Merge tag 'v3.14' into drm-intel-next-queued
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 static inline int ring_space(struct intel_ring_buffer *ring)
37 {
38 int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
39 if (space < 0)
40 space += ring->size;
41 return space;
42 }
43
44 void __intel_ring_advance(struct intel_ring_buffer *ring)
45 {
46 struct drm_i915_private *dev_priv = ring->dev->dev_private;
47
48 ring->tail &= ring->size - 1;
49 if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
50 return;
51 ring->write_tail(ring, ring->tail);
52 }
53
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56 u32 invalidate_domains,
57 u32 flush_domains)
58 {
59 u32 cmd;
60 int ret;
61
62 cmd = MI_FLUSH;
63 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64 cmd |= MI_NO_WRITE_FLUSH;
65
66 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67 cmd |= MI_READ_FLUSH;
68
69 ret = intel_ring_begin(ring, 2);
70 if (ret)
71 return ret;
72
73 intel_ring_emit(ring, cmd);
74 intel_ring_emit(ring, MI_NOOP);
75 intel_ring_advance(ring);
76
77 return 0;
78 }
79
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82 u32 invalidate_domains,
83 u32 flush_domains)
84 {
85 struct drm_device *dev = ring->dev;
86 u32 cmd;
87 int ret;
88
89 /*
90 * read/write caches:
91 *
92 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
94 * also flushed at 2d versus 3d pipeline switches.
95 *
96 * read-only caches:
97 *
98 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99 * MI_READ_FLUSH is set, and is always flushed on 965.
100 *
101 * I915_GEM_DOMAIN_COMMAND may not exist?
102 *
103 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104 * invalidated when MI_EXE_FLUSH is set.
105 *
106 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107 * invalidated with every MI_FLUSH.
108 *
109 * TLBs:
110 *
111 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114 * are flushed at any MI_FLUSH.
115 */
116
117 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119 cmd &= ~MI_NO_WRITE_FLUSH;
120 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121 cmd |= MI_EXE_FLUSH;
122
123 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124 (IS_G4X(dev) || IS_GEN5(dev)))
125 cmd |= MI_INVALIDATE_ISP;
126
127 ret = intel_ring_begin(ring, 2);
128 if (ret)
129 return ret;
130
131 intel_ring_emit(ring, cmd);
132 intel_ring_emit(ring, MI_NOOP);
133 intel_ring_advance(ring);
134
135 return 0;
136 }
137
138 /**
139 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140 * implementing two workarounds on gen6. From section 1.4.7.1
141 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142 *
143 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144 * produced by non-pipelined state commands), software needs to first
145 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146 * 0.
147 *
148 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150 *
151 * And the workaround for these two requires this workaround first:
152 *
153 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154 * BEFORE the pipe-control with a post-sync op and no write-cache
155 * flushes.
156 *
157 * And this last workaround is tricky because of the requirements on
158 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159 * volume 2 part 1:
160 *
161 * "1 of the following must also be set:
162 * - Render Target Cache Flush Enable ([12] of DW1)
163 * - Depth Cache Flush Enable ([0] of DW1)
164 * - Stall at Pixel Scoreboard ([1] of DW1)
165 * - Depth Stall ([13] of DW1)
166 * - Post-Sync Operation ([13] of DW1)
167 * - Notify Enable ([8] of DW1)"
168 *
169 * The cache flushes require the workaround flush that triggered this
170 * one, so we can't use it. Depth stall would trigger the same.
171 * Post-sync nonzero is what triggered this second workaround, so we
172 * can't use that one either. Notify enable is IRQs, which aren't
173 * really our business. That leaves only stall at scoreboard.
174 */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178 u32 scratch_addr = ring->scratch.gtt_offset + 128;
179 int ret;
180
181
182 ret = intel_ring_begin(ring, 6);
183 if (ret)
184 return ret;
185
186 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
187 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188 PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
190 intel_ring_emit(ring, 0); /* low dword */
191 intel_ring_emit(ring, 0); /* high dword */
192 intel_ring_emit(ring, MI_NOOP);
193 intel_ring_advance(ring);
194
195 ret = intel_ring_begin(ring, 6);
196 if (ret)
197 return ret;
198
199 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
200 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
201 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
202 intel_ring_emit(ring, 0);
203 intel_ring_emit(ring, 0);
204 intel_ring_emit(ring, MI_NOOP);
205 intel_ring_advance(ring);
206
207 return 0;
208 }
209
210 static int
211 gen6_render_ring_flush(struct intel_ring_buffer *ring,
212 u32 invalidate_domains, u32 flush_domains)
213 {
214 u32 flags = 0;
215 u32 scratch_addr = ring->scratch.gtt_offset + 128;
216 int ret;
217
218 /* Force SNB workarounds for PIPE_CONTROL flushes */
219 ret = intel_emit_post_sync_nonzero_flush(ring);
220 if (ret)
221 return ret;
222
223 /* Just flush everything. Experiments have shown that reducing the
224 * number of bits based on the write domains has little performance
225 * impact.
226 */
227 if (flush_domains) {
228 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
229 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
230 /*
231 * Ensure that any following seqno writes only happen
232 * when the render cache is indeed flushed.
233 */
234 flags |= PIPE_CONTROL_CS_STALL;
235 }
236 if (invalidate_domains) {
237 flags |= PIPE_CONTROL_TLB_INVALIDATE;
238 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
239 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
240 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
243 /*
244 * TLB invalidate requires a post-sync write.
245 */
246 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
247 }
248
249 ret = intel_ring_begin(ring, 4);
250 if (ret)
251 return ret;
252
253 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
254 intel_ring_emit(ring, flags);
255 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
256 intel_ring_emit(ring, 0);
257 intel_ring_advance(ring);
258
259 return 0;
260 }
261
262 static int
263 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
264 {
265 int ret;
266
267 ret = intel_ring_begin(ring, 4);
268 if (ret)
269 return ret;
270
271 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
272 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
273 PIPE_CONTROL_STALL_AT_SCOREBOARD);
274 intel_ring_emit(ring, 0);
275 intel_ring_emit(ring, 0);
276 intel_ring_advance(ring);
277
278 return 0;
279 }
280
281 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
282 {
283 int ret;
284
285 if (!ring->fbc_dirty)
286 return 0;
287
288 ret = intel_ring_begin(ring, 6);
289 if (ret)
290 return ret;
291 /* WaFbcNukeOn3DBlt:ivb/hsw */
292 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
293 intel_ring_emit(ring, MSG_FBC_REND_STATE);
294 intel_ring_emit(ring, value);
295 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
296 intel_ring_emit(ring, MSG_FBC_REND_STATE);
297 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
298 intel_ring_advance(ring);
299
300 ring->fbc_dirty = false;
301 return 0;
302 }
303
304 static int
305 gen7_render_ring_flush(struct intel_ring_buffer *ring,
306 u32 invalidate_domains, u32 flush_domains)
307 {
308 u32 flags = 0;
309 u32 scratch_addr = ring->scratch.gtt_offset + 128;
310 int ret;
311
312 /*
313 * Ensure that any following seqno writes only happen when the render
314 * cache is indeed flushed.
315 *
316 * Workaround: 4th PIPE_CONTROL command (except the ones with only
317 * read-cache invalidate bits set) must have the CS_STALL bit set. We
318 * don't try to be clever and just set it unconditionally.
319 */
320 flags |= PIPE_CONTROL_CS_STALL;
321
322 /* Just flush everything. Experiments have shown that reducing the
323 * number of bits based on the write domains has little performance
324 * impact.
325 */
326 if (flush_domains) {
327 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
328 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
329 }
330 if (invalidate_domains) {
331 flags |= PIPE_CONTROL_TLB_INVALIDATE;
332 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
333 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
334 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
335 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
336 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
337 /*
338 * TLB invalidate requires a post-sync write.
