b65f4d77e3ed759ab221b7da3a587ef6df1c59fd
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 static inline int ring_space(struct intel_ring_buffer *ring)
37 {
38 int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
39 if (space < 0)
40 space += ring->size;
41 return space;
42 }
43
44 void __intel_ring_advance(struct intel_ring_buffer *ring)
45 {
46 struct drm_i915_private *dev_priv = ring->dev->dev_private;
47
48 ring->tail &= ring->size - 1;
49 if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
50 return;
51 ring->write_tail(ring, ring->tail);
52 }
53
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56 u32 invalidate_domains,
57 u32 flush_domains)
58 {
59 u32 cmd;
60 int ret;
61
62 cmd = MI_FLUSH;
63 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64 cmd |= MI_NO_WRITE_FLUSH;
65
66 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67 cmd |= MI_READ_FLUSH;
68
69 ret = intel_ring_begin(ring, 2);
70 if (ret)
71 return ret;
72
73 intel_ring_emit(ring, cmd);
74 intel_ring_emit(ring, MI_NOOP);
75 intel_ring_advance(ring);
76
77 return 0;
78 }
79
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82 u32 invalidate_domains,
83 u32 flush_domains)
84 {
85 struct drm_device *dev = ring->dev;
86 u32 cmd;
87 int ret;
88
89 /*
90 * read/write caches:
91 *
92 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
94 * also flushed at 2d versus 3d pipeline switches.
95 *
96 * read-only caches:
97 *
98 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99 * MI_READ_FLUSH is set, and is always flushed on 965.
100 *
101 * I915_GEM_DOMAIN_COMMAND may not exist?
102 *
103 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104 * invalidated when MI_EXE_FLUSH is set.
105 *
106 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107 * invalidated with every MI_FLUSH.
108 *
109 * TLBs:
110 *
111 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114 * are flushed at any MI_FLUSH.
115 */
116
117 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119 cmd &= ~MI_NO_WRITE_FLUSH;
120 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121 cmd |= MI_EXE_FLUSH;
122
123 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124 (IS_G4X(dev) || IS_GEN5(dev)))
125 cmd |= MI_INVALIDATE_ISP;
126
127 ret = intel_ring_begin(ring, 2);
128 if (ret)
129 return ret;
130
131 intel_ring_emit(ring, cmd);
132 intel_ring_emit(ring, MI_NOOP);
133 intel_ring_advance(ring);
134
135 return 0;
136 }
137
138 /**
139 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140 * implementing two workarounds on gen6. From section 1.4.7.1
141 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142 *
143 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144 * produced by non-pipelined state commands), software needs to first
145 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146 * 0.
147 *
148 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150 *
151 * And the workaround for these two requires this workaround first:
152 *
153 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154 * BEFORE the pipe-control with a post-sync op and no write-cache
155 * flushes.
156 *
157 * And this last workaround is tricky because of the requirements on
158 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159 * volume 2 part 1:
160 *
161 * "1 of the following must also be set:
162 * - Render Target Cache Flush Enable ([12] of DW1)
163 * - Depth Cache Flush Enable ([0] of DW1)
164 * - Stall at Pixel Scoreboard ([1] of DW1)
165 * - Depth Stall ([13] of DW1)
166 * - Post-Sync Operation ([13] of DW1)
167 * - Notify Enable ([8] of DW1)"
168 *
169 * The cache flushes require the workaround flush that triggered this
170 * one, so we can't use it. Depth stall would trigger the same.
171 * Post-sync nonzero is what triggered this second workaround, so we
172 * can't use that one either. Notify enable is IRQs, which aren't
173 * really our business. That leaves only stall at scoreboard.
174 */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178 u32 scratch_addr = ring->scratch.gtt_offset + 128;
179 int ret;
180
181
182 ret = intel_ring_begin(ring, 6);
183 if (ret)
184 return ret;
185
186 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
187 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188 PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
190 intel_ring_emit(ring, 0); /* low dword */
191 intel_ring_emit(ring, 0); /* high dword */
192 intel_ring_emit(ring, MI_NOOP);
193 intel_ring_advance(ring);
194
195 ret = intel_ring_begin(ring, 6);
196 if (ret)
197 return ret;
198
199 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
200 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
201 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
202 intel_ring_emit(ring, 0);
203 intel_ring_emit(ring, 0);
204 intel_ring_emit(ring, MI_NOOP);
205 intel_ring_advance(ring);
206
207 return 0;
208 }
209
210 static int
211 gen6_render_ring_flush(struct intel_ring_buffer *ring,
212 u32 invalidate_domains, u32 flush_domains)
213 {
214 u32 flags = 0;
215 u32 scratch_addr = ring->scratch.gtt_offset + 128;
216 int ret;
217
218 /* Force SNB workarounds for PIPE_CONTROL flushes */
219 ret = intel_emit_post_sync_nonzero_flush(ring);
220 if (ret)
221 return ret;
222
223 /* Just flush everything. Experiments have shown that reducing the
224 * number of bits based on the write domains has little performance
225 * impact.
226 */
227 if (flush_domains) {
228 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
229 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
230 /*
231 * Ensure that any following seqno writes only happen
232 * when the render cache is indeed flushed.
233 */
234 flags |= PIPE_CONTROL_CS_STALL;
235 }
236 if (invalidate_domains) {
237 flags |= PIPE_CONTROL_TLB_INVALIDATE;
238 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
239 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
240 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
243 /*
244 * TLB invalidate requires a post-sync write.
245 */
246 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
247 }
248
249 ret = intel_ring_begin(ring, 4);
250 if (ret)
251 return ret;
252
253 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
254 intel_ring_emit(ring, flags);
255 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
256 intel_ring_emit(ring, 0);
257 intel_ring_advance(ring);
258
259 return 0;
260 }
261
262 static int
263 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
264 {
265 int ret;
266
267 ret = intel_ring_begin(ring, 4);
268 if (ret)
269 return ret;
270
271 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
272 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
273 PIPE_CONTROL_STALL_AT_SCOREBOARD);
274 intel_ring_emit(ring, 0);
275 intel_ring_emit(ring, 0);
276 intel_ring_advance(ring);
277
278 return 0;
279 }
280
281 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
282 {
283 int ret;
284
285 if (!ring->fbc_dirty)
286 return 0;
287
288 ret = intel_ring_begin(ring, 6);
289 if (ret)
290 return ret;
291 /* WaFbcNukeOn3DBlt:ivb/hsw */
292 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
293 intel_ring_emit(ring, MSG_FBC_REND_STATE);
294 intel_ring_emit(ring, value);
295 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
296 intel_ring_emit(ring, MSG_FBC_REND_STATE);
297 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
298 intel_ring_advance(ring);
299
300 ring->fbc_dirty = false;
301 return 0;
302 }
303
304 static int
305 gen7_render_ring_flush(struct intel_ring_buffer *ring,
306 u32 invalidate_domains, u32 flush_domains)
307 {
308 u32 flags = 0;
309 u32 scratch_addr = ring->scratch.gtt_offset + 128;
310 int ret;
311
312 /*
313 * Ensure that any following seqno writes only happen when the render
314 * cache is indeed flushed.
315 *
316 * Workaround: 4th PIPE_CONTROL command (except the ones with only
317 * read-cache invalidate bits set) must have the CS_STALL bit set. We
318 * don't try to be clever and just set it unconditionally.
319 */
320 flags |= PIPE_CONTROL_CS_STALL;
321
322 /* Just flush everything. Experiments have shown that reducing the
323 * number of bits based on the write domains has little performance
324 * impact.
325 */
326 if (flush_domains) {
327 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
328 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
329 }
330 if (invalidate_domains) {
331 flags |= PIPE_CONTROL_TLB_INVALIDATE;
332 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
333 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
334 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
335 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
336 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
337 /*
338 * TLB invalidate requires a post-sync write.
