is strictly greater than.
1101 */
1102 seqno -= 1;
1103
1104 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1105
1106 ret = intel_ring_begin(waiter, 4);
1107 if (ret)
1108 return ret;
1109
1110 /* If seqno wrap happened, omit the wait with no-ops */
1111 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1112 intel_ring_emit(waiter, dw1 | wait_mbox);
1113 intel_ring_emit(waiter, seqno);
1114 intel_ring_emit(waiter, 0);
1115 intel_ring_emit(waiter, MI_NOOP);
1116 } else {
1117 intel_ring_emit(waiter, MI_NOOP);
1118 intel_ring_emit(waiter, MI_NOOP);
1119 intel_ring_emit(waiter, MI_NOOP);
1120 intel_ring_emit(waiter, MI_NOOP);
1121 }
1122 intel_ring_advance(waiter);
1123
1124 return 0;
1125 }
1126
1127 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1128 do { \
1129 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1130 PIPE_CONTROL_DEPTH_STALL); \
1131 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1132 intel_ring_emit(ring__, 0); \
1133 intel_ring_emit(ring__, 0); \
1134 } while (0)
1135
1136 static int
1137 pc_render_add_request(struct intel_engine_cs *ring)
1138 {
1139 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1140 int ret;
1141
1142 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1143 * incoherent with writes to memory, i.e. completely fubar,
1144 * so we need to use PIPE_NOTIFY instead.
1145 *
1146 * However, we also need to workaround the qword write
1147 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1148 * memory before requesting an interrupt.
1149 */
1150 ret = intel_ring_begin(ring, 32);
1151 if (ret)
1152 return ret;
1153
1154 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1155 PIPE_CONTROL_WRITE_FLUSH |
1156 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1157 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1158 intel_ring_emit(ring,
1159 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1160 intel_ring_emit(ring, 0);
1161 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1162 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1163 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1164 scratch_addr += 2 * CACHELINE_BYTES;
1165 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1166 scratch_addr += 2 * CACHELINE_BYTES;
1167 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1168 scratch_addr += 2 * CACHELINE_BYTES;
1169 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1170 scratch_addr += 2 * CACHELINE_BYTES;
1171 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1172
1173 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1174 PIPE_CONTROL_WRITE_FLUSH |
1175 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1176 PIPE_CONTROL_NOTIFY);
1177 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1178 intel_ring_emit(ring,
1179 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1180 intel_ring_emit(ring, 0);
1181 __intel_ring_advance(ring);
1182
1183 return 0;
1184 }
1185
1186 static u32
1187 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1188 {
1189 /* Workaround to force correct ordering between irq and seqno writes on
1190 * ivb (and maybe also on snb) by reading from a CS register (like
1191 * ACTHD) before reading the status page. */
1192 if (!lazy_coherency) {
1193 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1194 POSTING_READ(RING_ACTHD(ring->mmio_base));
1195 }
1196
1197 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1198 }
1199
1200 static u32
1201 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1202 {
1203 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1204 }
1205
1206 static void
1207 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1208 {
1209 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1210 }
1211
1212 static u32
1213 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1214 {
1215 return ring->scratch.cpu_page[0];
1216 }
1217
1218 static void
1219 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1220 {
1221 ring->scratch.cpu_page[0] = seqno;
1222 }
1223
1224 static bool
1225 gen5_ring_get_irq(struct intel_engine_cs *ring)
1226 {
1227 struct drm_device *dev = ring->dev;
1228 struct drm_i915_private *dev_priv = dev->dev_private;
1229 unsigned long flags;
1230
1231 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1232 return false;
1233
1234 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1235 if (ring->irq_refcount++ == 0)
1236 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1237 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1238
1239 return true;
1240 }
1241
1242 static void
1243 gen5_ring_put_irq(struct intel_engine_cs *ring)
1244 {
1245 struct drm_device *dev = ring->dev;
1246 struct drm_i915_private *dev_priv = dev->dev_private;
1247 unsigned long flags;
1248
1249 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1250 if (--ring->irq_refcount == 0)
1251 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1252 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1253 }
1254
1255 static bool
1256 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1257 {
1258 struct drm_device *dev = ring->dev;
1259 struct drm_i915_private *dev_priv = dev->dev_private;
1260 unsigned long flags;
1261
1262 if (!intel_irqs_enabled(dev_priv))
1263 return false;
1264
1265 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1266 if (ring->irq_refcount++ == 0) {
1267 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1268 I915_WRITE(IMR, dev_priv->irq_mask);
1269 POSTING_READ(IMR);
1270 }
1271 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1272
1273 return true;
1274 }
1275
1276 static void
1277 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1278 {
1279 struct drm_device *dev = ring->dev;
1280 struct drm_i915_private *dev_priv = dev->dev_private;
1281 unsigned long flags;
1282
1283 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1284 if (--ring->irq_refcount == 0) {
1285 dev_priv->irq_mask |= ring->irq_enable_mask;
1286 I915_WRITE(IMR, dev_priv->irq_mask);
1287 POSTING_READ(IMR);
1288 }
1289 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1290 }
1291
1292 static bool
1293 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1294 {
1295 struct drm_device *dev = ring->dev;
1296 struct drm_i915_private *dev_priv = dev->dev_private;
1297 unsigned long flags;
1298
1299 if (!intel_irqs_enabled(dev_priv))
1300 return false;
1301
1302 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1303 if (ring->irq_refcount++ == 0) {
1304 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1305 I915_WRITE16(IMR, dev_priv->irq_mask);
1306 POSTING_READ16(IMR);
1307 }
1308 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1309
1310 return true;
1311 }
1312
1313 static void
1314 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1315 {
1316 struct drm_device *dev = ring->dev;
1317 struct drm_i915_private *dev_priv = dev->dev_private;
1318 unsigned long flags;
1319
1320 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1321 if (--ring->irq_refcount == 0) {
1322 dev_priv->irq_mask |= ring->irq_enable_mask;
1323 I915_WRITE16(IMR, dev_priv->irq_mask);
1324 POSTING_READ16(IMR);
1325 }
1326 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1327 }
1328
1329 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1330 {
1331 struct drm_device *dev = ring->dev;
1332 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1333 u32 mmio = 0;
1334
1335 /* The ring status page addresses are no longer next to the rest of
1336 * the ring registers as of gen7.
