drm/i915/gen9: Implement WaDisablePartialInstShootdown
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 struct drm_device *dev = ring->dev;
40
41 if (!dev)
42 return false;
43
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48 return ringbuf->obj;
49 } else
50 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 int space = head - tail;
56 if (space <= 0)
57 space += size;
58 return space - I915_RING_FREE_SPACE;
59 }
60
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63 if (ringbuf->last_retired_head != -1) {
64 ringbuf->head = ringbuf->last_retired_head;
65 ringbuf->last_retired_head = -1;
66 }
67
68 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69 ringbuf->tail, ringbuf->size);
70 }
71
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74 intel_ring_update_space(ringbuf);
75 return ringbuf->space;
76 }
77
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80 struct drm_i915_private *dev_priv = ring->dev->dev_private;
81 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
84 void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86 struct intel_ringbuffer *ringbuf = ring->buffer;
87 ringbuf->tail &= ringbuf->size - 1;
88 if (intel_ring_stopped(ring))
89 return;
90 ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
94 gen2_render_ring_flush(struct intel_engine_cs *ring,
95 u32 invalidate_domains,
96 u32 flush_domains)
97 {
98 u32 cmd;
99 int ret;
100
101 cmd = MI_FLUSH;
102 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
103 cmd |= MI_NO_WRITE_FLUSH;
104
105 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
106 cmd |= MI_READ_FLUSH;
107
108 ret = intel_ring_begin(ring, 2);
109 if (ret)
110 return ret;
111
112 intel_ring_emit(ring, cmd);
113 intel_ring_emit(ring, MI_NOOP);
114 intel_ring_advance(ring);
115
116 return 0;
117 }
118
119 static int
120 gen4_render_ring_flush(struct intel_engine_cs *ring,
121 u32 invalidate_domains,
122 u32 flush_domains)
123 {
124 struct drm_device *dev = ring->dev;
125 u32 cmd;
126 int ret;
127
128 /*
129 * read/write caches:
130 *
131 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
132 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
133 * also flushed at 2d versus 3d pipeline switches.
134 *
135 * read-only caches:
136 *
137 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
138 * MI_READ_FLUSH is set, and is always flushed on 965.
139 *
140 * I915_GEM_DOMAIN_COMMAND may not exist?
141 *
142 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
143 * invalidated when MI_EXE_FLUSH is set.
144 *
145 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
146 * invalidated with every MI_FLUSH.
147 *
148 * TLBs:
149 *
150 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
151 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
152 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
153 * are flushed at any MI_FLUSH.
154 */
155
156 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
157 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
158 cmd &= ~MI_NO_WRITE_FLUSH;
159 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
160 cmd |= MI_EXE_FLUSH;
161
162 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
163 (IS_G4X(dev) || IS_GEN5(dev)))
164 cmd |= MI_INVALIDATE_ISP;
165
166 ret = intel_ring_begin(ring, 2);
167 if (ret)
168 return ret;
169
170 intel_ring_emit(ring, cmd);
171 intel_ring_emit(ring, MI_NOOP);
172 intel_ring_advance(ring);
173
174 return 0;
175 }
176
177 /**
178 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
179 * implementing two workarounds on gen6. From section 1.4.7.1
180 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
181 *
182 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
183 * produced by non-pipelined state commands), software needs to first
184 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
185 * 0.
186 *
187 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
188 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
189 *
190 * And the workaround for these two requires this workaround first:
191 *
192 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
193 * BEFORE the pipe-control with a post-sync op and no write-cache
194 * flushes.
195 *
196 * And this last workaround is tricky because of the requirements on
197 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
198 * volume 2 part 1:
199 *
200 * "1 of the following must also be set:
201 * - Render Target Cache Flush Enable ([12] of DW1)
202 * - Depth Cache Flush Enable ([0] of DW1)
203 * - Stall at Pixel Scoreboard ([1] of DW1)
204 * - Depth Stall ([13] of DW1)
205 * - Post-Sync Operation ([13] of DW1)
206 * - Notify Enable ([8] of DW1)"
207 *
208 * The cache flushes require the workaround flush that triggered this
209 * one, so we can't use it. Depth stall would trigger the same.
210 * Post-sync nonzero is what triggered this second workaround, so we
211 * can't use that one either. Notify enable is IRQs, which aren't
212 * really our business. That leaves only stall at scoreboard.
213 */
214 static int
215 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
216 {
217 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
218 int ret;
219
220
221 ret = intel_ring_begin(ring, 6);
222 if (ret)
223 return ret;
224
225 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
226 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
227 PIPE_CONTROL_STALL_AT_SCOREBOARD);
228 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
229 intel_ring_emit(ring, 0); /* low dword */
230 intel_ring_emit(ring, 0); /* high dword */
231 intel_ring_emit(ring, MI_NOOP);
232 intel_ring_advance(ring);
233
234 ret = intel_ring_begin(ring, 6);
235 if (ret)
236 return ret;
237
238 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
239 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
240 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
241 intel_ring_emit(ring, 0);
242 intel_ring_emit(ring, 0);
243 intel_ring_emit(ring, MI_NOOP);
244 intel_ring_advance(ring);
245
246 return 0;
247 }
248
249 static int
250 gen6_render_ring_flush(struct intel_engine_cs *ring,
251 u32 invalidate_domains, u32 flush_domains)
252 {
253 u32 flags = 0;
254 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
255 int ret;
256
257 /* Force SNB workarounds for PIPE_CONTROL flushes */
258 ret = intel_emit_post_sync_nonzero_flush(ring);
259 if (ret)
260 return ret;
261
262 /* Just flush everything. Experiments have shown that reducing the
263 * number of bits based on the write domains has little performance
264 * impact.
265 */
266 if (flush_domains) {
267 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
268 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
269 /*
270 * Ensure that any following seqno writes only happen
271 * when the render cache is indeed flushed.
272 */
273 flags |= PIPE_CONTROL_CS_STALL;
274 }
275 if (invalidate_domains) {
276 flags |= PIPE_CONTROL_TLB_INVALIDATE;
277 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
278 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
279 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
280 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
281 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
282 /*
283 * TLB invalidate requires a post-sync write.
284 */
285 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
286 }
287
288 ret = intel_ring_begin(ring, 4);
289 if (ret)
290 return ret;
291
292 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
293 intel_ring_emit(ring, flags);
294 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
295 intel_ring_emit(ring, 0);
296 intel_ring_advance(ring);
297
298 return 0;
299 }
300
301 static int
302 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
303 {
304 int ret;
305
306 ret = intel_ring_begin(ring, 4);
307 if (ret)
308 return ret;
309
310 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
311 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
312 PIPE_CONTROL_STALL_AT_SCOREBOARD);
313 intel_ring_emit(ring, 0);
314 intel_ring_emit(ring, 0);
315 intel_ring_advance(ring);
316
317 return 0;
318 }
319
320 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
321 {
322 int ret;
323
324 if (!ring->fbc_dirty)
325 return 0;
326
327 ret = intel_ring_begin(ring, 6);
328 if (ret)
329 return ret;
330 /* WaFbcNukeOn3DBlt:ivb/hsw */
331 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
332 intel_ring_emit(ring, MSG_FBC_REND_STATE);
333 intel_ring_emit(ring, value);
334 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
335 intel_ring_emit(ring, MSG_FBC_REND_STATE);
336 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
337 intel_ring_advance(ring);
338
339 ring->fbc_dirty = false;
340 return 0;
341 }
342
343 static int
344 gen7_render_ring_flush(struct intel_engine_cs *ring,
345 u32 invalidate_domains, u32 flush_domains)
346 {
347 u32 flags = 0;
348 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
349 int ret;
350
351 /*
352 * Ensure that any following seqno writes only happen when the render
353 * cache is indeed flushed.
354 *
355 * Workaround: 4th PIPE_CONTROL command (except the ones with only
356 * read-cache invalidate bits set) must have the CS_STALL bit set. We
357 * don't try to be clever and just set it unconditionally.
358 */
359 flags |= PIPE_CONTROL_CS_STALL;
360
361 /* Just flush everything. Experiments have shown that reducing the
362 * number of bits based on the write domains has little performance
363 * impact.
364 */
365 if (flush_domains) {
366 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
367 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
368 }
369 if (invalidate_domains) {
370 flags |= PIPE_CONTROL_TLB_INVALIDATE;
371 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
372 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
373 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
374 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
375 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
376 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
377 /*
378 * TLB invalidate requires a post-sync write.
