drm/i915: Allow DMA pagetables to use highmem
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 /* Rough estimate of the typical request size, performing a flush,
38 * set-context and then emitting the batch.
39 */
40 #define LEGACY_REQUEST_SIZE 200
41
42 int __intel_ring_space(int head, int tail, int size)
43 {
44 int space = head - tail;
45 if (space <= 0)
46 space += size;
47 return space - I915_RING_FREE_SPACE;
48 }
49
50 void intel_ring_update_space(struct intel_ring *ring)
51 {
52 if (ring->last_retired_head != -1) {
53 ring->head = ring->last_retired_head;
54 ring->last_retired_head = -1;
55 }
56
57 ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
58 ring->tail, ring->size);
59 }
60
61 static int
62 gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63 {
64 struct intel_ring *ring = req->ring;
65 u32 cmd;
66 int ret;
67
68 cmd = MI_FLUSH;
69
70 if (mode & EMIT_INVALIDATE)
71 cmd |= MI_READ_FLUSH;
72
73 ret = intel_ring_begin(req, 2);
74 if (ret)
75 return ret;
76
77 intel_ring_emit(ring, cmd);
78 intel_ring_emit(ring, MI_NOOP);
79 intel_ring_advance(ring);
80
81 return 0;
82 }
83
84 static int
85 gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
86 {
87 struct intel_ring *ring = req->ring;
88 u32 cmd;
89 int ret;
90
91 /*
92 * read/write caches:
93 *
94 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
95 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
96 * also flushed at 2d versus 3d pipeline switches.
97 *
98 * read-only caches:
99 *
100 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
101 * MI_READ_FLUSH is set, and is always flushed on 965.
102 *
103 * I915_GEM_DOMAIN_COMMAND may not exist?
104 *
105 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
106 * invalidated when MI_EXE_FLUSH is set.
107 *
108 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
109 * invalidated with every MI_FLUSH.
110 *
111 * TLBs:
112 *
113 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
114 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
115 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
116 * are flushed at any MI_FLUSH.
117 */
118
119 cmd = MI_FLUSH;
120 if (mode & EMIT_INVALIDATE) {
121 cmd |= MI_EXE_FLUSH;
122 if (IS_G4X(req->i915) || IS_GEN5(req->i915))
123 cmd |= MI_INVALIDATE_ISP;
124 }
125
126 ret = intel_ring_begin(req, 2);
127 if (ret)
128 return ret;
129
130 intel_ring_emit(ring, cmd);
131 intel_ring_emit(ring, MI_NOOP);
132 intel_ring_advance(ring);
133
134 return 0;
135 }
136
137 /**
138 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
139 * implementing two workarounds on gen6. From section 1.4.7.1
140 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
141 *
142 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
143 * produced by non-pipelined state commands), software needs to first
144 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
145 * 0.
146 *
147 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
148 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
149 *
150 * And the workaround for these two requires this workaround first:
151 *
152 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
153 * BEFORE the pipe-control with a post-sync op and no write-cache
154 * flushes.
155 *
156 * And this last workaround is tricky because of the requirements on
157 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
158 * volume 2 part 1:
159 *
160 * "1 of the following must also be set:
161 * - Render Target Cache Flush Enable ([12] of DW1)
162 * - Depth Cache Flush Enable ([0] of DW1)
163 * - Stall at Pixel Scoreboard ([1] of DW1)
164 * - Depth Stall ([13] of DW1)
165 * - Post-Sync Operation ([13] of DW1)
166 * - Notify Enable ([8] of DW1)"
167 *
168 * The cache flushes require the workaround flush that triggered this
169 * one, so we can't use it. Depth stall would trigger the same.
170 * Post-sync nonzero is what triggered this second workaround, so we
171 * can't use that one either. Notify enable is IRQs, which aren't
172 * really our business. That leaves only stall at scoreboard.
173 */
174 static int
175 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176 {
177 struct intel_ring *ring = req->ring;
178 u32 scratch_addr =
179 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
180 int ret;
181
182 ret = intel_ring_begin(req, 6);
183 if (ret)
184 return ret;
185
186 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
187 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188 PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
190 intel_ring_emit(ring, 0); /* low dword */
191 intel_ring_emit(ring, 0); /* high dword */
192 intel_ring_emit(ring, MI_NOOP);
193 intel_ring_advance(ring);
194
195 ret = intel_ring_begin(req, 6);
196 if (ret)
197 return ret;
198
199 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
200 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
201 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
202 intel_ring_emit(ring, 0);
203 intel_ring_emit(ring, 0);
204 intel_ring_emit(ring, MI_NOOP);
205 intel_ring_advance(ring);
206
207 return 0;
208 }
209
210 static int
211 gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
212 {
213 struct intel_ring *ring = req->ring;
214 u32 scratch_addr =
215 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
216 u32 flags = 0;
217 int ret;
218
219 /* Force SNB workarounds for PIPE_CONTROL flushes */
220 ret = intel_emit_post_sync_nonzero_flush(req);
221 if (ret)
222 return ret;
223
224 /* Just flush everything. Experiments have shown that reducing the
225 * number of bits based on the write domains has little performance
226 * impact.
227 */
228 if (mode & EMIT_FLUSH) {
229 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
230 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
231 /*
232 * Ensure that any following seqno writes only happen
233 * when the render cache is indeed flushed.
234 */
235 flags |= PIPE_CONTROL_CS_STALL;
236 }
237 if (mode & EMIT_INVALIDATE) {
238 flags |= PIPE_CONTROL_TLB_INVALIDATE;
239 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
240 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
243 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
244 /*
245 * TLB invalidate requires a post-sync write.
246 */
247 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248 }
249
250 ret = intel_ring_begin(req, 4);
251 if (ret)
252 return ret;
253
254 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
255 intel_ring_emit(ring, flags);
256 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
257 intel_ring_emit(ring, 0);
258 intel_ring_advance(ring);
259
260 return 0;
261 }
262
263 static int
264 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
265 {
266 struct intel_ring *ring = req->ring;
267 int ret;
268
269 ret = intel_ring_begin(req, 4);
270 if (ret)
271 return ret;
272
273 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
274 intel_ring_emit(ring,
275 PIPE_CONTROL_CS_STALL |
276 PIPE_CONTROL_STALL_AT_SCOREBOARD);
277 intel_ring_emit(ring, 0);
278 intel_ring_emit(ring, 0);
279 intel_ring_advance(ring);
280
281 return 0;
282 }
283
284 static int
285 gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
286 {
287 struct intel_ring *ring = req->ring;
288 u32 scratch_addr =
289 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
290 u32 flags = 0;
291 int ret;
292
293 /*
294 * Ensure that any following seqno writes only happen when the render
295 * cache is indeed flushed.
296 *
297 * Workaround: 4th PIPE_CONTROL command (except the ones with only
298 * read-cache invalidate bits set) must have the CS_STALL bit set. We
299 * don't try to be clever and just set it unconditionally.
300 */
301 flags |= PIPE_CONTROL_CS_STALL;
302
303 /* Just flush everything. Experiments have shown that reducing the
304 * number of bits based on the write domains has little performance
305 * impact.
306 */
307 if (mode & EMIT_FLUSH) {
308 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
309 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311 flags |= PIPE_CONTROL_FLUSH_ENABLE;
312 }
313 if (mode & EMIT_INVALIDATE) {
314 flags |= PIPE_CONTROL_TLB_INVALIDATE;
315 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
316 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
317 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
318 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
319 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
321 /*
322 * TLB invalidate requires a post-sync write.
323 */
324 flags |= PIPE_CONTROL_QW_WRITE;
325 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
326
327 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
328
329 /* Workaround: we must issue a pipe_control with CS-stall bit
330 * set before a pipe_control command that has the state cache
331 * invalidate bit set. */
332 gen7_render_ring_cs_stall_wa(req);
333 }
334
335 ret = intel_ring_begin(req, 4);
336 if (ret)
337 return ret;
338
339 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
340 intel_ring_emit(ring, flags);
341 intel_ring_emit(ring, scratch_addr);
342 intel_ring_emit(ring, 0);
343 intel_ring_advance(ring);
344
345 return 0;
346 }
347
348 static int
349 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350 u32 flags, u32 scratch_addr)
351 {
352 struct intel_ring *ring = req->ring;
353 int ret;
354
355 ret = intel_ring_begin(req, 6);
356 if (ret)
357 return ret;
358
359 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
360 intel_ring_emit(ring, flags);
361 intel_ring_emit(ring, scratch_addr);
362 intel_ring_emit(ring, 0);
363 intel_ring_emit(ring, 0);
364 intel_ring_emit(ring, 0);
365 intel_ring_advance(ring);
366
367 return 0;
368 }
369
370 static int
371 gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
372 {
373 u32 scratch_addr =
374 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
375 u32 flags = 0;
376 int ret;
377
378 flags |= PIPE_CONTROL_CS_STALL;
379
380 if (mode & EMIT_FLUSH) {
381 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
382 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
383 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
384 flags |= PIPE_CONTROL_FLUSH_ENABLE;
385 }
386 if (mode & EMIT_INVALIDATE) {
387 flags |= PIPE_CONTROL_TLB_INVALIDATE;
388 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
389 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
390 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
391 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
392 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
393 flags |= PIPE_CONTROL_QW_WRITE;
394 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
395
396 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
397 ret = gen8_emit_pipe_control(req,
398 PIPE_CONTROL_CS_STALL |
399 PIPE_CONTROL_STALL_AT_SCOREBOARD,
400 0);
401 if (ret)
402 return ret;
403 }
404
405 return gen8_emit_pipe_control(req, flags, scratch_addr);
406 }
407
408 u64 intel_engine_get_active_head(struct intel_engine_cs *engine)
409 {
410 struct drm_i915_private *dev_priv = engine->i915;
411 u64 acthd;
412
413 if (INTEL_GEN(dev_priv) >= 8)
414 acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
415 RING_ACTHD_UDW(engine->mmio_base));
416 else if (INTEL_GEN(dev_priv) >= 4)
417 acthd = I915_READ(RING_ACTHD(engine->mmio_base));
418 else
419 acthd = I915_READ(ACTHD);
420
421 return acthd;
422 }
423
424 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
425 {
426 struct drm_i915_private *dev_priv = engine->i915;
427 u32 addr;
428
429 addr = dev_priv->status_page_dmah->busaddr;
430 if (INTEL_GEN(dev_priv) >= 4)
431 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
432 I915_WRITE(HWS_PGA, addr);
433 }
434
435 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
436 {
437 struct drm_i915_private *dev_priv = engine->i915;
438 i915_reg_t mmio;
439
440 /* The ring status page addresses are no longer next to the rest of
441 * the ring registers as of gen7.
