drm/i915: Update ring->sync_to() to take a request structure
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 struct drm_device *dev = ring->dev;
40
41 if (!dev)
42 return false;
43
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48 return ringbuf->obj;
49 } else
50 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 int space = head - tail;
56 if (space <= 0)
57 space += size;
58 return space - I915_RING_FREE_SPACE;
59 }
60
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63 if (ringbuf->last_retired_head != -1) {
64 ringbuf->head = ringbuf->last_retired_head;
65 ringbuf->last_retired_head = -1;
66 }
67
68 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69 ringbuf->tail, ringbuf->size);
70 }
71
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74 intel_ring_update_space(ringbuf);
75 return ringbuf->space;
76 }
77
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80 struct drm_i915_private *dev_priv = ring->dev->dev_private;
81 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
84 static void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86 struct intel_ringbuffer *ringbuf = ring->buffer;
87 ringbuf->tail &= ringbuf->size - 1;
88 if (intel_ring_stopped(ring))
89 return;
90 ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
94 gen2_render_ring_flush(struct drm_i915_gem_request *req,
95 u32 invalidate_domains,
96 u32 flush_domains)
97 {
98 struct intel_engine_cs *ring = req->ring;
99 u32 cmd;
100 int ret;
101
102 cmd = MI_FLUSH;
103 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
104 cmd |= MI_NO_WRITE_FLUSH;
105
106 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
107 cmd |= MI_READ_FLUSH;
108
109 ret = intel_ring_begin(ring, 2);
110 if (ret)
111 return ret;
112
113 intel_ring_emit(ring, cmd);
114 intel_ring_emit(ring, MI_NOOP);
115 intel_ring_advance(ring);
116
117 return 0;
118 }
119
120 static int
121 gen4_render_ring_flush(struct drm_i915_gem_request *req,
122 u32 invalidate_domains,
123 u32 flush_domains)
124 {
125 struct intel_engine_cs *ring = req->ring;
126 struct drm_device *dev = ring->dev;
127 u32 cmd;
128 int ret;
129
130 /*
131 * read/write caches:
132 *
133 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
134 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
135 * also flushed at 2d versus 3d pipeline switches.
136 *
137 * read-only caches:
138 *
139 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
140 * MI_READ_FLUSH is set, and is always flushed on 965.
141 *
142 * I915_GEM_DOMAIN_COMMAND may not exist?
143 *
144 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
145 * invalidated when MI_EXE_FLUSH is set.
146 *
147 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
148 * invalidated with every MI_FLUSH.
149 *
150 * TLBs:
151 *
152 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
153 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
154 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
155 * are flushed at any MI_FLUSH.
156 */
157
158 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
159 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
160 cmd &= ~MI_NO_WRITE_FLUSH;
161 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
162 cmd |= MI_EXE_FLUSH;
163
164 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
165 (IS_G4X(dev) || IS_GEN5(dev)))
166 cmd |= MI_INVALIDATE_ISP;
167
168 ret = intel_ring_begin(ring, 2);
169 if (ret)
170 return ret;
171
172 intel_ring_emit(ring, cmd);
173 intel_ring_emit(ring, MI_NOOP);
174 intel_ring_advance(ring);
175
176 return 0;
177 }
178
179 /**
180 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
181 * implementing two workarounds on gen6. From section 1.4.7.1
182 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
183 *
184 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
185 * produced by non-pipelined state commands), software needs to first
186 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
187 * 0.
188 *
189 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
190 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
191 *
192 * And the workaround for these two requires this workaround first:
193 *
194 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
195 * BEFORE the pipe-control with a post-sync op and no write-cache
196 * flushes.
197 *
198 * And this last workaround is tricky because of the requirements on
199 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
200 * volume 2 part 1:
201 *
202 * "1 of the following must also be set:
203 * - Render Target Cache Flush Enable ([12] of DW1)
204 * - Depth Cache Flush Enable ([0] of DW1)
205 * - Stall at Pixel Scoreboard ([1] of DW1)
206 * - Depth Stall ([13] of DW1)
207 * - Post-Sync Operation ([13] of DW1)
208 * - Notify Enable ([8] of DW1)"
209 *
210 * The cache flushes require the workaround flush that triggered this
211 * one, so we can't use it. Depth stall would trigger the same.
212 * Post-sync nonzero is what triggered this second workaround, so we
213 * can't use that one either. Notify enable is IRQs, which aren't
214 * really our business. That leaves only stall at scoreboard.
215 */
216 static int
217 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
218 {
219 struct intel_engine_cs *ring = req->ring;
220 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
221 int ret;
222
223
224 ret = intel_ring_begin(ring, 6);
225 if (ret)
226 return ret;
227
228 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
229 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
230 PIPE_CONTROL_STALL_AT_SCOREBOARD);
231 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
232 intel_ring_emit(ring, 0); /* low dword */
233 intel_ring_emit(ring, 0); /* high dword */
234 intel_ring_emit(ring, MI_NOOP);
235 intel_ring_advance(ring);
236
237 ret = intel_ring_begin(ring, 6);
238 if (ret)
239 return ret;
240
241 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
242 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
243 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
244 intel_ring_emit(ring, 0);
245 intel_ring_emit(ring, 0);
246 intel_ring_emit(ring, MI_NOOP);
247 intel_ring_advance(ring);
248
249 return 0;
250 }
251
252 static int
253 gen6_render_ring_flush(struct drm_i915_gem_request *req,
254 u32 invalidate_domains, u32 flush_domains)
255 {
256 struct intel_engine_cs *ring = req->ring;
257 u32 flags = 0;
258 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
259 int ret;
260
261 /* Force SNB workarounds for PIPE_CONTROL flushes */
262 ret = intel_emit_post_sync_nonzero_flush(req);
263 if (ret)
264 return ret;
265
266 /* Just flush everything. Experiments have shown that reducing the
267 * number of bits based on the write domains has little performance
268 * impact.
269 */
270 if (flush_domains) {
271 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
272 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
273 /*
274 * Ensure that any following seqno writes only happen
275 * when the render cache is indeed flushed.
276 */
277 flags |= PIPE_CONTROL_CS_STALL;
278 }
279 if (invalidate_domains) {
280 flags |= PIPE_CONTROL_TLB_INVALIDATE;
281 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
282 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
283 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
284 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
285 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
286 /*
287 * TLB invalidate requires a post-sync write.
288 */
289 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
290 }
291
292 ret = intel_ring_begin(ring, 4);
293 if (ret)
294 return ret;
295
296 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
297 intel_ring_emit(ring, flags);
298 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
299 intel_ring_emit(ring, 0);
300 intel_ring_advance(ring);
301
302 return 0;
303 }
304
305 static int
306 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
307 {
308 struct intel_engine_cs *ring = req->ring;
309 int ret;
310
311 ret = intel_ring_begin(ring, 4);
312 if (ret)
313 return ret;
314
315 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
316 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
317 PIPE_CONTROL_STALL_AT_SCOREBOARD);
318 intel_ring_emit(ring, 0);
319 intel_ring_emit(ring, 0);
320 intel_ring_advance(ring);
321
322 return 0;
323 }
324
325 static int
326 gen7_render_ring_flush(struct drm_i915_gem_request *req,
327 u32 invalidate_domains, u32 flush_domains)
328 {
329 struct intel_engine_cs *ring = req->ring;
330 u32 flags = 0;
331 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
332 int ret;
333
334 /*
335 * Ensure that any following seqno writes only happen when the render
336 * cache is indeed flushed.
337 *
338 * Workaround: 4th PIPE_CONTROL command (except the ones with only
339 * read-cache invalidate bits set) must have the CS_STALL bit set. We
340 * don't try to be clever and just set it unconditionally.
341 */
342 flags |= PIPE_CONTROL_CS_STALL;
343
344 /* Just flush everything. Experiments have shown that reducing the
345 * number of bits based on the write domains has little performance
346 * impact.
347 */
348 if (flush_domains) {
349 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
350 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
351 }
352 if (invalidate_domains) {
353 flags |= PIPE_CONTROL_TLB_INVALIDATE;
354 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
355 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
356 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
357 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
358 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
359 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
360 /*
361 * TLB invalidate requires a post-sync write.
362 */
363 flags |= PIPE_CONTROL_QW_WRITE;
364 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
365
366 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
367
368 /* Workaround: we must issue a pipe_control with CS-stall bit
369 * set before a pipe_control command that has the state cache
370 * invalidate bit set. */
371 gen7_render_ring_cs_stall_wa(req);
372 }
373
374 ret = intel_ring_begin(ring, 4);
375 if (ret)
376 return ret;
377
378 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
379 intel_ring_emit(ring, flags);
380 intel_ring_emit(ring, scratch_addr);
381 intel_ring_emit(ring, 0);
382 intel_ring_advance(ring);
383
384 return 0;
385 }
386
387 static int
388 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
389 u32 flags, u32 scratch_addr)
390 {
391 struct intel_engine_cs *ring = req->ring;
392 int ret;
393
394 ret = intel_ring_begin(ring, 6);
395 if (ret)
396 return ret;
397
398 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
399 intel_ring_emit(ring, flags);
400 intel_ring_emit(ring, scratch_addr);
401 intel_ring_emit(ring, 0);
402 intel_ring_emit(ring, 0);
403 intel_ring_emit(ring, 0);
404 intel_ring_advance(ring);
405
406 return 0;
407 }
408
409 static int
410 gen8_render_ring_flush(struct drm_i915_gem_request *req,
411 u32 invalidate_domains, u32 flush_domains)
412 {
413 u32 flags = 0;
414 u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
415 int ret;
416
417 flags |= PIPE_CONTROL_CS_STALL;
418
419 if (flush_domains) {
420 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
421 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
422 }
423 if (invalidate_domains) {
424 flags |= PIPE_CONTROL_TLB_INVALIDATE;
425 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
426 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
427 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
428 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
429 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
430 flags |= PIPE_CONTROL_QW_WRITE;
431 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
432
433 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
434 ret = gen8_emit_pipe_control(req,
435 PIPE_CONTROL_CS_STALL |
436 PIPE_CONTROL_STALL_AT_SCOREBOARD,
437 0);
438 if (ret)
439 return ret;
440 }
441
442 return gen8_emit_pipe_control(req, flags, scratch_addr);
443 }
444
445 static void ring_write_tail(struct intel_engine_cs *ring,
446 u32 value)
447 {
448 struct drm_i915_private *dev_priv = ring->dev->dev_private;
449 I915_WRITE_TAIL(ring, value);
450 }
451
452 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
453 {
454 struct drm_i915_private *dev_priv = ring->dev->dev_private;
455 u64 acthd;
456
457 if (INTEL_INFO(ring->dev)->gen >= 8)
458 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
459 RING_ACTHD_UDW(ring->mmio_base));
460 else if (INTEL_INFO(ring->dev)->gen >= 4)
461 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
462 else
463 acthd = I915_READ(ACTHD);
464
465 return acthd;
466 }
467
468 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
469 {
470 struct drm_i915_private *dev_priv = ring->dev->dev_private;
471 u32 addr;
472
473 addr = dev_priv->status_page_dmah->busaddr;
474 if (INTEL_INFO(ring->dev)->gen >= 4)
475 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
476 I915_WRITE(HWS_PGA, addr);
477 }
478
479 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
480 {
481 struct drm_device *dev = ring->dev;
482 struct drm_i915_private *dev_priv = ring->dev->dev_private;
483 u32 mmio = 0;
484
485 /* The ring status page addresses are no longer next to the rest of
486 * the ring registers as of gen7.