339 */
340 flags |= PIPE_CONTROL_QW_WRITE;
341 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
342
343 /* Workaround: we must issue a pipe_control with CS-stall bit
344 * set before a pipe_control command that has the state cache
345 * invalidate bit set. */
346 gen7_render_ring_cs_stall_wa(ring);
347 }
348
349 ret = intel_ring_begin(ring, 4);
350 if (ret)
351 return ret;
352
353 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
354 intel_ring_emit(ring, flags);
355 intel_ring_emit(ring, scratch_addr);
356 intel_ring_emit(ring, 0);
357 intel_ring_advance(ring);
358
359 if (!invalidate_domains && flush_domains)
360 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
361
362 return 0;
363 }
364
365 static int
366 gen8_render_ring_flush(struct intel_ring_buffer *ring,
367 u32 invalidate_domains, u32 flush_domains)
368 {
369 u32 flags = 0;
370 u32 scratch_addr = ring->scratch.gtt_offset + 128;
371 int ret;
372
373 flags |= PIPE_CONTROL_CS_STALL;
374
375 if (flush_domains) {
376 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
377 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
378 }
379 if (invalidate_domains) {
380 flags |= PIPE_CONTROL_TLB_INVALIDATE;
381 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
382 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
383 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
384 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
385 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
386 flags |= PIPE_CONTROL_QW_WRITE;
387 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
388 }
389
390 ret = intel_ring_begin(ring, 6);
391 if (ret)
392 return ret;
393
394 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
395 intel_ring_emit(ring, flags);
396 intel_ring_emit(ring, scratch_addr);
397 intel_ring_emit(ring, 0);
398 intel_ring_emit(ring, 0);
399 intel_ring_emit(ring, 0);
400 intel_ring_advance(ring);
401
402 return 0;
403
404 }
405
406 static void ring_write_tail(struct intel_ring_buffer *ring,
407 u32 value)
408 {
409 drm_i915_private_t *dev_priv = ring->dev->dev_private;
410 I915_WRITE_TAIL(ring, value);
411 }
412
413 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
414 {
415 drm_i915_private_t *dev_priv = ring->dev->dev_private;
416 u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
417 RING_ACTHD(ring->mmio_base) : ACTHD;
418
419 return I915_READ(acthd_reg);
420 }
421
422 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
423 {
424 struct drm_i915_private *dev_priv = ring->dev->dev_private;
425 u32 addr;
426
427 addr = dev_priv->status_page_dmah->busaddr;
428 if (INTEL_INFO(ring->dev)->gen >= 4)
429 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
430 I915_WRITE(HWS_PGA, addr);
431 }
432
433 static int init_ring_common(struct intel_ring_buffer *ring)
434 {
435 struct drm_device *dev = ring->dev;
436 drm_i915_private_t *dev_priv = dev->dev_private;
437 struct drm_i915_gem_object *obj = ring->obj;
438 int ret = 0;
439 u32 head;
440
441 gen6_gt_force_wake_get(dev_priv);
442
443 if (I915_NEED_GFX_HWS(dev))
444 intel_ring_setup_status_page(ring);
445 else
446 ring_setup_phys_status_page(ring);
447
448 /* Stop the ring if it's running. */
449 I915_WRITE_CTL(ring, 0);
450 I915_WRITE_HEAD(ring, 0);
451 ring->write_tail(ring, 0);
452
453 head = I915_READ_HEAD(ring) & HEAD_ADDR;
454
455 /* G45 ring initialization fails to reset head to zero */
456 if (head != 0) {
457 DRM_DEBUG_KMS("%s head not reset to zero "
458 "ctl %08x head %08x tail %08x start %08x\n",
459 ring->name,
460 I915_READ_CTL(ring),
461 I915_READ_HEAD(ring),
462 I915_READ_TAIL(ring),
463 I915_READ_START(ring));
464
465 I915_WRITE_HEAD(ring, 0);
466
467 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
468 DRM_ERROR("failed to set %s head to zero "
469 "ctl %08x head %08x tail %08x start %08x\n",
470 ring->name,
471 I915_READ_CTL(ring),
472 I915_READ_HEAD(ring),
473 I915_READ_TAIL(ring),
474 I915_READ_START(ring));
475 }
476 }
477
478 /* Initialize the ring. This must happen _after_ we've cleared the ring
479 * registers with the above sequence (the readback of the HEAD registers
480 * also enforces ordering), otherwise the hw might lose the new ring
481 * register values. */
482 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
483 I915_WRITE_CTL(ring,
484 ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
485 | RING_VALID);
486
487 /* If the head is still not zero, the ring is dead */
488 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
489 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
490 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
491 DRM_ERROR("%s initialization failed "
492 "ctl %08x head %08x tail %08x start %08x\n",
493 ring->name,
494 I915_READ_CTL(ring),
495 I915_READ_HEAD(ring),
496 I915_READ_TAIL(ring),
497 I915_READ_START(ring));
498 ret = -EIO;
499 goto out;
500 }
501
502 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
503 i915_kernel_lost_context(ring->dev);
504 else {
505 ring->head = I915_READ_HEAD(ring);
506 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
507 ring->space = ring_space(ring);
508 ring->last_retired_head = -1;
509 }
510
511 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
512
513 out:
514 gen6_gt_force_wake_put(dev_priv);
515
516 return ret;
517 }
518
519 static int
520 init_pipe_control(struct intel_ring_buffer *ring)
521 {
522 int ret;
523
524 if (ring->scratch.obj)
525 return 0;
526
527 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
528 if (ring->scratch.obj == NULL) {
529 DRM_ERROR("Failed to allocate seqno page\n");
530 ret = -ENOMEM;
531 goto err;
532 }
533
534 i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
535
536 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, true, false);
537 if (ret)
538 goto err_unref;
539
540 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
541 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
542 if (ring->scratch.cpu_page == NULL) {
543 ret = -ENOMEM;
544 goto err_unpin;
545 }
546
547 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
548 ring->name, ring->scratch.gtt_offset);
549 return 0;
550
551 err_unpin:
552 i915_gem_object_unpin(ring->scratch.obj);
553 err_unref:
554 drm_gem_object_unreference(&ring->scratch.obj->base);
555 err:
556 return ret;
557 }
558
559 static int init_render_ring(struct intel_ring_buffer *ring)
560 {
561 struct drm_device *dev = ring->dev;
562 struct drm_i915_private *dev_priv = dev->dev_private;
563 int ret = init_ring_common(ring);
564
565 if (INTEL_INFO(dev)->gen > 3)
566 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
567
568 /* We need to disable the AsyncFlip performance optimisations in order
569 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
570 * programmed to '1' on all products.
571 *
572 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
573 */
574 if (INTEL_INFO(dev)->gen >= 6)
575 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
576
577 /* Required for the hardware to program scanline values for waiting */
578 if (INTEL_INFO(dev)->gen == 6)
579 I915_WRITE(GFX_MODE,
580 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
581
582 if (IS_GEN7(dev))
583 I915_WRITE(GFX_MODE_GEN7,
584 _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
585 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
586
587 if (INTEL_INFO(dev)->gen >= 5) {
588 ret = init_pipe_control(ring);
589 if (ret)
590 return ret;
591 }
592
593 if (IS_GEN6(dev)) {
594 /* From the Sandybridge PRM, volume 1 part 3, page 24:
595 * "If this bit is set, STCunit will have LRA as replacement
596 * policy. [...] This bit must be reset. LRA replacement
597 * policy is not supported."
598 */
599 I915_WRITE(CACHE_MODE_0,
600 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
601
602 /* This is not explicitly set for GEN6, so read the register.
603 * see intel_ring_mi_set_context() for why we care.