1337 */
1338 if (IS_GEN7(dev)) {
1339 switch (ring->id) {
1340 case RCS:
1341 mmio = RENDER_HWS_PGA_GEN7;
1342 break;
1343 case BCS:
1344 mmio = BLT_HWS_PGA_GEN7;
1345 break;
1346 /*
1347 * VCS2 actually doesn't exist on Gen7. Only shut up
1348 * gcc switch check warning
1349 */
1350 case VCS2:
1351 case VCS:
1352 mmio = BSD_HWS_PGA_GEN7;
1353 break;
1354 case VECS:
1355 mmio = VEBOX_HWS_PGA_GEN7;
1356 break;
1357 }
1358 } else if (IS_GEN6(ring->dev)) {
1359 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1360 } else {
1361 /* XXX: gen8 returns to sanity */
1362 mmio = RING_HWS_PGA(ring->mmio_base);
1363 }
1364
1365 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1366 POSTING_READ(mmio);
1367
1368 /*
1369 * Flush the TLB for this page
1370 *
1371 * FIXME: These two bits have disappeared on gen8, so a question
1372 * arises: do we still need this and if so how should we go about
1373 * invalidating the TLB?
1374 */
1375 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1376 u32 reg = RING_INSTPM(ring->mmio_base);
1377
1378 /* ring should be idle before issuing a sync flush*/
1379 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1380
1381 I915_WRITE(reg,
1382 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1383 INSTPM_SYNC_FLUSH));
1384 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1385 1000))
1386 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1387 ring->name);
1388 }
1389 }
1390
1391 static int
1392 bsd_ring_flush(struct intel_engine_cs *ring,
1393 u32 invalidate_domains,
1394 u32 flush_domains)
1395 {
1396 int ret;
1397
1398 ret = intel_ring_begin(ring, 2);
1399 if (ret)
1400 return ret;
1401
1402 intel_ring_emit(ring, MI_FLUSH);
1403 intel_ring_emit(ring, MI_NOOP);
1404 intel_ring_advance(ring);
1405 return 0;
1406 }
1407
1408 static int
1409 i9xx_add_request(struct intel_engine_cs *ring)
1410 {
1411 int ret;
1412
1413 ret = intel_ring_begin(ring, 4);
1414 if (ret)
1415 return ret;
1416
1417 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1418 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1419 intel_ring_emit(ring,
1420 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1421 intel_ring_emit(ring, MI_USER_INTERRUPT);
1422 __intel_ring_advance(ring);
1423
1424 return 0;
1425 }
1426
1427 static bool
1428 gen6_ring_get_irq(struct intel_engine_cs *ring)
1429 {
1430 struct drm_device *dev = ring->dev;
1431 struct drm_i915_private *dev_priv = dev->dev_private;
1432 unsigned long flags;
1433
1434 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1435 return false;
1436
1437 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1438 if (ring->irq_refcount++ == 0) {
1439 if (HAS_L3_DPF(dev) && ring->id == RCS)
1440 I915_WRITE_IMR(ring,
1441 ~(ring->irq_enable_mask |
1442 GT_PARITY_ERROR(dev)));
1443 else
1444 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1445 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1446 }
1447 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1448
1449 return true;
1450 }
1451
1452 static void
1453 gen6_ring_put_irq(struct intel_engine_cs *ring)
1454 {
1455 struct drm_device *dev = ring->dev;
1456 struct drm_i915_private *dev_priv = dev->dev_private;
1457 unsigned long flags;
1458
1459 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1460 if (--ring->irq_refcount == 0) {
1461 if (HAS_L3_DPF(dev) && ring->id == RCS)
1462 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1463 else
1464 I915_WRITE_IMR(ring, ~0);
1465 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1466 }
1467 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1468 }
1469
1470 static bool
1471 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1472 {
1473 struct drm_device *dev = ring->dev;
1474 struct drm_i915_private *dev_priv = dev->dev_private;
1475 unsigned long flags;
1476
1477 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1478 return false;
1479
1480 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1481 if (ring->irq_refcount++ == 0) {
1482 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1483 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1484 }
1485 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1486
1487 return true;
1488 }
1489
1490 static void
1491 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1492 {
1493 struct drm_device *dev = ring->dev;
1494 struct drm_i915_private *dev_priv = dev->dev_private;
1495 unsigned long flags;
1496
1497 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1498 if (--ring->irq_refcount == 0) {
1499 I915_WRITE_IMR(ring, ~0);
1500 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1501 }
1502 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1503 }
1504
1505 static bool
1506 gen8_ring_get_irq(struct intel_engine_cs *ring)
1507 {
1508 struct drm_device *dev = ring->dev;
1509 struct drm_i915_private *dev_priv = dev->dev_private;
1510 unsigned long flags;
1511
1512 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1513 return false;
1514
1515 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1516 if (ring->irq_refcount++ == 0) {
1517 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1518 I915_WRITE_IMR(ring,
1519 ~(ring->irq_enable_mask |
1520 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1521 } else {
1522 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1523 }
1524 POSTING_READ(RING_IMR(ring->mmio_base));
1525 }
1526 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1527
1528 return true;
1529 }
1530
1531 static void
1532 gen8_ring_put_irq(struct intel_engine_cs *ring)
1533 {
1534 struct drm_device *dev = ring->dev;
1535 struct drm_i915_private *dev_priv = dev->dev_private;
1536 unsigned long flags;
1537
1538 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1539 if (--ring->irq_refcount == 0) {
1540 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1541 I915_WRITE_IMR(ring,
1542 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1543 } else {
1544 I915_WRITE_IMR(ring, ~0);
1545 }
1546 POSTING_READ(RING_IMR(ring->mmio_base));
1547 }
1548 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1549 }
1550
1551 static int
1552 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1553 u64 offset, u32 length,
1554 unsigned flags)
1555 {
1556 int ret;
1557
1558 ret = intel_ring_begin(ring, 2);
1559 if (ret)
1560 return ret;
1561
1562 intel_ring_emit(ring,
1563 MI_BATCH_BUFFER_START |
1564 MI_BATCH_GTT |
1565 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1566 intel_ring_emit(ring, offset);
1567 intel_ring_advance(ring);
1568
1569 return 0;
1570 }
1571
1572 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1573 #define I830_BATCH_LIMIT (256*1024)
1574 #define I830_TLB_ENTRIES (2)
1575 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1576 static int
1577 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1578 u64 offset, u32 len,
1579 unsigned flags)
1580 {
1581 u32 cs_offset = ring->scratch.gtt_offset;
1582 int ret;
1583
1584 ret = intel_ring_begin(ring, 6);
1585 if (ret)
1586 return ret;
1587
1588 /* Evict the invalid PTE TLBs */
1589 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1590 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1591 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1592 intel_ring_emit(ring, cs_offset);
1593 intel_ring_emit(ring, 0xdeadbeef);
1594 intel_ring_emit(ring, MI_NOOP);
1595 intel_ring_advance(ring);
1596
1597 if ((flags & I915_DISPATCH_PINNED) == 0) {
1598 if (len > I830_BATCH_LIMIT)
1599 return -ENOSPC;
1600
1601 ret = intel_ring_begin(ring, 6 + 2);
1602 if (ret)
1603 return ret;
1604
1605 /* Blit the batch (which has now all relocs applied) to the
1606 * stable batch scratch bo area (so that the CS never
1607 * stumbles over its tlb invalidation bug) ...