442 */
443 if (IS_GEN7(dev_priv)) {
444 switch (engine->id) {
445 case RCS:
446 mmio = RENDER_HWS_PGA_GEN7;
447 break;
448 case BCS:
449 mmio = BLT_HWS_PGA_GEN7;
450 break;
451 /*
452 * VCS2 actually doesn't exist on Gen7. Only shut up
453 * gcc switch check warning
454 */
455 case VCS2:
456 case VCS:
457 mmio = BSD_HWS_PGA_GEN7;
458 break;
459 case VECS:
460 mmio = VEBOX_HWS_PGA_GEN7;
461 break;
462 }
463 } else if (IS_GEN6(dev_priv)) {
464 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
465 } else {
466 /* XXX: gen8 returns to sanity */
467 mmio = RING_HWS_PGA(engine->mmio_base);
468 }
469
470 I915_WRITE(mmio, engine->status_page.ggtt_offset);
471 POSTING_READ(mmio);
472
473 /*
474 * Flush the TLB for this page
475 *
476 * FIXME: These two bits have disappeared on gen8, so a question
477 * arises: do we still need this and if so how should we go about
478 * invalidating the TLB?
479 */
480 if (IS_GEN(dev_priv, 6, 7)) {
481 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
482
483 /* ring should be idle before issuing a sync flush*/
484 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
485
486 I915_WRITE(reg,
487 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
488 INSTPM_SYNC_FLUSH));
489 if (intel_wait_for_register(dev_priv,
490 reg, INSTPM_SYNC_FLUSH, 0,
491 1000))
492 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
493 engine->name);
494 }
495 }
496
497 static bool stop_ring(struct intel_engine_cs *engine)
498 {
499 struct drm_i915_private *dev_priv = engine->i915;
500
501 if (INTEL_GEN(dev_priv) > 2) {
502 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
503 if (intel_wait_for_register(dev_priv,
504 RING_MI_MODE(engine->mmio_base),
505 MODE_IDLE,
506 MODE_IDLE,
507 1000)) {
508 DRM_ERROR("%s : timed out trying to stop ring\n",
509 engine->name);
510 /* Sometimes we observe that the idle flag is not
511 * set even though the ring is empty. So double
512 * check before giving up.
513 */
514 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
515 return false;
516 }
517 }
518
519 I915_WRITE_CTL(engine, 0);
520 I915_WRITE_HEAD(engine, 0);
521 I915_WRITE_TAIL(engine, 0);
522
523 if (INTEL_GEN(dev_priv) > 2) {
524 (void)I915_READ_CTL(engine);
525 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
526 }
527
528 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
529 }
530
531 static int init_ring_common(struct intel_engine_cs *engine)
532 {
533 struct drm_i915_private *dev_priv = engine->i915;
534 struct intel_ring *ring = engine->buffer;
535 int ret = 0;
536
537 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
538
539 if (!stop_ring(engine)) {
540 /* G45 ring initialization often fails to reset head to zero */
541 DRM_DEBUG_KMS("%s head not reset to zero "
542 "ctl %08x head %08x tail %08x start %08x\n",
543 engine->name,
544 I915_READ_CTL(engine),
545 I915_READ_HEAD(engine),
546 I915_READ_TAIL(engine),
547 I915_READ_START(engine));
548
549 if (!stop_ring(engine)) {
550 DRM_ERROR("failed to set %s head to zero "
551 "ctl %08x head %08x tail %08x start %08x\n",
552 engine->name,
553 I915_READ_CTL(engine),
554 I915_READ_HEAD(engine),
555 I915_READ_TAIL(engine),
556 I915_READ_START(engine));
557 ret = -EIO;
558 goto out;
559 }
560 }
561
562 if (I915_NEED_GFX_HWS(dev_priv))
563 intel_ring_setup_status_page(engine);
564 else
565 ring_setup_phys_status_page(engine);
566
567 /* Enforce ordering by reading HEAD register back */
568 I915_READ_HEAD(engine);
569
570 /* Initialize the ring. This must happen _after_ we've cleared the ring
571 * registers with the above sequence (the readback of the HEAD registers
572 * also enforces ordering), otherwise the hw might lose the new ring
573 * register values. */
574 I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
575
576 /* WaClearRingBufHeadRegAtInit:ctg,elk */
577 if (I915_READ_HEAD(engine))
578 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
579 engine->name, I915_READ_HEAD(engine));
580 I915_WRITE_HEAD(engine, 0);
581 (void)I915_READ_HEAD(engine);
582
583 I915_WRITE_CTL(engine,
584 ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
585 | RING_VALID);
586
587 /* If the head is still not zero, the ring is dead */
588 if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
589 I915_READ_START(engine) == i915_ggtt_offset(ring->vma) &&
590 (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
591 DRM_ERROR("%s initialization failed "
592 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08x]\n",
593 engine->name,
594 I915_READ_CTL(engine),
595 I915_READ_CTL(engine) & RING_VALID,
596 I915_READ_HEAD(engine), I915_READ_TAIL(engine),
597 I915_READ_START(engine),
598 i915_ggtt_offset(ring->vma));
599 ret = -EIO;
600 goto out;
601 }
602
603 ring->last_retired_head = -1;
604 ring->head = I915_READ_HEAD(engine);
605 ring->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
606 intel_ring_update_space(ring);
607
608 intel_engine_init_hangcheck(engine);
609
610 out:
611 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
612
613 return ret;
614 }
615
616 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
617 {
618 struct intel_ring *ring = req->ring;
619 struct i915_workarounds *w = &req->i915->workarounds;
620 int ret, i;
621
622 if (w->count == 0)
623 return 0;
624
625 ret = req->engine->emit_flush(req, EMIT_BARRIER);
626 if (ret)
627 return ret;
628
629 ret = intel_ring_begin(req, (w->count * 2 + 2));
630 if (ret)
631 return ret;
632
633 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
634 for (i = 0; i < w->count; i++) {
635 intel_ring_emit_reg(ring, w->reg[i].addr);
636 intel_ring_emit(ring, w->reg[i].value);
637 }
638 intel_ring_emit(ring, MI_NOOP);
639
640 intel_ring_advance(ring);
641
642 ret = req->engine->emit_flush(req, EMIT_BARRIER);
643 if (ret)
644 return ret;
645
646 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
647
648 return 0;
649 }
650
651 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
652 {
653 int ret;
654
655 ret = intel_ring_workarounds_emit(req);
656 if (ret != 0)
657 return ret;
658
659 ret = i915_gem_render_state_init(req);
660 if (ret)
661 return ret;
662
663 return 0;
664 }
665
666 static int wa_add(struct drm_i915_private *dev_priv,
667 i915_reg_t addr,
668 const u32 mask, const u32 val)
669 {
670 const u32 idx = dev_priv->workarounds.count;
671
672 if (WARN_ON(idx >= I915_MAX_WA_REGS))
673 return -ENOSPC;
674
675 dev_priv->workarounds.reg[idx].addr = addr;
676 dev_priv->workarounds.reg[idx].value = val;
677 dev_priv->workarounds.reg[idx].mask = mask;
678
679 dev_priv->workarounds.count++;
680
681 return 0;
682 }
683
684 #define WA_REG(addr, mask, val) do { \
685 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
686 if (r) \
687 return r; \
688 } while (0)
689
690 #define WA_SET_BIT_MASKED(addr, mask) \
691 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
692
693 #define WA_CLR_BIT_MASKED(addr, mask) \
694 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
695
696 #define WA_SET_FIELD_MASKED(addr, mask, value) \
697 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
698
699 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
700 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
701
702 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
703
704 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
705 i915_reg_t reg)
706 {
707 struct drm_i915_private *dev_priv = engine->i915;
708 struct i915_workarounds *wa = &dev_priv->workarounds;
709 const uint32_t index = wa->hw_whitelist_count[engine->id];
710
711 if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
712 return -EINVAL;
713
714 WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
715 i915_mmio_reg_offset(reg));
716 wa->hw_whitelist_count[engine->id]++;
717
718 return 0;
719 }
720
721 static int gen8_init_workarounds(struct intel_engine_cs *engine)
722 {
723 struct drm_i915_private *dev_priv = engine->i915;
724
725 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
726
727 /* WaDisableAsyncFlipPerfMode:bdw,chv */
728 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
729
730 /* WaDisablePartialInstShootdown:bdw,chv */
731 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
732 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
733
734 /* Use Force Non-Coherent whenever executing a 3D context. This is a
735 * workaround for for a possible hang in the unlikely event a TLB
736 * invalidation occurs during a PSD flush.
737 */
738 /* WaForceEnableNonCoherent:bdw,chv */
739 /* WaHdcDisableFetchWhenMasked:bdw,chv */
740 WA_SET_BIT_MASKED(HDC_CHICKEN0,
741 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
742 HDC_FORCE_NON_COHERENT);
743
744 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
745 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
746 * polygons in the same 8x4 pixel/sample area to be processed without
747 * stalling waiting for the earlier ones to write to Hierarchical Z
748 * buffer."
749 *
750 * This optimization is off by default for BDW and CHV; turn it on.
751 */
752 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
753
754 /* Wa4x4STCOptimizationDisable:bdw,chv */
755 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
756
757 /*
758 * BSpec recommends 8x4 when MSAA is used,
759 * however in practice 16x4 seems fastest.
