Merge branch 'fixes' of git://git.linaro.org/people/rmk/linux-arm
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 /*
37 * 965+ support PIPE_CONTROL commands, which provide finer grained control
38 * over cache flushing.
39 */
40 struct pipe_control {
41 struct drm_i915_gem_object *obj;
42 volatile u32 *cpu_page;
43 u32 gtt_offset;
44 };
45
46 static inline int ring_space(struct intel_ring_buffer *ring)
47 {
48 int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
49 if (space < 0)
50 space += ring->size;
51 return space;
52 }
53
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56 u32 invalidate_domains,
57 u32 flush_domains)
58 {
59 u32 cmd;
60 int ret;
61
62 cmd = MI_FLUSH;
63 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64 cmd |= MI_NO_WRITE_FLUSH;
65
66 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67 cmd |= MI_READ_FLUSH;
68
69 ret = intel_ring_begin(ring, 2);
70 if (ret)
71 return ret;
72
73 intel_ring_emit(ring, cmd);
74 intel_ring_emit(ring, MI_NOOP);
75 intel_ring_advance(ring);
76
77 return 0;
78 }
79
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82 u32 invalidate_domains,
83 u32 flush_domains)
84 {
85 struct drm_device *dev = ring->dev;
86 u32 cmd;
87 int ret;
88
89 /*
90 * read/write caches:
91 *
92 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
94 * also flushed at 2d versus 3d pipeline switches.
95 *
96 * read-only caches:
97 *
98 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99 * MI_READ_FLUSH is set, and is always flushed on 965.
100 *
101 * I915_GEM_DOMAIN_COMMAND may not exist?
102 *
103 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104 * invalidated when MI_EXE_FLUSH is set.
105 *
106 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107 * invalidated with every MI_FLUSH.
108 *
109 * TLBs:
110 *
111 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114 * are flushed at any MI_FLUSH.
115 */
116
117 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119 cmd &= ~MI_NO_WRITE_FLUSH;
120 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121 cmd |= MI_EXE_FLUSH;
122
123 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124 (IS_G4X(dev) || IS_GEN5(dev)))
125 cmd |= MI_INVALIDATE_ISP;
126
127 ret = intel_ring_begin(ring, 2);
128 if (ret)
129 return ret;
130
131 intel_ring_emit(ring, cmd);
132 intel_ring_emit(ring, MI_NOOP);
133 intel_ring_advance(ring);
134
135 return 0;
136 }
137
138 /**
139 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140 * implementing two workarounds on gen6. From section 1.4.7.1
141 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142 *
143 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144 * produced by non-pipelined state commands), software needs to first
145 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146 * 0.
147 *
148 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150 *
151 * And the workaround for these two requires this workaround first:
152 *
153 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154 * BEFORE the pipe-control with a post-sync op and no write-cache
155 * flushes.
156 *
157 * And this last workaround is tricky because of the requirements on
158 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159 * volume 2 part 1:
160 *
161 * "1 of the following must also be set:
162 * - Render Target Cache Flush Enable ([12] of DW1)
163 * - Depth Cache Flush Enable ([0] of DW1)
164 * - Stall at Pixel Scoreboard ([1] of DW1)
165 * - Depth Stall ([13] of DW1)
166 * - Post-Sync Operation ([13] of DW1)
167 * - Notify Enable ([8] of DW1)"
168 *
169 * The cache flushes require the workaround flush that triggered this
170 * one, so we can't use it. Depth stall would trigger the same.
171 * Post-sync nonzero is what triggered this second workaround, so we
172 * can't use that one either. Notify enable is IRQs, which aren't
173 * really our business. That leaves only stall at scoreboard.
174 */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178 struct pipe_control *pc = ring->private;
179 u32 scratch_addr = pc->gtt_offset + 128;
180 int ret;
181
182
183 ret = intel_ring_begin(ring, 6);
184 if (ret)
185 return ret;
186
187 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
188 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
189 PIPE_CONTROL_STALL_AT_SCOREBOARD);
190 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
191 intel_ring_emit(ring, 0); /* low dword */
192 intel_ring_emit(ring, 0); /* high dword */
193 intel_ring_emit(ring, MI_NOOP);
194 intel_ring_advance(ring);
195
196 ret = intel_ring_begin(ring, 6);
197 if (ret)
198 return ret;
199
200 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
201 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
202 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
203 intel_ring_emit(ring, 0);
204 intel_ring_emit(ring, 0);
205 intel_ring_emit(ring, MI_NOOP);
206 intel_ring_advance(ring);
207
208 return 0;
209 }
210
211 static int
212 gen6_render_ring_flush(struct intel_ring_buffer *ring,
213 u32 invalidate_domains, u32 flush_domains)
214 {
215 u32 flags = 0;
216 struct pipe_control *pc = ring->private;
217 u32 scratch_addr = pc->gtt_offset + 128;
218 int ret;
219
220 /* Force SNB workarounds for PIPE_CONTROL flushes */
221 ret = intel_emit_post_sync_nonzero_flush(ring);
222 if (ret)
223 return ret;
224
225 /* Just flush everything. Experiments have shown that reducing the
226 * number of bits based on the write domains has little performance
227 * impact.
228 */
229 if (flush_domains) {
230 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
231 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
232 /*
233 * Ensure that any following seqno writes only happen
234 * when the render cache is indeed flushed.
235 */
236 flags |= PIPE_CONTROL_CS_STALL;
237 }
238 if (invalidate_domains) {
239 flags |= PIPE_CONTROL_TLB_INVALIDATE;
240 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
243 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
244 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
245 /*
246 * TLB invalidate requires a post-sync write.
247 */
248 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
249 }
250
251 ret = intel_ring_begin(ring, 4);
252 if (ret)
253 return ret;
254
255 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
256 intel_ring_emit(ring, flags);
257 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
258 intel_ring_emit(ring, 0);
259 intel_ring_advance(ring);
260
261 return 0;
262 }
263
264 static int
265 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
266 {
267 int ret;
268
269 ret = intel_ring_begin(ring, 4);
270 if (ret)
271 return ret;
272
273 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
274 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
275 PIPE_CONTROL_STALL_AT_SCOREBOARD);
276 intel_ring_emit(ring, 0);
277 intel_ring_emit(ring, 0);
278 intel_ring_advance(ring);
279
280 return 0;
281 }
282
283 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
284 {
285 int ret;
286
287 if (!ring->fbc_dirty)
288 return 0;
289
290 ret = intel_ring_begin(ring, 4);
291 if (ret)
292 return ret;
293 intel_ring_emit(ring, MI_NOOP);
294 /* WaFbcNukeOn3DBlt:ivb/hsw */
295 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
296 intel_ring_emit(ring, MSG_FBC_REND_STATE);
297 intel_ring_emit(ring, value);
298 intel_ring_advance(ring);
299
300 ring->fbc_dirty = false;
301 return 0;
302 }
303
304 static int
305 gen7_render_ring_flush(struct intel_ring_buffer *ring,
306 u32 invalidate_domains, u32 flush_domains)
307 {
308 u32 flags = 0;
309 struct pipe_control *pc = ring->private;
310 u32 scratch_addr = pc->gtt_offset + 128;
311 int ret;
312
313 /*
314 * Ensure that any following seqno writes only happen when the render
315 * cache is indeed flushed.
316 *
317 * Workaround: 4th PIPE_CONTROL command (except the ones with only
318 * read-cache invalidate bits set) must have the CS_STALL bit set. We
319 * don't try to be clever and just set it unconditionally.
320 */
321 flags |= PIPE_CONTROL_CS_STALL;
322
323 /* Just flush everything. Experiments have shown that reducing the
324 * number of bits based on the write domains has little performance
325 * impact.