604 * TODO: consider explicitly setting the bit for GEN5
605 */
606 ring->itlb_before_ctx_switch =
607 !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
608 }
609
610 if (INTEL_INFO(dev)->gen >= 6)
611 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
612
613 if (HAS_L3_DPF(dev))
614 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
615
616 return ret;
617 }
618
619 static void render_ring_cleanup(struct intel_ring_buffer *ring)
620 {
621 struct drm_device *dev = ring->dev;
622
623 if (ring->scratch.obj == NULL)
624 return;
625
626 if (INTEL_INFO(dev)->gen >= 5) {
627 kunmap(sg_page(ring->scratch.obj->pages->sgl));
628 i915_gem_object_unpin(ring->scratch.obj);
629 }
630
631 drm_gem_object_unreference(&ring->scratch.obj->base);
632 ring->scratch.obj = NULL;
633 }
634
635 static void
636 update_mboxes(struct intel_ring_buffer *ring,
637 u32 mmio_offset)
638 {
639 /* NB: In order to be able to do semaphore MBOX updates for varying number
640 * of rings, it's easiest if we round up each individual update to a
641 * multiple of 2 (since ring updates must always be a multiple of 2)
642 * even though the actual update only requires 3 dwords.
643 */
644 #define MBOX_UPDATE_DWORDS 4
645 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
646 intel_ring_emit(ring, mmio_offset);
647 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
648 intel_ring_emit(ring, MI_NOOP);
649 }
650
651 /**
652 * gen6_add_request - Update the semaphore mailbox registers
653 *
654 * @ring - ring that is adding a request
655 * @seqno - return seqno stuck into the ring
656 *
657 * Update the mailbox registers in the *other* rings with the current seqno.
658 * This acts like a signal in the canonical semaphore.
659 */
660 static int
661 gen6_add_request(struct intel_ring_buffer *ring)
662 {
663 struct drm_device *dev = ring->dev;
664 struct drm_i915_private *dev_priv = dev->dev_private;
665 struct intel_ring_buffer *useless;
666 int i, ret;
667
668 ret = intel_ring_begin(ring, ((I915_NUM_RINGS-1) *
669 MBOX_UPDATE_DWORDS) +
670 4);
671 if (ret)
672 return ret;
673 #undef MBOX_UPDATE_DWORDS
674
675 for_each_ring(useless, dev_priv, i) {
676 u32 mbox_reg = ring->signal_mbox[i];
677 if (mbox_reg != GEN6_NOSYNC)
678 update_mboxes(ring, mbox_reg);
679 }
680
681 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
682 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
683 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
684 intel_ring_emit(ring, MI_USER_INTERRUPT);
685 __intel_ring_advance(ring);
686
687 return 0;
688 }
689
690 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
691 u32 seqno)
692 {
693 struct drm_i915_private *dev_priv = dev->dev_private;
694 return dev_priv->last_seqno < seqno;
695 }
696
697 /**
698 * intel_ring_sync - sync the waiter to the signaller on seqno
699 *
700 * @waiter - ring that is waiting
701 * @signaller - ring which has, or will signal
702 * @seqno - seqno which the waiter will block on
703 */
704 static int
705 gen6_ring_sync(struct intel_ring_buffer *waiter,
706 struct intel_ring_buffer *signaller,
707 u32 seqno)
708 {
709 int ret;
710 u32 dw1 = MI_SEMAPHORE_MBOX |
711 MI_SEMAPHORE_COMPARE |
712 MI_SEMAPHORE_REGISTER;
713
714 /* Throughout all of the GEM code, seqno passed implies our current
715 * seqno is >= the last seqno executed. However for hardware the
716 * comparison is strictly greater than.
717 */
718 seqno -= 1;
719
720 WARN_ON(signaller->semaphore_register[waiter->id] ==
721 MI_SEMAPHORE_SYNC_INVALID);
722
723 ret = intel_ring_begin(waiter, 4);
724 if (ret)
725 return ret;
726
727 /* If seqno wrap happened, omit the wait with no-ops */
728 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
729 intel_ring_emit(waiter,
730 dw1 |
731 signaller->semaphore_register[waiter->id]);
732 intel_ring_emit(waiter, seqno);
733 intel_ring_emit(waiter, 0);
734 intel_ring_emit(waiter, MI_NOOP);
735 } else {
736 intel_ring_emit(waiter, MI_NOOP);
737 intel_ring_emit(waiter, MI_NOOP);
738 intel_ring_emit(waiter, MI_NOOP);
739 intel_ring_emit(waiter, MI_NOOP);
740 }
741 intel_ring_advance(waiter);
742
743 return 0;
744 }
745
746 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
747 do { \
748 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
749 PIPE_CONTROL_DEPTH_STALL); \
750 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
751 intel_ring_emit(ring__, 0); \
752 intel_ring_emit(ring__, 0); \
753 } while (0)
754
755 static int
756 pc_render_add_request(struct intel_ring_buffer *ring)
757 {
758 u32 scratch_addr = ring->scratch.gtt_offset + 128;
759 int ret;
760
761 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
762 * incoherent with writes to memory, i.e. completely fubar,
763 * so we need to use PIPE_NOTIFY instead.
764 *
765 * However, we also need to workaround the qword write
766 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
767 * memory before requesting an interrupt.
768 */
769 ret = intel_ring_begin(ring, 32);
770 if (ret)
771 return ret;
772
773 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
774 PIPE_CONTROL_WRITE_FLUSH |
775 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
776 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
777 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
778 intel_ring_emit(ring, 0);
779 PIPE_CONTROL_FLUSH(ring, scratch_addr);
780 scratch_addr += 128; /* write to separate cachelines */
781 PIPE_CONTROL_FLUSH(ring, scratch_addr);
782 scratch_addr += 128;
783 PIPE_CONTROL_FLUSH(ring, scratch_addr);
784 scratch_addr += 128;
785 PIPE_CONTROL_FLUSH(ring, scratch_addr);
786 scratch_addr += 128;
787 PIPE_CONTROL_FLUSH(ring, scratch_addr);
788 scratch_addr += 128;
789 PIPE_CONTROL_FLUSH(ring, scratch_addr);
790
791 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
792 PIPE_CONTROL_WRITE_FLUSH |
793 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
794 PIPE_CONTROL_NOTIFY);
795 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
796 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
797 intel_ring_emit(ring, 0);
798 __intel_ring_advance(ring);
799
800 return 0;
801 }
802
803 static u32
804 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
805 {
806 /* Workaround to force correct ordering between irq and seqno writes on
807 * ivb (and maybe also on snb) by reading from a CS register (like
808 * ACTHD) before reading the status page. */
809 if (!lazy_coherency)
810 intel_ring_get_active_head(ring);
811 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
812 }
813
814 static u32
815 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
816 {
817 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
818 }
819
820 static void
821 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
822 {
823 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
824 }
825
826 static u32
827 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
828 {
829 return ring->scratch.cpu_page[0];
830 }
831
832 static void
833 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
834 {
835 ring->scratch.cpu_page[0] = seqno;
836 }
837
838 static bool
839 gen5_ring_get_irq(struct intel_ring_buffer *ring)
840 {
841 struct drm_device *dev = ring->dev;
842 drm_i915_private_t *dev_priv = dev->dev_private;
843 unsigned long flags;
844
845 if (!dev->irq_enabled)
846 return false;
847
848 spin_lock_irqsave(&dev_priv->irq_lock, flags);
849 if (ring->irq_refcount++ == 0)
850 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
851 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
852
853 return true;
854 }
855
856 static void
857 gen5_ring_put_irq(struct intel_ring_buffer *ring)
858 {
859 struct drm_device *dev = ring->dev;
860 drm_i915_private_t *dev_priv = dev->dev_private;
861 unsigned long flags;
862
863 spin_lock_irqsave(&dev_priv->irq_lock, flags);
864 if (--ring->irq_refcount == 0)
865 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
866 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
867 }
868
869 static bool
870 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
871 {
872 struct drm_device *dev = ring->dev;
873 drm_i915_private_t *dev_priv = dev->dev_private;
874 unsigned long flags;
875
876 if (!dev->irq_enabled)
877 return false;
878
879 spin_lock_irqsave(&dev_priv->irq_lock, flags);
880 if (ring->irq_refcount++ == 0) {
881 dev_priv->irq_mask &= ~ring->irq_enable_mask;
882 I915_WRITE(IMR, dev_priv->irq_mask);
883 POSTING_READ(IMR);
884 }
885 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
886
887 return true;
888 }
889
890 static void
891 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
892 {
893 struct drm_device *dev = ring->dev;
894 drm_i915_private_t *dev_priv = dev->dev_private;
895 unsigned long flags;
896
897 spin_lock_irqsave(&dev_priv->irq_lock, flags);
898 if (--ring->irq_refcount == 0) {
899 dev_priv->irq_mask |= ring->irq_enable_mask;
900 I915_WRITE(IMR, dev_priv->irq_mask);
901 POSTING_READ(IMR);
902 }
903 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
904 }
905
906 static bool
907 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
908 {
909 struct drm_device *dev = ring->dev;
910 drm_i915_private_t *dev_priv = dev->dev_private;
911 unsigned long flags;
912
913 if (!dev->irq_enabled)
914 return false;
915
916 spin_lock_irqsave(&dev_priv->irq_lock, flags);
917 if (ring->irq_refcount++ == 0) {
918 dev_priv->irq_mask &= ~ring->irq_enable_mask;
919 I915_WRITE16(IMR, dev_priv->irq_mask);
920 POSTING_READ16(IMR);
921 }
922 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
923
924 return true;
925 }
926
927 static void
928 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
929 {
930 struct drm_device *dev = ring->dev;
931 drm_i915_private_t *dev_priv = dev->dev_private;
932 unsigned long flags;
933
934 spin_lock_irqsave(&dev_priv->irq_lock, flags);
935 if (--ring->irq_refcount == 0) {
936 dev_priv->irq_mask |= ring->irq_enable_mask;
937 I915_WRITE16(IMR, dev_priv->irq_mask);
938 POSTING_READ16(IMR);
939 }
940 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
941 }
942
943 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
944 {
945 struct drm_device *dev = ring->dev;
946 drm_i915_private_t *dev_priv = ring->dev->dev_private;
947 u32 mmio = 0;
948
949 /* The ring status page addresses are no longer next to the rest of
950 * the ring registers as of gen7.