339 */
340 flags |= PIPE_CONTROL_QW_WRITE;
341 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
342
343 /* Workaround: we must issue a pipe_control with CS-stall bit
344 * set before a pipe_control command that has the state cache
345 * invalidate bit set. */
346 gen7_render_ring_cs_stall_wa(ring);
347 }
348
349 ret = intel_ring_begin(ring, 4);
350 if (ret)
351 return ret;
352
353 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
354 intel_ring_emit(ring, flags);
355 intel_ring_emit(ring, scratch_addr);
356 intel_ring_emit(ring, 0);
357 intel_ring_advance(ring);
358
359 if (!invalidate_domains && flush_domains)
360 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
361
362 return 0;
363 }
364
365 static int
366 gen8_render_ring_flush(struct intel_ring_buffer *ring,
367 u32 invalidate_domains, u32 flush_domains)
368 {
369 u32 flags = 0;
370 u32 scratch_addr = ring->scratch.gtt_offset + 128;
371 int ret;
372
373 flags |= PIPE_CONTROL_CS_STALL;
374
375 if (flush_domains) {
376 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
377 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
378 }
379 if (invalidate_domains) {
380 flags |= PIPE_CONTROL_TLB_INVALIDATE;
381 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
382 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
383 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
384 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
385 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
386 flags |= PIPE_CONTROL_QW_WRITE;
387 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
388 }
389
390 ret = intel_ring_begin(ring, 6);
391 if (ret)
392 return ret;
393
394 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
395 intel_ring_emit(ring, flags);
396 intel_ring_emit(ring, scratch_addr);
397 intel_ring_emit(ring, 0);
398 intel_ring_emit(ring, 0);
399 intel_ring_emit(ring, 0);
400 intel_ring_advance(ring);
401
402 return 0;
403
404 }
405
406 static void ring_write_tail(struct intel_ring_buffer *ring,
407 u32 value)
408 {
409 drm_i915_private_t *dev_priv = ring->dev->dev_private;
410 I915_WRITE_TAIL(ring, value);
411 }
412
413 u64 intel_ring_get_active_head(struct intel_ring_buffer *ring)
414 {
415 drm_i915_private_t *dev_priv = ring->dev->dev_private;
416 u64 acthd;
417
418 if (INTEL_INFO(ring->dev)->gen >= 8)
419 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
420 RING_ACTHD_UDW(ring->mmio_base));
421 else if (INTEL_INFO(ring->dev)->gen >= 4)
422 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
423 else
424 acthd = I915_READ(ACTHD);
425
426 return acthd;
427 }
428
429 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
430 {
431 struct drm_i915_private *dev_priv = ring->dev->dev_private;
432 u32 addr;
433
434 addr = dev_priv->status_page_dmah->busaddr;
435 if (INTEL_INFO(ring->dev)->gen >= 4)
436 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
437 I915_WRITE(HWS_PGA, addr);
438 }
439
440 static int init_ring_common(struct intel_ring_buffer *ring)
441 {
442 struct drm_device *dev = ring->dev;
443 drm_i915_private_t *dev_priv = dev->dev_private;
444 struct drm_i915_gem_object *obj = ring->obj;
445 int ret = 0;
446 u32 head;
447
448 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
449
450 /* Stop the ring if it's running. */
451 I915_WRITE_CTL(ring, 0);
452 I915_WRITE_HEAD(ring, 0);
453 ring->write_tail(ring, 0);
454 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000))
455 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
456
457 if (I915_NEED_GFX_HWS(dev))
458 intel_ring_setup_status_page(ring);
459 else
460 ring_setup_phys_status_page(ring);
461
462 head = I915_READ_HEAD(ring) & HEAD_ADDR;
463
464 /* G45 ring initialization fails to reset head to zero */
465 if (head != 0) {
466 DRM_DEBUG_KMS("%s head not reset to zero "
467 "ctl %08x head %08x tail %08x start %08x\n",
468 ring->name,
469 I915_READ_CTL(ring),
470 I915_READ_HEAD(ring),
471 I915_READ_TAIL(ring),
472 I915_READ_START(ring));
473
474 I915_WRITE_HEAD(ring, 0);
475
476 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
477 DRM_ERROR("failed to set %s head to zero "
478 "ctl %08x head %08x tail %08x start %08x\n",
479 ring->name,
480 I915_READ_CTL(ring),
481 I915_READ_HEAD(ring),
482 I915_READ_TAIL(ring),
483 I915_READ_START(ring));
484 }
485 }
486
487 /* Initialize the ring. This must happen _after_ we've cleared the ring
488 * registers with the above sequence (the readback of the HEAD registers
489 * also enforces ordering), otherwise the hw might lose the new ring
490 * register values. */
491 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
492 I915_WRITE_CTL(ring,
493 ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
494 | RING_VALID);
495
496 /* If the head is still not zero, the ring is dead */
497 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
498 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
499 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
500 DRM_ERROR("%s initialization failed "
501 "ctl %08x head %08x tail %08x start %08x\n",
502 ring->name,
503 I915_READ_CTL(ring),
504 I915_READ_HEAD(ring),
505 I915_READ_TAIL(ring),
506 I915_READ_START(ring));
507 ret = -EIO;
508 goto out;
509 }
510
511 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
512 i915_kernel_lost_context(ring->dev);
513 else {
514 ring->head = I915_READ_HEAD(ring);
515 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
516 ring->space = ring_space(ring);
517 ring->last_retired_head = -1;
518 }
519
520 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
521
522 out:
523 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
524
525 return ret;
526 }
527
528 static int
529 init_pipe_control(struct intel_ring_buffer *ring)
530 {
531 int ret;
532
533 if (ring->scratch.obj)
534 return 0;
535
536 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
537 if (ring->scratch.obj == NULL) {
538 DRM_ERROR("Failed to allocate seqno page\n");
539 ret = -ENOMEM;
540 goto err;
541 }
542
543 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
544 if (ret)
545 goto err_unref;
546
547 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
548 if (ret)
549 goto err_unref;
550
551 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
552 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
553 if (ring->scratch.cpu_page == NULL) {
554 ret = -ENOMEM;
555 goto err_unpin;
556 }
557
558 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
559 ring->name, ring->scratch.gtt_offset);
560 return 0;
561
562 err_unpin:
563 i915_gem_object_ggtt_unpin(ring->scratch.obj);
564 err_unref:
565 drm_gem_object_unreference(&ring->scratch.obj->base);
566 err:
567 return ret;
568 }
569
570 static int init_render_ring(struct intel_ring_buffer *ring)
571 {
572 struct drm_device *dev = ring->dev;
573 struct drm_i915_private *dev_priv = dev->dev_private;
574 int ret = init_ring_common(ring);
575
576 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
577 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
578 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
579
580 /* We need to disable the AsyncFlip performance optimisations in order
581 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
582 * programmed to '1' on all products.
583 *
584 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw
585 */
586 if (INTEL_INFO(dev)->gen >= 6)
587 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
588
589 /* Required for the hardware to program scanline values for waiting */
590 if (INTEL_INFO(dev)->gen == 6)
591 I915_WRITE(GFX_MODE,
592 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
593
594 if (IS_GEN7(dev))
595 I915_WRITE(GFX_MODE_GEN7,
596 _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
597 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
598
599 if (INTEL_INFO(dev)->gen >= 5) {
600 ret = init_pipe_control(ring);
601 if (ret)
602 return ret;
603 }
604
605 if (IS_GEN6(dev)) {
606 /* From the Sandybridge PRM, volume 1 part 3, page 24:
607 * "If this bit is set, STCunit will have LRA as replacement
608 * policy. [...] This bit must be reset. LRA replacement
609 * policy is not supported."
610 */
611 I915_WRITE(CACHE_MODE_0,
612 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
613
614 /* This is not explicitly set for GEN6, so read the register.
615 * see intel_ring_mi_set_context() for why we care.