379 */
380 flags |= PIPE_CONTROL_QW_WRITE;
381 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
382
383 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
384
385 /* Workaround: we must issue a pipe_control with CS-stall bit
386 * set before a pipe_control command that has the state cache
387 * invalidate bit set. */
388 gen7_render_ring_cs_stall_wa(ring);
389 }
390
391 ret = intel_ring_begin(ring, 4);
392 if (ret)
393 return ret;
394
395 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
396 intel_ring_emit(ring, flags);
397 intel_ring_emit(ring, scratch_addr);
398 intel_ring_emit(ring, 0);
399 intel_ring_advance(ring);
400
401 if (!invalidate_domains && flush_domains)
402 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
403
404 return 0;
405 }
406
407 static int
408 gen8_emit_pipe_control(struct intel_engine_cs *ring,
409 u32 flags, u32 scratch_addr)
410 {
411 int ret;
412
413 ret = intel_ring_begin(ring, 6);
414 if (ret)
415 return ret;
416
417 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
418 intel_ring_emit(ring, flags);
419 intel_ring_emit(ring, scratch_addr);
420 intel_ring_emit(ring, 0);
421 intel_ring_emit(ring, 0);
422 intel_ring_emit(ring, 0);
423 intel_ring_advance(ring);
424
425 return 0;
426 }
427
428 static int
429 gen8_render_ring_flush(struct intel_engine_cs *ring,
430 u32 invalidate_domains, u32 flush_domains)
431 {
432 u32 flags = 0;
433 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
434 int ret;
435
436 flags |= PIPE_CONTROL_CS_STALL;
437
438 if (flush_domains) {
439 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
440 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
441 }
442 if (invalidate_domains) {
443 flags |= PIPE_CONTROL_TLB_INVALIDATE;
444 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
445 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
446 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
447 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
448 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
449 flags |= PIPE_CONTROL_QW_WRITE;
450 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
451
452 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
453 ret = gen8_emit_pipe_control(ring,
454 PIPE_CONTROL_CS_STALL |
455 PIPE_CONTROL_STALL_AT_SCOREBOARD,
456 0);
457 if (ret)
458 return ret;
459 }
460
461 ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
462 if (ret)
463 return ret;
464
465 if (!invalidate_domains && flush_domains)
466 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
467
468 return 0;
469 }
470
471 static void ring_write_tail(struct intel_engine_cs *ring,
472 u32 value)
473 {
474 struct drm_i915_private *dev_priv = ring->dev->dev_private;
475 I915_WRITE_TAIL(ring, value);
476 }
477
478 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
479 {
480 struct drm_i915_private *dev_priv = ring->dev->dev_private;
481 u64 acthd;
482
483 if (INTEL_INFO(ring->dev)->gen >= 8)
484 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
485 RING_ACTHD_UDW(ring->mmio_base));
486 else if (INTEL_INFO(ring->dev)->gen >= 4)
487 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
488 else
489 acthd = I915_READ(ACTHD);
490
491 return acthd;
492 }
493
494 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
495 {
496 struct drm_i915_private *dev_priv = ring->dev->dev_private;
497 u32 addr;
498
499 addr = dev_priv->status_page_dmah->busaddr;
500 if (INTEL_INFO(ring->dev)->gen >= 4)
501 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
502 I915_WRITE(HWS_PGA, addr);
503 }
504
505 static bool stop_ring(struct intel_engine_cs *ring)
506 {
507 struct drm_i915_private *dev_priv = to_i915(ring->dev);
508
509 if (!IS_GEN2(ring->dev)) {
510 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
511 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
512 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
513 /* Sometimes we observe that the idle flag is not
514 * set even though the ring is empty. So double
515 * check before giving up.
516 */
517 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
518 return false;
519 }
520 }
521
522 I915_WRITE_CTL(ring, 0);
523 I915_WRITE_HEAD(ring, 0);
524 ring->write_tail(ring, 0);
525
526 if (!IS_GEN2(ring->dev)) {
527 (void)I915_READ_CTL(ring);
528 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
529 }
530
531 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
532 }
533
534 static int init_ring_common(struct intel_engine_cs *ring)
535 {
536 struct drm_device *dev = ring->dev;
537 struct drm_i915_private *dev_priv = dev->dev_private;
538 struct intel_ringbuffer *ringbuf = ring->buffer;
539 struct drm_i915_gem_object *obj = ringbuf->obj;
540 int ret = 0;
541
542 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
543
544 if (!stop_ring(ring)) {
545 /* G45 ring initialization often fails to reset head to zero */
546 DRM_DEBUG_KMS("%s head not reset to zero "
547 "ctl %08x head %08x tail %08x start %08x\n",
548 ring->name,
549 I915_READ_CTL(ring),
550 I915_READ_HEAD(ring),
551 I915_READ_TAIL(ring),
552 I915_READ_START(ring));
553
554 if (!stop_ring(ring)) {
555 DRM_ERROR("failed to set %s head to zero "
556 "ctl %08x head %08x tail %08x start %08x\n",
557 ring->name,
558 I915_READ_CTL(ring),
559 I915_READ_HEAD(ring),
560 I915_READ_TAIL(ring),
561 I915_READ_START(ring));
562 ret = -EIO;
563 goto out;
564 }
565 }
566
567 if (I915_NEED_GFX_HWS(dev))
568 intel_ring_setup_status_page(ring);
569 else
570 ring_setup_phys_status_page(ring);
571
572 /* Enforce ordering by reading HEAD register back */
573 I915_READ_HEAD(ring);
574
575 /* Initialize the ring. This must happen _after_ we've cleared the ring
576 * registers with the above sequence (the readback of the HEAD registers
577 * also enforces ordering), otherwise the hw might lose the new ring
578 * register values. */
579 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
580
581 /* WaClearRingBufHeadRegAtInit:ctg,elk */
582 if (I915_READ_HEAD(ring))
583 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
584 ring->name, I915_READ_HEAD(ring));
585 I915_WRITE_HEAD(ring, 0);
586 (void)I915_READ_HEAD(ring);
587
588 I915_WRITE_CTL(ring,
589 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
590 | RING_VALID);
591
592 /* If the head is still not zero, the ring is dead */
593 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
594 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
595 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
596 DRM_ERROR("%s initialization failed "
597 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
598 ring->name,
599 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
600 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
601 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
602 ret = -EIO;
603 goto out;
604 }
605
606 ringbuf->last_retired_head = -1;
607 ringbuf->head = I915_READ_HEAD(ring);
608 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
609 intel_ring_update_space(ringbuf);
610
611 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
612
613 out:
614 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
615
616 return ret;
617 }
618
619 void
620 intel_fini_pipe_control(struct intel_engine_cs *ring)
621 {
622 struct drm_device *dev = ring->dev;
623
624 if (ring->scratch.obj == NULL)
625 return;
626
627 if (INTEL_INFO(dev)->gen >= 5) {
628 kunmap(sg_page(ring->scratch.obj->pages->sgl));
629 i915_gem_object_ggtt_unpin(ring->scratch.obj);
630 }
631
632 drm_gem_object_unreference(&ring->scratch.obj->base);
633 ring->scratch.obj = NULL;
634 }
635
636 int
637 intel_init_pipe_control(struct intel_engine_cs *ring)
638 {
639 int ret;
640
641 WARN_ON(ring->scratch.obj);
642
643 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
644 if (ring->scratch.obj == NULL) {
645 DRM_ERROR("Failed to allocate seqno page\n");
646 ret = -ENOMEM;
647 goto err;
648 }
649
650 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
651 if (ret)
652 goto err_unref;
653
654 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
655 if (ret)
656 goto err_unref;
657
658 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
659 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
660 if (ring->scratch.cpu_page == NULL) {
661 ret = -ENOMEM;
662 goto err_unpin;
663 }
664
665 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
666 ring->name, ring->scratch.gtt_offset);
667 return 0;
668
669 err_unpin:
670 i915_gem_object_ggtt_unpin(ring->scratch.obj);
671 err_unref:
672 drm_gem_object_unreference(&ring->scratch.obj->base);
673 err:
674 return ret;
675 }
676
677 static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
678 struct intel_context *ctx)
679 {
680 int ret, i;
681 struct drm_device *dev = ring->dev;
682 struct drm_i915_private *dev_priv = dev->dev_private;
683 struct i915_workarounds *w = &dev_priv->workarounds;
684
685 if (WARN_ON_ONCE(w->count == 0))
686 return 0;
687
688 ring->gpu_caches_dirty = true;
689 ret = intel_ring_flush_all_caches(ring);
690 if (ret)
691 return ret;
692
693 ret = intel_ring_begin(ring, (w->count * 2 + 2));
694 if (ret)
695 return ret;
696
697 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
698 for (i = 0; i < w->count; i++) {
699 intel_ring_emit(ring, w->reg[i].addr);
700 intel_ring_emit(ring, w->reg[i].value);
701 }
702 intel_ring_emit(ring, MI_NOOP);
703
704 intel_ring_advance(ring);
705
706 ring->gpu_caches_dirty = true;
707 ret = intel_ring_flush_all_caches(ring);
708 if (ret)
709 return ret;
710
711 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
712
713 return 0;
714 }
715
716 static int intel_rcs_ctx_init(struct intel_engine_cs *ring,
717 struct intel_context *ctx)
718 {
719 int ret;
720
721 ret = intel_ring_workarounds_emit(ring, ctx);
722 if (ret != 0)
723 return ret;
724
725 ret = i915_gem_render_state_init(ring);
726 if (ret)
727 DRM_ERROR("init render state: %d\n", ret);
728
729 return ret;
730 }
731
732 static int wa_add(struct drm_i915_private *dev_priv,
733 const u32 addr, const u32 mask, const u32 val)
734 {
735 const u32 idx = dev_priv->workarounds.count;
736
737 if (WARN_ON(idx >= I915_MAX_WA_REGS))
738 return -ENOSPC;
739
740 dev_priv->workarounds.reg[idx].addr = addr;
741 dev_priv->workarounds.reg[idx].value = val;
742 dev_priv->workarounds.reg[idx].mask = mask;
743
744 dev_priv->workarounds.count++;
745
746 return 0;
747 }
748
749 #define WA_REG(addr, mask, val) { \
750 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
751 if (r) \
752 return r; \
753 }
754
755 #define WA_SET_BIT_MASKED(addr, mask) \
756 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
757
758 #define WA_CLR_BIT_MASKED(addr, mask) \
759 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
760
761 #define WA_SET_FIELD_MASKED(addr, mask, value) \
762 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
763
764 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
765 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
766
767 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
768
769 static int bdw_init_workarounds(struct intel_engine_cs *ring)
770 {
771 struct drm_device *dev = ring->dev;
772 struct drm_i915_private *dev_priv = dev->dev_private;
773
774 /* WaDisablePartialInstShootdown:bdw */
775 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
776 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
777 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
778 STALL_DOP_GATING_DISABLE);
779
780 /* WaDisableDopClockGating:bdw */
781 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
782 DOP_CLOCK_GATING_DISABLE);
783
784 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
785 GEN8_SAMPLER_POWER_BYPASS_DIS);
786
787 /* Use Force Non-Coherent whenever executing a 3D context. This is a
788 * workaround for for a possible hang in the unlikely event a TLB
789 * invalidation occurs during a PSD flush.