951 */
952 if (IS_GEN7(dev)) {
953 switch (ring->id) {
954 case RCS:
955 mmio = RENDER_HWS_PGA_GEN7;
956 break;
957 case BCS:
958 mmio = BLT_HWS_PGA_GEN7;
959 break;
960 case VCS:
961 mmio = BSD_HWS_PGA_GEN7;
962 break;
963 case VECS:
964 mmio = VEBOX_HWS_PGA_GEN7;
965 break;
966 }
967 } else if (IS_GEN6(ring->dev)) {
968 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
969 } else {
970 /* XXX: gen8 returns to sanity */
971 mmio = RING_HWS_PGA(ring->mmio_base);
972 }
973
974 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
975 POSTING_READ(mmio);
976
977 /* Flush the TLB for this page */
978 if (INTEL_INFO(dev)->gen >= 6) {
979 u32 reg = RING_INSTPM(ring->mmio_base);
980 I915_WRITE(reg,
981 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
982 INSTPM_SYNC_FLUSH));
983 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
984 1000))
985 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
986 ring->name);
987 }
988 }
989
990 static int
991 bsd_ring_flush(struct intel_ring_buffer *ring,
992 u32 invalidate_domains,
993 u32 flush_domains)
994 {
995 int ret;
996
997 ret = intel_ring_begin(ring, 2);
998 if (ret)
999 return ret;
1000
1001 intel_ring_emit(ring, MI_FLUSH);
1002 intel_ring_emit(ring, MI_NOOP);
1003 intel_ring_advance(ring);
1004 return 0;
1005 }
1006
1007 static int
1008 i9xx_add_request(struct intel_ring_buffer *ring)
1009 {
1010 int ret;
1011
1012 ret = intel_ring_begin(ring, 4);
1013 if (ret)
1014 return ret;
1015
1016 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1017 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1018 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1019 intel_ring_emit(ring, MI_USER_INTERRUPT);
1020 __intel_ring_advance(ring);
1021
1022 return 0;
1023 }
1024
1025 static bool
1026 gen6_ring_get_irq(struct intel_ring_buffer *ring)
1027 {
1028 struct drm_device *dev = ring->dev;
1029 drm_i915_private_t *dev_priv = dev->dev_private;
1030 unsigned long flags;
1031
1032 if (!dev->irq_enabled)
1033 return false;
1034
1035 /* It looks like we need to prevent the gt from suspending while waiting
1036 * for an notifiy irq, otherwise irqs seem to get lost on at least the
1037 * blt/bsd rings on ivb. */
1038 gen6_gt_force_wake_get(dev_priv);
1039
1040 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1041 if (ring->irq_refcount++ == 0) {
1042 if (HAS_L3_DPF(dev) && ring->id == RCS)
1043 I915_WRITE_IMR(ring,
1044 ~(ring->irq_enable_mask |
1045 GT_PARITY_ERROR(dev)));
1046 else
1047 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1048 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1049 }
1050 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1051
1052 return true;
1053 }
1054
1055 static void
1056 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1057 {
1058 struct drm_device *dev = ring->dev;
1059 drm_i915_private_t *dev_priv = dev->dev_private;
1060 unsigned long flags;
1061
1062 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1063 if (--ring->irq_refcount == 0) {
1064 if (HAS_L3_DPF(dev) && ring->id == RCS)
1065 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1066 else
1067 I915_WRITE_IMR(ring, ~0);
1068 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1069 }
1070 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1071
1072 gen6_gt_force_wake_put(dev_priv);
1073 }
1074
1075 static bool
1076 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1077 {
1078 struct drm_device *dev = ring->dev;
1079 struct drm_i915_private *dev_priv = dev->dev_private;
1080 unsigned long flags;
1081
1082 if (!dev->irq_enabled)
1083 return false;
1084
1085 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1086 if (ring->irq_refcount++ == 0) {
1087 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1088 snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1089 }
1090 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1091
1092 return true;
1093 }
1094
1095 static void
1096 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1097 {
1098 struct drm_device *dev = ring->dev;
1099 struct drm_i915_private *dev_priv = dev->dev_private;
1100 unsigned long flags;
1101
1102 if (!dev->irq_enabled)
1103 return;
1104
1105 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1106 if (--ring->irq_refcount == 0) {
1107 I915_WRITE_IMR(ring, ~0);
1108 snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1109 }
1110 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1111 }
1112
1113 static bool
1114 gen8_ring_get_irq(struct intel_ring_buffer *ring)
1115 {
1116 struct drm_device *dev = ring->dev;
1117 struct drm_i915_private *dev_priv = dev->dev_private;
1118 unsigned long flags;
1119
1120 if (!dev->irq_enabled)
1121 return false;
1122
1123 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1124 if (ring->irq_refcount++ == 0) {
1125 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1126 I915_WRITE_IMR(ring,
1127 ~(ring->irq_enable_mask |
1128 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1129 } else {
1130 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1131 }
1132 POSTING_READ(RING_IMR(ring->mmio_base));
1133 }
1134 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1135
1136 return true;
1137 }
1138
1139 static void
1140 gen8_ring_put_irq(struct intel_ring_buffer *ring)
1141 {
1142 struct drm_device *dev = ring->dev;
1143 struct drm_i915_private *dev_priv = dev->dev_private;
1144 unsigned long flags;
1145
1146 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1147 if (--ring->irq_refcount == 0) {
1148 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1149 I915_WRITE_IMR(ring,
1150 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1151 } else {
1152 I915_WRITE_IMR(ring, ~0);
1153 }
1154 POSTING_READ(RING_IMR(ring->mmio_base));
1155 }
1156 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1157 }
1158
1159 static int
1160 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1161 u32 offset, u32 length,
1162 unsigned flags)
1163 {
1164 int ret;
1165
1166 ret = intel_ring_begin(ring, 2);
1167 if (ret)
1168 return ret;
1169
1170 intel_ring_emit(ring,
1171 MI_BATCH_BUFFER_START |
1172 MI_BATCH_GTT |
1173 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1174 intel_ring_emit(ring, offset);
1175 intel_ring_advance(ring);
1176
1177 return 0;
1178 }
1179
1180 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1181 #define I830_BATCH_LIMIT (256*1024)
1182 static int
1183 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1184 u32 offset, u32 len,
1185 unsigned flags)
1186 {
1187 int ret;
1188
1189 if (flags & I915_DISPATCH_PINNED) {
1190 ret = intel_ring_begin(ring, 4);
1191 if (ret)
1192 return ret;
1193
1194 intel_ring_emit(ring, MI_BATCH_BUFFER);
1195 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1196 intel_ring_emit(ring, offset + len - 8);
1197 intel_ring_emit(ring, MI_NOOP);
1198 intel_ring_advance(ring);
1199 } else {
1200 u32 cs_offset = ring->scratch.gtt_offset;
1201
1202 if (len > I830_BATCH_LIMIT)
1203 return -ENOSPC;
1204
1205 ret = intel_ring_begin(ring, 9+3);
1206 if (ret)
1207 return ret;
1208 /* Blit the batch (which has now all relocs applied) to the stable batch
1209 * scratch bo area (so that the CS never stumbles over its tlb
1210 * invalidation bug) ... */