616 * TODO: consider explicitly setting the bit for GEN5
617 */
618 ring->itlb_before_ctx_switch =
619 !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
620 }
621
622 if (INTEL_INFO(dev)->gen >= 6)
623 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
624
625 if (HAS_L3_DPF(dev))
626 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
627
628 return ret;
629 }
630
631 static void render_ring_cleanup(struct intel_ring_buffer *ring)
632 {
633 struct drm_device *dev = ring->dev;
634
635 if (ring->scratch.obj == NULL)
636 return;
637
638 if (INTEL_INFO(dev)->gen >= 5) {
639 kunmap(sg_page(ring->scratch.obj->pages->sgl));
640 i915_gem_object_ggtt_unpin(ring->scratch.obj);
641 }
642
643 drm_gem_object_unreference(&ring->scratch.obj->base);
644 ring->scratch.obj = NULL;
645 }
646
647 static void
648 update_mboxes(struct intel_ring_buffer *ring,
649 u32 mmio_offset)
650 {
651 /* NB: In order to be able to do semaphore MBOX updates for varying number
652 * of rings, it's easiest if we round up each individual update to a
653 * multiple of 2 (since ring updates must always be a multiple of 2)
654 * even though the actual update only requires 3 dwords.
655 */
656 #define MBOX_UPDATE_DWORDS 4
657 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
658 intel_ring_emit(ring, mmio_offset);
659 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
660 intel_ring_emit(ring, MI_NOOP);
661 }
662
663 /**
664 * gen6_add_request - Update the semaphore mailbox registers
665 *
666 * @ring - ring that is adding a request
667 * @seqno - return seqno stuck into the ring
668 *
669 * Update the mailbox registers in the *other* rings with the current seqno.
670 * This acts like a signal in the canonical semaphore.
671 */
672 static int
673 gen6_add_request(struct intel_ring_buffer *ring)
674 {
675 struct drm_device *dev = ring->dev;
676 struct drm_i915_private *dev_priv = dev->dev_private;
677 struct intel_ring_buffer *useless;
678 int i, ret, num_dwords = 4;
679
680 if (i915_semaphore_is_enabled(dev))
681 num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
682 #undef MBOX_UPDATE_DWORDS
683
684 ret = intel_ring_begin(ring, num_dwords);
685 if (ret)
686 return ret;
687
688 if (i915_semaphore_is_enabled(dev)) {
689 for_each_ring(useless, dev_priv, i) {
690 u32 mbox_reg = ring->signal_mbox[i];
691 if (mbox_reg != GEN6_NOSYNC)
692 update_mboxes(ring, mbox_reg);
693 }
694 }
695
696 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
697 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
698 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
699 intel_ring_emit(ring, MI_USER_INTERRUPT);
700 __intel_ring_advance(ring);
701
702 return 0;
703 }
704
705 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
706 u32 seqno)
707 {
708 struct drm_i915_private *dev_priv = dev->dev_private;
709 return dev_priv->last_seqno < seqno;
710 }
711
712 /**
713 * intel_ring_sync - sync the waiter to the signaller on seqno
714 *
715 * @waiter - ring that is waiting
716 * @signaller - ring which has, or will signal
717 * @seqno - seqno which the waiter will block on
718 */
719 static int
720 gen6_ring_sync(struct intel_ring_buffer *waiter,
721 struct intel_ring_buffer *signaller,
722 u32 seqno)
723 {
724 int ret;
725 u32 dw1 = MI_SEMAPHORE_MBOX |
726 MI_SEMAPHORE_COMPARE |
727 MI_SEMAPHORE_REGISTER;
728
729 /* Throughout all of the GEM code, seqno passed implies our current
730 * seqno is >= the last seqno executed. However for hardware the
731 * comparison is strictly greater than.
732 */
733 seqno -= 1;
734
735 WARN_ON(signaller->semaphore_register[waiter->id] ==
736 MI_SEMAPHORE_SYNC_INVALID);
737
738 ret = intel_ring_begin(waiter, 4);
739 if (ret)
740 return ret;
741
742 /* If seqno wrap happened, omit the wait with no-ops */
743 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
744 intel_ring_emit(waiter,
745 dw1 |
746 signaller->semaphore_register[waiter->id]);
747 intel_ring_emit(waiter, seqno);
748 intel_ring_emit(waiter, 0);
749 intel_ring_emit(waiter, MI_NOOP);
750 } else {
751 intel_ring_emit(waiter, MI_NOOP);
752 intel_ring_emit(waiter, MI_NOOP);
753 intel_ring_emit(waiter, MI_NOOP);
754 intel_ring_emit(waiter, MI_NOOP);
755 }
756 intel_ring_advance(waiter);
757
758 return 0;
759 }
760
761 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
762 do { \
763 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
764 PIPE_CONTROL_DEPTH_STALL); \
765 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
766 intel_ring_emit(ring__, 0); \
767 intel_ring_emit(ring__, 0); \
768 } while (0)
769
770 static int
771 pc_render_add_request(struct intel_ring_buffer *ring)
772 {
773 u32 scratch_addr = ring->scratch.gtt_offset + 128;
774 int ret;
775
776 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
777 * incoherent with writes to memory, i.e. completely fubar,
778 * so we need to use PIPE_NOTIFY instead.
779 *
780 * However, we also need to workaround the qword write
781 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
782 * memory before requesting an interrupt.
783 */
784 ret = intel_ring_begin(ring, 32);
785 if (ret)
786 return ret;
787
788 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
789 PIPE_CONTROL_WRITE_FLUSH |
790 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
791 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
792 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
793 intel_ring_emit(ring, 0);
794 PIPE_CONTROL_FLUSH(ring, scratch_addr);
795 scratch_addr += 128; /* write to separate cachelines */
796 PIPE_CONTROL_FLUSH(ring, scratch_addr);
797 scratch_addr += 128;
798 PIPE_CONTROL_FLUSH(ring, scratch_addr);
799 scratch_addr += 128;
800 PIPE_CONTROL_FLUSH(ring, scratch_addr);
801 scratch_addr += 128;
802 PIPE_CONTROL_FLUSH(ring, scratch_addr);
803 scratch_addr += 128;
804 PIPE_CONTROL_FLUSH(ring, scratch_addr);
805
806 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
807 PIPE_CONTROL_WRITE_FLUSH |
808 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
809 PIPE_CONTROL_NOTIFY);
810 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
811 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
812 intel_ring_emit(ring, 0);
813 __intel_ring_advance(ring);
814
815 return 0;
816 }
817
818 static u32
819 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
820 {
821 /* Workaround to force correct ordering between irq and seqno writes on
822 * ivb (and maybe also on snb) by reading from a CS register (like
823 * ACTHD) before reading the status page. */
824 if (!lazy_coherency) {
825 struct drm_i915_private *dev_priv = ring->dev->dev_private;
826 POSTING_READ(RING_ACTHD(ring->mmio_base));
827 }
828
829 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
830 }
831
832 static u32
833 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
834 {
835 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
836 }
837
838 static void
839 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
840 {
841 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
842 }
843
844 static u32
845 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
846 {
847 return ring->scratch.cpu_page[0];
848 }
849
850 static void
851 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
852 {
853 ring->scratch.cpu_page[0] = seqno;
854 }
855
856 static bool
857 gen5_ring_get_irq(struct intel_ring_buffer *ring)
858 {
859 struct drm_device *dev = ring->dev;
860 drm_i915_private_t *dev_priv = dev->dev_private;
861 unsigned long flags;
862
863 if (!dev->irq_enabled)
864 return false;
865
866 spin_lock_irqsave(&dev_priv->irq_lock, flags);
867 if (ring->irq_refcount++ == 0)
868 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
869 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
870
871 return true;
872 }
873
874 static void
875 gen5_ring_put_irq(struct intel_ring_buffer *ring)
876 {
877 struct drm_device *dev = ring->dev;
878 drm_i915_private_t *dev_priv = dev->dev_private;
879 unsigned long flags;
880
881 spin_lock_irqsave(&dev_priv->irq_lock, flags);
882 if (--ring->irq_refcount == 0)
883 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
884 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
885 }
886
887 static bool
888 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
889 {
890 struct drm_device *dev = ring->dev;
891 drm_i915_private_t *dev_priv = dev->dev_private;
892 unsigned long flags;
893
894 if (!dev->irq_enabled)
895 return false;
896
897 spin_lock_irqsave(&dev_priv->irq_lock, flags);
898 if (ring->irq_refcount++ == 0) {
899 dev_priv->irq_mask &= ~ring->irq_enable_mask;
900 I915_WRITE(IMR, dev_priv->irq_mask);
901 POSTING_READ(IMR);
902 }
903 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
904
905 return true;
906 }
907
908 static void
909 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
910 {
911 struct drm_device *dev = ring->dev;
912 drm_i915_private_t *dev_priv = dev->dev_private;
913 unsigned long flags;
914
915 spin_lock_irqsave(&dev_priv->irq_lock, flags);
916 if (--ring->irq_refcount == 0) {
917 dev_priv->irq_mask |= ring->irq_enable_mask;
918 I915_WRITE(IMR, dev_priv->irq_mask);
919 POSTING_READ(IMR);
920 }
921 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
922 }
923
924 static bool
925 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
926 {
927 struct drm_device *dev = ring->dev;
928 drm_i915_private_t *dev_priv = dev->dev_private;
929 unsigned long flags;
930
931 if (!dev->irq_enabled)
932 return false;
933
934 spin_lock_irqsave(&dev_priv->irq_lock, flags);
935 if (ring->irq_refcount++ == 0) {
936 dev_priv->irq_mask &= ~ring->irq_enable_mask;
937 I915_WRITE16(IMR, dev_priv->irq_mask);
938 POSTING_READ16(IMR);
939 }
940 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
941
942 return true;
943 }
944
945 static void
946 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
947 {
948 struct drm_device *dev = ring->dev;
949 drm_i915_private_t *dev_priv = dev->dev_private;
950 unsigned long flags;
951
952 spin_lock_irqsave(&dev_priv->irq_lock, flags);
953 if (--ring->irq_refcount == 0) {
954 dev_priv->irq_mask |= ring->irq_enable_mask;
955 I915_WRITE16(IMR, dev_priv->irq_mask);
956 POSTING_READ16(IMR);
957 }
958 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
959 }
960
961 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
962 {
963 struct drm_device *dev = ring->dev;
964 drm_i915_private_t *dev_priv = ring->dev->dev_private;
965 u32 mmio = 0;
966
967 /* The ring status page addresses are no longer next to the rest of
968 * the ring registers as of gen7.
