Merge tag '3.8-pci-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 /*
37 * 965+ support PIPE_CONTROL commands, which provide finer grained control
38 * over cache flushing.
39 */
40 struct pipe_control {
41 struct drm_i915_gem_object *obj;
42 volatile u32 *cpu_page;
43 u32 gtt_offset;
44 };
45
46 static inline int ring_space(struct intel_ring_buffer *ring)
47 {
48 int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
49 if (space < 0)
50 space += ring->size;
51 return space;
52 }
53
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56 u32 invalidate_domains,
57 u32 flush_domains)
58 {
59 u32 cmd;
60 int ret;
61
62 cmd = MI_FLUSH;
63 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64 cmd |= MI_NO_WRITE_FLUSH;
65
66 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67 cmd |= MI_READ_FLUSH;
68
69 ret = intel_ring_begin(ring, 2);
70 if (ret)
71 return ret;
72
73 intel_ring_emit(ring, cmd);
74 intel_ring_emit(ring, MI_NOOP);
75 intel_ring_advance(ring);
76
77 return 0;
78 }
79
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82 u32 invalidate_domains,
83 u32 flush_domains)
84 {
85 struct drm_device *dev = ring->dev;
86 u32 cmd;
87 int ret;
88
89 /*
90 * read/write caches:
91 *
92 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
94 * also flushed at 2d versus 3d pipeline switches.
95 *
96 * read-only caches:
97 *
98 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99 * MI_READ_FLUSH is set, and is always flushed on 965.
100 *
101 * I915_GEM_DOMAIN_COMMAND may not exist?
102 *
103 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104 * invalidated when MI_EXE_FLUSH is set.
105 *
106 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107 * invalidated with every MI_FLUSH.
108 *
109 * TLBs:
110 *
111 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114 * are flushed at any MI_FLUSH.
115 */
116
117 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119 cmd &= ~MI_NO_WRITE_FLUSH;
120 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121 cmd |= MI_EXE_FLUSH;
122
123 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124 (IS_G4X(dev) || IS_GEN5(dev)))
125 cmd |= MI_INVALIDATE_ISP;
126
127 ret = intel_ring_begin(ring, 2);
128 if (ret)
129 return ret;
130
131 intel_ring_emit(ring, cmd);
132 intel_ring_emit(ring, MI_NOOP);
133 intel_ring_advance(ring);
134
135 return 0;
136 }
137
138 /**
139 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140 * implementing two workarounds on gen6. From section 1.4.7.1
141 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142 *
143 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144 * produced by non-pipelined state commands), software needs to first
145 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146 * 0.
147 *
148 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150 *
151 * And the workaround for these two requires this workaround first:
152 *
153 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154 * BEFORE the pipe-control with a post-sync op and no write-cache
155 * flushes.
156 *
157 * And this last workaround is tricky because of the requirements on
158 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159 * volume 2 part 1:
160 *
161 * "1 of the following must also be set:
162 * - Render Target Cache Flush Enable ([12] of DW1)
163 * - Depth Cache Flush Enable ([0] of DW1)
164 * - Stall at Pixel Scoreboard ([1] of DW1)
165 * - Depth Stall ([13] of DW1)
166 * - Post-Sync Operation ([13] of DW1)
167 * - Notify Enable ([8] of DW1)"
168 *
169 * The cache flushes require the workaround flush that triggered this
170 * one, so we can't use it. Depth stall would trigger the same.
171 * Post-sync nonzero is what triggered this second workaround, so we
172 * can't use that one either. Notify enable is IRQs, which aren't
173 * really our business. That leaves only stall at scoreboard.
174 */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178 struct pipe_control *pc = ring->private;
179 u32 scratch_addr = pc->gtt_offset + 128;
180 int ret;
181
182
183 ret = intel_ring_begin(ring, 6);
184 if (ret)
185 return ret;
186
187 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
188 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
189 PIPE_CONTROL_STALL_AT_SCOREBOARD);
190 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
191 intel_ring_emit(ring, 0); /* low dword */
192 intel_ring_emit(ring, 0); /* high dword */
193 intel_ring_emit(ring, MI_NOOP);
194 intel_ring_advance(ring);
195
196 ret = intel_ring_begin(ring, 6);
197 if (ret)
198 return ret;
199
200 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
201 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
202 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
203 intel_ring_emit(ring, 0);
204 intel_ring_emit(ring, 0);
205 intel_ring_emit(ring, MI_NOOP);
206 intel_ring_advance(ring);
207
208 return 0;
209 }
210
211 static int
212 gen6_render_ring_flush(struct intel_ring_buffer *ring,
213 u32 invalidate_domains, u32 flush_domains)
214 {
215 u32 flags = 0;
216 struct pipe_control *pc = ring->private;
217 u32 scratch_addr = pc->gtt_offset + 128;
218 int ret;
219
220 /* Force SNB workarounds for PIPE_CONTROL flushes */
221 ret = intel_emit_post_sync_nonzero_flush(ring);
222 if (ret)
223 return ret;
224
225 /* Just flush everything. Experiments have shown that reducing the
226 * number of bits based on the write domains has little performance
227 * impact.
228 */
229 if (flush_domains) {
230 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
231 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
232 /*
233 * Ensure that any following seqno writes only happen
234 * when the render cache is indeed flushed.
235 */
236 flags |= PIPE_CONTROL_CS_STALL;
237 }
238 if (invalidate_domains) {
239 flags |= PIPE_CONTROL_TLB_INVALIDATE;
240 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
243 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
244 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
245 /*
246 * TLB invalidate requires a post-sync write.
247 */
248 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
249 }
250
251 ret = intel_ring_begin(ring, 4);
252 if (ret)
253 return ret;
254
255 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
256 intel_ring_emit(ring, flags);
257 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
258 intel_ring_emit(ring, 0);
259 intel_ring_advance(ring);
260
261 return 0;
262 }
263
264 static int
265 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
266 {
267 int ret;
268
269 ret = intel_ring_begin(ring, 4);
270 if (ret)
271 return ret;
272
273 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
274 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
275 PIPE_CONTROL_STALL_AT_SCOREBOARD);
276 intel_ring_emit(ring, 0);
277 intel_ring_emit(ring, 0);
278 intel_ring_advance(ring);
279
280 return 0;
281 }
282
283 static int
284 gen7_render_ring_flush(struct intel_ring_buffer *ring,
285 u32 invalidate_domains, u32 flush_domains)
286 {
287 u32 flags = 0;
288 struct pipe_control *pc = ring->private;
289 u32 scratch_addr = pc->gtt_offset + 128;
290 int ret;
291
292 /*
293 * Ensure that any following seqno writes only happen when the render
294 * cache is indeed flushed.
295 *
296 * Workaround: 4th PIPE_CONTROL command (except the ones with only
297 * read-cache invalidate bits set) must have the CS_STALL bit set. We
298 * don't try to be clever and just set it unconditionally.