1608 */
1609 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1610 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1611 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1612 intel_ring_emit(ring, cs_offset);
1613 intel_ring_emit(ring, 4096);
1614 intel_ring_emit(ring, offset);
1615
1616 intel_ring_emit(ring, MI_FLUSH);
1617 intel_ring_emit(ring, MI_NOOP);
1618 intel_ring_advance(ring);
1619
1620 /* ... and execute it. */
1621 offset = cs_offset;
1622 }
1623
1624 ret = intel_ring_begin(ring, 4);
1625 if (ret)
1626 return ret;
1627
1628 intel_ring_emit(ring, MI_BATCH_BUFFER);
1629 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1630 intel_ring_emit(ring, offset + len - 8);
1631 intel_ring_emit(ring, MI_NOOP);
1632 intel_ring_advance(ring);
1633
1634 return 0;
1635 }
1636
1637 static int
1638 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1639 u64 offset, u32 len,
1640 unsigned flags)
1641 {
1642 int ret;
1643
1644 ret = intel_ring_begin(ring, 2);
1645 if (ret)
1646 return ret;
1647
1648 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1649 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1650 intel_ring_advance(ring);
1651
1652 return 0;
1653 }
1654
1655 static void cleanup_status_page(struct intel_engine_cs *ring)
1656 {
1657 struct drm_i915_gem_object *obj;
1658
1659 obj = ring->status_page.obj;
1660 if (obj == NULL)
1661 return;
1662
1663 kunmap(sg_page(obj->pages->sgl));
1664 i915_gem_object_ggtt_unpin(obj);
1665 drm_gem_object_unreference(&obj->base);
1666 ring->status_page.obj = NULL;
1667 }
1668
1669 static int init_status_page(struct intel_engine_cs *ring)
1670 {
1671 struct drm_i915_gem_object *obj;
1672
1673 if ((obj = ring->status_page.obj) == NULL) {
1674 unsigned flags;
1675 int ret;
1676
1677 obj = i915_gem_alloc_object(ring->dev, 4096);
1678 if (obj == NULL) {
1679 DRM_ERROR("Failed to allocate status page\n");
1680 return -ENOMEM;
1681 }
1682
1683 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1684 if (ret)
1685 goto err_unref;
1686
1687 flags = 0;
1688 if (!HAS_LLC(ring->dev))
1689 /* On g33, we cannot place HWS above 256MiB, so
1690 * restrict its pinning to the low mappable arena.
1691 * Though this restriction is not documented for
1692 * gen4, gen5, or byt, they also behave similarly
1693 * and hang if the HWS is placed at the top of the
1694 * GTT. To generalise, it appears that all !llc
1695 * platforms have issues with us placing the HWS
1696 * above the mappable region (even though we never
1697 * actualy map it).
