drm/i915: Remove 'outstanding_lazy_seqno'
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 struct drm_device *dev = ring->dev;
40
41 if (!dev)
42 return false;
43
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48 return ringbuf->obj;
49 } else
50 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 int space = head - (tail + I915_RING_FREE_SPACE);
56 if (space < 0)
57 space += size;
58 return space;
59 }
60
61 int intel_ring_space(struct intel_ringbuffer *ringbuf)
62 {
63 return __intel_ring_space(ringbuf->head & HEAD_ADDR,
64 ringbuf->tail, ringbuf->size);
65 }
66
67 bool intel_ring_stopped(struct intel_engine_cs *ring)
68 {
69 struct drm_i915_private *dev_priv = ring->dev->dev_private;
70 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
71 }
72
73 void __intel_ring_advance(struct intel_engine_cs *ring)
74 {
75 struct intel_ringbuffer *ringbuf = ring->buffer;
76 ringbuf->tail &= ringbuf->size - 1;
77 if (intel_ring_stopped(ring))
78 return;
79 ring->write_tail(ring, ringbuf->tail);
80 }
81
82 static int
83 gen2_render_ring_flush(struct intel_engine_cs *ring,
84 u32 invalidate_domains,
85 u32 flush_domains)
86 {
87 u32 cmd;
88 int ret;
89
90 cmd = MI_FLUSH;
91 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
92 cmd |= MI_NO_WRITE_FLUSH;
93
94 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
95 cmd |= MI_READ_FLUSH;
96
97 ret = intel_ring_begin(ring, 2);
98 if (ret)
99 return ret;
100
101 intel_ring_emit(ring, cmd);
102 intel_ring_emit(ring, MI_NOOP);
103 intel_ring_advance(ring);
104
105 return 0;
106 }
107
108 static int
109 gen4_render_ring_flush(struct intel_engine_cs *ring,
110 u32 invalidate_domains,
111 u32 flush_domains)
112 {
113 struct drm_device *dev = ring->dev;
114 u32 cmd;
115 int ret;
116
117 /*
118 * read/write caches:
119 *
120 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
121 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
122 * also flushed at 2d versus 3d pipeline switches.
123 *
124 * read-only caches:
125 *
126 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
127 * MI_READ_FLUSH is set, and is always flushed on 965.
128 *
129 * I915_GEM_DOMAIN_COMMAND may not exist?
130 *
131 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
132 * invalidated when MI_EXE_FLUSH is set.
133 *
134 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
135 * invalidated with every MI_FLUSH.
136 *
137 * TLBs:
138 *
139 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
140 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
141 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
142 * are flushed at any MI_FLUSH.
143 */
144
145 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
146 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
147 cmd &= ~MI_NO_WRITE_FLUSH;
148 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
149 cmd |= MI_EXE_FLUSH;
150
151 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
152 (IS_G4X(dev) || IS_GEN5(dev)))
153 cmd |= MI_INVALIDATE_ISP;
154
155 ret = intel_ring_begin(ring, 2);
156 if (ret)
157 return ret;
158
159 intel_ring_emit(ring, cmd);
160 intel_ring_emit(ring, MI_NOOP);
161 intel_ring_advance(ring);
162
163 return 0;
164 }
165
166 /**
167 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
168 * implementing two workarounds on gen6. From section 1.4.7.1
169 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
170 *
171 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
172 * produced by non-pipelined state commands), software needs to first
173 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
174 * 0.
175 *
176 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
177 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
178 *
179 * And the workaround for these two requires this workaround first:
180 *
181 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
182 * BEFORE the pipe-control with a post-sync op and no write-cache
183 * flushes.
184 *
185 * And this last workaround is tricky because of the requirements on
186 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
187 * volume 2 part 1:
188 *
189 * "1 of the following must also be set:
190 * - Render Target Cache Flush Enable ([12] of DW1)
191 * - Depth Cache Flush Enable ([0] of DW1)
192 * - Stall at Pixel Scoreboard ([1] of DW1)
193 * - Depth Stall ([13] of DW1)
194 * - Post-Sync Operation ([13] of DW1)
195 * - Notify Enable ([8] of DW1)"
196 *
197 * The cache flushes require the workaround flush that triggered this
198 * one, so we can't use it. Depth stall would trigger the same.
199 * Post-sync nonzero is what triggered this second workaround, so we
200 * can't use that one either. Notify enable is IRQs, which aren't
201 * really our business. That leaves only stall at scoreboard.
202 */
203 static int
204 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
205 {
206 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
207 int ret;
208
209
210 ret = intel_ring_begin(ring, 6);
211 if (ret)
212 return ret;
213
214 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
215 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
216 PIPE_CONTROL_STALL_AT_SCOREBOARD);
217 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
218 intel_ring_emit(ring, 0); /* low dword */
219 intel_ring_emit(ring, 0); /* high dword */
220 intel_ring_emit(ring, MI_NOOP);
221 intel_ring_advance(ring);
222
223 ret = intel_ring_begin(ring, 6);
224 if (ret)
225 return ret;
226
227 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
229 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
230 intel_ring_emit(ring, 0);
231 intel_ring_emit(ring, 0);
232 intel_ring_emit(ring, MI_NOOP);
233 intel_ring_advance(ring);
234
235 return 0;
236 }
237
238 static int
239 gen6_render_ring_flush(struct intel_engine_cs *ring,
240 u32 invalidate_domains, u32 flush_domains)
241 {
242 u32 flags = 0;
243 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
244 int ret;
245
246 /* Force SNB workarounds for PIPE_CONTROL flushes */
247 ret = intel_emit_post_sync_nonzero_flush(ring);
248 if (ret)
249 return ret;
250
251 /* Just flush everything. Experiments have shown that reducing the
252 * number of bits based on the write domains has little performance
253 * impact.
254 */
255 if (flush_domains) {
256 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
257 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
258 /*
259 * Ensure that any following seqno writes only happen
260 * when the render cache is indeed flushed.
261 */
262 flags |= PIPE_CONTROL_CS_STALL;
263 }
264 if (invalidate_domains) {
265 flags |= PIPE_CONTROL_TLB_INVALIDATE;
266 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
267 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
268 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
269 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
270 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
271 /*
272 * TLB invalidate requires a post-sync write.
273 */
274 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
275 }
276
277 ret = intel_ring_begin(ring, 4);
278 if (ret)
279 return ret;
280
281 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
282 intel_ring_emit(ring, flags);
283 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
284 intel_ring_emit(ring, 0);
285 intel_ring_advance(ring);
286
287 return 0;
288 }
289
290 static int
291 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
292 {
293 int ret;
294
295 ret = intel_ring_begin(ring, 4);
296 if (ret)
297 return ret;
298
299 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
300 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
301 PIPE_CONTROL_STALL_AT_SCOREBOARD);
302 intel_ring_emit(ring, 0);
303 intel_ring_emit(ring, 0);
304 intel_ring_advance(ring);
305
306 return 0;
307 }
308
309 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
310 {
311 int ret;
312
313 if (!ring->fbc_dirty)
314 return 0;
315
316 ret = intel_ring_begin(ring, 6);
317 if (ret)
318 return ret;
319 /* WaFbcNukeOn3DBlt:ivb/hsw */
320 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
321 intel_ring_emit(ring, MSG_FBC_REND_STATE);
322 intel_ring_emit(ring, value);
323 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
324 intel_ring_emit(ring, MSG_FBC_REND_STATE);
325 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
326 intel_ring_advance(ring);
327
328 ring->fbc_dirty = false;
329 return 0;
330 }
331
332 static int
333 gen7_render_ring_flush(struct intel_engine_cs *ring,
334 u32 invalidate_domains, u32 flush_domains)
335 {
336 u32 flags = 0;
337 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
338 int ret;
339
340 /*
341 * Ensure that any following seqno writes only happen when the render
342 * cache is indeed flushed.
343 *
344 * Workaround: 4th PIPE_CONTROL command (except the ones with only
345 * read-cache invalidate bits set) must have the CS_STALL bit set. We
346 * don't try to be clever and just set it unconditionally.
347 */
348 flags |= PIPE_CONTROL_CS_STALL;
349
350 /* Just flush everything. Experiments have shown that reducing the
351 * number of bits based on the write domains has little performance
352 * impact.
353 */
354 if (flush_domains) {
355 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
356 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
357 }
358 if (invalidate_domains) {
359 flags |= PIPE_CONTROL_TLB_INVALIDATE;
360 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
361 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
362 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
363 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
364 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
365 /*
366 * TLB invalidate requires a post-sync write.