326 */
327 if (flush_domains) {
328 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
329 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
330 }
331 if (invalidate_domains) {
332 flags |= PIPE_CONTROL_TLB_INVALIDATE;
333 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
334 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
335 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
336 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
337 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
338 /*
339 * TLB invalidate requires a post-sync write.
340 */
341 flags |= PIPE_CONTROL_QW_WRITE;
342 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
343
344 /* Workaround: we must issue a pipe_control with CS-stall bit
345 * set before a pipe_control command that has the state cache
346 * invalidate bit set. */
347 gen7_render_ring_cs_stall_wa(ring);
348 }
349
350 ret = intel_ring_begin(ring, 4);
351 if (ret)
352 return ret;
353
354 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
355 intel_ring_emit(ring, flags);
356 intel_ring_emit(ring, scratch_addr);
357 intel_ring_emit(ring, 0);
358 intel_ring_advance(ring);
359
360 if (flush_domains)
361 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
362
363 return 0;
364 }
365
366 static void ring_write_tail(struct intel_ring_buffer *ring,
367 u32 value)
368 {
369 drm_i915_private_t *dev_priv = ring->dev->dev_private;
370 I915_WRITE_TAIL(ring, value);
371 }
372
373 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
374 {
375 drm_i915_private_t *dev_priv = ring->dev->dev_private;
376 u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
377 RING_ACTHD(ring->mmio_base) : ACTHD;
378
379 return I915_READ(acthd_reg);
380 }
381
382 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
383 {
384 struct drm_i915_private *dev_priv = ring->dev->dev_private;
385 u32 addr;
386
387 addr = dev_priv->status_page_dmah->busaddr;
388 if (INTEL_INFO(ring->dev)->gen >= 4)
389 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
390 I915_WRITE(HWS_PGA, addr);
391 }
392
393 static int init_ring_common(struct intel_ring_buffer *ring)
394 {
395 struct drm_device *dev = ring->dev;
396 drm_i915_private_t *dev_priv = dev->dev_private;
397 struct drm_i915_gem_object *obj = ring->obj;
398 int ret = 0;
399 u32 head;
400
401 if (HAS_FORCE_WAKE(dev))
402 gen6_gt_force_wake_get(dev_priv);
403
404 if (I915_NEED_GFX_HWS(dev))
405 intel_ring_setup_status_page(ring);
406 else
407 ring_setup_phys_status_page(ring);
408
409 /* Stop the ring if it's running. */
410 I915_WRITE_CTL(ring, 0);
411 I915_WRITE_HEAD(ring, 0);
412 ring->write_tail(ring, 0);
413
414 head = I915_READ_HEAD(ring) & HEAD_ADDR;
415
416 /* G45 ring initialization fails to reset head to zero */
417 if (head != 0) {
418 DRM_DEBUG_KMS("%s head not reset to zero "
419 "ctl %08x head %08x tail %08x start %08x\n",
420 ring->name,
421 I915_READ_CTL(ring),
422 I915_READ_HEAD(ring),
423 I915_READ_TAIL(ring),
424 I915_READ_START(ring));
425
426 I915_WRITE_HEAD(ring, 0);
427
428 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
429 DRM_ERROR("failed to set %s head to zero "
430 "ctl %08x head %08x tail %08x start %08x\n",
431 ring->name,
432 I915_READ_CTL(ring),
433 I915_READ_HEAD(ring),
434 I915_READ_TAIL(ring),
435 I915_READ_START(ring));
436 }
437 }
438
439 /* Initialize the ring. This must happen _after_ we've cleared the ring
440 * registers with the above sequence (the readback of the HEAD registers
441 * also enforces ordering), otherwise the hw might lose the new ring
442 * register values. */
443 I915_WRITE_START(ring, obj->gtt_offset);
444 I915_WRITE_CTL(ring,
445 ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
446 | RING_VALID);
447
448 /* If the head is still not zero, the ring is dead */
449 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
450 I915_READ_START(ring) == obj->gtt_offset &&
451 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
452 DRM_ERROR("%s initialization failed "
453 "ctl %08x head %08x tail %08x start %08x\n",
454 ring->name,
455 I915_READ_CTL(ring),
456 I915_READ_HEAD(ring),
457 I915_READ_TAIL(ring),
458 I915_READ_START(ring));
459 ret = -EIO;
460 goto out;
461 }
462
463 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
464 i915_kernel_lost_context(ring->dev);
465 else {
466 ring->head = I915_READ_HEAD(ring);
467 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
468 ring->space = ring_space(ring);
469 ring->last_retired_head = -1;
470 }
471
472 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
473
474 out:
475 if (HAS_FORCE_WAKE(dev))
476 gen6_gt_force_wake_put(dev_priv);
477
478 return ret;
479 }
480
481 static int
482 init_pipe_control(struct intel_ring_buffer *ring)
483 {
484 struct pipe_control *pc;
485 struct drm_i915_gem_object *obj;
486 int ret;
487
488 if (ring->private)
489 return 0;
490
491 pc = kmalloc(sizeof(*pc), GFP_KERNEL);
492 if (!pc)
493 return -ENOMEM;
494
495 obj = i915_gem_alloc_object(ring->dev, 4096);
496 if (obj == NULL) {
497 DRM_ERROR("Failed to allocate seqno page\n");
498 ret = -ENOMEM;
499 goto err;
500 }
501
502 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
503
504 ret = i915_gem_object_pin(obj, 4096, true, false);
505 if (ret)
506 goto err_unref;
507
508 pc->gtt_offset = obj->gtt_offset;
509 pc->cpu_page = kmap(sg_page(obj->pages->sgl));
510 if (pc->cpu_page == NULL) {
511 ret = -ENOMEM;
512 goto err_unpin;
513 }
514
515 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
516 ring->name, pc->gtt_offset);
517
518 pc->obj = obj;
519 ring->private = pc;
520 return 0;
521
522 err_unpin:
523 i915_gem_object_unpin(obj);
524 err_unref:
525 drm_gem_object_unreference(&obj->base);
526 err:
527 kfree(pc);
528 return ret;
529 }
530
531 static void
532 cleanup_pipe_control(struct intel_ring_buffer *ring)
533 {
534 struct pipe_control *pc = ring->private;
535 struct drm_i915_gem_object *obj;
536
537 obj = pc->obj;
538
539 kunmap(sg_page(obj->pages->sgl));
540 i915_gem_object_unpin(obj);
541 drm_gem_object_unreference(&obj->base);
542
543 kfree(pc);
544 }
545
546 static int init_render_ring(struct intel_ring_buffer *ring)
547 {
548 struct drm_device *dev = ring->dev;
549 struct drm_i915_private *dev_priv = dev->dev_private;
550 int ret = init_ring_common(ring);
551
552 if (INTEL_INFO(dev)->gen > 3)
553 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
554
555 /* We need to disable the AsyncFlip performance optimisations in order
556 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
557 * programmed to '1' on all products.
558 *
559 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
560 */
561 if (INTEL_INFO(dev)->gen >= 6)
562 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
563
564 /* Required for the hardware to program scanline values for waiting */
565 if (INTEL_INFO(dev)->gen == 6)
566 I915_WRITE(GFX_MODE,
567 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
568
569 if (IS_GEN7(dev))
570 I915_WRITE(GFX_MODE_GEN7,
571 _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
572 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
573
574 if (INTEL_INFO(dev)->gen >= 5) {
575 ret = init_pipe_control(ring);
576 if (ret)
577 return ret;
578 }
579
580 if (IS_GEN6(dev)) {
581 /* From the Sandybridge PRM, volume 1 part 3, page 24:
582 * "If this bit is set, STCunit will have LRA as replacement
583 * policy. [...] This bit must be reset. LRA replacement
584 * policy is not supported."