969 */
970 if (IS_GEN7(dev)) {
971 switch (ring->id) {
972 case RCS:
973 mmio = RENDER_HWS_PGA_GEN7;
974 break;
975 case BCS:
976 mmio = BLT_HWS_PGA_GEN7;
977 break;
978 case VCS:
979 mmio = BSD_HWS_PGA_GEN7;
980 break;
981 case VECS:
982 mmio = VEBOX_HWS_PGA_GEN7;
983 break;
984 }
985 } else if (IS_GEN6(ring->dev)) {
986 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
987 } else {
988 /* XXX: gen8 returns to sanity */
989 mmio = RING_HWS_PGA(ring->mmio_base);
990 }
991
992 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
993 POSTING_READ(mmio);
994
995 /*
996 * Flush the TLB for this page
997 *
998 * FIXME: These two bits have disappeared on gen8, so a question
999 * arises: do we still need this and if so how should we go about
1000 * invalidating the TLB?
1001 */
1002 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1003 u32 reg = RING_INSTPM(ring->mmio_base);
1004
1005 /* ring should be idle before issuing a sync flush*/
1006 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1007
1008 I915_WRITE(reg,
1009 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1010 INSTPM_SYNC_FLUSH));
1011 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1012 1000))
1013 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1014 ring->name);
1015 }
1016 }
1017
1018 static int
1019 bsd_ring_flush(struct intel_ring_buffer *ring,
1020 u32 invalidate_domains,
1021 u32 flush_domains)
1022 {
1023 int ret;
1024
1025 ret = intel_ring_begin(ring, 2);
1026 if (ret)
1027 return ret;
1028
1029 intel_ring_emit(ring, MI_FLUSH);
1030 intel_ring_emit(ring, MI_NOOP);
1031 intel_ring_advance(ring);
1032 return 0;
1033 }
1034
1035 static int
1036 i9xx_add_request(struct intel_ring_buffer *ring)
1037 {
1038 int ret;
1039
1040 ret = intel_ring_begin(ring, 4);
1041 if (ret)
1042 return ret;
1043
1044 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1045 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1046 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1047 intel_ring_emit(ring, MI_USER_INTERRUPT);
1048 __intel_ring_advance(ring);
1049
1050 return 0;
1051 }
1052
1053 static bool
1054 gen6_ring_get_irq(struct intel_ring_buffer *ring)
1055 {
1056 struct drm_device *dev = ring->dev;
1057 drm_i915_private_t *dev_priv = dev->dev_private;
1058 unsigned long flags;
1059
1060 if (!dev->irq_enabled)
1061 return false;
1062
1063 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1064 if (ring->irq_refcount++ == 0) {
1065 if (HAS_L3_DPF(dev) && ring->id == RCS)
1066 I915_WRITE_IMR(ring,
1067 ~(ring->irq_enable_mask |
1068 GT_PARITY_ERROR(dev)));
1069 else
1070 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1071 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1072 }
1073 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1074
1075 return true;
1076 }
1077
1078 static void
1079 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1080 {
1081 struct drm_device *dev = ring->dev;
1082 drm_i915_private_t *dev_priv = dev->dev_private;
1083 unsigned long flags;
1084
1085 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1086 if (--ring->irq_refcount == 0) {
1087 if (HAS_L3_DPF(dev) && ring->id == RCS)
1088 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1089 else
1090 I915_WRITE_IMR(ring, ~0);
1091 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1092 }
1093 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1094 }
1095
1096 static bool
1097 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1098 {
1099 struct drm_device *dev = ring->dev;
1100 struct drm_i915_private *dev_priv = dev->dev_private;
1101 unsigned long flags;
1102
1103 if (!dev->irq_enabled)
1104 return false;
1105
1106 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1107 if (ring->irq_refcount++ == 0) {
1108 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1109 snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1110 }
1111 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1112
1113 return true;
1114 }
1115
1116 static void
1117 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1118 {
1119 struct drm_device *dev = ring->dev;
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1121 unsigned long flags;
1122
1123 if (!dev->irq_enabled)
1124 return;
1125
1126 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1127 if (--ring->irq_refcount == 0) {
1128 I915_WRITE_IMR(ring, ~0);
1129 snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1130 }
1131 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1132 }
1133
1134 static bool
1135 gen8_ring_get_irq(struct intel_ring_buffer *ring)
1136 {
1137 struct drm_device *dev = ring->dev;
1138 struct drm_i915_private *dev_priv = dev->dev_private;
1139 unsigned long flags;
1140
1141 if (!dev->irq_enabled)
1142 return false;
1143
1144 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1145 if (ring->irq_refcount++ == 0) {
1146 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1147 I915_WRITE_IMR(ring,
1148 ~(ring->irq_enable_mask |
1149 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1150 } else {
1151 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1152 }
1153 POSTING_READ(RING_IMR(ring->mmio_base));
1154 }
1155 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1156
1157 return true;
1158 }
1159
1160 static void
1161 gen8_ring_put_irq(struct intel_ring_buffer *ring)
1162 {
1163 struct drm_device *dev = ring->dev;
1164 struct drm_i915_private *dev_priv = dev->dev_private;
1165 unsigned long flags;
1166
1167 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1168 if (--ring->irq_refcount == 0) {
1169 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1170 I915_WRITE_IMR(ring,
1171 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1172 } else {
1173 I915_WRITE_IMR(ring, ~0);
1174 }
1175 POSTING_READ(RING_IMR(ring->mmio_base));
1176 }
1177 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1178 }
1179
1180 static int
1181 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1182 u32 offset, u32 length,
1183 unsigned flags)
1184 {
1185 int ret;
1186
1187 ret = intel_ring_begin(ring, 2);
1188 if (ret)
1189 return ret;
1190
1191 intel_ring_emit(ring,
1192 MI_BATCH_BUFFER_START |
1193 MI_BATCH_GTT |
1194 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1195 intel_ring_emit(ring, offset);
1196 intel_ring_advance(ring);
1197
1198 return 0;
1199 }
1200
1201 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1202 #define I830_BATCH_LIMIT (256*1024)
1203 static int
1204 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1205 u32 offset, u32 len,
1206 unsigned flags)
1207 {
1208 int ret;
1209
1210 if (flags & I915_DISPATCH_PINNED) {
1211 ret = intel_ring_begin(ring, 4);
1212 if (ret)
1213 return ret;
1214
1215 intel_ring_emit(ring, MI_BATCH_BUFFER);
1216 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1217 intel_ring_emit(ring, offset + len - 8);
1218 intel_ring_emit(ring, MI_NOOP);
1219 intel_ring_advance(ring);
1220 } else {
1221 u32 cs_offset = ring->scratch.gtt_offset;
1222
1223 if (len > I830_BATCH_LIMIT)
1224 return -ENOSPC;
1225
1226 ret = intel_ring_begin(ring, 9+3);
1227 if (ret)
1228 return ret;
1229 /* Blit the batch (which has now all relocs applied) to the stable batch