367 */
368 flags |= PIPE_CONTROL_QW_WRITE;
369 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
370
371 /* Workaround: we must issue a pipe_control with CS-stall bit
372 * set before a pipe_control command that has the state cache
373 * invalidate bit set. */
374 gen7_render_ring_cs_stall_wa(ring);
375 }
376
377 ret = intel_ring_begin(ring, 4);
378 if (ret)
379 return ret;
380
381 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
382 intel_ring_emit(ring, flags);
383 intel_ring_emit(ring, scratch_addr);
384 intel_ring_emit(ring, 0);
385 intel_ring_advance(ring);
386
387 if (!invalidate_domains && flush_domains)
388 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
389
390 return 0;
391 }
392
393 static int
394 gen8_emit_pipe_control(struct intel_engine_cs *ring,
395 u32 flags, u32 scratch_addr)
396 {
397 int ret;
398
399 ret = intel_ring_begin(ring, 6);
400 if (ret)
401 return ret;
402
403 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
404 intel_ring_emit(ring, flags);
405 intel_ring_emit(ring, scratch_addr);
406 intel_ring_emit(ring, 0);
407 intel_ring_emit(ring, 0);
408 intel_ring_emit(ring, 0);
409 intel_ring_advance(ring);
410
411 return 0;
412 }
413
414 static int
415 gen8_render_ring_flush(struct intel_engine_cs *ring,
416 u32 invalidate_domains, u32 flush_domains)
417 {
418 u32 flags = 0;
419 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
420 int ret;
421
422 flags |= PIPE_CONTROL_CS_STALL;
423
424 if (flush_domains) {
425 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
426 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
427 }
428 if (invalidate_domains) {
429 flags |= PIPE_CONTROL_TLB_INVALIDATE;
430 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
431 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
432 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
433 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
434 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
435 flags |= PIPE_CONTROL_QW_WRITE;
436 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
437
438 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
439 ret = gen8_emit_pipe_control(ring,
440 PIPE_CONTROL_CS_STALL |
441 PIPE_CONTROL_STALL_AT_SCOREBOARD,
442 0);
443 if (ret)
444 return ret;
445 }
446
447 ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
448 if (ret)
449 return ret;
450
451 if (!invalidate_domains && flush_domains)
452 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
453
454 return 0;
455 }
456
457 static void ring_write_tail(struct intel_engine_cs *ring,
458 u32 value)
459 {
460 struct drm_i915_private *dev_priv = ring->dev->dev_private;
461 I915_WRITE_TAIL(ring, value);
462 }
463
464 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
465 {
466 struct drm_i915_private *dev_priv = ring->dev->dev_private;
467 u64 acthd;
468
469 if (INTEL_INFO(ring->dev)->gen >= 8)
470 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
471 RING_ACTHD_UDW(ring->mmio_base));
472 else if (INTEL_INFO(ring->dev)->gen >= 4)
473 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
474 else
475 acthd = I915_READ(ACTHD);
476
477 return acthd;
478 }
479
480 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
481 {
482 struct drm_i915_private *dev_priv = ring->dev->dev_private;
483 u32 addr;
484
485 addr = dev_priv->status_page_dmah->busaddr;
486 if (INTEL_INFO(ring->dev)->gen >= 4)
487 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
488 I915_WRITE(HWS_PGA, addr);
489 }
490
491 static bool stop_ring(struct intel_engine_cs *ring)
492 {
493 struct drm_i915_private *dev_priv = to_i915(ring->dev);
494
495 if (!IS_GEN2(ring->dev)) {
496 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
497 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
498 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
499 /* Sometimes we observe that the idle flag is not
500 * set even though the ring is empty. So double
501 * check before giving up.
502 */
503 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
504 return false;
505 }
506 }
507
508 I915_WRITE_CTL(ring, 0);
509 I915_WRITE_HEAD(ring, 0);
510 ring->write_tail(ring, 0);
511
512 if (!IS_GEN2(ring->dev)) {
513 (void)I915_READ_CTL(ring);
514 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
515 }
516
517 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
518 }
519
520 static int init_ring_common(struct intel_engine_cs *ring)
521 {
522 struct drm_device *dev = ring->dev;
523 struct drm_i915_private *dev_priv = dev->dev_private;
524 struct intel_ringbuffer *ringbuf = ring->buffer;
525 struct drm_i915_gem_object *obj = ringbuf->obj;
526 int ret = 0;
527
528 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
529
530 if (!stop_ring(ring)) {
531 /* G45 ring initialization often fails to reset head to zero */
532 DRM_DEBUG_KMS("%s head not reset to zero "
533 "ctl %08x head %08x tail %08x start %08x\n",
534 ring->name,
535 I915_READ_CTL(ring),
536 I915_READ_HEAD(ring),
537 I915_READ_TAIL(ring),
538 I915_READ_START(ring));
539
540 if (!stop_ring(ring)) {
541 DRM_ERROR("failed to set %s head to zero "
542 "ctl %08x head %08x tail %08x start %08x\n",
543 ring->name,
544 I915_READ_CTL(ring),
545 I915_READ_HEAD(ring),
546 I915_READ_TAIL(ring),
547 I915_READ_START(ring));
548 ret = -EIO;
549 goto out;
550 }
551 }
552
553 if (I915_NEED_GFX_HWS(dev))
554 intel_ring_setup_status_page(ring);
555 else
556 ring_setup_phys_status_page(ring);
557
558 /* Enforce ordering by reading HEAD register back */
559 I915_READ_HEAD(ring);
560
561 /* Initialize the ring. This must happen _after_ we've cleared the ring
562 * registers with the above sequence (the readback of the HEAD registers
563 * also enforces ordering), otherwise the hw might lose the new ring
564 * register values. */
565 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
566
567 /* WaClearRingBufHeadRegAtInit:ctg,elk */
568 if (I915_READ_HEAD(ring))
569 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
570 ring->name, I915_READ_HEAD(ring));
571 I915_WRITE_HEAD(ring, 0);
572 (void)I915_READ_HEAD(ring);
573
574 I915_WRITE_CTL(ring,
575 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
576 | RING_VALID);
577
578 /* If the head is still not zero, the ring is dead */
579 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
580 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
581 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
582 DRM_ERROR("%s initialization failed "
583 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
584 ring->name,
585 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
586 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
587 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
588 ret = -EIO;
589 goto out;
590 }
591
592 ringbuf->head = I915_READ_HEAD(ring);
593 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
594 ringbuf->space = intel_ring_space(ringbuf);
595 ringbuf->last_retired_head = -1;
596
597 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
598
599 out:
600 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
601
602 return ret;
603 }
604
605 void
606 intel_fini_pipe_control(struct intel_engine_cs *ring)
607 {
608 struct drm_device *dev = ring->dev;
609
610 if (ring->scratch.obj == NULL)
611 return;
612
613 if (INTEL_INFO(dev)->gen >= 5) {
614 kunmap(sg_page(ring->scratch.obj->pages->sgl));
615 i915_gem_object_ggtt_unpin(ring->scratch.obj);
616 }
617
618 drm_gem_object_unreference(&ring->scratch.obj->base);
619 ring->scratch.obj = NULL;
620 }
621
622 int
623 intel_init_pipe_control(struct intel_engine_cs *ring)
624 {
625 int ret;
626
627 if (ring->scratch.obj)
628 return 0;
629
630 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
631 if (ring->scratch.obj == NULL) {
632 DRM_ERROR("Failed to allocate seqno page\n");
633 ret = -ENOMEM;
634 goto err;
635 }
636
637 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
638 if (ret)
639 goto err_unref;
640
641 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
642 if (ret)
643 goto err_unref;
644
645 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
646 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
647 if (ring->scratch.cpu_page == NULL) {
648 ret = -ENOMEM;
649 goto err_unpin;
650 }
651
652 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
653 ring->name, ring->scratch.gtt_offset);
654 return 0;
655
656 err_unpin:
657 i915_gem_object_ggtt_unpin(ring->scratch.obj);
658 err_unref:
659 drm_gem_object_unreference(&ring->scratch.obj->base);
660 err:
661 return ret;
662 }
663
664 static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
665 struct intel_context *ctx)
666 {
667 int ret, i;
668 struct drm_device *dev = ring->dev;
669 struct drm_i915_private *dev_priv = dev->dev_private;
670 struct i915_workarounds *w = &dev_priv->workarounds;
671
672 if (WARN_ON(w->count == 0))
673 return 0;
674
675 ring->gpu_caches_dirty = true;
676 ret = intel_ring_flush_all_caches(ring);
677 if (ret)
678 return ret;
679
680 ret = intel_ring_begin(ring, (w->count * 2 + 2));
681 if (ret)
682 return ret;
683
684 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
685 for (i = 0; i < w->count; i++) {
686 intel_ring_emit(ring, w->reg[i].addr);
687 intel_ring_emit(ring, w->reg[i].value);
688 }
689 intel_ring_emit(ring, MI_NOOP);
690
691 intel_ring_advance(ring);
692
693 ring->gpu_caches_dirty = true;
694 ret = intel_ring_flush_all_caches(ring);
695 if (ret)
696 return ret;
697
698 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
699
700 return 0;
701 }
702
703 static int wa_add(struct drm_i915_private *dev_priv,
704 const u32 addr, const u32 val, const u32 mask)
705 {
706 const u32 idx = dev_priv->workarounds.count;
707
708 if (WARN_ON(idx >= I915_MAX_WA_REGS))
709 return -ENOSPC;
710
711 dev_priv->workarounds.reg[idx].addr = addr;
712 dev_priv->workarounds.reg[idx].value = val;
713 dev_priv->workarounds.reg[idx].mask = mask;
714
715 dev_priv->workarounds.count++;
716
717 return 0;
718 }
719
720 #define WA_REG(addr, val, mask) { \
721 const int r = wa_add(dev_priv, (addr), (val), (mask)); \
722 if (r) \
723 return r; \
724 }
725
726 #define WA_SET_BIT_MASKED(addr, mask) \
727 WA_REG(addr, _MASKED_BIT_ENABLE(mask), (mask) & 0xffff)
728
729 #define WA_CLR_BIT_MASKED(addr, mask) \
730 WA_REG(addr, _MASKED_BIT_DISABLE(mask), (mask) & 0xffff)
731
732 #define WA_SET_BIT(addr, mask) WA_REG(addr, I915_READ(addr) | (mask), mask)
733 #define WA_CLR_BIT(addr, mask) WA_REG(addr, I915_READ(addr) & ~(mask), mask)
734
735 #define WA_WRITE(addr, val) WA_REG(addr, val, 0xffffffff)
736
737 static int bdw_init_workarounds(struct intel_engine_cs *ring)
738 {
739 struct drm_device *dev = ring->dev;
740 struct drm_i915_private *dev_priv = dev->dev_private;
741
742 /* WaDisablePartialInstShootdown:bdw */
743 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
744 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
745 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
746 STALL_DOP_GATING_DISABLE);
747
748 /* WaDisableDopClockGating:bdw */
749 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
750 DOP_CLOCK_GATING_DISABLE);
751
752 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
753 GEN8_SAMPLER_POWER_BYPASS_DIS);
754
755 /* Use Force Non-Coherent whenever executing a 3D context. This is a
756 * workaround for for a possible hang in the unlikely event a TLB
757 * invalidation occurs during a PSD flush.
