drm/i915: Use VMA for ringbuffer tracking
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 /* Rough estimate of the typical request size, performing a flush,
38 * set-context and then emitting the batch.
39 */
40 #define LEGACY_REQUEST_SIZE 200
41
42 int __intel_ring_space(int head, int tail, int size)
43 {
44 int space = head - tail;
45 if (space <= 0)
46 space += size;
47 return space - I915_RING_FREE_SPACE;
48 }
49
50 void intel_ring_update_space(struct intel_ring *ring)
51 {
52 if (ring->last_retired_head != -1) {
53 ring->head = ring->last_retired_head;
54 ring->last_retired_head = -1;
55 }
56
57 ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
58 ring->tail, ring->size);
59 }
60
61 static int
62 gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63 {
64 struct intel_ring *ring = req->ring;
65 u32 cmd;
66 int ret;
67
68 cmd = MI_FLUSH;
69
70 if (mode & EMIT_INVALIDATE)
71 cmd |= MI_READ_FLUSH;
72
73 ret = intel_ring_begin(req, 2);
74 if (ret)
75 return ret;
76
77 intel_ring_emit(ring, cmd);
78 intel_ring_emit(ring, MI_NOOP);
79 intel_ring_advance(ring);
80
81 return 0;
82 }
83
84 static int
85 gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
86 {
87 struct intel_ring *ring = req->ring;
88 u32 cmd;
89 int ret;
90
91 /*
92 * read/write caches:
93 *
94 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
95 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
96 * also flushed at 2d versus 3d pipeline switches.
97 *
98 * read-only caches:
99 *
100 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
101 * MI_READ_FLUSH is set, and is always flushed on 965.
102 *
103 * I915_GEM_DOMAIN_COMMAND may not exist?
104 *
105 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
106 * invalidated when MI_EXE_FLUSH is set.
107 *
108 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
109 * invalidated with every MI_FLUSH.
110 *
111 * TLBs:
112 *
113 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
114 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
115 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
116 * are flushed at any MI_FLUSH.
117 */
118
119 cmd = MI_FLUSH;
120 if (mode & EMIT_INVALIDATE) {
121 cmd |= MI_EXE_FLUSH;
122 if (IS_G4X(req->i915) || IS_GEN5(req->i915))
123 cmd |= MI_INVALIDATE_ISP;
124 }
125
126 ret = intel_ring_begin(req, 2);
127 if (ret)
128 return ret;
129
130 intel_ring_emit(ring, cmd);
131 intel_ring_emit(ring, MI_NOOP);
132 intel_ring_advance(ring);
133
134 return 0;
135 }
136
137 /**
138 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
139 * implementing two workarounds on gen6. From section 1.4.7.1
140 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
141 *
142 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
143 * produced by non-pipelined state commands), software needs to first
144 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
145 * 0.
146 *
147 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
148 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
149 *
150 * And the workaround for these two requires this workaround first:
151 *
152 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
153 * BEFORE the pipe-control with a post-sync op and no write-cache
154 * flushes.
155 *
156 * And this last workaround is tricky because of the requirements on
157 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
158 * volume 2 part 1:
159 *
160 * "1 of the following must also be set:
161 * - Render Target Cache Flush Enable ([12] of DW1)
162 * - Depth Cache Flush Enable ([0] of DW1)
163 * - Stall at Pixel Scoreboard ([1] of DW1)
164 * - Depth Stall ([13] of DW1)
165 * - Post-Sync Operation ([13] of DW1)
166 * - Notify Enable ([8] of DW1)"
167 *
168 * The cache flushes require the workaround flush that triggered this
169 * one, so we can't use it. Depth stall would trigger the same.
170 * Post-sync nonzero is what triggered this second workaround, so we
171 * can't use that one either. Notify enable is IRQs, which aren't
172 * really our business. That leaves only stall at scoreboard.
173 */
174 static int
175 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176 {
177 struct intel_ring *ring = req->ring;
178 u32 scratch_addr =
179 req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
180 int ret;
181
182 ret = intel_ring_begin(req, 6);
183 if (ret)
184 return ret;
185
186 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
187 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188 PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
190 intel_ring_emit(ring, 0); /* low dword */
191 intel_ring_emit(ring, 0); /* high dword */
192 intel_ring_emit(ring, MI_NOOP);
193 intel_ring_advance(ring);
194
195 ret = intel_ring_begin(req, 6);
196 if (ret)
197 return ret;
198
199 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
200 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
201 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
202 intel_ring_emit(ring, 0);
203 intel_ring_emit(ring, 0);
204 intel_ring_emit(ring, MI_NOOP);
205 intel_ring_advance(ring);
206
207 return 0;
208 }
209
210 static int
211 gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
212 {
213 struct intel_ring *ring = req->ring;
214 u32 scratch_addr =
215 req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
216 u32 flags = 0;
217 int ret;
218
219 /* Force SNB workarounds for PIPE_CONTROL flushes */
220 ret = intel_emit_post_sync_nonzero_flush(req);
221 if (ret)
222 return ret;
223
224 /* Just flush everything. Experiments have shown that reducing the
225 * number of bits based on the write domains has little performance
226 * impact.
227 */
228 if (mode & EMIT_FLUSH) {
229 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
230 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
231 /*
232 * Ensure that any following seqno writes only happen
233 * when the render cache is indeed flushed.
234 */
235 flags |= PIPE_CONTROL_CS_STALL;
236 }
237 if (mode & EMIT_INVALIDATE) {
238 flags |= PIPE_CONTROL_TLB_INVALIDATE;
239 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
240 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
243 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
244 /*
245 * TLB invalidate requires a post-sync write.
246 */
247 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248 }
249
250 ret = intel_ring_begin(req, 4);
251 if (ret)
252 return ret;
253
254 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
255 intel_ring_emit(ring, flags);
256 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
257 intel_ring_emit(ring, 0);
258 intel_ring_advance(ring);
259
260 return 0;
261 }
262
263 static int
264 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
265 {
266 struct intel_ring *ring = req->ring;
267 int ret;
268
269 ret = intel_ring_begin(req, 4);
270 if (ret)
271 return ret;
272
273 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
274 intel_ring_emit(ring,
275 PIPE_CONTROL_CS_STALL |
276 PIPE_CONTROL_STALL_AT_SCOREBOARD);
277 intel_ring_emit(ring, 0);
278 intel_ring_emit(ring, 0);
279 intel_ring_advance(ring);
280
281 return 0;
282 }
283
284 static int
285 gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
286 {
287 struct intel_ring *ring = req->ring;
288 u32 scratch_addr =
289 req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
290 u32 flags = 0;
291 int ret;
292
293 /*
294 * Ensure that any following seqno writes only happen when the render
295 * cache is indeed flushed.
296 *
297 * Workaround: 4th PIPE_CONTROL command (except the ones with only
298 * read-cache invalidate bits set) must have the CS_STALL bit set. We
299 * don't try to be clever and just set it unconditionally.
300 */
301 flags |= PIPE_CONTROL_CS_STALL;
302
303 /* Just flush everything. Experiments have shown that reducing the
304 * number of bits based on the write domains has little performance
305 * impact.
306 */
307 if (mode & EMIT_FLUSH) {
308 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
309 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311 flags |= PIPE_CONTROL_FLUSH_ENABLE;
312 }
313 if (mode & EMIT_INVALIDATE) {
314 flags |= PIPE_CONTROL_TLB_INVALIDATE;
315 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
316 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
317 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
318 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
319 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
321 /*
322 * TLB invalidate requires a post-sync write.
323 */
324 flags |= PIPE_CONTROL_QW_WRITE;
325 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
326
327 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
328
329 /* Workaround: we must issue a pipe_control with CS-stall bit
330 * set before a pipe_control command that has the state cache
331 * invalidate bit set. */
332 gen7_render_ring_cs_stall_wa(req);
333 }
334
335 ret = intel_ring_begin(req, 4);
336 if (ret)
337 return ret;
338
339 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
340 intel_ring_emit(ring, flags);
341 intel_ring_emit(ring, scratch_addr);
342 intel_ring_emit(ring, 0);
343 intel_ring_advance(ring);
344
345 return 0;
346 }
347
348 static int
349 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350 u32 flags, u32 scratch_addr)
351 {
352 struct intel_ring *ring = req->ring;
353 int ret;
354
355 ret = intel_ring_begin(req, 6);
356 if (ret)
357 return ret;
358
359 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
360 intel_ring_emit(ring, flags);
361 intel_ring_emit(ring, scratch_addr);
362 intel_ring_emit(ring, 0);
363 intel_ring_emit(ring, 0);
364 intel_ring_emit(ring, 0);
365 intel_ring_advance(ring);
366
367 return 0;
368 }
369
370 static int
371 gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
372 {
373 u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
374 u32 flags = 0;
375 int ret;
376
377 flags |= PIPE_CONTROL_CS_STALL;
378
379 if (mode & EMIT_FLUSH) {
380 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
381 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
382 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
383 flags |= PIPE_CONTROL_FLUSH_ENABLE;
384 }
385 if (mode & EMIT_INVALIDATE) {
386 flags |= PIPE_CONTROL_TLB_INVALIDATE;
387 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
388 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
389 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
390 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
391 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
392 flags |= PIPE_CONTROL_QW_WRITE;
393 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
394
395 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
396 ret = gen8_emit_pipe_control(req,
397 PIPE_CONTROL_CS_STALL |
398 PIPE_CONTROL_STALL_AT_SCOREBOARD,
399 0);
400 if (ret)
401 return ret;
402 }
403
404 return gen8_emit_pipe_control(req, flags, scratch_addr);
405 }
406
407 u64 intel_engine_get_active_head(struct intel_engine_cs *engine)
408 {
409 struct drm_i915_private *dev_priv = engine->i915;
410 u64 acthd;
411
412 if (INTEL_GEN(dev_priv) >= 8)
413 acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
414 RING_ACTHD_UDW(engine->mmio_base));
415 else if (INTEL_GEN(dev_priv) >= 4)
416 acthd = I915_READ(RING_ACTHD(engine->mmio_base));
417 else
418 acthd = I915_READ(ACTHD);
419
420 return acthd;
421 }
422
423 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
424 {
425 struct drm_i915_private *dev_priv = engine->i915;
426 u32 addr;
427
428 addr = dev_priv->status_page_dmah->busaddr;
429 if (INTEL_GEN(dev_priv) >= 4)
430 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
431 I915_WRITE(HWS_PGA, addr);
432 }
433
434 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
435 {
436 struct drm_i915_private *dev_priv = engine->i915;
437 i915_reg_t mmio;
438
439 /* The ring status page addresses are no longer next to the rest of
440 * the ring registers as of gen7.