1698 */
1699 flags |= PIN_MAPPABLE;
1700 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1701 if (ret) {
1702 err_unref:
1703 drm_gem_object_unreference(&obj->base);
1704 return ret;
1705 }
1706
1707 ring->status_page.obj = obj;
1708 }
1709
1710 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1711 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1712 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1713
1714 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1715 ring->name, ring->status_page.gfx_addr);
1716
1717 return 0;
1718 }
1719
1720 static int init_phys_status_page(struct intel_engine_cs *ring)
1721 {
1722 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1723
1724 if (!dev_priv->status_page_dmah) {
1725 dev_priv->status_page_dmah =
1726 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1727 if (!dev_priv->status_page_dmah)
1728 return -ENOMEM;
1729 }
1730
1731 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1732 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1733
1734 return 0;
1735 }
1736
1737 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1738 {
1739 iounmap(ringbuf->virtual_start);
1740 ringbuf->virtual_start = NULL;
1741 i915_gem_object_ggtt_unpin(ringbuf->obj);
1742 }
1743
1744 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1745 struct intel_ringbuffer *ringbuf)
1746 {
1747 struct drm_i915_private *dev_priv = to_i915(dev);
1748 struct drm_i915_gem_object *obj = ringbuf->obj;
1749 int ret;
1750
1751 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1752 if (ret)
1753 return ret;
1754
1755 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1756 if (ret) {
1757 i915_gem_object_ggtt_unpin(obj);
1758 return ret;
1759 }
1760
1761 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1762 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1763 if (ringbuf->virtual_start == NULL) {
1764 i915_gem_object_ggtt_unpin(obj);
1765 return -EINVAL;
1766 }
1767
1768 return 0;
1769 }
1770
1771 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1772 {
1773 drm_gem_object_unreference(&ringbuf->obj->base);
1774 ringbuf->obj = NULL;
1775 }
1776
1777 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1778 struct intel_ringbuffer *ringbuf)
1779 {
1780 struct drm_i915_gem_object *obj;
1781
1782 obj = NULL;
1783 if (!HAS_LLC(dev))
1784 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1785 if (obj == NULL)
1786 obj = i915_gem_alloc_object(dev, ringbuf->size);
1787 if (obj == NULL)
1788 return -ENOMEM;
1789
1790 /* mark ring buffers as read-only from GPU side by default */
1791 obj->gt_ro = 1;
1792
1793 ringbuf->obj = obj;
1794
1795 return 0;
1796 }
1797
1798 static int intel_init_ring_buffer(struct drm_device *dev,
1799 struct intel_engine_cs *ring)
1800 {
1801 struct intel_ringbuffer *ringbuf;
1802 int ret;
1803
1804 WARN_ON(ring->buffer);
1805
1806 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1807 if (!ringbuf)
1808 return -ENOMEM;
1809 ring->buffer = ringbuf;
1810
1811 ring->dev = dev;
1812 INIT_LIST_HEAD(&ring->active_list);
1813 INIT_LIST_HEAD(&ring->request_list);
1814 INIT_LIST_HEAD(&ring->execlist_queue);
1815 ringbuf->size = 32 * PAGE_SIZE;
1816 ringbuf->ring = ring;
1817 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1818
1819 init_waitqueue_head(&ring->irq_queue);
1820
1821 if (I915_NEED_GFX_HWS(dev)) {
1822 ret = init_status_page(ring);
1823 if (ret)
1824 goto error;
1825 } else {
1826 BUG_ON(ring->id != RCS);
1827 ret = init_phys_status_page(ring);
1828 if (ret)
1829 goto error;
1830 }
1831
1832 WARN_ON(ringbuf->obj);
1833
1834 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1835 if (ret) {
1836 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
1837 ring->name, ret);
1838 goto error;
1839 }
1840
1841 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1842 if (ret) {
1843 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
1844 ring->name, ret);
1845 intel_destroy_ringbuffer_obj(ringbuf);
1846 goto error;
1847 }
1848
1849 /* Workaround an erratum on the i830 which causes a hang if
1850 * the TAIL pointer points to within the last 2 cachelines
1851 * of the buffer.
1852 */
1853 ringbuf->effective_size = ringbuf->size;
1854 if (IS_I830(dev) || IS_845G(dev))
1855 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1856
1857 ret = i915_cmd_parser_init_ring(ring);
1858 if (ret)
1859 goto error;
1860
1861 return 0;
1862
1863 error:
1864 kfree(ringbuf);
1865 ring->buffer = NULL;
1866 return ret;
1867 }
1868
1869 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1870 {
1871 struct drm_i915_private *dev_priv;
1872 struct intel_ringbuffer *ringbuf;
1873
1874 if (!intel_ring_initialized(ring))
1875 return;
1876
1877 dev_priv = to_i915(ring->dev);
1878 ringbuf = ring->buffer;
1879
1880 intel_stop_ring_buffer(ring);
1881 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1882
1883 intel_unpin_ringbuffer_obj(ringbuf);
1884 intel_destroy_ringbuffer_obj(ringbuf);
1885 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1886
1887 if (ring->cleanup)
1888 ring->cleanup(ring);
1889
1890 cleanup_status_page(ring);
1891
1892 i915_cmd_parser_fini_ring(ring);
1893
1894 kfree(ringbuf);
1895 ring->buffer = NULL;
1896 }
1897
1898 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1899 {
1900 struct intel_ringbuffer *ringbuf = ring->buffer;
1901 struct drm_i915_gem_request *request;
1902 int ret;
1903
1904 if (intel_ring_space(ringbuf) >= n)
1905 return 0;
1906
1907 list_for_each_entry(request, &ring->request_list, list) {
1908 if (__intel_ring_space(request->tail, ringbuf->tail,
1909 ringbuf->size) >= n) {
1910 break;
1911 }
1912 }
1913
1914 if (&request->list == &ring->request_list)
1915 return -ENOSPC;
1916
1917 ret = i915_wait_request(request);
1918 if (ret)
1919 return ret;
1920
1921 i915_gem_retire_requests_ring(ring);
1922
1923 return 0;
1924 }
1925
1926 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1927 {
1928 struct drm_device *dev = ring->dev;
1929 struct drm_i915_private *dev_priv = dev->dev_private;
1930 struct intel_ringbuffer *ringbuf = ring->buffer;
1931 unsigned long end;
1932 int ret;
1933
1934 ret = intel_ring_wait_request(ring, n);
1935 if (ret != -ENOSPC)
1936 return ret;
1937
1938 /* force the tail write in case we have been skipping them */
1939 __intel_ring_advance(ring);
1940
1941 /* With GEM the hangcheck timer should kick us out of the loop,
1942 * leaving it early runs the risk of corrupting GEM state (due