758 */
759 /* WaDisableFenceDestinationToSLM:bdw (GT3 pre-production) */
760 WA_SET_BIT_MASKED(HDC_CHICKEN0,
761 HDC_FORCE_NON_COHERENT |
762 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
763
764 /* Wa4x4STCOptimizationDisable:bdw */
765 WA_SET_BIT_MASKED(CACHE_MODE_1,
766 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
767
768 /*
769 * BSpec recommends 8x4 when MSAA is used,
770 * however in practice 16x4 seems fastest.
771 *
772 * Note that PS/WM thread counts depend on the WIZ hashing
773 * disable bit, which we don't touch here, but it's good
774 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
775 */
776 WA_SET_BIT_MASKED(GEN7_GT_MODE,
777 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
778
779 return 0;
780 }
781
782 static int chv_init_workarounds(struct intel_engine_cs *ring)
783 {
784 struct drm_device *dev = ring->dev;
785 struct drm_i915_private *dev_priv = dev->dev_private;
786
787 /* WaDisablePartialInstShootdown:chv */
788 /* WaDisableThreadStallDopClockGating:chv */
789 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
790 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
791 STALL_DOP_GATING_DISABLE);
792
793 /* Use Force Non-Coherent whenever executing a 3D context. This is a
794 * workaround for a possible hang in the unlikely event a TLB
795 * invalidation occurs during a PSD flush.
796 */
797 /* WaForceEnableNonCoherent:chv */
798 /* WaHdcDisableFetchWhenMasked:chv */
799 WA_SET_BIT_MASKED(HDC_CHICKEN0,
800 HDC_FORCE_NON_COHERENT |
801 HDC_DONOT_FETCH_MEM_WHEN_MASKED);
802
803 return 0;
804 }
805
806 int init_workarounds_ring(struct intel_engine_cs *ring)
807 {
808 struct drm_device *dev = ring->dev;
809 struct drm_i915_private *dev_priv = dev->dev_private;
810
811 WARN_ON(ring->id != RCS);
812
813 dev_priv->workarounds.count = 0;
814
815 if (IS_BROADWELL(dev))
816 return bdw_init_workarounds(ring);
817
818 if (IS_CHERRYVIEW(dev))
819 return chv_init_workarounds(ring);
820
821 return 0;
822 }
823
824 static int init_render_ring(struct intel_engine_cs *ring)
825 {
826 struct drm_device *dev = ring->dev;
827 struct drm_i915_private *dev_priv = dev->dev_private;
828 int ret = init_ring_common(ring);
829 if (ret)
830 return ret;
831
832 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
833 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
834 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
835
836 /* We need to disable the AsyncFlip performance optimisations in order
837 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
838 * programmed to '1' on all products.
839 *
840 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
841 */
842 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
843 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
844
845 /* Required for the hardware to program scanline values for waiting */
846 /* WaEnableFlushTlbInvalidationMode:snb */
847 if (INTEL_INFO(dev)->gen == 6)
848 I915_WRITE(GFX_MODE,
849 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
850
851 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
852 if (IS_GEN7(dev))
853 I915_WRITE(GFX_MODE_GEN7,
854 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
855 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
856
857 if (INTEL_INFO(dev)->gen >= 5) {
858 ret = intel_init_pipe_control(ring);
859 if (ret)
860 return ret;
861 }
862
863 if (IS_GEN6(dev)) {
864 /* From the Sandybridge PRM, volume 1 part 3, page 24:
865 * "If this bit is set, STCunit will have LRA as replacement
866 * policy. [...] This bit must be reset. LRA replacement
867 * policy is not supported."
868 */
869 I915_WRITE(CACHE_MODE_0,
870 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
871 }
872
873 if (INTEL_INFO(dev)->gen >= 6)
874 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
875
876 if (HAS_L3_DPF(dev))
877 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
878
879 return init_workarounds_ring(ring);
880 }
881
882 static void render_ring_cleanup(struct intel_engine_cs *ring)
883 {
884 struct drm_device *dev = ring->dev;
885 struct drm_i915_private *dev_priv = dev->dev_private;
886
887 if (dev_priv->semaphore_obj) {
888 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
889 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
890 dev_priv->semaphore_obj = NULL;
891 }
892
893 intel_fini_pipe_control(ring);
894 }
895
896 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
897 unsigned int num_dwords)
898 {
899 #define MBOX_UPDATE_DWORDS 8
900 struct drm_device *dev = signaller->dev;
901 struct drm_i915_private *dev_priv = dev->dev_private;
902 struct intel_engine_cs *waiter;
903 int i, ret, num_rings;
904
905 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
906 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
907 #undef MBOX_UPDATE_DWORDS
908
909 ret = intel_ring_begin(signaller, num_dwords);
910 if (ret)
911 return ret;
912
913 for_each_ring(waiter, dev_priv, i) {
914 u32 seqno;
915 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
916 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
917 continue;
918
919 seqno = i915_gem_request_get_seqno(
920 signaller->outstanding_lazy_request);
921 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
922 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
923 PIPE_CONTROL_QW_WRITE |
924 PIPE_CONTROL_FLUSH_ENABLE);
925 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
926 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
927 intel_ring_emit(signaller, seqno);
928 intel_ring_emit(signaller, 0);
929 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
930 MI_SEMAPHORE_TARGET(waiter->id));
931 intel_ring_emit(signaller, 0);
932 }
933
934 return 0;
935 }
936
937 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
938 unsigned int num_dwords)
939 {
940 #define MBOX_UPDATE_DWORDS 6
941 struct drm_device *dev = signaller->dev;
942 struct drm_i915_private *dev_priv = dev->dev_private;
943 struct intel_engine_cs *waiter;
944 int i, ret, num_rings;
945
946 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
947 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
948 #undef MBOX_UPDATE_DWORDS
949
950 ret = intel_ring_begin(signaller, num_dwords);
951 if (ret)
952 return ret;
953
954 for_each_ring(waiter, dev_priv, i) {
955 u32 seqno;
956 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
957 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
958 continue;
959
960 seqno = i915_gem_request_get_seqno(
961 signaller->outstanding_lazy_request);
962 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
963 MI_FLUSH_DW_OP_STOREDW);
964 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
965 MI_FLUSH_DW_USE_GTT);
966 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
967 intel_ring_emit(signaller, seqno);
968 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
969 MI_SEMAPHORE_TARGET(waiter->id));
970 intel_ring_emit(signaller, 0);
971 }
972
973 return 0;
974 }
975
976 static int gen6_signal(struct intel_engine_cs *signaller,
977 unsigned int num_dwords)
978 {
979 struct drm_device *dev = signaller->dev;
980 struct drm_i915_private *dev_priv = dev->dev_private;
981 struct intel_engine_cs *useless;
982 int i, ret, num_rings;
983
984 #define MBOX_UPDATE_DWORDS 3
985 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
986 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
987 #undef MBOX_UPDATE_DWORDS
988
989 ret = intel_ring_begin(signaller, num_dwords);
990 if (ret)
991 return ret;
992
993 for_each_ring(useless, dev_priv, i) {
994 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
995 if (mbox_reg != GEN6_NOSYNC) {
996 u32 seqno = i915_gem_request_get_seqno(
997 signaller->outstanding_lazy_request);
998 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
999 intel_ring_emit(signaller, mbox_reg);
1000 intel_ring_emit(signaller, seqno);
1001 }
1002 }
1003
1004 /* If num_dwords was rounded, make sure the tail pointer is correct */
1005 if (num_rings % 2 == 0)
1006 intel_ring_emit(signaller, MI_NOOP);
1007
1008 return 0;
1009 }
1010
1011 /**
1012 * gen6_add_request - Update the semaphore mailbox registers
1013 *
1014 * @ring - ring that is adding a request
1015 * @seqno - return seqno stuck into the ring
1016 *
1017 * Update the mailbox registers in the *other* rings with the current seqno.
1018 * This acts like a signal in the canonical semaphore.
1019 */
1020 static int
1021 gen6_add_request(struct intel_engine_cs *ring)
1022 {
1023 int ret;
1024
1025 if (ring->semaphore.signal)
1026 ret = ring->semaphore.signal(ring, 4);
1027 else
1028 ret = intel_ring_begin(ring, 4);
1029
1030 if (ret)
1031 return ret;
1032
1033 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1034 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1035 intel_ring_emit(ring,
1036 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1037 intel_ring_emit(ring, MI_USER_INTERRUPT);
1038 __intel_ring_advance(ring);
1039
1040 return 0;
1041 }
1042
1043 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1044 u32 seqno)
1045 {
1046 struct drm_i915_private *dev_priv = dev->dev_private;
1047 return dev_priv->last_seqno < seqno;
1048 }
1049
1050 /**
1051 * intel_ring_sync - sync the waiter to the signaller on seqno
1052 *
1053 * @waiter - ring that is waiting
1054 * @signaller - ring which has, or will signal
1055 * @seqno - seqno which the waiter will block on
1056 */
1057
1058 static int
1059 gen8_ring_sync(struct intel_engine_cs *waiter,
1060 struct intel_engine_cs *signaller,
1061 u32 seqno)
1062 {
1063 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1064 int ret;
1065
1066 ret = intel_ring_begin(waiter, 4);
1067 if (ret)
1068 return ret;
1069
1070 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1071 MI_SEMAPHORE_GLOBAL_GTT |
1072 MI_SEMAPHORE_POLL |
1073 MI_SEMAPHORE_SAD_GTE_SDD);
1074 intel_ring_emit(waiter, seqno);
1075 intel_ring_emit(waiter,
1076 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1077 intel_ring_emit(waiter,
1078 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1079 intel_ring_advance(waiter);
1080 return 0;
1081 }
1082
1083 static int
1084 gen6_ring_sync(struct intel_engine_cs *waiter,
1085 struct intel_engine_cs *signaller,
1086 u32 seqno)
1087 {
1088 u32 dw1 = MI_SEMAPHORE_MBOX |
1089 MI_SEMAPHORE_COMPARE |
1090 MI_SEMAPHORE_REGISTER;
1091 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1092 int ret;
1093
1094 /* Throughout all of the GEM code, seqno passed implies our current
1095 * seqno is >= the last seqno executed. However for hardware the
1096 * comparison is strictly greater than.