585 */
586 I915_WRITE(CACHE_MODE_0,
587 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
588
589 /* This is not explicitly set for GEN6, so read the register.
590 * see intel_ring_mi_set_context() for why we care.
591 * TODO: consider explicitly setting the bit for GEN5
592 */
593 ring->itlb_before_ctx_switch =
594 !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
595 }
596
597 if (INTEL_INFO(dev)->gen >= 6)
598 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
599
600 if (HAS_L3_GPU_CACHE(dev))
601 I915_WRITE_IMR(ring, ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
602
603 return ret;
604 }
605
606 static void render_ring_cleanup(struct intel_ring_buffer *ring)
607 {
608 struct drm_device *dev = ring->dev;
609
610 if (!ring->private)
611 return;
612
613 if (HAS_BROKEN_CS_TLB(dev))
614 drm_gem_object_unreference(to_gem_object(ring->private));
615
616 if (INTEL_INFO(dev)->gen >= 5)
617 cleanup_pipe_control(ring);
618
619 ring->private = NULL;
620 }
621
622 static void
623 update_mboxes(struct intel_ring_buffer *ring,
624 u32 mmio_offset)
625 {
626 /* NB: In order to be able to do semaphore MBOX updates for varying number
627 * of rings, it's easiest if we round up each individual update to a
628 * multiple of 2 (since ring updates must always be a multiple of 2)
629 * even though the actual update only requires 3 dwords.
630 */
631 #define MBOX_UPDATE_DWORDS 4
632 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
633 intel_ring_emit(ring, mmio_offset);
634 intel_ring_emit(ring, ring->outstanding_lazy_request);
635 intel_ring_emit(ring, MI_NOOP);
636 }
637
638 /**
639 * gen6_add_request - Update the semaphore mailbox registers
640 *
641 * @ring - ring that is adding a request
642 * @seqno - return seqno stuck into the ring
643 *
644 * Update the mailbox registers in the *other* rings with the current seqno.
645 * This acts like a signal in the canonical semaphore.
646 */
647 static int
648 gen6_add_request(struct intel_ring_buffer *ring)
649 {
650 struct drm_device *dev = ring->dev;
651 struct drm_i915_private *dev_priv = dev->dev_private;
652 struct intel_ring_buffer *useless;
653 int i, ret;
654
655 ret = intel_ring_begin(ring, ((I915_NUM_RINGS-1) *
656 MBOX_UPDATE_DWORDS) +
657 4);
658 if (ret)
659 return ret;
660 #undef MBOX_UPDATE_DWORDS
661
662 for_each_ring(useless, dev_priv, i) {
663 u32 mbox_reg = ring->signal_mbox[i];
664 if (mbox_reg != GEN6_NOSYNC)
665 update_mboxes(ring, mbox_reg);
666 }
667
668 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
669 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
670 intel_ring_emit(ring, ring->outstanding_lazy_request);
671 intel_ring_emit(ring, MI_USER_INTERRUPT);
672 intel_ring_advance(ring);
673
674 return 0;
675 }
676
677 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
678 u32 seqno)
679 {
680 struct drm_i915_private *dev_priv = dev->dev_private;
681 return dev_priv->last_seqno < seqno;
682 }
683
684 /**
685 * intel_ring_sync - sync the waiter to the signaller on seqno
686 *
687 * @waiter - ring that is waiting
688 * @signaller - ring which has, or will signal
689 * @seqno - seqno which the waiter will block on
690 */
691 static int
692 gen6_ring_sync(struct intel_ring_buffer *waiter,
693 struct intel_ring_buffer *signaller,
694 u32 seqno)
695 {
696 int ret;
697 u32 dw1 = MI_SEMAPHORE_MBOX |
698 MI_SEMAPHORE_COMPARE |
699 MI_SEMAPHORE_REGISTER;
700
701 /* Throughout all of the GEM code, seqno passed implies our current
702 * seqno is >= the last seqno executed. However for hardware the
703 * comparison is strictly greater than.
704 */
705 seqno -= 1;
706
707 WARN_ON(signaller->semaphore_register[waiter->id] ==
708 MI_SEMAPHORE_SYNC_INVALID);
709
710 ret = intel_ring_begin(waiter, 4);
711 if (ret)
712 return ret;
713
714 /* If seqno wrap happened, omit the wait with no-ops */
715 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
716 intel_ring_emit(waiter,
717 dw1 |
718 signaller->semaphore_register[waiter->id]);
719 intel_ring_emit(waiter, seqno);
720 intel_ring_emit(waiter, 0);
721 intel_ring_emit(waiter, MI_NOOP);
722 } else {
723 intel_ring_emit(waiter, MI_NOOP);
724 intel_ring_emit(waiter, MI_NOOP);
725 intel_ring_emit(waiter, MI_NOOP);
726 intel_ring_emit(waiter, MI_NOOP);
727 }
728 intel_ring_advance(waiter);
729
730 return 0;
731 }
732
733 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
734 do { \
735 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
736 PIPE_CONTROL_DEPTH_STALL); \
737 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
738 intel_ring_emit(ring__, 0); \
739 intel_ring_emit(ring__, 0); \
740 } while (0)
741
742 static int
743 pc_render_add_request(struct intel_ring_buffer *ring)
744 {
745 struct pipe_control *pc = ring->private;
746 u32 scratch_addr = pc->gtt_offset + 128;
747 int ret;
748
749 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
750 * incoherent with writes to memory, i.e. completely fubar,
751 * so we need to use PIPE_NOTIFY instead.
752 *
753 * However, we also need to workaround the qword write
754 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
755 * memory before requesting an interrupt.