1943 * to running on almost untested codepaths). But on resume
1944 * timers don't work yet, so prevent a complete hang in that
1945 * case by choosing an insanely large timeout. */
1946 end = jiffies + 60 * HZ;
1947
1948 ret = 0;
1949 trace_i915_ring_wait_begin(ring);
1950 do {
1951 if (intel_ring_space(ringbuf) >= n)
1952 break;
1953 ringbuf->head = I915_READ_HEAD(ring);
1954 if (intel_ring_space(ringbuf) >= n)
1955 break;
1956
1957 msleep(1);
1958
1959 if (dev_priv->mm.interruptible && signal_pending(current)) {
1960 ret = -ERESTARTSYS;
1961 break;
1962 }
1963
1964 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1965 dev_priv->mm.interruptible);
1966 if (ret)
1967 break;
1968
1969 if (time_after(jiffies, end)) {
1970 ret = -EBUSY;
1971 break;
1972 }
1973 } while (1);
1974 trace_i915_ring_wait_end(ring);
1975 return ret;
1976 }
1977
1978 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1979 {
1980 uint32_t __iomem *virt;
1981 struct intel_ringbuffer *ringbuf = ring->buffer;
1982 int rem = ringbuf->size - ringbuf->tail;
1983
1984 if (ringbuf->space < rem) {
1985 int ret = ring_wait_for_space(ring, rem);
1986 if (ret)
1987 return ret;
1988 }
1989
1990 virt = ringbuf->virtual_start + ringbuf->tail;
1991 rem /= 4;
1992 while (rem--)
1993 iowrite32(MI_NOOP, virt++);
1994
1995 ringbuf->tail = 0;
1996 intel_ring_update_space(ringbuf);
1997
1998 return 0;
1999 }
2000
2001 int intel_ring_idle(struct intel_engine_cs *ring)
2002 {
2003 struct drm_i915_gem_request *req;
2004 int ret;
2005
2006 /* We need to add any requests required to flush the objects and ring */
2007 if (ring->outstanding_lazy_request) {
2008 ret = i915_add_request(ring);
2009 if (ret)
2010 return ret;
2011 }
2012
2013 /* Wait upon the last request to be completed */
2014 if (list_empty(&ring->request_list))
2015 return 0;
2016
2017 req = list_entry(ring->request_list.prev,
2018 struct drm_i915_gem_request,
2019 list);
2020
2021 return i915_wait_request(req);
2022 }
2023
2024 static int
2025 intel_ring_alloc_request(struct intel_engine_cs *ring)
2026 {
2027 int ret;
2028 struct drm_i915_gem_request *request;
2029
2030 if (ring->outstanding_lazy_request)
2031 return 0;
2032
2033 request = kmalloc(sizeof(*request), GFP_KERNEL);
2034 if (request == NULL)
2035 return -ENOMEM;
2036
2037 kref_init(&request->ref);
2038 request->ring = ring;
2039
2040 ret = i915_gem_get_seqno(ring->dev, &request->seqno);
2041 if (ret) {
2042 kfree(request);
2043 return ret;
2044 }
2045
2046 ring->outstanding_lazy_request = request;
2047 return 0;
2048 }
2049
2050 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2051 int bytes)
2052 {
2053 struct intel_ringbuffer *ringbuf = ring->buffer;
2054 int ret;
2055
2056 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2057 ret = intel_wrap_ring_buffer(ring);
2058 if (unlikely(ret))
2059 return ret;
2060 }
2061
2062 if (unlikely(ringbuf->space < bytes)) {
2063 ret = ring_wait_for_space(ring, bytes);
2064 if (unlikely(ret))
2065 return ret;
2066 }
2067
2068 return 0;
2069 }
2070
2071 int intel_ring_begin(struct intel_engine_cs *ring,
2072 int num_dwords)
2073 {
2074 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2075 int ret;
2076
2077 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2078 dev_priv->mm.interruptible);
2079 if (ret)
2080 return ret;
2081
2082 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2083 if (ret)
2084 return ret;
2085
2086 /* Preallocate the olr before touching the ring */
2087 ret = intel_ring_alloc_request(ring);
2088 if (ret)
2089 return ret;
2090
2091 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2092 return 0;
2093 }
2094
2095 /* Align the ring tail to a cacheline boundary */
2096 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2097 {
2098 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2099 int ret;
2100
2101 if (num_dwords == 0)
2102 return 0;
2103
2104 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2105 ret = intel_ring_begin(ring, num_dwords);
2106 if (ret)
2107 return ret;
2108
2109 while (num_dwords--)
2110 intel_ring_emit(ring, MI_NOOP);
2111
2112 intel_ring_advance(ring);
2113
2114 return 0;
2115 }
2116
2117 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2118 {
2119 struct drm_device *dev = ring->dev;
2120 struct drm_i915_private *dev_priv = dev->dev_private;
2121
2122 BUG_ON(ring->outstanding_lazy_request);
2123
2124 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2125 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2126 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2127 if (HAS_VEBOX(dev))
2128 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2129 }
2130
2131 ring->set_seqno(ring, seqno);
2132 ring->hangcheck.seqno = seqno;
2133 }
2134
2135 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2136 u32 value)
2137 {
2138 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2139
2140 /* Every tail move must follow the sequence below */
2141
2142 /* Disable notification that the ring is IDLE. The GT
2143 * will then assume that it is busy and bring it out of rc6.
2144 */
2145 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2146 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2147
2148 /* Clear the context id. Here be magic! */
2149 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2150
2151 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2152 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2153 GEN6_BSD_SLEEP_INDICATOR) == 0,
2154 50))
2155 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2156
2157 /* Now that the ring is fully powered up, update the tail */
2158 I915_WRITE_TAIL(ring, value);
2159 POSTING_READ(RING_TAIL(ring->mmio_base));
2160
2161 /* Let the ring send IDLE messages to the GT again,
2162 * and so let it sleep to conserve power when idle.
2163 */
2164 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2165 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2166 }
2167
2168 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2169 u32 invalidate, u32 flush)
2170 {
2171 uint32_t cmd;
2172 int ret;
2173
2174 ret = intel_ring_begin(ring, 4);
2175 if (ret)
2176 return ret;
2177
2178 cmd = MI_FLUSH_DW;
2179 if (INTEL_INFO(ring->dev)->gen >= 8)
2180 cmd += 1;
2181 /*
2182 * Bspec vol 1c.5 - video engine command streamer:
2183 * "If ENABLED, all TLBs will be invalidated once the flush
2184 * operation is complete. This bit is only valid when the
2185 * Post-Sync Operation field is a value of 1h or 3h."