1097 */
1098 seqno -= 1;
1099
1100 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1101
1102 ret = intel_ring_begin(waiter, 4);
1103 if (ret)
1104 return ret;
1105
1106 /* If seqno wrap happened, omit the wait with no-ops */
1107 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1108 intel_ring_emit(waiter, dw1 | wait_mbox);
1109 intel_ring_emit(waiter, seqno);
1110 intel_ring_emit(waiter, 0);
1111 intel_ring_emit(waiter, MI_NOOP);
1112 } else {
1113 intel_ring_emit(waiter, MI_NOOP);
1114 intel_ring_emit(waiter, MI_NOOP);
1115 intel_ring_emit(waiter, MI_NOOP);
1116 intel_ring_emit(waiter, MI_NOOP);
1117 }
1118 intel_ring_advance(waiter);
1119
1120 return 0;
1121 }
1122
1123 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1124 do { \
1125 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1126 PIPE_CONTROL_DEPTH_STALL); \
1127 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1128 intel_ring_emit(ring__, 0); \
1129 intel_ring_emit(ring__, 0); \
1130 } while (0)
1131
1132 static int
1133 pc_render_add_request(struct intel_engine_cs *ring)
1134 {
1135 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1136 int ret;
1137
1138 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1139 * incoherent with writes to memory, i.e. completely fubar,
1140 * so we need to use PIPE_NOTIFY instead.
1141 *
1142 * However, we also need to workaround the qword write
1143 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1144 * memory before requesting an interrupt.
1145 */
1146 ret = intel_ring_begin(ring, 32);
1147 if (ret)
1148 return ret;
1149
1150 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1151 PIPE_CONTROL_WRITE_FLUSH |
1152 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1153 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1154 intel_ring_emit(ring,
1155 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1156 intel_ring_emit(ring, 0);
1157 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1158 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1159 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1160 scratch_addr += 2 * CACHELINE_BYTES;
1161 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1162 scratch_addr += 2 * CACHELINE_BYTES;
1163 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1164 scratch_addr += 2 * CACHELINE_BYTES;
1165 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1166 scratch_addr += 2 * CACHELINE_BYTES;
1167 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1168
1169 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1170 PIPE_CONTROL_WRITE_FLUSH |
1171 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1172 PIPE_CONTROL_NOTIFY);
1173 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1174 intel_ring_emit(ring,
1175 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1176 intel_ring_emit(ring, 0);
1177 __intel_ring_advance(ring);
1178
1179 return 0;
1180 }
1181
1182 static u32
1183 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1184 {
1185 /* Workaround to force correct ordering between irq and seqno writes on
1186 * ivb (and maybe also on snb) by reading from a CS register (like
1187 * ACTHD) before reading the status page. */
1188 if (!lazy_coherency) {
1189 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1190 POSTING_READ(RING_ACTHD(ring->mmio_base));
1191 }
1192
1193 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1194 }
1195
1196 static u32
1197 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1198 {
1199 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1200 }
1201
1202 static void
1203 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1204 {
1205 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1206 }
1207
1208 static u32
1209 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1210 {
1211 return ring->scratch.cpu_page[0];
1212 }
1213
1214 static void
1215 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1216 {
1217 ring->scratch.cpu_page[0] = seqno;
1218 }
1219
1220 static bool
1221 gen5_ring_get_irq(struct intel_engine_cs *ring)
1222 {
1223 struct drm_device *dev = ring->dev;
1224 struct drm_i915_private *dev_priv = dev->dev_private;
1225 unsigned long flags;
1226
1227 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1228 return false;
1229
1230 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1231 if (ring->irq_refcount++ == 0)
1232 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1233 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1234
1235 return true;
1236 }
1237
1238 static void
1239 gen5_ring_put_irq(struct intel_engine_cs *ring)
1240 {
1241 struct drm_device *dev = ring->dev;
1242 struct drm_i915_private *dev_priv = dev->dev_private;
1243 unsigned long flags;
1244
1245 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1246 if (--ring->irq_refcount == 0)
1247 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1248 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1249 }
1250
1251 static bool
1252 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1253 {
1254 struct drm_device *dev = ring->dev;
1255 struct drm_i915_private *dev_priv = dev->dev_private;
1256 unsigned long flags;
1257
1258 if (!intel_irqs_enabled(dev_priv))
1259 return false;
1260
1261 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1262 if (ring->irq_refcount++ == 0) {
1263 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1264 I915_WRITE(IMR, dev_priv->irq_mask);
1265 POSTING_READ(IMR);
1266 }
1267 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1268
1269 return true;
1270 }
1271
1272 static void
1273 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1274 {
1275 struct drm_device *dev = ring->dev;
1276 struct drm_i915_private *dev_priv = dev->dev_private;
1277 unsigned long flags;
1278
1279 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1280 if (--ring->irq_refcount == 0) {
1281 dev_priv->irq_mask |= ring->irq_enable_mask;
1282 I915_WRITE(IMR, dev_priv->irq_mask);
1283 POSTING_READ(IMR);
1284 }
1285 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1286 }
1287
1288 static bool
1289 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1290 {
1291 struct drm_device *dev = ring->dev;
1292 struct drm_i915_private *dev_priv = dev->dev_private;
1293 unsigned long flags;
1294
1295 if (!intel_irqs_enabled(dev_priv))
1296 return false;
1297
1298 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1299 if (ring->irq_refcount++ == 0) {
1300 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1301 I915_WRITE16(IMR, dev_priv->irq_mask);
1302 POSTING_READ16(IMR);
1303 }
1304 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1305
1306 return true;
1307 }
1308
1309 static void
1310 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1311 {
1312 struct drm_device *dev = ring->dev;
1313 struct drm_i915_private *dev_priv = dev->dev_private;
1314 unsigned long flags;
1315
1316 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1317 if (--ring->irq_refcount == 0) {
1318 dev_priv->irq_mask |= ring->irq_enable_mask;
1319 I915_WRITE16(IMR, dev_priv->irq_mask);
1320 POSTING_READ16(IMR);
1321 }
1322 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1323 }
1324
1325 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1326 {
1327 struct drm_device *dev = ring->dev;
1328 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1329 u32 mmio = 0;
1330
1331 /* The ring status page addresses are no longer next to the rest of
1332 * the ring registers as of gen7.
1333 */
1334 if (IS_GEN7(dev)) {
1335 switch (ring->id) {
1336 case RCS:
1337 mmio = RENDER_HWS_PGA_GEN7;
1338 break;
1339 case BCS:
1340 mmio = BLT_HWS_PGA_GEN7;
1341 break;
1342 /*
1343 * VCS2 actually doesn't exist on Gen7. Only shut up
1344 * gcc switch check warning
1345 */
1346 case VCS2:
1347 case VCS:
1348 mmio = BSD_HWS_PGA_GEN7;
1349 break;
1350 case VECS:
1351 mmio = VEBOX_HWS_PGA_GEN7;
1352 break;
1353 }
1354 } else if (IS_GEN6(ring->dev)) {
1355 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1356 } else {
1357 /* XXX: gen8 returns to sanity */
1358 mmio = RING_HWS_PGA(ring->mmio_base);
1359 }
1360
1361 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1362 POSTING_READ(mmio);
1363
1364 /*
1365 * Flush the TLB for this page
1366 *
1367 * FIXME: These two bits have disappeared on gen8, so a question
1368 * arises: do we still need this and if so how should we go about
1369 * invalidating the TLB?