441 */
442 if (IS_GEN7(dev_priv)) {
443 switch (engine->id) {
444 case RCS:
445 mmio = RENDER_HWS_PGA_GEN7;
446 break;
447 case BCS:
448 mmio = BLT_HWS_PGA_GEN7;
449 break;
450 /*
451 * VCS2 actually doesn't exist on Gen7. Only shut up
452 * gcc switch check warning
453 */
454 case VCS2:
455 case VCS:
456 mmio = BSD_HWS_PGA_GEN7;
457 break;
458 case VECS:
459 mmio = VEBOX_HWS_PGA_GEN7;
460 break;
461 }
462 } else if (IS_GEN6(dev_priv)) {
463 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
464 } else {
465 /* XXX: gen8 returns to sanity */
466 mmio = RING_HWS_PGA(engine->mmio_base);
467 }
468
469 I915_WRITE(mmio, engine->status_page.ggtt_offset);
470 POSTING_READ(mmio);
471
472 /*
473 * Flush the TLB for this page
474 *
475 * FIXME: These two bits have disappeared on gen8, so a question
476 * arises: do we still need this and if so how should we go about
477 * invalidating the TLB?
478 */
479 if (IS_GEN(dev_priv, 6, 7)) {
480 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
481
482 /* ring should be idle before issuing a sync flush*/
483 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
484
485 I915_WRITE(reg,
486 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
487 INSTPM_SYNC_FLUSH));
488 if (intel_wait_for_register(dev_priv,
489 reg, INSTPM_SYNC_FLUSH, 0,
490 1000))
491 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
492 engine->name);
493 }
494 }
495
496 static bool stop_ring(struct intel_engine_cs *engine)
497 {
498 struct drm_i915_private *dev_priv = engine->i915;
499
500 if (!IS_GEN2(dev_priv)) {
501 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
502 if (intel_wait_for_register(dev_priv,
503 RING_MI_MODE(engine->mmio_base),
504 MODE_IDLE,
505 MODE_IDLE,
506 1000)) {
507 DRM_ERROR("%s : timed out trying to stop ring\n",
508 engine->name);
509 /* Sometimes we observe that the idle flag is not
510 * set even though the ring is empty. So double
511 * check before giving up.
512 */
513 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
514 return false;
515 }
516 }
517
518 I915_WRITE_CTL(engine, 0);
519 I915_WRITE_HEAD(engine, 0);
520 I915_WRITE_TAIL(engine, 0);
521
522 if (!IS_GEN2(dev_priv)) {
523 (void)I915_READ_CTL(engine);
524 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
525 }
526
527 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
528 }
529
530 static int init_ring_common(struct intel_engine_cs *engine)
531 {
532 struct drm_i915_private *dev_priv = engine->i915;
533 struct intel_ring *ring = engine->buffer;
534 int ret = 0;
535
536 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
537
538 if (!stop_ring(engine)) {
539 /* G45 ring initialization often fails to reset head to zero */
540 DRM_DEBUG_KMS("%s head not reset to zero "
541 "ctl %08x head %08x tail %08x start %08x\n",
542 engine->name,
543 I915_READ_CTL(engine),
544 I915_READ_HEAD(engine),
545 I915_READ_TAIL(engine),
546 I915_READ_START(engine));
547
548 if (!stop_ring(engine)) {
549 DRM_ERROR("failed to set %s head to zero "
550 "ctl %08x head %08x tail %08x start %08x\n",
551 engine->name,
552 I915_READ_CTL(engine),
553 I915_READ_HEAD(engine),
554 I915_READ_TAIL(engine),
555 I915_READ_START(engine));
556 ret = -EIO;
557 goto out;
558 }
559 }
560
561 if (I915_NEED_GFX_HWS(dev_priv))
562 intel_ring_setup_status_page(engine);
563 else
564 ring_setup_phys_status_page(engine);
565
566 /* Enforce ordering by reading HEAD register back */
567 I915_READ_HEAD(engine);
568
569 /* Initialize the ring. This must happen _after_ we've cleared the ring
570 * registers with the above sequence (the readback of the HEAD registers
571 * also enforces ordering), otherwise the hw might lose the new ring
572 * register values. */
573 I915_WRITE_START(engine, ring->vma->node.start);
574
575 /* WaClearRingBufHeadRegAtInit:ctg,elk */
576 if (I915_READ_HEAD(engine))
577 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
578 engine->name, I915_READ_HEAD(engine));
579 I915_WRITE_HEAD(engine, 0);
580 (void)I915_READ_HEAD(engine);
581
582 I915_WRITE_CTL(engine,
583 ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
584 | RING_VALID);
585
586 /* If the head is still not zero, the ring is dead */
587 if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
588 I915_READ_START(engine) == ring->vma->node.start &&
589 (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
590 DRM_ERROR("%s initialization failed "
591 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08llx]\n",
592 engine->name,
593 I915_READ_CTL(engine),
594 I915_READ_CTL(engine) & RING_VALID,
595 I915_READ_HEAD(engine), I915_READ_TAIL(engine),
596 I915_READ_START(engine),
597 ring->vma->node.start);
598 ret = -EIO;
599 goto out;
600 }
601
602 ring->last_retired_head = -1;
603 ring->head = I915_READ_HEAD(engine);
604 ring->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
605 intel_ring_update_space(ring);
606
607 intel_engine_init_hangcheck(engine);
608
609 out:
610 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
611
612 return ret;
613 }
614
615 void intel_fini_pipe_control(struct intel_engine_cs *engine)
616 {
617 if (engine->scratch.obj == NULL)
618 return;
619
620 i915_gem_object_ggtt_unpin(engine->scratch.obj);
621 i915_gem_object_put(engine->scratch.obj);
622 engine->scratch.obj = NULL;
623 }
624
625 int intel_init_pipe_control(struct intel_engine_cs *engine, int size)
626 {
627 struct drm_i915_gem_object *obj;
628 int ret;
629
630 WARN_ON(engine->scratch.obj);
631
632 obj = i915_gem_object_create_stolen(&engine->i915->drm, size);
633 if (!obj)
634 obj = i915_gem_object_create(&engine->i915->drm, size);
635 if (IS_ERR(obj)) {
636 DRM_ERROR("Failed to allocate scratch page\n");
637 ret = PTR_ERR(obj);
638 goto err;
639 }
640
641 ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 4096, PIN_HIGH);
642 if (ret)
643 goto err_unref;
644
645 engine->scratch.obj = obj;
646 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
647 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
648 engine->name, engine->scratch.gtt_offset);
649 return 0;
650
651 err_unref:
652 i915_gem_object_put(engine->scratch.obj);
653 err:
654 return ret;
655 }
656
657 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
658 {
659 struct intel_ring *ring = req->ring;
660 struct i915_workarounds *w = &req->i915->workarounds;
661 int ret, i;
662
663 if (w->count == 0)
664 return 0;
665
666 ret = req->engine->emit_flush(req, EMIT_BARRIER);
667 if (ret)
668 return ret;
669
670 ret = intel_ring_begin(req, (w->count * 2 + 2));
671 if (ret)
672 return ret;
673
674 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
675 for (i = 0; i < w->count; i++) {
676 intel_ring_emit_reg(ring, w->reg[i].addr);
677 intel_ring_emit(ring, w->reg[i].value);
678 }
679 intel_ring_emit(ring, MI_NOOP);
680
681 intel_ring_advance(ring);
682
683 ret = req->engine->emit_flush(req, EMIT_BARRIER);
684 if (ret)
685 return ret;
686
687 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
688
689 return 0;
690 }
691
692 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
693 {
694 int ret;
695
696 ret = intel_ring_workarounds_emit(req);
697 if (ret != 0)
698 return ret;
699
700 ret = i915_gem_render_state_init(req);
701 if (ret)
702 return ret;
703
704 return 0;
705 }
706
707 static int wa_add(struct drm_i915_private *dev_priv,
708 i915_reg_t addr,
709 const u32 mask, const u32 val)
710 {
711 const u32 idx = dev_priv->workarounds.count;
712
713 if (WARN_ON(idx >= I915_MAX_WA_REGS))
714 return -ENOSPC;
715
716 dev_priv->workarounds.reg[idx].addr = addr;
717 dev_priv->workarounds.reg[idx].value = val;
718 dev_priv->workarounds.reg[idx].mask = mask;
719
720 dev_priv->workarounds.count++;
721
722 return 0;
723 }
724
725 #define WA_REG(addr, mask, val) do { \
726 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
727 if (r) \
728 return r; \
729 } while (0)
730
731 #define WA_SET_BIT_MASKED(addr, mask) \
732 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
733
734 #define WA_CLR_BIT_MASKED(addr, mask) \
735 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
736
737 #define WA_SET_FIELD_MASKED(addr, mask, value) \
738 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
739
740 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
741 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
742
743 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
744
745 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
746 i915_reg_t reg)
747 {
748 struct drm_i915_private *dev_priv = engine->i915;
749 struct i915_workarounds *wa = &dev_priv->workarounds;
750 const uint32_t index = wa->hw_whitelist_count[engine->id];
751
752 if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
753 return -EINVAL;
754
755 WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
756 i915_mmio_reg_offset(reg));
757 wa->hw_whitelist_count[engine->id]++;
758
759 return 0;
760 }
761
762 static int gen8_init_workarounds(struct intel_engine_cs *engine)
763 {
764 struct drm_i915_private *dev_priv = engine->i915;
765
766 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
767
768 /* WaDisableAsyncFlipPerfMode:bdw,chv */
769 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
770
771 /* WaDisablePartialInstShootdown:bdw,chv */
772 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
773 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
774
775 /* Use Force Non-Coherent whenever executing a 3D context. This is a
776 * workaround for for a possible hang in the unlikely event a TLB
777 * invalidation occurs during a PSD flush.
778 */
779 /* WaForceEnableNonCoherent:bdw,chv */
780 /* WaHdcDisableFetchWhenMasked:bdw,chv */
781 WA_SET_BIT_MASKED(HDC_CHICKEN0,
782 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
783 HDC_FORCE_NON_COHERENT);
784
785 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
786 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
787 * polygons in the same 8x4 pixel/sample area to be processed without
788 * stalling waiting for the earlier ones to write to Hierarchical Z
789 * buffer."
790 *
791 * This optimization is off by default for BDW and CHV; turn it on.
792 */
793 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
794
795 /* Wa4x4STCOptimizationDisable:bdw,chv */
796 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
797
798 /*
799 * BSpec recommends 8x4 when MSAA is used,
800 * however in practice 16x4 seems fastest.