299 */
300 flags |= PIPE_CONTROL_CS_STALL;
301
302 /* Just flush everything. Experiments have shown that reducing the
303 * number of bits based on the write domains has little performance
304 * impact.
305 */
306 if (flush_domains) {
307 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
308 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
309 }
310 if (invalidate_domains) {
311 flags |= PIPE_CONTROL_TLB_INVALIDATE;
312 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
313 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
314 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
315 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
316 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
317 /*
318 * TLB invalidate requires a post-sync write.
319 */
320 flags |= PIPE_CONTROL_QW_WRITE;
321
322 /* Workaround: we must issue a pipe_control with CS-stall bit
323 * set before a pipe_control command that has the state cache
324 * invalidate bit set. */
325 gen7_render_ring_cs_stall_wa(ring);
326 }
327
328 ret = intel_ring_begin(ring, 4);
329 if (ret)
330 return ret;
331
332 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
333 intel_ring_emit(ring, flags);
334 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
335 intel_ring_emit(ring, 0);
336 intel_ring_advance(ring);
337
338 return 0;
339 }
340
341 static void ring_write_tail(struct intel_ring_buffer *ring,
342 u32 value)
343 {
344 drm_i915_private_t *dev_priv = ring->dev->dev_private;
345 I915_WRITE_TAIL(ring, value);
346 }
347
348 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
349 {
350 drm_i915_private_t *dev_priv = ring->dev->dev_private;
351 u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
352 RING_ACTHD(ring->mmio_base) : ACTHD;
353
354 return I915_READ(acthd_reg);
355 }
356
357 static int init_ring_common(struct intel_ring_buffer *ring)
358 {
359 struct drm_device *dev = ring->dev;
360 drm_i915_private_t *dev_priv = dev->dev_private;
361 struct drm_i915_gem_object *obj = ring->obj;
362 int ret = 0;
363 u32 head;
364
365 if (HAS_FORCE_WAKE(dev))
366 gen6_gt_force_wake_get(dev_priv);
367
368 /* Stop the ring if it's running. */
369 I915_WRITE_CTL(ring, 0);
370 I915_WRITE_HEAD(ring, 0);
371 ring->write_tail(ring, 0);
372
373 head = I915_READ_HEAD(ring) & HEAD_ADDR;
374
375 /* G45 ring initialization fails to reset head to zero */
376 if (head != 0) {
377 DRM_DEBUG_KMS("%s head not reset to zero "
378 "ctl %08x head %08x tail %08x start %08x\n",
379 ring->name,
380 I915_READ_CTL(ring),
381 I915_READ_HEAD(ring),
382 I915_READ_TAIL(ring),
383 I915_READ_START(ring));
384
385 I915_WRITE_HEAD(ring, 0);
386
387 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
388 DRM_ERROR("failed to set %s head to zero "
389 "ctl %08x head %08x tail %08x start %08x\n",
390 ring->name,
391 I915_READ_CTL(ring),
392 I915_READ_HEAD(ring),
393 I915_READ_TAIL(ring),
394 I915_READ_START(ring));
395 }
396 }
397
398 /* Initialize the ring. This must happen _after_ we've cleared the ring
399 * registers with the above sequence (the readback of the HEAD registers
400 * also enforces ordering), otherwise the hw might lose the new ring
401 * register values. */
402 I915_WRITE_START(ring, obj->gtt_offset);
403 I915_WRITE_CTL(ring,
404 ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
405 | RING_VALID);
406
407 /* If the head is still not zero, the ring is dead */
408 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
409 I915_READ_START(ring) == obj->gtt_offset &&
410 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
411 DRM_ERROR("%s initialization failed "
412 "ctl %08x head %08x tail %08x start %08x\n",
413 ring->name,
414 I915_READ_CTL(ring),
415 I915_READ_HEAD(ring),
416 I915_READ_TAIL(ring),
417 I915_READ_START(ring));
418 ret = -EIO;
419 goto out;
420 }
421
422 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
423 i915_kernel_lost_context(ring->dev);
424 else {
425 ring->head = I915_READ_HEAD(ring);
426 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
427 ring->space = ring_space(ring);
428 ring->last_retired_head = -1;
429 }
430
431 out:
432 if (HAS_FORCE_WAKE(dev))
433 gen6_gt_force_wake_put(dev_priv);
434
435 return ret;
436 }
437
438 static int
439 init_pipe_control(struct intel_ring_buffer *ring)
440 {
441 struct pipe_control *pc;
442 struct drm_i915_gem_object *obj;
443 int ret;
444
445 if (ring->private)
446 return 0;
447
448 pc = kmalloc(sizeof(*pc), GFP_KERNEL);
449 if (!pc)
450 return -ENOMEM;
451
452 obj = i915_gem_alloc_object(ring->dev, 4096);
453 if (obj == NULL) {
454 DRM_ERROR("Failed to allocate seqno page\n");
455 ret = -ENOMEM;
456 goto err;
457 }
458
459 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
460
461 ret = i915_gem_object_pin(obj, 4096, true, false);
462 if (ret)
463 goto err_unref;
464
465 pc->gtt_offset = obj->gtt_offset;
466 pc->cpu_page = kmap(sg_page(obj->pages->sgl));
467 if (pc->cpu_page == NULL)
468 goto err_unpin;
469
470 pc->obj = obj;
471 ring->private = pc;
472 return 0;
473
474 err_unpin:
475 i915_gem_object_unpin(obj);
476 err_unref:
477 drm_gem_object_unreference(&obj->base);
478 err:
479 kfree(pc);
480 return ret;
481 }
482
483 static void
484 cleanup_pipe_control(struct intel_ring_buffer *ring)
485 {
486 struct pipe_control *pc = ring->private;
487 struct drm_i915_gem_object *obj;
488
489 if (!ring->private)
490 return;
491
492 obj = pc->obj;
493
494 kunmap(sg_page(obj->pages->sgl));
495 i915_gem_object_unpin(obj);
496 drm_gem_object_unreference(&obj->base);
497
498 kfree(pc);
499 ring->private = NULL;
500 }
501
502 static int init_render_ring(struct intel_ring_buffer *ring)
503 {
504 struct drm_device *dev = ring->dev;
505 struct drm_i915_private *dev_priv = dev->dev_private;
506 int ret = init_ring_common(ring);
507
508 if (INTEL_INFO(dev)->gen > 3) {
509 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
510 if (IS_GEN7(dev))
511 I915_WRITE(GFX_MODE_GEN7,
512 _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
513 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
514 }
515
516 if (INTEL_INFO(dev)->gen >= 5) {
517 ret = init_pipe_control(ring);
518 if (ret)
519 return ret;
520 }
521
522 if (IS_GEN6(dev)) {
523 /* From the Sandybridge PRM, volume 1 part 3, page 24:
524 * "If this bit is set, STCunit will have LRA as replacement
525 * policy. [...] This bit must be reset. LRA replacement
526 * policy is not supported."