487 */
488 if (IS_GEN7(dev)) {
489 switch (ring->id) {
490 case RCS:
491 mmio = RENDER_HWS_PGA_GEN7;
492 break;
493 case BCS:
494 mmio = BLT_HWS_PGA_GEN7;
495 break;
496 /*
497 * VCS2 actually doesn't exist on Gen7. Only shut up
498 * gcc switch check warning
499 */
500 case VCS2:
501 case VCS:
502 mmio = BSD_HWS_PGA_GEN7;
503 break;
504 case VECS:
505 mmio = VEBOX_HWS_PGA_GEN7;
506 break;
507 }
508 } else if (IS_GEN6(ring->dev)) {
509 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
510 } else {
511 /* XXX: gen8 returns to sanity */
512 mmio = RING_HWS_PGA(ring->mmio_base);
513 }
514
515 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
516 POSTING_READ(mmio);
517
518 /*
519 * Flush the TLB for this page
520 *
521 * FIXME: These two bits have disappeared on gen8, so a question
522 * arises: do we still need this and if so how should we go about
523 * invalidating the TLB?
524 */
525 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
526 u32 reg = RING_INSTPM(ring->mmio_base);
527
528 /* ring should be idle before issuing a sync flush*/
529 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
530
531 I915_WRITE(reg,
532 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
533 INSTPM_SYNC_FLUSH));
534 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
535 1000))
536 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
537 ring->name);
538 }
539 }
540
541 static bool stop_ring(struct intel_engine_cs *ring)
542 {
543 struct drm_i915_private *dev_priv = to_i915(ring->dev);
544
545 if (!IS_GEN2(ring->dev)) {
546 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
547 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
548 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
549 /* Sometimes we observe that the idle flag is not
550 * set even though the ring is empty. So double
551 * check before giving up.
552 */
553 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
554 return false;
555 }
556 }
557
558 I915_WRITE_CTL(ring, 0);
559 I915_WRITE_HEAD(ring, 0);
560 ring->write_tail(ring, 0);
561
562 if (!IS_GEN2(ring->dev)) {
563 (void)I915_READ_CTL(ring);
564 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
565 }
566
567 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
568 }
569
570 static int init_ring_common(struct intel_engine_cs *ring)
571 {
572 struct drm_device *dev = ring->dev;
573 struct drm_i915_private *dev_priv = dev->dev_private;
574 struct intel_ringbuffer *ringbuf = ring->buffer;
575 struct drm_i915_gem_object *obj = ringbuf->obj;
576 int ret = 0;
577
578 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
579
580 if (!stop_ring(ring)) {
581 /* G45 ring initialization often fails to reset head to zero */
582 DRM_DEBUG_KMS("%s head not reset to zero "
583 "ctl %08x head %08x tail %08x start %08x\n",
584 ring->name,
585 I915_READ_CTL(ring),
586 I915_READ_HEAD(ring),
587 I915_READ_TAIL(ring),
588 I915_READ_START(ring));
589
590 if (!stop_ring(ring)) {
591 DRM_ERROR("failed to set %s head to zero "
592 "ctl %08x head %08x tail %08x start %08x\n",
593 ring->name,
594 I915_READ_CTL(ring),
595 I915_READ_HEAD(ring),
596 I915_READ_TAIL(ring),
597 I915_READ_START(ring));
598 ret = -EIO;
599 goto out;
600 }
601 }
602
603 if (I915_NEED_GFX_HWS(dev))
604 intel_ring_setup_status_page(ring);
605 else
606 ring_setup_phys_status_page(ring);
607
608 /* Enforce ordering by reading HEAD register back */
609 I915_READ_HEAD(ring);
610
611 /* Initialize the ring. This must happen _after_ we've cleared the ring
612 * registers with the above sequence (the readback of the HEAD registers
613 * also enforces ordering), otherwise the hw might lose the new ring
614 * register values. */
615 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
616
617 /* WaClearRingBufHeadRegAtInit:ctg,elk */
618 if (I915_READ_HEAD(ring))
619 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
620 ring->name, I915_READ_HEAD(ring));
621 I915_WRITE_HEAD(ring, 0);
622 (void)I915_READ_HEAD(ring);
623
624 I915_WRITE_CTL(ring,
625 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
626 | RING_VALID);
627
628 /* If the head is still not zero, the ring is dead */
629 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
630 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
631 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
632 DRM_ERROR("%s initialization failed "
633 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
634 ring->name,
635 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
636 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
637 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
638 ret = -EIO;
639 goto out;
640 }
641
642 ringbuf->last_retired_head = -1;
643 ringbuf->head = I915_READ_HEAD(ring);
644 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
645 intel_ring_update_space(ringbuf);
646
647 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
648
649 out:
650 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
651
652 return ret;
653 }
654
655 void
656 intel_fini_pipe_control(struct intel_engine_cs *ring)
657 {
658 struct drm_device *dev = ring->dev;
659
660 if (ring->scratch.obj == NULL)
661 return;
662
663 if (INTEL_INFO(dev)->gen >= 5) {
664 kunmap(sg_page(ring->scratch.obj->pages->sgl));
665 i915_gem_object_ggtt_unpin(ring->scratch.obj);
666 }
667
668 drm_gem_object_unreference(&ring->scratch.obj->base);
669 ring->scratch.obj = NULL;
670 }
671
672 int
673 intel_init_pipe_control(struct intel_engine_cs *ring)
674 {
675 int ret;
676
677 WARN_ON(ring->scratch.obj);
678
679 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
680 if (ring->scratch.obj == NULL) {
681 DRM_ERROR("Failed to allocate seqno page\n");
682 ret = -ENOMEM;
683 goto err;
684 }
685
686 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
687 if (ret)
688 goto err_unref;
689
690 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
691 if (ret)
692 goto err_unref;
693
694 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
695 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
696 if (ring->scratch.cpu_page == NULL) {
697 ret = -ENOMEM;
698 goto err_unpin;
699 }
700
701 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
702 ring->name, ring->scratch.gtt_offset);
703 return 0;
704
705 err_unpin:
706 i915_gem_object_ggtt_unpin(ring->scratch.obj);
707 err_unref:
708 drm_gem_object_unreference(&ring->scratch.obj->base);
709 err:
710 return ret;
711 }
712
713 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
714 {
715 int ret, i;
716 struct intel_engine_cs *ring = req->ring;
717 struct drm_device *dev = ring->dev;
718 struct drm_i915_private *dev_priv = dev->dev_private;
719 struct i915_workarounds *w = &dev_priv->workarounds;
720
721 if (WARN_ON_ONCE(w->count == 0))
722 return 0;
723
724 ring->gpu_caches_dirty = true;
725 ret = intel_ring_flush_all_caches(req);
726 if (ret)
727 return ret;
728
729 ret = intel_ring_begin(ring, (w->count * 2 + 2));
730 if (ret)
731 return ret;
732
733 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
734 for (i = 0; i < w->count; i++) {
735 intel_ring_emit(ring, w->reg[i].addr);
736 intel_ring_emit(ring, w->reg[i].value);
737 }
738 intel_ring_emit(ring, MI_NOOP);
739
740 intel_ring_advance(ring);
741
742 ring->gpu_caches_dirty = true;
743 ret = intel_ring_flush_all_caches(req);
744 if (ret)
745 return ret;
746
747 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
748
749 return 0;
750 }
751
752 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
753 {
754 int ret;
755
756 ret = intel_ring_workarounds_emit(req);
757 if (ret != 0)
758 return ret;
759
760 ret = i915_gem_render_state_init(req);
761 if (ret)
762 DRM_ERROR("init render state: %d\n", ret);
763
764 return ret;
765 }
766
767 static int wa_add(struct drm_i915_private *dev_priv,
768 const u32 addr, const u32 mask, const u32 val)
769 {
770 const u32 idx = dev_priv->workarounds.count;
771
772 if (WARN_ON(idx >= I915_MAX_WA_REGS))
773 return -ENOSPC;
774
775 dev_priv->workarounds.reg[idx].addr = addr;
776 dev_priv->workarounds.reg[idx].value = val;
777 dev_priv->workarounds.reg[idx].mask = mask;
778
779 dev_priv->workarounds.count++;
780
781 return 0;
782 }
783
784 #define WA_REG(addr, mask, val) { \
785 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
786 if (r) \
787 return r; \
788 }
789
790 #define WA_SET_BIT_MASKED(addr, mask) \
791 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
792
793 #define WA_CLR_BIT_MASKED(addr, mask) \
794 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
795
796 #define WA_SET_FIELD_MASKED(addr, mask, value) \
797 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
798
799 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
800 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
801
802 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
803
804 static int bdw_init_workarounds(struct intel_engine_cs *ring)
805 {
806 struct drm_device *dev = ring->dev;
807 struct drm_i915_private *dev_priv = dev->dev_private;
808
809 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
810
811 /* WaDisableAsyncFlipPerfMode:bdw */
812 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
813
814 /* WaDisablePartialInstShootdown:bdw */
815 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
816 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
817 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
818 STALL_DOP_GATING_DISABLE);
819
820 /* WaDisableDopClockGating:bdw */
821 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
822 DOP_CLOCK_GATING_DISABLE);
823
824 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
825 GEN8_SAMPLER_POWER_BYPASS_DIS);
826
827 /* Use Force Non-Coherent whenever executing a 3D context. This is a
828 * workaround for for a possible hang in the unlikely event a TLB
829 * invalidation occurs during a PSD flush.