760 *
761 * Note that PS/WM thread counts depend on the WIZ hashing
762 * disable bit, which we don't touch here, but it's good
763 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
764 */
765 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
766 GEN6_WIZ_HASHING_MASK,
767 GEN6_WIZ_HASHING_16x4);
768
769 return 0;
770 }
771
772 static int bdw_init_workarounds(struct intel_engine_cs *engine)
773 {
774 struct drm_i915_private *dev_priv = engine->i915;
775 int ret;
776
777 ret = gen8_init_workarounds(engine);
778 if (ret)
779 return ret;
780
781 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
782 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
783
784 /* WaDisableDopClockGating:bdw */
785 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
786 DOP_CLOCK_GATING_DISABLE);
787
788 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
789 GEN8_SAMPLER_POWER_BYPASS_DIS);
790
791 WA_SET_BIT_MASKED(HDC_CHICKEN0,
792 /* WaForceContextSaveRestoreNonCoherent:bdw */
793 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
794 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
795 (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
796
797 return 0;
798 }
799
800 static int chv_init_workarounds(struct intel_engine_cs *engine)
801 {
802 struct drm_i915_private *dev_priv = engine->i915;
803 int ret;
804
805 ret = gen8_init_workarounds(engine);
806 if (ret)
807 return ret;
808
809 /* WaDisableThreadStallDopClockGating:chv */
810 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
811
812 /* Improve HiZ throughput on CHV. */
813 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
814
815 return 0;
816 }
817
818 static int gen9_init_workarounds(struct intel_engine_cs *engine)
819 {
820 struct drm_i915_private *dev_priv = engine->i915;
821 int ret;
822
823 /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
824 I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
825
826 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
827 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
828 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
829
830 /* WaDisableKillLogic:bxt,skl,kbl */
831 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
832 ECOCHK_DIS_TLB);
833
834 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
835 /* WaDisablePartialInstShootdown:skl,bxt,kbl */
836 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
837 FLOW_CONTROL_ENABLE |
838 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
839
840 /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
841 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
842 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
843
844 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
845 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
846 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
847 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
848 GEN9_DG_MIRROR_FIX_ENABLE);
849
850 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
851 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
852 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
853 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
854 GEN9_RHWO_OPTIMIZATION_DISABLE);
855 /*
856 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
857 * but we do that in per ctx batchbuffer as there is an issue
858 * with this register not getting restored on ctx restore
859 */
860 }
861
862 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
863 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
864 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
865 GEN9_ENABLE_YV12_BUGFIX |
866 GEN9_ENABLE_GPGPU_PREEMPTION);
867
868 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
869 /* WaDisablePartialResolveInVc:skl,bxt,kbl */
870 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
871 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
872
873 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
874 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
875 GEN9_CCS_TLB_PREFETCH_ENABLE);
876
877 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
878 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
879 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
880 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
881 PIXEL_MASK_CAMMING_DISABLE);
882
883 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
884 WA_SET_BIT_MASKED(HDC_CHICKEN0,
885 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
886 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
887
888 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
889 * both tied to WaForceContextSaveRestoreNonCoherent
890 * in some hsds for skl. We keep the tie for all gen9. The
891 * documentation is a bit hazy and so we want to get common behaviour,
892 * even though there is no clear evidence we would need both on kbl/bxt.
893 * This area has been source of system hangs so we play it safe
894 * and mimic the skl regardless of what bspec says.
895 *
896 * Use Force Non-Coherent whenever executing a 3D context. This
897 * is a workaround for a possible hang in the unlikely event
898 * a TLB invalidation occurs during a PSD flush.
899 */
900
901 /* WaForceEnableNonCoherent:skl,bxt,kbl */
902 WA_SET_BIT_MASKED(HDC_CHICKEN0,
903 HDC_FORCE_NON_COHERENT);
904
905 /* WaDisableHDCInvalidation:skl,bxt,kbl */
906 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
907 BDW_DISABLE_HDC_INVALIDATION);
908
909 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
910 if (IS_SKYLAKE(dev_priv) ||
911 IS_KABYLAKE(dev_priv) ||
912 IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
913 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
914 GEN8_SAMPLER_POWER_BYPASS_DIS);
915
916 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
917 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
918
919 /* WaOCLCoherentLineFlush:skl,bxt,kbl */
920 I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
921 GEN8_LQSC_FLUSH_COHERENT_LINES));
922
923 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
924 ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
925 if (ret)
926 return ret;
927
928 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
929 ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
930 if (ret)
931 return ret;
932
933 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
934 ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
935 if (ret)
936 return ret;
937
938 return 0;
939 }
940
941 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
942 {
943 struct drm_i915_private *dev_priv = engine->i915;
944 u8 vals[3] = { 0, 0, 0 };
945 unsigned int i;
946
947 for (i = 0; i < 3; i++) {
948 u8 ss;
949
950 /*
951 * Only consider slices where one, and only one, subslice has 7
952 * EUs
953 */
954 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
955 continue;
956
957 /*
958 * subslice_7eu[i] != 0 (because of the check above) and
959 * ss_max == 4 (maximum number of subslices possible per slice)
960 *
961 * -> 0 <= ss <= 3;
962 */
963 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
964 vals[i] = 3 - ss;
965 }
966
967 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
968 return 0;
969
970 /* Tune IZ hashing. See intel_device_info_runtime_init() */
971 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
972 GEN9_IZ_HASHING_MASK(2) |
973 GEN9_IZ_HASHING_MASK(1) |
974 GEN9_IZ_HASHING_MASK(0),
975 GEN9_IZ_HASHING(2, vals[2]) |
976 GEN9_IZ_HASHING(1, vals[1]) |
977 GEN9_IZ_HASHING(0, vals[0]));
978
979 return 0;
980 }
981
982 static int skl_init_workarounds(struct intel_engine_cs *engine)
983 {
984 struct drm_i915_private *dev_priv = engine->i915;
985 int ret;
986
987 ret = gen9_init_workarounds(engine);
988 if (ret)
989 return ret;
990
991 /*
992 * Actual WA is to disable percontext preemption granularity control
993 * until D0 which is the default case so this is equivalent to
994 * !WaDisablePerCtxtPreemptionGranularityControl:skl
995 */
996 if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
997 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
998 _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
999 }
1000
1001 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1002 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1003 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1004 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1005 }
1006
1007 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1008 * involving this register should also be added to WA batch as required.
1009 */
1010 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1011 /* WaDisableLSQCROPERFforOCL:skl */
1012 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1013 GEN8_LQSC_RO_PERF_DIS);
1014
1015 /* WaEnableGapsTsvCreditFix:skl */
1016 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1017 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1018 GEN9_GAPS_TSV_CREDIT_DISABLE));
1019 }
1020
1021 /* WaDisablePowerCompilerClockGating:skl */
1022 if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1023 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1024 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1025
1026 /* WaBarrierPerformanceFixDisable:skl */
1027 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1028 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1029 HDC_FENCE_DEST_SLM_DISABLE |
1030 HDC_BARRIER_PERFORMANCE_DISABLE);
1031
1032 /* WaDisableSbeCacheDispatchPortSharing:skl */
1033 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1034 WA_SET_BIT_MASKED(
1035 GEN7_HALF_SLICE_CHICKEN1,
1036 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1037
1038 /* WaDisableGafsUnitClkGating:skl */
1039 WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1040
1041 /* WaInPlaceDecompressionHang:skl */
1042 if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
1043 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1044 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1045
1046 /* WaDisableLSQCROPERFforOCL:skl */
1047 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1048 if (ret)
1049 return ret;
1050
1051 return skl_tune_iz_hashing(engine);
1052 }
1053
1054 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1055 {
1056 struct drm_i915_private *dev_priv = engine->i915;
1057 int ret;
1058
1059 ret = gen9_init_workarounds(engine);
1060 if (ret)
1061 return ret;
1062
1063 /* WaStoreMultiplePTEenable:bxt */
1064 /* This is a requirement according to Hardware specification */
1065 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1066 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1067
1068 /* WaSetClckGatingDisableMedia:bxt */
1069 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1070 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1071 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1072 }
1073
1074 /* WaDisableThreadStallDopClockGating:bxt */
1075 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1076 STALL_DOP_GATING_DISABLE);
1077
1078 /* WaDisablePooledEuLoadBalancingFix:bxt */
1079 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
1080 WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
1081 GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
1082 }
1083
1084 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1085 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1086 WA_SET_BIT_MASKED(
1087 GEN7_HALF_SLICE_CHICKEN1,
1088 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1089 }
1090
1091 /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1092 /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1093 /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1094 /* WaDisableLSQCROPERFforOCL:bxt */
1095 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1096 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1097 if (ret)
1098 return ret;
1099
1100 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1101 if (ret)
1102 return ret;
1103 }
1104
1105 /* WaProgramL3SqcReg1DefaultForPerf:bxt */
1106 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1107 I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1108 L3_HIGH_PRIO_CREDITS(2));
1109
1110 /* WaToEnableHwFixForPushConstHWBug:bxt */
1111 if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1112 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1113 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1114
1115 /* WaInPlaceDecompressionHang:bxt */
1116 if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1117 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1118 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1119
1120 return 0;
1121 }
1122
1123 static int kbl_init_workarounds(struct intel_engine_cs *engine)
1124 {
1125 struct drm_i915_private *dev_priv = engine->i915;
1126 int ret;
1127
1128 ret = gen9_init_workarounds(engine);
1129 if (ret)
1130 return ret;
1131
1132 /* WaEnableGapsTsvCreditFix:kbl */
1133 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1134 GEN9_GAPS_TSV_CREDIT_DISABLE));
1135
1136 /* WaDisableDynamicCreditSharing:kbl */
1137 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1138 WA_SET_BIT(GAMT_CHKN_BIT_REG,
1139 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1140
1141 /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1142 if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1143 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1144 HDC_FENCE_DEST_SLM_DISABLE);
1145
1146 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1147 * involving this register should also be added to WA batch as required.