1230 * scratch bo area (so that the CS never stumbles over its tlb
1231 * invalidation bug) ... */
1232 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1233 XY_SRC_COPY_BLT_WRITE_ALPHA |
1234 XY_SRC_COPY_BLT_WRITE_RGB);
1235 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1236 intel_ring_emit(ring, 0);
1237 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1238 intel_ring_emit(ring, cs_offset);
1239 intel_ring_emit(ring, 0);
1240 intel_ring_emit(ring, 4096);
1241 intel_ring_emit(ring, offset);
1242 intel_ring_emit(ring, MI_FLUSH);
1243
1244 /* ... and execute it. */
1245 intel_ring_emit(ring, MI_BATCH_BUFFER);
1246 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1247 intel_ring_emit(ring, cs_offset + len - 8);
1248 intel_ring_advance(ring);
1249 }
1250
1251 return 0;
1252 }
1253
1254 static int
1255 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1256 u32 offset, u32 len,
1257 unsigned flags)
1258 {
1259 int ret;
1260
1261 ret = intel_ring_begin(ring, 2);
1262 if (ret)
1263 return ret;
1264
1265 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1266 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1267 intel_ring_advance(ring);
1268
1269 return 0;
1270 }
1271
1272 static void cleanup_status_page(struct intel_ring_buffer *ring)
1273 {
1274 struct drm_i915_gem_object *obj;
1275
1276 obj = ring->status_page.obj;
1277 if (obj == NULL)
1278 return;
1279
1280 kunmap(sg_page(obj->pages->sgl));
1281 i915_gem_object_ggtt_unpin(obj);
1282 drm_gem_object_unreference(&obj->base);
1283 ring->status_page.obj = NULL;
1284 }
1285
1286 static int init_status_page(struct intel_ring_buffer *ring)
1287 {
1288 struct drm_device *dev = ring->dev;
1289 struct drm_i915_gem_object *obj;
1290 int ret;
1291
1292 obj = i915_gem_alloc_object(dev, 4096);
1293 if (obj == NULL) {
1294 DRM_ERROR("Failed to allocate status page\n");
1295 ret = -ENOMEM;
1296 goto err;
1297 }
1298
1299 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1300 if (ret)
1301 goto err_unref;
1302
1303 ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
1304 if (ret)
1305 goto err_unref;
1306
1307 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1308 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1309 if (ring->status_page.page_addr == NULL) {
1310 ret = -ENOMEM;
1311 goto err_unpin;
1312 }
1313 ring->status_page.obj = obj;
1314 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1315
1316 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1317 ring->name, ring->status_page.gfx_addr);
1318
1319 return 0;
1320
1321 err_unpin:
1322 i915_gem_object_ggtt_unpin(obj);
1323 err_unref:
1324 drm_gem_object_unreference(&obj->base);
1325 err:
1326 return ret;
1327 }
1328
1329 static int init_phys_status_page(struct intel_ring_buffer *ring)
1330 {
1331 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1332
1333 if (!dev_priv->status_page_dmah) {
1334 dev_priv->status_page_dmah =
1335 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1336 if (!dev_priv->status_page_dmah)
1337 return -ENOMEM;
1338 }
1339
1340 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1341 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1342
1343 return 0;
1344 }
1345
1346 static int intel_init_ring_buffer(struct drm_device *dev,
1347 struct intel_ring_buffer *ring)
1348 {
1349 struct drm_i915_gem_object *obj;
1350 struct drm_i915_private *dev_priv = dev->dev_private;
1351 int ret;
1352
1353 ring->dev = dev;
1354 INIT_LIST_HEAD(&ring->active_list);
1355 INIT_LIST_HEAD(&ring->request_list);
1356 ring->size = 32 * PAGE_SIZE;
1357 memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1358
1359 init_waitqueue_head(&ring->irq_queue);
1360
1361 if (I915_NEED_GFX_HWS(dev)) {
1362 ret = init_status_page(ring);
1363 if (ret)
1364 return ret;
1365 } else {
1366 BUG_ON(ring->id != RCS);
1367 ret = init_phys_status_page(ring);
1368 if (ret)
1369 return ret;
1370 }
1371
1372 obj = NULL;
1373 if (!HAS_LLC(dev))
1374 obj = i915_gem_object_create_stolen(dev, ring->size);
1375 if (obj == NULL)
1376 obj = i915_gem_alloc_object(dev, ring->size);
1377 if (obj == NULL) {
1378 DRM_ERROR("Failed to allocate ringbuffer\n");
1379 ret = -ENOMEM;
1380 goto err_hws;
1381 }
1382
1383 ring->obj = obj;
1384
1385 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1386 if (ret)
1387 goto err_unref;
1388
1389 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1390 if (ret)
1391 goto err_unpin;
1392
1393 ring->virtual_start =
1394 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1395 ring->size);
1396 if (ring->virtual_start == NULL) {
1397 DRM_ERROR("Failed to map ringbuffer.\n");
1398 ret = -EINVAL;
1399 goto err_unpin;
1400 }
1401
1402 ret = ring->init(ring);
1403 if (ret)
1404 goto err_unmap;
1405
1406 /* Workaround an erratum on the i830 which causes a hang if
1407 * the TAIL pointer points to within the last 2 cachelines
1408 * of the buffer.
1409 */
1410 ring->effective_size = ring->size;
1411 if (IS_I830(ring->dev) || IS_845G(ring->dev))
1412 ring->effective_size -= 128;
1413
1414 i915_cmd_parser_init_ring(ring);
1415
1416 return 0;
1417
1418 err_unmap:
1419 iounmap(ring->virtual_start);
1420 err_unpin:
1421 i915_gem_object_ggtt_unpin(obj);
1422 err_unref:
1423 drm_gem_object_unreference(&obj->base);
1424 ring->obj = NULL;
1425 err_hws:
1426 cleanup_status_page(ring);
1427 return ret;
1428 }
1429
1430 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1431 {
1432 struct drm_i915_private *dev_priv;
1433 int ret;
1434
1435 if (ring->obj == NULL)
1436 return;
1437
1438 /* Disable the ring buffer. The ring must be idle at this point */
1439 dev_priv = ring->dev->dev_private;
1440 ret = intel_ring_idle(ring);
1441 if (ret && !i915_reset_in_progress(&dev_priv->gpu_error))
1442 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1443 ring->name, ret);
1444
1445 I915_WRITE_CTL(ring, 0);
1446
1447 iounmap(ring->virtual_start);
1448
1449 i915_gem_object_ggtt_unpin(ring->obj);
1450 drm_gem_object_unreference(&ring->obj->base);
1451 ring->obj = NULL;
1452 ring->preallocated_lazy_request = NULL;
1453 ring->outstanding_lazy_seqno = 0;
1454
1455 if (ring->cleanup)
1456 ring->cleanup(ring);
1457
1458 cleanup_status_page(ring);
1459 }
1460
1461 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1462 {
1463 struct drm_i915_gem_request *request;
1464 u32 seqno = 0, tail;
1465 int ret;
1466
1467 if (ring->last_retired_head != -1) {
1468 ring->head = ring->last_retired_head;
1469 ring->last_retired_head = -1;
1470
1471 ring->space = ring_space(ring);
1472 if (ring->space >= n)
1473 return 0;
1474 }
1475
1476 list_for_each_entry(request, &ring->request_list, list) {
1477 int space;
1478
1479 if (request->tail == -1)
1480 continue;
1481
1482 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1483 if (space < 0)
1484 space += ring->size;
1485 if (space >= n) {
1486 seqno = request->seqno;
1487 tail = request->tail;
1488 break;
1489 }
1490
1491 /* Consume this request in case we need more space than
1492 * is available and so need to prevent a race between
1493 * updating last_retired_head and direct reads of
1494 * I915_RING_HEAD. It also provides a nice sanity check.