830 */
831 WA_SET_BIT_MASKED(HDC_CHICKEN0,
832 /* WaForceEnableNonCoherent:bdw */
833 HDC_FORCE_NON_COHERENT |
834 /* WaForceContextSaveRestoreNonCoherent:bdw */
835 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
836 /* WaHdcDisableFetchWhenMasked:bdw */
837 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
838 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
839 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
840
841 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
842 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
843 * polygons in the same 8x4 pixel/sample area to be processed without
844 * stalling waiting for the earlier ones to write to Hierarchical Z
845 * buffer."
846 *
847 * This optimization is off by default for Broadwell; turn it on.
848 */
849 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
850
851 /* Wa4x4STCOptimizationDisable:bdw */
852 WA_SET_BIT_MASKED(CACHE_MODE_1,
853 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
854
855 /*
856 * BSpec recommends 8x4 when MSAA is used,
857 * however in practice 16x4 seems fastest.
858 *
859 * Note that PS/WM thread counts depend on the WIZ hashing
860 * disable bit, which we don't touch here, but it's good
861 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
862 */
863 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
864 GEN6_WIZ_HASHING_MASK,
865 GEN6_WIZ_HASHING_16x4);
866
867 return 0;
868 }
869
870 static int chv_init_workarounds(struct intel_engine_cs *ring)
871 {
872 struct drm_device *dev = ring->dev;
873 struct drm_i915_private *dev_priv = dev->dev_private;
874
875 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
876
877 /* WaDisableAsyncFlipPerfMode:chv */
878 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
879
880 /* WaDisablePartialInstShootdown:chv */
881 /* WaDisableThreadStallDopClockGating:chv */
882 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
883 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
884 STALL_DOP_GATING_DISABLE);
885
886 /* Use Force Non-Coherent whenever executing a 3D context. This is a
887 * workaround for a possible hang in the unlikely event a TLB
888 * invalidation occurs during a PSD flush.
889 */
890 /* WaForceEnableNonCoherent:chv */
891 /* WaHdcDisableFetchWhenMasked:chv */
892 WA_SET_BIT_MASKED(HDC_CHICKEN0,
893 HDC_FORCE_NON_COHERENT |
894 HDC_DONOT_FETCH_MEM_WHEN_MASKED);
895
896 /* According to the CACHE_MODE_0 default value documentation, some
897 * CHV platforms disable this optimization by default. Turn it on.
898 */
899 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
900
901 /* Wa4x4STCOptimizationDisable:chv */
902 WA_SET_BIT_MASKED(CACHE_MODE_1,
903 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
904
905 /* Improve HiZ throughput on CHV. */
906 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
907
908 /*
909 * BSpec recommends 8x4 when MSAA is used,
910 * however in practice 16x4 seems fastest.
911 *
912 * Note that PS/WM thread counts depend on the WIZ hashing
913 * disable bit, which we don't touch here, but it's good
914 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
915 */
916 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
917 GEN6_WIZ_HASHING_MASK,
918 GEN6_WIZ_HASHING_16x4);
919
920 return 0;
921 }
922
923 static int gen9_init_workarounds(struct intel_engine_cs *ring)
924 {
925 struct drm_device *dev = ring->dev;
926 struct drm_i915_private *dev_priv = dev->dev_private;
927 uint32_t tmp;
928
929 /* WaDisablePartialInstShootdown:skl,bxt */
930 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
931 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
932
933 /* Syncing dependencies between camera and graphics:skl,bxt */
934 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
935 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
936
937 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
938 INTEL_REVID(dev) == SKL_REVID_B0)) ||
939 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
940 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
941 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
942 GEN9_DG_MIRROR_FIX_ENABLE);
943 }
944
945 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
946 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
947 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
948 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
949 GEN9_RHWO_OPTIMIZATION_DISABLE);
950 WA_SET_BIT_MASKED(GEN9_SLICE_COMMON_ECO_CHICKEN0,
951 DISABLE_PIXEL_MASK_CAMMING);
952 }
953
954 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
955 IS_BROXTON(dev)) {
956 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
957 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
958 GEN9_ENABLE_YV12_BUGFIX);
959 }
960
961 /* Wa4x4STCOptimizationDisable:skl,bxt */
962 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
963
964 /* WaDisablePartialResolveInVc:skl,bxt */
965 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
966
967 /* WaCcsTlbPrefetchDisable:skl,bxt */
968 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
969 GEN9_CCS_TLB_PREFETCH_ENABLE);
970
971 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
972 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
973 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
974 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
975 PIXEL_MASK_CAMMING_DISABLE);
976
977 /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
978 tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
979 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
980 (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
981 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
982 WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
983
984 return 0;
985 }
986
987 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
988 {
989 struct drm_device *dev = ring->dev;
990 struct drm_i915_private *dev_priv = dev->dev_private;
991 u8 vals[3] = { 0, 0, 0 };
992 unsigned int i;
993
994 for (i = 0; i < 3; i++) {
995 u8 ss;
996
997 /*
998 * Only consider slices where one, and only one, subslice has 7
999 * EUs
1000 */
1001 if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
1002 continue;
1003
1004 /*
1005 * subslice_7eu[i] != 0 (because of the check above) and
1006 * ss_max == 4 (maximum number of subslices possible per slice)
1007 *
1008 * -> 0 <= ss <= 3;
1009 */
1010 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1011 vals[i] = 3 - ss;
1012 }
1013
1014 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1015 return 0;
1016
1017 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1018 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1019 GEN9_IZ_HASHING_MASK(2) |
1020 GEN9_IZ_HASHING_MASK(1) |
1021 GEN9_IZ_HASHING_MASK(0),
1022 GEN9_IZ_HASHING(2, vals[2]) |
1023 GEN9_IZ_HASHING(1, vals[1]) |
1024 GEN9_IZ_HASHING(0, vals[0]));
1025
1026 return 0;
1027 }
1028
1029
1030 static int skl_init_workarounds(struct intel_engine_cs *ring)
1031 {
1032 struct drm_device *dev = ring->dev;
1033 struct drm_i915_private *dev_priv = dev->dev_private;
1034
1035 gen9_init_workarounds(ring);
1036
1037 /* WaDisablePowerCompilerClockGating:skl */
1038 if (INTEL_REVID(dev) == SKL_REVID_B0)
1039 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1040 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1041
1042 if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1043 /*
1044 *Use Force Non-Coherent whenever executing a 3D context. This
1045 * is a workaround for a possible hang in the unlikely event
1046 * a TLB invalidation occurs during a PSD flush.
1047 */
1048 /* WaForceEnableNonCoherent:skl */
1049 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1050 HDC_FORCE_NON_COHERENT);
1051 }
1052
1053 if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1054 INTEL_REVID(dev) == SKL_REVID_D0)
1055 /* WaBarrierPerformanceFixDisable:skl */
1056 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1057 HDC_FENCE_DEST_SLM_DISABLE |
1058 HDC_BARRIER_PERFORMANCE_DISABLE);
1059
1060 return skl_tune_iz_hashing(ring);
1061 }
1062
1063 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1064 {
1065 struct drm_device *dev = ring->dev;
1066 struct drm_i915_private *dev_priv = dev->dev_private;
1067
1068 gen9_init_workarounds(ring);
1069
1070 /* WaDisableThreadStallDopClockGating:bxt */
1071 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1072 STALL_DOP_GATING_DISABLE);
1073
1074 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1075 if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1076 WA_SET_BIT_MASKED(
1077 GEN7_HALF_SLICE_CHICKEN1,
1078 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1079 }
1080
1081 return 0;
1082 }
1083
1084 int init_workarounds_ring(struct intel_engine_cs *ring)
1085 {
1086 struct drm_device *dev = ring->dev;
1087 struct drm_i915_private *dev_priv = dev->dev_private;
1088
1089 WARN_ON(ring->id != RCS);
1090
1091 dev_priv->workarounds.count = 0;
1092
1093 if (IS_BROADWELL(dev))
1094 return bdw_init_workarounds(ring);
1095
1096 if (IS_CHERRYVIEW(dev))
1097 return chv_init_workarounds(ring);
1098
1099 if (IS_SKYLAKE(dev))
1100 return skl_init_workarounds(ring);
1101
1102 if (IS_BROXTON(dev))
1103 return bxt_init_workarounds(ring);
1104
1105 return 0;
1106 }
1107
1108 static int init_render_ring(struct intel_engine_cs *ring)
1109 {
1110 struct drm_device *dev = ring->dev;
1111 struct drm_i915_private *dev_priv = dev->dev_private;
1112 int ret = init_ring_common(ring);
1113 if (ret)
1114 return ret;
1115
1116 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1117 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1118 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1119
1120 /* We need to disable the AsyncFlip performance optimisations in order
1121 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1122 * programmed to '1' on all products.
1123 *
1124 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1125 */
1126 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1127 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1128
1129 /* Required for the hardware to program scanline values for waiting */
1130 /* WaEnableFlushTlbInvalidationMode:snb */
1131 if (INTEL_INFO(dev)->gen == 6)
1132 I915_WRITE(GFX_MODE,
1133 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1134
1135 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1136 if (IS_GEN7(dev))
1137 I915_WRITE(GFX_MODE_GEN7,
1138 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1139 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1140
1141 if (IS_GEN6(dev)) {
1142 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1143 * "If this bit is set, STCunit will have LRA as replacement
1144 * policy. [...] This bit must be reset. LRA replacement
1145 * policy is not supported."