527 */
528 I915_WRITE(CACHE_MODE_0,
529 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
530
531 /* This is not explicitly set for GEN6, so read the register.
532 * see intel_ring_mi_set_context() for why we care.
533 * TODO: consider explicitly setting the bit for GEN5
534 */
535 ring->itlb_before_ctx_switch =
536 !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
537 }
538
539 if (INTEL_INFO(dev)->gen >= 6)
540 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
541
542 if (HAS_L3_GPU_CACHE(dev))
543 I915_WRITE_IMR(ring, ~GEN6_RENDER_L3_PARITY_ERROR);
544
545 return ret;
546 }
547
548 static void render_ring_cleanup(struct intel_ring_buffer *ring)
549 {
550 struct drm_device *dev = ring->dev;
551
552 if (!ring->private)
553 return;
554
555 if (HAS_BROKEN_CS_TLB(dev))
556 drm_gem_object_unreference(to_gem_object(ring->private));
557
558 cleanup_pipe_control(ring);
559 }
560
561 static void
562 update_mboxes(struct intel_ring_buffer *ring,
563 u32 mmio_offset)
564 {
565 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
566 intel_ring_emit(ring, mmio_offset);
567 intel_ring_emit(ring, ring->outstanding_lazy_request);
568 }
569
570 /**
571 * gen6_add_request - Update the semaphore mailbox registers
572 *
573 * @ring - ring that is adding a request
574 * @seqno - return seqno stuck into the ring
575 *
576 * Update the mailbox registers in the *other* rings with the current seqno.
577 * This acts like a signal in the canonical semaphore.
578 */
579 static int
580 gen6_add_request(struct intel_ring_buffer *ring)
581 {
582 u32 mbox1_reg;
583 u32 mbox2_reg;
584 int ret;
585
586 ret = intel_ring_begin(ring, 10);
587 if (ret)
588 return ret;
589
590 mbox1_reg = ring->signal_mbox[0];
591 mbox2_reg = ring->signal_mbox[1];
592
593 update_mboxes(ring, mbox1_reg);
594 update_mboxes(ring, mbox2_reg);
595 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
596 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
597 intel_ring_emit(ring, ring->outstanding_lazy_request);
598 intel_ring_emit(ring, MI_USER_INTERRUPT);
599 intel_ring_advance(ring);
600
601 return 0;
602 }
603
604 /**
605 * intel_ring_sync - sync the waiter to the signaller on seqno
606 *
607 * @waiter - ring that is waiting
608 * @signaller - ring which has, or will signal
609 * @seqno - seqno which the waiter will block on
610 */
611 static int
612 gen6_ring_sync(struct intel_ring_buffer *waiter,
613 struct intel_ring_buffer *signaller,
614 u32 seqno)
615 {
616 int ret;
617 u32 dw1 = MI_SEMAPHORE_MBOX |
618 MI_SEMAPHORE_COMPARE |
619 MI_SEMAPHORE_REGISTER;
620
621 /* Throughout all of the GEM code, seqno passed implies our current
622 * seqno is >= the last seqno executed. However for hardware the
623 * comparison is strictly greater than.
624 */
625 seqno -= 1;
626
627 WARN_ON(signaller->semaphore_register[waiter->id] ==
628 MI_SEMAPHORE_SYNC_INVALID);
629
630 ret = intel_ring_begin(waiter, 4);
631 if (ret)
632 return ret;
633
634 intel_ring_emit(waiter,
635 dw1 | signaller->semaphore_register[waiter->id]);
636 intel_ring_emit(waiter, seqno);
637 intel_ring_emit(waiter, 0);
638 intel_ring_emit(waiter, MI_NOOP);
639 intel_ring_advance(waiter);
640
641 return 0;
642 }
643
644 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
645 do { \
646 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
647 PIPE_CONTROL_DEPTH_STALL); \
648 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
649 intel_ring_emit(ring__, 0); \
650 intel_ring_emit(ring__, 0); \
651 } while (0)
652
653 static int
654 pc_render_add_request(struct intel_ring_buffer *ring)
655 {
656 struct pipe_control *pc = ring->private;
657 u32 scratch_addr = pc->gtt_offset + 128;
658 int ret;
659
660 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
661 * incoherent with writes to memory, i.e. completely fubar,
662 * so we need to use PIPE_NOTIFY instead.
663 *
664 * However, we also need to workaround the qword write
665 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
666 * memory before requesting an interrupt.
667 */
668 ret = intel_ring_begin(ring, 32);
669 if (ret)
670 return ret;
671
672 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
673 PIPE_CONTROL_WRITE_FLUSH |
674 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
675 intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
676 intel_ring_emit(ring, ring->outstanding_lazy_request);
677 intel_ring_emit(ring, 0);
678 PIPE_CONTROL_FLUSH(ring, scratch_addr);
679 scratch_addr += 128; /* write to separate cachelines */
680 PIPE_CONTROL_FLUSH(ring, scratch_addr);
681 scratch_addr += 128;
682 PIPE_CONTROL_FLUSH(ring, scratch_addr);
683 scratch_addr += 128;
684 PIPE_CONTROL_FLUSH(ring, scratch_addr);
685 scratch_addr += 128;
686 PIPE_CONTROL_FLUSH(ring, scratch_addr);
687 scratch_addr += 128;
688 PIPE_CONTROL_FLUSH(ring, scratch_addr);
689
690 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
691 PIPE_CONTROL_WRITE_FLUSH |
692 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
693 PIPE_CONTROL_NOTIFY);
694 intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
695 intel_ring_emit(ring, ring->outstanding_lazy_request);
696 intel_ring_emit(ring, 0);
697 intel_ring_advance(ring);
698
699 return 0;
700 }
701
702 static u32
703 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
704 {
705 /* Workaround to force correct ordering between irq and seqno writes on
706 * ivb (and maybe also on snb) by reading from a CS register (like
707 * ACTHD) before reading the status page. */
708 if (!lazy_coherency)
709 intel_ring_get_active_head(ring);
710 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
711 }
712
713 static u32
714 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
715 {
716 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
717 }
718
719 static u32
720 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
721 {
722 struct pipe_control *pc = ring->private;
723 return pc->cpu_page[0];
724 }
725
726 static bool
727 gen5_ring_get_irq(struct intel_ring_buffer *ring)
728 {
729 struct drm_device *dev = ring->dev;
730 drm_i915_private_t *dev_priv = dev->dev_private;
731 unsigned long flags;
732
733 if (!dev->irq_enabled)
734 return false;
735
736 spin_lock_irqsave(&dev_priv->irq_lock, flags);