1370 */
1371 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1372 u32 reg = RING_INSTPM(ring->mmio_base);
1373
1374 /* ring should be idle before issuing a sync flush*/
1375 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1376
1377 I915_WRITE(reg,
1378 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1379 INSTPM_SYNC_FLUSH));
1380 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1381 1000))
1382 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1383 ring->name);
1384 }
1385 }
1386
1387 static int
1388 bsd_ring_flush(struct intel_engine_cs *ring,
1389 u32 invalidate_domains,
1390 u32 flush_domains)
1391 {
1392 int ret;
1393
1394 ret = intel_ring_begin(ring, 2);
1395 if (ret)
1396 return ret;
1397
1398 intel_ring_emit(ring, MI_FLUSH);
1399 intel_ring_emit(ring, MI_NOOP);
1400 intel_ring_advance(ring);
1401 return 0;
1402 }
1403
1404 static int
1405 i9xx_add_request(struct intel_engine_cs *ring)
1406 {
1407 int ret;
1408
1409 ret = intel_ring_begin(ring, 4);
1410 if (ret)
1411 return ret;
1412
1413 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1414 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1415 intel_ring_emit(ring,
1416 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1417 intel_ring_emit(ring, MI_USER_INTERRUPT);
1418 __intel_ring_advance(ring);
1419
1420 return 0;
1421 }
1422
1423 static bool
1424 gen6_ring_get_irq(struct intel_engine_cs *ring)
1425 {
1426 struct drm_device *dev = ring->dev;
1427 struct drm_i915_private *dev_priv = dev->dev_private;
1428 unsigned long flags;
1429
1430 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1431 return false;
1432
1433 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1434 if (ring->irq_refcount++ == 0) {
1435 if (HAS_L3_DPF(dev) && ring->id == RCS)
1436 I915_WRITE_IMR(ring,
1437 ~(ring->irq_enable_mask |
1438 GT_PARITY_ERROR(dev)));
1439 else
1440 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1441 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1442 }
1443 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1444
1445 return true;
1446 }
1447
1448 static void
1449 gen6_ring_put_irq(struct intel_engine_cs *ring)
1450 {
1451 struct drm_device *dev = ring->dev;
1452 struct drm_i915_private *dev_priv = dev->dev_private;
1453 unsigned long flags;
1454
1455 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1456 if (--ring->irq_refcount == 0) {
1457 if (HAS_L3_DPF(dev) && ring->id == RCS)
1458 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1459 else
1460 I915_WRITE_IMR(ring, ~0);
1461 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1462 }
1463 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1464 }
1465
1466 static bool
1467 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1468 {
1469 struct drm_device *dev = ring->dev;
1470 struct drm_i915_private *dev_priv = dev->dev_private;
1471 unsigned long flags;
1472
1473 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1474 return false;
1475
1476 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1477 if (ring->irq_refcount++ == 0) {
1478 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1479 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1480 }
1481 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1482
1483 return true;
1484 }
1485
1486 static void
1487 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1488 {
1489 struct drm_device *dev = ring->dev;
1490 struct drm_i915_private *dev_priv = dev->dev_private;
1491 unsigned long flags;
1492
1493 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1494 if (--ring->irq_refcount == 0) {
1495 I915_WRITE_IMR(ring, ~0);
1496 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1497 }
1498 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1499 }
1500
1501 static bool
1502 gen8_ring_get_irq(struct intel_engine_cs *ring)
1503 {
1504 struct drm_device *dev = ring->dev;
1505 struct drm_i915_private *dev_priv = dev->dev_private;
1506 unsigned long flags;
1507
1508 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1509 return false;
1510
1511 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1512 if (ring->irq_refcount++ == 0) {
1513 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1514 I915_WRITE_IMR(ring,
1515 ~(ring->irq_enable_mask |
1516 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1517 } else {
1518 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1519 }
1520 POSTING_READ(RING_IMR(ring->mmio_base));
1521 }
1522 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1523
1524 return true;
1525 }
1526
1527 static void
1528 gen8_ring_put_irq(struct intel_engine_cs *ring)
1529 {
1530 struct drm_device *dev = ring->dev;
1531 struct drm_i915_private *dev_priv = dev->dev_private;
1532 unsigned long flags;
1533
1534 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1535 if (--ring->irq_refcount == 0) {
1536 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1537 I915_WRITE_IMR(ring,
1538 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1539 } else {
1540 I915_WRITE_IMR(ring, ~0);
1541 }
1542 POSTING_READ(RING_IMR(ring->mmio_base));
1543 }
1544 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1545 }
1546
1547 static int
1548 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1549 u64 offset, u32 length,
1550 unsigned flags)
1551 {
1552 int ret;
1553
1554 ret = intel_ring_begin(ring, 2);
1555 if (ret)
1556 return ret;
1557
1558 intel_ring_emit(ring,
1559 MI_BATCH_BUFFER_START |
1560 MI_BATCH_GTT |
1561 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1562 intel_ring_emit(ring, offset);
1563 intel_ring_advance(ring);
1564
1565 return 0;
1566 }
1567
1568 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1569 #define I830_BATCH_LIMIT (256*1024)
1570 #define I830_TLB_ENTRIES (2)
1571 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1572 static int
1573 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1574 u64 offset, u32 len,
1575 unsigned flags)
1576 {
1577 u32 cs_offset = ring->scratch.gtt_offset;
1578 int ret;
1579
1580 ret = intel_ring_begin(ring, 6);
1581 if (ret)
1582 return ret;
1583
1584 /* Evict the invalid PTE TLBs */
1585 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1586 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1587 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1588 intel_ring_emit(ring, cs_offset);
1589 intel_ring_emit(ring, 0xdeadbeef);
1590 intel_ring_emit(ring, MI_NOOP);
1591 intel_ring_advance(ring);
1592
1593 if ((flags & I915_DISPATCH_PINNED) == 0) {
1594 if (len > I830_BATCH_LIMIT)
1595 return -ENOSPC;
1596
1597 ret = intel_ring_begin(ring, 6 + 2);
1598 if (ret)
1599 return ret;
1600
1601 /* Blit the batch (which has now all relocs applied) to the
1602 * stable batch scratch bo area (so that the CS never
1603 * stumbles over its tlb invalidation bug) ...
1604 */
1605 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1606 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1607 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1608 intel_ring_emit(ring, cs_offset);
1609 intel_ring_emit(ring, 4096);
1610 intel_ring_emit(ring, offset);
1611
1612 intel_ring_emit(ring, MI_FLUSH);
1613 intel_ring_emit(ring, MI_NOOP);
1614 intel_ring_advance(ring);
1615
1616 /* ... and execute it. */
1617 offset = cs_offset;
1618 }
1619
1620 ret = intel_ring_begin(ring, 4);
1621 if (ret)
1622 return ret;
1623
1624 intel_ring_emit(ring, MI_BATCH_BUFFER);
1625 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1626 intel_ring_emit(ring, offset + len - 8);
1627 intel_ring_emit(ring, MI_NOOP);
1628 intel_ring_advance(ring);
1629
1630 return 0;
1631 }
1632
1633 static int
1634 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1635 u64 offset, u32 len,
1636 unsigned flags)
1637 {
1638 int ret;
1639
1640 ret = intel_ring_begin(ring, 2);
1641 if (ret)
1642 return ret;
1643
1644 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1645 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1646 intel_ring_advance(ring);
1647
1648 return 0;
1649 }
1650
1651 static void cleanup_status_page(struct intel_engine_cs *ring)
1652 {
1653 struct drm_i915_gem_object *obj;
1654
1655 obj = ring->status_page.obj;
1656 if (obj == NULL)
1657 return;
1658
1659 kunmap(sg_page(obj->pages->sgl));
1660 i915_gem_object_ggtt_unpin(obj);
1661 drm_gem_object_unreference(&obj->base);
1662 ring->status_page.obj = NULL;
1663 }
1664
1665 static int init_status_page(struct intel_engine_cs *ring)
1666 {
1667 struct drm_i915_gem_object *obj;
1668
1669 if ((obj = ring->status_page.obj) == NULL) {
1670 unsigned flags;
1671 int ret;
1672
1673 obj = i915_gem_alloc_object(ring->dev, 4096);
1674 if (obj == NULL) {
1675 DRM_ERROR("Failed to allocate status page\n");
1676 return -ENOMEM;
1677 }
1678
1679 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1680 if (ret)
1681 goto err_unref;
1682
1683 flags = 0;
1684 if (!HAS_LLC(ring->dev))
1685 /* On g33, we cannot place HWS above 256MiB, so
1686 * restrict its pinning to the low mappable arena.
1687 * Though this restriction is not documented for
1688 * gen4, gen5, or byt, they also behave similarly
1689 * and hang if the HWS is placed at the top of the
1690 * GTT. To generalise, it appears that all !llc
1691 * platforms have issues with us placing the HWS
1692 * above the mappable region (even though we never
1693 * actualy map it).
1694 */
1695 flags |= PIN_MAPPABLE;
1696 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1697 if (ret) {
1698 err_unref:
1699 drm_gem_object_unreference(&obj->base);
1700 return ret;
1701 }
1702
1703 ring->status_page.obj = obj;
1704 }
1705
1706 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1707 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1708 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1709
1710 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1711 ring->name, ring->status_page.gfx_addr);
1712
1713 return 0;
1714 }
1715
1716 static int init_phys_status_page(struct intel_engine_cs *ring)
1717 {
1718 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1719
1720 if (!dev_priv->status_page_dmah) {
1721 dev_priv->status_page_dmah =
1722 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1723 if (!dev_priv->status_page_dmah)
1724 return -ENOMEM;
1725 }
1726
1727 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1728 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1729
1730 return 0;
1731 }
1732
1733 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1734 {
1735 iounmap(ringbuf->virtual_start);
1736 ringbuf->virtual_start = NULL;
1737 i915_gem_object_ggtt_unpin(ringbuf->obj);
1738 }
1739
1740 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1741 struct intel_ringbuffer *ringbuf)
1742 {
1743 struct drm_i915_private *dev_priv = to_i915(dev);
1744 struct drm_i915_gem_object *obj = ringbuf->obj;
1745 int ret;
1746
1747 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1748 if (ret)
1749 return ret;
1750
1751 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1752 if (ret) {
1753 i915_gem_object_ggtt_unpin(obj);
1754 return ret;
1755 }
1756
1757 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1758 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1759 if (ringbuf->virtual_start == NULL) {
1760 i915_gem_object_ggtt_unpin(obj);
1761 return -EINVAL;
1762 }
1763
1764 return 0;
1765 }
1766
1767 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1768 {
1769 drm_gem_object_unreference(&ringbuf->obj->base);
1770 ringbuf->obj = NULL;
1771 }
1772
1773 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1774 struct intel_ringbuffer *ringbuf)
1775 {
1776 struct drm_i915_gem_object *obj;
1777
1778 obj = NULL;
1779 if (!HAS_LLC(dev))
1780 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1781 if (obj == NULL)
1782 obj = i915_gem_alloc_object(dev, ringbuf->size);
1783 if (obj == NULL)
1784 return -ENOMEM;
1785
1786 /* mark ring buffers as read-only from GPU side by default */
1787 obj->gt_ro = 1;
1788
1789 ringbuf->obj = obj;
1790
1791 return 0;
1792 }
1793
1794 static int intel_init_ring_buffer(struct drm_device *dev,
1795 struct intel_engine_cs *ring)
1796 {
1797 struct intel_ringbuffer *ringbuf = ring->buffer;
1798 int ret;
1799
1800 if (ringbuf == NULL) {
1801 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1802 if (!ringbuf)
1803 return -ENOMEM;
1804 ring->buffer = ringbuf;
1805 }
1806
1807 ring->dev = dev;
1808 INIT_LIST_HEAD(&ring->active_list);
1809 INIT_LIST_HEAD(&ring->request_list);
1810 INIT_LIST_HEAD(&ring->execlist_queue);
1811 ringbuf->size = 32 * PAGE_SIZE;
1812 ringbuf->ring = ring;
1813 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1814
1815 init_waitqueue_head(&ring->irq_queue);
1816
1817 if (I915_NEED_GFX_HWS(dev)) {
1818 ret = init_status_page(ring);
1819 if (ret)
1820 goto error;
1821 } else {
1822 BUG_ON(ring->id != RCS);
1823 ret = init_phys_status_page(ring);
1824 if (ret)
1825 goto error;
1826 }
1827
1828 if (ringbuf->obj == NULL) {
1829 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1830 if (ret) {
1831 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
1832 ring->name, ret);
1833 goto error;
1834 }
1835
1836 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1837 if (ret) {
1838 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
1839 ring->name, ret);
1840 intel_destroy_ringbuffer_obj(ringbuf);
1841 goto error;
1842 }
1843 }
1844
1845 /* Workaround an erratum on the i830 which causes a hang if
1846 * the TAIL pointer points to within the last 2 cachelines
1847 * of the buffer.