801 *
802 * Note that PS/WM thread counts depend on the WIZ hashing
803 * disable bit, which we don't touch here, but it's good
804 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
805 */
806 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
807 GEN6_WIZ_HASHING_MASK,
808 GEN6_WIZ_HASHING_16x4);
809
810 return 0;
811 }
812
813 static int bdw_init_workarounds(struct intel_engine_cs *engine)
814 {
815 struct drm_i915_private *dev_priv = engine->i915;
816 int ret;
817
818 ret = gen8_init_workarounds(engine);
819 if (ret)
820 return ret;
821
822 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
823 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
824
825 /* WaDisableDopClockGating:bdw */
826 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
827 DOP_CLOCK_GATING_DISABLE);
828
829 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
830 GEN8_SAMPLER_POWER_BYPASS_DIS);
831
832 WA_SET_BIT_MASKED(HDC_CHICKEN0,
833 /* WaForceContextSaveRestoreNonCoherent:bdw */
834 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
835 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
836 (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
837
838 return 0;
839 }
840
841 static int chv_init_workarounds(struct intel_engine_cs *engine)
842 {
843 struct drm_i915_private *dev_priv = engine->i915;
844 int ret;
845
846 ret = gen8_init_workarounds(engine);
847 if (ret)
848 return ret;
849
850 /* WaDisableThreadStallDopClockGating:chv */
851 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
852
853 /* Improve HiZ throughput on CHV. */
854 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
855
856 return 0;
857 }
858
859 static int gen9_init_workarounds(struct intel_engine_cs *engine)
860 {
861 struct drm_i915_private *dev_priv = engine->i915;
862 int ret;
863
864 /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
865 I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
866
867 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
868 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
869 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
870
871 /* WaDisableKillLogic:bxt,skl,kbl */
872 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
873 ECOCHK_DIS_TLB);
874
875 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
876 /* WaDisablePartialInstShootdown:skl,bxt,kbl */
877 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
878 FLOW_CONTROL_ENABLE |
879 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
880
881 /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
882 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
883 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
884
885 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
886 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
887 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
888 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
889 GEN9_DG_MIRROR_FIX_ENABLE);
890
891 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
892 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
893 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
894 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
895 GEN9_RHWO_OPTIMIZATION_DISABLE);
896 /*
897 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
898 * but we do that in per ctx batchbuffer as there is an issue
899 * with this register not getting restored on ctx restore
900 */
901 }
902
903 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
904 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
905 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
906 GEN9_ENABLE_YV12_BUGFIX |
907 GEN9_ENABLE_GPGPU_PREEMPTION);
908
909 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
910 /* WaDisablePartialResolveInVc:skl,bxt,kbl */
911 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
912 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
913
914 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
915 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
916 GEN9_CCS_TLB_PREFETCH_ENABLE);
917
918 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
919 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
920 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
921 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
922 PIXEL_MASK_CAMMING_DISABLE);
923
924 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
925 WA_SET_BIT_MASKED(HDC_CHICKEN0,
926 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
927 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
928
929 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
930 * both tied to WaForceContextSaveRestoreNonCoherent
931 * in some hsds for skl. We keep the tie for all gen9. The
932 * documentation is a bit hazy and so we want to get common behaviour,
933 * even though there is no clear evidence we would need both on kbl/bxt.
934 * This area has been source of system hangs so we play it safe
935 * and mimic the skl regardless of what bspec says.
936 *
937 * Use Force Non-Coherent whenever executing a 3D context. This
938 * is a workaround for a possible hang in the unlikely event
939 * a TLB invalidation occurs during a PSD flush.
940 */
941
942 /* WaForceEnableNonCoherent:skl,bxt,kbl */
943 WA_SET_BIT_MASKED(HDC_CHICKEN0,
944 HDC_FORCE_NON_COHERENT);
945
946 /* WaDisableHDCInvalidation:skl,bxt,kbl */
947 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
948 BDW_DISABLE_HDC_INVALIDATION);
949
950 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
951 if (IS_SKYLAKE(dev_priv) ||
952 IS_KABYLAKE(dev_priv) ||
953 IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
954 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
955 GEN8_SAMPLER_POWER_BYPASS_DIS);
956
957 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
958 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
959
960 /* WaOCLCoherentLineFlush:skl,bxt,kbl */
961 I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
962 GEN8_LQSC_FLUSH_COHERENT_LINES));
963
964 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
965 ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
966 if (ret)
967 return ret;
968
969 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
970 ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
971 if (ret)
972 return ret;
973
974 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
975 ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
976 if (ret)
977 return ret;
978
979 return 0;
980 }
981
982 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
983 {
984 struct drm_i915_private *dev_priv = engine->i915;
985 u8 vals[3] = { 0, 0, 0 };
986 unsigned int i;
987
988 for (i = 0; i < 3; i++) {
989 u8 ss;
990
991 /*
992 * Only consider slices where one, and only one, subslice has 7
993 * EUs
994 */
995 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
996 continue;
997
998 /*
999 * subslice_7eu[i] != 0 (because of the check above) and
1000 * ss_max == 4 (maximum number of subslices possible per slice)
1001 *
1002 * -> 0 <= ss <= 3;
1003 */
1004 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1005 vals[i] = 3 - ss;
1006 }
1007
1008 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1009 return 0;
1010
1011 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1012 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1013 GEN9_IZ_HASHING_MASK(2) |
1014 GEN9_IZ_HASHING_MASK(1) |
1015 GEN9_IZ_HASHING_MASK(0),
1016 GEN9_IZ_HASHING(2, vals[2]) |
1017 GEN9_IZ_HASHING(1, vals[1]) |
1018 GEN9_IZ_HASHING(0, vals[0]));
1019
1020 return 0;
1021 }
1022
1023 static int skl_init_workarounds(struct intel_engine_cs *engine)
1024 {
1025 struct drm_i915_private *dev_priv = engine->i915;
1026 int ret;
1027
1028 ret = gen9_init_workarounds(engine);
1029 if (ret)
1030 return ret;
1031
1032 /*
1033 * Actual WA is to disable percontext preemption granularity control
1034 * until D0 which is the default case so this is equivalent to
1035 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1036 */
1037 if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1038 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1039 _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1040 }
1041
1042 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1043 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1044 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1045 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1046 }
1047
1048 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1049 * involving this register should also be added to WA batch as required.
1050 */
1051 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1052 /* WaDisableLSQCROPERFforOCL:skl */
1053 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1054 GEN8_LQSC_RO_PERF_DIS);
1055
1056 /* WaEnableGapsTsvCreditFix:skl */
1057 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1058 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1059 GEN9_GAPS_TSV_CREDIT_DISABLE));
1060 }
1061
1062 /* WaDisablePowerCompilerClockGating:skl */
1063 if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1064 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1065 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1066
1067 /* WaBarrierPerformanceFixDisable:skl */
1068 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1069 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1070 HDC_FENCE_DEST_SLM_DISABLE |
1071 HDC_BARRIER_PERFORMANCE_DISABLE);
1072
1073 /* WaDisableSbeCacheDispatchPortSharing:skl */
1074 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1075 WA_SET_BIT_MASKED(
1076 GEN7_HALF_SLICE_CHICKEN1,
1077 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1078
1079 /* WaDisableGafsUnitClkGating:skl */
1080 WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1081
1082 /* WaInPlaceDecompressionHang:skl */
1083 if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
1084 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1085 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1086
1087 /* WaDisableLSQCROPERFforOCL:skl */
1088 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1089 if (ret)
1090 return ret;
1091
1092 return skl_tune_iz_hashing(engine);
1093 }
1094
1095 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1096 {
1097 struct drm_i915_private *dev_priv = engine->i915;
1098 int ret;
1099
1100 ret = gen9_init_workarounds(engine);
1101 if (ret)
1102 return ret;
1103
1104 /* WaStoreMultiplePTEenable:bxt */
1105 /* This is a requirement according to Hardware specification */
1106 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1107 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1108
1109 /* WaSetClckGatingDisableMedia:bxt */
1110 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1111 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1112 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1113 }
1114
1115 /* WaDisableThreadStallDopClockGating:bxt */
1116 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1117 STALL_DOP_GATING_DISABLE);
1118
1119 /* WaDisablePooledEuLoadBalancingFix:bxt */
1120 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
1121 WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
1122 GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
1123 }
1124
1125 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1126 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1127 WA_SET_BIT_MASKED(
1128 GEN7_HALF_SLICE_CHICKEN1,
1129 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1130 }
1131
1132 /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1133 /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1134 /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1135 /* WaDisableLSQCROPERFforOCL:bxt */
1136 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1137 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1138 if (ret)
1139 return ret;
1140
1141 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1142 if (ret)
1143 return ret;
1144 }
1145
1146 /* WaProgramL3SqcReg1DefaultForPerf:bxt */
1147 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1148 I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1149 L3_HIGH_PRIO_CREDITS(2));
1150
1151 /* WaToEnableHwFixForPushConstHWBug:bxt */
1152 if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1153 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1154 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1155
1156 /* WaInPlaceDecompressionHang:bxt */
1157 if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1158 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1159 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1160
1161 return 0;
1162 }
1163
1164 static int kbl_init_workarounds(struct intel_engine_cs *engine)
1165 {
1166 struct drm_i915_private *dev_priv = engine->i915;
1167 int ret;
1168
1169 ret = gen9_init_workarounds(engine);
1170 if (ret)
1171 return ret;
1172
1173 /* WaEnableGapsTsvCreditFix:kbl */
1174 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1175 GEN9_GAPS_TSV_CREDIT_DISABLE));
1176
1177 /* WaDisableDynamicCreditSharing:kbl */
1178 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1179 WA_SET_BIT(GAMT_CHKN_BIT_REG,
1180 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1181
1182 /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1183 if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1184 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1185 HDC_FENCE_DEST_SLM_DISABLE);
1186
1187 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1188 * involving this register should also be added to WA batch as required.