1211 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1212 XY_SRC_COPY_BLT_WRITE_ALPHA |
1213 XY_SRC_COPY_BLT_WRITE_RGB);
1214 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1215 intel_ring_emit(ring, 0);
1216 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1217 intel_ring_emit(ring, cs_offset);
1218 intel_ring_emit(ring, 0);
1219 intel_ring_emit(ring, 4096);
1220 intel_ring_emit(ring, offset);
1221 intel_ring_emit(ring, MI_FLUSH);
1222
1223 /* ... and execute it. */
1224 intel_ring_emit(ring, MI_BATCH_BUFFER);
1225 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1226 intel_ring_emit(ring, cs_offset + len - 8);
1227 intel_ring_advance(ring);
1228 }
1229
1230 return 0;
1231 }
1232
1233 static int
1234 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1235 u32 offset, u32 len,
1236 unsigned flags)
1237 {
1238 int ret;
1239
1240 ret = intel_ring_begin(ring, 2);
1241 if (ret)
1242 return ret;
1243
1244 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1245 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1246 intel_ring_advance(ring);
1247
1248 return 0;
1249 }
1250
1251 static void cleanup_status_page(struct intel_ring_buffer *ring)
1252 {
1253 struct drm_i915_gem_object *obj;
1254
1255 obj = ring->status_page.obj;
1256 if (obj == NULL)
1257 return;
1258
1259 kunmap(sg_page(obj->pages->sgl));
1260 i915_gem_object_unpin(obj);
1261 drm_gem_object_unreference(&obj->base);
1262 ring->status_page.obj = NULL;
1263 }
1264
1265 static int init_status_page(struct intel_ring_buffer *ring)
1266 {
1267 struct drm_device *dev = ring->dev;
1268 struct drm_i915_gem_object *obj;
1269 int ret;
1270
1271 obj = i915_gem_alloc_object(dev, 4096);
1272 if (obj == NULL) {
1273 DRM_ERROR("Failed to allocate status page\n");
1274 ret = -ENOMEM;
1275 goto err;
1276 }
1277
1278 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1279
1280 ret = i915_gem_obj_ggtt_pin(obj, 4096, true, false);
1281 if (ret != 0) {
1282 goto err_unref;
1283 }
1284
1285 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1286 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1287 if (ring->status_page.page_addr == NULL) {
1288 ret = -ENOMEM;
1289 goto err_unpin;
1290 }
1291 ring->status_page.obj = obj;
1292 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1293
1294 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1295 ring->name, ring->status_page.gfx_addr);
1296
1297 return 0;
1298
1299 err_unpin:
1300 i915_gem_object_unpin(obj);
1301 err_unref:
1302 drm_gem_object_unreference(&obj->base);
1303 err:
1304 return ret;
1305 }
1306
1307 static int init_phys_status_page(struct intel_ring_buffer *ring)
1308 {
1309 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1310
1311 if (!dev_priv->status_page_dmah) {
1312 dev_priv->status_page_dmah =
1313 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1314 if (!dev_priv->status_page_dmah)
1315 return -ENOMEM;
1316 }
1317
1318 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1319 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1320
1321 return 0;
1322 }
1323
1324 static int intel_init_ring_buffer(struct drm_device *dev,
1325 struct intel_ring_buffer *ring)
1326 {
1327 struct drm_i915_gem_object *obj;
1328 struct drm_i915_private *dev_priv = dev->dev_private;
1329 int ret;
1330
1331 ring->dev = dev;
1332 INIT_LIST_HEAD(&ring->active_list);
1333 INIT_LIST_HEAD(&ring->request_list);
1334 ring->size = 32 * PAGE_SIZE;
1335 memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1336
1337 init_waitqueue_head(&ring->irq_queue);
1338
1339 if (I915_NEED_GFX_HWS(dev)) {
1340 ret = init_status_page(ring);
1341 if (ret)
1342 return ret;
1343 } else {
1344 BUG_ON(ring->id != RCS);
1345 ret = init_phys_status_page(ring);
1346 if (ret)
1347 return ret;
1348 }
1349
1350 obj = NULL;
1351 if (!HAS_LLC(dev))
1352 obj = i915_gem_object_create_stolen(dev, ring->size);
1353 if (obj == NULL)
1354 obj = i915_gem_alloc_object(dev, ring->size);
1355 if (obj == NULL) {
1356 DRM_ERROR("Failed to allocate ringbuffer\n");
1357 ret = -ENOMEM;
1358 goto err_hws;
1359 }
1360
1361 ring->obj = obj;
1362
1363 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, true, false);
1364 if (ret)
1365 goto err_unref;
1366
1367 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1368 if (ret)
1369 goto err_unpin;
1370
1371 ring->virtual_start =
1372 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1373 ring->size);
1374 if (ring->virtual_start == NULL) {
1375 DRM_ERROR("Failed to map ringbuffer.\n");
1376 ret = -EINVAL;
1377 goto err_unpin;
1378 }
1379
1380 ret = ring->init(ring);
1381 if (ret)
1382 goto err_unmap;
1383
1384 /* Workaround an erratum on the i830 which causes a hang if
1385 * the TAIL pointer points to within the last 2 cachelines
1386 * of the buffer.
1387 */
1388 ring->effective_size = ring->size;
1389 if (IS_I830(ring->dev) || IS_845G(ring->dev))
1390 ring->effective_size -= 128;
1391
1392 return 0;
1393
1394 err_unmap:
1395 iounmap(ring->virtual_start);
1396 err_unpin:
1397 i915_gem_object_unpin(obj);
1398 err_unref:
1399 drm_gem_object_unreference(&obj->base);
1400 ring->obj = NULL;
1401 err_hws:
1402 cleanup_status_page(ring);
1403 return ret;
1404 }
1405
1406 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1407 {
1408 struct drm_i915_private *dev_priv;
1409 int ret;
1410
1411 if (ring->obj == NULL)
1412 return;
1413
1414 /* Disable the ring buffer. The ring must be idle at this point */
1415 dev_priv = ring->dev->dev_private;
1416 ret = intel_ring_idle(ring);
1417 if (ret && !i915_reset_in_progress(&dev_priv->gpu_error))
1418 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1419 ring->name, ret);
1420
1421 I915_WRITE_CTL(ring, 0);
1422
1423 iounmap(ring->virtual_start);
1424
1425 i915_gem_object_unpin(ring->obj);
1426 drm_gem_object_unreference(&ring->obj->base);
1427 ring->obj = NULL;
1428 ring->preallocated_lazy_request = NULL;
1429 ring->outstanding_lazy_seqno = 0;
1430
1431 if (ring->cleanup)
1432 ring->cleanup(ring);
1433
1434 cleanup_status_page(ring);
1435 }
1436
1437 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1438 {
1439 int ret;
1440
1441 ret = i915_wait_seqno(ring, seqno);
1442 if (!ret)
1443 i915_gem_retire_requests_ring(ring);
1444
1445 return ret;
1446 }
1447
1448 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1449 {
1450 struct drm_i915_gem_request *request;
1451 u32 seqno = 0;
1452 int ret;
1453
1454 i915_gem_retire_requests_ring(ring);
1455
1456 if (ring->last_retired_head != -1) {
1457 ring->head = ring->last_retired_head;
1458 ring->last_retired_head = -1;
1459 ring->space = ring_space(ring);
1460 if (ring->space >= n)
1461 return 0;
1462 }
1463
1464 list_for_each_entry(request, &ring->request_list, list) {
1465 int space;
1466
1467 if (request->tail == -1)
1468 continue;
1469
1470 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1471 if (space < 0)
1472 space += ring->size;
1473 if (space >= n) {
1474 seqno = request->seqno;
1475 break;
1476 }
1477
1478 /* Consume this request in case we need more space than
1479 * is available and so need to prevent a race between
1480 * updating last_retired_head and direct reads of
1481 * I915_RING_HEAD. It also provides a nice sanity check.