1495 */
1496 request->tail = -1;
1497 }
1498
1499 if (seqno == 0)
1500 return -ENOSPC;
1501
1502 ret = i915_wait_seqno(ring, seqno);
1503 if (ret)
1504 return ret;
1505
1506 ring->head = tail;
1507 ring->space = ring_space(ring);
1508 if (WARN_ON(ring->space < n))
1509 return -ENOSPC;
1510
1511 return 0;
1512 }
1513
1514 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1515 {
1516 struct drm_device *dev = ring->dev;
1517 struct drm_i915_private *dev_priv = dev->dev_private;
1518 unsigned long end;
1519 int ret;
1520
1521 ret = intel_ring_wait_request(ring, n);
1522 if (ret != -ENOSPC)
1523 return ret;
1524
1525 /* force the tail write in case we have been skipping them */
1526 __intel_ring_advance(ring);
1527
1528 trace_i915_ring_wait_begin(ring);
1529 /* With GEM the hangcheck timer should kick us out of the loop,
1530 * leaving it early runs the risk of corrupting GEM state (due
1531 * to running on almost untested codepaths). But on resume
1532 * timers don't work yet, so prevent a complete hang in that
1533 * case by choosing an insanely large timeout. */
1534 end = jiffies + 60 * HZ;
1535
1536 do {
1537 ring->head = I915_READ_HEAD(ring);
1538 ring->space = ring_space(ring);
1539 if (ring->space >= n) {
1540 trace_i915_ring_wait_end(ring);
1541 return 0;
1542 }
1543
1544 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1545 dev->primary->master) {
1546 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1547 if (master_priv->sarea_priv)
1548 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1549 }
1550
1551 msleep(1);
1552
1553 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1554 dev_priv->mm.interruptible);
1555 if (ret)
1556 return ret;
1557 } while (!time_after(jiffies, end));
1558 trace_i915_ring_wait_end(ring);
1559 return -EBUSY;
1560 }
1561
1562 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1563 {
1564 uint32_t __iomem *virt;
1565 int rem = ring->size - ring->tail;
1566
1567 if (ring->space < rem) {
1568 int ret = ring_wait_for_space(ring, rem);
1569 if (ret)
1570 return ret;
1571 }
1572
1573 virt = ring->virtual_start + ring->tail;
1574 rem /= 4;
1575 while (rem--)
1576 iowrite32(MI_NOOP, virt++);
1577
1578 ring->tail = 0;
1579 ring->space = ring_space(ring);
1580
1581 return 0;
1582 }
1583
1584 int intel_ring_idle(struct intel_ring_buffer *ring)
1585 {
1586 u32 seqno;
1587 int ret;
1588
1589 /* We need to add any requests required to flush the objects and ring */
1590 if (ring->outstanding_lazy_seqno) {
1591 ret = i915_add_request(ring, NULL);
1592 if (ret)
1593 return ret;
1594 }
1595
1596 /* Wait upon the last request to be completed */
1597 if (list_empty(&ring->request_list))
1598 return 0;
1599
1600 seqno = list_entry(ring->request_list.prev,
1601 struct drm_i915_gem_request,
1602 list)->seqno;
1603
1604 return i915_wait_seqno(ring, seqno);
1605 }
1606
1607 static int
1608 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1609 {
1610 if (ring->outstanding_lazy_seqno)
1611 return 0;
1612
1613 if (ring->preallocated_lazy_request == NULL) {
1614 struct drm_i915_gem_request *request;
1615
1616 request = kmalloc(sizeof(*request), GFP_KERNEL);
1617 if (request == NULL)
1618 return -ENOMEM;
1619
1620 ring->preallocated_lazy_request = request;
1621 }
1622
1623 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1624 }
1625
1626 static int __intel_ring_prepare(struct intel_ring_buffer *ring,
1627 int bytes)
1628 {
1629 int ret;
1630
1631 if (unlikely(ring->tail + bytes > ring->effective_size)) {
1632 ret = intel_wrap_ring_buffer(ring);
1633 if (unlikely(ret))
1634 return ret;
1635 }
1636
1637 if (unlikely(ring->space < bytes)) {
1638 ret = ring_wait_for_space(ring, bytes);
1639 if (unlikely(ret))
1640 return ret;
1641 }
1642
1643 return 0;
1644 }
1645
1646 int intel_ring_begin(struct intel_ring_buffer *ring,
1647 int num_dwords)
1648 {
1649 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1650 int ret;
1651
1652 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1653 dev_priv->mm.interruptible);
1654 if (ret)
1655 return ret;
1656
1657 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1658 if (ret)
1659 return ret;
1660
1661 /* Preallocate the olr before touching the ring */
1662 ret = intel_ring_alloc_seqno(ring);
1663 if (ret)
1664 return ret;
1665
1666 ring->space -= num_dwords * sizeof(uint32_t);
1667 return 0;
1668 }
1669
1670 /* Align the ring tail to a cacheline boundary */
1671 int intel_ring_cacheline_align(struct intel_ring_buffer *ring)
1672 {
1673 int num_dwords = (64 - (ring->tail & 63)) / sizeof(uint32_t);
1674 int ret;
1675
1676 if (num_dwords == 0)
1677 return 0;
1678
1679 ret = intel_ring_begin(ring, num_dwords);
1680 if (ret)
1681 return ret;
1682
1683 while (num_dwords--)
1684 intel_ring_emit(ring, MI_NOOP);
1685
1686 intel_ring_advance(ring);
1687
1688 return 0;
1689 }
1690
1691 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1692 {
1693 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1694
1695 BUG_ON(ring->outstanding_lazy_seqno);
1696
1697 if (INTEL_INFO(ring->dev)->gen >= 6) {
1698 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1699 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1700 if (HAS_VEBOX(ring->dev))
1701 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1702 }
1703
1704 ring->set_seqno(ring, seqno);
1705 ring->hangcheck.seqno = seqno;
1706 }
1707
1708 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1709 u32 value)
1710 {
1711 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1712
1713 /* Every tail move must follow the sequence below */
1714
1715 /* Disable notification that the ring is IDLE. The GT
1716 * will then assume that it is busy and bring it out of rc6.
1717 */
1718 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1719 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1720
1721 /* Clear the context id. Here be magic! */
1722 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1723
1724 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1725 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1726 GEN6_BSD_SLEEP_INDICATOR) == 0,
1727 50))
1728 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1729
1730 /* Now that the ring is fully powered up, update the tail */
1731 I915_WRITE_TAIL(ring, value);
1732 POSTING_READ(RING_TAIL(ring->mmio_base));
1733
1734 /* Let the ring send IDLE messages to the GT again,
1735 * and so let it sleep to conserve power when idle.
1736 */
1737 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1738 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1739 }
1740
1741 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1742 u32 invalidate, u32 flush)
1743 {
1744 uint32_t cmd;
1745 int ret;
1746
1747 ret = intel_ring_begin(ring, 4);
1748 if (ret)
1749 return ret;
1750
1751 cmd = MI_FLUSH_DW;
1752 if (INTEL_INFO(ring->dev)->gen >= 8)
1753 cmd += 1;
1754 /*
1755 * Bspec vol 1c.5 - video engine command streamer:
1756 * "If ENABLED, all TLBs will be invalidated once the flush
1757 * operation is complete. This bit is only valid when the
1758 * Post-Sync Operation field is a value of 1h or 3h."