2186 */
2187 if (invalidate & I915_GEM_GPU_DOMAINS)
2188 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
2189 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2190 intel_ring_emit(ring, cmd);
2191 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2192 if (INTEL_INFO(ring->dev)->gen >= 8) {
2193 intel_ring_emit(ring, 0); /* upper addr */
2194 intel_ring_emit(ring, 0); /* value */
2195 } else {
2196 intel_ring_emit(ring, 0);
2197 intel_ring_emit(ring, MI_NOOP);
2198 }
2199 intel_ring_advance(ring);
2200 return 0;
2201 }
2202
2203 static int
2204 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2205 u64 offset, u32 len,
2206 unsigned flags)
2207 {
2208 bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
2209 int ret;
2210
2211 ret = intel_ring_begin(ring, 4);
2212 if (ret)
2213 return ret;
2214
2215 /* FIXME(BDW): Address space and security selectors. */
2216 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2217 intel_ring_emit(ring, lower_32_bits(offset));
2218 intel_ring_emit(ring, upper_32_bits(offset));
2219 intel_ring_emit(ring, MI_NOOP);
2220 intel_ring_advance(ring);
2221
2222 return 0;
2223 }
2224
2225 static int
2226 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2227 u64 offset, u32 len,
2228 unsigned flags)
2229 {
2230 int ret;
2231
2232 ret = intel_ring_begin(ring, 2);
2233 if (ret)
2234 return ret;
2235
2236 intel_ring_emit(ring,
2237 MI_BATCH_BUFFER_START |
2238 (flags & I915_DISPATCH_SECURE ?
2239 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2240 /* bit0-7 is the length on GEN6+ */
2241 intel_ring_emit(ring, offset);
2242 intel_ring_advance(ring);
2243
2244 return 0;
2245 }
2246
2247 static int
2248 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2249 u64 offset, u32 len,
2250 unsigned flags)
2251 {
2252 int ret;
2253
2254 ret = intel_ring_begin(ring, 2);
2255 if (ret)
2256 return ret;
2257
2258 intel_ring_emit(ring,
2259 MI_BATCH_BUFFER_START |
2260 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2261 /* bit0-7 is the length on GEN6+ */
2262 intel_ring_emit(ring, offset);
2263 intel_ring_advance(ring);
2264
2265 return 0;
2266 }
2267
2268 /* Blitter support (SandyBridge+) */
2269
2270 static int gen6_ring_flush(struct intel_engine_cs *ring,
2271 u32 invalidate, u32 flush)
2272 {
2273 struct drm_device *dev = ring->dev;
2274 struct drm_i915_private *dev_priv = dev->dev_private;
2275 uint32_t cmd;
2276 int ret;
2277
2278 ret = intel_ring_begin(ring, 4);
2279 if (ret)
2280 return ret;
2281
2282 cmd = MI_FLUSH_DW;
2283 if (INTEL_INFO(ring->dev)->gen >= 8)
2284 cmd += 1;
2285 /*
2286 * Bspec vol 1c.3 - blitter engine command streamer:
2287 * "If ENABLED, all TLBs will be invalidated once the flush
2288 * operation is complete. This bit is only valid when the
2289 * Post-Sync Operation field is a value of 1h or 3h."
2290 */
2291 if (invalidate & I915_GEM_DOMAIN_RENDER)
2292 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2293 MI_FLUSH_DW_OP_STOREDW;
2294 intel_ring_emit(ring, cmd);
2295 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2296 if (INTEL_INFO(ring->dev)->gen >= 8) {
2297 intel_ring_emit(ring, 0); /* upper addr */
2298 intel_ring_emit(ring, 0); /* value */
2299 } else {
2300 intel_ring_emit(ring, 0);
2301 intel_ring_emit(ring, MI_NOOP);
2302 }
2303 intel_ring_advance(ring);
2304
2305 if (!invalidate && flush) {
2306 if (IS_GEN7(dev))
2307 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2308 else if (IS_BROADWELL(dev))
2309 dev_priv->fbc.need_sw_cache_clean = true;
2310 }
2311
2312 return 0;
2313 }
2314
2315 int intel_init_render_ring_buffer(struct drm_device *dev)
2316 {
2317 struct drm_i915_private *dev_priv = dev->dev_private;
2318 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2319 struct drm_i915_gem_object *obj;
2320 int ret;
2321
2322 ring->name = "render ring";
2323 ring->id = RCS;
2324 ring->mmio_base = RENDER_RING_BASE;
2325
2326 if (INTEL_INFO(dev)->gen >= 8) {
2327 if (i915_semaphore_is_enabled(dev)) {
2328 obj = i915_gem_alloc_object(dev, 4096);
2329 if (obj == NULL) {
2330 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2331 i915.semaphores = 0;
2332 } else {
2333 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2334 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2335 if (ret != 0) {
2336 drm_gem_object_unreference(&obj->base);
2337 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2338 i915.semaphores = 0;
2339 } else
2340 dev_priv->semaphore_obj = obj;
2341 }
2342 }
2343
2344 ring->init_context = intel_ring_workarounds_emit;
2345 ring->add_request = gen6_add_request;
2346 ring->flush = gen8_render_ring_flush;
2347 ring->irq_get = gen8_ring_get_irq;
2348 ring->irq_put = gen8_ring_put_irq;
2349 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2350 ring->get_seqno = gen6_ring_get_seqno;
2351 ring->set_seqno = ring_set_seqno;
2352 if (i915_semaphore_is_enabled(dev)) {
2353 WARN_ON(!dev_priv->semaphore_obj);
2354 ring->semaphore.sync_to = gen8_ring_sync;
2355 ring->semaphore.signal = gen8_rcs_signal;
2356 GEN8_RING_SEMAPHORE_INIT;
2357 }
2358 } else if (INTEL_INFO(dev)->gen >= 6) {
2359 ring->add_request = gen6_add_request;
2360 ring->flush = gen7_render_ring_flush;
2361 if (INTEL_INFO(dev)->gen == 6)
2362 ring->flush = gen6_render_ring_flush;
2363 ring->irq_get = gen6_ring_get_irq;
2364 ring->irq_put = gen6_ring_put_irq;
2365 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2366 ring->get_seqno = gen6_ring_get_seqno;
2367 ring->set_seqno = ring_set_seqno;
2368 if (i915_semaphore_is_enabled(dev)) {
2369 ring->semaphore.sync_to = gen6_ring_sync;
2370 ring->semaphore.signal = gen6_signal;
2371 /*
2372 * The current semaphore is only applied on pre-gen8
2373 * platform. And there is no VCS2 ring on the pre-gen8
2374 * platform. So the semaphore between RCS and VCS2 is
2375 * initialized as INVALID. Gen8 will initialize the
2376 * sema between VCS2 and RCS later.