1189 */
1190 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1191 /* WaDisableLSQCROPERFforOCL:kbl */
1192 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1193 GEN8_LQSC_RO_PERF_DIS);
1194
1195 /* WaToEnableHwFixForPushConstHWBug:kbl */
1196 if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1197 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1198 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1199
1200 /* WaDisableGafsUnitClkGating:kbl */
1201 WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1202
1203 /* WaDisableSbeCacheDispatchPortSharing:kbl */
1204 WA_SET_BIT_MASKED(
1205 GEN7_HALF_SLICE_CHICKEN1,
1206 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1207
1208 /* WaInPlaceDecompressionHang:kbl */
1209 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1210 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1211
1212 /* WaDisableLSQCROPERFforOCL:kbl */
1213 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1214 if (ret)
1215 return ret;
1216
1217 return 0;
1218 }
1219
1220 int init_workarounds_ring(struct intel_engine_cs *engine)
1221 {
1222 struct drm_i915_private *dev_priv = engine->i915;
1223
1224 WARN_ON(engine->id != RCS);
1225
1226 dev_priv->workarounds.count = 0;
1227 dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1228
1229 if (IS_BROADWELL(dev_priv))
1230 return bdw_init_workarounds(engine);
1231
1232 if (IS_CHERRYVIEW(dev_priv))
1233 return chv_init_workarounds(engine);
1234
1235 if (IS_SKYLAKE(dev_priv))
1236 return skl_init_workarounds(engine);
1237
1238 if (IS_BROXTON(dev_priv))
1239 return bxt_init_workarounds(engine);
1240
1241 if (IS_KABYLAKE(dev_priv))
1242 return kbl_init_workarounds(engine);
1243
1244 return 0;
1245 }
1246
1247 static int init_render_ring(struct intel_engine_cs *engine)
1248 {
1249 struct drm_i915_private *dev_priv = engine->i915;
1250 int ret = init_ring_common(engine);
1251 if (ret)
1252 return ret;
1253
1254 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1255 if (IS_GEN(dev_priv, 4, 6))
1256 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1257
1258 /* We need to disable the AsyncFlip performance optimisations in order
1259 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1260 * programmed to '1' on all products.
1261 *
1262 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1263 */
1264 if (IS_GEN(dev_priv, 6, 7))
1265 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1266
1267 /* Required for the hardware to program scanline values for waiting */
1268 /* WaEnableFlushTlbInvalidationMode:snb */
1269 if (IS_GEN6(dev_priv))
1270 I915_WRITE(GFX_MODE,
1271 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1272
1273 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1274 if (IS_GEN7(dev_priv))
1275 I915_WRITE(GFX_MODE_GEN7,
1276 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1277 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1278
1279 if (IS_GEN6(dev_priv)) {
1280 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1281 * "If this bit is set, STCunit will have LRA as replacement
1282 * policy. [...] This bit must be reset. LRA replacement
1283 * policy is not supported."
1284 */
1285 I915_WRITE(CACHE_MODE_0,
1286 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1287 }
1288
1289 if (IS_GEN(dev_priv, 6, 7))
1290 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1291
1292 if (INTEL_INFO(dev_priv)->gen >= 6)
1293 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1294
1295 return init_workarounds_ring(engine);
1296 }
1297
1298 static void render_ring_cleanup(struct intel_engine_cs *engine)
1299 {
1300 struct drm_i915_private *dev_priv = engine->i915;
1301
1302 if (dev_priv->semaphore_obj) {
1303 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1304 i915_gem_object_put(dev_priv->semaphore_obj);
1305 dev_priv->semaphore_obj = NULL;
1306 }
1307
1308 intel_fini_pipe_control(engine);
1309 }
1310
1311 static int gen8_rcs_signal(struct drm_i915_gem_request *req)
1312 {
1313 struct intel_ring *ring = req->ring;
1314 struct drm_i915_private *dev_priv = req->i915;
1315 struct intel_engine_cs *waiter;
1316 enum intel_engine_id id;
1317 int ret, num_rings;
1318
1319 num_rings = INTEL_INFO(dev_priv)->num_rings;
1320 ret = intel_ring_begin(req, (num_rings-1) * 8);
1321 if (ret)
1322 return ret;
1323
1324 for_each_engine_id(waiter, dev_priv, id) {
1325 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1326 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1327 continue;
1328
1329 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1330 intel_ring_emit(ring,
1331 PIPE_CONTROL_GLOBAL_GTT_IVB |
1332 PIPE_CONTROL_QW_WRITE |
1333 PIPE_CONTROL_CS_STALL);
1334 intel_ring_emit(ring, lower_32_bits(gtt_offset));
1335 intel_ring_emit(ring, upper_32_bits(gtt_offset));
1336 intel_ring_emit(ring, req->fence.seqno);
1337 intel_ring_emit(ring, 0);
1338 intel_ring_emit(ring,
1339 MI_SEMAPHORE_SIGNAL |
1340 MI_SEMAPHORE_TARGET(waiter->hw_id));
1341 intel_ring_emit(ring, 0);
1342 }
1343 intel_ring_advance(ring);
1344
1345 return 0;
1346 }
1347
1348 static int gen8_xcs_signal(struct drm_i915_gem_request *req)
1349 {
1350 struct intel_ring *ring = req->ring;
1351 struct drm_i915_private *dev_priv = req->i915;
1352 struct intel_engine_cs *waiter;
1353 enum intel_engine_id id;
1354 int ret, num_rings;
1355
1356 num_rings = INTEL_INFO(dev_priv)->num_rings;
1357 ret = intel_ring_begin(req, (num_rings-1) * 6);
1358 if (ret)
1359 return ret;
1360
1361 for_each_engine_id(waiter, dev_priv, id) {
1362 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1363 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1364 continue;
1365
1366 intel_ring_emit(ring,
1367 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1368 intel_ring_emit(ring,
1369 lower_32_bits(gtt_offset) |
1370 MI_FLUSH_DW_USE_GTT);
1371 intel_ring_emit(ring, upper_32_bits(gtt_offset));
1372 intel_ring_emit(ring, req->fence.seqno);
1373 intel_ring_emit(ring,
1374 MI_SEMAPHORE_SIGNAL |
1375 MI_SEMAPHORE_TARGET(waiter->hw_id));
1376 intel_ring_emit(ring, 0);
1377 }
1378 intel_ring_advance(ring);
1379
1380 return 0;
1381 }
1382
1383 static int gen6_signal(struct drm_i915_gem_request *req)
1384 {
1385 struct intel_ring *ring = req->ring;
1386 struct drm_i915_private *dev_priv = req->i915;
1387 struct intel_engine_cs *useless;
1388 enum intel_engine_id id;
1389 int ret, num_rings;
1390
1391 num_rings = INTEL_INFO(dev_priv)->num_rings;
1392 ret = intel_ring_begin(req, round_up((num_rings-1) * 3, 2));
1393 if (ret)
1394 return ret;
1395
1396 for_each_engine_id(useless, dev_priv, id) {
1397 i915_reg_t mbox_reg = req->engine->semaphore.mbox.signal[id];
1398
1399 if (i915_mmio_reg_valid(mbox_reg)) {
1400 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1401 intel_ring_emit_reg(ring, mbox_reg);
1402 intel_ring_emit(ring, req->fence.seqno);
1403 }
1404 }
1405
1406 /* If num_dwords was rounded, make sure the tail pointer is correct */
1407 if (num_rings % 2 == 0)
1408 intel_ring_emit(ring, MI_NOOP);
1409 intel_ring_advance(ring);
1410
1411 return 0;
1412 }
1413
1414 static void i9xx_submit_request(struct drm_i915_gem_request *request)
1415 {
1416 struct drm_i915_private *dev_priv = request->i915;
1417
1418 I915_WRITE_TAIL(request->engine,
1419 intel_ring_offset(request->ring, request->tail));
1420 }
1421
1422 static int i9xx_emit_request(struct drm_i915_gem_request *req)
1423 {
1424 struct intel_ring *ring = req->ring;
1425 int ret;
1426
1427 ret = intel_ring_begin(req, 4);
1428 if (ret)
1429 return ret;
1430
1431 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1432 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1433 intel_ring_emit(ring, req->fence.seqno);
1434 intel_ring_emit(ring, MI_USER_INTERRUPT);
1435 intel_ring_advance(ring);
1436
1437 req->tail = ring->tail;
1438
1439 return 0;
1440 }
1441
1442 /**
1443 * gen6_sema_emit_request - Update the semaphore mailbox registers
1444 *
1445 * @request - request to write to the ring
1446 *
1447 * Update the mailbox registers in the *other* rings with the current seqno.
1448 * This acts like a signal in the canonical semaphore.
1449 */
1450 static int gen6_sema_emit_request(struct drm_i915_gem_request *req)
1451 {
1452 int ret;
1453
1454 ret = req->engine->semaphore.signal(req);
1455 if (ret)
1456 return ret;
1457
1458 return i9xx_emit_request(req);
1459 }
1460
1461 static int gen8_render_emit_request(struct drm_i915_gem_request *req)
1462 {
1463 struct intel_engine_cs *engine = req->engine;
1464 struct intel_ring *ring = req->ring;
1465 int ret;
1466
1467 if (engine->semaphore.signal) {
1468 ret = engine->semaphore.signal(req);
1469 if (ret)
1470 return ret;
1471 }
1472
1473 ret = intel_ring_begin(req, 8);
1474 if (ret)
1475 return ret;
1476
1477 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1478 intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
1479 PIPE_CONTROL_CS_STALL |
1480 PIPE_CONTROL_QW_WRITE));
1481 intel_ring_emit(ring, intel_hws_seqno_address(engine));
1482 intel_ring_emit(ring, 0);
1483 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1484 /* We're thrashing one dword of HWS. */
1485 intel_ring_emit(ring, 0);
1486 intel_ring_emit(ring, MI_USER_INTERRUPT);
1487 intel_ring_emit(ring, MI_NOOP);
1488 intel_ring_advance(ring);
1489
1490 req->tail = ring->tail;
1491
1492 return 0;
1493 }
1494
1495 /**
1496 * intel_ring_sync - sync the waiter to the signaller on seqno
1497 *
1498 * @waiter - ring that is waiting
1499 * @signaller - ring which has, or will signal
1500 * @seqno - seqno which the waiter will block on
1501 */
1502
1503 static int
1504 gen8_ring_sync_to(struct drm_i915_gem_request *req,
1505 struct drm_i915_gem_request *signal)
1506 {
1507 struct intel_ring *ring = req->ring;
1508 struct drm_i915_private *dev_priv = req->i915;
1509 u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1510 struct i915_hw_ppgtt *ppgtt;
1511 int ret;
1512
1513 ret = intel_ring_begin(req, 4);
1514 if (ret)
1515 return ret;
1516
1517 intel_ring_emit(ring,
1518 MI_SEMAPHORE_WAIT |
1519 MI_SEMAPHORE_GLOBAL_GTT |
1520 MI_SEMAPHORE_SAD_GTE_SDD);
1521 intel_ring_emit(ring, signal->fence.seqno);
1522 intel_ring_emit(ring, lower_32_bits(offset));
1523 intel_ring_emit(ring, upper_32_bits(offset));
1524 intel_ring_advance(ring);
1525
1526 /* When the !RCS engines idle waiting upon a semaphore, they lose their
1527 * pagetables and we must reload them before executing the batch.
1528 * We do this on the i915_switch_context() following the wait and
1529 * before the dispatch.