756 */
757 ret = intel_ring_begin(ring, 32);
758 if (ret)
759 return ret;
760
761 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
762 PIPE_CONTROL_WRITE_FLUSH |
763 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
764 intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
765 intel_ring_emit(ring, ring->outstanding_lazy_request);
766 intel_ring_emit(ring, 0);
767 PIPE_CONTROL_FLUSH(ring, scratch_addr);
768 scratch_addr += 128; /* write to separate cachelines */
769 PIPE_CONTROL_FLUSH(ring, scratch_addr);
770 scratch_addr += 128;
771 PIPE_CONTROL_FLUSH(ring, scratch_addr);
772 scratch_addr += 128;
773 PIPE_CONTROL_FLUSH(ring, scratch_addr);
774 scratch_addr += 128;
775 PIPE_CONTROL_FLUSH(ring, scratch_addr);
776 scratch_addr += 128;
777 PIPE_CONTROL_FLUSH(ring, scratch_addr);
778
779 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
780 PIPE_CONTROL_WRITE_FLUSH |
781 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
782 PIPE_CONTROL_NOTIFY);
783 intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
784 intel_ring_emit(ring, ring->outstanding_lazy_request);
785 intel_ring_emit(ring, 0);
786 intel_ring_advance(ring);
787
788 return 0;
789 }
790
791 static u32
792 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
793 {
794 /* Workaround to force correct ordering between irq and seqno writes on
795 * ivb (and maybe also on snb) by reading from a CS register (like
796 * ACTHD) before reading the status page. */
797 if (!lazy_coherency)
798 intel_ring_get_active_head(ring);
799 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
800 }
801
802 static u32
803 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
804 {
805 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
806 }
807
808 static void
809 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
810 {
811 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
812 }
813
814 static u32
815 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
816 {
817 struct pipe_control *pc = ring->private;
818 return pc->cpu_page[0];
819 }
820
821 static void
822 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
823 {
824 struct pipe_control *pc = ring->private;
825 pc->cpu_page[0] = seqno;
826 }
827
828 static bool
829 gen5_ring_get_irq(struct intel_ring_buffer *ring)
830 {
831 struct drm_device *dev = ring->dev;
832 drm_i915_private_t *dev_priv = dev->dev_private;
833 unsigned long flags;
834
835 if (!dev->irq_enabled)
836 return false;
837
838 spin_lock_irqsave(&dev_priv->irq_lock, flags);
839 if (ring->irq_refcount.gt++ == 0) {
840 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
841 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
842 POSTING_READ(GTIMR);
843 }
844 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
845
846 return true;
847 }
848
849 static void
850 gen5_ring_put_irq(struct intel_ring_buffer *ring)
851 {
852 struct drm_device *dev = ring->dev;
853 drm_i915_private_t *dev_priv = dev->dev_private;
854 unsigned long flags;
855
856 spin_lock_irqsave(&dev_priv->irq_lock, flags);
857 if (--ring->irq_refcount.gt == 0) {
858 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
859 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
860 POSTING_READ(GTIMR);
861 }
862 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
863 }
864
865 static bool
866 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
867 {
868 struct drm_device *dev = ring->dev;
869 drm_i915_private_t *dev_priv = dev->dev_private;
870 unsigned long flags;
871
872 if (!dev->irq_enabled)
873 return false;
874
875 spin_lock_irqsave(&dev_priv->irq_lock, flags);
876 if (ring->irq_refcount.gt++ == 0) {
877 dev_priv->irq_mask &= ~ring->irq_enable_mask;
878 I915_WRITE(IMR, dev_priv->irq_mask);
879 POSTING_READ(IMR);
880 }
881 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
882
883 return true;
884 }
885
886 static void
887 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
888 {
889 struct drm_device *dev = ring->dev;
890 drm_i915_private_t *dev_priv = dev->dev_private;
891 unsigned long flags;
892
893 spin_lock_irqsave(&dev_priv->irq_lock, flags);
894 if (--ring->irq_refcount.gt == 0) {
895 dev_priv->irq_mask |= ring->irq_enable_mask;
896 I915_WRITE(IMR, dev_priv->irq_mask);
897 POSTING_READ(IMR);
898 }
899 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
900 }
901
902 static bool
903 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
904 {
905 struct drm_device *dev = ring->dev;
906 drm_i915_private_t *dev_priv = dev->dev_private;
907 unsigned long flags;
908
909 if (!dev->irq_enabled)
910 return false;
911
912 spin_lock_irqsave(&dev_priv->irq_lock, flags);
913 if (ring->irq_refcount.gt++ == 0) {
914 dev_priv->irq_mask &= ~ring->irq_enable_mask;
915 I915_WRITE16(IMR, dev_priv->irq_mask);
916 POSTING_READ16(IMR);
917 }
918 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
919
920 return true;
921 }
922
923 static void
924 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
925 {
926 struct drm_device *dev = ring->dev;
927 drm_i915_private_t *dev_priv = dev->dev_private;
928 unsigned long flags;
929
930 spin_lock_irqsave(&dev_priv->irq_lock, flags);
931 if (--ring->irq_refcount.gt == 0) {
932 dev_priv->irq_mask |= ring->irq_enable_mask;
933 I915_WRITE16(IMR, dev_priv->irq_mask);
934 POSTING_READ16(IMR);
935 }
936 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
937 }
938
939 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
940 {
941 struct drm_device *dev = ring->dev;
942 drm_i915_private_t *dev_priv = ring->dev->dev_private;
943 u32 mmio = 0;
944
945 /* The ring status page addresses are no longer next to the rest of
946 * the ring registers as of gen7.
947 */
948 if (IS_GEN7(dev)) {
949 switch (ring->id) {
950 case RCS:
951 mmio = RENDER_HWS_PGA_GEN7;
952 break;
953 case BCS:
954 mmio = BLT_HWS_PGA_GEN7;
955 break;
956 case VCS:
957 mmio = BSD_HWS_PGA_GEN7;
958 break;
959 case VECS:
960 mmio = VEBOX_HWS_PGA_GEN7;
961 break;
962 }
963 } else if (IS_GEN6(ring->dev)) {
964 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
965 } else {
966 mmio = RING_HWS_PGA(ring->mmio_base);
967 }
968
969 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
970 POSTING_READ(mmio);
971
972 /* Flush the TLB for this page */
973 if (INTEL_INFO(dev)->gen >= 6) {
974 u32 reg = RING_INSTPM(ring->mmio_base);
975 I915_WRITE(reg,
976 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
977 INSTPM_SYNC_FLUSH));
978 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
979 1000))
980 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
981 ring->name);
982 }
983 }
984
985 static int
986 bsd_ring_flush(struct intel_ring_buffer *ring,
987 u32 invalidate_domains,
988 u32 flush_domains)
989 {
990 int ret;
991
992 ret = intel_ring_begin(ring, 2);
993 if (ret)
994 return ret;
995
996 intel_ring_emit(ring, MI_FLUSH);
997 intel_ring_emit(ring, MI_NOOP);
998 intel_ring_advance(ring);
999 return 0;
1000 }
1001
1002 static int
1003 i9xx_add_request(struct intel_ring_buffer *ring)
1004 {
1005 int ret;
1006
1007 ret = intel_ring_begin(ring, 4);
1008 if (ret)
1009 return ret;
1010
1011 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1012 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1013 intel_ring_emit(ring, ring->outstanding_lazy_request);
1014 intel_ring_emit(ring, MI_USER_INTERRUPT);
1015 intel_ring_advance(ring);
1016
1017 return 0;
1018 }
1019
1020 static bool
1021 gen6_ring_get_irq(struct intel_ring_buffer *ring)
1022 {
1023 struct drm_device *dev = ring->dev;
1024 drm_i915_private_t *dev_priv = dev->dev_private;
1025 unsigned long flags;
1026
1027 if (!dev->irq_enabled)
1028 return false;
1029
1030 /* It looks like we need to prevent the gt from suspending while waiting
1031 * for an notifiy irq, otherwise irqs seem to get lost on at least the
1032 * blt/bsd rings on ivb. */
1033 gen6_gt_force_wake_get(dev_priv);
1034
1035 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1036 if (ring->irq_refcount.gt++ == 0) {
1037 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
1038 I915_WRITE_IMR(ring,
1039 ~(ring->irq_enable_mask |
1040 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1041 else
1042 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1043 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
1044 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1045 POSTING_READ(GTIMR);