790 */
791 /* WaForceEnableNonCoherent:bdw */
792 /* WaHdcDisableFetchWhenMasked:bdw */
793 /* WaDisableFenceDestinationToSLM:bdw (GT3 pre-production) */
794 WA_SET_BIT_MASKED(HDC_CHICKEN0,
795 HDC_FORCE_NON_COHERENT |
796 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
797 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
798
799 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
800 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
801 * polygons in the same 8x4 pixel/sample area to be processed without
802 * stalling waiting for the earlier ones to write to Hierarchical Z
803 * buffer."
804 *
805 * This optimization is off by default for Broadwell; turn it on.
806 */
807 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
808
809 /* Wa4x4STCOptimizationDisable:bdw */
810 WA_SET_BIT_MASKED(CACHE_MODE_1,
811 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
812
813 /*
814 * BSpec recommends 8x4 when MSAA is used,
815 * however in practice 16x4 seems fastest.
816 *
817 * Note that PS/WM thread counts depend on the WIZ hashing
818 * disable bit, which we don't touch here, but it's good
819 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
820 */
821 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
822 GEN6_WIZ_HASHING_MASK,
823 GEN6_WIZ_HASHING_16x4);
824
825 return 0;
826 }
827
828 static int chv_init_workarounds(struct intel_engine_cs *ring)
829 {
830 struct drm_device *dev = ring->dev;
831 struct drm_i915_private *dev_priv = dev->dev_private;
832
833 /* WaDisablePartialInstShootdown:chv */
834 /* WaDisableThreadStallDopClockGating:chv */
835 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
836 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
837 STALL_DOP_GATING_DISABLE);
838
839 /* Use Force Non-Coherent whenever executing a 3D context. This is a
840 * workaround for a possible hang in the unlikely event a TLB
841 * invalidation occurs during a PSD flush.
842 */
843 /* WaForceEnableNonCoherent:chv */
844 /* WaHdcDisableFetchWhenMasked:chv */
845 WA_SET_BIT_MASKED(HDC_CHICKEN0,
846 HDC_FORCE_NON_COHERENT |
847 HDC_DONOT_FETCH_MEM_WHEN_MASKED);
848
849 /* According to the CACHE_MODE_0 default value documentation, some
850 * CHV platforms disable this optimization by default. Turn it on.
851 */
852 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
853
854 /* Wa4x4STCOptimizationDisable:chv */
855 WA_SET_BIT_MASKED(CACHE_MODE_1,
856 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
857
858 /* Improve HiZ throughput on CHV. */
859 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
860
861 /*
862 * BSpec recommends 8x4 when MSAA is used,
863 * however in practice 16x4 seems fastest.
864 *
865 * Note that PS/WM thread counts depend on the WIZ hashing
866 * disable bit, which we don't touch here, but it's good
867 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
868 */
869 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
870 GEN6_WIZ_HASHING_MASK,
871 GEN6_WIZ_HASHING_16x4);
872
873 return 0;
874 }
875
876 static int gen9_init_workarounds(struct intel_engine_cs *ring)
877 {
878 struct drm_device *dev = ring->dev;
879 struct drm_i915_private *dev_priv = dev->dev_private;
880
881 /* WaDisablePartialInstShootdown:skl */
882 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
883 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
884
885 return 0;
886 }
887
888 int init_workarounds_ring(struct intel_engine_cs *ring)
889 {
890 struct drm_device *dev = ring->dev;
891 struct drm_i915_private *dev_priv = dev->dev_private;
892
893 WARN_ON(ring->id != RCS);
894
895 dev_priv->workarounds.count = 0;
896
897 if (IS_BROADWELL(dev))
898 return bdw_init_workarounds(ring);
899
900 if (IS_CHERRYVIEW(dev))
901 return chv_init_workarounds(ring);
902
903 if (IS_GEN9(dev))
904 return gen9_init_workarounds(ring);
905
906 return 0;
907 }
908
909 static int init_render_ring(struct intel_engine_cs *ring)
910 {
911 struct drm_device *dev = ring->dev;
912 struct drm_i915_private *dev_priv = dev->dev_private;
913 int ret = init_ring_common(ring);
914 if (ret)
915 return ret;
916
917 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
918 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
919 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
920
921 /* We need to disable the AsyncFlip performance optimisations in order
922 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
923 * programmed to '1' on all products.
924 *
925 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
926 */
927 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
928 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
929
930 /* Required for the hardware to program scanline values for waiting */
931 /* WaEnableFlushTlbInvalidationMode:snb */
932 if (INTEL_INFO(dev)->gen == 6)
933 I915_WRITE(GFX_MODE,
934 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
935
936 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
937 if (IS_GEN7(dev))
938 I915_WRITE(GFX_MODE_GEN7,
939 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
940 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
941
942 if (IS_GEN6(dev)) {
943 /* From the Sandybridge PRM, volume 1 part 3, page 24:
944 * "If this bit is set, STCunit will have LRA as replacement
945 * policy. [...] This bit must be reset. LRA replacement
946 * policy is not supported."
947 */
948 I915_WRITE(CACHE_MODE_0,
949 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
950 }
951
952 if (INTEL_INFO(dev)->gen >= 6)
953 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
954
955 if (HAS_L3_DPF(dev))
956 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
957
958 return init_workarounds_ring(ring);
959 }
960
961 static void render_ring_cleanup(struct intel_engine_cs *ring)
962 {
963 struct drm_device *dev = ring->dev;
964 struct drm_i915_private *dev_priv = dev->dev_private;
965
966 if (dev_priv->semaphore_obj) {
967 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
968 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
969 dev_priv->semaphore_obj = NULL;
970 }
971
972 intel_fini_pipe_control(ring);
973 }
974
975 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
976 unsigned int num_dwords)
977 {
978 #define MBOX_UPDATE_DWORDS 8
979 struct drm_device *dev = signaller->dev;
980 struct drm_i915_private *dev_priv = dev->dev_private;
981 struct intel_engine_cs *waiter;
982 int i, ret, num_rings;
983
984 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
985 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
986 #undef MBOX_UPDATE_DWORDS
987
988 ret = intel_ring_begin(signaller, num_dwords);
989 if (ret)
990 return ret;
991
992 for_each_ring(waiter, dev_priv, i) {
993 u32 seqno;
994 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
995 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
996 continue;
997
998 seqno = i915_gem_request_get_seqno(
999 signaller->outstanding_lazy_request);
1000 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1001 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1002 PIPE_CONTROL_QW_WRITE |
1003 PIPE_CONTROL_FLUSH_ENABLE);
1004 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1005 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1006 intel_ring_emit(signaller, seqno);
1007 intel_ring_emit(signaller, 0);
1008 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1009 MI_SEMAPHORE_TARGET(waiter->id));
1010 intel_ring_emit(signaller, 0);
1011 }
1012
1013 return 0;
1014 }
1015
1016 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
1017 unsigned int num_dwords)
1018 {
1019 #define MBOX_UPDATE_DWORDS 6
1020 struct drm_device *dev = signaller->dev;
1021 struct drm_i915_private *dev_priv = dev->dev_private;
1022 struct intel_engine_cs *waiter;
1023 int i, ret, num_rings;
1024
1025 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1026 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1027 #undef MBOX_UPDATE_DWORDS
1028
1029 ret = intel_ring_begin(signaller, num_dwords);
1030 if (ret)
1031 return ret;
1032
1033 for_each_ring(waiter, dev_priv, i) {
1034 u32 seqno;
1035 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1036 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1037 continue;
1038
1039 seqno = i915_gem_request_get_seqno(
1040 signaller->outstanding_lazy_request);
1041 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1042 MI_FLUSH_DW_OP_STOREDW);
1043 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1044 MI_FLUSH_DW_USE_GTT);
1045 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1046 intel_ring_emit(signaller, seqno);
1047 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1048 MI_SEMAPHORE_TARGET(waiter->id));
1049 intel_ring_emit(signaller, 0);
1050 }
1051
1052 return 0;
1053 }
1054
1055 static int gen6_signal(struct intel_engine_cs *signaller,
1056 unsigned int num_dwords)
1057 {
1058 struct drm_device *dev = signaller->dev;
1059 struct drm_i915_private *dev_priv = dev->dev_private;
1060 struct intel_engine_cs *useless;
1061 int i, ret, num_rings;
1062
1063 #define MBOX_UPDATE_DWORDS 3
1064 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1065 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1066 #undef MBOX_UPDATE_DWORDS
1067
1068 ret = intel_ring_begin(signaller, num_dwords);
1069 if (ret)
1070 return ret;
1071
1072 for_each_ring(useless, dev_priv, i) {
1073 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1074 if (mbox_reg != GEN6_NOSYNC) {
1075 u32 seqno = i915_gem_request_get_seqno(
1076 signaller->outstanding_lazy_request);
1077 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1078 intel_ring_emit(signaller, mbox_reg);
1079 intel_ring_emit(signaller, seqno);
1080 }
1081 }
1082
1083 /* If num_dwords was rounded, make sure the tail pointer is correct */
1084 if (num_rings % 2 == 0)
1085 intel_ring_emit(signaller, MI_NOOP);
1086
1087 return 0;
1088 }
1089
1090 /**
1091 * gen6_add_request - Update the semaphore mailbox registers
1092 *
1093 * @ring - ring that is adding a request
1094 * @seqno - return seqno stuck into the ring
1095 *
1096 * Update the mailbox registers in the *other* rings with the current seqno.
1097 * This acts like a signal in the canonical semaphore.