1146 */
1147 I915_WRITE(CACHE_MODE_0,
1148 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1149 }
1150
1151 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1152 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1153
1154 if (HAS_L3_DPF(dev))
1155 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1156
1157 return init_workarounds_ring(ring);
1158 }
1159
1160 static void render_ring_cleanup(struct intel_engine_cs *ring)
1161 {
1162 struct drm_device *dev = ring->dev;
1163 struct drm_i915_private *dev_priv = dev->dev_private;
1164
1165 if (dev_priv->semaphore_obj) {
1166 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1167 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1168 dev_priv->semaphore_obj = NULL;
1169 }
1170
1171 intel_fini_pipe_control(ring);
1172 }
1173
1174 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
1175 unsigned int num_dwords)
1176 {
1177 #define MBOX_UPDATE_DWORDS 8
1178 struct drm_device *dev = signaller->dev;
1179 struct drm_i915_private *dev_priv = dev->dev_private;
1180 struct intel_engine_cs *waiter;
1181 int i, ret, num_rings;
1182
1183 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1184 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1185 #undef MBOX_UPDATE_DWORDS
1186
1187 ret = intel_ring_begin(signaller, num_dwords);
1188 if (ret)
1189 return ret;
1190
1191 for_each_ring(waiter, dev_priv, i) {
1192 u32 seqno;
1193 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1194 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1195 continue;
1196
1197 seqno = i915_gem_request_get_seqno(
1198 signaller->outstanding_lazy_request);
1199 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1200 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1201 PIPE_CONTROL_QW_WRITE |
1202 PIPE_CONTROL_FLUSH_ENABLE);
1203 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1204 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1205 intel_ring_emit(signaller, seqno);
1206 intel_ring_emit(signaller, 0);
1207 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1208 MI_SEMAPHORE_TARGET(waiter->id));
1209 intel_ring_emit(signaller, 0);
1210 }
1211
1212 return 0;
1213 }
1214
1215 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
1216 unsigned int num_dwords)
1217 {
1218 #define MBOX_UPDATE_DWORDS 6
1219 struct drm_device *dev = signaller->dev;
1220 struct drm_i915_private *dev_priv = dev->dev_private;
1221 struct intel_engine_cs *waiter;
1222 int i, ret, num_rings;
1223
1224 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1225 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1226 #undef MBOX_UPDATE_DWORDS
1227
1228 ret = intel_ring_begin(signaller, num_dwords);
1229 if (ret)
1230 return ret;
1231
1232 for_each_ring(waiter, dev_priv, i) {
1233 u32 seqno;
1234 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1235 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1236 continue;
1237
1238 seqno = i915_gem_request_get_seqno(
1239 signaller->outstanding_lazy_request);
1240 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1241 MI_FLUSH_DW_OP_STOREDW);
1242 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1243 MI_FLUSH_DW_USE_GTT);
1244 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1245 intel_ring_emit(signaller, seqno);
1246 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1247 MI_SEMAPHORE_TARGET(waiter->id));
1248 intel_ring_emit(signaller, 0);
1249 }
1250
1251 return 0;
1252 }
1253
1254 static int gen6_signal(struct intel_engine_cs *signaller,
1255 unsigned int num_dwords)
1256 {
1257 struct drm_device *dev = signaller->dev;
1258 struct drm_i915_private *dev_priv = dev->dev_private;
1259 struct intel_engine_cs *useless;
1260 int i, ret, num_rings;
1261
1262 #define MBOX_UPDATE_DWORDS 3
1263 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1264 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1265 #undef MBOX_UPDATE_DWORDS
1266
1267 ret = intel_ring_begin(signaller, num_dwords);
1268 if (ret)
1269 return ret;
1270
1271 for_each_ring(useless, dev_priv, i) {
1272 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1273 if (mbox_reg != GEN6_NOSYNC) {
1274 u32 seqno = i915_gem_request_get_seqno(
1275 signaller->outstanding_lazy_request);
1276 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1277 intel_ring_emit(signaller, mbox_reg);
1278 intel_ring_emit(signaller, seqno);
1279 }
1280 }
1281
1282 /* If num_dwords was rounded, make sure the tail pointer is correct */
1283 if (num_rings % 2 == 0)
1284 intel_ring_emit(signaller, MI_NOOP);
1285
1286 return 0;
1287 }
1288
1289 /**
1290 * gen6_add_request - Update the semaphore mailbox registers
1291 *
1292 * @request - request to write to the ring
1293 *
1294 * Update the mailbox registers in the *other* rings with the current seqno.
1295 * This acts like a signal in the canonical semaphore.
1296 */
1297 static int
1298 gen6_add_request(struct drm_i915_gem_request *req)
1299 {
1300 struct intel_engine_cs *ring = req->ring;
1301 int ret;
1302
1303 if (ring->semaphore.signal)
1304 ret = ring->semaphore.signal(ring, 4);
1305 else
1306 ret = intel_ring_begin(ring, 4);
1307
1308 if (ret)
1309 return ret;
1310
1311 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1312 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1313 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1314 intel_ring_emit(ring, MI_USER_INTERRUPT);
1315 __intel_ring_advance(ring);
1316
1317 return 0;
1318 }
1319
1320 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1321 u32 seqno)
1322 {
1323 struct drm_i915_private *dev_priv = dev->dev_private;
1324 return dev_priv->last_seqno < seqno;
1325 }
1326
1327 /**
1328 * intel_ring_sync - sync the waiter to the signaller on seqno
1329 *
1330 * @waiter - ring that is waiting
1331 * @signaller - ring which has, or will signal
1332 * @seqno - seqno which the waiter will block on
1333 */
1334
1335 static int
1336 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1337 struct intel_engine_cs *signaller,
1338 u32 seqno)
1339 {
1340 struct intel_engine_cs *waiter = waiter_req->ring;
1341 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1342 int ret;
1343
1344 ret = intel_ring_begin(waiter, 4);
1345 if (ret)
1346 return ret;
1347
1348 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1349 MI_SEMAPHORE_GLOBAL_GTT |
1350 MI_SEMAPHORE_POLL |
1351 MI_SEMAPHORE_SAD_GTE_SDD);
1352 intel_ring_emit(waiter, seqno);
1353 intel_ring_emit(waiter,
1354 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1355 intel_ring_emit(waiter,
1356 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1357 intel_ring_advance(waiter);
1358 return 0;
1359 }
1360
1361 static int
1362 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1363 struct intel_engine_cs *signaller,
1364 u32 seqno)
1365 {
1366 struct intel_engine_cs *waiter = waiter_req->ring;
1367 u32 dw1 = MI_SEMAPHORE_MBOX |
1368 MI_SEMAPHORE_COMPARE |
1369 MI_SEMAPHORE_REGISTER;
1370 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1371 int ret;
1372
1373 /* Throughout all of the GEM code, seqno passed implies our current
1374 * seqno is >= the last seqno executed. However for hardware the
1375 * comparison is strictly greater than.
1376 */
1377 seqno -= 1;
1378
1379 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1380
1381 ret = intel_ring_begin(waiter, 4);
1382 if (ret)
1383 return ret;
1384
1385 /* If seqno wrap happened, omit the wait with no-ops */
1386 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1387 intel_ring_emit(waiter, dw1 | wait_mbox);
1388 intel_ring_emit(waiter, seqno);
1389 intel_ring_emit(waiter, 0);
1390 intel_ring_emit(waiter, MI_NOOP);
1391 } else {
1392 intel_ring_emit(waiter, MI_NOOP);
1393 intel_ring_emit(waiter, MI_NOOP);
1394 intel_ring_emit(waiter, MI_NOOP);
1395 intel_ring_emit(waiter, MI_NOOP);
1396 }
1397 intel_ring_advance(waiter);
1398
1399 return 0;
1400 }
1401
1402 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1403 do { \
1404 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1405 PIPE_CONTROL_DEPTH_STALL); \
1406 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1407 intel_ring_emit(ring__, 0); \
1408 intel_ring_emit(ring__, 0); \
1409 } while (0)
1410
1411 static int
1412 pc_render_add_request(struct drm_i915_gem_request *req)
1413 {
1414 struct intel_engine_cs *ring = req->ring;
1415 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1416 int ret;
1417
1418 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1419 * incoherent with writes to memory, i.e. completely fubar,
1420 * so we need to use PIPE_NOTIFY instead.
1421 *
1422 * However, we also need to workaround the qword write
1423 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1424 * memory before requesting an interrupt.
1425 */
1426 ret = intel_ring_begin(ring, 32);
1427 if (ret)
1428 return ret;
1429
1430 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1431 PIPE_CONTROL_WRITE_FLUSH |
1432 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1433 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1434 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1435 intel_ring_emit(ring, 0);
1436 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1437 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1438 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1439 scratch_addr += 2 * CACHELINE_BYTES;
1440 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1441 scratch_addr += 2 * CACHELINE_BYTES;
1442 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1443 scratch_addr += 2 * CACHELINE_BYTES;
1444 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1445 scratch_addr += 2 * CACHELINE_BYTES;
1446 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1447
1448 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1449 PIPE_CONTROL_WRITE_FLUSH |
1450 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1451 PIPE_CONTROL_NOTIFY);
1452 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1453 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1454 intel_ring_emit(ring, 0);
1455 __intel_ring_advance(ring);
1456
1457 return 0;
1458 }
1459
1460 static u32
1461 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1462 {
1463 /* Workaround to force correct ordering between irq and seqno writes on
1464 * ivb (and maybe also on snb) by reading from a CS register (like
1465 * ACTHD) before reading the status page. */
1466 if (!lazy_coherency) {
1467 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1468 POSTING_READ(RING_ACTHD(ring->mmio_base));
1469 }
1470
1471 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1472 }
1473
1474 static u32
1475 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1476 {
1477 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1478 }
1479
1480 static void
1481 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1482 {
1483 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1484 }
1485
1486 static u32
1487 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1488 {
1489 return ring->scratch.cpu_page[0];
1490 }
1491
1492 static void
1493 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1494 {
1495 ring->scratch.cpu_page[0] = seqno;
1496 }
1497
1498 static bool
1499 gen5_ring_get_irq(struct intel_engine_cs *ring)
1500 {
1501 struct drm_device *dev = ring->dev;
1502 struct drm_i915_private *dev_priv = dev->dev_private;
1503 unsigned long flags;
1504
1505 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1506 return false;
1507
1508 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1509 if (ring->irq_refcount++ == 0)
1510 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1511 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1512
1513 return true;
1514 }
1515
1516 static void
1517 gen5_ring_put_irq(struct intel_engine_cs *ring)