1046 }
1047 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1048
1049 return true;
1050 }
1051
1052 static void
1053 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1054 {
1055 struct drm_device *dev = ring->dev;
1056 drm_i915_private_t *dev_priv = dev->dev_private;
1057 unsigned long flags;
1058
1059 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1060 if (--ring->irq_refcount.gt == 0) {
1061 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
1062 I915_WRITE_IMR(ring,
1063 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1064 else
1065 I915_WRITE_IMR(ring, ~0);
1066 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
1067 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1068 POSTING_READ(GTIMR);
1069 }
1070 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1071
1072 gen6_gt_force_wake_put(dev_priv);
1073 }
1074
1075 static bool
1076 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1077 {
1078 struct drm_device *dev = ring->dev;
1079 struct drm_i915_private *dev_priv = dev->dev_private;
1080 unsigned long flags;
1081
1082 if (!dev->irq_enabled)
1083 return false;
1084
1085 spin_lock_irqsave(&dev_priv->rps.lock, flags);
1086 if (ring->irq_refcount.pm++ == 0) {
1087 u32 pm_imr = I915_READ(GEN6_PMIMR);
1088 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1089 I915_WRITE(GEN6_PMIMR, pm_imr & ~ring->irq_enable_mask);
1090 POSTING_READ(GEN6_PMIMR);
1091 }
1092 spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
1093
1094 return true;
1095 }
1096
1097 static void
1098 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1099 {
1100 struct drm_device *dev = ring->dev;
1101 struct drm_i915_private *dev_priv = dev->dev_private;
1102 unsigned long flags;
1103
1104 if (!dev->irq_enabled)
1105 return;
1106
1107 spin_lock_irqsave(&dev_priv->rps.lock, flags);
1108 if (--ring->irq_refcount.pm == 0) {
1109 u32 pm_imr = I915_READ(GEN6_PMIMR);
1110 I915_WRITE_IMR(ring, ~0);
1111 I915_WRITE(GEN6_PMIMR, pm_imr | ring->irq_enable_mask);
1112 POSTING_READ(GEN6_PMIMR);
1113 }
1114 spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
1115 }
1116
1117 static int
1118 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1119 u32 offset, u32 length,
1120 unsigned flags)
1121 {
1122 int ret;
1123
1124 ret = intel_ring_begin(ring, 2);
1125 if (ret)
1126 return ret;
1127
1128 intel_ring_emit(ring,
1129 MI_BATCH_BUFFER_START |
1130 MI_BATCH_GTT |
1131 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1132 intel_ring_emit(ring, offset);
1133 intel_ring_advance(ring);
1134
1135 return 0;
1136 }
1137
1138 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1139 #define I830_BATCH_LIMIT (256*1024)
1140 static int
1141 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1142 u32 offset, u32 len,
1143 unsigned flags)
1144 {
1145 int ret;
1146
1147 if (flags & I915_DISPATCH_PINNED) {
1148 ret = intel_ring_begin(ring, 4);
1149 if (ret)
1150 return ret;
1151
1152 intel_ring_emit(ring, MI_BATCH_BUFFER);
1153 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1154 intel_ring_emit(ring, offset + len - 8);
1155 intel_ring_emit(ring, MI_NOOP);
1156 intel_ring_advance(ring);
1157 } else {
1158 struct drm_i915_gem_object *obj = ring->private;
1159 u32 cs_offset = obj->gtt_offset;
1160
1161 if (len > I830_BATCH_LIMIT)
1162 return -ENOSPC;
1163
1164 ret = intel_ring_begin(ring, 9+3);
1165 if (ret)
1166 return ret;
1167 /* Blit the batch (which has now all relocs applied) to the stable batch
1168 * scratch bo area (so that the CS never stumbles over its tlb
1169 * invalidation bug) ... */
1170 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1171 XY_SRC_COPY_BLT_WRITE_ALPHA |
1172 XY_SRC_COPY_BLT_WRITE_RGB);
1173 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1174 intel_ring_emit(ring, 0);
1175 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1176 intel_ring_emit(ring, cs_offset);
1177 intel_ring_emit(ring, 0);
1178 intel_ring_emit(ring, 4096);
1179 intel_ring_emit(ring, offset);
1180 intel_ring_emit(ring, MI_FLUSH);
1181
1182 /* ... and execute it. */
1183 intel_ring_emit(ring, MI_BATCH_BUFFER);
1184 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1185 intel_ring_emit(ring, cs_offset + len - 8);
1186 intel_ring_advance(ring);
1187 }
1188
1189 return 0;
1190 }
1191
1192 static int
1193 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1194 u32 offset, u32 len,
1195 unsigned flags)
1196 {
1197 int ret;
1198
1199 ret = intel_ring_begin(ring, 2);
1200 if (ret)
1201 return ret;
1202
1203 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1204 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1205 intel_ring_advance(ring);
1206
1207 return 0;
1208 }
1209
1210 static void cleanup_status_page(struct intel_ring_buffer *ring)
1211 {
1212 struct drm_i915_gem_object *obj;
1213
1214 obj = ring->status_page.obj;
1215 if (obj == NULL)
1216 return;
1217
1218 kunmap(sg_page(obj->pages->sgl));
1219 i915_gem_object_unpin(obj);
1220 drm_gem_object_unreference(&obj->base);
1221 ring->status_page.obj = NULL;
1222 }
1223
1224 static int init_status_page(struct intel_ring_buffer *ring)
1225 {
1226 struct drm_device *dev = ring->dev;
1227 struct drm_i915_gem_object *obj;
1228 int ret;
1229
1230 obj = i915_gem_alloc_object(dev, 4096);
1231 if (obj == NULL) {
1232 DRM_ERROR("Failed to allocate status page\n");
1233 ret = -ENOMEM;
1234 goto err;
1235 }
1236
1237 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1238
1239 ret = i915_gem_object_pin(obj, 4096, true, false);
1240 if (ret != 0) {
1241 goto err_unref;
1242 }
1243
1244 ring->status_page.gfx_addr = obj->gtt_offset;
1245 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1246 if (ring->status_page.page_addr == NULL) {
1247 ret = -ENOMEM;
1248 goto err_unpin;
1249 }
1250 ring->status_page.obj = obj;
1251 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1252
1253 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1254 ring->name, ring->status_page.gfx_addr);
1255
1256 return 0;
1257
1258 err_unpin:
1259 i915_gem_object_unpin(obj);
1260 err_unref:
1261 drm_gem_object_unreference(&obj->base);
1262 err:
1263 return ret;
1264 }
1265
1266 static int init_phys_status_page(struct intel_ring_buffer *ring)
1267 {
1268 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1269
1270 if (!dev_priv->status_page_dmah) {
1271 dev_priv->status_page_dmah =
1272 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1273 if (!dev_priv->status_page_dmah)
1274 return -ENOMEM;
1275 }
1276
1277 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1278 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1279
1280 return 0;
1281 }
1282
1283 static int intel_init_ring_buffer(struct drm_device *dev,
1284 struct intel_ring_buffer *ring)
1285 {
1286 struct drm_i915_gem_object *obj;
1287 struct drm_i915_private *dev_priv = dev->dev_private;
1288 int ret;
1289
1290 ring->dev = dev;
1291 INIT_LIST_HEAD(&ring->active_list);
1292 INIT_LIST_HEAD(&ring->request_list);
1293 ring->size = 32 * PAGE_SIZE;
1294 memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1295
1296 init_waitqueue_head(&ring->irq_queue);
1297
1298 if (I915_NEED_GFX_HWS(dev)) {
1299 ret = init_status_page(ring);
1300 if (ret)
1301 return ret;
1302 } else {
1303 BUG_ON(ring->id != RCS);
1304 ret = init_phys_status_page(ring);
1305 if (ret)
1306 return ret;
1307 }
1308
1309 obj = NULL;
1310 if (!HAS_LLC(dev))
1311 obj = i915_gem_object_create_stolen(dev, ring->size);
1312 if (obj == NULL)
1313 obj = i915_gem_alloc_object(dev, ring->size);
1314 if (obj == NULL) {
1315 DRM_ERROR("Failed to allocate ringbuffer\n");
1316 ret = -ENOMEM;
1317 goto err_hws;
1318 }
1319
1320 ring->obj = obj;
1321
1322 ret = i915_gem_object_pin(obj, PAGE_SIZE, true, false);
1323 if (ret)
1324 goto err_unref;
1325
1326 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1327 if (ret)
1328 goto err_unpin;
1329
1330 ring->virtual_start =
1331 ioremap_wc(dev_priv->gtt.mappable_base + obj->gtt_offset,
1332 ring->size);
1333 if (ring->virtual_start == NULL) {
1334 DRM_ERROR("Failed to map ringbuffer.\n");
1335 ret = -EINVAL;
1336 goto err_unpin;
1337 }
1338
1339 ret = ring->init(ring);
1340 if (ret)
1341 goto err_unmap;
1342
1343 /* Workaround an erratum on the i830 which causes a hang if
1344 * the TAIL pointer points to within the last 2 cachelines
1345 * of the buffer.