1098 */
1099 static int
1100 gen6_add_request(struct intel_engine_cs *ring)
1101 {
1102 int ret;
1103
1104 if (ring->semaphore.signal)
1105 ret = ring->semaphore.signal(ring, 4);
1106 else
1107 ret = intel_ring_begin(ring, 4);
1108
1109 if (ret)
1110 return ret;
1111
1112 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1113 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1114 intel_ring_emit(ring,
1115 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1116 intel_ring_emit(ring, MI_USER_INTERRUPT);
1117 __intel_ring_advance(ring);
1118
1119 return 0;
1120 }
1121
1122 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1123 u32 seqno)
1124 {
1125 struct drm_i915_private *dev_priv = dev->dev_private;
1126 return dev_priv->last_seqno < seqno;
1127 }
1128
1129 /**
1130 * intel_ring_sync - sync the waiter to the signaller on seqno
1131 *
1132 * @waiter - ring that is waiting
1133 * @signaller - ring which has, or will signal
1134 * @seqno - seqno which the waiter will block on
1135 */
1136
1137 static int
1138 gen8_ring_sync(struct intel_engine_cs *waiter,
1139 struct intel_engine_cs *signaller,
1140 u32 seqno)
1141 {
1142 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1143 int ret;
1144
1145 ret = intel_ring_begin(waiter, 4);
1146 if (ret)
1147 return ret;
1148
1149 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1150 MI_SEMAPHORE_GLOBAL_GTT |
1151 MI_SEMAPHORE_POLL |
1152 MI_SEMAPHORE_SAD_GTE_SDD);
1153 intel_ring_emit(waiter, seqno);
1154 intel_ring_emit(waiter,
1155 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1156 intel_ring_emit(waiter,
1157 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1158 intel_ring_advance(waiter);
1159 return 0;
1160 }
1161
1162 static int
1163 gen6_ring_sync(struct intel_engine_cs *waiter,
1164 struct intel_engine_cs *signaller,
1165 u32 seqno)
1166 {
1167 u32 dw1 = MI_SEMAPHORE_MBOX |
1168 MI_SEMAPHORE_COMPARE |
1169 MI_SEMAPHORE_REGISTER;
1170 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1171 int ret;
1172
1173 /* Throughout all of the GEM code, seqno passed implies our current
1174 * seqno is >= the last seqno executed. However for hardware the
1175 * comparison is strictly greater than.
1176 */
1177 seqno -= 1;
1178
1179 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1180
1181 ret = intel_ring_begin(waiter, 4);
1182 if (ret)
1183 return ret;
1184
1185 /* If seqno wrap happened, omit the wait with no-ops */
1186 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1187 intel_ring_emit(waiter, dw1 | wait_mbox);
1188 intel_ring_emit(waiter, seqno);
1189 intel_ring_emit(waiter, 0);
1190 intel_ring_emit(waiter, MI_NOOP);
1191 } else {
1192 intel_ring_emit(waiter, MI_NOOP);
1193 intel_ring_emit(waiter, MI_NOOP);
1194 intel_ring_emit(waiter, MI_NOOP);
1195 intel_ring_emit(waiter, MI_NOOP);
1196 }
1197 intel_ring_advance(waiter);
1198
1199 return 0;
1200 }
1201
1202 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1203 do { \
1204 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1205 PIPE_CONTROL_DEPTH_STALL); \
1206 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1207 intel_ring_emit(ring__, 0); \
1208 intel_ring_emit(ring__, 0); \
1209 } while (0)
1210
1211 static int
1212 pc_render_add_request(struct intel_engine_cs *ring)
1213 {
1214 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1215 int ret;
1216
1217 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1218 * incoherent with writes to memory, i.e. completely fubar,
1219 * so we need to use PIPE_NOTIFY instead.
1220 *
1221 * However, we also need to workaround the qword write
1222 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1223 * memory before requesting an interrupt.
1224 */
1225 ret = intel_ring_begin(ring, 32);
1226 if (ret)
1227 return ret;
1228
1229 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1230 PIPE_CONTROL_WRITE_FLUSH |
1231 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1232 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1233 intel_ring_emit(ring,
1234 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1235 intel_ring_emit(ring, 0);
1236 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1237 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1238 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1239 scratch_addr += 2 * CACHELINE_BYTES;
1240 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1241 scratch_addr += 2 * CACHELINE_BYTES;
1242 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1243 scratch_addr += 2 * CACHELINE_BYTES;
1244 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1245 scratch_addr += 2 * CACHELINE_BYTES;
1246 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1247
1248 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1249 PIPE_CONTROL_WRITE_FLUSH |
1250 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1251 PIPE_CONTROL_NOTIFY);
1252 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1253 intel_ring_emit(ring,
1254 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1255 intel_ring_emit(ring, 0);
1256 __intel_ring_advance(ring);
1257
1258 return 0;
1259 }
1260
1261 static u32
1262 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1263 {
1264 /* Workaround to force correct ordering between irq and seqno writes on
1265 * ivb (and maybe also on snb) by reading from a CS register (like
1266 * ACTHD) before reading the status page. */
1267 if (!lazy_coherency) {
1268 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1269 POSTING_READ(RING_ACTHD(ring->mmio_base));
1270 }
1271
1272 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1273 }
1274
1275 static u32
1276 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1277 {
1278 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1279 }
1280
1281 static void
1282 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1283 {
1284 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1285 }
1286
1287 static u32
1288 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1289 {
1290 return ring->scratch.cpu_page[0];
1291 }
1292
1293 static void
1294 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1295 {
1296 ring->scratch.cpu_page[0] = seqno;
1297 }
1298
1299 static bool
1300 gen5_ring_get_irq(struct intel_engine_cs *ring)
1301 {
1302 struct drm_device *dev = ring->dev;
1303 struct drm_i915_private *dev_priv = dev->dev_private;
1304 unsigned long flags;
1305
1306 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1307 return false;
1308
1309 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1310 if (ring->irq_refcount++ == 0)
1311 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1312 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1313
1314 return true;
1315 }
1316
1317 static void
1318 gen5_ring_put_irq(struct intel_engine_cs *ring)
1319 {
1320 struct drm_device *dev = ring->dev;
1321 struct drm_i915_private *dev_priv = dev->dev_private;
1322 unsigned long flags;
1323
1324 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1325 if (--ring->irq_refcount == 0)
1326 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1327 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1328 }
1329
1330 static bool
1331 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1332 {
1333 struct drm_device *dev = ring->dev;
1334 struct drm_i915_private *dev_priv = dev->dev_private;
1335 unsigned long flags;
1336
1337 if (!intel_irqs_enabled(dev_priv))
1338 return false;
1339
1340 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1341 if (ring->irq_refcount++ == 0) {
1342 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1343 I915_WRITE(IMR, dev_priv->irq_mask);
1344 POSTING_READ(IMR);
1345 }
1346 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1347
1348 return true;
1349 }
1350
1351 static void
1352 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1353 {
1354 struct drm_device *dev = ring->dev;
1355 struct drm_i915_private *dev_priv = dev->dev_private;
1356 unsigned long flags;
1357
1358 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1359 if (--ring->irq_refcount == 0) {
1360 dev_priv->irq_mask |= ring->irq_enable_mask;
1361 I915_WRITE(IMR, dev_priv->irq_mask);
1362 POSTING_READ(IMR);
1363 }
1364 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1365 }
1366
1367 static bool
1368 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1369 {
1370 struct drm_device *dev = ring->dev;
1371 struct drm_i915_private *dev_priv = dev->dev_private;
1372 unsigned long flags;
1373
1374 if (!intel_irqs_enabled(dev_priv))
1375 return false;
1376
1377 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1378 if (ring->irq_refcount++ == 0) {
1379 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1380 I915_WRITE16(IMR, dev_priv->irq_mask);
1381 POSTING_READ16(IMR);
1382 }
1383 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1384
1385 return true;
1386 }
1387
1388 static void
1389 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1390 {
1391 struct drm_device *dev = ring->dev;
1392 struct drm_i915_private *dev_priv = dev->dev_private;
1393 unsigned long flags;
1394
1395 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1396 if (--ring->irq_refcount == 0) {
1397 dev_priv->irq_mask |= ring->irq_enable_mask;
1398 I915_WRITE16(IMR, dev_priv->irq_mask);
1399 POSTING_READ16(IMR);
1400 }
1401 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1402 }
1403
1404 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1405 {
1406 struct drm_device *dev = ring->dev;
1407 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1408 u32 mmio = 0;
1409
1410 /* The ring status page addresses are no longer next to the rest of
1411 * the ring registers as of gen7.
1412 */
1413 if (IS_GEN7(dev)) {
1414 switch (ring->id) {
1415 case RCS:
1416 mmio = RENDER_HWS_PGA_GEN7;
1417 break;
1418 case BCS:
1419 mmio = BLT_HWS_PGA_GEN7;
1420 break;
1421 /*
1422 * VCS2 actually doesn't exist on Gen7. Only shut up
1423 * gcc switch check warning
1424 */
1425 case VCS2:
1426 case VCS:
1427 mmio = BSD_HWS_PGA_GEN7;
1428 break;
1429 case VECS:
1430 mmio = VEBOX_HWS_PGA_GEN7;
1431 break;
1432 }
1433 } else if (IS_GEN6(ring->dev)) {
1434 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1435 } else {
1436 /* XXX: gen8 returns to sanity */
1437 mmio = RING_HWS_PGA(ring->mmio_base);
1438 }
1439
1440 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1441 POSTING_READ(mmio);
1442
1443 /*
1444 * Flush the TLB for this page
1445 *
1446 * FIXME: These two bits have disappeared on gen8, so a question
1447 * arises: do we still need this and if so how should we go about
1448 * invalidating the TLB?