1518 {
1519 struct drm_device *dev = ring->dev;
1520 struct drm_i915_private *dev_priv = dev->dev_private;
1521 unsigned long flags;
1522
1523 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1524 if (--ring->irq_refcount == 0)
1525 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1526 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1527 }
1528
1529 static bool
1530 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1531 {
1532 struct drm_device *dev = ring->dev;
1533 struct drm_i915_private *dev_priv = dev->dev_private;
1534 unsigned long flags;
1535
1536 if (!intel_irqs_enabled(dev_priv))
1537 return false;
1538
1539 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1540 if (ring->irq_refcount++ == 0) {
1541 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1542 I915_WRITE(IMR, dev_priv->irq_mask);
1543 POSTING_READ(IMR);
1544 }
1545 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1546
1547 return true;
1548 }
1549
1550 static void
1551 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1552 {
1553 struct drm_device *dev = ring->dev;
1554 struct drm_i915_private *dev_priv = dev->dev_private;
1555 unsigned long flags;
1556
1557 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1558 if (--ring->irq_refcount == 0) {
1559 dev_priv->irq_mask |= ring->irq_enable_mask;
1560 I915_WRITE(IMR, dev_priv->irq_mask);
1561 POSTING_READ(IMR);
1562 }
1563 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1564 }
1565
1566 static bool
1567 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1568 {
1569 struct drm_device *dev = ring->dev;
1570 struct drm_i915_private *dev_priv = dev->dev_private;
1571 unsigned long flags;
1572
1573 if (!intel_irqs_enabled(dev_priv))
1574 return false;
1575
1576 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1577 if (ring->irq_refcount++ == 0) {
1578 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1579 I915_WRITE16(IMR, dev_priv->irq_mask);
1580 POSTING_READ16(IMR);
1581 }
1582 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1583
1584 return true;
1585 }
1586
1587 static void
1588 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1589 {
1590 struct drm_device *dev = ring->dev;
1591 struct drm_i915_private *dev_priv = dev->dev_private;
1592 unsigned long flags;
1593
1594 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1595 if (--ring->irq_refcount == 0) {
1596 dev_priv->irq_mask |= ring->irq_enable_mask;
1597 I915_WRITE16(IMR, dev_priv->irq_mask);
1598 POSTING_READ16(IMR);
1599 }
1600 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1601 }
1602
1603 static int
1604 bsd_ring_flush(struct drm_i915_gem_request *req,
1605 u32 invalidate_domains,
1606 u32 flush_domains)
1607 {
1608 struct intel_engine_cs *ring = req->ring;
1609 int ret;
1610
1611 ret = intel_ring_begin(ring, 2);
1612 if (ret)
1613 return ret;
1614
1615 intel_ring_emit(ring, MI_FLUSH);
1616 intel_ring_emit(ring, MI_NOOP);
1617 intel_ring_advance(ring);
1618 return 0;
1619 }
1620
1621 static int
1622 i9xx_add_request(struct drm_i915_gem_request *req)
1623 {
1624 struct intel_engine_cs *ring = req->ring;
1625 int ret;
1626
1627 ret = intel_ring_begin(ring, 4);
1628 if (ret)
1629 return ret;
1630
1631 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1632 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1633 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1634 intel_ring_emit(ring, MI_USER_INTERRUPT);
1635 __intel_ring_advance(ring);
1636
1637 return 0;
1638 }
1639
1640 static bool
1641 gen6_ring_get_irq(struct intel_engine_cs *ring)
1642 {
1643 struct drm_device *dev = ring->dev;
1644 struct drm_i915_private *dev_priv = dev->dev_private;
1645 unsigned long flags;
1646
1647 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1648 return false;
1649
1650 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1651 if (ring->irq_refcount++ == 0) {
1652 if (HAS_L3_DPF(dev) && ring->id == RCS)
1653 I915_WRITE_IMR(ring,
1654 ~(ring->irq_enable_mask |
1655 GT_PARITY_ERROR(dev)));
1656 else
1657 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1658 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1659 }
1660 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1661
1662 return true;
1663 }
1664
1665 static void
1666 gen6_ring_put_irq(struct intel_engine_cs *ring)
1667 {
1668 struct drm_device *dev = ring->dev;
1669 struct drm_i915_private *dev_priv = dev->dev_private;
1670 unsigned long flags;
1671
1672 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1673 if (--ring->irq_refcount == 0) {
1674 if (HAS_L3_DPF(dev) && ring->id == RCS)
1675 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1676 else
1677 I915_WRITE_IMR(ring, ~0);
1678 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1679 }
1680 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1681 }
1682
1683 static bool
1684 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1685 {
1686 struct drm_device *dev = ring->dev;
1687 struct drm_i915_private *dev_priv = dev->dev_private;
1688 unsigned long flags;
1689
1690 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1691 return false;
1692
1693 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1694 if (ring->irq_refcount++ == 0) {
1695 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1696 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1697 }
1698 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1699
1700 return true;
1701 }
1702
1703 static void
1704 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1705 {
1706 struct drm_device *dev = ring->dev;
1707 struct drm_i915_private *dev_priv = dev->dev_private;
1708 unsigned long flags;
1709
1710 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1711 if (--ring->irq_refcount == 0) {
1712 I915_WRITE_IMR(ring, ~0);
1713 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1714 }
1715 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1716 }
1717
1718 static bool
1719 gen8_ring_get_irq(struct intel_engine_cs *ring)
1720 {
1721 struct drm_device *dev = ring->dev;
1722 struct drm_i915_private *dev_priv = dev->dev_private;
1723 unsigned long flags;
1724
1725 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1726 return false;
1727
1728 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1729 if (ring->irq_refcount++ == 0) {
1730 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1731 I915_WRITE_IMR(ring,
1732 ~(ring->irq_enable_mask |
1733 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1734 } else {
1735 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1736 }
1737 POSTING_READ(RING_IMR(ring->mmio_base));
1738 }
1739 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1740
1741 return true;
1742 }
1743
1744 static void
1745 gen8_ring_put_irq(struct intel_engine_cs *ring)
1746 {
1747 struct drm_device *dev = ring->dev;
1748 struct drm_i915_private *dev_priv = dev->dev_private;
1749 unsigned long flags;
1750
1751 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1752 if (--ring->irq_refcount == 0) {
1753 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1754 I915_WRITE_IMR(ring,
1755 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1756 } else {
1757 I915_WRITE_IMR(ring, ~0);
1758 }
1759 POSTING_READ(RING_IMR(ring->mmio_base));
1760 }
1761 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1762 }
1763
1764 static int
1765 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1766 u64 offset, u32 length,
1767 unsigned dispatch_flags)
1768 {
1769 struct intel_engine_cs *ring = req->ring;
1770 int ret;
1771
1772 ret = intel_ring_begin(ring, 2);
1773 if (ret)
1774 return ret;
1775
1776 intel_ring_emit(ring,
1777 MI_BATCH_BUFFER_START |
1778 MI_BATCH_GTT |
1779 (dispatch_flags & I915_DISPATCH_SECURE ?
1780 0 : MI_BATCH_NON_SECURE_I965));
1781 intel_ring_emit(ring, offset);
1782 intel_ring_advance(ring);
1783
1784 return 0;
1785 }
1786
1787 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1788 #define I830_BATCH_LIMIT (256*1024)
1789 #define I830_TLB_ENTRIES (2)
1790 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1791 static int
1792 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1793 u64 offset, u32 len,
1794 unsigned dispatch_flags)
1795 {
1796 struct intel_engine_cs *ring = req->ring;
1797 u32 cs_offset = ring->scratch.gtt_offset;
1798 int ret;
1799
1800 ret = intel_ring_begin(ring, 6);
1801 if (ret)
1802 return ret;
1803
1804 /* Evict the invalid PTE TLBs */
1805 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1806 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1807 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1808 intel_ring_emit(ring, cs_offset);
1809 intel_ring_emit(ring, 0xdeadbeef);
1810 intel_ring_emit(ring, MI_NOOP);
1811 intel_ring_advance(ring);
1812
1813 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1814 if (len > I830_BATCH_LIMIT)
1815 return -ENOSPC;
1816
1817 ret = intel_ring_begin(ring, 6 + 2);
1818 if (ret)
1819 return ret;
1820
1821 /* Blit the batch (which has now all relocs applied) to the
1822 * stable batch scratch bo area (so that the CS never
1823 * stumbles over its tlb invalidation bug) ...
1824 */
1825 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1826 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1827 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1828 intel_ring_emit(ring, cs_offset);
1829 intel_ring_emit(ring, 4096);
1830 intel_ring_emit(ring, offset);
1831
1832 intel_ring_emit(ring, MI_FLUSH);
1833 intel_ring_emit(ring, MI_NOOP);
1834 intel_ring_advance(ring);
1835
1836 /* ... and execute it. */
1837 offset = cs_offset;
1838 }
1839
1840 ret = intel_ring_begin(ring, 4);
1841 if (ret)
1842 return ret;
1843
1844 intel_ring_emit(ring, MI_BATCH_BUFFER);
1845 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1846 0 : MI_BATCH_NON_SECURE));
1847 intel_ring_emit(ring, offset + len - 8);
1848 intel_ring_emit(ring, MI_NOOP);
1849 intel_ring_advance(ring);
1850
1851 return 0;
1852 }
1853
1854 static int
1855 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1856 u64 offset, u32 len,
1857 unsigned dispatch_flags)
1858 {
1859 struct intel_engine_cs *ring = req->ring;
1860 int ret;
1861
1862 ret = intel_ring_begin(ring, 2);
1863 if (ret)
1864 return ret;
1865
1866 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1867 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1868 0 : MI_BATCH_NON_SECURE));
1869 intel_ring_advance(ring);
1870
1871 return 0;
1872 }
1873
1874 static void cleanup_status_page(struct intel_engine_cs *ring)
1875 {
1876 struct drm_i915_gem_object *obj;
1877
1878 obj = ring->status_page.obj;
1879 if (obj == NULL)
1880 return;
1881
1882 kunmap(sg_page(obj->pages->sgl));
1883 i915_gem_object_ggtt_unpin(obj);
1884 drm_gem_object_unreference(&obj->base);
1885 ring->status_page.obj = NULL;
1886 }
1887
1888 static int init_status_page(struct intel_engine_cs *ring)
1889 {
1890 struct drm_i915_gem_object *obj;
1891
1892 if ((obj = ring->status_page.obj) == NULL) {
1893 unsigned flags;
1894 int ret;
1895
1896 obj = i915_gem_alloc_object(ring->dev, 4096);
1897 if (obj == NULL) {
1898 DRM_ERROR("Failed to allocate status page\n");
1899 return -ENOMEM;
1900 }
1901
1902 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1903 if (ret)
1904 goto err_unref;
1905
1906 flags = 0;
1907 if (!HAS_LLC(ring->dev))
1908 /* On g33, we cannot place HWS above 256MiB, so
1909 * restrict its pinning to the low mappable arena.
1910 * Though this restriction is not documented for
1911 * gen4, gen5, or byt, they also behave similarly
1912 * and hang if the HWS is placed at the top of the
1913 * GTT. To generalise, it appears that all !llc
1914 * platforms have issues with us placing the HWS
1915 * above the mappable region (even though we never
1916 * actualy map it).