1530 */
1531 ppgtt = req->ctx->ppgtt;
1532 if (ppgtt && req->engine->id != RCS)
1533 ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1534 return 0;
1535 }
1536
1537 static int
1538 gen6_ring_sync_to(struct drm_i915_gem_request *req,
1539 struct drm_i915_gem_request *signal)
1540 {
1541 struct intel_ring *ring = req->ring;
1542 u32 dw1 = MI_SEMAPHORE_MBOX |
1543 MI_SEMAPHORE_COMPARE |
1544 MI_SEMAPHORE_REGISTER;
1545 u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->id];
1546 int ret;
1547
1548 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1549
1550 ret = intel_ring_begin(req, 4);
1551 if (ret)
1552 return ret;
1553
1554 intel_ring_emit(ring, dw1 | wait_mbox);
1555 /* Throughout all of the GEM code, seqno passed implies our current
1556 * seqno is >= the last seqno executed. However for hardware the
1557 * comparison is strictly greater than.
1558 */
1559 intel_ring_emit(ring, signal->fence.seqno - 1);
1560 intel_ring_emit(ring, 0);
1561 intel_ring_emit(ring, MI_NOOP);
1562 intel_ring_advance(ring);
1563
1564 return 0;
1565 }
1566
1567 static void
1568 gen5_seqno_barrier(struct intel_engine_cs *engine)
1569 {
1570 /* MI_STORE are internally buffered by the GPU and not flushed
1571 * either by MI_FLUSH or SyncFlush or any other combination of
1572 * MI commands.
1573 *
1574 * "Only the submission of the store operation is guaranteed.
1575 * The write result will be complete (coherent) some time later
1576 * (this is practically a finite period but there is no guaranteed
1577 * latency)."
1578 *
1579 * Empirically, we observe that we need a delay of at least 75us to
1580 * be sure that the seqno write is visible by the CPU.
1581 */
1582 usleep_range(125, 250);
1583 }
1584
1585 static void
1586 gen6_seqno_barrier(struct intel_engine_cs *engine)
1587 {
1588 struct drm_i915_private *dev_priv = engine->i915;
1589
1590 /* Workaround to force correct ordering between irq and seqno writes on
1591 * ivb (and maybe also on snb) by reading from a CS register (like
1592 * ACTHD) before reading the status page.
1593 *
1594 * Note that this effectively stalls the read by the time it takes to
1595 * do a memory transaction, which more or less ensures that the write
1596 * from the GPU has sufficient time to invalidate the CPU cacheline.
1597 * Alternatively we could delay the interrupt from the CS ring to give
1598 * the write time to land, but that would incur a delay after every
1599 * batch i.e. much more frequent than a delay when waiting for the
1600 * interrupt (with the same net latency).
1601 *
1602 * Also note that to prevent whole machine hangs on gen7, we have to
1603 * take the spinlock to guard against concurrent cacheline access.
1604 */
1605 spin_lock_irq(&dev_priv->uncore.lock);
1606 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1607 spin_unlock_irq(&dev_priv->uncore.lock);
1608 }
1609
1610 static void
1611 gen5_irq_enable(struct intel_engine_cs *engine)
1612 {
1613 gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1614 }
1615
1616 static void
1617 gen5_irq_disable(struct intel_engine_cs *engine)
1618 {
1619 gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1620 }
1621
1622 static void
1623 i9xx_irq_enable(struct intel_engine_cs *engine)
1624 {
1625 struct drm_i915_private *dev_priv = engine->i915;
1626
1627 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1628 I915_WRITE(IMR, dev_priv->irq_mask);
1629 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1630 }
1631
1632 static void
1633 i9xx_irq_disable(struct intel_engine_cs *engine)
1634 {
1635 struct drm_i915_private *dev_priv = engine->i915;
1636
1637 dev_priv->irq_mask |= engine->irq_enable_mask;
1638 I915_WRITE(IMR, dev_priv->irq_mask);
1639 }
1640
1641 static void
1642 i8xx_irq_enable(struct intel_engine_cs *engine)
1643 {
1644 struct drm_i915_private *dev_priv = engine->i915;
1645
1646 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1647 I915_WRITE16(IMR, dev_priv->irq_mask);
1648 POSTING_READ16(RING_IMR(engine->mmio_base));
1649 }
1650
1651 static void
1652 i8xx_irq_disable(struct intel_engine_cs *engine)
1653 {
1654 struct drm_i915_private *dev_priv = engine->i915;
1655
1656 dev_priv->irq_mask |= engine->irq_enable_mask;
1657 I915_WRITE16(IMR, dev_priv->irq_mask);
1658 }
1659
1660 static int
1661 bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1662 {
1663 struct intel_ring *ring = req->ring;
1664 int ret;
1665
1666 ret = intel_ring_begin(req, 2);
1667 if (ret)
1668 return ret;
1669
1670 intel_ring_emit(ring, MI_FLUSH);
1671 intel_ring_emit(ring, MI_NOOP);
1672 intel_ring_advance(ring);
1673 return 0;
1674 }
1675
1676 static void
1677 gen6_irq_enable(struct intel_engine_cs *engine)
1678 {
1679 struct drm_i915_private *dev_priv = engine->i915;
1680
1681 I915_WRITE_IMR(engine,
1682 ~(engine->irq_enable_mask |
1683 engine->irq_keep_mask));
1684 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1685 }
1686
1687 static void
1688 gen6_irq_disable(struct intel_engine_cs *engine)
1689 {
1690 struct drm_i915_private *dev_priv = engine->i915;
1691
1692 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1693 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1694 }
1695
1696 static void
1697 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1698 {
1699 struct drm_i915_private *dev_priv = engine->i915;
1700
1701 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1702 gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
1703 }
1704
1705 static void
1706 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1707 {
1708 struct drm_i915_private *dev_priv = engine->i915;
1709
1710 I915_WRITE_IMR(engine, ~0);
1711 gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
1712 }
1713
1714 static void
1715 gen8_irq_enable(struct intel_engine_cs *engine)
1716 {
1717 struct drm_i915_private *dev_priv = engine->i915;
1718
1719 I915_WRITE_IMR(engine,
1720 ~(engine->irq_enable_mask |
1721 engine->irq_keep_mask));
1722 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1723 }
1724
1725 static void
1726 gen8_irq_disable(struct intel_engine_cs *engine)
1727 {
1728 struct drm_i915_private *dev_priv = engine->i915;
1729
1730 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1731 }
1732
1733 static int
1734 i965_emit_bb_start(struct drm_i915_gem_request *req,
1735 u64 offset, u32 length,
1736 unsigned int dispatch_flags)
1737 {
1738 struct intel_ring *ring = req->ring;
1739 int ret;
1740
1741 ret = intel_ring_begin(req, 2);
1742 if (ret)
1743 return ret;
1744
1745 intel_ring_emit(ring,
1746 MI_BATCH_BUFFER_START |
1747 MI_BATCH_GTT |
1748 (dispatch_flags & I915_DISPATCH_SECURE ?
1749 0 : MI_BATCH_NON_SECURE_I965));
1750 intel_ring_emit(ring, offset);
1751 intel_ring_advance(ring);
1752
1753 return 0;
1754 }
1755
1756 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1757 #define I830_BATCH_LIMIT (256*1024)
1758 #define I830_TLB_ENTRIES (2)
1759 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1760 static int
1761 i830_emit_bb_start(struct drm_i915_gem_request *req,
1762 u64 offset, u32 len,
1763 unsigned int dispatch_flags)
1764 {
1765 struct intel_ring *ring = req->ring;
1766 u32 cs_offset = req->engine->scratch.gtt_offset;
1767 int ret;
1768
1769 ret = intel_ring_begin(req, 6);
1770 if (ret)
1771 return ret;
1772
1773 /* Evict the invalid PTE TLBs */
1774 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1775 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1776 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1777 intel_ring_emit(ring, cs_offset);
1778 intel_ring_emit(ring, 0xdeadbeef);
1779 intel_ring_emit(ring, MI_NOOP);
1780 intel_ring_advance(ring);
1781
1782 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1783 if (len > I830_BATCH_LIMIT)
1784 return -ENOSPC;
1785
1786 ret = intel_ring_begin(req, 6 + 2);
1787 if (ret)
1788 return ret;
1789
1790 /* Blit the batch (which has now all relocs applied) to the
1791 * stable batch scratch bo area (so that the CS never
1792 * stumbles over its tlb invalidation bug) ...
1793 */
1794 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1795 intel_ring_emit(ring,
1796 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1797 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1798 intel_ring_emit(ring, cs_offset);
1799 intel_ring_emit(ring, 4096);
1800 intel_ring_emit(ring, offset);
1801
1802 intel_ring_emit(ring, MI_FLUSH);
1803 intel_ring_emit(ring, MI_NOOP);
1804 intel_ring_advance(ring);
1805
1806 /* ... and execute it. */
1807 offset = cs_offset;
1808 }
1809
1810 ret = intel_ring_begin(req, 2);
1811 if (ret)
1812 return ret;
1813
1814 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1815 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1816 0 : MI_BATCH_NON_SECURE));
1817 intel_ring_advance(ring);
1818
1819 return 0;
1820 }
1821
1822 static int
1823 i915_emit_bb_start(struct drm_i915_gem_request *req,
1824 u64 offset, u32 len,
1825 unsigned int dispatch_flags)
1826 {
1827 struct intel_ring *ring = req->ring;
1828 int ret;
1829
1830 ret = intel_ring_begin(req, 2);
1831 if (ret)
1832 return ret;
1833
1834 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1835 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1836 0 : MI_BATCH_NON_SECURE));
1837 intel_ring_advance(ring);
1838
1839 return 0;
1840 }
1841
1842 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1843 {
1844 struct drm_i915_private *dev_priv = engine->i915;
1845
1846 if (!dev_priv->status_page_dmah)
1847 return;
1848
1849 drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1850 engine->status_page.page_addr = NULL;
1851 }
1852
1853 static void cleanup_status_page(struct intel_engine_cs *engine)
1854 {
1855 struct i915_vma *vma;
1856
1857 vma = fetch_and_zero(&engine->status_page.vma);
1858 if (!vma)
1859 return;
1860
1861 i915_vma_unpin(vma);
1862 i915_gem_object_unpin_map(vma->obj);
1863 i915_vma_put(vma);
1864 }
1865
1866 static int init_status_page(struct intel_engine_cs *engine)
1867 {
1868 struct drm_i915_gem_object *obj;
1869 struct i915_vma *vma;
1870 unsigned int flags;
1871 int ret;
1872
1873 obj = i915_gem_object_create(&engine->i915->drm, 4096);
1874 if (IS_ERR(obj)) {
1875 DRM_ERROR("Failed to allocate status page\n");
1876 return PTR_ERR(obj);
1877 }
1878
1879 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1880 if (ret)
1881 goto err;
1882
1883 vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1884 if (IS_ERR(vma)) {
1885 ret = PTR_ERR(vma);
1886 goto err;
1887 }
1888
1889 flags = PIN_GLOBAL;
1890 if (!HAS_LLC(engine->i915))
1891 /* On g33, we cannot place HWS above 256MiB, so
1892 * restrict its pinning to the low mappable arena.