1148 */
1149 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1150 /* WaDisableLSQCROPERFforOCL:kbl */
1151 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1152 GEN8_LQSC_RO_PERF_DIS);
1153
1154 /* WaToEnableHwFixForPushConstHWBug:kbl */
1155 if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1156 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1157 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1158
1159 /* WaDisableGafsUnitClkGating:kbl */
1160 WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1161
1162 /* WaDisableSbeCacheDispatchPortSharing:kbl */
1163 WA_SET_BIT_MASKED(
1164 GEN7_HALF_SLICE_CHICKEN1,
1165 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1166
1167 /* WaInPlaceDecompressionHang:kbl */
1168 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1169 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1170
1171 /* WaDisableLSQCROPERFforOCL:kbl */
1172 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1173 if (ret)
1174 return ret;
1175
1176 return 0;
1177 }
1178
1179 int init_workarounds_ring(struct intel_engine_cs *engine)
1180 {
1181 struct drm_i915_private *dev_priv = engine->i915;
1182
1183 WARN_ON(engine->id != RCS);
1184
1185 dev_priv->workarounds.count = 0;
1186 dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1187
1188 if (IS_BROADWELL(dev_priv))
1189 return bdw_init_workarounds(engine);
1190
1191 if (IS_CHERRYVIEW(dev_priv))
1192 return chv_init_workarounds(engine);
1193
1194 if (IS_SKYLAKE(dev_priv))
1195 return skl_init_workarounds(engine);
1196
1197 if (IS_BROXTON(dev_priv))
1198 return bxt_init_workarounds(engine);
1199
1200 if (IS_KABYLAKE(dev_priv))
1201 return kbl_init_workarounds(engine);
1202
1203 return 0;
1204 }
1205
1206 static int init_render_ring(struct intel_engine_cs *engine)
1207 {
1208 struct drm_i915_private *dev_priv = engine->i915;
1209 int ret = init_ring_common(engine);
1210 if (ret)
1211 return ret;
1212
1213 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1214 if (IS_GEN(dev_priv, 4, 6))
1215 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1216
1217 /* We need to disable the AsyncFlip performance optimisations in order
1218 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1219 * programmed to '1' on all products.
1220 *
1221 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1222 */
1223 if (IS_GEN(dev_priv, 6, 7))
1224 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1225
1226 /* Required for the hardware to program scanline values for waiting */
1227 /* WaEnableFlushTlbInvalidationMode:snb */
1228 if (IS_GEN6(dev_priv))
1229 I915_WRITE(GFX_MODE,
1230 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1231
1232 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1233 if (IS_GEN7(dev_priv))
1234 I915_WRITE(GFX_MODE_GEN7,
1235 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1236 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1237
1238 if (IS_GEN6(dev_priv)) {
1239 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1240 * "If this bit is set, STCunit will have LRA as replacement
1241 * policy. [...] This bit must be reset. LRA replacement
1242 * policy is not supported."
1243 */
1244 I915_WRITE(CACHE_MODE_0,
1245 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1246 }
1247
1248 if (IS_GEN(dev_priv, 6, 7))
1249 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1250
1251 if (INTEL_INFO(dev_priv)->gen >= 6)
1252 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1253
1254 return init_workarounds_ring(engine);
1255 }
1256
1257 static void render_ring_cleanup(struct intel_engine_cs *engine)
1258 {
1259 struct drm_i915_private *dev_priv = engine->i915;
1260
1261 i915_vma_unpin_and_release(&dev_priv->semaphore);
1262 }
1263
1264 static int gen8_rcs_signal(struct drm_i915_gem_request *req)
1265 {
1266 struct intel_ring *ring = req->ring;
1267 struct drm_i915_private *dev_priv = req->i915;
1268 struct intel_engine_cs *waiter;
1269 enum intel_engine_id id;
1270 int ret, num_rings;
1271
1272 num_rings = INTEL_INFO(dev_priv)->num_rings;
1273 ret = intel_ring_begin(req, (num_rings-1) * 8);
1274 if (ret)
1275 return ret;
1276
1277 for_each_engine_id(waiter, dev_priv, id) {
1278 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1279 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1280 continue;
1281
1282 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1283 intel_ring_emit(ring,
1284 PIPE_CONTROL_GLOBAL_GTT_IVB |
1285 PIPE_CONTROL_QW_WRITE |
1286 PIPE_CONTROL_CS_STALL);
1287 intel_ring_emit(ring, lower_32_bits(gtt_offset));
1288 intel_ring_emit(ring, upper_32_bits(gtt_offset));
1289 intel_ring_emit(ring, req->fence.seqno);
1290 intel_ring_emit(ring, 0);
1291 intel_ring_emit(ring,
1292 MI_SEMAPHORE_SIGNAL |
1293 MI_SEMAPHORE_TARGET(waiter->hw_id));
1294 intel_ring_emit(ring, 0);
1295 }
1296 intel_ring_advance(ring);
1297
1298 return 0;
1299 }
1300
1301 static int gen8_xcs_signal(struct drm_i915_gem_request *req)
1302 {
1303 struct intel_ring *ring = req->ring;
1304 struct drm_i915_private *dev_priv = req->i915;
1305 struct intel_engine_cs *waiter;
1306 enum intel_engine_id id;
1307 int ret, num_rings;
1308
1309 num_rings = INTEL_INFO(dev_priv)->num_rings;
1310 ret = intel_ring_begin(req, (num_rings-1) * 6);
1311 if (ret)
1312 return ret;
1313
1314 for_each_engine_id(waiter, dev_priv, id) {
1315 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1316 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1317 continue;
1318
1319 intel_ring_emit(ring,
1320 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1321 intel_ring_emit(ring,
1322 lower_32_bits(gtt_offset) |
1323 MI_FLUSH_DW_USE_GTT);
1324 intel_ring_emit(ring, upper_32_bits(gtt_offset));
1325 intel_ring_emit(ring, req->fence.seqno);
1326 intel_ring_emit(ring,
1327 MI_SEMAPHORE_SIGNAL |
1328 MI_SEMAPHORE_TARGET(waiter->hw_id));
1329 intel_ring_emit(ring, 0);
1330 }
1331 intel_ring_advance(ring);
1332
1333 return 0;
1334 }
1335
1336 static int gen6_signal(struct drm_i915_gem_request *req)
1337 {
1338 struct intel_ring *ring = req->ring;
1339 struct drm_i915_private *dev_priv = req->i915;
1340 struct intel_engine_cs *engine;
1341 int ret, num_rings;
1342
1343 num_rings = INTEL_INFO(dev_priv)->num_rings;
1344 ret = intel_ring_begin(req, round_up((num_rings-1) * 3, 2));
1345 if (ret)
1346 return ret;
1347
1348 for_each_engine(engine, dev_priv) {
1349 i915_reg_t mbox_reg;
1350
1351 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
1352 continue;
1353
1354 mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
1355 if (i915_mmio_reg_valid(mbox_reg)) {
1356 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1357 intel_ring_emit_reg(ring, mbox_reg);
1358 intel_ring_emit(ring, req->fence.seqno);
1359 }
1360 }
1361
1362 /* If num_dwords was rounded, make sure the tail pointer is correct */
1363 if (num_rings % 2 == 0)
1364 intel_ring_emit(ring, MI_NOOP);
1365 intel_ring_advance(ring);
1366
1367 return 0;
1368 }
1369
1370 static void i9xx_submit_request(struct drm_i915_gem_request *request)
1371 {
1372 struct drm_i915_private *dev_priv = request->i915;
1373
1374 I915_WRITE_TAIL(request->engine,
1375 intel_ring_offset(request->ring, request->tail));
1376 }
1377
1378 static int i9xx_emit_request(struct drm_i915_gem_request *req)
1379 {
1380 struct intel_ring *ring = req->ring;
1381 int ret;
1382
1383 ret = intel_ring_begin(req, 4);
1384 if (ret)
1385 return ret;
1386
1387 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1388 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1389 intel_ring_emit(ring, req->fence.seqno);
1390 intel_ring_emit(ring, MI_USER_INTERRUPT);
1391 intel_ring_advance(ring);
1392
1393 req->tail = ring->tail;
1394
1395 return 0;
1396 }
1397
1398 /**
1399 * gen6_sema_emit_request - Update the semaphore mailbox registers
1400 *
1401 * @request - request to write to the ring
1402 *
1403 * Update the mailbox registers in the *other* rings with the current seqno.
1404 * This acts like a signal in the canonical semaphore.
1405 */
1406 static int gen6_sema_emit_request(struct drm_i915_gem_request *req)
1407 {
1408 int ret;
1409
1410 ret = req->engine->semaphore.signal(req);
1411 if (ret)
1412 return ret;
1413
1414 return i9xx_emit_request(req);
1415 }
1416
1417 static int gen8_render_emit_request(struct drm_i915_gem_request *req)
1418 {
1419 struct intel_engine_cs *engine = req->engine;
1420 struct intel_ring *ring = req->ring;
1421 int ret;
1422
1423 if (engine->semaphore.signal) {
1424 ret = engine->semaphore.signal(req);
1425 if (ret)
1426 return ret;
1427 }
1428
1429 ret = intel_ring_begin(req, 8);
1430 if (ret)
1431 return ret;
1432
1433 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1434 intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
1435 PIPE_CONTROL_CS_STALL |
1436 PIPE_CONTROL_QW_WRITE));
1437 intel_ring_emit(ring, intel_hws_seqno_address(engine));
1438 intel_ring_emit(ring, 0);
1439 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1440 /* We're thrashing one dword of HWS. */
1441 intel_ring_emit(ring, 0);
1442 intel_ring_emit(ring, MI_USER_INTERRUPT);
1443 intel_ring_emit(ring, MI_NOOP);
1444 intel_ring_advance(ring);
1445
1446 req->tail = ring->tail;
1447
1448 return 0;
1449 }
1450
1451 /**
1452 * intel_ring_sync - sync the waiter to the signaller on seqno
1453 *
1454 * @waiter - ring that is waiting
1455 * @signaller - ring which has, or will signal
1456 * @seqno - seqno which the waiter will block on
1457 */
1458
1459 static int
1460 gen8_ring_sync_to(struct drm_i915_gem_request *req,
1461 struct drm_i915_gem_request *signal)
1462 {
1463 struct intel_ring *ring = req->ring;
1464 struct drm_i915_private *dev_priv = req->i915;
1465 u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1466 struct i915_hw_ppgtt *ppgtt;
1467 int ret;
1468
1469 ret = intel_ring_begin(req, 4);
1470 if (ret)
1471 return ret;
1472
1473 intel_ring_emit(ring,
1474 MI_SEMAPHORE_WAIT |
1475 MI_SEMAPHORE_GLOBAL_GTT |
1476 MI_SEMAPHORE_SAD_GTE_SDD);
1477 intel_ring_emit(ring, signal->fence.seqno);
1478 intel_ring_emit(ring, lower_32_bits(offset));
1479 intel_ring_emit(ring, upper_32_bits(offset));
1480 intel_ring_advance(ring);
1481
1482 /* When the !RCS engines idle waiting upon a semaphore, they lose their
1483 * pagetables and we must reload them before executing the batch.