1759 */
1760 if (invalidate & I915_GEM_GPU_DOMAINS)
1761 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1762 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1763 intel_ring_emit(ring, cmd);
1764 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1765 if (INTEL_INFO(ring->dev)->gen >= 8) {
1766 intel_ring_emit(ring, 0); /* upper addr */
1767 intel_ring_emit(ring, 0); /* value */
1768 } else {
1769 intel_ring_emit(ring, 0);
1770 intel_ring_emit(ring, MI_NOOP);
1771 }
1772 intel_ring_advance(ring);
1773 return 0;
1774 }
1775
1776 static int
1777 gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1778 u32 offset, u32 len,
1779 unsigned flags)
1780 {
1781 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1782 bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1783 !(flags & I915_DISPATCH_SECURE);
1784 int ret;
1785
1786 ret = intel_ring_begin(ring, 4);
1787 if (ret)
1788 return ret;
1789
1790 /* FIXME(BDW): Address space and security selectors. */
1791 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1792 intel_ring_emit(ring, offset);
1793 intel_ring_emit(ring, 0);
1794 intel_ring_emit(ring, MI_NOOP);
1795 intel_ring_advance(ring);
1796
1797 return 0;
1798 }
1799
1800 static int
1801 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1802 u32 offset, u32 len,
1803 unsigned flags)
1804 {
1805 int ret;
1806
1807 ret = intel_ring_begin(ring, 2);
1808 if (ret)
1809 return ret;
1810
1811 intel_ring_emit(ring,
1812 MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1813 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1814 /* bit0-7 is the length on GEN6+ */
1815 intel_ring_emit(ring, offset);
1816 intel_ring_advance(ring);
1817
1818 return 0;
1819 }
1820
1821 static int
1822 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1823 u32 offset, u32 len,
1824 unsigned flags)
1825 {
1826 int ret;
1827
1828 ret = intel_ring_begin(ring, 2);
1829 if (ret)
1830 return ret;
1831
1832 intel_ring_emit(ring,
1833 MI_BATCH_BUFFER_START |
1834 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1835 /* bit0-7 is the length on GEN6+ */
1836 intel_ring_emit(ring, offset);
1837 intel_ring_advance(ring);
1838
1839 return 0;
1840 }
1841
1842 /* Blitter support (SandyBridge+) */
1843
1844 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1845 u32 invalidate, u32 flush)
1846 {
1847 struct drm_device *dev = ring->dev;
1848 uint32_t cmd;
1849 int ret;
1850
1851 ret = intel_ring_begin(ring, 4);
1852 if (ret)
1853 return ret;
1854
1855 cmd = MI_FLUSH_DW;
1856 if (INTEL_INFO(ring->dev)->gen >= 8)
1857 cmd += 1;
1858 /*
1859 * Bspec vol 1c.3 - blitter engine command streamer:
1860 * "If ENABLED, all TLBs will be invalidated once the flush
1861 * operation is complete. This bit is only valid when the
1862 * Post-Sync Operation field is a value of 1h or 3h."
1863 */
1864 if (invalidate & I915_GEM_DOMAIN_RENDER)
1865 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1866 MI_FLUSH_DW_OP_STOREDW;
1867 intel_ring_emit(ring, cmd);
1868 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1869 if (INTEL_INFO(ring->dev)->gen >= 8) {
1870 intel_ring_emit(ring, 0); /* upper addr */
1871 intel_ring_emit(ring, 0); /* value */
1872 } else {
1873 intel_ring_emit(ring, 0);
1874 intel_ring_emit(ring, MI_NOOP);
1875 }
1876 intel_ring_advance(ring);
1877
1878 if (IS_GEN7(dev) && !invalidate && flush)
1879 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1880
1881 return 0;
1882 }
1883
1884 int intel_init_render_ring_buffer(struct drm_device *dev)
1885 {
1886 drm_i915_private_t *dev_priv = dev->dev_private;
1887 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1888
1889 ring->name = "render ring";
1890 ring->id = RCS;
1891 ring->mmio_base = RENDER_RING_BASE;
1892
1893 if (INTEL_INFO(dev)->gen >= 6) {
1894 ring->add_request = gen6_add_request;
1895 ring->flush = gen7_render_ring_flush;
1896 if (INTEL_INFO(dev)->gen == 6)
1897 ring->flush = gen6_render_ring_flush;
1898 if (INTEL_INFO(dev)->gen >= 8) {
1899 ring->flush = gen8_render_ring_flush;
1900 ring->irq_get = gen8_ring_get_irq;
1901 ring->irq_put = gen8_ring_put_irq;
1902 } else {
1903 ring->irq_get = gen6_ring_get_irq;
1904 ring->irq_put = gen6_ring_put_irq;
1905 }
1906 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1907 ring->get_seqno = gen6_ring_get_seqno;
1908 ring->set_seqno = ring_set_seqno;
1909 ring->sync_to = gen6_ring_sync;
1910 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1911 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1912 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1913 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1914 ring->signal_mbox[RCS] = GEN6_NOSYNC;
1915 ring->signal_mbox[VCS] = GEN6_VRSYNC;
1916 ring->signal_mbox[BCS] = GEN6_BRSYNC;
1917 ring->signal_mbox[VECS] = GEN6_VERSYNC;
1918 } else if (IS_GEN5(dev)) {
1919 ring->add_request = pc_render_add_request;
1920 ring->flush = gen4_render_ring_flush;
1921 ring->get_seqno = pc_render_get_seqno;
1922 ring->set_seqno = pc_render_set_seqno;
1923 ring->irq_get = gen5_ring_get_irq;
1924 ring->irq_put = gen5_ring_put_irq;
1925 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1926 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1927 } else {
1928 ring->add_request = i9xx_add_request;
1929 if (INTEL_INFO(dev)->gen < 4)
1930 ring->flush = gen2_render_ring_flush;
1931 else
1932 ring->flush = gen4_render_ring_flush;
1933 ring->get_seqno = ring_get_seqno;
1934 ring->set_seqno = ring_set_seqno;
1935 if (IS_GEN2(dev)) {
1936 ring->irq_get = i8xx_ring_get_irq;
1937 ring->irq_put = i8xx_ring_put_irq;
1938 } else {
1939 ring->irq_get = i9xx_ring_get_irq;
1940 ring->irq_put = i9xx_ring_put_irq;
1941 }
1942 ring->irq_enable_mask = I915_USER_INTERRUPT;
1943 }
1944 ring->write_tail = ring_write_tail;
1945 if (IS_HASWELL(dev))
1946 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1947 else if (IS_GEN8(dev))
1948 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
1949 else if (INTEL_INFO(dev)->gen >= 6)
1950 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1951 else if (INTEL_INFO(dev)->gen >= 4)
1952 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1953 else if (IS_I830(dev) || IS_845G(dev))
1954 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1955 else
1956 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1957 ring->init = init_render_ring;
1958 ring->cleanup = render_ring_cleanup;
1959
1960 /* Workaround batchbuffer to combat CS tlb bug. */
1961 if (HAS_BROKEN_CS_TLB(dev)) {
1962 struct drm_i915_gem_object *obj;
1963 int ret;
1964
1965 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1966 if (obj == NULL) {
1967 DRM_ERROR("Failed to allocate batch bo\n");
1968 return -ENOMEM;
1969 }
1970
1971 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
1972 if (ret != 0) {
1973 drm_gem_object_unreference(&obj->base);
1974 DRM_ERROR("Failed to ping batch bo\n");
1975 return ret;
1976 }
1977
1978 ring->scratch.obj = obj;
1979 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
1980 }
1981
1982 return intel_init_ring_buffer(dev, ring);
1983 }
1984
1985 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1986 {
1987 drm_i915_private_t *dev_priv = dev->dev_private;
1988 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1989 int ret;
1990
1991 ring->name = "render ring";
1992 ring->id = RCS;
1993 ring->mmio_base = RENDER_RING_BASE;
1994
1995 if (INTEL_INFO(dev)->gen >= 6) {
1996 /* non-kms not supported on gen6+ */
1997 return -ENODEV;
1998 }
1999
2000 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2001 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2002 * the special gen5 functions. */
2003 ring->add_request = i9xx_add_request;