1917 */
1918 flags |= PIN_MAPPABLE;
1919 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1920 if (ret) {
1921 err_unref:
1922 drm_gem_object_unreference(&obj->base);
1923 return ret;
1924 }
1925
1926 ring->status_page.obj = obj;
1927 }
1928
1929 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1930 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1931 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1932
1933 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1934 ring->name, ring->status_page.gfx_addr);
1935
1936 return 0;
1937 }
1938
1939 static int init_phys_status_page(struct intel_engine_cs *ring)
1940 {
1941 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1942
1943 if (!dev_priv->status_page_dmah) {
1944 dev_priv->status_page_dmah =
1945 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1946 if (!dev_priv->status_page_dmah)
1947 return -ENOMEM;
1948 }
1949
1950 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1951 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1952
1953 return 0;
1954 }
1955
1956 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1957 {
1958 iounmap(ringbuf->virtual_start);
1959 ringbuf->virtual_start = NULL;
1960 i915_gem_object_ggtt_unpin(ringbuf->obj);
1961 }
1962
1963 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1964 struct intel_ringbuffer *ringbuf)
1965 {
1966 struct drm_i915_private *dev_priv = to_i915(dev);
1967 struct drm_i915_gem_object *obj = ringbuf->obj;
1968 int ret;
1969
1970 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1971 if (ret)
1972 return ret;
1973
1974 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1975 if (ret) {
1976 i915_gem_object_ggtt_unpin(obj);
1977 return ret;
1978 }
1979
1980 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1981 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1982 if (ringbuf->virtual_start == NULL) {
1983 i915_gem_object_ggtt_unpin(obj);
1984 return -EINVAL;
1985 }
1986
1987 return 0;
1988 }
1989
1990 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1991 {
1992 drm_gem_object_unreference(&ringbuf->obj->base);
1993 ringbuf->obj = NULL;
1994 }
1995
1996 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1997 struct intel_ringbuffer *ringbuf)
1998 {
1999 struct drm_i915_gem_object *obj;
2000
2001 obj = NULL;
2002 if (!HAS_LLC(dev))
2003 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2004 if (obj == NULL)
2005 obj = i915_gem_alloc_object(dev, ringbuf->size);
2006 if (obj == NULL)
2007 return -ENOMEM;
2008
2009 /* mark ring buffers as read-only from GPU side by default */
2010 obj->gt_ro = 1;
2011
2012 ringbuf->obj = obj;
2013
2014 return 0;
2015 }
2016
2017 static int intel_init_ring_buffer(struct drm_device *dev,
2018 struct intel_engine_cs *ring)
2019 {
2020 struct intel_ringbuffer *ringbuf;
2021 int ret;
2022
2023 WARN_ON(ring->buffer);
2024
2025 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2026 if (!ringbuf)
2027 return -ENOMEM;
2028 ring->buffer = ringbuf;
2029
2030 ring->dev = dev;
2031 INIT_LIST_HEAD(&ring->active_list);
2032 INIT_LIST_HEAD(&ring->request_list);
2033 INIT_LIST_HEAD(&ring->execlist_queue);
2034 i915_gem_batch_pool_init(dev, &ring->batch_pool);
2035 ringbuf->size = 32 * PAGE_SIZE;
2036 ringbuf->ring = ring;
2037 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2038
2039 init_waitqueue_head(&ring->irq_queue);
2040
2041 if (I915_NEED_GFX_HWS(dev)) {
2042 ret = init_status_page(ring);
2043 if (ret)
2044 goto error;
2045 } else {
2046 BUG_ON(ring->id != RCS);
2047 ret = init_phys_status_page(ring);
2048 if (ret)
2049 goto error;
2050 }
2051
2052 WARN_ON(ringbuf->obj);
2053
2054 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2055 if (ret) {
2056 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2057 ring->name, ret);
2058 goto error;
2059 }
2060
2061 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2062 if (ret) {
2063 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2064 ring->name, ret);
2065 intel_destroy_ringbuffer_obj(ringbuf);
2066 goto error;
2067 }
2068
2069 /* Workaround an erratum on the i830 which causes a hang if
2070 * the TAIL pointer points to within the last 2 cachelines
2071 * of the buffer.
2072 */
2073 ringbuf->effective_size = ringbuf->size;
2074 if (IS_I830(dev) || IS_845G(dev))
2075 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2076
2077 ret = i915_cmd_parser_init_ring(ring);
2078 if (ret)
2079 goto error;
2080
2081 return 0;
2082
2083 error:
2084 kfree(ringbuf);
2085 ring->buffer = NULL;
2086 return ret;
2087 }
2088
2089 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2090 {
2091 struct drm_i915_private *dev_priv;
2092 struct intel_ringbuffer *ringbuf;
2093
2094 if (!intel_ring_initialized(ring))
2095 return;
2096
2097 dev_priv = to_i915(ring->dev);
2098 ringbuf = ring->buffer;
2099
2100 intel_stop_ring_buffer(ring);
2101 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2102
2103 intel_unpin_ringbuffer_obj(ringbuf);
2104 intel_destroy_ringbuffer_obj(ringbuf);
2105 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2106
2107 if (ring->cleanup)
2108 ring->cleanup(ring);
2109
2110 cleanup_status_page(ring);
2111
2112 i915_cmd_parser_fini_ring(ring);
2113 i915_gem_batch_pool_fini(&ring->batch_pool);
2114
2115 kfree(ringbuf);
2116 ring->buffer = NULL;
2117 }
2118
2119 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2120 {
2121 struct intel_ringbuffer *ringbuf = ring->buffer;
2122 struct drm_i915_gem_request *request;
2123 unsigned space;
2124 int ret;
2125
2126 /* The whole point of reserving space is to not wait! */
2127 WARN_ON(ringbuf->reserved_in_use);
2128
2129 if (intel_ring_space(ringbuf) >= n)
2130 return 0;
2131
2132 list_for_each_entry(request, &ring->request_list, list) {
2133 space = __intel_ring_space(request->postfix, ringbuf->tail,
2134 ringbuf->size);
2135 if (space >= n)
2136 break;
2137 }
2138
2139 if (WARN_ON(&request->list == &ring->request_list))
2140 return -ENOSPC;
2141
2142 ret = i915_wait_request(request);
2143 if (ret)
2144 return ret;
2145
2146 ringbuf->space = space;
2147 return 0;
2148 }
2149
2150 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
2151 {
2152 uint32_t __iomem *virt;
2153 struct intel_ringbuffer *ringbuf = ring->buffer;
2154 int rem = ringbuf->size - ringbuf->tail;
2155
2156 /* Can't wrap if space has already been reserved! */
2157 WARN_ON(ringbuf->reserved_in_use);
2158
2159 if (ringbuf->space < rem) {
2160 int ret = ring_wait_for_space(ring, rem);
2161 if (ret)
2162 return ret;
2163 }
2164
2165 virt = ringbuf->virtual_start + ringbuf->tail;
2166 rem /= 4;
2167 while (rem--)
2168 iowrite32(MI_NOOP, virt++);
2169
2170 ringbuf->tail = 0;
2171 intel_ring_update_space(ringbuf);
2172
2173 return 0;
2174 }
2175
2176 int intel_ring_idle(struct intel_engine_cs *ring)
2177 {
2178 struct drm_i915_gem_request *req;
2179
2180 /* We need to add any requests required to flush the objects and ring */
2181 WARN_ON(ring->outstanding_lazy_request);
2182 if (ring->outstanding_lazy_request)
2183 i915_add_request(ring->outstanding_lazy_request);
2184
2185 /* Wait upon the last request to be completed */
2186 if (list_empty(&ring->request_list))
2187 return 0;
2188
2189 req = list_entry(ring->request_list.prev,
2190 struct drm_i915_gem_request,
2191 list);
2192
2193 /* Make sure we do not trigger any retires */
2194 return __i915_wait_request(req,
2195 atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2196 to_i915(ring->dev)->mm.interruptible,
2197 NULL, NULL);
2198 }
2199
2200 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2201 {
2202 request->ringbuf = request->ring->buffer;
2203 return 0;
2204 }
2205
2206 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2207 {
2208 /* NB: Until request management is fully tidied up and the OLR is
2209 * removed, there are too many ways for get false hits on this
2210 * anti-recursion check! */
2211 /*WARN_ON(ringbuf->reserved_size);*/
2212 WARN_ON(ringbuf->reserved_in_use);
2213
2214 ringbuf->reserved_size = size;
2215
2216 /*
2217 * Really need to call _begin() here but that currently leads to
2218 * recursion problems! This will be fixed later but for now just
2219 * return and hope for the best. Note that there is only a real
2220 * problem if the create of the request never actually calls _begin()
2221 * but if they are not submitting any work then why did they create
2222 * the request in the first place?
2223 */
2224 }
2225
2226 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2227 {
2228 WARN_ON(ringbuf->reserved_in_use);
2229
2230 ringbuf->reserved_size = 0;
2231 ringbuf->reserved_in_use = false;
2232 }
2233
2234 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2235 {
2236 WARN_ON(ringbuf->reserved_in_use);
2237
2238 ringbuf->reserved_in_use = true;
2239 ringbuf->reserved_tail = ringbuf->tail;
2240 }
2241
2242 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2243 {
2244 WARN_ON(!ringbuf->reserved_in_use);
2245 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2246 "request reserved size too small: %d vs %d!\n",
2247 ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2248
2249 ringbuf->reserved_size = 0;
2250 ringbuf->reserved_in_use = false;
2251 }
2252
2253 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2254 {
2255 struct intel_ringbuffer *ringbuf = ring->buffer;
2256 int ret;
2257
2258 /*
2259 * Add on the reserved size to the request to make sure that after
2260 * the intended commands have been emitted, there is guaranteed to
2261 * still be enough free space to send them to the hardware.
2262 */
2263 if (!ringbuf->reserved_in_use)
2264 bytes += ringbuf->reserved_size;
2265
2266 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2267 ret = intel_wrap_ring_buffer(ring);
2268 if (unlikely(ret))
2269 return ret;
2270
2271 if(ringbuf->reserved_size) {
2272 uint32_t size = ringbuf->reserved_size;
2273
2274 intel_ring_reserved_space_cancel(ringbuf);
2275 intel_ring_reserved_space_reserve(ringbuf, size);
2276 }
2277 }
2278
2279 if (unlikely(ringbuf->space < bytes)) {
2280 ret = ring_wait_for_space(ring, bytes);
2281 if (unlikely(ret))
2282 return ret;
2283 }
2284
2285 return 0;
2286 }
2287
2288 int intel_ring_begin(struct intel_engine_cs *ring,
2289 int num_dwords)
2290 {
2291 struct drm_i915_gem_request *req;
2292 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2293 int ret;
2294
2295 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2296 dev_priv->mm.interruptible);
2297 if (ret)
2298 return ret;
2299
2300 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2301 if (ret)
2302 return ret;
2303
2304 /* Preallocate the olr before touching the ring */
2305 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
2306 if (ret)
2307 return ret;
2308
2309 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2310 return 0;
2311 }
2312
2313 /* Align the ring tail to a cacheline boundary */
2314 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2315 {
2316 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2317 int ret;
2318
2319 if (num_dwords == 0)
2320 return 0;
2321
2322 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2323 ret = intel_ring_begin(ring, num_dwords);
2324 if (ret)
2325 return ret;
2326
2327 while (num_dwords--)
2328 intel_ring_emit(ring, MI_NOOP);
2329
2330 intel_ring_advance(ring);
2331
2332 return 0;
2333 }
2334
2335 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2336 {
2337 struct drm_device *dev = ring->dev;
2338 struct drm_i915_private *dev_priv = dev->dev_private;
2339
2340 BUG_ON(ring->outstanding_lazy_request);
2341
2342 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2343 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2344 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2345 if (HAS_VEBOX(dev))
2346 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2347 }
2348
2349 ring->set_seqno(ring, seqno);
2350 ring->hangcheck.seqno = seqno;
2351 }
2352
2353 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2354 u32 value)
2355 {
2356 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2357
2358 /* Every tail move must follow the sequence below */
2359
2360 /* Disable notification that the ring is IDLE. The GT
2361 * will then assume that it is busy and bring it out of rc6.