1484 * We do this on the i915_switch_context() following the wait and
1485 * before the dispatch.
1486 */
1487 ppgtt = req->ctx->ppgtt;
1488 if (ppgtt && req->engine->id != RCS)
1489 ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1490 return 0;
1491 }
1492
1493 static int
1494 gen6_ring_sync_to(struct drm_i915_gem_request *req,
1495 struct drm_i915_gem_request *signal)
1496 {
1497 struct intel_ring *ring = req->ring;
1498 u32 dw1 = MI_SEMAPHORE_MBOX |
1499 MI_SEMAPHORE_COMPARE |
1500 MI_SEMAPHORE_REGISTER;
1501 u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
1502 int ret;
1503
1504 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1505
1506 ret = intel_ring_begin(req, 4);
1507 if (ret)
1508 return ret;
1509
1510 intel_ring_emit(ring, dw1 | wait_mbox);
1511 /* Throughout all of the GEM code, seqno passed implies our current
1512 * seqno is >= the last seqno executed. However for hardware the
1513 * comparison is strictly greater than.
1514 */
1515 intel_ring_emit(ring, signal->fence.seqno - 1);
1516 intel_ring_emit(ring, 0);
1517 intel_ring_emit(ring, MI_NOOP);
1518 intel_ring_advance(ring);
1519
1520 return 0;
1521 }
1522
1523 static void
1524 gen5_seqno_barrier(struct intel_engine_cs *engine)
1525 {
1526 /* MI_STORE are internally buffered by the GPU and not flushed
1527 * either by MI_FLUSH or SyncFlush or any other combination of
1528 * MI commands.
1529 *
1530 * "Only the submission of the store operation is guaranteed.
1531 * The write result will be complete (coherent) some time later
1532 * (this is practically a finite period but there is no guaranteed
1533 * latency)."
1534 *
1535 * Empirically, we observe that we need a delay of at least 75us to
1536 * be sure that the seqno write is visible by the CPU.
1537 */
1538 usleep_range(125, 250);
1539 }
1540
1541 static void
1542 gen6_seqno_barrier(struct intel_engine_cs *engine)
1543 {
1544 struct drm_i915_private *dev_priv = engine->i915;
1545
1546 /* Workaround to force correct ordering between irq and seqno writes on
1547 * ivb (and maybe also on snb) by reading from a CS register (like
1548 * ACTHD) before reading the status page.
1549 *
1550 * Note that this effectively stalls the read by the time it takes to
1551 * do a memory transaction, which more or less ensures that the write
1552 * from the GPU has sufficient time to invalidate the CPU cacheline.
1553 * Alternatively we could delay the interrupt from the CS ring to give
1554 * the write time to land, but that would incur a delay after every
1555 * batch i.e. much more frequent than a delay when waiting for the
1556 * interrupt (with the same net latency).
1557 *
1558 * Also note that to prevent whole machine hangs on gen7, we have to
1559 * take the spinlock to guard against concurrent cacheline access.
1560 */
1561 spin_lock_irq(&dev_priv->uncore.lock);
1562 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1563 spin_unlock_irq(&dev_priv->uncore.lock);
1564 }
1565
1566 static void
1567 gen5_irq_enable(struct intel_engine_cs *engine)
1568 {
1569 gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1570 }
1571
1572 static void
1573 gen5_irq_disable(struct intel_engine_cs *engine)
1574 {
1575 gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1576 }
1577
1578 static void
1579 i9xx_irq_enable(struct intel_engine_cs *engine)
1580 {
1581 struct drm_i915_private *dev_priv = engine->i915;
1582
1583 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1584 I915_WRITE(IMR, dev_priv->irq_mask);
1585 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1586 }
1587
1588 static void
1589 i9xx_irq_disable(struct intel_engine_cs *engine)
1590 {
1591 struct drm_i915_private *dev_priv = engine->i915;
1592
1593 dev_priv->irq_mask |= engine->irq_enable_mask;
1594 I915_WRITE(IMR, dev_priv->irq_mask);
1595 }
1596
1597 static void
1598 i8xx_irq_enable(struct intel_engine_cs *engine)
1599 {
1600 struct drm_i915_private *dev_priv = engine->i915;
1601
1602 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1603 I915_WRITE16(IMR, dev_priv->irq_mask);
1604 POSTING_READ16(RING_IMR(engine->mmio_base));
1605 }
1606
1607 static void
1608 i8xx_irq_disable(struct intel_engine_cs *engine)
1609 {
1610 struct drm_i915_private *dev_priv = engine->i915;
1611
1612 dev_priv->irq_mask |= engine->irq_enable_mask;
1613 I915_WRITE16(IMR, dev_priv->irq_mask);
1614 }
1615
1616 static int
1617 bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1618 {
1619 struct intel_ring *ring = req->ring;
1620 int ret;
1621
1622 ret = intel_ring_begin(req, 2);
1623 if (ret)
1624 return ret;
1625
1626 intel_ring_emit(ring, MI_FLUSH);
1627 intel_ring_emit(ring, MI_NOOP);
1628 intel_ring_advance(ring);
1629 return 0;
1630 }
1631
1632 static void
1633 gen6_irq_enable(struct intel_engine_cs *engine)
1634 {
1635 struct drm_i915_private *dev_priv = engine->i915;
1636
1637 I915_WRITE_IMR(engine,
1638 ~(engine->irq_enable_mask |
1639 engine->irq_keep_mask));
1640 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1641 }
1642
1643 static void
1644 gen6_irq_disable(struct intel_engine_cs *engine)
1645 {
1646 struct drm_i915_private *dev_priv = engine->i915;
1647
1648 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1649 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1650 }
1651
1652 static void
1653 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1654 {
1655 struct drm_i915_private *dev_priv = engine->i915;
1656
1657 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1658 gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
1659 }
1660
1661 static void
1662 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1663 {
1664 struct drm_i915_private *dev_priv = engine->i915;
1665
1666 I915_WRITE_IMR(engine, ~0);
1667 gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
1668 }
1669
1670 static void
1671 gen8_irq_enable(struct intel_engine_cs *engine)
1672 {
1673 struct drm_i915_private *dev_priv = engine->i915;
1674
1675 I915_WRITE_IMR(engine,
1676 ~(engine->irq_enable_mask |
1677 engine->irq_keep_mask));
1678 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1679 }
1680
1681 static void
1682 gen8_irq_disable(struct intel_engine_cs *engine)
1683 {
1684 struct drm_i915_private *dev_priv = engine->i915;
1685
1686 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1687 }
1688
1689 static int
1690 i965_emit_bb_start(struct drm_i915_gem_request *req,
1691 u64 offset, u32 length,
1692 unsigned int dispatch_flags)
1693 {
1694 struct intel_ring *ring = req->ring;
1695 int ret;
1696
1697 ret = intel_ring_begin(req, 2);
1698 if (ret)
1699 return ret;
1700
1701 intel_ring_emit(ring,
1702 MI_BATCH_BUFFER_START |
1703 MI_BATCH_GTT |
1704 (dispatch_flags & I915_DISPATCH_SECURE ?
1705 0 : MI_BATCH_NON_SECURE_I965));
1706 intel_ring_emit(ring, offset);
1707 intel_ring_advance(ring);
1708
1709 return 0;
1710 }
1711
1712 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1713 #define I830_BATCH_LIMIT (256*1024)
1714 #define I830_TLB_ENTRIES (2)
1715 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1716 static int
1717 i830_emit_bb_start(struct drm_i915_gem_request *req,
1718 u64 offset, u32 len,
1719 unsigned int dispatch_flags)
1720 {
1721 struct intel_ring *ring = req->ring;
1722 u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
1723 int ret;
1724
1725 ret = intel_ring_begin(req, 6);
1726 if (ret)
1727 return ret;
1728
1729 /* Evict the invalid PTE TLBs */
1730 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1731 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1732 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1733 intel_ring_emit(ring, cs_offset);
1734 intel_ring_emit(ring, 0xdeadbeef);
1735 intel_ring_emit(ring, MI_NOOP);
1736 intel_ring_advance(ring);
1737
1738 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1739 if (len > I830_BATCH_LIMIT)
1740 return -ENOSPC;
1741
1742 ret = intel_ring_begin(req, 6 + 2);
1743 if (ret)
1744 return ret;
1745
1746 /* Blit the batch (which has now all relocs applied) to the
1747 * stable batch scratch bo area (so that the CS never
1748 * stumbles over its tlb invalidation bug) ...
1749 */
1750 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1751 intel_ring_emit(ring,
1752 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1753 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1754 intel_ring_emit(ring, cs_offset);
1755 intel_ring_emit(ring, 4096);
1756 intel_ring_emit(ring, offset);
1757
1758 intel_ring_emit(ring, MI_FLUSH);
1759 intel_ring_emit(ring, MI_NOOP);
1760 intel_ring_advance(ring);
1761
1762 /* ... and execute it. */
1763 offset = cs_offset;
1764 }
1765
1766 ret = intel_ring_begin(req, 2);
1767 if (ret)
1768 return ret;
1769
1770 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1771 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1772 0 : MI_BATCH_NON_SECURE));
1773 intel_ring_advance(ring);
1774
1775 return 0;
1776 }
1777
1778 static int
1779 i915_emit_bb_start(struct drm_i915_gem_request *req,
1780 u64 offset, u32 len,
1781 unsigned int dispatch_flags)
1782 {
1783 struct intel_ring *ring = req->ring;
1784 int ret;
1785
1786 ret = intel_ring_begin(req, 2);
1787 if (ret)
1788 return ret;
1789
1790 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1791 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1792 0 : MI_BATCH_NON_SECURE));
1793 intel_ring_advance(ring);
1794
1795 return 0;
1796 }
1797
1798 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1799 {
1800 struct drm_i915_private *dev_priv = engine->i915;
1801
1802 if (!dev_priv->status_page_dmah)
1803 return;
1804
1805 drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1806 engine->status_page.page_addr = NULL;
1807 }
1808
1809 static void cleanup_status_page(struct intel_engine_cs *engine)
1810 {
1811 struct i915_vma *vma;
1812
1813 vma = fetch_and_zero(&engine->status_page.vma);
1814 if (!vma)
1815 return;
1816
1817 i915_vma_unpin(vma);
1818 i915_gem_object_unpin_map(vma->obj);
1819 i915_vma_put(vma);
1820 }
1821
1822 static int init_status_page(struct intel_engine_cs *engine)
1823 {
1824 struct drm_i915_gem_object *obj;
1825 struct i915_vma *vma;
1826 unsigned int flags;
1827 int ret;
1828
1829 obj = i915_gem_object_create(&engine->i915->drm, 4096);
1830 if (IS_ERR(obj)) {
1831 DRM_ERROR("Failed to allocate status page\n");
1832 return PTR_ERR(obj);
1833 }
1834
1835 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1836 if (ret)
1837 goto err;
1838
1839 vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1840 if (IS_ERR(vma)) {
1841 ret = PTR_ERR(vma);
1842 goto err;
1843 }
1844
1845 flags = PIN_GLOBAL;
1846 if (!HAS_LLC(engine->i915))
1847 /* On g33, we cannot place HWS above 256MiB, so
1848 * restrict its pinning to the low mappable arena.