1346 */
1347 ring->effective_size = ring->size;
1348 if (IS_I830(ring->dev) || IS_845G(ring->dev))
1349 ring->effective_size -= 128;
1350
1351 return 0;
1352
1353 err_unmap:
1354 iounmap(ring->virtual_start);
1355 err_unpin:
1356 i915_gem_object_unpin(obj);
1357 err_unref:
1358 drm_gem_object_unreference(&obj->base);
1359 ring->obj = NULL;
1360 err_hws:
1361 cleanup_status_page(ring);
1362 return ret;
1363 }
1364
1365 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1366 {
1367 struct drm_i915_private *dev_priv;
1368 int ret;
1369
1370 if (ring->obj == NULL)
1371 return;
1372
1373 /* Disable the ring buffer. The ring must be idle at this point */
1374 dev_priv = ring->dev->dev_private;
1375 ret = intel_ring_idle(ring);
1376 if (ret)
1377 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1378 ring->name, ret);
1379
1380 I915_WRITE_CTL(ring, 0);
1381
1382 iounmap(ring->virtual_start);
1383
1384 i915_gem_object_unpin(ring->obj);
1385 drm_gem_object_unreference(&ring->obj->base);
1386 ring->obj = NULL;
1387
1388 if (ring->cleanup)
1389 ring->cleanup(ring);
1390
1391 cleanup_status_page(ring);
1392 }
1393
1394 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1395 {
1396 int ret;
1397
1398 ret = i915_wait_seqno(ring, seqno);
1399 if (!ret)
1400 i915_gem_retire_requests_ring(ring);
1401
1402 return ret;
1403 }
1404
1405 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1406 {
1407 struct drm_i915_gem_request *request;
1408 u32 seqno = 0;
1409 int ret;
1410
1411 i915_gem_retire_requests_ring(ring);
1412
1413 if (ring->last_retired_head != -1) {
1414 ring->head = ring->last_retired_head;
1415 ring->last_retired_head = -1;
1416 ring->space = ring_space(ring);
1417 if (ring->space >= n)
1418 return 0;
1419 }
1420
1421 list_for_each_entry(request, &ring->request_list, list) {
1422 int space;
1423
1424 if (request->tail == -1)
1425 continue;
1426
1427 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1428 if (space < 0)
1429 space += ring->size;
1430 if (space >= n) {
1431 seqno = request->seqno;
1432 break;
1433 }
1434
1435 /* Consume this request in case we need more space than
1436 * is available and so need to prevent a race between
1437 * updating last_retired_head and direct reads of
1438 * I915_RING_HEAD. It also provides a nice sanity check.
1439 */
1440 request->tail = -1;
1441 }
1442
1443 if (seqno == 0)
1444 return -ENOSPC;
1445
1446 ret = intel_ring_wait_seqno(ring, seqno);
1447 if (ret)
1448 return ret;
1449
1450 if (WARN_ON(ring->last_retired_head == -1))
1451 return -ENOSPC;
1452
1453 ring->head = ring->last_retired_head;
1454 ring->last_retired_head = -1;
1455 ring->space = ring_space(ring);
1456 if (WARN_ON(ring->space < n))
1457 return -ENOSPC;
1458
1459 return 0;
1460 }
1461
1462 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1463 {
1464 struct drm_device *dev = ring->dev;
1465 struct drm_i915_private *dev_priv = dev->dev_private;
1466 unsigned long end;
1467 int ret;
1468
1469 ret = intel_ring_wait_request(ring, n);
1470 if (ret != -ENOSPC)
1471 return ret;
1472
1473 trace_i915_ring_wait_begin(ring);
1474 /* With GEM the hangcheck timer should kick us out of the loop,
1475 * leaving it early runs the risk of corrupting GEM state (due
1476 * to running on almost untested codepaths). But on resume
1477 * timers don't work yet, so prevent a complete hang in that
1478 * case by choosing an insanely large timeout. */
1479 end = jiffies + 60 * HZ;
1480
1481 do {
1482 ring->head = I915_READ_HEAD(ring);
1483 ring->space = ring_space(ring);
1484 if (ring->space >= n) {
1485 trace_i915_ring_wait_end(ring);
1486 return 0;
1487 }
1488
1489 if (dev->primary->master) {
1490 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1491 if (master_priv->sarea_priv)
1492 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1493 }
1494
1495 msleep(1);
1496
1497 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1498 dev_priv->mm.interruptible);
1499 if (ret)
1500 return ret;
1501 } while (!time_after(jiffies, end));
1502 trace_i915_ring_wait_end(ring);
1503 return -EBUSY;
1504 }
1505
1506 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1507 {
1508 uint32_t __iomem *virt;
1509 int rem = ring->size - ring->tail;
1510
1511 if (ring->space < rem) {
1512 int ret = ring_wait_for_space(ring, rem);
1513 if (ret)
1514 return ret;
1515 }
1516
1517 virt = ring->virtual_start + ring->tail;
1518 rem /= 4;
1519 while (rem--)
1520 iowrite32(MI_NOOP, virt++);
1521
1522 ring->tail = 0;
1523 ring->space = ring_space(ring);
1524
1525 return 0;
1526 }
1527
1528 int intel_ring_idle(struct intel_ring_buffer *ring)
1529 {
1530 u32 seqno;
1531 int ret;
1532
1533 /* We need to add any requests required to flush the objects and ring */
1534 if (ring->outstanding_lazy_request) {
1535 ret = i915_add_request(ring, NULL);
1536 if (ret)
1537 return ret;
1538 }
1539
1540 /* Wait upon the last request to be completed */
1541 if (list_empty(&ring->request_list))
1542 return 0;
1543
1544 seqno = list_entry(ring->request_list.prev,
1545 struct drm_i915_gem_request,
1546 list)->seqno;
1547
1548 return i915_wait_seqno(ring, seqno);
1549 }
1550
1551 static int
1552 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1553 {
1554 if (ring->outstanding_lazy_request)
1555 return 0;
1556
1557 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_request);
1558 }
1559
1560 static int __intel_ring_begin(struct intel_ring_buffer *ring,
1561 int bytes)
1562 {
1563 int ret;
1564
1565 if (unlikely(ring->tail + bytes > ring->effective_size)) {
1566 ret = intel_wrap_ring_buffer(ring);
1567 if (unlikely(ret))
1568 return ret;
1569 }
1570
1571 if (unlikely(ring->space < bytes)) {
1572 ret = ring_wait_for_space(ring, bytes);
1573 if (unlikely(ret))
1574 return ret;
1575 }
1576
1577 ring->space -= bytes;
1578 return 0;
1579 }
1580
1581 int intel_ring_begin(struct intel_ring_buffer *ring,
1582 int num_dwords)
1583 {
1584 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1585 int ret;
1586
1587 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1588 dev_priv->mm.interruptible);
1589 if (ret)
1590 return ret;
1591
1592 /* Preallocate the olr before touching the ring */
1593 ret = intel_ring_alloc_seqno(ring);
1594 if (ret)
1595 return ret;
1596
1597 return __intel_ring_begin(ring, num_dwords * sizeof(uint32_t));
1598 }
1599
1600 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1601 {
1602 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1603
1604 BUG_ON(ring->outstanding_lazy_request);
1605
1606 if (INTEL_INFO(ring->dev)->gen >= 6) {
1607 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1608 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1609 }
1610
1611 ring->set_seqno(ring, seqno);
1612 ring->hangcheck.seqno = seqno;
1613 }
1614
1615 void intel_ring_advance(struct intel_ring_buffer *ring)
1616 {
1617 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1618
1619 ring->tail &= ring->size - 1;
1620 if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
1621 return;
1622 ring->write_tail(ring, ring->tail);
1623 }
1624
1625
1626 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1627 u32 value)
1628 {
1629 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1630
1631 /* Every tail move must follow the sequence below */
1632
1633 /* Disable notification that the ring is IDLE. The GT
1634 * will then assume that it is busy and bring it out of rc6.