1482 */
1483 request->tail = -1;
1484 }
1485
1486 if (seqno == 0)
1487 return -ENOSPC;
1488
1489 ret = intel_ring_wait_seqno(ring, seqno);
1490 if (ret)
1491 return ret;
1492
1493 if (WARN_ON(ring->last_retired_head == -1))
1494 return -ENOSPC;
1495
1496 ring->head = ring->last_retired_head;
1497 ring->last_retired_head = -1;
1498 ring->space = ring_space(ring);
1499 if (WARN_ON(ring->space < n))
1500 return -ENOSPC;
1501
1502 return 0;
1503 }
1504
1505 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1506 {
1507 struct drm_device *dev = ring->dev;
1508 struct drm_i915_private *dev_priv = dev->dev_private;
1509 unsigned long end;
1510 int ret;
1511
1512 ret = intel_ring_wait_request(ring, n);
1513 if (ret != -ENOSPC)
1514 return ret;
1515
1516 /* force the tail write in case we have been skipping them */
1517 __intel_ring_advance(ring);
1518
1519 trace_i915_ring_wait_begin(ring);
1520 /* With GEM the hangcheck timer should kick us out of the loop,
1521 * leaving it early runs the risk of corrupting GEM state (due
1522 * to running on almost untested codepaths). But on resume
1523 * timers don't work yet, so prevent a complete hang in that
1524 * case by choosing an insanely large timeout. */
1525 end = jiffies + 60 * HZ;
1526
1527 do {
1528 ring->head = I915_READ_HEAD(ring);
1529 ring->space = ring_space(ring);
1530 if (ring->space >= n) {
1531 trace_i915_ring_wait_end(ring);
1532 return 0;
1533 }
1534
1535 if (dev->primary->master) {
1536 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1537 if (master_priv->sarea_priv)
1538 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1539 }
1540
1541 msleep(1);
1542
1543 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1544 dev_priv->mm.interruptible);
1545 if (ret)
1546 return ret;
1547 } while (!time_after(jiffies, end));
1548 trace_i915_ring_wait_end(ring);
1549 return -EBUSY;
1550 }
1551
1552 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1553 {
1554 uint32_t __iomem *virt;
1555 int rem = ring->size - ring->tail;
1556
1557 if (ring->space < rem) {
1558 int ret = ring_wait_for_space(ring, rem);
1559 if (ret)
1560 return ret;
1561 }
1562
1563 virt = ring->virtual_start + ring->tail;
1564 rem /= 4;
1565 while (rem--)
1566 iowrite32(MI_NOOP, virt++);
1567
1568 ring->tail = 0;
1569 ring->space = ring_space(ring);
1570
1571 return 0;
1572 }
1573
1574 int intel_ring_idle(struct intel_ring_buffer *ring)
1575 {
1576 u32 seqno;
1577 int ret;
1578
1579 /* We need to add any requests required to flush the objects and ring */
1580 if (ring->outstanding_lazy_seqno) {
1581 ret = i915_add_request(ring, NULL);
1582 if (ret)
1583 return ret;
1584 }
1585
1586 /* Wait upon the last request to be completed */
1587 if (list_empty(&ring->request_list))
1588 return 0;
1589
1590 seqno = list_entry(ring->request_list.prev,
1591 struct drm_i915_gem_request,
1592 list)->seqno;
1593
1594 return i915_wait_seqno(ring, seqno);
1595 }
1596
1597 static int
1598 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1599 {
1600 if (ring->outstanding_lazy_seqno)
1601 return 0;
1602
1603 if (ring->preallocated_lazy_request == NULL) {
1604 struct drm_i915_gem_request *request;
1605
1606 request = kmalloc(sizeof(*request), GFP_KERNEL);
1607 if (request == NULL)
1608 return -ENOMEM;
1609
1610 ring->preallocated_lazy_request = request;
1611 }
1612
1613 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1614 }
1615
1616 static int __intel_ring_begin(struct intel_ring_buffer *ring,
1617 int bytes)
1618 {
1619 int ret;
1620
1621 if (unlikely(ring->tail + bytes > ring->effective_size)) {
1622 ret = intel_wrap_ring_buffer(ring);
1623 if (unlikely(ret))
1624 return ret;
1625 }
1626
1627 if (unlikely(ring->space < bytes)) {
1628 ret = ring_wait_for_space(ring, bytes);
1629 if (unlikely(ret))
1630 return ret;
1631 }
1632
1633 ring->space -= bytes;
1634 return 0;
1635 }
1636
1637 int intel_ring_begin(struct intel_ring_buffer *ring,
1638 int num_dwords)
1639 {
1640 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1641 int ret;
1642
1643 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1644 dev_priv->mm.interruptible);
1645 if (ret)
1646 return ret;
1647
1648 /* Preallocate the olr before touching the ring */
1649 ret = intel_ring_alloc_seqno(ring);
1650 if (ret)
1651 return ret;
1652
1653 return __intel_ring_begin(ring, num_dwords * sizeof(uint32_t));
1654 }
1655
1656 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1657 {
1658 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1659
1660 BUG_ON(ring->outstanding_lazy_seqno);
1661
1662 if (INTEL_INFO(ring->dev)->gen >= 6) {
1663 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1664 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1665 if (HAS_VEBOX(ring->dev))
1666 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1667 }
1668
1669 ring->set_seqno(ring, seqno);
1670 ring->hangcheck.seqno = seqno;
1671 }
1672
1673 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1674 u32 value)
1675 {
1676 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1677
1678 /* Every tail move must follow the sequence below */
1679
1680 /* Disable notification that the ring is IDLE. The GT
1681 * will then assume that it is busy and bring it out of rc6.
1682 */
1683 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1684 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1685
1686 /* Clear the context id. Here be magic! */
1687 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1688
1689 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1690 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1691 GEN6_BSD_SLEEP_INDICATOR) == 0,
1692 50))
1693 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1694
1695 /* Now that the ring is fully powered up, update the tail */
1696 I915_WRITE_TAIL(ring, value);
1697 POSTING_READ(RING_TAIL(ring->mmio_base));
1698
1699 /* Let the ring send IDLE messages to the GT again,
1700 * and so let it sleep to conserve power when idle.
1701 */
1702 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1703 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1704 }
1705
1706 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1707 u32 invalidate, u32 flush)
1708 {
1709 uint32_t cmd;
1710 int ret;
1711
1712 ret = intel_ring_begin(ring, 4);
1713 if (ret)
1714 return ret;
1715
1716 cmd = MI_FLUSH_DW;
1717 if (INTEL_INFO(ring->dev)->gen >= 8)
1718 cmd += 1;
1719 /*
1720 * Bspec vol 1c.5 - video engine command streamer:
1721 * "If ENABLED, all TLBs will be invalidated once the flush
1722 * operation is complete. This bit is only valid when the
1723 * Post-Sync Operation field is a value of 1h or 3h."