1893 * Though this restriction is not documented for
1894 * gen4, gen5, or byt, they also behave similarly
1895 * and hang if the HWS is placed at the top of the
1896 * GTT. To generalise, it appears that all !llc
1897 * platforms have issues with us placing the HWS
1898 * above the mappable region (even though we never
1899 * actualy map it).
1900 */
1901 flags |= PIN_MAPPABLE;
1902 ret = i915_vma_pin(vma, 0, 4096, flags);
1903 if (ret)
1904 goto err;
1905
1906 engine->status_page.vma = vma;
1907 engine->status_page.ggtt_offset = vma->node.start;
1908 engine->status_page.page_addr =
1909 i915_gem_object_pin_map(obj, I915_MAP_WB);
1910
1911 DRM_DEBUG_DRIVER("%s hws offset: 0x%08llx\n",
1912 engine->name, vma->node.start);
1913 return 0;
1914
1915 err:
1916 i915_gem_object_put(obj);
1917 return ret;
1918 }
1919
1920 static int init_phys_status_page(struct intel_engine_cs *engine)
1921 {
1922 struct drm_i915_private *dev_priv = engine->i915;
1923
1924 dev_priv->status_page_dmah =
1925 drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1926 if (!dev_priv->status_page_dmah)
1927 return -ENOMEM;
1928
1929 engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1930 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1931
1932 return 0;
1933 }
1934
1935 int intel_ring_pin(struct intel_ring *ring)
1936 {
1937 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1938 unsigned int flags = PIN_GLOBAL | PIN_OFFSET_BIAS | 4096;
1939 struct i915_vma *vma = ring->vma;
1940 void *addr;
1941 int ret;
1942
1943 GEM_BUG_ON(ring->vaddr);
1944
1945 if (ring->needs_iomap)
1946 flags |= PIN_MAPPABLE;
1947
1948 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1949 if (flags & PIN_MAPPABLE)
1950 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1951 else
1952 ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1953 if (unlikely(ret))
1954 return ret;
1955 }
1956
1957 ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1958 if (unlikely(ret))
1959 return ret;
1960
1961 if (flags & PIN_MAPPABLE)
1962 addr = (void __force *)i915_vma_pin_iomap(vma);
1963 else
1964 addr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1965 if (IS_ERR(addr))
1966 goto err;
1967
1968 ring->vaddr = addr;
1969 return 0;
1970
1971 err:
1972 i915_vma_unpin(vma);
1973 return PTR_ERR(addr);
1974 }
1975
1976 void intel_ring_unpin(struct intel_ring *ring)
1977 {
1978 GEM_BUG_ON(!ring->vma);
1979 GEM_BUG_ON(!ring->vaddr);
1980
1981 if (ring->needs_iomap)
1982 i915_vma_unpin_iomap(ring->vma);
1983 else
1984 i915_gem_object_unpin_map(ring->vma->obj);
1985 ring->vaddr = NULL;
1986
1987 i915_vma_unpin(ring->vma);
1988 }
1989
1990 static struct i915_vma *
1991 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1992 {
1993 struct drm_i915_gem_object *obj;
1994 struct i915_vma *vma;
1995
1996 obj = ERR_PTR(-ENODEV);
1997 if (!HAS_LLC(dev_priv))
1998 obj = i915_gem_object_create_stolen(&dev_priv->drm, size);
1999 if (IS_ERR(obj))
2000 obj = i915_gem_object_create(&dev_priv->drm, size);
2001 if (IS_ERR(obj))
2002 return ERR_CAST(obj);
2003
2004 /* mark ring buffers as read-only from GPU side by default */
2005 obj->gt_ro = 1;
2006
2007 vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
2008 if (IS_ERR(vma))
2009 goto err;
2010
2011 return vma;
2012
2013 err:
2014 i915_gem_object_put(obj);
2015 return vma;
2016 }
2017
2018 struct intel_ring *
2019 intel_engine_create_ring(struct intel_engine_cs *engine, int size)
2020 {
2021 struct intel_ring *ring;
2022 struct i915_vma *vma;
2023
2024 GEM_BUG_ON(!is_power_of_2(size));
2025
2026 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2027 if (!ring)
2028 return ERR_PTR(-ENOMEM);
2029
2030 ring->engine = engine;
2031
2032 INIT_LIST_HEAD(&ring->request_list);
2033
2034 ring->size = size;
2035 /* Workaround an erratum on the i830 which causes a hang if
2036 * the TAIL pointer points to within the last 2 cachelines
2037 * of the buffer.
2038 */
2039 ring->effective_size = size;
2040 if (IS_I830(engine->i915) || IS_845G(engine->i915))
2041 ring->effective_size -= 2 * CACHELINE_BYTES;
2042
2043 ring->last_retired_head = -1;
2044 intel_ring_update_space(ring);
2045
2046 vma = intel_ring_create_vma(engine->i915, size);
2047 if (IS_ERR(vma)) {
2048 kfree(ring);
2049 return ERR_CAST(vma);
2050 }
2051 ring->vma = vma;
2052 if (!HAS_LLC(engine->i915) || vma->obj->stolen)
2053 ring->needs_iomap = true;
2054
2055 list_add(&ring->link, &engine->buffers);
2056 return ring;
2057 }
2058
2059 void
2060 intel_ring_free(struct intel_ring *ring)
2061 {
2062 i915_vma_put(ring->vma);
2063 list_del(&ring->link);
2064 kfree(ring);
2065 }
2066
2067 static int intel_ring_context_pin(struct i915_gem_context *ctx,
2068 struct intel_engine_cs *engine)
2069 {
2070 struct intel_context *ce = &ctx->engine[engine->id];
2071 int ret;
2072
2073 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2074
2075 if (ce->pin_count++)
2076 return 0;
2077
2078 if (ce->state) {
2079 ret = i915_gem_object_set_to_gtt_domain(ce->state->obj, false);
2080 if (ret)
2081 goto error;
2082
2083 ret = i915_vma_pin(ce->state, 0, ctx->ggtt_alignment,
2084 PIN_GLOBAL | PIN_HIGH);
2085 if (ret)
2086 goto error;
2087 }
2088
2089 /* The kernel context is only used as a placeholder for flushing the
2090 * active context. It is never used for submitting user rendering and
2091 * as such never requires the golden render context, and so we can skip
2092 * emitting it when we switch to the kernel context. This is required
2093 * as during eviction we cannot allocate and pin the renderstate in
2094 * order to initialise the context.
2095 */
2096 if (ctx == ctx->i915->kernel_context)
2097 ce->initialised = true;
2098
2099 i915_gem_context_get(ctx);
2100 return 0;
2101
2102 error:
2103 ce->pin_count = 0;
2104 return ret;
2105 }
2106
2107 static void intel_ring_context_unpin(struct i915_gem_context *ctx,
2108 struct intel_engine_cs *engine)
2109 {
2110 struct intel_context *ce = &ctx->engine[engine->id];
2111
2112 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2113
2114 if (--ce->pin_count)
2115 return;
2116
2117 if (ce->state)
2118 i915_vma_unpin(ce->state);
2119
2120 i915_gem_context_put(ctx);
2121 }
2122
2123 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2124 {
2125 struct drm_i915_private *dev_priv = engine->i915;
2126 struct intel_ring *ring;
2127 int ret;
2128
2129 WARN_ON(engine->buffer);
2130
2131 intel_engine_setup_common(engine);
2132
2133 memset(engine->semaphore.sync_seqno, 0,
2134 sizeof(engine->semaphore.sync_seqno));
2135
2136 ret = intel_engine_init_common(engine);
2137 if (ret)
2138 goto error;
2139
2140 /* We may need to do things with the shrinker which
2141 * require us to immediately switch back to the default
2142 * context. This can cause a problem as pinning the
2143 * default context also requires GTT space which may not
2144 * be available. To avoid this we always pin the default
2145 * context.
2146 */
2147 ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
2148 if (ret)
2149 goto error;
2150
2151 ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
2152 if (IS_ERR(ring)) {
2153 ret = PTR_ERR(ring);
2154 goto error;
2155 }
2156
2157 if (I915_NEED_GFX_HWS(dev_priv)) {
2158 ret = init_status_page(engine);
2159 if (ret)
2160 goto error;
2161 } else {
2162 WARN_ON(engine->id != RCS);
2163 ret = init_phys_status_page(engine);
2164 if (ret)
2165 goto error;
2166 }
2167
2168 ret = intel_ring_pin(ring);
2169 if (ret) {
2170 intel_ring_free(ring);
2171 goto error;
2172 }
2173 engine->buffer = ring;
2174
2175 return 0;
2176
2177 error:
2178 intel_engine_cleanup(engine);
2179 return ret;
2180 }
2181
2182 void intel_engine_cleanup(struct intel_engine_cs *engine)
2183 {
2184 struct drm_i915_private *dev_priv;
2185
2186 if (!intel_engine_initialized(engine))
2187 return;
2188
2189 dev_priv = engine->i915;
2190
2191 if (engine->buffer) {
2192 WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2193
2194 intel_ring_unpin(engine->buffer);
2195 intel_ring_free(engine->buffer);
2196 engine->buffer = NULL;
2197 }
2198
2199 if (engine->cleanup)
2200 engine->cleanup(engine);
2201
2202 if (I915_NEED_GFX_HWS(dev_priv)) {
2203 cleanup_status_page(engine);
2204 } else {
2205 WARN_ON(engine->id != RCS);
2206 cleanup_phys_status_page(engine);
2207 }
2208
2209 intel_engine_cleanup_common(engine);
2210
2211 intel_ring_context_unpin(dev_priv->kernel_context, engine);
2212
2213 engine->i915 = NULL;
2214 }
2215
2216 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2217 {
2218 int ret;
2219
2220 /* Flush enough space to reduce the likelihood of waiting after
2221 * we start building the request - in which case we will just
2222 * have to repeat work.