1635 */
1636 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1637 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1638
1639 /* Clear the context id. Here be magic! */
1640 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1641
1642 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1643 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1644 GEN6_BSD_SLEEP_INDICATOR) == 0,
1645 50))
1646 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1647
1648 /* Now that the ring is fully powered up, update the tail */
1649 I915_WRITE_TAIL(ring, value);
1650 POSTING_READ(RING_TAIL(ring->mmio_base));
1651
1652 /* Let the ring send IDLE messages to the GT again,
1653 * and so let it sleep to conserve power when idle.
1654 */
1655 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1656 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1657 }
1658
1659 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1660 u32 invalidate, u32 flush)
1661 {
1662 uint32_t cmd;
1663 int ret;
1664
1665 ret = intel_ring_begin(ring, 4);
1666 if (ret)
1667 return ret;
1668
1669 cmd = MI_FLUSH_DW;
1670 /*
1671 * Bspec vol 1c.5 - video engine command streamer:
1672 * "If ENABLED, all TLBs will be invalidated once the flush
1673 * operation is complete. This bit is only valid when the
1674 * Post-Sync Operation field is a value of 1h or 3h."
1675 */
1676 if (invalidate & I915_GEM_GPU_DOMAINS)
1677 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1678 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1679 intel_ring_emit(ring, cmd);
1680 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1681 intel_ring_emit(ring, 0);
1682 intel_ring_emit(ring, MI_NOOP);
1683 intel_ring_advance(ring);
1684 return 0;
1685 }
1686
1687 static int
1688 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1689 u32 offset, u32 len,
1690 unsigned flags)
1691 {
1692 int ret;
1693
1694 ret = intel_ring_begin(ring, 2);
1695 if (ret)
1696 return ret;
1697
1698 intel_ring_emit(ring,
1699 MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1700 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1701 /* bit0-7 is the length on GEN6+ */
1702 intel_ring_emit(ring, offset);
1703 intel_ring_advance(ring);
1704
1705 return 0;
1706 }
1707
1708 static int
1709 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1710 u32 offset, u32 len,
1711 unsigned flags)
1712 {
1713 int ret;
1714
1715 ret = intel_ring_begin(ring, 2);
1716 if (ret)
1717 return ret;
1718
1719 intel_ring_emit(ring,
1720 MI_BATCH_BUFFER_START |
1721 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1722 /* bit0-7 is the length on GEN6+ */
1723 intel_ring_emit(ring, offset);
1724 intel_ring_advance(ring);
1725
1726 return 0;
1727 }
1728
1729 /* Blitter support (SandyBridge+) */
1730
1731 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1732 u32 invalidate, u32 flush)
1733 {
1734 struct drm_device *dev = ring->dev;
1735 uint32_t cmd;
1736 int ret;
1737
1738 ret = intel_ring_begin(ring, 4);
1739 if (ret)
1740 return ret;
1741
1742 cmd = MI_FLUSH_DW;
1743 /*
1744 * Bspec vol 1c.3 - blitter engine command streamer:
1745 * "If ENABLED, all TLBs will be invalidated once the flush
1746 * operation is complete. This bit is only valid when the
1747 * Post-Sync Operation field is a value of 1h or 3h."
1748 */
1749 if (invalidate & I915_GEM_DOMAIN_RENDER)
1750 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1751 MI_FLUSH_DW_OP_STOREDW;
1752 intel_ring_emit(ring, cmd);
1753 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1754 intel_ring_emit(ring, 0);
1755 intel_ring_emit(ring, MI_NOOP);
1756 intel_ring_advance(ring);
1757
1758 if (IS_GEN7(dev) && flush)
1759 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1760
1761 return 0;
1762 }
1763
1764 int intel_init_render_ring_buffer(struct drm_device *dev)
1765 {
1766 drm_i915_private_t *dev_priv = dev->dev_private;
1767 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1768
1769 ring->name = "render ring";
1770 ring->id = RCS;
1771 ring->mmio_base = RENDER_RING_BASE;
1772
1773 if (INTEL_INFO(dev)->gen >= 6) {
1774 ring->add_request = gen6_add_request;
1775 ring->flush = gen7_render_ring_flush;
1776 if (INTEL_INFO(dev)->gen == 6)
1777 ring->flush = gen6_render_ring_flush;
1778 ring->irq_get = gen6_ring_get_irq;
1779 ring->irq_put = gen6_ring_put_irq;
1780 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1781 ring->get_seqno = gen6_ring_get_seqno;
1782 ring->set_seqno = ring_set_seqno;
1783 ring->sync_to = gen6_ring_sync;
1784 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1785 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1786 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1787 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1788 ring->signal_mbox[RCS] = GEN6_NOSYNC;
1789 ring->signal_mbox[VCS] = GEN6_VRSYNC;
1790 ring->signal_mbox[BCS] = GEN6_BRSYNC;
1791 ring->signal_mbox[VECS] = GEN6_VERSYNC;
1792 } else if (IS_GEN5(dev)) {
1793 ring->add_request = pc_render_add_request;
1794 ring->flush = gen4_render_ring_flush;
1795 ring->get_seqno = pc_render_get_seqno;
1796 ring->set_seqno = pc_render_set_seqno;
1797 ring->irq_get = gen5_ring_get_irq;
1798 ring->irq_put = gen5_ring_put_irq;
1799 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1800 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1801 } else {
1802 ring->add_request = i9xx_add_request;
1803 if (INTEL_INFO(dev)->gen < 4)
1804 ring->flush = gen2_render_ring_flush;
1805 else
1806 ring->flush = gen4_render_ring_flush;
1807 ring->get_seqno = ring_get_seqno;
1808 ring->set_seqno = ring_set_seqno;
1809 if (IS_GEN2(dev)) {
1810 ring->irq_get = i8xx_ring_get_irq;
1811 ring->irq_put = i8xx_ring_put_irq;
1812 } else {
1813 ring->irq_get = i9xx_ring_get_irq;
1814 ring->irq_put = i9xx_ring_put_irq;
1815 }
1816 ring->irq_enable_mask = I915_USER_INTERRUPT;
1817 }
1818 ring->write_tail = ring_write_tail;
1819 if (IS_HASWELL(dev))
1820 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1821 else if (INTEL_INFO(dev)->gen >= 6)
1822 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1823 else if (INTEL_INFO(dev)->gen >= 4)
1824 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1825 else if (IS_I830(dev) || IS_845G(dev))
1826 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1827 else
1828 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1829 ring->init = init_render_ring;
1830 ring->cleanup = render_ring_cleanup;
1831
1832 /* Workaround batchbuffer to combat CS tlb bug. */
1833 if (HAS_BROKEN_CS_TLB(dev)) {
1834 struct drm_i915_gem_object *obj;
1835 int ret;
1836
1837 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1838 if (obj == NULL) {
1839 DRM_ERROR("Failed to allocate batch bo\n");
1840 return -ENOMEM;
1841 }
1842
1843 ret = i915_gem_object_pin(obj, 0, true, false);
1844 if (ret != 0) {
1845 drm_gem_object_unreference(&obj->base);
1846 DRM_ERROR("Failed to ping batch bo\n");
1847 return ret;
1848 }
1849
1850 ring->private = obj;
1851 }
1852
1853 return intel_init_ring_buffer(dev, ring);
1854 }
1855
1856 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1857 {
1858 drm_i915_private_t *dev_priv = dev->dev_private;
1859 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1860 int ret;
1861
1862 ring->name = "render ring";