1724 */
1725 if (invalidate & I915_GEM_GPU_DOMAINS)
1726 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1727 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1728 intel_ring_emit(ring, cmd);
1729 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1730 if (INTEL_INFO(ring->dev)->gen >= 8) {
1731 intel_ring_emit(ring, 0); /* upper addr */
1732 intel_ring_emit(ring, 0); /* value */
1733 } else {
1734 intel_ring_emit(ring, 0);
1735 intel_ring_emit(ring, MI_NOOP);
1736 }
1737 intel_ring_advance(ring);
1738 return 0;
1739 }
1740
1741 static int
1742 gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1743 u32 offset, u32 len,
1744 unsigned flags)
1745 {
1746 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1747 bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1748 !(flags & I915_DISPATCH_SECURE);
1749 int ret;
1750
1751 ret = intel_ring_begin(ring, 4);
1752 if (ret)
1753 return ret;
1754
1755 /* FIXME(BDW): Address space and security selectors. */
1756 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1757 intel_ring_emit(ring, offset);
1758 intel_ring_emit(ring, 0);
1759 intel_ring_emit(ring, MI_NOOP);
1760 intel_ring_advance(ring);
1761
1762 return 0;
1763 }
1764
1765 static int
1766 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1767 u32 offset, u32 len,
1768 unsigned flags)
1769 {
1770 int ret;
1771
1772 ret = intel_ring_begin(ring, 2);
1773 if (ret)
1774 return ret;
1775
1776 intel_ring_emit(ring,
1777 MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1778 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1779 /* bit0-7 is the length on GEN6+ */
1780 intel_ring_emit(ring, offset);
1781 intel_ring_advance(ring);
1782
1783 return 0;
1784 }
1785
1786 static int
1787 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1788 u32 offset, u32 len,
1789 unsigned flags)
1790 {
1791 int ret;
1792
1793 ret = intel_ring_begin(ring, 2);
1794 if (ret)
1795 return ret;
1796
1797 intel_ring_emit(ring,
1798 MI_BATCH_BUFFER_START |
1799 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1800 /* bit0-7 is the length on GEN6+ */
1801 intel_ring_emit(ring, offset);
1802 intel_ring_advance(ring);
1803
1804 return 0;
1805 }
1806
1807 /* Blitter support (SandyBridge+) */
1808
1809 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1810 u32 invalidate, u32 flush)
1811 {
1812 struct drm_device *dev = ring->dev;
1813 uint32_t cmd;
1814 int ret;
1815
1816 ret = intel_ring_begin(ring, 4);
1817 if (ret)
1818 return ret;
1819
1820 cmd = MI_FLUSH_DW;
1821 if (INTEL_INFO(ring->dev)->gen >= 8)
1822 cmd += 1;
1823 /*
1824 * Bspec vol 1c.3 - blitter engine command streamer:
1825 * "If ENABLED, all TLBs will be invalidated once the flush
1826 * operation is complete. This bit is only valid when the
1827 * Post-Sync Operation field is a value of 1h or 3h."
1828 */
1829 if (invalidate & I915_GEM_DOMAIN_RENDER)
1830 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1831 MI_FLUSH_DW_OP_STOREDW;
1832 intel_ring_emit(ring, cmd);
1833 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1834 if (INTEL_INFO(ring->dev)->gen >= 8) {
1835 intel_ring_emit(ring, 0); /* upper addr */
1836 intel_ring_emit(ring, 0); /* value */
1837 } else {
1838 intel_ring_emit(ring, 0);
1839 intel_ring_emit(ring, MI_NOOP);
1840 }
1841 intel_ring_advance(ring);
1842
1843 if (IS_GEN7(dev) && !invalidate && flush)
1844 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1845
1846 return 0;
1847 }
1848
1849 int intel_init_render_ring_buffer(struct drm_device *dev)
1850 {
1851 drm_i915_private_t *dev_priv = dev->dev_private;
1852 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1853
1854 ring->name = "render ring";
1855 ring->id = RCS;
1856 ring->mmio_base = RENDER_RING_BASE;
1857
1858 if (INTEL_INFO(dev)->gen >= 6) {
1859 ring->add_request = gen6_add_request;
1860 ring->flush = gen7_render_ring_flush;
1861 if (INTEL_INFO(dev)->gen == 6)
1862 ring->flush = gen6_render_ring_flush;
1863 if (INTEL_INFO(dev)->gen >= 8) {
1864 ring->flush = gen8_render_ring_flush;
1865 ring->irq_get = gen8_ring_get_irq;
1866 ring->irq_put = gen8_ring_put_irq;
1867 } else {
1868 ring->irq_get = gen6_ring_get_irq;
1869 ring->irq_put = gen6_ring_put_irq;
1870 }
1871 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1872 ring->get_seqno = gen6_ring_get_seqno;
1873 ring->set_seqno = ring_set_seqno;
1874 ring->sync_to = gen6_ring_sync;
1875 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1876 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1877 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1878 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1879 ring->signal_mbox[RCS] = GEN6_NOSYNC;
1880 ring->signal_mbox[VCS] = GEN6_VRSYNC;
1881 ring->signal_mbox[BCS] = GEN6_BRSYNC;
1882 ring->signal_mbox[VECS] = GEN6_VERSYNC;
1883 } else if (IS_GEN5(dev)) {
1884 ring->add_request = pc_render_add_request;
1885 ring->flush = gen4_render_ring_flush;
1886 ring->get_seqno = pc_render_get_seqno;
1887 ring->set_seqno = pc_render_set_seqno;
1888 ring->irq_get = gen5_ring_get_irq;
1889 ring->irq_put = gen5_ring_put_irq;
1890 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1891 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1892 } else {
1893 ring->add_request = i9xx_add_request;
1894 if (INTEL_INFO(dev)->gen < 4)
1895 ring->flush = gen2_render_ring_flush;
1896 else
1897 ring->flush = gen4_render_ring_flush;
1898 ring->get_seqno = ring_get_seqno;
1899 ring->set_seqno = ring_set_seqno;
1900 if (IS_GEN2(dev)) {
1901 ring->irq_get = i8xx_ring_get_irq;
1902 ring->irq_put = i8xx_ring_put_irq;
1903 } else {
1904 ring->irq_get = i9xx_ring_get_irq;
1905 ring->irq_put = i9xx_ring_put_irq;
1906 }
1907 ring->irq_enable_mask = I915_USER_INTERRUPT;
1908 }
1909 ring->write_tail = ring_write_tail;
1910 if (IS_HASWELL(dev))
1911 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1912 else if (IS_GEN8(dev))
1913 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
1914 else if (INTEL_INFO(dev)->gen >= 6)
1915 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1916 else if (INTEL_INFO(dev)->gen >= 4)
1917 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1918 else if (IS_I830(dev) || IS_845G(dev))
1919 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1920 else
1921 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1922 ring->init = init_render_ring;
1923 ring->cleanup = render_ring_cleanup;
1924
1925 /* Workaround batchbuffer to combat CS tlb bug. */
1926 if (HAS_BROKEN_CS_TLB(dev)) {
1927 struct drm_i915_gem_object *obj;
1928 int ret;
1929
1930 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1931 if (obj == NULL) {
1932 DRM_ERROR("Failed to allocate batch bo\n");
1933 return -ENOMEM;
1934 }
1935
1936 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
1937 if (ret != 0) {
1938 drm_gem_object_unreference(&obj->base);
1939 DRM_ERROR("Failed to ping batch bo\n");
1940 return ret;
1941 }
1942
1943 ring->scratch.obj = obj;
1944 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
1945 }
1946
1947 return intel_init_ring_buffer(dev, ring);
1948 }
1949
1950 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1951 {
1952 drm_i915_private_t *dev_priv = dev->dev_private;
1953 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1954 int ret;
1955
1956 ring->name = "render ring";
1957 ring->id = RCS;
1958 ring->mmio_base = RENDER_RING_BASE;
1959
1960 if (INTEL_INFO(dev)->gen >= 6) {
1961 /* non-kms not supported on gen6+ */
1962 return -ENODEV;
1963 }
1964
1965 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1966 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1967 * the special gen5 functions. */
1968 ring->add_request = i9xx_add_request;