1848 */
1849 ringbuf->effective_size = ringbuf->size;
1850 if (IS_I830(dev) || IS_845G(dev))
1851 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1852
1853 ret = i915_cmd_parser_init_ring(ring);
1854 if (ret)
1855 goto error;
1856
1857 ret = ring->init(ring);
1858 if (ret)
1859 goto error;
1860
1861 return 0;
1862
1863 error:
1864 kfree(ringbuf);
1865 ring->buffer = NULL;
1866 return ret;
1867 }
1868
1869 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1870 {
1871 struct drm_i915_private *dev_priv;
1872 struct intel_ringbuffer *ringbuf;
1873
1874 if (!intel_ring_initialized(ring))
1875 return;
1876
1877 dev_priv = to_i915(ring->dev);
1878 ringbuf = ring->buffer;
1879
1880 intel_stop_ring_buffer(ring);
1881 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1882
1883 intel_unpin_ringbuffer_obj(ringbuf);
1884 intel_destroy_ringbuffer_obj(ringbuf);
1885 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1886
1887 if (ring->cleanup)
1888 ring->cleanup(ring);
1889
1890 cleanup_status_page(ring);
1891
1892 i915_cmd_parser_fini_ring(ring);
1893
1894 kfree(ringbuf);
1895 ring->buffer = NULL;
1896 }
1897
1898 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1899 {
1900 struct intel_ringbuffer *ringbuf = ring->buffer;
1901 struct drm_i915_gem_request *request;
1902 u32 seqno = 0;
1903 int ret;
1904
1905 if (ringbuf->last_retired_head != -1) {
1906 ringbuf->head = ringbuf->last_retired_head;
1907 ringbuf->last_retired_head = -1;
1908
1909 ringbuf->space = intel_ring_space(ringbuf);
1910 if (ringbuf->space >= n)
1911 return 0;
1912 }
1913
1914 list_for_each_entry(request, &ring->request_list, list) {
1915 if (__intel_ring_space(request->tail, ringbuf->tail,
1916 ringbuf->size) >= n) {
1917 seqno = request->seqno;
1918 break;
1919 }
1920 }
1921
1922 if (seqno == 0)
1923 return -ENOSPC;
1924
1925 ret = i915_wait_seqno(ring, seqno);
1926 if (ret)
1927 return ret;
1928
1929 i915_gem_retire_requests_ring(ring);
1930 ringbuf->head = ringbuf->last_retired_head;
1931 ringbuf->last_retired_head = -1;
1932
1933 ringbuf->space = intel_ring_space(ringbuf);
1934 return 0;
1935 }
1936
1937 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1938 {
1939 struct drm_device *dev = ring->dev;
1940 struct drm_i915_private *dev_priv = dev->dev_private;
1941 struct intel_ringbuffer *ringbuf = ring->buffer;
1942 unsigned long end;
1943 int ret;
1944
1945 ret = intel_ring_wait_request(ring, n);
1946 if (ret != -ENOSPC)
1947 return ret;
1948
1949 /* force the tail write in case we have been skipping them */
1950 __intel_ring_advance(ring);
1951
1952 /* With GEM the hangcheck timer should kick us out of the loop,
1953 * leaving it early runs the risk of corrupting GEM state (due
1954 * to running on almost untested codepaths). But on resume
1955 * timers don't work yet, so prevent a complete hang in that
1956 * case by choosing an insanely large timeout. */
1957 end = jiffies + 60 * HZ;
1958
1959 trace_i915_ring_wait_begin(ring);
1960 do {
1961 ringbuf->head = I915_READ_HEAD(ring);
1962 ringbuf->space = intel_ring_space(ringbuf);
1963 if (ringbuf->space >= n) {
1964 ret = 0;
1965 break;
1966 }
1967
1968 msleep(1);
1969
1970 if (dev_priv->mm.interruptible && signal_pending(current)) {
1971 ret = -ERESTARTSYS;
1972 break;
1973 }
1974
1975 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1976 dev_priv->mm.interruptible);
1977 if (ret)
1978 break;
1979
1980 if (time_after(jiffies, end)) {
1981 ret = -EBUSY;
1982 break;
1983 }
1984 } while (1);
1985 trace_i915_ring_wait_end(ring);
1986 return ret;
1987 }
1988
1989 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1990 {
1991 uint32_t __iomem *virt;
1992 struct intel_ringbuffer *ringbuf = ring->buffer;
1993 int rem = ringbuf->size - ringbuf->tail;
1994
1995 if (ringbuf->space < rem) {
1996 int ret = ring_wait_for_space(ring, rem);
1997 if (ret)
1998 return ret;
1999 }
2000
2001 virt = ringbuf->virtual_start + ringbuf->tail;
2002 rem /= 4;
2003 while (rem--)
2004 iowrite32(MI_NOOP, virt++);
2005
2006 ringbuf->tail = 0;
2007 ringbuf->space = intel_ring_space(ringbuf);
2008
2009 return 0;
2010 }
2011
2012 int intel_ring_idle(struct intel_engine_cs *ring)
2013 {
2014 u32 seqno;
2015 int ret;
2016
2017 /* We need to add any requests required to flush the objects and ring */
2018 if (ring->outstanding_lazy_request) {
2019 ret = i915_add_request(ring, NULL);
2020 if (ret)
2021 return ret;
2022 }
2023
2024 /* Wait upon the last request to be completed */
2025 if (list_empty(&ring->request_list))
2026 return 0;
2027
2028 seqno = list_entry(ring->request_list.prev,
2029 struct drm_i915_gem_request,
2030 list)->seqno;
2031
2032 return i915_wait_seqno(ring, seqno);
2033 }
2034
2035 static int
2036 intel_ring_alloc_request(struct intel_engine_cs *ring)
2037 {
2038 int ret;
2039 struct drm_i915_gem_request *request;
2040
2041 if (ring->outstanding_lazy_request)
2042 return 0;
2043
2044 request = kmalloc(sizeof(*request), GFP_KERNEL);
2045 if (request == NULL)
2046 return -ENOMEM;
2047
2048 kref_init(&request->ref);
2049
2050 ret = i915_gem_get_seqno(ring->dev, &request->seqno);
2051 if (ret) {
2052 kfree(request);
2053 return ret;
2054 }
2055
2056 ring->outstanding_lazy_request = request;
2057 return 0;
2058 }
2059
2060 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2061 int bytes)
2062 {
2063 struct intel_ringbuffer *ringbuf = ring->buffer;
2064 int ret;
2065
2066 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2067 ret = intel_wrap_ring_buffer(ring);
2068 if (unlikely(ret))
2069 return ret;
2070 }
2071
2072 if (unlikely(ringbuf->space < bytes)) {
2073 ret = ring_wait_for_space(ring, bytes);
2074 if (unlikely(ret))
2075 return ret;
2076 }
2077
2078 return 0;
2079 }
2080
2081 int intel_ring_begin(struct intel_engine_cs *ring,
2082 int num_dwords)
2083 {
2084 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2085 int ret;
2086
2087 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2088 dev_priv->mm.interruptible);
2089 if (ret)
2090 return ret;
2091
2092 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2093 if (ret)
2094 return ret;
2095
2096 /* Preallocate the olr before touching the ring */
2097 ret = intel_ring_alloc_request(ring);
2098 if (ret)
2099 return ret;
2100
2101 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2102 return 0;
2103 }
2104
2105 /* Align the ring tail to a cacheline boundary */
2106 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2107 {
2108 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2109 int ret;
2110
2111 if (num_dwords == 0)
2112 return 0;
2113
2114 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2115 ret = intel_ring_begin(ring, num_dwords);
2116 if (ret)
2117 return ret;
2118
2119 while (num_dwords--)
2120 intel_ring_emit(ring, MI_NOOP);
2121
2122 intel_ring_advance(ring);
2123
2124 return 0;
2125 }
2126
2127 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2128 {
2129 struct drm_device *dev = ring->dev;
2130 struct drm_i915_private *dev_priv = dev->dev_private;
2131
2132 BUG_ON(ring->outstanding_lazy_request);
2133
2134 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2135 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2136 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2137 if (HAS_VEBOX(dev))
2138 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2139 }
2140
2141 ring->set_seqno(ring, seqno);
2142 ring->hangcheck.seqno = seqno;
2143 }
2144
2145 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2146 u32 value)
2147 {
2148 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2149
2150 /* Every tail move must follow the sequence below */
2151
2152 /* Disable notification that the ring is IDLE. The GT
2153 * will then assume that it is busy and bring it out of rc6.