1863 ring->id = RCS;
1864 ring->mmio_base = RENDER_RING_BASE;
1865
1866 if (INTEL_INFO(dev)->gen >= 6) {
1867 /* non-kms not supported on gen6+ */
1868 return -ENODEV;
1869 }
1870
1871 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1872 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1873 * the special gen5 functions. */
1874 ring->add_request = i9xx_add_request;
1875 if (INTEL_INFO(dev)->gen < 4)
1876 ring->flush = gen2_render_ring_flush;
1877 else
1878 ring->flush = gen4_render_ring_flush;
1879 ring->get_seqno = ring_get_seqno;
1880 ring->set_seqno = ring_set_seqno;
1881 if (IS_GEN2(dev)) {
1882 ring->irq_get = i8xx_ring_get_irq;
1883 ring->irq_put = i8xx_ring_put_irq;
1884 } else {
1885 ring->irq_get = i9xx_ring_get_irq;
1886 ring->irq_put = i9xx_ring_put_irq;
1887 }
1888 ring->irq_enable_mask = I915_USER_INTERRUPT;
1889 ring->write_tail = ring_write_tail;
1890 if (INTEL_INFO(dev)->gen >= 4)
1891 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1892 else if (IS_I830(dev) || IS_845G(dev))
1893 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1894 else
1895 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1896 ring->init = init_render_ring;
1897 ring->cleanup = render_ring_cleanup;
1898
1899 ring->dev = dev;
1900 INIT_LIST_HEAD(&ring->active_list);
1901 INIT_LIST_HEAD(&ring->request_list);
1902
1903 ring->size = size;
1904 ring->effective_size = ring->size;
1905 if (IS_I830(ring->dev) || IS_845G(ring->dev))
1906 ring->effective_size -= 128;
1907
1908 ring->virtual_start = ioremap_wc(start, size);
1909 if (ring->virtual_start == NULL) {
1910 DRM_ERROR("can not ioremap virtual address for"
1911 " ring buffer\n");
1912 return -ENOMEM;
1913 }
1914
1915 if (!I915_NEED_GFX_HWS(dev)) {
1916 ret = init_phys_status_page(ring);
1917 if (ret)
1918 return ret;
1919 }
1920
1921 return 0;
1922 }
1923
1924 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1925 {
1926 drm_i915_private_t *dev_priv = dev->dev_private;
1927 struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1928
1929 ring->name = "bsd ring";
1930 ring->id = VCS;
1931
1932 ring->write_tail = ring_write_tail;
1933 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1934 ring->mmio_base = GEN6_BSD_RING_BASE;
1935 /* gen6 bsd needs a special wa for tail updates */
1936 if (IS_GEN6(dev))
1937 ring->write_tail = gen6_bsd_ring_write_tail;
1938 ring->flush = gen6_bsd_ring_flush;
1939 ring->add_request = gen6_add_request;
1940 ring->get_seqno = gen6_ring_get_seqno;
1941 ring->set_seqno = ring_set_seqno;
1942 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1943 ring->irq_get = gen6_ring_get_irq;
1944 ring->irq_put = gen6_ring_put_irq;
1945 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1946 ring->sync_to = gen6_ring_sync;
1947 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
1948 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
1949 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
1950 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
1951 ring->signal_mbox[RCS] = GEN6_RVSYNC;
1952 ring->signal_mbox[VCS] = GEN6_NOSYNC;
1953 ring->signal_mbox[BCS] = GEN6_BVSYNC;
1954 ring->signal_mbox[VECS] = GEN6_VEVSYNC;
1955 } else {
1956 ring->mmio_base = BSD_RING_BASE;
1957 ring->flush = bsd_ring_flush;
1958 ring->add_request = i9xx_add_request;
1959 ring->get_seqno = ring_get_seqno;
1960 ring->set_seqno = ring_set_seqno;
1961 if (IS_GEN5(dev)) {
1962 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
1963 ring->irq_get = gen5_ring_get_irq;
1964 ring->irq_put = gen5_ring_put_irq;
1965 } else {
1966 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1967 ring->irq_get = i9xx_ring_get_irq;
1968 ring->irq_put = i9xx_ring_put_irq;
1969 }
1970 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1971 }
1972 ring->init = init_ring_common;
1973
1974 return intel_init_ring_buffer(dev, ring);
1975 }
1976
1977 int intel_init_blt_ring_buffer(struct drm_device *dev)
1978 {
1979 drm_i915_private_t *dev_priv = dev->dev_private;
1980 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1981
1982 ring->name = "blitter ring";
1983 ring->id = BCS;
1984
1985 ring->mmio_base = BLT_RING_BASE;
1986 ring->write_tail = ring_write_tail;
1987 ring->flush = gen6_ring_flush;
1988 ring->add_request = gen6_add_request;
1989 ring->get_seqno = gen6_ring_get_seqno;
1990 ring->set_seqno = ring_set_seqno;
1991 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
1992 ring->irq_get = gen6_ring_get_irq;
1993 ring->irq_put = gen6_ring_put_irq;
1994 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1995 ring->sync_to = gen6_ring_sync;
1996 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
1997 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
1998 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
1999 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
2000 ring->signal_mbox[RCS] = GEN6_RBSYNC;
2001 ring->signal_mbox[VCS] = GEN6_VBSYNC;
2002 ring->signal_mbox[BCS] = GEN6_NOSYNC;
2003 ring->signal_mbox[VECS] = GEN6_VEBSYNC;
2004 ring->init = init_ring_common;
2005
2006 return intel_init_ring_buffer(dev, ring);
2007 }
2008
2009 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2010 {
2011 drm_i915_private_t *dev_priv = dev->dev_private;
2012 struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2013
2014 ring->name = "video enhancement ring";
2015 ring->id = VECS;
2016
2017 ring->mmio_base = VEBOX_RING_BASE;
2018 ring->write_tail = ring_write_tail;
2019 ring->flush = gen6_ring_flush;
2020 ring->add_request = gen6_add_request;
2021 ring->get_seqno = gen6_ring_get_seqno;
2022 ring->set_seqno = ring_set_seqno;
2023 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT |
2024 PM_VEBOX_CS_ERROR_INTERRUPT;
2025 ring->irq_get = hsw_vebox_get_irq;
2026 ring->irq_put = hsw_vebox_put_irq;
2027 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2028 ring->sync_to = gen6_ring_sync;
2029 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
2030 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
2031 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
2032 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2033 ring->signal_mbox[RCS] = GEN6_RVESYNC;
2034 ring->signal_mbox[VCS] = GEN6_VVESYNC;
2035 ring->signal_mbox[BCS] = GEN6_BVESYNC;
2036 ring->signal_mbox[VECS] = GEN6_NOSYNC;
2037 ring->init = init_ring_common;
2038
2039 return intel_init_ring_buffer(dev, ring);
2040 }
2041
2042 int
2043 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2044 {
2045 int ret;
2046
2047 if (!ring->gpu_caches_dirty)
2048 return 0;
2049
2050 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2051 if (ret)
2052 return ret;
2053
2054 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2055
2056 ring->gpu_caches_dirty = false;
2057 return 0;
2058 }
2059
2060 int
2061 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2062 {
2063 uint32_t flush_domains;
2064 int ret;
2065
2066 flush_domains = 0;
2067 if (ring->gpu_caches_dirty)
2068 flush_domains = I915_GEM_GPU_DOMAINS;
2069
2070 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2071 if (ret)
2072 return ret;
2073
2074 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2075
2076 ring->gpu_caches_dirty = false;
2077 return 0;
2078 }
This page took 0.089653 seconds and 6 git commands to generate.