2004 if (INTEL_INFO(dev)->gen < 4)
2005 ring->flush = gen2_render_ring_flush;
2006 else
2007 ring->flush = gen4_render_ring_flush;
2008 ring->get_seqno = ring_get_seqno;
2009 ring->set_seqno = ring_set_seqno;
2010 if (IS_GEN2(dev)) {
2011 ring->irq_get = i8xx_ring_get_irq;
2012 ring->irq_put = i8xx_ring_put_irq;
2013 } else {
2014 ring->irq_get = i9xx_ring_get_irq;
2015 ring->irq_put = i9xx_ring_put_irq;
2016 }
2017 ring->irq_enable_mask = I915_USER_INTERRUPT;
2018 ring->write_tail = ring_write_tail;
2019 if (INTEL_INFO(dev)->gen >= 4)
2020 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2021 else if (IS_I830(dev) || IS_845G(dev))
2022 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2023 else
2024 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2025 ring->init = init_render_ring;
2026 ring->cleanup = render_ring_cleanup;
2027
2028 ring->dev = dev;
2029 INIT_LIST_HEAD(&ring->active_list);
2030 INIT_LIST_HEAD(&ring->request_list);
2031
2032 ring->size = size;
2033 ring->effective_size = ring->size;
2034 if (IS_I830(ring->dev) || IS_845G(ring->dev))
2035 ring->effective_size -= 128;
2036
2037 ring->virtual_start = ioremap_wc(start, size);
2038 if (ring->virtual_start == NULL) {
2039 DRM_ERROR("can not ioremap virtual address for"
2040 " ring buffer\n");
2041 return -ENOMEM;
2042 }
2043
2044 if (!I915_NEED_GFX_HWS(dev)) {
2045 ret = init_phys_status_page(ring);
2046 if (ret)
2047 return ret;
2048 }
2049
2050 return 0;
2051 }
2052
2053 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2054 {
2055 drm_i915_private_t *dev_priv = dev->dev_private;
2056 struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
2057
2058 ring->name = "bsd ring";
2059 ring->id = VCS;
2060
2061 ring->write_tail = ring_write_tail;
2062 if (INTEL_INFO(dev)->gen >= 6) {
2063 ring->mmio_base = GEN6_BSD_RING_BASE;
2064 /* gen6 bsd needs a special wa for tail updates */
2065 if (IS_GEN6(dev))
2066 ring->write_tail = gen6_bsd_ring_write_tail;
2067 ring->flush = gen6_bsd_ring_flush;
2068 ring->add_request = gen6_add_request;
2069 ring->get_seqno = gen6_ring_get_seqno;
2070 ring->set_seqno = ring_set_seqno;
2071 if (INTEL_INFO(dev)->gen >= 8) {
2072 ring->irq_enable_mask =
2073 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2074 ring->irq_get = gen8_ring_get_irq;
2075 ring->irq_put = gen8_ring_put_irq;
2076 ring->dispatch_execbuffer =
2077 gen8_ring_dispatch_execbuffer;
2078 } else {
2079 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2080 ring->irq_get = gen6_ring_get_irq;
2081 ring->irq_put = gen6_ring_put_irq;
2082 ring->dispatch_execbuffer =
2083 gen6_ring_dispatch_execbuffer;
2084 }
2085 ring->sync_to = gen6_ring_sync;
2086 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
2087 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2088 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
2089 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
2090 ring->signal_mbox[RCS] = GEN6_RVSYNC;
2091 ring->signal_mbox[VCS] = GEN6_NOSYNC;
2092 ring->signal_mbox[BCS] = GEN6_BVSYNC;
2093 ring->signal_mbox[VECS] = GEN6_VEVSYNC;
2094 } else {
2095 ring->mmio_base = BSD_RING_BASE;
2096 ring->flush = bsd_ring_flush;
2097 ring->add_request = i9xx_add_request;
2098 ring->get_seqno = ring_get_seqno;
2099 ring->set_seqno = ring_set_seqno;
2100 if (IS_GEN5(dev)) {
2101 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2102 ring->irq_get = gen5_ring_get_irq;
2103 ring->irq_put = gen5_ring_put_irq;
2104 } else {
2105 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2106 ring->irq_get = i9xx_ring_get_irq;
2107 ring->irq_put = i9xx_ring_put_irq;
2108 }
2109 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2110 }
2111 ring->init = init_ring_common;
2112
2113 return intel_init_ring_buffer(dev, ring);
2114 }
2115
2116 int intel_init_blt_ring_buffer(struct drm_device *dev)
2117 {
2118 drm_i915_private_t *dev_priv = dev->dev_private;
2119 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
2120
2121 ring->name = "blitter ring";
2122 ring->id = BCS;
2123
2124 ring->mmio_base = BLT_RING_BASE;
2125 ring->write_tail = ring_write_tail;
2126 ring->flush = gen6_ring_flush;
2127 ring->add_request = gen6_add_request;
2128 ring->get_seqno = gen6_ring_get_seqno;
2129 ring->set_seqno = ring_set_seqno;
2130 if (INTEL_INFO(dev)->gen >= 8) {
2131 ring->irq_enable_mask =
2132 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2133 ring->irq_get = gen8_ring_get_irq;
2134 ring->irq_put = gen8_ring_put_irq;
2135 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2136 } else {
2137 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2138 ring->irq_get = gen6_ring_get_irq;
2139 ring->irq_put = gen6_ring_put_irq;
2140 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2141 }
2142 ring->sync_to = gen6_ring_sync;
2143 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
2144 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
2145 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2146 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
2147 ring->signal_mbox[RCS] = GEN6_RBSYNC;
2148 ring->signal_mbox[VCS] = GEN6_VBSYNC;
2149 ring->signal_mbox[BCS] = GEN6_NOSYNC;
2150 ring->signal_mbox[VECS] = GEN6_VEBSYNC;
2151 ring->init = init_ring_common;
2152
2153 return intel_init_ring_buffer(dev, ring);
2154 }
2155
2156 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2157 {
2158 drm_i915_private_t *dev_priv = dev->dev_private;
2159 struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2160
2161 ring->name = "video enhancement ring";
2162 ring->id = VECS;
2163
2164 ring->mmio_base = VEBOX_RING_BASE;
2165 ring->write_tail = ring_write_tail;
2166 ring->flush = gen6_ring_flush;
2167 ring->add_request = gen6_add_request;
2168 ring->get_seqno = gen6_ring_get_seqno;
2169 ring->set_seqno = ring_set_seqno;
2170
2171 if (INTEL_INFO(dev)->gen >= 8) {
2172 ring->irq_enable_mask =
2173 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2174 ring->irq_get = gen8_ring_get_irq;
2175 ring->irq_put = gen8_ring_put_irq;
2176 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2177 } else {
2178 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2179 ring->irq_get = hsw_vebox_get_irq;
2180 ring->irq_put = hsw_vebox_put_irq;
2181 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2182 }
2183 ring->sync_to = gen6_ring_sync;
2184 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
2185 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
2186 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
2187 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2188 ring->signal_mbox[RCS] = GEN6_RVESYNC;
2189 ring->signal_mbox[VCS] = GEN6_VVESYNC;
2190 ring->signal_mbox[BCS] = GEN6_BVESYNC;
2191 ring->signal_mbox[VECS] = GEN6_NOSYNC;
2192 ring->init = init_ring_common;
2193
2194 return intel_init_ring_buffer(dev, ring);
2195 }
2196
2197 int
2198 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2199 {
2200 int ret;
2201
2202 if (!ring->gpu_caches_dirty)
2203 return 0;
2204
2205 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2206 if (ret)
2207 return ret;
2208
2209 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2210
2211 ring->gpu_caches_dirty = false;
2212 return 0;
2213 }
2214
2215 int
2216 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2217 {
2218 uint32_t flush_domains;
2219 int ret;
2220
2221 flush_domains = 0;
2222 if (ring->gpu_caches_dirty)
2223 flush_domains = I915_GEM_GPU_DOMAINS;
2224
2225 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2226 if (ret)
2227 return ret;
2228
2229 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2230
2231 ring->gpu_caches_dirty = false;
2232 return 0;
2233 }
This page took 0.147438 seconds and 6 git commands to generate.