1849 * Though this restriction is not documented for
1850 * gen4, gen5, or byt, they also behave similarly
1851 * and hang if the HWS is placed at the top of the
1852 * GTT. To generalise, it appears that all !llc
1853 * platforms have issues with us placing the HWS
1854 * above the mappable region (even though we never
1855 * actualy map it).
1856 */
1857 flags |= PIN_MAPPABLE;
1858 ret = i915_vma_pin(vma, 0, 4096, flags);
1859 if (ret)
1860 goto err;
1861
1862 engine->status_page.vma = vma;
1863 engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1864 engine->status_page.page_addr =
1865 i915_gem_object_pin_map(obj, I915_MAP_WB);
1866
1867 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1868 engine->name, i915_ggtt_offset(vma));
1869 return 0;
1870
1871 err:
1872 i915_gem_object_put(obj);
1873 return ret;
1874 }
1875
1876 static int init_phys_status_page(struct intel_engine_cs *engine)
1877 {
1878 struct drm_i915_private *dev_priv = engine->i915;
1879
1880 dev_priv->status_page_dmah =
1881 drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1882 if (!dev_priv->status_page_dmah)
1883 return -ENOMEM;
1884
1885 engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1886 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1887
1888 return 0;
1889 }
1890
1891 int intel_ring_pin(struct intel_ring *ring)
1892 {
1893 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1894 unsigned int flags = PIN_GLOBAL | PIN_OFFSET_BIAS | 4096;
1895 enum i915_map_type map;
1896 struct i915_vma *vma = ring->vma;
1897 void *addr;
1898 int ret;
1899
1900 GEM_BUG_ON(ring->vaddr);
1901
1902 map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;
1903
1904 if (vma->obj->stolen)
1905 flags |= PIN_MAPPABLE;
1906
1907 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1908 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1909 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1910 else
1911 ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1912 if (unlikely(ret))
1913 return ret;
1914 }
1915
1916 ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1917 if (unlikely(ret))
1918 return ret;
1919
1920 if (i915_vma_is_map_and_fenceable(vma))
1921 addr = (void __force *)i915_vma_pin_iomap(vma);
1922 else
1923 addr = i915_gem_object_pin_map(vma->obj, map);
1924 if (IS_ERR(addr))
1925 goto err;
1926
1927 ring->vaddr = addr;
1928 return 0;
1929
1930 err:
1931 i915_vma_unpin(vma);
1932 return PTR_ERR(addr);
1933 }
1934
1935 void intel_ring_unpin(struct intel_ring *ring)
1936 {
1937 GEM_BUG_ON(!ring->vma);
1938 GEM_BUG_ON(!ring->vaddr);
1939
1940 if (i915_vma_is_map_and_fenceable(ring->vma))
1941 i915_vma_unpin_iomap(ring->vma);
1942 else
1943 i915_gem_object_unpin_map(ring->vma->obj);
1944 ring->vaddr = NULL;
1945
1946 i915_vma_unpin(ring->vma);
1947 }
1948
1949 static struct i915_vma *
1950 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1951 {
1952 struct drm_i915_gem_object *obj;
1953 struct i915_vma *vma;
1954
1955 obj = i915_gem_object_create_stolen(&dev_priv->drm, size);
1956 if (!obj)
1957 obj = i915_gem_object_create(&dev_priv->drm, size);
1958 if (IS_ERR(obj))
1959 return ERR_CAST(obj);
1960
1961 /* mark ring buffers as read-only from GPU side by default */
1962 obj->gt_ro = 1;
1963
1964 vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
1965 if (IS_ERR(vma))
1966 goto err;
1967
1968 return vma;
1969
1970 err:
1971 i915_gem_object_put(obj);
1972 return vma;
1973 }
1974
1975 struct intel_ring *
1976 intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1977 {
1978 struct intel_ring *ring;
1979 struct i915_vma *vma;
1980
1981 GEM_BUG_ON(!is_power_of_2(size));
1982
1983 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1984 if (!ring)
1985 return ERR_PTR(-ENOMEM);
1986
1987 ring->engine = engine;
1988
1989 INIT_LIST_HEAD(&ring->request_list);
1990
1991 ring->size = size;
1992 /* Workaround an erratum on the i830 which causes a hang if
1993 * the TAIL pointer points to within the last 2 cachelines
1994 * of the buffer.
1995 */
1996 ring->effective_size = size;
1997 if (IS_I830(engine->i915) || IS_845G(engine->i915))
1998 ring->effective_size -= 2 * CACHELINE_BYTES;
1999
2000 ring->last_retired_head = -1;
2001 intel_ring_update_space(ring);
2002
2003 vma = intel_ring_create_vma(engine->i915, size);
2004 if (IS_ERR(vma)) {
2005 kfree(ring);
2006 return ERR_CAST(vma);
2007 }
2008 ring->vma = vma;
2009
2010 list_add(&ring->link, &engine->buffers);
2011 return ring;
2012 }
2013
2014 void
2015 intel_ring_free(struct intel_ring *ring)
2016 {
2017 i915_vma_put(ring->vma);
2018 list_del(&ring->link);
2019 kfree(ring);
2020 }
2021
2022 static int intel_ring_context_pin(struct i915_gem_context *ctx,
2023 struct intel_engine_cs *engine)
2024 {
2025 struct intel_context *ce = &ctx->engine[engine->id];
2026 int ret;
2027
2028 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2029
2030 if (ce->pin_count++)
2031 return 0;
2032
2033 if (ce->state) {
2034 ret = i915_gem_object_set_to_gtt_domain(ce->state->obj, false);
2035 if (ret)
2036 goto error;
2037
2038 ret = i915_vma_pin(ce->state, 0, ctx->ggtt_alignment,
2039 PIN_GLOBAL | PIN_HIGH);
2040 if (ret)
2041 goto error;
2042 }
2043
2044 /* The kernel context is only used as a placeholder for flushing the
2045 * active context. It is never used for submitting user rendering and
2046 * as such never requires the golden render context, and so we can skip
2047 * emitting it when we switch to the kernel context. This is required
2048 * as during eviction we cannot allocate and pin the renderstate in
2049 * order to initialise the context.
2050 */
2051 if (ctx == ctx->i915->kernel_context)
2052 ce->initialised = true;
2053
2054 i915_gem_context_get(ctx);
2055 return 0;
2056
2057 error:
2058 ce->pin_count = 0;
2059 return ret;
2060 }
2061
2062 static void intel_ring_context_unpin(struct i915_gem_context *ctx,
2063 struct intel_engine_cs *engine)
2064 {
2065 struct intel_context *ce = &ctx->engine[engine->id];
2066
2067 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2068
2069 if (--ce->pin_count)
2070 return;
2071
2072 if (ce->state)
2073 i915_vma_unpin(ce->state);
2074
2075 i915_gem_context_put(ctx);
2076 }
2077
2078 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2079 {
2080 struct drm_i915_private *dev_priv = engine->i915;
2081 struct intel_ring *ring;
2082 int ret;
2083
2084 WARN_ON(engine->buffer);
2085
2086 intel_engine_setup_common(engine);
2087
2088 memset(engine->semaphore.sync_seqno, 0,
2089 sizeof(engine->semaphore.sync_seqno));
2090
2091 ret = intel_engine_init_common(engine);
2092 if (ret)
2093 goto error;
2094
2095 /* We may need to do things with the shrinker which
2096 * require us to immediately switch back to the default
2097 * context. This can cause a problem as pinning the
2098 * default context also requires GTT space which may not
2099 * be available. To avoid this we always pin the default
2100 * context.
2101 */
2102 ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
2103 if (ret)
2104 goto error;
2105
2106 ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
2107 if (IS_ERR(ring)) {
2108 ret = PTR_ERR(ring);
2109 goto error;
2110 }
2111
2112 if (I915_NEED_GFX_HWS(dev_priv)) {
2113 ret = init_status_page(engine);
2114 if (ret)
2115 goto error;
2116 } else {
2117 WARN_ON(engine->id != RCS);
2118 ret = init_phys_status_page(engine);
2119 if (ret)
2120 goto error;
2121 }
2122
2123 ret = intel_ring_pin(ring);
2124 if (ret) {
2125 intel_ring_free(ring);
2126 goto error;
2127 }
2128 engine->buffer = ring;
2129
2130 return 0;
2131
2132 error:
2133 intel_engine_cleanup(engine);
2134 return ret;
2135 }
2136
2137 void intel_engine_cleanup(struct intel_engine_cs *engine)
2138 {
2139 struct drm_i915_private *dev_priv;
2140
2141 if (!intel_engine_initialized(engine))
2142 return;
2143
2144 dev_priv = engine->i915;
2145
2146 if (engine->buffer) {
2147 WARN_ON(INTEL_GEN(dev_priv) > 2 &&
2148 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2149
2150 intel_ring_unpin(engine->buffer);
2151 intel_ring_free(engine->buffer);
2152 engine->buffer = NULL;
2153 }
2154
2155 if (engine->cleanup)
2156 engine->cleanup(engine);
2157
2158 if (I915_NEED_GFX_HWS(dev_priv)) {
2159 cleanup_status_page(engine);
2160 } else {
2161 WARN_ON(engine->id != RCS);
2162 cleanup_phys_status_page(engine);
2163 }
2164
2165 intel_engine_cleanup_common(engine);
2166
2167 intel_ring_context_unpin(dev_priv->kernel_context, engine);
2168
2169 engine->i915 = NULL;
2170 }
2171
2172 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2173 {
2174 int ret;
2175
2176 /* Flush enough space to reduce the likelihood of waiting after
2177 * we start building the request - in which case we will just
2178 * have to repeat work.