2377 */
2378 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2379 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2380 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2381 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2382 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2383 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2384 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2385 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2386 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2387 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2388 }
2389 } else if (IS_GEN5(dev)) {
2390 ring->add_request = pc_render_add_request;
2391 ring->flush = gen4_render_ring_flush;
2392 ring->get_seqno = pc_render_get_seqno;
2393 ring->set_seqno = pc_render_set_seqno;
2394 ring->irq_get = gen5_ring_get_irq;
2395 ring->irq_put = gen5_ring_put_irq;
2396 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2397 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2398 } else {
2399 ring->add_request = i9xx_add_request;
2400 if (INTEL_INFO(dev)->gen < 4)
2401 ring->flush = gen2_render_ring_flush;
2402 else
2403 ring->flush = gen4_render_ring_flush;
2404 ring->get_seqno = ring_get_seqno;
2405 ring->set_seqno = ring_set_seqno;
2406 if (IS_GEN2(dev)) {
2407 ring->irq_get = i8xx_ring_get_irq;
2408 ring->irq_put = i8xx_ring_put_irq;
2409 } else {
2410 ring->irq_get = i9xx_ring_get_irq;
2411 ring->irq_put = i9xx_ring_put_irq;
2412 }
2413 ring->irq_enable_mask = I915_USER_INTERRUPT;
2414 }
2415 ring->write_tail = ring_write_tail;
2416
2417 if (IS_HASWELL(dev))
2418 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2419 else if (IS_GEN8(dev))
2420 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2421 else if (INTEL_INFO(dev)->gen >= 6)
2422 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2423 else if (INTEL_INFO(dev)->gen >= 4)
2424 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2425 else if (IS_I830(dev) || IS_845G(dev))
2426 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2427 else
2428 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2429 ring->init_hw = init_render_ring;
2430 ring->cleanup = render_ring_cleanup;
2431
2432 /* Workaround batchbuffer to combat CS tlb bug. */
2433 if (HAS_BROKEN_CS_TLB(dev)) {
2434 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2435 if (obj == NULL) {
2436 DRM_ERROR("Failed to allocate batch bo\n");
2437 return -ENOMEM;
2438 }
2439
2440 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2441 if (ret != 0) {
2442 drm_gem_object_unreference(&obj->base);
2443 DRM_ERROR("Failed to ping batch bo\n");
2444 return ret;
2445 }
2446
2447 ring->scratch.obj = obj;
2448 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2449 }
2450
2451 ret = intel_init_ring_buffer(dev, ring);
2452 if (ret)
2453 return ret;
2454
2455 if (INTEL_INFO(dev)->gen >= 5) {
2456 ret = intel_init_pipe_control(ring);
2457 if (ret)
2458 return ret;
2459 }
2460
2461 return 0;
2462 }
2463
2464 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2465 {
2466 struct drm_i915_private *dev_priv = dev->dev_private;
2467 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2468
2469 ring->name = "bsd ring";
2470 ring->id = VCS;
2471
2472 ring->write_tail = ring_write_tail;
2473 if (INTEL_INFO(dev)->gen >= 6) {
2474 ring->mmio_base = GEN6_BSD_RING_BASE;
2475 /* gen6 bsd needs a special wa for tail updates */
2476 if (IS_GEN6(dev))
2477 ring->write_tail = gen6_bsd_ring_write_tail;
2478 ring->flush = gen6_bsd_ring_flush;
2479 ring->add_request = gen6_add_request;
2480 ring->get_seqno = gen6_ring_get_seqno;
2481 ring->set_seqno = ring_set_seqno;
2482 if (INTEL_INFO(dev)->gen >= 8) {
2483 ring->irq_enable_mask =
2484 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2485 ring->irq_get = gen8_ring_get_irq;
2486 ring->irq_put = gen8_ring_put_irq;
2487 ring->dispatch_execbuffer =
2488 gen8_ring_dispatch_execbuffer;
2489 if (i915_semaphore_is_enabled(dev)) {
2490 ring->semaphore.sync_to = gen8_ring_sync;
2491 ring->semaphore.signal = gen8_xcs_signal;
2492 GEN8_RING_SEMAPHORE_INIT;
2493 }
2494 } else {
2495 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2496 ring->irq_get = gen6_ring_get_irq;
2497 ring->irq_put = gen6_ring_put_irq;
2498 ring->dispatch_execbuffer =
2499 gen6_ring_dispatch_execbuffer;
2500 if (i915_semaphore_is_enabled(dev)) {
2501 ring->semaphore.sync_to = gen6_ring_sync;
2502 ring->semaphore.signal = gen6_signal;
2503 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2504 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2505 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2506 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2507 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2508 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2509 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2510 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2511 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2512 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2513 }
2514 }
2515 } else {
2516 ring->mmio_base = BSD_RING_BASE;
2517 ring->flush = bsd_ring_flush;
2518 ring->add_request = i9xx_add_request;
2519 ring->get_seqno = ring_get_seqno;
2520 ring->set_seqno = ring_set_seqno;
2521 if (IS_GEN5(dev)) {
2522 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2523 ring->irq_get = gen5_ring_get_irq;
2524 ring->irq_put = gen5_ring_put_irq;
2525 } else {
2526 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2527 ring->irq_get = i9xx_ring_get_irq;
2528 ring->irq_put = i9xx_ring_put_irq;
2529 }
2530 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2531 }
2532 ring->init_hw = init_ring_common;
2533
2534 return intel_init_ring_buffer(dev, ring);
2535 }
2536
2537 /**
2538 * Initialize the second BSD ring for Broadwell GT3.
2539 * It is noted that this only exists on Broadwell GT3.