737 if (ring->irq_refcount++ == 0) {
738 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
739 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
740 POSTING_READ(GTIMR);
741 }
742 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
743
744 return true;
745 }
746
747 static void
748 gen5_ring_put_irq(struct intel_ring_buffer *ring)
749 {
750 struct drm_device *dev = ring->dev;
751 drm_i915_private_t *dev_priv = dev->dev_private;
752 unsigned long flags;
753
754 spin_lock_irqsave(&dev_priv->irq_lock, flags);
755 if (--ring->irq_refcount == 0) {
756 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
757 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
758 POSTING_READ(GTIMR);
759 }
760 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
761 }
762
763 static bool
764 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
765 {
766 struct drm_device *dev = ring->dev;
767 drm_i915_private_t *dev_priv = dev->dev_private;
768 unsigned long flags;
769
770 if (!dev->irq_enabled)
771 return false;
772
773 spin_lock_irqsave(&dev_priv->irq_lock, flags);
774 if (ring->irq_refcount++ == 0) {
775 dev_priv->irq_mask &= ~ring->irq_enable_mask;
776 I915_WRITE(IMR, dev_priv->irq_mask);
777 POSTING_READ(IMR);
778 }
779 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
780
781 return true;
782 }
783
784 static void
785 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
786 {
787 struct drm_device *dev = ring->dev;
788 drm_i915_private_t *dev_priv = dev->dev_private;
789 unsigned long flags;
790
791 spin_lock_irqsave(&dev_priv->irq_lock, flags);
792 if (--ring->irq_refcount == 0) {
793 dev_priv->irq_mask |= ring->irq_enable_mask;
794 I915_WRITE(IMR, dev_priv->irq_mask);
795 POSTING_READ(IMR);
796 }
797 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
798 }
799
800 static bool
801 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
802 {
803 struct drm_device *dev = ring->dev;
804 drm_i915_private_t *dev_priv = dev->dev_private;
805 unsigned long flags;
806
807 if (!dev->irq_enabled)
808 return false;
809
810 spin_lock_irqsave(&dev_priv->irq_lock, flags);
811 if (ring->irq_refcount++ == 0) {
812 dev_priv->irq_mask &= ~ring->irq_enable_mask;
813 I915_WRITE16(IMR, dev_priv->irq_mask);
814 POSTING_READ16(IMR);
815 }
816 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
817
818 return true;
819 }
820
821 static void
822 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
823 {
824 struct drm_device *dev = ring->dev;
825 drm_i915_private_t *dev_priv = dev->dev_private;
826 unsigned long flags;
827
828 spin_lock_irqsave(&dev_priv->irq_lock, flags);
829 if (--ring->irq_refcount == 0) {
830 dev_priv->irq_mask |= ring->irq_enable_mask;
831 I915_WRITE16(IMR, dev_priv->irq_mask);
832 POSTING_READ16(IMR);
833 }
834 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
835 }
836
837 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
838 {
839 struct drm_device *dev = ring->dev;
840 drm_i915_private_t *dev_priv = ring->dev->dev_private;
841 u32 mmio = 0;
842
843 /* The ring status page addresses are no longer next to the rest of
844 * the ring registers as of gen7.
845 */
846 if (IS_GEN7(dev)) {
847 switch (ring->id) {
848 case RCS:
849 mmio = RENDER_HWS_PGA_GEN7;
850 break;
851 case BCS:
852 mmio = BLT_HWS_PGA_GEN7;
853 break;
854 case VCS:
855 mmio = BSD_HWS_PGA_GEN7;
856 break;
857 }
858 } else if (IS_GEN6(ring->dev)) {
859 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
860 } else {
861 mmio = RING_HWS_PGA(ring->mmio_base);
862 }
863
864 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
865 POSTING_READ(mmio);
866 }
867
868 static int
869 bsd_ring_flush(struct intel_ring_buffer *ring,
870 u32 invalidate_domains,
871 u32 flush_domains)
872 {
873 int ret;
874
875 ret = intel_ring_begin(ring, 2);
876 if (ret)
877 return ret;
878
879 intel_ring_emit(ring, MI_FLUSH);
880 intel_ring_emit(ring, MI_NOOP);
881 intel_ring_advance(ring);
882 return 0;
883 }
884
885 static int
886 i9xx_add_request(struct intel_ring_buffer *ring)
887 {
888 int ret;
889
890 ret = intel_ring_begin(ring, 4);
891 if (ret)
892 return ret;
893
894 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
895 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
896 intel_ring_emit(ring, ring->outstanding_lazy_request);
897 intel_ring_emit(ring, MI_USER_INTERRUPT);
898 intel_ring_advance(ring);
899
900 return 0;
901 }
902
903 static bool
904 gen6_ring_get_irq(struct intel_ring_buffer *ring)
905 {
906 struct drm_device *dev = ring->dev;
907 drm_i915_private_t *dev_priv = dev->dev_private;
908 unsigned long flags;
909
910 if (!dev->irq_enabled)
911 return false;
912
913 /* It looks like we need to prevent the gt from suspending while waiting
914 * for an notifiy irq, otherwise irqs seem to get lost on at least the
915 * blt/bsd rings on ivb. */
916 gen6_gt_force_wake_get(dev_priv);
917
918 spin_lock_irqsave(&dev_priv->irq_lock, flags);
919 if (ring->irq_refcount++ == 0) {
920 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
921 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask |
922 GEN6_RENDER_L3_PARITY_ERROR));
923 else
924 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
925 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
926 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
927 POSTING_READ(GTIMR);
928 }
929 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
930
931 return true;
932 }
933
934 static void
935 gen6_ring_put_irq(struct intel_ring_buffer *ring)
936 {
937 struct drm_device *dev = ring->dev;
938 drm_i915_private_t *dev_priv = dev->dev_private;
939 unsigned long flags;
940
941 spin_lock_irqsave(&dev_priv->irq_lock, flags);
942 if (--ring->irq_refcount == 0) {
943 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
944 I915_WRITE_IMR(ring, ~GEN6_RENDER_L3_PARITY_ERROR);
945 else
946 I915_WRITE_IMR(ring, ~0);
947 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
948 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
949 POSTING_READ(GTIMR);
950 }
951 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
952
953 gen6_gt_force_wake_put(dev_priv);
954 }
955
956 static int
957 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