1449 */
1450 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1451 u32 reg = RING_INSTPM(ring->mmio_base);
1452
1453 /* ring should be idle before issuing a sync flush*/
1454 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1455
1456 I915_WRITE(reg,
1457 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1458 INSTPM_SYNC_FLUSH));
1459 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1460 1000))
1461 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1462 ring->name);
1463 }
1464 }
1465
1466 static int
1467 bsd_ring_flush(struct intel_engine_cs *ring,
1468 u32 invalidate_domains,
1469 u32 flush_domains)
1470 {
1471 int ret;
1472
1473 ret = intel_ring_begin(ring, 2);
1474 if (ret)
1475 return ret;
1476
1477 intel_ring_emit(ring, MI_FLUSH);
1478 intel_ring_emit(ring, MI_NOOP);
1479 intel_ring_advance(ring);
1480 return 0;
1481 }
1482
1483 static int
1484 i9xx_add_request(struct intel_engine_cs *ring)
1485 {
1486 int ret;
1487
1488 ret = intel_ring_begin(ring, 4);
1489 if (ret)
1490 return ret;
1491
1492 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1493 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1494 intel_ring_emit(ring,
1495 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1496 intel_ring_emit(ring, MI_USER_INTERRUPT);
1497 __intel_ring_advance(ring);
1498
1499 return 0;
1500 }
1501
1502 static bool
1503 gen6_ring_get_irq(struct intel_engine_cs *ring)
1504 {
1505 struct drm_device *dev = ring->dev;
1506 struct drm_i915_private *dev_priv = dev->dev_private;
1507 unsigned long flags;
1508
1509 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1510 return false;
1511
1512 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1513 if (ring->irq_refcount++ == 0) {
1514 if (HAS_L3_DPF(dev) && ring->id == RCS)
1515 I915_WRITE_IMR(ring,
1516 ~(ring->irq_enable_mask |
1517 GT_PARITY_ERROR(dev)));
1518 else
1519 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1520 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1521 }
1522 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1523
1524 return true;
1525 }
1526
1527 static void
1528 gen6_ring_put_irq(struct intel_engine_cs *ring)
1529 {
1530 struct drm_device *dev = ring->dev;
1531 struct drm_i915_private *dev_priv = dev->dev_private;
1532 unsigned long flags;
1533
1534 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1535 if (--ring->irq_refcount == 0) {
1536 if (HAS_L3_DPF(dev) && ring->id == RCS)
1537 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1538 else
1539 I915_WRITE_IMR(ring, ~0);
1540 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1541 }
1542 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1543 }
1544
1545 static bool
1546 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1547 {
1548 struct drm_device *dev = ring->dev;
1549 struct drm_i915_private *dev_priv = dev->dev_private;
1550 unsigned long flags;
1551
1552 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1553 return false;
1554
1555 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1556 if (ring->irq_refcount++ == 0) {
1557 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1558 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1559 }
1560 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1561
1562 return true;
1563 }
1564
1565 static void
1566 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1567 {
1568 struct drm_device *dev = ring->dev;
1569 struct drm_i915_private *dev_priv = dev->dev_private;
1570 unsigned long flags;
1571
1572 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1573 if (--ring->irq_refcount == 0) {
1574 I915_WRITE_IMR(ring, ~0);
1575 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1576 }
1577 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1578 }
1579
1580 static bool
1581 gen8_ring_get_irq(struct intel_engine_cs *ring)
1582 {
1583 struct drm_device *dev = ring->dev;
1584 struct drm_i915_private *dev_priv = dev->dev_private;
1585 unsigned long flags;
1586
1587 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1588 return false;
1589
1590 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1591 if (ring->irq_refcount++ == 0) {
1592 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1593 I915_WRITE_IMR(ring,
1594 ~(ring->irq_enable_mask |
1595 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1596 } else {
1597 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1598 }
1599 POSTING_READ(RING_IMR(ring->mmio_base));
1600 }
1601 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1602
1603 return true;
1604 }
1605
1606 static void
1607 gen8_ring_put_irq(struct intel_engine_cs *ring)
1608 {
1609 struct drm_device *dev = ring->dev;
1610 struct drm_i915_private *dev_priv = dev->dev_private;
1611 unsigned long flags;
1612
1613 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1614 if (--ring->irq_refcount == 0) {
1615 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1616 I915_WRITE_IMR(ring,
1617 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1618 } else {
1619 I915_WRITE_IMR(ring, ~0);
1620 }
1621 POSTING_READ(RING_IMR(ring->mmio_base));
1622 }
1623 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1624 }
1625
1626 static int
1627 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1628 u64 offset, u32 length,
1629 unsigned flags)
1630 {
1631 int ret;
1632
1633 ret = intel_ring_begin(ring, 2);
1634 if (ret)
1635 return ret;
1636
1637 intel_ring_emit(ring,
1638 MI_BATCH_BUFFER_START |
1639 MI_BATCH_GTT |
1640 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1641 intel_ring_emit(ring, offset);
1642 intel_ring_advance(ring);
1643
1644 return 0;
1645 }
1646
1647 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1648 #define I830_BATCH_LIMIT (256*1024)
1649 #define I830_TLB_ENTRIES (2)
1650 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1651 static int
1652 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1653 u64 offset, u32 len,
1654 unsigned flags)
1655 {
1656 u32 cs_offset = ring->scratch.gtt_offset;
1657 int ret;
1658
1659 ret = intel_ring_begin(ring, 6);
1660 if (ret)
1661 return ret;
1662
1663 /* Evict the invalid PTE TLBs */
1664 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1665 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1666 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1667 intel_ring_emit(ring, cs_offset);
1668 intel_ring_emit(ring, 0xdeadbeef);
1669 intel_ring_emit(ring, MI_NOOP);
1670 intel_ring_advance(ring);
1671
1672 if ((flags & I915_DISPATCH_PINNED) == 0) {
1673 if (len > I830_BATCH_LIMIT)
1674 return -ENOSPC;
1675
1676 ret = intel_ring_begin(ring, 6 + 2);
1677 if (ret)
1678 return ret;
1679
1680 /* Blit the batch (which has now all relocs applied) to the
1681 * stable batch scratch bo area (so that the CS never
1682 * stumbles over its tlb invalidation bug) ...
1683 */
1684 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1685 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1686 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1687 intel_ring_emit(ring, cs_offset);
1688 intel_ring_emit(ring, 4096);
1689 intel_ring_emit(ring, offset);
1690
1691 intel_ring_emit(ring, MI_FLUSH);
1692 intel_ring_emit(ring, MI_NOOP);
1693 intel_ring_advance(ring);
1694
1695 /* ... and execute it. */
1696 offset = cs_offset;
1697 }
1698
1699 ret = intel_ring_begin(ring, 4);
1700 if (ret)
1701 return ret;
1702
1703 intel_ring_emit(ring, MI_BATCH_BUFFER);
1704 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1705 intel_ring_emit(ring, offset + len - 8);
1706 intel_ring_emit(ring, MI_NOOP);
1707 intel_ring_advance(ring);
1708
1709 return 0;
1710 }
1711
1712 static int
1713 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1714 u64 offset, u32 len,
1715 unsigned flags)
1716 {
1717 int ret;
1718
1719 ret = intel_ring_begin(ring, 2);
1720 if (ret)
1721 return ret;
1722
1723 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1724 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1725 intel_ring_advance(ring);
1726
1727 return 0;
1728 }
1729
1730 static void cleanup_status_page(struct intel_engine_cs *ring)
1731 {
1732 struct drm_i915_gem_object *obj;
1733
1734 obj = ring->status_page.obj;
1735 if (obj == NULL)
1736 return;
1737
1738 kunmap(sg_page(obj->pages->sgl));
1739 i915_gem_object_ggtt_unpin(obj);
1740 drm_gem_object_unreference(&obj->base);
1741 ring->status_page.obj = NULL;
1742 }
1743
1744 static int init_status_page(struct intel_engine_cs *ring)
1745 {
1746 struct drm_i915_gem_object *obj;
1747
1748 if ((obj = ring->status_page.obj) == NULL) {
1749 unsigned flags;
1750 int ret;
1751
1752 obj = i915_gem_alloc_object(ring->dev, 4096);
1753 if (obj == NULL) {
1754 DRM_ERROR("Failed to allocate status page\n");
1755 return -ENOMEM;
1756 }
1757
1758 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1759 if (ret)
1760 goto err_unref;
1761
1762 flags = 0;
1763 if (!HAS_LLC(ring->dev))
1764 /* On g33, we cannot place HWS above 256MiB, so
1765 * restrict its pinning to the low mappable arena.
1766 * Though this restriction is not documented for
1767 * gen4, gen5, or byt, they also behave similarly
1768 * and hang if the HWS is placed at the top of the
1769 * GTT. To generalise, it appears that all !llc
1770 * platforms have issues with us placing the HWS
1771 * above the mappable region (even though we never
1772 * actualy map it).