2362 */
2363 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2364 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2365
2366 /* Clear the context id. Here be magic! */
2367 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2368
2369 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2370 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2371 GEN6_BSD_SLEEP_INDICATOR) == 0,
2372 50))
2373 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2374
2375 /* Now that the ring is fully powered up, update the tail */
2376 I915_WRITE_TAIL(ring, value);
2377 POSTING_READ(RING_TAIL(ring->mmio_base));
2378
2379 /* Let the ring send IDLE messages to the GT again,
2380 * and so let it sleep to conserve power when idle.
2381 */
2382 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2383 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2384 }
2385
2386 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2387 u32 invalidate, u32 flush)
2388 {
2389 struct intel_engine_cs *ring = req->ring;
2390 uint32_t cmd;
2391 int ret;
2392
2393 ret = intel_ring_begin(ring, 4);
2394 if (ret)
2395 return ret;
2396
2397 cmd = MI_FLUSH_DW;
2398 if (INTEL_INFO(ring->dev)->gen >= 8)
2399 cmd += 1;
2400
2401 /* We always require a command barrier so that subsequent
2402 * commands, such as breadcrumb interrupts, are strictly ordered
2403 * wrt the contents of the write cache being flushed to memory
2404 * (and thus being coherent from the CPU).
2405 */
2406 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2407
2408 /*
2409 * Bspec vol 1c.5 - video engine command streamer:
2410 * "If ENABLED, all TLBs will be invalidated once the flush
2411 * operation is complete. This bit is only valid when the
2412 * Post-Sync Operation field is a value of 1h or 3h."
2413 */
2414 if (invalidate & I915_GEM_GPU_DOMAINS)
2415 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2416
2417 intel_ring_emit(ring, cmd);
2418 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2419 if (INTEL_INFO(ring->dev)->gen >= 8) {
2420 intel_ring_emit(ring, 0); /* upper addr */
2421 intel_ring_emit(ring, 0); /* value */
2422 } else {
2423 intel_ring_emit(ring, 0);
2424 intel_ring_emit(ring, MI_NOOP);
2425 }
2426 intel_ring_advance(ring);
2427 return 0;
2428 }
2429
2430 static int
2431 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2432 u64 offset, u32 len,
2433 unsigned dispatch_flags)
2434 {
2435 struct intel_engine_cs *ring = req->ring;
2436 bool ppgtt = USES_PPGTT(ring->dev) &&
2437 !(dispatch_flags & I915_DISPATCH_SECURE);
2438 int ret;
2439
2440 ret = intel_ring_begin(ring, 4);
2441 if (ret)
2442 return ret;
2443
2444 /* FIXME(BDW): Address space and security selectors. */
2445 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2446 intel_ring_emit(ring, lower_32_bits(offset));
2447 intel_ring_emit(ring, upper_32_bits(offset));
2448 intel_ring_emit(ring, MI_NOOP);
2449 intel_ring_advance(ring);
2450
2451 return 0;
2452 }
2453
2454 static int
2455 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2456 u64 offset, u32 len,
2457 unsigned dispatch_flags)
2458 {
2459 struct intel_engine_cs *ring = req->ring;
2460 int ret;
2461
2462 ret = intel_ring_begin(ring, 2);
2463 if (ret)
2464 return ret;
2465
2466 intel_ring_emit(ring,
2467 MI_BATCH_BUFFER_START |
2468 (dispatch_flags & I915_DISPATCH_SECURE ?
2469 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2470 /* bit0-7 is the length on GEN6+ */
2471 intel_ring_emit(ring, offset);
2472 intel_ring_advance(ring);
2473
2474 return 0;
2475 }
2476
2477 static int
2478 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2479 u64 offset, u32 len,
2480 unsigned dispatch_flags)
2481 {
2482 struct intel_engine_cs *ring = req->ring;
2483 int ret;
2484
2485 ret = intel_ring_begin(ring, 2);
2486 if (ret)
2487 return ret;
2488
2489 intel_ring_emit(ring,
2490 MI_BATCH_BUFFER_START |
2491 (dispatch_flags & I915_DISPATCH_SECURE ?
2492 0 : MI_BATCH_NON_SECURE_I965));
2493 /* bit0-7 is the length on GEN6+ */
2494 intel_ring_emit(ring, offset);
2495 intel_ring_advance(ring);
2496
2497 return 0;
2498 }
2499
2500 /* Blitter support (SandyBridge+) */
2501
2502 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2503 u32 invalidate, u32 flush)
2504 {
2505 struct intel_engine_cs *ring = req->ring;
2506 struct drm_device *dev = ring->dev;
2507 uint32_t cmd;
2508 int ret;
2509
2510 ret = intel_ring_begin(ring, 4);
2511 if (ret)
2512 return ret;
2513
2514 cmd = MI_FLUSH_DW;
2515 if (INTEL_INFO(dev)->gen >= 8)
2516 cmd += 1;
2517
2518 /* We always require a command barrier so that subsequent
2519 * commands, such as breadcrumb interrupts, are strictly ordered
2520 * wrt the contents of the write cache being flushed to memory
2521 * (and thus being coherent from the CPU).
2522 */
2523 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2524
2525 /*
2526 * Bspec vol 1c.3 - blitter engine command streamer:
2527 * "If ENABLED, all TLBs will be invalidated once the flush
2528 * operation is complete. This bit is only valid when the
2529 * Post-Sync Operation field is a value of 1h or 3h."
2530 */
2531 if (invalidate & I915_GEM_DOMAIN_RENDER)
2532 cmd |= MI_INVALIDATE_TLB;
2533 intel_ring_emit(ring, cmd);
2534 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2535 if (INTEL_INFO(dev)->gen >= 8) {
2536 intel_ring_emit(ring, 0); /* upper addr */
2537 intel_ring_emit(ring, 0); /* value */
2538 } else {
2539 intel_ring_emit(ring, 0);
2540 intel_ring_emit(ring, MI_NOOP);
2541 }
2542 intel_ring_advance(ring);
2543
2544 return 0;
2545 }
2546
2547 int intel_init_render_ring_buffer(struct drm_device *dev)
2548 {
2549 struct drm_i915_private *dev_priv = dev->dev_private;
2550 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2551 struct drm_i915_gem_object *obj;
2552 int ret;
2553
2554 ring->name = "render ring";
2555 ring->id = RCS;
2556 ring->mmio_base = RENDER_RING_BASE;
2557
2558 if (INTEL_INFO(dev)->gen >= 8) {
2559 if (i915_semaphore_is_enabled(dev)) {
2560 obj = i915_gem_alloc_object(dev, 4096);
2561 if (obj == NULL) {
2562 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2563 i915.semaphores = 0;
2564 } else {
2565 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2566 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2567 if (ret != 0) {
2568 drm_gem_object_unreference(&obj->base);
2569 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2570 i915.semaphores = 0;
2571 } else
2572 dev_priv->semaphore_obj = obj;
2573 }
2574 }
2575
2576 ring->init_context = intel_rcs_ctx_init;
2577 ring->add_request = gen6_add_request;
2578 ring->flush = gen8_render_ring_flush;
2579 ring->irq_get = gen8_ring_get_irq;
2580 ring->irq_put = gen8_ring_put_irq;
2581 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2582 ring->get_seqno = gen6_ring_get_seqno;
2583 ring->set_seqno = ring_set_seqno;
2584 if (i915_semaphore_is_enabled(dev)) {
2585 WARN_ON(!dev_priv->semaphore_obj);
2586 ring->semaphore.sync_to = gen8_ring_sync;
2587 ring->semaphore.signal = gen8_rcs_signal;
2588 GEN8_RING_SEMAPHORE_INIT;
2589 }
2590 } else if (INTEL_INFO(dev)->gen >= 6) {
2591 ring->add_request = gen6_add_request;
2592 ring->flush = gen7_render_ring_flush;
2593 if (INTEL_INFO(dev)->gen == 6)
2594 ring->flush = gen6_render_ring_flush;
2595 ring->irq_get = gen6_ring_get_irq;
2596 ring->irq_put = gen6_ring_put_irq;
2597 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2598 ring->get_seqno = gen6_ring_get_seqno;
2599 ring->set_seqno = ring_set_seqno;
2600 if (i915_semaphore_is_enabled(dev)) {
2601 ring->semaphore.sync_to = gen6_ring_sync;
2602 ring->semaphore.signal = gen6_signal;
2603 /*
2604 * The current semaphore is only applied on pre-gen8
2605 * platform. And there is no VCS2 ring on the pre-gen8
2606 * platform. So the semaphore between RCS and VCS2 is
2607 * initialized as INVALID. Gen8 will initialize the
2608 * sema between VCS2 and RCS later.