958 u32 offset, u32 length,
959 unsigned flags)
960 {
961 int ret;
962
963 ret = intel_ring_begin(ring, 2);
964 if (ret)
965 return ret;
966
967 intel_ring_emit(ring,
968 MI_BATCH_BUFFER_START |
969 MI_BATCH_GTT |
970 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
971 intel_ring_emit(ring, offset);
972 intel_ring_advance(ring);
973
974 return 0;
975 }
976
977 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
978 #define I830_BATCH_LIMIT (256*1024)
979 static int
980 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
981 u32 offset, u32 len,
982 unsigned flags)
983 {
984 int ret;
985
986 if (flags & I915_DISPATCH_PINNED) {
987 ret = intel_ring_begin(ring, 4);
988 if (ret)
989 return ret;
990
991 intel_ring_emit(ring, MI_BATCH_BUFFER);
992 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
993 intel_ring_emit(ring, offset + len - 8);
994 intel_ring_emit(ring, MI_NOOP);
995 intel_ring_advance(ring);
996 } else {
997 struct drm_i915_gem_object *obj = ring->private;
998 u32 cs_offset = obj->gtt_offset;
999
1000 if (len > I830_BATCH_LIMIT)
1001 return -ENOSPC;
1002
1003 ret = intel_ring_begin(ring, 9+3);
1004 if (ret)
1005 return ret;
1006 /* Blit the batch (which has now all relocs applied) to the stable batch
1007 * scratch bo area (so that the CS never stumbles over its tlb
1008 * invalidation bug) ... */
1009 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1010 XY_SRC_COPY_BLT_WRITE_ALPHA |
1011 XY_SRC_COPY_BLT_WRITE_RGB);
1012 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1013 intel_ring_emit(ring, 0);
1014 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1015 intel_ring_emit(ring, cs_offset);
1016 intel_ring_emit(ring, 0);
1017 intel_ring_emit(ring, 4096);
1018 intel_ring_emit(ring, offset);
1019 intel_ring_emit(ring, MI_FLUSH);
1020
1021 /* ... and execute it. */
1022 intel_ring_emit(ring, MI_BATCH_BUFFER);
1023 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1024 intel_ring_emit(ring, cs_offset + len - 8);
1025 intel_ring_advance(ring);
1026 }
1027
1028 return 0;
1029 }
1030
1031 static int
1032 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1033 u32 offset, u32 len,
1034 unsigned flags)
1035 {
1036 int ret;
1037
1038 ret = intel_ring_begin(ring, 2);
1039 if (ret)
1040 return ret;
1041
1042 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1043 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1044 intel_ring_advance(ring);
1045
1046 return 0;
1047 }
1048
1049 static void cleanup_status_page(struct intel_ring_buffer *ring)
1050 {
1051 struct drm_i915_gem_object *obj;
1052
1053 obj = ring->status_page.obj;
1054 if (obj == NULL)
1055 return;
1056
1057 kunmap(sg_page(obj->pages->sgl));
1058 i915_gem_object_unpin(obj);
1059 drm_gem_object_unreference(&obj->base);
1060 ring->status_page.obj = NULL;
1061 }
1062
1063 static int init_status_page(struct intel_ring_buffer *ring)
1064 {
1065 struct drm_device *dev = ring->dev;
1066 struct drm_i915_gem_object *obj;
1067 int ret;
1068
1069 obj = i915_gem_alloc_object(dev, 4096);
1070 if (obj == NULL) {
1071 DRM_ERROR("Failed to allocate status page\n");
1072 ret = -ENOMEM;
1073 goto err;
1074 }
1075
1076 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1077
1078 ret = i915_gem_object_pin(obj, 4096, true, false);
1079 if (ret != 0) {
1080 goto err_unref;
1081 }
1082
1083 ring->status_page.gfx_addr = obj->gtt_offset;
1084 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1085 if (ring->status_page.page_addr == NULL) {
1086 ret = -ENOMEM;
1087 goto err_unpin;
1088 }
1089 ring->status_page.obj = obj;
1090 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1091
1092 intel_ring_setup_status_page(ring);
1093 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1094 ring->name, ring->status_page.gfx_addr);
1095
1096 return 0;
1097
1098 err_unpin:
1099 i915_gem_object_unpin(obj);
1100 err_unref:
1101 drm_gem_object_unreference(&obj->base);
1102 err:
1103 return ret;
1104 }
1105
1106 static int init_phys_hws_pga(struct intel_ring_buffer *ring)
1107 {
1108 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1109 u32 addr;
1110
1111 if (!dev_priv->status_page_dmah) {
1112 dev_priv->status_page_dmah =
1113 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1114 if (!dev_priv->status_page_dmah)
1115 return -ENOMEM;
1116 }
1117
1118 addr = dev_priv->status_page_dmah->busaddr;
1119 if (INTEL_INFO(ring->dev)->gen >= 4)
1120 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
1121 I915_WRITE(HWS_PGA, addr);
1122
1123 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1124 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1125
1126 return 0;
1127 }
1128
1129 static int intel_init_ring_buffer(struct drm_device *dev,
1130 struct intel_ring_buffer *ring)
1131 {
1132 struct drm_i915_gem_object *obj;
1133 struct drm_i915_private *dev_priv = dev->dev_private;
1134 int ret;
1135
1136 ring->dev = dev;
1137 INIT_LIST_HEAD(&ring->active_list);
1138 INIT_LIST_HEAD(&ring->request_list);
1139 ring->size = 32 * PAGE_SIZE;
1140 memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1141
1142 init_waitqueue_head(&ring->irq_queue);
1143
1144 if (I915_NEED_GFX_HWS(dev)) {
1145 ret = init_status_page(ring);
1146 if (ret)
1147 return ret;
1148 } else {
1149 BUG_ON(ring->id != RCS);
1150 ret = init_phys_hws_pga(ring);
1151 if (ret)
1152 return ret;
1153 }
1154
1155 obj = i915_gem_alloc_object(dev, ring->size);
1156 if (obj == NULL) {
1157 DRM_ERROR("Failed to allocate ringbuffer\n");
1158 ret = -ENOMEM;
1159 goto err_hws;
1160 }
1161
1162 ring->obj = obj;
1163
1164 ret = i915_gem_object_pin(obj, PAGE_SIZE, true, false);
1165 if (ret)
1166 goto err_unref;
1167
1168 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1169 if (ret)
1170 goto err_unpin;
1171
1172 ring->virtual_start =
1173 ioremap_wc(dev_priv->mm.gtt->gma_bus_addr + obj->gtt_offset,
1174 ring->size);
1175 if (ring->virtual_start == NULL) {
1176 DRM_ERROR("Failed to map ringbuffer.\n");
1177 ret = -EINVAL;
1178 goto err_unpin;
1179 }
1180
1181 ret = ring->init(ring);
1182 if (ret)
1183 goto err_unmap;
1184
1185 /* Workaround an erratum on the i830 which causes a hang if
1186 * the TAIL pointer points to within the last 2 cachelines
1187 * of the buffer.