1773 */
1774 flags |= PIN_MAPPABLE;
1775 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1776 if (ret) {
1777 err_unref:
1778 drm_gem_object_unreference(&obj->base);
1779 return ret;
1780 }
1781
1782 ring->status_page.obj = obj;
1783 }
1784
1785 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1786 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1787 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1788
1789 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1790 ring->name, ring->status_page.gfx_addr);
1791
1792 return 0;
1793 }
1794
1795 static int init_phys_status_page(struct intel_engine_cs *ring)
1796 {
1797 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1798
1799 if (!dev_priv->status_page_dmah) {
1800 dev_priv->status_page_dmah =
1801 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1802 if (!dev_priv->status_page_dmah)
1803 return -ENOMEM;
1804 }
1805
1806 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1807 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1808
1809 return 0;
1810 }
1811
1812 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1813 {
1814 iounmap(ringbuf->virtual_start);
1815 ringbuf->virtual_start = NULL;
1816 i915_gem_object_ggtt_unpin(ringbuf->obj);
1817 }
1818
1819 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1820 struct intel_ringbuffer *ringbuf)
1821 {
1822 struct drm_i915_private *dev_priv = to_i915(dev);
1823 struct drm_i915_gem_object *obj = ringbuf->obj;
1824 int ret;
1825
1826 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1827 if (ret)
1828 return ret;
1829
1830 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1831 if (ret) {
1832 i915_gem_object_ggtt_unpin(obj);
1833 return ret;
1834 }
1835
1836 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1837 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1838 if (ringbuf->virtual_start == NULL) {
1839 i915_gem_object_ggtt_unpin(obj);
1840 return -EINVAL;
1841 }
1842
1843 return 0;
1844 }
1845
1846 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1847 {
1848 drm_gem_object_unreference(&ringbuf->obj->base);
1849 ringbuf->obj = NULL;
1850 }
1851
1852 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1853 struct intel_ringbuffer *ringbuf)
1854 {
1855 struct drm_i915_gem_object *obj;
1856
1857 obj = NULL;
1858 if (!HAS_LLC(dev))
1859 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1860 if (obj == NULL)
1861 obj = i915_gem_alloc_object(dev, ringbuf->size);
1862 if (obj == NULL)
1863 return -ENOMEM;
1864
1865 /* mark ring buffers as read-only from GPU side by default */
1866 obj->gt_ro = 1;
1867
1868 ringbuf->obj = obj;
1869
1870 return 0;
1871 }
1872
1873 static int intel_init_ring_buffer(struct drm_device *dev,
1874 struct intel_engine_cs *ring)
1875 {
1876 struct intel_ringbuffer *ringbuf;
1877 int ret;
1878
1879 WARN_ON(ring->buffer);
1880
1881 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1882 if (!ringbuf)
1883 return -ENOMEM;
1884 ring->buffer = ringbuf;
1885
1886 ring->dev = dev;
1887 INIT_LIST_HEAD(&ring->active_list);
1888 INIT_LIST_HEAD(&ring->request_list);
1889 INIT_LIST_HEAD(&ring->execlist_queue);
1890 ringbuf->size = 32 * PAGE_SIZE;
1891 ringbuf->ring = ring;
1892 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1893
1894 init_waitqueue_head(&ring->irq_queue);
1895
1896 if (I915_NEED_GFX_HWS(dev)) {
1897 ret = init_status_page(ring);
1898 if (ret)
1899 goto error;
1900 } else {
1901 BUG_ON(ring->id != RCS);
1902 ret = init_phys_status_page(ring);
1903 if (ret)
1904 goto error;
1905 }
1906
1907 WARN_ON(ringbuf->obj);
1908
1909 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1910 if (ret) {
1911 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
1912 ring->name, ret);
1913 goto error;
1914 }
1915
1916 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1917 if (ret) {
1918 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
1919 ring->name, ret);
1920 intel_destroy_ringbuffer_obj(ringbuf);
1921 goto error;
1922 }
1923
1924 /* Workaround an erratum on the i830 which causes a hang if
1925 * the TAIL pointer points to within the last 2 cachelines
1926 * of the buffer.
1927 */
1928 ringbuf->effective_size = ringbuf->size;
1929 if (IS_I830(dev) || IS_845G(dev))
1930 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1931
1932 ret = i915_cmd_parser_init_ring(ring);
1933 if (ret)
1934 goto error;
1935
1936 return 0;
1937
1938 error:
1939 kfree(ringbuf);
1940 ring->buffer = NULL;
1941 return ret;
1942 }
1943
1944 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1945 {
1946 struct drm_i915_private *dev_priv;
1947 struct intel_ringbuffer *ringbuf;
1948
1949 if (!intel_ring_initialized(ring))
1950 return;
1951
1952 dev_priv = to_i915(ring->dev);
1953 ringbuf = ring->buffer;
1954
1955 intel_stop_ring_buffer(ring);
1956 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1957
1958 intel_unpin_ringbuffer_obj(ringbuf);
1959 intel_destroy_ringbuffer_obj(ringbuf);
1960 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1961
1962 if (ring->cleanup)
1963 ring->cleanup(ring);
1964
1965 cleanup_status_page(ring);
1966
1967 i915_cmd_parser_fini_ring(ring);
1968
1969 kfree(ringbuf);
1970 ring->buffer = NULL;
1971 }
1972
1973 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1974 {
1975 struct intel_ringbuffer *ringbuf = ring->buffer;
1976 struct drm_i915_gem_request *request;
1977 int ret;
1978
1979 if (intel_ring_space(ringbuf) >= n)
1980 return 0;
1981
1982 list_for_each_entry(request, &ring->request_list, list) {
1983 if (__intel_ring_space(request->postfix, ringbuf->tail,
1984 ringbuf->size) >= n) {
1985 break;
1986 }
1987 }
1988
1989 if (&request->list == &ring->request_list)
1990 return -ENOSPC;
1991
1992 ret = i915_wait_request(request);
1993 if (ret)
1994 return ret;
1995
1996 i915_gem_retire_requests_ring(ring);
1997
1998 return 0;
1999 }
2000
2001 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2002 {
2003 struct drm_device *dev = ring->dev;
2004 struct drm_i915_private *dev_priv = dev->dev_private;
2005 struct intel_ringbuffer *ringbuf = ring->buffer;
2006 unsigned long end;
2007 int ret;
2008
2009 ret = intel_ring_wait_request(ring, n);
2010 if (ret != -ENOSPC)
2011 return ret;
2012
2013 /* force the tail write in case we have been skipping them */
2014 __intel_ring_advance(ring);
2015
2016 /* With GEM the hangcheck timer should kick us out of the loop,
2017 * leaving it early runs the risk of corrupting GEM state (due
2018 * to running on almost untested codepaths). But on resume
2019 * timers don't work yet, so prevent a complete hang in that
2020 * case by choosing an insanely large timeout. */
2021 end = jiffies + 60 * HZ;
2022
2023 ret = 0;
2024 trace_i915_ring_wait_begin(ring);
2025 do {
2026 if (intel_ring_space(ringbuf) >= n)
2027 break;
2028 ringbuf->head = I915_READ_HEAD(ring);
2029 if (intel_ring_space(ringbuf) >= n)
2030 break;
2031
2032 msleep(1);
2033
2034 if (dev_priv->mm.interruptible && signal_pending(current)) {
2035 ret = -ERESTARTSYS;
2036 break;
2037 }
2038
2039 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2040 dev_priv->mm.interruptible);
2041 if (ret)
2042 break;
2043
2044 if (time_after(jiffies, end)) {
2045 ret = -EBUSY;
2046 break;
2047 }
2048 } while (1);
2049 trace_i915_ring_wait_end(ring);
2050 return ret;
2051 }
2052
2053 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
2054 {
2055 uint32_t __iomem *virt;
2056 struct intel_ringbuffer *ringbuf = ring->buffer;
2057 int rem = ringbuf->size - ringbuf->tail;
2058
2059 if (ringbuf->space < rem) {
2060 int ret = ring_wait_for_space(ring, rem);
2061 if (ret)
2062 return ret;
2063 }
2064
2065 virt = ringbuf->virtual_start + ringbuf->tail;
2066 rem /= 4;
2067 while (rem--)
2068 iowrite32(MI_NOOP, virt++);
2069
2070 ringbuf->tail = 0;
2071 intel_ring_update_space(ringbuf);
2072
2073 return 0;
2074 }
2075
2076 int intel_ring_idle(struct intel_engine_cs *ring)
2077 {
2078 struct drm_i915_gem_request *req;
2079 int ret;
2080
2081 /* We need to add any requests required to flush the objects and ring */
2082 if (ring->outstanding_lazy_request) {
2083 ret = i915_add_request(ring);
2084 if (ret)
2085 return ret;
2086 }
2087
2088 /* Wait upon the last request to be completed */
2089 if (list_empty(&ring->request_list))
2090 return 0;
2091
2092 req = list_entry(ring->request_list.prev,
2093 struct drm_i915_gem_request,
2094 list);
2095
2096 return i915_wait_request(req);
2097 }
2098
2099 static int
2100 intel_ring_alloc_request(struct intel_engine_cs *ring)
2101 {
2102 int ret;
2103 struct drm_i915_gem_request *request;
2104 struct drm_i915_private *dev_private = ring->dev->dev_private;
2105
2106 if (ring->outstanding_lazy_request)
2107 return 0;
2108
2109 request = kzalloc(sizeof(*request), GFP_KERNEL);
2110 if (request == NULL)
2111 return -ENOMEM;
2112
2113 kref_init(&request->ref);
2114 request->ring = ring;
2115 request->uniq = dev_private->request_uniq++;
2116
2117 ret = i915_gem_get_seqno(ring->dev, &request->seqno);
2118 if (ret) {
2119 kfree(request);
2120 return ret;
2121 }
2122
2123 ring->outstanding_lazy_request = request;
2124 return 0;
2125 }
2126
2127 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2128 int bytes)
2129 {
2130 struct intel_ringbuffer *ringbuf = ring->buffer;
2131 int ret;
2132
2133 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2134 ret = intel_wrap_ring_buffer(ring);
2135 if (unlikely(ret))
2136 return ret;
2137 }
2138
2139 if (unlikely(ringbuf->space < bytes)) {
2140 ret = ring_wait_for_space(ring, bytes);
2141 if (unlikely(ret))
2142 return ret;
2143 }
2144
2145 return 0;
2146 }
2147
2148 int intel_ring_begin(struct intel_engine_cs *ring,
2149 int num_dwords)
2150 {
2151 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2152 int ret;
2153
2154 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2155 dev_priv->mm.interruptible);
2156 if (ret)
2157 return ret;
2158
2159 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2160 if (ret)
2161 return ret;
2162
2163 /* Preallocate the olr before touching the ring */
2164 ret = intel_ring_alloc_request(ring);
2165 if (ret)
2166 return ret;
2167
2168 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2169 return 0;
2170 }
2171
2172 /* Align the ring tail to a cacheline boundary */
2173 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2174 {
2175 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2176 int ret;
2177
2178 if (num_dwords == 0)
2179 return 0;
2180
2181 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2182 ret = intel_ring_begin(ring, num_dwords);
2183 if (ret)
2184 return ret;
2185
2186 while (num_dwords--)
2187 intel_ring_emit(ring, MI_NOOP);
2188
2189 intel_ring_advance(ring);
2190
2191 return 0;
2192 }
2193
2194 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2195 {
2196 struct drm_device *dev = ring->dev;
2197 struct drm_i915_private *dev_priv = dev->dev_private;
2198
2199 BUG_ON(ring->outstanding_lazy_request);
2200
2201 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2202 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2203 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2204 if (HAS_VEBOX(dev))
2205 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2206 }
2207
2208 ring->set_seqno(ring, seqno);
2209 ring->hangcheck.seqno = seqno;
2210 }
2211
2212 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2213 u32 value)
2214 {
2215 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2216
2217 /* Every tail move must follow the sequence below */
2218
2219 /* Disable notification that the ring is IDLE. The GT
2220 * will then assume that it is busy and bring it out of rc6.