2179 */
2180 request->reserved_space += LEGACY_REQUEST_SIZE;
2181
2182 request->ring = request->engine->buffer;
2183
2184 ret = intel_ring_begin(request, 0);
2185 if (ret)
2186 return ret;
2187
2188 request->reserved_space -= LEGACY_REQUEST_SIZE;
2189 return 0;
2190 }
2191
2192 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2193 {
2194 struct intel_ring *ring = req->ring;
2195 struct drm_i915_gem_request *target;
2196 int ret;
2197
2198 intel_ring_update_space(ring);
2199 if (ring->space >= bytes)
2200 return 0;
2201
2202 /*
2203 * Space is reserved in the ringbuffer for finalising the request,
2204 * as that cannot be allowed to fail. During request finalisation,
2205 * reserved_space is set to 0 to stop the overallocation and the
2206 * assumption is that then we never need to wait (which has the
2207 * risk of failing with EINTR).
2208 *
2209 * See also i915_gem_request_alloc() and i915_add_request().
2210 */
2211 GEM_BUG_ON(!req->reserved_space);
2212
2213 list_for_each_entry(target, &ring->request_list, ring_link) {
2214 unsigned space;
2215
2216 /* Would completion of this request free enough space? */
2217 space = __intel_ring_space(target->postfix, ring->tail,
2218 ring->size);
2219 if (space >= bytes)
2220 break;
2221 }
2222
2223 if (WARN_ON(&target->ring_link == &ring->request_list))
2224 return -ENOSPC;
2225
2226 ret = i915_wait_request(target, true, NULL, NO_WAITBOOST);
2227 if (ret)
2228 return ret;
2229
2230 if (i915_reset_in_progress(&target->i915->gpu_error))
2231 return -EAGAIN;
2232
2233 i915_gem_request_retire_upto(target);
2234
2235 intel_ring_update_space(ring);
2236 GEM_BUG_ON(ring->space < bytes);
2237 return 0;
2238 }
2239
2240 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2241 {
2242 struct intel_ring *ring = req->ring;
2243 int remain_actual = ring->size - ring->tail;
2244 int remain_usable = ring->effective_size - ring->tail;
2245 int bytes = num_dwords * sizeof(u32);
2246 int total_bytes, wait_bytes;
2247 bool need_wrap = false;
2248
2249 total_bytes = bytes + req->reserved_space;
2250
2251 if (unlikely(bytes > remain_usable)) {
2252 /*
2253 * Not enough space for the basic request. So need to flush
2254 * out the remainder and then wait for base + reserved.
2255 */
2256 wait_bytes = remain_actual + total_bytes;
2257 need_wrap = true;
2258 } else if (unlikely(total_bytes > remain_usable)) {
2259 /*
2260 * The base request will fit but the reserved space
2261 * falls off the end. So we don't need an immediate wrap
2262 * and only need to effectively wait for the reserved
2263 * size space from the start of ringbuffer.
2264 */
2265 wait_bytes = remain_actual + req->reserved_space;
2266 } else {
2267 /* No wrapping required, just waiting. */
2268 wait_bytes = total_bytes;
2269 }
2270
2271 if (wait_bytes > ring->space) {
2272 int ret = wait_for_space(req, wait_bytes);
2273 if (unlikely(ret))
2274 return ret;
2275 }
2276
2277 if (unlikely(need_wrap)) {
2278 GEM_BUG_ON(remain_actual > ring->space);
2279 GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2280
2281 /* Fill the tail with MI_NOOP */
2282 memset(ring->vaddr + ring->tail, 0, remain_actual);
2283 ring->tail = 0;
2284 ring->space -= remain_actual;
2285 }
2286
2287 ring->space -= bytes;
2288 GEM_BUG_ON(ring->space < 0);
2289 return 0;
2290 }
2291
2292 /* Align the ring tail to a cacheline boundary */
2293 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2294 {
2295 struct intel_ring *ring = req->ring;
2296 int num_dwords =
2297 (ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2298 int ret;
2299
2300 if (num_dwords == 0)
2301 return 0;
2302
2303 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2304 ret = intel_ring_begin(req, num_dwords);
2305 if (ret)
2306 return ret;
2307
2308 while (num_dwords--)
2309 intel_ring_emit(ring, MI_NOOP);
2310
2311 intel_ring_advance(ring);
2312
2313 return 0;
2314 }
2315
2316 static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2317 {
2318 struct drm_i915_private *dev_priv = request->i915;
2319
2320 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2321
2322 /* Every tail move must follow the sequence below */
2323
2324 /* Disable notification that the ring is IDLE. The GT
2325 * will then assume that it is busy and bring it out of rc6.
2326 */
2327 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2328 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2329
2330 /* Clear the context id. Here be magic! */
2331 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2332
2333 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2334 if (intel_wait_for_register_fw(dev_priv,
2335 GEN6_BSD_SLEEP_PSMI_CONTROL,
2336 GEN6_BSD_SLEEP_INDICATOR,
2337 0,
2338 50))
2339 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2340
2341 /* Now that the ring is fully powered up, update the tail */
2342 i9xx_submit_request(request);
2343
2344 /* Let the ring send IDLE messages to the GT again,
2345 * and so let it sleep to conserve power when idle.
2346 */
2347 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2348 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2349
2350 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2351 }
2352
2353 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2354 {
2355 struct intel_ring *ring = req->ring;
2356 uint32_t cmd;
2357 int ret;
2358
2359 ret = intel_ring_begin(req, 4);
2360 if (ret)
2361 return ret;
2362
2363 cmd = MI_FLUSH_DW;
2364 if (INTEL_GEN(req->i915) >= 8)
2365 cmd += 1;
2366
2367 /* We always require a command barrier so that subsequent
2368 * commands, such as breadcrumb interrupts, are strictly ordered
2369 * wrt the contents of the write cache being flushed to memory
2370 * (and thus being coherent from the CPU).
2371 */
2372 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2373
2374 /*
2375 * Bspec vol 1c.5 - video engine command streamer:
2376 * "If ENABLED, all TLBs will be invalidated once the flush
2377 * operation is complete. This bit is only valid when the
2378 * Post-Sync Operation field is a value of 1h or 3h."
2379 */
2380 if (mode & EMIT_INVALIDATE)
2381 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2382
2383 intel_ring_emit(ring, cmd);
2384 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2385 if (INTEL_GEN(req->i915) >= 8) {
2386 intel_ring_emit(ring, 0); /* upper addr */
2387 intel_ring_emit(ring, 0); /* value */
2388 } else {
2389 intel_ring_emit(ring, 0);
2390 intel_ring_emit(ring, MI_NOOP);
2391 }
2392 intel_ring_advance(ring);
2393 return 0;
2394 }
2395
2396 static int
2397 gen8_emit_bb_start(struct drm_i915_gem_request *req,
2398 u64 offset, u32 len,
2399 unsigned int dispatch_flags)
2400 {
2401 struct intel_ring *ring = req->ring;
2402 bool ppgtt = USES_PPGTT(req->i915) &&
2403 !(dispatch_flags & I915_DISPATCH_SECURE);
2404 int ret;
2405
2406 ret = intel_ring_begin(req, 4);
2407 if (ret)
2408 return ret;
2409
2410 /* FIXME(BDW): Address space and security selectors. */
2411 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2412 (dispatch_flags & I915_DISPATCH_RS ?
2413 MI_BATCH_RESOURCE_STREAMER : 0));
2414 intel_ring_emit(ring, lower_32_bits(offset));
2415 intel_ring_emit(ring, upper_32_bits(offset));
2416 intel_ring_emit(ring, MI_NOOP);
2417 intel_ring_advance(ring);
2418
2419 return 0;
2420 }
2421
2422 static int
2423 hsw_emit_bb_start(struct drm_i915_gem_request *req,
2424 u64 offset, u32 len,
2425 unsigned int dispatch_flags)
2426 {
2427 struct intel_ring *ring = req->ring;
2428 int ret;
2429
2430 ret = intel_ring_begin(req, 2);
2431 if (ret)
2432 return ret;
2433
2434 intel_ring_emit(ring,
2435 MI_BATCH_BUFFER_START |
2436 (dispatch_flags & I915_DISPATCH_SECURE ?
2437 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2438 (dispatch_flags & I915_DISPATCH_RS ?
2439 MI_BATCH_RESOURCE_STREAMER : 0));
2440 /* bit0-7 is the length on GEN6+ */
2441 intel_ring_emit(ring, offset);
2442 intel_ring_advance(ring);
2443
2444 return 0;
2445 }
2446
2447 static int
2448 gen6_emit_bb_start(struct drm_i915_gem_request *req,
2449 u64 offset, u32 len,
2450 unsigned int dispatch_flags)
2451 {
2452 struct intel_ring *ring = req->ring;
2453 int ret;
2454
2455 ret = intel_ring_begin(req, 2);
2456 if (ret)
2457 return ret;
2458
2459 intel_ring_emit(ring,
2460 MI_BATCH_BUFFER_START |
2461 (dispatch_flags & I915_DISPATCH_SECURE ?
2462 0 : MI_BATCH_NON_SECURE_I965));
2463 /* bit0-7 is the length on GEN6+ */
2464 intel_ring_emit(ring, offset);
2465 intel_ring_advance(ring);
2466
2467 return 0;
2468 }
2469
2470 /* Blitter support (SandyBridge+) */
2471
2472 static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2473 {
2474 struct intel_ring *ring = req->ring;
2475 uint32_t cmd;
2476 int ret;
2477
2478 ret = intel_ring_begin(req, 4);
2479 if (ret)
2480 return ret;
2481
2482 cmd = MI_FLUSH_DW;
2483 if (INTEL_GEN(req->i915) >= 8)
2484 cmd += 1;
2485
2486 /* We always require a command barrier so that subsequent
2487 * commands, such as breadcrumb interrupts, are strictly ordered
2488 * wrt the contents of the write cache being flushed to memory
2489 * (and thus being coherent from the CPU).