1188 */
1189 ring->effective_size = ring->size;
1190 if (IS_I830(ring->dev) || IS_845G(ring->dev))
1191 ring->effective_size -= 128;
1192
1193 return 0;
1194
1195 err_unmap:
1196 iounmap(ring->virtual_start);
1197 err_unpin:
1198 i915_gem_object_unpin(obj);
1199 err_unref:
1200 drm_gem_object_unreference(&obj->base);
1201 ring->obj = NULL;
1202 err_hws:
1203 cleanup_status_page(ring);
1204 return ret;
1205 }
1206
1207 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1208 {
1209 struct drm_i915_private *dev_priv;
1210 int ret;
1211
1212 if (ring->obj == NULL)
1213 return;
1214
1215 /* Disable the ring buffer. The ring must be idle at this point */
1216 dev_priv = ring->dev->dev_private;
1217 ret = intel_ring_idle(ring);
1218 if (ret)
1219 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1220 ring->name, ret);
1221
1222 I915_WRITE_CTL(ring, 0);
1223
1224 iounmap(ring->virtual_start);
1225
1226 i915_gem_object_unpin(ring->obj);
1227 drm_gem_object_unreference(&ring->obj->base);
1228 ring->obj = NULL;
1229
1230 if (ring->cleanup)
1231 ring->cleanup(ring);
1232
1233 cleanup_status_page(ring);
1234 }
1235
1236 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1237 {
1238 int ret;
1239
1240 ret = i915_wait_seqno(ring, seqno);
1241 if (!ret)
1242 i915_gem_retire_requests_ring(ring);
1243
1244 return ret;
1245 }
1246
1247 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1248 {
1249 struct drm_i915_gem_request *request;
1250 u32 seqno = 0;
1251 int ret;
1252
1253 i915_gem_retire_requests_ring(ring);
1254
1255 if (ring->last_retired_head != -1) {
1256 ring->head = ring->last_retired_head;
1257 ring->last_retired_head = -1;
1258 ring->space = ring_space(ring);
1259 if (ring->space >= n)
1260 return 0;
1261 }
1262
1263 list_for_each_entry(request, &ring->request_list, list) {
1264 int space;
1265
1266 if (request->tail == -1)
1267 continue;
1268
1269 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1270 if (space < 0)
1271 space += ring->size;
1272 if (space >= n) {
1273 seqno = request->seqno;
1274 break;
1275 }
1276
1277 /* Consume this request in case we need more space than
1278 * is available and so need to prevent a race between
1279 * updating last_retired_head and direct reads of
1280 * I915_RING_HEAD. It also provides a nice sanity check.
1281 */
1282 request->tail = -1;
1283 }
1284
1285 if (seqno == 0)
1286 return -ENOSPC;
1287
1288 ret = intel_ring_wait_seqno(ring, seqno);
1289 if (ret)
1290 return ret;
1291
1292 if (WARN_ON(ring->last_retired_head == -1))
1293 return -ENOSPC;
1294
1295 ring->head = ring->last_retired_head;
1296 ring->last_retired_head = -1;
1297 ring->space = ring_space(ring);
1298 if (WARN_ON(ring->space < n))
1299 return -ENOSPC;
1300
1301 return 0;
1302 }
1303
1304 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1305 {
1306 struct drm_device *dev = ring->dev;
1307 struct drm_i915_private *dev_priv = dev->dev_private;
1308 unsigned long end;
1309 int ret;
1310
1311 ret = intel_ring_wait_request(ring, n);
1312 if (ret != -ENOSPC)
1313 return ret;
1314
1315 trace_i915_ring_wait_begin(ring);
1316 /* With GEM the hangcheck timer should kick us out of the loop,
1317 * leaving it early runs the risk of corrupting GEM state (due
1318 * to running on almost untested codepaths). But on resume
1319 * timers don't work yet, so prevent a complete hang in that
1320 * case by choosing an insanely large timeout. */
1321 end = jiffies + 60 * HZ;
1322
1323 do {
1324 ring->head = I915_READ_HEAD(ring);
1325 ring->space = ring_space(ring);
1326 if (ring->space >= n) {
1327 trace_i915_ring_wait_end(ring);
1328 return 0;
1329 }
1330
1331 if (dev->primary->master) {
1332 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1333 if (master_priv->sarea_priv)
1334 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1335 }
1336
1337 msleep(1);
1338
1339 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
1340 if (ret)
1341 return ret;
1342 } while (!time_after(jiffies, end));
1343 trace_i915_ring_wait_end(ring);
1344 return -EBUSY;
1345 }
1346
1347 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1348 {
1349 uint32_t __iomem *virt;
1350 int rem = ring->size - ring->tail;
1351
1352 if (ring->space < rem) {
1353 int ret = ring_wait_for_space(ring, rem);
1354 if (ret)
1355 return ret;
1356 }
1357
1358 virt = ring->virtual_start + ring->tail;
1359 rem /= 4;
1360 while (rem--)
1361 iowrite32(MI_NOOP, virt++);
1362
1363 ring->tail = 0;
1364 ring->space = ring_space(ring);
1365
1366 return 0;
1367 }
1368
1369 int intel_ring_idle(struct intel_ring_buffer *ring)
1370 {
1371 u32 seqno;
1372 int ret;
1373
1374 /* We need to add any requests required to flush the objects and ring */
1375 if (ring->outstanding_lazy_request) {
1376 ret = i915_add_request(ring, NULL, NULL);
1377 if (ret)
1378 return ret;
1379 }
1380
1381 /* Wait upon the last request to be completed */
1382 if (list_empty(&ring->request_list))
1383 return 0;
1384
1385 seqno = list_entry(ring->request_list.prev,
1386 struct drm_i915_gem_request,
1387 list)->seqno;
1388
1389 return i915_wait_seqno(ring, seqno);
1390 }
1391
1392 static int
1393 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1394 {
1395 if (ring->outstanding_lazy_request)
1396 return 0;
1397
1398 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_request);
1399 }
1400
1401 int intel_ring_begin(struct intel_ring_buffer *ring,
1402 int num_dwords)
1403 {
1404 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1405 int n = 4*num_dwords;
1406 int ret;
1407
1408 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
1409 if (ret)
1410 return ret;
1411
1412 /* Preallocate the olr before touching the ring */
1413 ret = intel_ring_alloc_seqno(ring);
1414 if (ret)
1415 return ret;
1416
1417 if (unlikely(ring->tail + n > ring->effective_size)) {
1418 ret = intel_wrap_ring_buffer(ring);
1419 if (unlikely(ret))
1420 return ret;
1421 }
1422
1423 if (unlikely(ring->space < n)) {
1424 ret = ring_wait_for_space(ring, n);
1425 if (unlikely(ret))
1426 return ret;
1427 }
1428
1429 ring->space -= n;
1430 return 0;
1431 }
1432
1433 void intel_ring_advance(struct intel_ring_buffer *ring)
1434 {
1435 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1436
1437 ring->tail &= ring->size - 1;
1438 if (dev_priv->stop_rings & intel_ring_flag(ring))
1439 return;
1440 ring->write_tail(ring, ring->tail);
1441 }
1442
1443
1444 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1445 u32 value)
1446 {
1447 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1448
1449 /* Every tail move must follow the sequence below */
1450
1451 /* Disable notification that the ring is IDLE. The GT
1452 * will then assume that it is busy and bring it out of rc6.