2154 */
2155 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2156 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2157
2158 /* Clear the context id. Here be magic! */
2159 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2160
2161 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2162 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2163 GEN6_BSD_SLEEP_INDICATOR) == 0,
2164 50))
2165 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2166
2167 /* Now that the ring is fully powered up, update the tail */
2168 I915_WRITE_TAIL(ring, value);
2169 POSTING_READ(RING_TAIL(ring->mmio_base));
2170
2171 /* Let the ring send IDLE messages to the GT again,
2172 * and so let it sleep to conserve power when idle.
2173 */
2174 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2175 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2176 }
2177
2178 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2179 u32 invalidate, u32 flush)
2180 {
2181 uint32_t cmd;
2182 int ret;
2183
2184 ret = intel_ring_begin(ring, 4);
2185 if (ret)
2186 return ret;
2187
2188 cmd = MI_FLUSH_DW;
2189 if (INTEL_INFO(ring->dev)->gen >= 8)
2190 cmd += 1;
2191 /*
2192 * Bspec vol 1c.5 - video engine command streamer:
2193 * "If ENABLED, all TLBs will be invalidated once the flush
2194 * operation is complete. This bit is only valid when the
2195 * Post-Sync Operation field is a value of 1h or 3h."
2196 */
2197 if (invalidate & I915_GEM_GPU_DOMAINS)
2198 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
2199 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2200 intel_ring_emit(ring, cmd);
2201 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2202 if (INTEL_INFO(ring->dev)->gen >= 8) {
2203 intel_ring_emit(ring, 0); /* upper addr */
2204 intel_ring_emit(ring, 0); /* value */
2205 } else {
2206 intel_ring_emit(ring, 0);
2207 intel_ring_emit(ring, MI_NOOP);
2208 }
2209 intel_ring_advance(ring);
2210 return 0;
2211 }
2212
2213 static int
2214 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2215 u64 offset, u32 len,
2216 unsigned flags)
2217 {
2218 bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
2219 int ret;
2220
2221 ret = intel_ring_begin(ring, 4);
2222 if (ret)
2223 return ret;
2224
2225 /* FIXME(BDW): Address space and security selectors. */
2226 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2227 intel_ring_emit(ring, lower_32_bits(offset));
2228 intel_ring_emit(ring, upper_32_bits(offset));
2229 intel_ring_emit(ring, MI_NOOP);
2230 intel_ring_advance(ring);
2231
2232 return 0;
2233 }
2234
2235 static int
2236 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2237 u64 offset, u32 len,
2238 unsigned flags)
2239 {
2240 int ret;
2241
2242 ret = intel_ring_begin(ring, 2);
2243 if (ret)
2244 return ret;
2245
2246 intel_ring_emit(ring,
2247 MI_BATCH_BUFFER_START |
2248 (flags & I915_DISPATCH_SECURE ?
2249 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2250 /* bit0-7 is the length on GEN6+ */
2251 intel_ring_emit(ring, offset);
2252 intel_ring_advance(ring);
2253
2254 return 0;
2255 }
2256
2257 static int
2258 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2259 u64 offset, u32 len,
2260 unsigned flags)
2261 {
2262 int ret;
2263
2264 ret = intel_ring_begin(ring, 2);
2265 if (ret)
2266 return ret;
2267
2268 intel_ring_emit(ring,
2269 MI_BATCH_BUFFER_START |
2270 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2271 /* bit0-7 is the length on GEN6+ */
2272 intel_ring_emit(ring, offset);
2273 intel_ring_advance(ring);
2274
2275 return 0;
2276 }
2277
2278 /* Blitter support (SandyBridge+) */
2279
2280 static int gen6_ring_flush(struct intel_engine_cs *ring,
2281 u32 invalidate, u32 flush)
2282 {
2283 struct drm_device *dev = ring->dev;
2284 struct drm_i915_private *dev_priv = dev->dev_private;
2285 uint32_t cmd;
2286 int ret;
2287
2288 ret = intel_ring_begin(ring, 4);
2289 if (ret)
2290 return ret;
2291
2292 cmd = MI_FLUSH_DW;
2293 if (INTEL_INFO(ring->dev)->gen >= 8)
2294 cmd += 1;
2295 /*
2296 * Bspec vol 1c.3 - blitter engine command streamer:
2297 * "If ENABLED, all TLBs will be invalidated once the flush
2298 * operation is complete. This bit is only valid when the
2299 * Post-Sync Operation field is a value of 1h or 3h."
2300 */
2301 if (invalidate & I915_GEM_DOMAIN_RENDER)
2302 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2303 MI_FLUSH_DW_OP_STOREDW;
2304 intel_ring_emit(ring, cmd);
2305 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2306 if (INTEL_INFO(ring->dev)->gen >= 8) {
2307 intel_ring_emit(ring, 0); /* upper addr */
2308 intel_ring_emit(ring, 0); /* value */
2309 } else {
2310 intel_ring_emit(ring, 0);
2311 intel_ring_emit(ring, MI_NOOP);
2312 }
2313 intel_ring_advance(ring);
2314
2315 if (!invalidate && flush) {
2316 if (IS_GEN7(dev))
2317 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2318 else if (IS_BROADWELL(dev))
2319 dev_priv->fbc.need_sw_cache_clean = true;
2320 }
2321
2322 return 0;
2323 }
2324
2325 int intel_init_render_ring_buffer(struct drm_device *dev)
2326 {
2327 struct drm_i915_private *dev_priv = dev->dev_private;
2328 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2329 struct drm_i915_gem_object *obj;
2330 int ret;
2331
2332 ring->name = "render ring";
2333 ring->id = RCS;
2334 ring->mmio_base = RENDER_RING_BASE;
2335
2336 if (INTEL_INFO(dev)->gen >= 8) {
2337 if (i915_semaphore_is_enabled(dev)) {
2338 obj = i915_gem_alloc_object(dev, 4096);
2339 if (obj == NULL) {
2340 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2341 i915.semaphores = 0;
2342 } else {
2343 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2344 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2345 if (ret != 0) {
2346 drm_gem_object_unreference(&obj->base);
2347 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2348 i915.semaphores = 0;
2349 } else
2350 dev_priv->semaphore_obj = obj;
2351 }
2352 }
2353
2354 ring->init_context = intel_ring_workarounds_emit;
2355 ring->add_request = gen6_add_request;
2356 ring->flush = gen8_render_ring_flush;
2357 ring->irq_get = gen8_ring_get_irq;
2358 ring->irq_put = gen8_ring_put_irq;
2359 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2360 ring->get_seqno = gen6_ring_get_seqno;
2361 ring->set_seqno = ring_set_seqno;
2362 if (i915_semaphore_is_enabled(dev)) {
2363 WARN_ON(!dev_priv->semaphore_obj);
2364 ring->semaphore.sync_to = gen8_ring_sync;
2365 ring->semaphore.signal = gen8_rcs_signal;
2366 GEN8_RING_SEMAPHORE_INIT;
2367 }
2368 } else if (INTEL_INFO(dev)->gen >= 6) {
2369 ring->add_request = gen6_add_request;
2370 ring->flush = gen7_render_ring_flush;
2371 if (INTEL_INFO(dev)->gen == 6)
2372 ring->flush = gen6_render_ring_flush;
2373 ring->irq_get = gen6_ring_get_irq;
2374 ring->irq_put = gen6_ring_put_irq;
2375 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2376 ring->get_seqno = gen6_ring_get_seqno;
2377 ring->set_seqno = ring_set_seqno;
2378 if (i915_semaphore_is_enabled(dev)) {
2379 ring->semaphore.sync_to = gen6_ring_sync;
2380 ring->semaphore.signal = gen6_signal;
2381 /*
2382 * The current semaphore is only applied on pre-gen8
2383 * platform. And there is no VCS2 ring on the pre-gen8
2384 * platform. So the semaphore between RCS and VCS2 is
2385 * initialized as INVALID. Gen8 will initialize the
2386 * sema between VCS2 and RCS later.