2223 */
2224 request->reserved_space += LEGACY_REQUEST_SIZE;
2225
2226 request->ring = request->engine->buffer;
2227
2228 ret = intel_ring_begin(request, 0);
2229 if (ret)
2230 return ret;
2231
2232 request->reserved_space -= LEGACY_REQUEST_SIZE;
2233 return 0;
2234 }
2235
2236 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2237 {
2238 struct intel_ring *ring = req->ring;
2239 struct drm_i915_gem_request *target;
2240 int ret;
2241
2242 intel_ring_update_space(ring);
2243 if (ring->space >= bytes)
2244 return 0;
2245
2246 /*
2247 * Space is reserved in the ringbuffer for finalising the request,
2248 * as that cannot be allowed to fail. During request finalisation,
2249 * reserved_space is set to 0 to stop the overallocation and the
2250 * assumption is that then we never need to wait (which has the
2251 * risk of failing with EINTR).
2252 *
2253 * See also i915_gem_request_alloc() and i915_add_request().
2254 */
2255 GEM_BUG_ON(!req->reserved_space);
2256
2257 list_for_each_entry(target, &ring->request_list, ring_link) {
2258 unsigned space;
2259
2260 /* Would completion of this request free enough space? */
2261 space = __intel_ring_space(target->postfix, ring->tail,
2262 ring->size);
2263 if (space >= bytes)
2264 break;
2265 }
2266
2267 if (WARN_ON(&target->ring_link == &ring->request_list))
2268 return -ENOSPC;
2269
2270 ret = i915_wait_request(target, true, NULL, NO_WAITBOOST);
2271 if (ret)
2272 return ret;
2273
2274 if (i915_reset_in_progress(&target->i915->gpu_error))
2275 return -EAGAIN;
2276
2277 i915_gem_request_retire_upto(target);
2278
2279 intel_ring_update_space(ring);
2280 GEM_BUG_ON(ring->space < bytes);
2281 return 0;
2282 }
2283
2284 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2285 {
2286 struct intel_ring *ring = req->ring;
2287 int remain_actual = ring->size - ring->tail;
2288 int remain_usable = ring->effective_size - ring->tail;
2289 int bytes = num_dwords * sizeof(u32);
2290 int total_bytes, wait_bytes;
2291 bool need_wrap = false;
2292
2293 total_bytes = bytes + req->reserved_space;
2294
2295 if (unlikely(bytes > remain_usable)) {
2296 /*
2297 * Not enough space for the basic request. So need to flush
2298 * out the remainder and then wait for base + reserved.
2299 */
2300 wait_bytes = remain_actual + total_bytes;
2301 need_wrap = true;
2302 } else if (unlikely(total_bytes > remain_usable)) {
2303 /*
2304 * The base request will fit but the reserved space
2305 * falls off the end. So we don't need an immediate wrap
2306 * and only need to effectively wait for the reserved
2307 * size space from the start of ringbuffer.
2308 */
2309 wait_bytes = remain_actual + req->reserved_space;
2310 } else {
2311 /* No wrapping required, just waiting. */
2312 wait_bytes = total_bytes;
2313 }
2314
2315 if (wait_bytes > ring->space) {
2316 int ret = wait_for_space(req, wait_bytes);
2317 if (unlikely(ret))
2318 return ret;
2319 }
2320
2321 if (unlikely(need_wrap)) {
2322 GEM_BUG_ON(remain_actual > ring->space);
2323 GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2324
2325 /* Fill the tail with MI_NOOP */
2326 memset(ring->vaddr + ring->tail, 0, remain_actual);
2327 ring->tail = 0;
2328 ring->space -= remain_actual;
2329 }
2330
2331 ring->space -= bytes;
2332 GEM_BUG_ON(ring->space < 0);
2333 return 0;
2334 }
2335
2336 /* Align the ring tail to a cacheline boundary */
2337 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2338 {
2339 struct intel_ring *ring = req->ring;
2340 int num_dwords =
2341 (ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2342 int ret;
2343
2344 if (num_dwords == 0)
2345 return 0;
2346
2347 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2348 ret = intel_ring_begin(req, num_dwords);
2349 if (ret)
2350 return ret;
2351
2352 while (num_dwords--)
2353 intel_ring_emit(ring, MI_NOOP);
2354
2355 intel_ring_advance(ring);
2356
2357 return 0;
2358 }
2359
2360 void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2361 {
2362 struct drm_i915_private *dev_priv = engine->i915;
2363
2364 /* Our semaphore implementation is strictly monotonic (i.e. we proceed
2365 * so long as the semaphore value in the register/page is greater
2366 * than the sync value), so whenever we reset the seqno,
2367 * so long as we reset the tracking semaphore value to 0, it will
2368 * always be before the next request's seqno. If we don't reset
2369 * the semaphore value, then when the seqno moves backwards all
2370 * future waits will complete instantly (causing rendering corruption).
2371 */
2372 if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
2373 I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
2374 I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2375 if (HAS_VEBOX(dev_priv))
2376 I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2377 }
2378 if (dev_priv->semaphore_obj) {
2379 struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
2380 struct page *page = i915_gem_object_get_dirty_page(obj, 0);
2381 void *semaphores = kmap(page);
2382 memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
2383 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
2384 kunmap(page);
2385 }
2386 memset(engine->semaphore.sync_seqno, 0,
2387 sizeof(engine->semaphore.sync_seqno));
2388
2389 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
2390 if (engine->irq_seqno_barrier)
2391 engine->irq_seqno_barrier(engine);
2392 engine->last_submitted_seqno = seqno;
2393
2394 engine->hangcheck.seqno = seqno;
2395
2396 /* After manually advancing the seqno, fake the interrupt in case
2397 * there are any waiters for that seqno.
2398 */
2399 intel_engine_wakeup(engine);
2400 }
2401
2402 static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2403 {
2404 struct drm_i915_private *dev_priv = request->i915;
2405
2406 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2407
2408 /* Every tail move must follow the sequence below */
2409
2410 /* Disable notification that the ring is IDLE. The GT
2411 * will then assume that it is busy and bring it out of rc6.
2412 */
2413 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2414 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2415
2416 /* Clear the context id. Here be magic! */
2417 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2418
2419 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2420 if (intel_wait_for_register_fw(dev_priv,
2421 GEN6_BSD_SLEEP_PSMI_CONTROL,
2422 GEN6_BSD_SLEEP_INDICATOR,
2423 0,
2424 50))
2425 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2426
2427 /* Now that the ring is fully powered up, update the tail */
2428 i9xx_submit_request(request);
2429
2430 /* Let the ring send IDLE messages to the GT again,
2431 * and so let it sleep to conserve power when idle.
2432 */
2433 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2434 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2435
2436 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2437 }
2438
2439 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2440 {
2441 struct intel_ring *ring = req->ring;
2442 uint32_t cmd;
2443 int ret;
2444
2445 ret = intel_ring_begin(req, 4);
2446 if (ret)
2447 return ret;
2448
2449 cmd = MI_FLUSH_DW;
2450 if (INTEL_GEN(req->i915) >= 8)
2451 cmd += 1;
2452
2453 /* We always require a command barrier so that subsequent
2454 * commands, such as breadcrumb interrupts, are strictly ordered
2455 * wrt the contents of the write cache being flushed to memory
2456 * (and thus being coherent from the CPU).
2457 */
2458 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2459
2460 /*
2461 * Bspec vol 1c.5 - video engine command streamer:
2462 * "If ENABLED, all TLBs will be invalidated once the flush
2463 * operation is complete. This bit is only valid when the
2464 * Post-Sync Operation field is a value of 1h or 3h."
2465 */
2466 if (mode & EMIT_INVALIDATE)
2467 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2468
2469 intel_ring_emit(ring, cmd);
2470 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2471 if (INTEL_GEN(req->i915) >= 8) {
2472 intel_ring_emit(ring, 0); /* upper addr */
2473 intel_ring_emit(ring, 0); /* value */
2474 } else {
2475 intel_ring_emit(ring, 0);
2476 intel_ring_emit(ring, MI_NOOP);
2477 }
2478 intel_ring_advance(ring);
2479 return 0;
2480 }
2481
2482 static int
2483 gen8_emit_bb_start(struct drm_i915_gem_request *req,
2484 u64 offset, u32 len,
2485 unsigned int dispatch_flags)
2486 {
2487 struct intel_ring *ring = req->ring;
2488 bool ppgtt = USES_PPGTT(req->i915) &&
2489 !(dispatch_flags & I915_DISPATCH_SECURE);
2490 int ret;
2491
2492 ret = intel_ring_begin(req, 4);
2493 if (ret)
2494 return ret;
2495
2496 /* FIXME(BDW): Address space and security selectors. */
2497 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2498 (dispatch_flags & I915_DISPATCH_RS ?
2499 MI_BATCH_RESOURCE_STREAMER : 0));
2500 intel_ring_emit(ring, lower_32_bits(offset));
2501 intel_ring_emit(ring, upper_32_bits(offset));
2502 intel_ring_emit(ring, MI_NOOP);
2503 intel_ring_advance(ring);
2504
2505 return 0;
2506 }
2507
2508 static int
2509 hsw_emit_bb_start(struct drm_i915_gem_request *req,
2510 u64 offset, u32 len,
2511 unsigned int dispatch_flags)
2512 {
2513 struct intel_ring *ring = req->ring;
2514 int ret;
2515
2516 ret = intel_ring_begin(req, 2);
2517 if (ret)
2518 return ret;
2519
2520 intel_ring_emit(ring,
2521 MI_BATCH_BUFFER_START |
2522 (dispatch_flags & I915_DISPATCH_SECURE ?
2523 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2524 (dispatch_flags & I915_DISPATCH_RS ?
2525 MI_BATCH_RESOURCE_STREAMER : 0));
2526 /* bit0-7 is the length on GEN6+ */
2527 intel_ring_emit(ring, offset);
2528 intel_ring_advance(ring);
2529
2530 return 0;
2531 }
2532
2533 static int
2534 gen6_emit_bb_start(struct drm_i915_gem_request *req,
2535 u64 offset, u32 len,
2536 unsigned int dispatch_flags)
2537 {
2538 struct intel_ring *ring = req->ring;
2539 int ret;
2540
2541 ret = intel_ring_begin(req, 2);
2542 if (ret)
2543 return ret;
2544
2545 intel_ring_emit(ring,
2546 MI_BATCH_BUFFER_START |
2547 (dispatch_flags & I915_DISPATCH_SECURE ?
2548 0 : MI_BATCH_NON_SECURE_I965));
2549 /* bit0-7 is the length on GEN6+ */
2550 intel_ring_emit(ring, offset);
2551 intel_ring_advance(ring);
2552
2553 return 0;
2554 }
2555
2556 /* Blitter support (SandyBridge+) */
2557
2558 static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2559 {
2560 struct intel_ring *ring = req->ring;
2561 uint32_t cmd;
2562 int ret;
2563
2564 ret = intel_ring_begin(req, 4);
2565 if (ret)
2566 return ret;
2567
2568 cmd = MI_FLUSH_DW;
2569 if (INTEL_GEN(req->i915) >= 8)
2570 cmd += 1;
2571
2572 /* We always require a command barrier so that subsequent
2573 * commands, such as breadcrumb interrupts, are strictly ordered
2574 * wrt the contents of the write cache being flushed to memory
2575 * (and thus being coherent from the CPU).