1453 */
1454 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1455 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1456
1457 /* Clear the context id. Here be magic! */
1458 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1459
1460 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1461 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1462 GEN6_BSD_SLEEP_INDICATOR) == 0,
1463 50))
1464 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1465
1466 /* Now that the ring is fully powered up, update the tail */
1467 I915_WRITE_TAIL(ring, value);
1468 POSTING_READ(RING_TAIL(ring->mmio_base));
1469
1470 /* Let the ring send IDLE messages to the GT again,
1471 * and so let it sleep to conserve power when idle.
1472 */
1473 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1474 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1475 }
1476
1477 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1478 u32 invalidate, u32 flush)
1479 {
1480 uint32_t cmd;
1481 int ret;
1482
1483 ret = intel_ring_begin(ring, 4);
1484 if (ret)
1485 return ret;
1486
1487 cmd = MI_FLUSH_DW;
1488 /*
1489 * Bspec vol 1c.5 - video engine command streamer:
1490 * "If ENABLED, all TLBs will be invalidated once the flush
1491 * operation is complete. This bit is only valid when the
1492 * Post-Sync Operation field is a value of 1h or 3h."
1493 */
1494 if (invalidate & I915_GEM_GPU_DOMAINS)
1495 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1496 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1497 intel_ring_emit(ring, cmd);
1498 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1499 intel_ring_emit(ring, 0);
1500 intel_ring_emit(ring, MI_NOOP);
1501 intel_ring_advance(ring);
1502 return 0;
1503 }
1504
1505 static int
1506 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1507 u32 offset, u32 len,
1508 unsigned flags)
1509 {
1510 int ret;
1511
1512 ret = intel_ring_begin(ring, 2);
1513 if (ret)
1514 return ret;
1515
1516 intel_ring_emit(ring,
1517 MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1518 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1519 /* bit0-7 is the length on GEN6+ */
1520 intel_ring_emit(ring, offset);
1521 intel_ring_advance(ring);
1522
1523 return 0;
1524 }
1525
1526 static int
1527 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1528 u32 offset, u32 len,
1529 unsigned flags)
1530 {
1531 int ret;
1532
1533 ret = intel_ring_begin(ring, 2);
1534 if (ret)
1535 return ret;
1536
1537 intel_ring_emit(ring,
1538 MI_BATCH_BUFFER_START |
1539 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1540 /* bit0-7 is the length on GEN6+ */
1541 intel_ring_emit(ring, offset);
1542 intel_ring_advance(ring);
1543
1544 return 0;
1545 }
1546
1547 /* Blitter support (SandyBridge+) */
1548
1549 static int blt_ring_flush(struct intel_ring_buffer *ring,
1550 u32 invalidate, u32 flush)
1551 {
1552 uint32_t cmd;
1553 int ret;
1554
1555 ret = intel_ring_begin(ring, 4);
1556 if (ret)
1557 return ret;
1558
1559 cmd = MI_FLUSH_DW;
1560 /*
1561 * Bspec vol 1c.3 - blitter engine command streamer:
1562 * "If ENABLED, all TLBs will be invalidated once the flush
1563 * operation is complete. This bit is only valid when the
1564 * Post-Sync Operation field is a value of 1h or 3h."
1565 */
1566 if (invalidate & I915_GEM_DOMAIN_RENDER)
1567 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1568 MI_FLUSH_DW_OP_STOREDW;
1569 intel_ring_emit(ring, cmd);
1570 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1571 intel_ring_emit(ring, 0);
1572 intel_ring_emit(ring, MI_NOOP);
1573 intel_ring_advance(ring);
1574 return 0;
1575 }
1576
1577 int intel_init_render_ring_buffer(struct drm_device *dev)
1578 {
1579 drm_i915_private_t *dev_priv = dev->dev_private;
1580 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1581
1582 ring->name = "render ring";
1583 ring->id = RCS;
1584 ring->mmio_base = RENDER_RING_BASE;
1585
1586 if (INTEL_INFO(dev)->gen >= 6) {
1587 ring->add_request = gen6_add_request;
1588 ring->flush = gen7_render_ring_flush;
1589 if (INTEL_INFO(dev)->gen == 6)
1590 ring->flush = gen6_render_ring_flush;
1591 ring->irq_get = gen6_ring_get_irq;
1592 ring->irq_put = gen6_ring_put_irq;
1593 ring->irq_enable_mask = GT_USER_INTERRUPT;
1594 ring->get_seqno = gen6_ring_get_seqno;
1595 ring->sync_to = gen6_ring_sync;
1596 ring->semaphore_register[0] = MI_SEMAPHORE_SYNC_INVALID;
1597 ring->semaphore_register[1] = MI_SEMAPHORE_SYNC_RV;
1598 ring->semaphore_register[2] = MI_SEMAPHORE_SYNC_RB;
1599 ring->signal_mbox[0] = GEN6_VRSYNC;
1600 ring->signal_mbox[1] = GEN6_BRSYNC;
1601 } else if (IS_GEN5(dev)) {
1602 ring->add_request = pc_render_add_request;
1603 ring->flush = gen4_render_ring_flush;
1604 ring->get_seqno = pc_render_get_seqno;
1605 ring->irq_get = gen5_ring_get_irq;
1606 ring->irq_put = gen5_ring_put_irq;
1607 ring->irq_enable_mask = GT_USER_INTERRUPT | GT_PIPE_NOTIFY;
1608 } else {
1609 ring->add_request = i9xx_add_request;
1610 if (INTEL_INFO(dev)->gen < 4)
1611 ring->flush = gen2_render_ring_flush;
1612 else
1613 ring->flush = gen4_render_ring_flush;
1614 ring->get_seqno = ring_get_seqno;
1615 if (IS_GEN2(dev)) {
1616 ring->irq_get = i8xx_ring_get_irq;
1617 ring->irq_put = i8xx_ring_put_irq;
1618 } else {
1619 ring->irq_get = i9xx_ring_get_irq;
1620 ring->irq_put = i9xx_ring_put_irq;
1621 }
1622 ring->irq_enable_mask = I915_USER_INTERRUPT;
1623 }
1624 ring->write_tail = ring_write_tail;
1625 if (IS_HASWELL(dev))
1626 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1627 else if (INTEL_INFO(dev)->gen >= 6)
1628 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1629 else if (INTEL_INFO(dev)->gen >= 4)
1630 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1631 else if (IS_I830(dev) || IS_845G(dev))
1632 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1633 else
1634 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1635 ring->init = init_render_ring;
1636 ring->cleanup = render_ring_cleanup;
1637
1638 /* Workaround batchbuffer to combat CS tlb bug. */
1639 if (HAS_BROKEN_CS_TLB(dev)) {
1640 struct drm_i915_gem_object *obj;
1641 int ret;
1642
1643 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1644 if (obj == NULL) {