2490 */
2491 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2492
2493 /*
2494 * Bspec vol 1c.3 - blitter engine command streamer:
2495 * "If ENABLED, all TLBs will be invalidated once the flush
2496 * operation is complete. This bit is only valid when the
2497 * Post-Sync Operation field is a value of 1h or 3h."
2498 */
2499 if (mode & EMIT_INVALIDATE)
2500 cmd |= MI_INVALIDATE_TLB;
2501 intel_ring_emit(ring, cmd);
2502 intel_ring_emit(ring,
2503 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2504 if (INTEL_GEN(req->i915) >= 8) {
2505 intel_ring_emit(ring, 0); /* upper addr */
2506 intel_ring_emit(ring, 0); /* value */
2507 } else {
2508 intel_ring_emit(ring, 0);
2509 intel_ring_emit(ring, MI_NOOP);
2510 }
2511 intel_ring_advance(ring);
2512
2513 return 0;
2514 }
2515
2516 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2517 struct intel_engine_cs *engine)
2518 {
2519 struct drm_i915_gem_object *obj;
2520 int ret, i;
2521
2522 if (!i915.semaphores)
2523 return;
2524
2525 if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
2526 struct i915_vma *vma;
2527
2528 obj = i915_gem_object_create(&dev_priv->drm, 4096);
2529 if (IS_ERR(obj))
2530 goto err;
2531
2532 vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
2533 if (IS_ERR(vma))
2534 goto err_obj;
2535
2536 ret = i915_gem_object_set_to_gtt_domain(obj, false);
2537 if (ret)
2538 goto err_obj;
2539
2540 ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
2541 if (ret)
2542 goto err_obj;
2543
2544 dev_priv->semaphore = vma;
2545 }
2546
2547 if (INTEL_GEN(dev_priv) >= 8) {
2548 u32 offset = i915_ggtt_offset(dev_priv->semaphore);
2549
2550 engine->semaphore.sync_to = gen8_ring_sync_to;
2551 engine->semaphore.signal = gen8_xcs_signal;
2552
2553 for (i = 0; i < I915_NUM_ENGINES; i++) {
2554 u32 ring_offset;
2555
2556 if (i != engine->id)
2557 ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
2558 else
2559 ring_offset = MI_SEMAPHORE_SYNC_INVALID;
2560
2561 engine->semaphore.signal_ggtt[i] = ring_offset;
2562 }
2563 } else if (INTEL_GEN(dev_priv) >= 6) {
2564 engine->semaphore.sync_to = gen6_ring_sync_to;
2565 engine->semaphore.signal = gen6_signal;
2566
2567 /*
2568 * The current semaphore is only applied on pre-gen8
2569 * platform. And there is no VCS2 ring on the pre-gen8
2570 * platform. So the semaphore between RCS and VCS2 is
2571 * initialized as INVALID. Gen8 will initialize the
2572 * sema between VCS2 and RCS later.
2573 */
2574 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2575 static const struct {
2576 u32 wait_mbox;
2577 i915_reg_t mbox_reg;
2578 } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
2579 [RCS_HW] = {
2580 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
2581 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
2582 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2583 },
2584 [VCS_HW] = {
2585 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
2586 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
2587 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2588 },
2589 [BCS_HW] = {
2590 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
2591 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
2592 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2593 },
2594 [VECS_HW] = {
2595 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2596 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2597 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2598 },
2599 };
2600 u32 wait_mbox;
2601 i915_reg_t mbox_reg;
2602
2603 if (i == engine->hw_id) {
2604 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2605 mbox_reg = GEN6_NOSYNC;
2606 } else {
2607 wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2608 mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2609 }
2610
2611 engine->semaphore.mbox.wait[i] = wait_mbox;
2612 engine->semaphore.mbox.signal[i] = mbox_reg;
2613 }
2614 }
2615
2616 return;
2617
2618 err_obj:
2619 i915_gem_object_put(obj);
2620 err:
2621 DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
2622 i915.semaphores = 0;
2623 }
2624
2625 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2626 struct intel_engine_cs *engine)
2627 {
2628 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
2629
2630 if (INTEL_GEN(dev_priv) >= 8) {
2631 engine->irq_enable = gen8_irq_enable;
2632 engine->irq_disable = gen8_irq_disable;
2633 engine->irq_seqno_barrier = gen6_seqno_barrier;
2634 } else if (INTEL_GEN(dev_priv) >= 6) {
2635 engine->irq_enable = gen6_irq_enable;
2636 engine->irq_disable = gen6_irq_disable;
2637 engine->irq_seqno_barrier = gen6_seqno_barrier;
2638 } else if (INTEL_GEN(dev_priv) >= 5) {
2639 engine->irq_enable = gen5_irq_enable;
2640 engine->irq_disable = gen5_irq_disable;
2641 engine->irq_seqno_barrier = gen5_seqno_barrier;
2642 } else if (INTEL_GEN(dev_priv) >= 3) {
2643 engine->irq_enable = i9xx_irq_enable;
2644 engine->irq_disable = i9xx_irq_disable;
2645 } else {
2646 engine->irq_enable = i8xx_irq_enable;
2647 engine->irq_disable = i8xx_irq_disable;
2648 }
2649 }
2650
2651 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2652 struct intel_engine_cs *engine)
2653 {
2654 intel_ring_init_irq(dev_priv, engine);
2655 intel_ring_init_semaphores(dev_priv, engine);
2656
2657 engine->init_hw = init_ring_common;
2658
2659 engine->emit_request = i9xx_emit_request;
2660 if (i915.semaphores)
2661 engine->emit_request = gen6_sema_emit_request;
2662 engine->submit_request = i9xx_submit_request;
2663
2664 if (INTEL_GEN(dev_priv) >= 8)
2665 engine->emit_bb_start = gen8_emit_bb_start;
2666 else if (INTEL_GEN(dev_priv) >= 6)
2667 engine->emit_bb_start = gen6_emit_bb_start;
2668 else if (INTEL_GEN(dev_priv) >= 4)
2669 engine->emit_bb_start = i965_emit_bb_start;
2670 else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2671 engine->emit_bb_start = i830_emit_bb_start;
2672 else
2673 engine->emit_bb_start = i915_emit_bb_start;
2674 }
2675
2676 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2677 {
2678 struct drm_i915_private *dev_priv = engine->i915;
2679 int ret;
2680
2681 intel_ring_default_vfuncs(dev_priv, engine);
2682
2683 if (HAS_L3_DPF(dev_priv))
2684 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2685
2686 if (INTEL_GEN(dev_priv) >= 8) {
2687 engine->init_context = intel_rcs_ctx_init;
2688 engine->emit_request = gen8_render_emit_request;
2689 engine->emit_flush = gen8_render_ring_flush;
2690 if (i915.semaphores)
2691 engine->semaphore.signal = gen8_rcs_signal;
2692 } else if (INTEL_GEN(dev_priv) >= 6) {
2693 engine->init_context = intel_rcs_ctx_init;
2694 engine->emit_flush = gen7_render_ring_flush;
2695 if (IS_GEN6(dev_priv))
2696 engine->emit_flush = gen6_render_ring_flush;
2697 } else if (IS_GEN5(dev_priv)) {
2698 engine->emit_flush = gen4_render_ring_flush;
2699 } else {
2700 if (INTEL_GEN(dev_priv) < 4)
2701 engine->emit_flush = gen2_render_ring_flush;
2702 else
2703 engine->emit_flush = gen4_render_ring_flush;
2704 engine->irq_enable_mask = I915_USER_INTERRUPT;
2705 }
2706
2707 if (IS_HASWELL(dev_priv))
2708 engine->emit_bb_start = hsw_emit_bb_start;
2709
2710 engine->init_hw = init_render_ring;
2711 engine->cleanup = render_ring_cleanup;
2712
2713 ret = intel_init_ring_buffer(engine);
2714 if (ret)
2715 return ret;
2716
2717 if (INTEL_GEN(dev_priv) >= 6) {
2718 ret = intel_engine_create_scratch(engine, 4096);
2719 if (ret)
2720 return ret;
2721 } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2722 ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2723 if (ret)
2724 return ret;
2725 }
2726
2727 return 0;
2728 }
2729
2730 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2731 {
2732 struct drm_i915_private *dev_priv = engine->i915;
2733
2734 intel_ring_default_vfuncs(dev_priv, engine);
2735
2736 if (INTEL_GEN(dev_priv) >= 6) {
2737 /* gen6 bsd needs a special wa for tail updates */
2738 if (IS_GEN6(dev_priv))
2739 engine->submit_request = gen6_bsd_submit_request;
2740 engine->emit_flush = gen6_bsd_ring_flush;
2741 if (INTEL_GEN(dev_priv) < 8)
2742 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2743 } else {
2744 engine->mmio_base = BSD_RING_BASE;
2745 engine->emit_flush = bsd_ring_flush;
2746 if (IS_GEN5(dev_priv))
2747 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2748 else
2749 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2750 }
2751
2752 return intel_init_ring_buffer(engine);
2753 }
2754
2755 /**
2756 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2757 */
2758 int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2759 {
2760 struct drm_i915_private *dev_priv = engine->i915;
2761
2762 intel_ring_default_vfuncs(dev_priv, engine);
2763
2764 engine->emit_flush = gen6_bsd_ring_flush;
2765
2766 return intel_init_ring_buffer(engine);
2767 }
2768
2769 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2770 {
2771 struct drm_i915_private *dev_priv = engine->i915;
2772
2773 intel_ring_default_vfuncs(dev_priv, engine);
2774
2775 engine->emit_flush = gen6_ring_flush;
2776 if (INTEL_GEN(dev_priv) < 8)
2777 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2778
2779 return intel_init_ring_buffer(engine);
2780 }
2781
2782 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2783 {
2784 struct drm_i915_private *dev_priv = engine->i915;
2785
2786 intel_ring_default_vfuncs(dev_priv, engine);
2787
2788 engine->emit_flush = gen6_ring_flush;
2789
2790 if (INTEL_GEN(dev_priv) < 8) {
2791 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2792 engine->irq_enable = hsw_vebox_irq_enable;
2793 engine->irq_disable = hsw_vebox_irq_disable;
2794 }
2795
2796 return intel_init_ring_buffer(engine);
2797 }
This page took 0.359496 seconds and 5 git commands to generate.