2221 */
2222 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2223 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2224
2225 /* Clear the context id. Here be magic! */
2226 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2227
2228 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2229 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2230 GEN6_BSD_SLEEP_INDICATOR) == 0,
2231 50))
2232 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2233
2234 /* Now that the ring is fully powered up, update the tail */
2235 I915_WRITE_TAIL(ring, value);
2236 POSTING_READ(RING_TAIL(ring->mmio_base));
2237
2238 /* Let the ring send IDLE messages to the GT again,
2239 * and so let it sleep to conserve power when idle.
2240 */
2241 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2242 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2243 }
2244
2245 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2246 u32 invalidate, u32 flush)
2247 {
2248 uint32_t cmd;
2249 int ret;
2250
2251 ret = intel_ring_begin(ring, 4);
2252 if (ret)
2253 return ret;
2254
2255 cmd = MI_FLUSH_DW;
2256 if (INTEL_INFO(ring->dev)->gen >= 8)
2257 cmd += 1;
2258 /*
2259 * Bspec vol 1c.5 - video engine command streamer:
2260 * "If ENABLED, all TLBs will be invalidated once the flush
2261 * operation is complete. This bit is only valid when the
2262 * Post-Sync Operation field is a value of 1h or 3h."
2263 */
2264 if (invalidate & I915_GEM_GPU_DOMAINS)
2265 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
2266 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2267 intel_ring_emit(ring, cmd);
2268 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2269 if (INTEL_INFO(ring->dev)->gen >= 8) {
2270 intel_ring_emit(ring, 0); /* upper addr */
2271 intel_ring_emit(ring, 0); /* value */
2272 } else {
2273 intel_ring_emit(ring, 0);
2274 intel_ring_emit(ring, MI_NOOP);
2275 }
2276 intel_ring_advance(ring);
2277 return 0;
2278 }
2279
2280 static int
2281 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2282 u64 offset, u32 len,
2283 unsigned flags)
2284 {
2285 bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
2286 int ret;
2287
2288 ret = intel_ring_begin(ring, 4);
2289 if (ret)
2290 return ret;
2291
2292 /* FIXME(BDW): Address space and security selectors. */
2293 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2294 intel_ring_emit(ring, lower_32_bits(offset));
2295 intel_ring_emit(ring, upper_32_bits(offset));
2296 intel_ring_emit(ring, MI_NOOP);
2297 intel_ring_advance(ring);
2298
2299 return 0;
2300 }
2301
2302 static int
2303 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2304 u64 offset, u32 len,
2305 unsigned flags)
2306 {
2307 int ret;
2308
2309 ret = intel_ring_begin(ring, 2);
2310 if (ret)
2311 return ret;
2312
2313 intel_ring_emit(ring,
2314 MI_BATCH_BUFFER_START |
2315 (flags & I915_DISPATCH_SECURE ?
2316 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2317 /* bit0-7 is the length on GEN6+ */
2318 intel_ring_emit(ring, offset);
2319 intel_ring_advance(ring);
2320
2321 return 0;
2322 }
2323
2324 static int
2325 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2326 u64 offset, u32 len,
2327 unsigned flags)
2328 {
2329 int ret;
2330
2331 ret = intel_ring_begin(ring, 2);
2332 if (ret)
2333 return ret;
2334
2335 intel_ring_emit(ring,
2336 MI_BATCH_BUFFER_START |
2337 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2338 /* bit0-7 is the length on GEN6+ */
2339 intel_ring_emit(ring, offset);
2340 intel_ring_advance(ring);
2341
2342 return 0;
2343 }
2344
2345 /* Blitter support (SandyBridge+) */
2346
2347 static int gen6_ring_flush(struct intel_engine_cs *ring,
2348 u32 invalidate, u32 flush)
2349 {
2350 struct drm_device *dev = ring->dev;
2351 struct drm_i915_private *dev_priv = dev->dev_private;
2352 uint32_t cmd;
2353 int ret;
2354
2355 ret = intel_ring_begin(ring, 4);
2356 if (ret)
2357 return ret;
2358
2359 cmd = MI_FLUSH_DW;
2360 if (INTEL_INFO(ring->dev)->gen >= 8)
2361 cmd += 1;
2362 /*
2363 * Bspec vol 1c.3 - blitter engine command streamer:
2364 * "If ENABLED, all TLBs will be invalidated once the flush
2365 * operation is complete. This bit is only valid when the
2366 * Post-Sync Operation field is a value of 1h or 3h."
2367 */
2368 if (invalidate & I915_GEM_DOMAIN_RENDER)
2369 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2370 MI_FLUSH_DW_OP_STOREDW;
2371 intel_ring_emit(ring, cmd);
2372 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2373 if (INTEL_INFO(ring->dev)->gen >= 8) {
2374 intel_ring_emit(ring, 0); /* upper addr */
2375 intel_ring_emit(ring, 0); /* value */
2376 } else {
2377 intel_ring_emit(ring, 0);
2378 intel_ring_emit(ring, MI_NOOP);
2379 }
2380 intel_ring_advance(ring);
2381
2382 if (!invalidate && flush) {
2383 if (IS_GEN7(dev))
2384 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2385 else if (IS_BROADWELL(dev))
2386 dev_priv->fbc.need_sw_cache_clean = true;
2387 }
2388
2389 return 0;
2390 }
2391
2392 int intel_init_render_ring_buffer(struct drm_device *dev)
2393 {
2394 struct drm_i915_private *dev_priv = dev->dev_private;
2395 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2396 struct drm_i915_gem_object *obj;
2397 int ret;
2398
2399 ring->name = "render ring";
2400 ring->id = RCS;
2401 ring->mmio_base = RENDER_RING_BASE;
2402
2403 if (INTEL_INFO(dev)->gen >= 8) {
2404 if (i915_semaphore_is_enabled(dev)) {
2405 obj = i915_gem_alloc_object(dev, 4096);
2406 if (obj == NULL) {
2407 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2408 i915.semaphores = 0;
2409 } else {
2410 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2411 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2412 if (ret != 0) {
2413 drm_gem_object_unreference(&obj->base);
2414 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2415 i915.semaphores = 0;
2416 } else
2417 dev_priv->semaphore_obj = obj;
2418 }
2419 }
2420
2421 ring->init_context = intel_rcs_ctx_init;
2422 ring->add_request = gen6_add_request;
2423 ring->flush = gen8_render_ring_flush;
2424 ring->irq_get = gen8_ring_get_irq;
2425 ring->irq_put = gen8_ring_put_irq;
2426 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2427 ring->get_seqno = gen6_ring_get_seqno;
2428 ring->set_seqno = ring_set_seqno;
2429 if (i915_semaphore_is_enabled(dev)) {
2430 WARN_ON(!dev_priv->semaphore_obj);
2431 ring->semaphore.sync_to = gen8_ring_sync;
2432 ring->semaphore.signal = gen8_rcs_signal;
2433 GEN8_RING_SEMAPHORE_INIT;
2434 }
2435 } else if (INTEL_INFO(dev)->gen >= 6) {
2436 ring->add_request = gen6_add_request;
2437 ring->flush = gen7_render_ring_flush;
2438 if (INTEL_INFO(dev)->gen == 6)
2439 ring->flush = gen6_render_ring_flush;
2440 ring->irq_get = gen6_ring_get_irq;
2441 ring->irq_put = gen6_ring_put_irq;
2442 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2443 ring->get_seqno = gen6_ring_get_seqno;
2444 ring->set_seqno = ring_set_seqno;
2445 if (i915_semaphore_is_enabled(dev)) {
2446 ring->semaphore.sync_to = gen6_ring_sync;
2447 ring->semaphore.signal = gen6_signal;
2448 /*
2449 * The current semaphore is only applied on pre-gen8
2450 * platform. And there is no VCS2 ring on the pre-gen8
2451 * platform. So the semaphore between RCS and VCS2 is
2452 * initialized as INVALID. Gen8 will initialize the
2453 * sema between VCS2 and RCS later.