2540 */
2541 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2542 {
2543 struct drm_i915_private *dev_priv = dev->dev_private;
2544 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2545
2546 if ((INTEL_INFO(dev)->gen != 8)) {
2547 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2548 return -EINVAL;
2549 }
2550
2551 ring->name = "bsd2 ring";
2552 ring->id = VCS2;
2553
2554 ring->write_tail = ring_write_tail;
2555 ring->mmio_base = GEN8_BSD2_RING_BASE;
2556 ring->flush = gen6_bsd_ring_flush;
2557 ring->add_request = gen6_add_request;
2558 ring->get_seqno = gen6_ring_get_seqno;
2559 ring->set_seqno = ring_set_seqno;
2560 ring->irq_enable_mask =
2561 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2562 ring->irq_get = gen8_ring_get_irq;
2563 ring->irq_put = gen8_ring_put_irq;
2564 ring->dispatch_execbuffer =
2565 gen8_ring_dispatch_execbuffer;
2566 if (i915_semaphore_is_enabled(dev)) {
2567 ring->semaphore.sync_to = gen8_ring_sync;
2568 ring->semaphore.signal = gen8_xcs_signal;
2569 GEN8_RING_SEMAPHORE_INIT;
2570 }
2571 ring->init_hw = init_ring_common;
2572
2573 return intel_init_ring_buffer(dev, ring);
2574 }
2575
2576 int intel_init_blt_ring_buffer(struct drm_device *dev)
2577 {
2578 struct drm_i915_private *dev_priv = dev->dev_private;
2579 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2580
2581 ring->name = "blitter ring";
2582 ring->id = BCS;
2583
2584 ring->mmio_base = BLT_RING_BASE;
2585 ring->write_tail = ring_write_tail;
2586 ring->flush = gen6_ring_flush;
2587 ring->add_request = gen6_add_request;
2588 ring->get_seqno = gen6_ring_get_seqno;
2589 ring->set_seqno = ring_set_seqno;
2590 if (INTEL_INFO(dev)->gen >= 8) {
2591 ring->irq_enable_mask =
2592 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2593 ring->irq_get = gen8_ring_get_irq;
2594 ring->irq_put = gen8_ring_put_irq;
2595 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2596 if (i915_semaphore_is_enabled(dev)) {
2597 ring->semaphore.sync_to = gen8_ring_sync;
2598 ring->semaphore.signal = gen8_xcs_signal;
2599 GEN8_RING_SEMAPHORE_INIT;
2600 }
2601 } else {
2602 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2603 ring->irq_get = gen6_ring_get_irq;
2604 ring->irq_put = gen6_ring_put_irq;
2605 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2606 if (i915_semaphore_is_enabled(dev)) {
2607 ring->semaphore.signal = gen6_signal;
2608 ring->semaphore.sync_to = gen6_ring_sync;
2609 /*
2610 * The current semaphore is only applied on pre-gen8
2611 * platform. And there is no VCS2 ring on the pre-gen8
2612 * platform. So the semaphore between BCS and VCS2 is
2613 * initialized as INVALID. Gen8 will initialize the
2614 * sema between BCS and VCS2 later.
2615 */
2616 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2617 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2618 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2619 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2620 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2621 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2622 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2623 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2624 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2625 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2626 }
2627 }
2628 ring->init_hw = init_ring_common;
2629
2630 return intel_init_ring_buffer(dev, ring);
2631 }
2632
2633 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2634 {
2635 struct drm_i915_private *dev_priv = dev->dev_private;
2636 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2637
2638 ring->name = "video enhancement ring";
2639 ring->id = VECS;
2640
2641 ring->mmio_base = VEBOX_RING_BASE;
2642 ring->write_tail = ring_write_tail;
2643 ring->flush = gen6_ring_flush;
2644 ring->add_request = gen6_add_request;
2645 ring->get_seqno = gen6_ring_get_seqno;
2646 ring->set_seqno = ring_set_seqno;
2647
2648 if (INTEL_INFO(dev)->gen >= 8) {
2649 ring->irq_enable_mask =
2650 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2651 ring->irq_get = gen8_ring_get_irq;
2652 ring->irq_put = gen8_ring_put_irq;
2653 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2654 if (i915_semaphore_is_enabled(dev)) {
2655 ring->semaphore.sync_to = gen8_ring_sync;
2656 ring->semaphore.signal = gen8_xcs_signal;
2657 GEN8_RING_SEMAPHORE_INIT;
2658 }
2659 } else {
2660 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2661 ring->irq_get = hsw_vebox_get_irq;
2662 ring->irq_put = hsw_vebox_put_irq;
2663 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2664 if (i915_semaphore_is_enabled(dev)) {
2665 ring->semaphore.sync_to = gen6_ring_sync;
2666 ring->semaphore.signal = gen6_signal;
2667 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2668 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2669 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2670 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2671 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2672 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2673 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2674 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2675 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2676 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2677 }
2678 }
2679 ring->init_hw = init_ring_common;
2680
2681 return intel_init_ring_buffer(dev, ring);
2682 }
2683
2684 int
2685 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2686 {
2687 int ret;
2688
2689 if (!ring->gpu_caches_dirty)
2690 return 0;
2691
2692 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2693 if (ret)
2694 return ret;
2695
2696 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2697
2698 ring->gpu_caches_dirty = false;
2699 return 0;
2700 }
2701
2702 int
2703 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2704 {
2705 uint32_t flush_domains;
2706 int ret;
2707
2708 flush_domains = 0;
2709 if (ring->gpu_caches_dirty)
2710 flush_domains = I915_GEM_GPU_DOMAINS;
2711
2712 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2713 if (ret)
2714 return ret;
2715
2716 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2717
2718 ring->gpu_caches_dirty = false;
2719 return 0;
2720 }
2721
2722 void
2723 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2724 {
2725 int ret;
2726
2727 if (!intel_ring_initialized(ring))
2728 return;
2729
2730 ret = intel_ring_idle(ring);
2731 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2732 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2733 ring->name, ret);
2734
2735 stop_ring(ring);
2736 }
This page took 0.115767 seconds and 5 git commands to generate.