2576 */
2577 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2578
2579 /*
2580 * Bspec vol 1c.3 - blitter engine command streamer:
2581 * "If ENABLED, all TLBs will be invalidated once the flush
2582 * operation is complete. This bit is only valid when the
2583 * Post-Sync Operation field is a value of 1h or 3h."
2584 */
2585 if (mode & EMIT_INVALIDATE)
2586 cmd |= MI_INVALIDATE_TLB;
2587 intel_ring_emit(ring, cmd);
2588 intel_ring_emit(ring,
2589 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2590 if (INTEL_GEN(req->i915) >= 8) {
2591 intel_ring_emit(ring, 0); /* upper addr */
2592 intel_ring_emit(ring, 0); /* value */
2593 } else {
2594 intel_ring_emit(ring, 0);
2595 intel_ring_emit(ring, MI_NOOP);
2596 }
2597 intel_ring_advance(ring);
2598
2599 return 0;
2600 }
2601
2602 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2603 struct intel_engine_cs *engine)
2604 {
2605 struct drm_i915_gem_object *obj;
2606 int ret, i;
2607
2608 if (!i915.semaphores)
2609 return;
2610
2611 if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
2612 obj = i915_gem_object_create(&dev_priv->drm, 4096);
2613 if (IS_ERR(obj)) {
2614 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2615 i915.semaphores = 0;
2616 } else {
2617 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2618 ret = i915_gem_object_ggtt_pin(obj, NULL,
2619 0, 0, PIN_HIGH);
2620 if (ret != 0) {
2621 i915_gem_object_put(obj);
2622 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2623 i915.semaphores = 0;
2624 } else {
2625 dev_priv->semaphore_obj = obj;
2626 }
2627 }
2628 }
2629
2630 if (!i915.semaphores)
2631 return;
2632
2633 if (INTEL_GEN(dev_priv) >= 8) {
2634 u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);
2635
2636 engine->semaphore.sync_to = gen8_ring_sync_to;
2637 engine->semaphore.signal = gen8_xcs_signal;
2638
2639 for (i = 0; i < I915_NUM_ENGINES; i++) {
2640 u64 ring_offset;
2641
2642 if (i != engine->id)
2643 ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
2644 else
2645 ring_offset = MI_SEMAPHORE_SYNC_INVALID;
2646
2647 engine->semaphore.signal_ggtt[i] = ring_offset;
2648 }
2649 } else if (INTEL_GEN(dev_priv) >= 6) {
2650 engine->semaphore.sync_to = gen6_ring_sync_to;
2651 engine->semaphore.signal = gen6_signal;
2652
2653 /*
2654 * The current semaphore is only applied on pre-gen8
2655 * platform. And there is no VCS2 ring on the pre-gen8
2656 * platform. So the semaphore between RCS and VCS2 is
2657 * initialized as INVALID. Gen8 will initialize the
2658 * sema between VCS2 and RCS later.
2659 */
2660 for (i = 0; i < I915_NUM_ENGINES; i++) {
2661 static const struct {
2662 u32 wait_mbox;
2663 i915_reg_t mbox_reg;
2664 } sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
2665 [RCS] = {
2666 [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
2667 [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
2668 [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2669 },
2670 [VCS] = {
2671 [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
2672 [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
2673 [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2674 },
2675 [BCS] = {
2676 [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
2677 [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
2678 [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2679 },
2680 [VECS] = {
2681 [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2682 [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2683 [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2684 },
2685 };
2686 u32 wait_mbox;
2687 i915_reg_t mbox_reg;
2688
2689 if (i == engine->id || i == VCS2) {
2690 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2691 mbox_reg = GEN6_NOSYNC;
2692 } else {
2693 wait_mbox = sem_data[engine->id][i].wait_mbox;
2694 mbox_reg = sem_data[engine->id][i].mbox_reg;
2695 }
2696
2697 engine->semaphore.mbox.wait[i] = wait_mbox;
2698 engine->semaphore.mbox.signal[i] = mbox_reg;
2699 }
2700 }
2701 }
2702
2703 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2704 struct intel_engine_cs *engine)
2705 {
2706 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
2707
2708 if (INTEL_GEN(dev_priv) >= 8) {
2709 engine->irq_enable = gen8_irq_enable;
2710 engine->irq_disable = gen8_irq_disable;
2711 engine->irq_seqno_barrier = gen6_seqno_barrier;
2712 } else if (INTEL_GEN(dev_priv) >= 6) {
2713 engine->irq_enable = gen6_irq_enable;
2714 engine->irq_disable = gen6_irq_disable;
2715 engine->irq_seqno_barrier = gen6_seqno_barrier;
2716 } else if (INTEL_GEN(dev_priv) >= 5) {
2717 engine->irq_enable = gen5_irq_enable;
2718 engine->irq_disable = gen5_irq_disable;
2719 engine->irq_seqno_barrier = gen5_seqno_barrier;
2720 } else if (INTEL_GEN(dev_priv) >= 3) {
2721 engine->irq_enable = i9xx_irq_enable;
2722 engine->irq_disable = i9xx_irq_disable;
2723 } else {
2724 engine->irq_enable = i8xx_irq_enable;
2725 engine->irq_disable = i8xx_irq_disable;
2726 }
2727 }
2728
2729 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2730 struct intel_engine_cs *engine)
2731 {
2732 intel_ring_init_irq(dev_priv, engine);
2733 intel_ring_init_semaphores(dev_priv, engine);
2734
2735 engine->init_hw = init_ring_common;
2736
2737 engine->emit_request = i9xx_emit_request;
2738 if (i915.semaphores)
2739 engine->emit_request = gen6_sema_emit_request;
2740 engine->submit_request = i9xx_submit_request;
2741
2742 if (INTEL_GEN(dev_priv) >= 8)
2743 engine->emit_bb_start = gen8_emit_bb_start;
2744 else if (INTEL_GEN(dev_priv) >= 6)
2745 engine->emit_bb_start = gen6_emit_bb_start;
2746 else if (INTEL_GEN(dev_priv) >= 4)
2747 engine->emit_bb_start = i965_emit_bb_start;
2748 else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2749 engine->emit_bb_start = i830_emit_bb_start;
2750 else
2751 engine->emit_bb_start = i915_emit_bb_start;
2752 }
2753
2754 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2755 {
2756 struct drm_i915_private *dev_priv = engine->i915;
2757 int ret;
2758
2759 intel_ring_default_vfuncs(dev_priv, engine);
2760
2761 if (HAS_L3_DPF(dev_priv))
2762 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2763
2764 if (INTEL_GEN(dev_priv) >= 8) {
2765 engine->init_context = intel_rcs_ctx_init;
2766 engine->emit_request = gen8_render_emit_request;
2767 engine->emit_flush = gen8_render_ring_flush;
2768 if (i915.semaphores)
2769 engine->semaphore.signal = gen8_rcs_signal;
2770 } else if (INTEL_GEN(dev_priv) >= 6) {
2771 engine->init_context = intel_rcs_ctx_init;
2772 engine->emit_flush = gen7_render_ring_flush;
2773 if (IS_GEN6(dev_priv))
2774 engine->emit_flush = gen6_render_ring_flush;
2775 } else if (IS_GEN5(dev_priv)) {
2776 engine->emit_flush = gen4_render_ring_flush;
2777 } else {
2778 if (INTEL_GEN(dev_priv) < 4)
2779 engine->emit_flush = gen2_render_ring_flush;
2780 else
2781 engine->emit_flush = gen4_render_ring_flush;
2782 engine->irq_enable_mask = I915_USER_INTERRUPT;
2783 }
2784
2785 if (IS_HASWELL(dev_priv))
2786 engine->emit_bb_start = hsw_emit_bb_start;
2787
2788 engine->init_hw = init_render_ring;
2789 engine->cleanup = render_ring_cleanup;
2790
2791 ret = intel_init_ring_buffer(engine);
2792 if (ret)
2793 return ret;
2794
2795 if (INTEL_GEN(dev_priv) >= 6) {
2796 ret = intel_init_pipe_control(engine, 4096);
2797 if (ret)
2798 return ret;
2799 } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2800 ret = intel_init_pipe_control(engine, I830_WA_SIZE);
2801 if (ret)
2802 return ret;
2803 }
2804
2805 return 0;
2806 }
2807
2808 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2809 {
2810 struct drm_i915_private *dev_priv = engine->i915;
2811
2812 intel_ring_default_vfuncs(dev_priv, engine);
2813
2814 if (INTEL_GEN(dev_priv) >= 6) {
2815 /* gen6 bsd needs a special wa for tail updates */
2816 if (IS_GEN6(dev_priv))
2817 engine->submit_request = gen6_bsd_submit_request;
2818 engine->emit_flush = gen6_bsd_ring_flush;
2819 if (INTEL_GEN(dev_priv) < 8)
2820 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2821 } else {
2822 engine->mmio_base = BSD_RING_BASE;
2823 engine->emit_flush = bsd_ring_flush;
2824 if (IS_GEN5(dev_priv))
2825 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2826 else
2827 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2828 }
2829
2830 return intel_init_ring_buffer(engine);
2831 }
2832
2833 /**
2834 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2835 */
2836 int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2837 {
2838 struct drm_i915_private *dev_priv = engine->i915;
2839
2840 intel_ring_default_vfuncs(dev_priv, engine);
2841
2842 engine->emit_flush = gen6_bsd_ring_flush;
2843
2844 return intel_init_ring_buffer(engine);
2845 }
2846
2847 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2848 {
2849 struct drm_i915_private *dev_priv = engine->i915;
2850
2851 intel_ring_default_vfuncs(dev_priv, engine);
2852
2853 engine->emit_flush = gen6_ring_flush;
2854 if (INTEL_GEN(dev_priv) < 8)
2855 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2856
2857 return intel_init_ring_buffer(engine);
2858 }
2859
2860 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2861 {
2862 struct drm_i915_private *dev_priv = engine->i915;
2863
2864 intel_ring_default_vfuncs(dev_priv, engine);
2865
2866 engine->emit_flush = gen6_ring_flush;
2867
2868 if (INTEL_GEN(dev_priv) < 8) {
2869 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2870 engine->irq_enable = hsw_vebox_irq_enable;
2871 engine->irq_disable = hsw_vebox_irq_disable;
2872 }
2873
2874 return intel_init_ring_buffer(engine);
2875 }
This page took 0.175484 seconds and 5 git commands to generate.