1969 if (INTEL_INFO(dev)->gen < 4)
1970 ring->flush = gen2_render_ring_flush;
1971 else
1972 ring->flush = gen4_render_ring_flush;
1973 ring->get_seqno = ring_get_seqno;
1974 ring->set_seqno = ring_set_seqno;
1975 if (IS_GEN2(dev)) {
1976 ring->irq_get = i8xx_ring_get_irq;
1977 ring->irq_put = i8xx_ring_put_irq;
1978 } else {
1979 ring->irq_get = i9xx_ring_get_irq;
1980 ring->irq_put = i9xx_ring_put_irq;
1981 }
1982 ring->irq_enable_mask = I915_USER_INTERRUPT;
1983 ring->write_tail = ring_write_tail;
1984 if (INTEL_INFO(dev)->gen >= 4)
1985 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1986 else if (IS_I830(dev) || IS_845G(dev))
1987 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1988 else
1989 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1990 ring->init = init_render_ring;
1991 ring->cleanup = render_ring_cleanup;
1992
1993 ring->dev = dev;
1994 INIT_LIST_HEAD(&ring->active_list);
1995 INIT_LIST_HEAD(&ring->request_list);
1996
1997 ring->size = size;
1998 ring->effective_size = ring->size;
1999 if (IS_I830(ring->dev) || IS_845G(ring->dev))
2000 ring->effective_size -= 128;
2001
2002 ring->virtual_start = ioremap_wc(start, size);
2003 if (ring->virtual_start == NULL) {
2004 DRM_ERROR("can not ioremap virtual address for"
2005 " ring buffer\n");
2006 return -ENOMEM;
2007 }
2008
2009 if (!I915_NEED_GFX_HWS(dev)) {
2010 ret = init_phys_status_page(ring);
2011 if (ret)
2012 return ret;
2013 }
2014
2015 return 0;
2016 }
2017
2018 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2019 {
2020 drm_i915_private_t *dev_priv = dev->dev_private;
2021 struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
2022
2023 ring->name = "bsd ring";
2024 ring->id = VCS;
2025
2026 ring->write_tail = ring_write_tail;
2027 if (INTEL_INFO(dev)->gen >= 6) {
2028 ring->mmio_base = GEN6_BSD_RING_BASE;
2029 /* gen6 bsd needs a special wa for tail updates */
2030 if (IS_GEN6(dev))
2031 ring->write_tail = gen6_bsd_ring_write_tail;
2032 ring->flush = gen6_bsd_ring_flush;
2033 ring->add_request = gen6_add_request;
2034 ring->get_seqno = gen6_ring_get_seqno;
2035 ring->set_seqno = ring_set_seqno;
2036 if (INTEL_INFO(dev)->gen >= 8) {
2037 ring->irq_enable_mask =
2038 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2039 ring->irq_get = gen8_ring_get_irq;
2040 ring->irq_put = gen8_ring_put_irq;
2041 ring->dispatch_execbuffer =
2042 gen8_ring_dispatch_execbuffer;
2043 } else {
2044 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2045 ring->irq_get = gen6_ring_get_irq;
2046 ring->irq_put = gen6_ring_put_irq;
2047 ring->dispatch_execbuffer =
2048 gen6_ring_dispatch_execbuffer;
2049 }
2050 ring->sync_to = gen6_ring_sync;
2051 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
2052 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2053 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
2054 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
2055 ring->signal_mbox[RCS] = GEN6_RVSYNC;
2056 ring->signal_mbox[VCS] = GEN6_NOSYNC;
2057 ring->signal_mbox[BCS] = GEN6_BVSYNC;
2058 ring->signal_mbox[VECS] = GEN6_VEVSYNC;
2059 } else {
2060 ring->mmio_base = BSD_RING_BASE;
2061 ring->flush = bsd_ring_flush;
2062 ring->add_request = i9xx_add_request;
2063 ring->get_seqno = ring_get_seqno;
2064 ring->set_seqno = ring_set_seqno;
2065 if (IS_GEN5(dev)) {
2066 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2067 ring->irq_get = gen5_ring_get_irq;
2068 ring->irq_put = gen5_ring_put_irq;
2069 } else {
2070 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2071 ring->irq_get = i9xx_ring_get_irq;
2072 ring->irq_put = i9xx_ring_put_irq;
2073 }
2074 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2075 }
2076 ring->init = init_ring_common;
2077
2078 return intel_init_ring_buffer(dev, ring);
2079 }
2080
2081 int intel_init_blt_ring_buffer(struct drm_device *dev)
2082 {
2083 drm_i915_private_t *dev_priv = dev->dev_private;
2084 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
2085
2086 ring->name = "blitter ring";
2087 ring->id = BCS;
2088
2089 ring->mmio_base = BLT_RING_BASE;
2090 ring->write_tail = ring_write_tail;
2091 ring->flush = gen6_ring_flush;
2092 ring->add_request = gen6_add_request;
2093 ring->get_seqno = gen6_ring_get_seqno;
2094 ring->set_seqno = ring_set_seqno;
2095 if (INTEL_INFO(dev)->gen >= 8) {
2096 ring->irq_enable_mask =
2097 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2098 ring->irq_get = gen8_ring_get_irq;
2099 ring->irq_put = gen8_ring_put_irq;
2100 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2101 } else {
2102 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2103 ring->irq_get = gen6_ring_get_irq;
2104 ring->irq_put = gen6_ring_put_irq;
2105 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2106 }
2107 ring->sync_to = gen6_ring_sync;
2108 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
2109 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
2110 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2111 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
2112 ring->signal_mbox[RCS] = GEN6_RBSYNC;
2113 ring->signal_mbox[VCS] = GEN6_VBSYNC;
2114 ring->signal_mbox[BCS] = GEN6_NOSYNC;
2115 ring->signal_mbox[VECS] = GEN6_VEBSYNC;
2116 ring->init = init_ring_common;
2117
2118 return intel_init_ring_buffer(dev, ring);
2119 }
2120
2121 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2122 {
2123 drm_i915_private_t *dev_priv = dev->dev_private;
2124 struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2125
2126 ring->name = "video enhancement ring";
2127 ring->id = VECS;
2128
2129 ring->mmio_base = VEBOX_RING_BASE;
2130 ring->write_tail = ring_write_tail;
2131 ring->flush = gen6_ring_flush;
2132 ring->add_request = gen6_add_request;
2133 ring->get_seqno = gen6_ring_get_seqno;
2134 ring->set_seqno = ring_set_seqno;
2135
2136 if (INTEL_INFO(dev)->gen >= 8) {
2137 ring->irq_enable_mask =
2138 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2139 ring->irq_get = gen8_ring_get_irq;
2140 ring->irq_put = gen8_ring_put_irq;
2141 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2142 } else {
2143 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2144 ring->irq_get = hsw_vebox_get_irq;
2145 ring->irq_put = hsw_vebox_put_irq;
2146 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2147 }
2148 ring->sync_to = gen6_ring_sync;
2149 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
2150 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
2151 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
2152 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2153 ring->signal_mbox[RCS] = GEN6_RVESYNC;
2154 ring->signal_mbox[VCS] = GEN6_VVESYNC;
2155 ring->signal_mbox[BCS] = GEN6_BVESYNC;
2156 ring->signal_mbox[VECS] = GEN6_NOSYNC;
2157 ring->init = init_ring_common;
2158
2159 return intel_init_ring_buffer(dev, ring);
2160 }
2161
2162 int
2163 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2164 {
2165 int ret;
2166
2167 if (!ring->gpu_caches_dirty)
2168 return 0;
2169
2170 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2171 if (ret)
2172 return ret;
2173
2174 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2175
2176 ring->gpu_caches_dirty = false;
2177 return 0;
2178 }
2179
2180 int
2181 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2182 {
2183 uint32_t flush_domains;
2184 int ret;
2185
2186 flush_domains = 0;
2187 if (ring->gpu_caches_dirty)
2188 flush_domains = I915_GEM_GPU_DOMAINS;
2189
2190 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2191 if (ret)
2192 return ret;
2193
2194 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2195
2196 ring->gpu_caches_dirty = false;
2197 return 0;
2198 }
This page took 0.072415 seconds and 4 git commands to generate.