2609 */
2610 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2611 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2612 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2613 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2614 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2615 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2616 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2617 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2618 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2619 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2620 }
2621 } else if (IS_GEN5(dev)) {
2622 ring->add_request = pc_render_add_request;
2623 ring->flush = gen4_render_ring_flush;
2624 ring->get_seqno = pc_render_get_seqno;
2625 ring->set_seqno = pc_render_set_seqno;
2626 ring->irq_get = gen5_ring_get_irq;
2627 ring->irq_put = gen5_ring_put_irq;
2628 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2629 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2630 } else {
2631 ring->add_request = i9xx_add_request;
2632 if (INTEL_INFO(dev)->gen < 4)
2633 ring->flush = gen2_render_ring_flush;
2634 else
2635 ring->flush = gen4_render_ring_flush;
2636 ring->get_seqno = ring_get_seqno;
2637 ring->set_seqno = ring_set_seqno;
2638 if (IS_GEN2(dev)) {
2639 ring->irq_get = i8xx_ring_get_irq;
2640 ring->irq_put = i8xx_ring_put_irq;
2641 } else {
2642 ring->irq_get = i9xx_ring_get_irq;
2643 ring->irq_put = i9xx_ring_put_irq;
2644 }
2645 ring->irq_enable_mask = I915_USER_INTERRUPT;
2646 }
2647 ring->write_tail = ring_write_tail;
2648
2649 if (IS_HASWELL(dev))
2650 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2651 else if (IS_GEN8(dev))
2652 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2653 else if (INTEL_INFO(dev)->gen >= 6)
2654 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2655 else if (INTEL_INFO(dev)->gen >= 4)
2656 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2657 else if (IS_I830(dev) || IS_845G(dev))
2658 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2659 else
2660 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2661 ring->init_hw = init_render_ring;
2662 ring->cleanup = render_ring_cleanup;
2663
2664 /* Workaround batchbuffer to combat CS tlb bug. */
2665 if (HAS_BROKEN_CS_TLB(dev)) {
2666 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2667 if (obj == NULL) {
2668 DRM_ERROR("Failed to allocate batch bo\n");
2669 return -ENOMEM;
2670 }
2671
2672 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2673 if (ret != 0) {
2674 drm_gem_object_unreference(&obj->base);
2675 DRM_ERROR("Failed to ping batch bo\n");
2676 return ret;
2677 }
2678
2679 ring->scratch.obj = obj;
2680 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2681 }
2682
2683 ret = intel_init_ring_buffer(dev, ring);
2684 if (ret)
2685 return ret;
2686
2687 if (INTEL_INFO(dev)->gen >= 5) {
2688 ret = intel_init_pipe_control(ring);
2689 if (ret)
2690 return ret;
2691 }
2692
2693 return 0;
2694 }
2695
2696 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2697 {
2698 struct drm_i915_private *dev_priv = dev->dev_private;
2699 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2700
2701 ring->name = "bsd ring";
2702 ring->id = VCS;
2703
2704 ring->write_tail = ring_write_tail;
2705 if (INTEL_INFO(dev)->gen >= 6) {
2706 ring->mmio_base = GEN6_BSD_RING_BASE;
2707 /* gen6 bsd needs a special wa for tail updates */
2708 if (IS_GEN6(dev))
2709 ring->write_tail = gen6_bsd_ring_write_tail;
2710 ring->flush = gen6_bsd_ring_flush;
2711 ring->add_request = gen6_add_request;
2712 ring->get_seqno = gen6_ring_get_seqno;
2713 ring->set_seqno = ring_set_seqno;
2714 if (INTEL_INFO(dev)->gen >= 8) {
2715 ring->irq_enable_mask =
2716 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2717 ring->irq_get = gen8_ring_get_irq;
2718 ring->irq_put = gen8_ring_put_irq;
2719 ring->dispatch_execbuffer =
2720 gen8_ring_dispatch_execbuffer;
2721 if (i915_semaphore_is_enabled(dev)) {
2722 ring->semaphore.sync_to = gen8_ring_sync;
2723 ring->semaphore.signal = gen8_xcs_signal;
2724 GEN8_RING_SEMAPHORE_INIT;
2725 }
2726 } else {
2727 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2728 ring->irq_get = gen6_ring_get_irq;
2729 ring->irq_put = gen6_ring_put_irq;
2730 ring->dispatch_execbuffer =
2731 gen6_ring_dispatch_execbuffer;
2732 if (i915_semaphore_is_enabled(dev)) {
2733 ring->semaphore.sync_to = gen6_ring_sync;
2734 ring->semaphore.signal = gen6_signal;
2735 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2736 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2737 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2738 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2739 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2740 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2741 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2742 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2743 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2744 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2745 }
2746 }
2747 } else {
2748 ring->mmio_base = BSD_RING_BASE;
2749 ring->flush = bsd_ring_flush;
2750 ring->add_request = i9xx_add_request;
2751 ring->get_seqno = ring_get_seqno;
2752 ring->set_seqno = ring_set_seqno;
2753 if (IS_GEN5(dev)) {
2754 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2755 ring->irq_get = gen5_ring_get_irq;
2756 ring->irq_put = gen5_ring_put_irq;
2757 } else {
2758 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2759 ring->irq_get = i9xx_ring_get_irq;
2760 ring->irq_put = i9xx_ring_put_irq;
2761 }
2762 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2763 }
2764 ring->init_hw = init_ring_common;
2765
2766 return intel_init_ring_buffer(dev, ring);
2767 }
2768
2769 /**
2770 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2771 */
2772 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2773 {
2774 struct drm_i915_private *dev_priv = dev->dev_private;
2775 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2776
2777 ring->name = "bsd2 ring";
2778 ring->id = VCS2;
2779
2780 ring->write_tail = ring_write_tail;
2781 ring->mmio_base = GEN8_BSD2_RING_BASE;
2782 ring->flush = gen6_bsd_ring_flush;
2783 ring->add_request = gen6_add_request;
2784 ring->get_seqno = gen6_ring_get_seqno;
2785 ring->set_seqno = ring_set_seqno;
2786 ring->irq_enable_mask =
2787 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2788 ring->irq_get = gen8_ring_get_irq;
2789 ring->irq_put = gen8_ring_put_irq;
2790 ring->dispatch_execbuffer =
2791 gen8_ring_dispatch_execbuffer;
2792 if (i915_semaphore_is_enabled(dev)) {
2793 ring->semaphore.sync_to = gen8_ring_sync;
2794 ring->semaphore.signal = gen8_xcs_signal;
2795 GEN8_RING_SEMAPHORE_INIT;
2796 }
2797 ring->init_hw = init_ring_common;
2798
2799 return intel_init_ring_buffer(dev, ring);
2800 }
2801
2802 int intel_init_blt_ring_buffer(struct drm_device *dev)
2803 {
2804 struct drm_i915_private *dev_priv = dev->dev_private;
2805 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2806
2807 ring->name = "blitter ring";
2808 ring->id = BCS;
2809
2810 ring->mmio_base = BLT_RING_BASE;
2811 ring->write_tail = ring_write_tail;
2812 ring->flush = gen6_ring_flush;
2813 ring->add_request = gen6_add_request;
2814 ring->get_seqno = gen6_ring_get_seqno;
2815 ring->set_seqno = ring_set_seqno;
2816 if (INTEL_INFO(dev)->gen >= 8) {
2817 ring->irq_enable_mask =
2818 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2819 ring->irq_get = gen8_ring_get_irq;
2820 ring->irq_put = gen8_ring_put_irq;
2821 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2822 if (i915_semaphore_is_enabled(dev)) {
2823 ring->semaphore.sync_to = gen8_ring_sync;
2824 ring->semaphore.signal = gen8_xcs_signal;
2825 GEN8_RING_SEMAPHORE_INIT;
2826 }
2827 } else {
2828 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2829 ring->irq_get = gen6_ring_get_irq;
2830 ring->irq_put = gen6_ring_put_irq;
2831 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2832 if (i915_semaphore_is_enabled(dev)) {
2833 ring->semaphore.signal = gen6_signal;
2834 ring->semaphore.sync_to = gen6_ring_sync;
2835 /*
2836 * The current semaphore is only applied on pre-gen8
2837 * platform. And there is no VCS2 ring on the pre-gen8
2838 * platform. So the semaphore between BCS and VCS2 is
2839 * initialized as INVALID. Gen8 will initialize the
2840 * sema between BCS and VCS2 later.
2841 */
2842 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2843 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2844 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2845 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2846 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2847 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2848 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2849 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2850 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2851 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2852 }
2853 }
2854 ring->init_hw = init_ring_common;
2855
2856 return intel_init_ring_buffer(dev, ring);
2857 }
2858
2859 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2860 {
2861 struct drm_i915_private *dev_priv = dev->dev_private;
2862 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2863
2864 ring->name = "video enhancement ring";
2865 ring->id = VECS;
2866
2867 ring->mmio_base = VEBOX_RING_BASE;
2868 ring->write_tail = ring_write_tail;
2869 ring->flush = gen6_ring_flush;
2870 ring->add_request = gen6_add_request;
2871 ring->get_seqno = gen6_ring_get_seqno;
2872 ring->set_seqno = ring_set_seqno;
2873
2874 if (INTEL_INFO(dev)->gen >= 8) {
2875 ring->irq_enable_mask =
2876 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2877 ring->irq_get = gen8_ring_get_irq;
2878 ring->irq_put = gen8_ring_put_irq;
2879 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2880 if (i915_semaphore_is_enabled(dev)) {
2881 ring->semaphore.sync_to = gen8_ring_sync;
2882 ring->semaphore.signal = gen8_xcs_signal;
2883 GEN8_RING_SEMAPHORE_INIT;
2884 }
2885 } else {
2886 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2887 ring->irq_get = hsw_vebox_get_irq;
2888 ring->irq_put = hsw_vebox_put_irq;
2889 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2890 if (i915_semaphore_is_enabled(dev)) {
2891 ring->semaphore.sync_to = gen6_ring_sync;
2892 ring->semaphore.signal = gen6_signal;
2893 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2894 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2895 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2896 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2897 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2898 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2899 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2900 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2901 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2902 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2903 }
2904 }
2905 ring->init_hw = init_ring_common;
2906
2907 return intel_init_ring_buffer(dev, ring);
2908 }
2909
2910 int
2911 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
2912 {
2913 struct intel_engine_cs *ring = req->ring;
2914 int ret;
2915
2916 if (!ring->gpu_caches_dirty)
2917 return 0;
2918
2919 ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
2920 if (ret)
2921 return ret;
2922
2923 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
2924
2925 ring->gpu_caches_dirty = false;
2926 return 0;
2927 }
2928
2929 int
2930 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
2931 {
2932 struct intel_engine_cs *ring = req->ring;
2933 uint32_t flush_domains;
2934 int ret;
2935
2936 flush_domains = 0;
2937 if (ring->gpu_caches_dirty)
2938 flush_domains = I915_GEM_GPU_DOMAINS;
2939
2940 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2941 if (ret)
2942 return ret;
2943
2944 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2945
2946 ring->gpu_caches_dirty = false;
2947 return 0;
2948 }
2949
2950 void
2951 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2952 {
2953 int ret;
2954
2955 if (!intel_ring_initialized(ring))
2956 return;
2957
2958 ret = intel_ring_idle(ring);
2959 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2960 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2961 ring->name, ret);
2962
2963 stop_ring(ring);
2964 }
This page took 0.094536 seconds and 5 git commands to generate.