2387 */
2388 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2389 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2390 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2391 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2392 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2393 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2394 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2395 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2396 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2397 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2398 }
2399 } else if (IS_GEN5(dev)) {
2400 ring->add_request = pc_render_add_request;
2401 ring->flush = gen4_render_ring_flush;
2402 ring->get_seqno = pc_render_get_seqno;
2403 ring->set_seqno = pc_render_set_seqno;
2404 ring->irq_get = gen5_ring_get_irq;
2405 ring->irq_put = gen5_ring_put_irq;
2406 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2407 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2408 } else {
2409 ring->add_request = i9xx_add_request;
2410 if (INTEL_INFO(dev)->gen < 4)
2411 ring->flush = gen2_render_ring_flush;
2412 else
2413 ring->flush = gen4_render_ring_flush;
2414 ring->get_seqno = ring_get_seqno;
2415 ring->set_seqno = ring_set_seqno;
2416 if (IS_GEN2(dev)) {
2417 ring->irq_get = i8xx_ring_get_irq;
2418 ring->irq_put = i8xx_ring_put_irq;
2419 } else {
2420 ring->irq_get = i9xx_ring_get_irq;
2421 ring->irq_put = i9xx_ring_put_irq;
2422 }
2423 ring->irq_enable_mask = I915_USER_INTERRUPT;
2424 }
2425 ring->write_tail = ring_write_tail;
2426
2427 if (IS_HASWELL(dev))
2428 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2429 else if (IS_GEN8(dev))
2430 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2431 else if (INTEL_INFO(dev)->gen >= 6)
2432 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2433 else if (INTEL_INFO(dev)->gen >= 4)
2434 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2435 else if (IS_I830(dev) || IS_845G(dev))
2436 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2437 else
2438 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2439 ring->init = init_render_ring;
2440 ring->cleanup = render_ring_cleanup;
2441
2442 /* Workaround batchbuffer to combat CS tlb bug. */
2443 if (HAS_BROKEN_CS_TLB(dev)) {
2444 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2445 if (obj == NULL) {
2446 DRM_ERROR("Failed to allocate batch bo\n");
2447 return -ENOMEM;
2448 }
2449
2450 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2451 if (ret != 0) {
2452 drm_gem_object_unreference(&obj->base);
2453 DRM_ERROR("Failed to ping batch bo\n");
2454 return ret;
2455 }
2456
2457 ring->scratch.obj = obj;
2458 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2459 }
2460
2461 return intel_init_ring_buffer(dev, ring);
2462 }
2463
2464 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2465 {
2466 struct drm_i915_private *dev_priv = dev->dev_private;
2467 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2468
2469 ring->name = "bsd ring";
2470 ring->id = VCS;
2471
2472 ring->write_tail = ring_write_tail;
2473 if (INTEL_INFO(dev)->gen >= 6) {
2474 ring->mmio_base = GEN6_BSD_RING_BASE;
2475 /* gen6 bsd needs a special wa for tail updates */
2476 if (IS_GEN6(dev))
2477 ring->write_tail = gen6_bsd_ring_write_tail;
2478 ring->flush = gen6_bsd_ring_flush;
2479 ring->add_request = gen6_add_request;
2480 ring->get_seqno = gen6_ring_get_seqno;
2481 ring->set_seqno = ring_set_seqno;
2482 if (INTEL_INFO(dev)->gen >= 8) {
2483 ring->irq_enable_mask =
2484 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2485 ring->irq_get = gen8_ring_get_irq;
2486 ring->irq_put = gen8_ring_put_irq;
2487 ring->dispatch_execbuffer =
2488 gen8_ring_dispatch_execbuffer;
2489 if (i915_semaphore_is_enabled(dev)) {
2490 ring->semaphore.sync_to = gen8_ring_sync;
2491 ring->semaphore.signal = gen8_xcs_signal;
2492 GEN8_RING_SEMAPHORE_INIT;
2493 }
2494 } else {
2495 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2496 ring->irq_get = gen6_ring_get_irq;
2497 ring->irq_put = gen6_ring_put_irq;
2498 ring->dispatch_execbuffer =
2499 gen6_ring_dispatch_execbuffer;
2500 if (i915_semaphore_is_enabled(dev)) {
2501 ring->semaphore.sync_to = gen6_ring_sync;
2502 ring->semaphore.signal = gen6_signal;
2503 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2504 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2505 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2506 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2507 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2508 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2509 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2510 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2511 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2512 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2513 }
2514 }
2515 } else {
2516 ring->mmio_base = BSD_RING_BASE;
2517 ring->flush = bsd_ring_flush;
2518 ring->add_request = i9xx_add_request;
2519 ring->get_seqno = ring_get_seqno;
2520 ring->set_seqno = ring_set_seqno;
2521 if (IS_GEN5(dev)) {
2522 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2523 ring->irq_get = gen5_ring_get_irq;
2524 ring->irq_put = gen5_ring_put_irq;
2525 } else {
2526 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2527 ring->irq_get = i9xx_ring_get_irq;
2528 ring->irq_put = i9xx_ring_put_irq;
2529 }
2530 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2531 }
2532 ring->init = init_ring_common;
2533
2534 return intel_init_ring_buffer(dev, ring);
2535 }
2536
2537 /**
2538 * Initialize the second BSD ring for Broadwell GT3.
2539 * It is noted that this only exists on Broadwell GT3.
2540 */
2541 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2542 {
2543 struct drm_i915_private *dev_priv = dev->dev_private;
2544 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2545
2546 if ((INTEL_INFO(dev)->gen != 8)) {
2547 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2548 return -EINVAL;
2549 }
2550
2551 ring->name = "bsd2 ring";
2552 ring->id = VCS2;
2553
2554 ring->write_tail = ring_write_tail;
2555 ring->mmio_base = GEN8_BSD2_RING_BASE;
2556 ring->flush = gen6_bsd_ring_flush;
2557 ring->add_request = gen6_add_request;
2558 ring->get_seqno = gen6_ring_get_seqno;
2559 ring->set_seqno = ring_set_seqno;
2560 ring->irq_enable_mask =
2561 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2562 ring->irq_get = gen8_ring_get_irq;
2563 ring->irq_put = gen8_ring_put_irq;
2564 ring->dispatch_execbuffer =
2565 gen8_ring_dispatch_execbuffer;
2566 if (i915_semaphore_is_enabled(dev)) {
2567 ring->semaphore.sync_to = gen8_ring_sync;
2568 ring->semaphore.signal = gen8_xcs_signal;
2569 GEN8_RING_SEMAPHORE_INIT;
2570 }
2571 ring->init = init_ring_common;
2572
2573 return intel_init_ring_buffer(dev, ring);
2574 }
2575
2576 int intel_init_blt_ring_buffer(struct drm_device *dev)
2577 {
2578 struct drm_i915_private *dev_priv = dev->dev_private;
2579 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2580
2581 ring->name = "blitter ring";
2582 ring->id = BCS;
2583
2584 ring->mmio_base = BLT_RING_BASE;
2585 ring->write_tail = ring_write_tail;
2586 ring->flush = gen6_ring_flush;
2587 ring->add_request = gen6_add_request;
2588 ring->get_seqno = gen6_ring_get_seqno;
2589 ring->set_seqno = ring_set_seqno;
2590 if (INTEL_INFO(dev)->gen >= 8) {
2591 ring->irq_enable_mask =
2592 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2593 ring->irq_get = gen8_ring_get_irq;
2594 ring->irq_put = gen8_ring_put_irq;
2595 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2596 if (i915_semaphore_is_enabled(dev)) {
2597 ring->semaphore.sync_to = gen8_ring_sync;
2598 ring->semaphore.signal = gen8_xcs_signal;
2599 GEN8_RING_SEMAPHORE_INIT;
2600 }
2601 } else {
2602 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2603 ring->irq_get = gen6_ring_get_irq;
2604 ring->irq_put = gen6_ring_put_irq;
2605 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2606 if (i915_semaphore_is_enabled(dev)) {
2607 ring->semaphore.signal = gen6_signal;
2608 ring->semaphore.sync_to = gen6_ring_sync;
2609 /*
2610 * The current semaphore is only applied on pre-gen8
2611 * platform. And there is no VCS2 ring on the pre-gen8
2612 * platform. So the semaphore between BCS and VCS2 is
2613 * initialized as INVALID. Gen8 will initialize the
2614 * sema between BCS and VCS2 later.
2615 */
2616 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2617 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2618 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2619 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2620 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2621 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2622 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2623 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2624 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2625 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2626 }
2627 }
2628 ring->init = init_ring_common;
2629
2630 return intel_init_ring_buffer(dev, ring);
2631 }
2632
2633 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2634 {
2635 struct drm_i915_private *dev_priv = dev->dev_private;
2636 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2637
2638 ring->name = "video enhancement ring";
2639 ring->id = VECS;
2640
2641 ring->mmio_base = VEBOX_RING_BASE;
2642 ring->write_tail = ring_write_tail;
2643 ring->flush = gen6_ring_flush;
2644 ring->add_request = gen6_add_request;
2645 ring->get_seqno = gen6_ring_get_seqno;
2646 ring->set_seqno = ring_set_seqno;
2647
2648 if (INTEL_INFO(dev)->gen >= 8) {
2649 ring->irq_enable_mask =
2650 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2651 ring->irq_get = gen8_ring_get_irq;
2652 ring->irq_put = gen8_ring_put_irq;
2653 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2654 if (i915_semaphore_is_enabled(dev)) {
2655 ring->semaphore.sync_to = gen8_ring_sync;
2656 ring->semaphore.signal = gen8_xcs_signal;
2657 GEN8_RING_SEMAPHORE_INIT;
2658 }
2659 } else {
2660 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2661 ring->irq_get = hsw_vebox_get_irq;
2662 ring->irq_put = hsw_vebox_put_irq;
2663 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2664 if (i915_semaphore_is_enabled(dev)) {
2665 ring->semaphore.sync_to = gen6_ring_sync;
2666 ring->semaphore.signal = gen6_signal;
2667 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2668 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2669 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2670 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2671 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2672 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2673 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2674 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2675 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2676 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2677 }
2678 }
2679 ring->init = init_ring_common;
2680
2681 return intel_init_ring_buffer(dev, ring);
2682 }
2683
2684 int
2685 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2686 {
2687 int ret;
2688
2689 if (!ring->gpu_caches_dirty)
2690 return 0;
2691
2692 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2693 if (ret)
2694 return ret;
2695
2696 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2697
2698 ring->gpu_caches_dirty = false;
2699 return 0;
2700 }
2701
2702 int
2703 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2704 {
2705 uint32_t flush_domains;
2706 int ret;
2707
2708 flush_domains = 0;
2709 if (ring->gpu_caches_dirty)
2710 flush_domains = I915_GEM_GPU_DOMAINS;
2711
2712 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2713 if (ret)
2714 return ret;
2715
2716 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2717
2718 ring->gpu_caches_dirty = false;
2719 return 0;
2720 }
2721
2722 void
2723 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2724 {
2725 int ret;
2726
2727 if (!intel_ring_initialized(ring))
2728 return;
2729
2730 ret = intel_ring_idle(ring);
2731 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2732 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2733 ring->name, ret);
2734
2735 stop_ring(ring);
2736 }
This page took 0.160567 seconds and 5 git commands to generate.