1645 DRM_ERROR("Failed to allocate batch bo\n");
1646 return -ENOMEM;
1647 }
1648
1649 ret = i915_gem_object_pin(obj, 0, true, false);
1650 if (ret != 0) {
1651 drm_gem_object_unreference(&obj->base);
1652 DRM_ERROR("Failed to ping batch bo\n");
1653 return ret;
1654 }
1655
1656 ring->private = obj;
1657 }
1658
1659 return intel_init_ring_buffer(dev, ring);
1660 }
1661
1662 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1663 {
1664 drm_i915_private_t *dev_priv = dev->dev_private;
1665 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1666 int ret;
1667
1668 ring->name = "render ring";
1669 ring->id = RCS;
1670 ring->mmio_base = RENDER_RING_BASE;
1671
1672 if (INTEL_INFO(dev)->gen >= 6) {
1673 /* non-kms not supported on gen6+ */
1674 return -ENODEV;
1675 }
1676
1677 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1678 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1679 * the special gen5 functions. */
1680 ring->add_request = i9xx_add_request;
1681 if (INTEL_INFO(dev)->gen < 4)
1682 ring->flush = gen2_render_ring_flush;
1683 else
1684 ring->flush = gen4_render_ring_flush;
1685 ring->get_seqno = ring_get_seqno;
1686 if (IS_GEN2(dev)) {
1687 ring->irq_get = i8xx_ring_get_irq;
1688 ring->irq_put = i8xx_ring_put_irq;
1689 } else {
1690 ring->irq_get = i9xx_ring_get_irq;
1691 ring->irq_put = i9xx_ring_put_irq;
1692 }
1693 ring->irq_enable_mask = I915_USER_INTERRUPT;
1694 ring->write_tail = ring_write_tail;
1695 if (INTEL_INFO(dev)->gen >= 4)
1696 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1697 else if (IS_I830(dev) || IS_845G(dev))
1698 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1699 else
1700 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1701 ring->init = init_render_ring;
1702 ring->cleanup = render_ring_cleanup;
1703
1704 ring->dev = dev;
1705 INIT_LIST_HEAD(&ring->active_list);
1706 INIT_LIST_HEAD(&ring->request_list);
1707
1708 ring->size = size;
1709 ring->effective_size = ring->size;
1710 if (IS_I830(ring->dev) || IS_845G(ring->dev))
1711 ring->effective_size -= 128;
1712
1713 ring->virtual_start = ioremap_wc(start, size);
1714 if (ring->virtual_start == NULL) {
1715 DRM_ERROR("can not ioremap virtual address for"
1716 " ring buffer\n");
1717 return -ENOMEM;
1718 }
1719
1720 if (!I915_NEED_GFX_HWS(dev)) {
1721 ret = init_phys_hws_pga(ring);
1722 if (ret)
1723 return ret;
1724 }
1725
1726 return 0;
1727 }
1728
1729 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1730 {
1731 drm_i915_private_t *dev_priv = dev->dev_private;
1732 struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1733
1734 ring->name = "bsd ring";
1735 ring->id = VCS;
1736
1737 ring->write_tail = ring_write_tail;
1738 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1739 ring->mmio_base = GEN6_BSD_RING_BASE;
1740 /* gen6 bsd needs a special wa for tail updates */
1741 if (IS_GEN6(dev))
1742 ring->write_tail = gen6_bsd_ring_write_tail;
1743 ring->flush = gen6_ring_flush;
1744 ring->add_request = gen6_add_request;
1745 ring->get_seqno = gen6_ring_get_seqno;
1746 ring->irq_enable_mask = GEN6_BSD_USER_INTERRUPT;
1747 ring->irq_get = gen6_ring_get_irq;
1748 ring->irq_put = gen6_ring_put_irq;
1749 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1750 ring->sync_to = gen6_ring_sync;
1751 ring->semaphore_register[0] = MI_SEMAPHORE_SYNC_VR;
1752 ring->semaphore_register[1] = MI_SEMAPHORE_SYNC_INVALID;
1753 ring->semaphore_register[2] = MI_SEMAPHORE_SYNC_VB;
1754 ring->signal_mbox[0] = GEN6_RVSYNC;
1755 ring->signal_mbox[1] = GEN6_BVSYNC;
1756 } else {
1757 ring->mmio_base = BSD_RING_BASE;
1758 ring->flush = bsd_ring_flush;
1759 ring->add_request = i9xx_add_request;
1760 ring->get_seqno = ring_get_seqno;
1761 if (IS_GEN5(dev)) {
1762 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1763 ring->irq_get = gen5_ring_get_irq;
1764 ring->irq_put = gen5_ring_put_irq;
1765 } else {
1766 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1767 ring->irq_get = i9xx_ring_get_irq;
1768 ring->irq_put = i9xx_ring_put_irq;
1769 }
1770 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1771 }
1772 ring->init = init_ring_common;
1773
1774 return intel_init_ring_buffer(dev, ring);
1775 }
1776
1777 int intel_init_blt_ring_buffer(struct drm_device *dev)
1778 {
1779 drm_i915_private_t *dev_priv = dev->dev_private;
1780 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1781
1782 ring->name = "blitter ring";
1783 ring->id = BCS;
1784
1785 ring->mmio_base = BLT_RING_BASE;
1786 ring->write_tail = ring_write_tail;
1787 ring->flush = blt_ring_flush;
1788 ring->add_request = gen6_add_request;
1789 ring->get_seqno = gen6_ring_get_seqno;
1790 ring->irq_enable_mask = GEN6_BLITTER_USER_INTERRUPT;
1791 ring->irq_get = gen6_ring_get_irq;
1792 ring->irq_put = gen6_ring_put_irq;
1793 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1794 ring->sync_to = gen6_ring_sync;
1795 ring->semaphore_register[0] = MI_SEMAPHORE_SYNC_BR;
1796 ring->semaphore_register[1] = MI_SEMAPHORE_SYNC_BV;
1797 ring->semaphore_register[2] = MI_SEMAPHORE_SYNC_INVALID;
1798 ring->signal_mbox[0] = GEN6_RBSYNC;
1799 ring->signal_mbox[1] = GEN6_VBSYNC;
1800 ring->init = init_ring_common;
1801
1802 return intel_init_ring_buffer(dev, ring);
1803 }
1804
1805 int
1806 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
1807 {
1808 int ret;
1809
1810 if (!ring->gpu_caches_dirty)
1811 return 0;
1812
1813 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
1814 if (ret)
1815 return ret;
1816
1817 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
1818
1819 ring->gpu_caches_dirty = false;
1820 return 0;
1821 }
1822
1823 int
1824 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
1825 {
1826 uint32_t flush_domains;
1827 int ret;
1828
1829 flush_domains = 0;
1830 if (ring->gpu_caches_dirty)
1831 flush_domains = I915_GEM_GPU_DOMAINS;
1832
1833 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
1834 if (ret)
1835 return ret;
1836
1837 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
1838
1839 ring->gpu_caches_dirty = false;
1840 return 0;
1841 }
This page took 0.071695 seconds and 6 git commands to generate.