2454 */
2455 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2456 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2457 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2458 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2459 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2460 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2461 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2462 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2463 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2464 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2465 }
2466 } else if (IS_GEN5(dev)) {
2467 ring->add_request = pc_render_add_request;
2468 ring->flush = gen4_render_ring_flush;
2469 ring->get_seqno = pc_render_get_seqno;
2470 ring->set_seqno = pc_render_set_seqno;
2471 ring->irq_get = gen5_ring_get_irq;
2472 ring->irq_put = gen5_ring_put_irq;
2473 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2474 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2475 } else {
2476 ring->add_request = i9xx_add_request;
2477 if (INTEL_INFO(dev)->gen < 4)
2478 ring->flush = gen2_render_ring_flush;
2479 else
2480 ring->flush = gen4_render_ring_flush;
2481 ring->get_seqno = ring_get_seqno;
2482 ring->set_seqno = ring_set_seqno;
2483 if (IS_GEN2(dev)) {
2484 ring->irq_get = i8xx_ring_get_irq;
2485 ring->irq_put = i8xx_ring_put_irq;
2486 } else {
2487 ring->irq_get = i9xx_ring_get_irq;
2488 ring->irq_put = i9xx_ring_put_irq;
2489 }
2490 ring->irq_enable_mask = I915_USER_INTERRUPT;
2491 }
2492 ring->write_tail = ring_write_tail;
2493
2494 if (IS_HASWELL(dev))
2495 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2496 else if (IS_GEN8(dev))
2497 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2498 else if (INTEL_INFO(dev)->gen >= 6)
2499 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2500 else if (INTEL_INFO(dev)->gen >= 4)
2501 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2502 else if (IS_I830(dev) || IS_845G(dev))
2503 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2504 else
2505 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2506 ring->init_hw = init_render_ring;
2507 ring->cleanup = render_ring_cleanup;
2508
2509 /* Workaround batchbuffer to combat CS tlb bug. */
2510 if (HAS_BROKEN_CS_TLB(dev)) {
2511 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2512 if (obj == NULL) {
2513 DRM_ERROR("Failed to allocate batch bo\n");
2514 return -ENOMEM;
2515 }
2516
2517 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2518 if (ret != 0) {
2519 drm_gem_object_unreference(&obj->base);
2520 DRM_ERROR("Failed to ping batch bo\n");
2521 return ret;
2522 }
2523
2524 ring->scratch.obj = obj;
2525 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2526 }
2527
2528 ret = intel_init_ring_buffer(dev, ring);
2529 if (ret)
2530 return ret;
2531
2532 if (INTEL_INFO(dev)->gen >= 5) {
2533 ret = intel_init_pipe_control(ring);
2534 if (ret)
2535 return ret;
2536 }
2537
2538 return 0;
2539 }
2540
2541 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2542 {
2543 struct drm_i915_private *dev_priv = dev->dev_private;
2544 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2545
2546 ring->name = "bsd ring";
2547 ring->id = VCS;
2548
2549 ring->write_tail = ring_write_tail;
2550 if (INTEL_INFO(dev)->gen >= 6) {
2551 ring->mmio_base = GEN6_BSD_RING_BASE;
2552 /* gen6 bsd needs a special wa for tail updates */
2553 if (IS_GEN6(dev))
2554 ring->write_tail = gen6_bsd_ring_write_tail;
2555 ring->flush = gen6_bsd_ring_flush;
2556 ring->add_request = gen6_add_request;
2557 ring->get_seqno = gen6_ring_get_seqno;
2558 ring->set_seqno = ring_set_seqno;
2559 if (INTEL_INFO(dev)->gen >= 8) {
2560 ring->irq_enable_mask =
2561 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2562 ring->irq_get = gen8_ring_get_irq;
2563 ring->irq_put = gen8_ring_put_irq;
2564 ring->dispatch_execbuffer =
2565 gen8_ring_dispatch_execbuffer;
2566 if (i915_semaphore_is_enabled(dev)) {
2567 ring->semaphore.sync_to = gen8_ring_sync;
2568 ring->semaphore.signal = gen8_xcs_signal;
2569 GEN8_RING_SEMAPHORE_INIT;
2570 }
2571 } else {
2572 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2573 ring->irq_get = gen6_ring_get_irq;
2574 ring->irq_put = gen6_ring_put_irq;
2575 ring->dispatch_execbuffer =
2576 gen6_ring_dispatch_execbuffer;
2577 if (i915_semaphore_is_enabled(dev)) {
2578 ring->semaphore.sync_to = gen6_ring_sync;
2579 ring->semaphore.signal = gen6_signal;
2580 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2581 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2582 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2583 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2584 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2585 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2586 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2587 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2588 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2589 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2590 }
2591 }
2592 } else {
2593 ring->mmio_base = BSD_RING_BASE;
2594 ring->flush = bsd_ring_flush;
2595 ring->add_request = i9xx_add_request;
2596 ring->get_seqno = ring_get_seqno;
2597 ring->set_seqno = ring_set_seqno;
2598 if (IS_GEN5(dev)) {
2599 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2600 ring->irq_get = gen5_ring_get_irq;
2601 ring->irq_put = gen5_ring_put_irq;
2602 } else {
2603 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2604 ring->irq_get = i9xx_ring_get_irq;
2605 ring->irq_put = i9xx_ring_put_irq;
2606 }
2607 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2608 }
2609 ring->init_hw = init_ring_common;
2610
2611 return intel_init_ring_buffer(dev, ring);
2612 }
2613
2614 /**
2615 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2616 */
2617 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2618 {
2619 struct drm_i915_private *dev_priv = dev->dev_private;
2620 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2621
2622 ring->name = "bsd2 ring";
2623 ring->id = VCS2;
2624
2625 ring->write_tail = ring_write_tail;
2626 ring->mmio_base = GEN8_BSD2_RING_BASE;
2627 ring->flush = gen6_bsd_ring_flush;
2628 ring->add_request = gen6_add_request;
2629 ring->get_seqno = gen6_ring_get_seqno;
2630 ring->set_seqno = ring_set_seqno;
2631 ring->irq_enable_mask =
2632 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2633 ring->irq_get = gen8_ring_get_irq;
2634 ring->irq_put = gen8_ring_put_irq;
2635 ring->dispatch_execbuffer =
2636 gen8_ring_dispatch_execbuffer;
2637 if (i915_semaphore_is_enabled(dev)) {
2638 ring->semaphore.sync_to = gen8_ring_sync;
2639 ring->semaphore.signal = gen8_xcs_signal;
2640 GEN8_RING_SEMAPHORE_INIT;
2641 }
2642 ring->init_hw = init_ring_common;
2643
2644 return intel_init_ring_buffer(dev, ring);
2645 }
2646
2647 int intel_init_blt_ring_buffer(struct drm_device *dev)
2648 {
2649 struct drm_i915_private *dev_priv = dev->dev_private;
2650 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2651
2652 ring->name = "blitter ring";
2653 ring->id = BCS;
2654
2655 ring->mmio_base = BLT_RING_BASE;
2656 ring->write_tail = ring_write_tail;
2657 ring->flush = gen6_ring_flush;
2658 ring->add_request = gen6_add_request;
2659 ring->get_seqno = gen6_ring_get_seqno;
2660 ring->set_seqno = ring_set_seqno;
2661 if (INTEL_INFO(dev)->gen >= 8) {
2662 ring->irq_enable_mask =
2663 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2664 ring->irq_get = gen8_ring_get_irq;
2665 ring->irq_put = gen8_ring_put_irq;
2666 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2667 if (i915_semaphore_is_enabled(dev)) {
2668 ring->semaphore.sync_to = gen8_ring_sync;
2669 ring->semaphore.signal = gen8_xcs_signal;
2670 GEN8_RING_SEMAPHORE_INIT;
2671 }
2672 } else {
2673 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2674 ring->irq_get = gen6_ring_get_irq;
2675 ring->irq_put = gen6_ring_put_irq;
2676 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2677 if (i915_semaphore_is_enabled(dev)) {
2678 ring->semaphore.signal = gen6_signal;
2679 ring->semaphore.sync_to = gen6_ring_sync;
2680 /*
2681 * The current semaphore is only applied on pre-gen8
2682 * platform. And there is no VCS2 ring on the pre-gen8
2683 * platform. So the semaphore between BCS and VCS2 is
2684 * initialized as INVALID. Gen8 will initialize the
2685 * sema between BCS and VCS2 later.
2686 */
2687 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2688 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2689 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2690 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2691 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2692 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2693 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2694 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2695 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2696 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2697 }
2698 }
2699 ring->init_hw = init_ring_common;
2700
2701 return intel_init_ring_buffer(dev, ring);
2702 }
2703
2704 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2705 {
2706 struct drm_i915_private *dev_priv = dev->dev_private;
2707 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2708
2709 ring->name = "video enhancement ring";
2710 ring->id = VECS;
2711
2712 ring->mmio_base = VEBOX_RING_BASE;
2713 ring->write_tail = ring_write_tail;
2714 ring->flush = gen6_ring_flush;
2715 ring->add_request = gen6_add_request;
2716 ring->get_seqno = gen6_ring_get_seqno;
2717 ring->set_seqno = ring_set_seqno;
2718
2719 if (INTEL_INFO(dev)->gen >= 8) {
2720 ring->irq_enable_mask =
2721 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2722 ring->irq_get = gen8_ring_get_irq;
2723 ring->irq_put = gen8_ring_put_irq;
2724 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2725 if (i915_semaphore_is_enabled(dev)) {
2726 ring->semaphore.sync_to = gen8_ring_sync;
2727 ring->semaphore.signal = gen8_xcs_signal;
2728 GEN8_RING_SEMAPHORE_INIT;
2729 }
2730 } else {
2731 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2732 ring->irq_get = hsw_vebox_get_irq;
2733 ring->irq_put = hsw_vebox_put_irq;
2734 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2735 if (i915_semaphore_is_enabled(dev)) {
2736 ring->semaphore.sync_to = gen6_ring_sync;
2737 ring->semaphore.signal = gen6_signal;
2738 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2739 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2740 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2741 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2742 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2743 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2744 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2745 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2746 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2747 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2748 }
2749 }
2750 ring->init_hw = init_ring_common;
2751
2752 return intel_init_ring_buffer(dev, ring);
2753 }
2754
2755 int
2756 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2757 {
2758 int ret;
2759
2760 if (!ring->gpu_caches_dirty)
2761 return 0;
2762
2763 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2764 if (ret)
2765 return ret;
2766
2767 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2768
2769 ring->gpu_caches_dirty = false;
2770 return 0;
2771 }
2772
2773 int
2774 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2775 {
2776 uint32_t flush_domains;
2777 int ret;
2778
2779 flush_domains = 0;
2780 if (ring->gpu_caches_dirty)
2781 flush_domains = I915_GEM_GPU_DOMAINS;
2782
2783 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2784 if (ret)
2785 return ret;
2786
2787 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2788
2789 ring->gpu_caches_dirty = false;
2790 return 0;
2791 }
2792
2793 void
2794 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2795 {
2796 int ret;
2797
2798 if (!intel_ring_initialized(ring))
2799 return;
2800
2801 ret = intel_ring_idle(ring);
2802 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2803 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2804 ring->name, ret);
2805
2806 stop_ring(ring);
2807 }
This page took 0.102299 seconds and 5 git commands to generate.