Merge branch 'rcu/next' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 struct drm_device *dev = ring->dev;
40
41 if (!dev)
42 return false;
43
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48 return ringbuf->obj;
49 } else
50 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 int space = head - (tail + I915_RING_FREE_SPACE);
56 if (space < 0)
57 space += size;
58 return space;
59 }
60
61 int intel_ring_space(struct intel_ringbuffer *ringbuf)
62 {
63 return __intel_ring_space(ringbuf->head & HEAD_ADDR,
64 ringbuf->tail, ringbuf->size);
65 }
66
67 bool intel_ring_stopped(struct intel_engine_cs *ring)
68 {
69 struct drm_i915_private *dev_priv = ring->dev->dev_private;
70 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
71 }
72
73 void __intel_ring_advance(struct intel_engine_cs *ring)
74 {
75 struct intel_ringbuffer *ringbuf = ring->buffer;
76 ringbuf->tail &= ringbuf->size - 1;
77 if (intel_ring_stopped(ring))
78 return;
79 ring->write_tail(ring, ringbuf->tail);
80 }
81
82 static int
83 gen2_render_ring_flush(struct intel_engine_cs *ring,
84 u32 invalidate_domains,
85 u32 flush_domains)
86 {
87 u32 cmd;
88 int ret;
89
90 cmd = MI_FLUSH;
91 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
92 cmd |= MI_NO_WRITE_FLUSH;
93
94 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
95 cmd |= MI_READ_FLUSH;
96
97 ret = intel_ring_begin(ring, 2);
98 if (ret)
99 return ret;
100
101 intel_ring_emit(ring, cmd);
102 intel_ring_emit(ring, MI_NOOP);
103 intel_ring_advance(ring);
104
105 return 0;
106 }
107
108 static int
109 gen4_render_ring_flush(struct intel_engine_cs *ring,
110 u32 invalidate_domains,
111 u32 flush_domains)
112 {
113 struct drm_device *dev = ring->dev;
114 u32 cmd;
115 int ret;
116
117 /*
118 * read/write caches:
119 *
120 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
121 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
122 * also flushed at 2d versus 3d pipeline switches.
123 *
124 * read-only caches:
125 *
126 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
127 * MI_READ_FLUSH is set, and is always flushed on 965.
128 *
129 * I915_GEM_DOMAIN_COMMAND may not exist?
130 *
131 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
132 * invalidated when MI_EXE_FLUSH is set.
133 *
134 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
135 * invalidated with every MI_FLUSH.
136 *
137 * TLBs:
138 *
139 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
140 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
141 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
142 * are flushed at any MI_FLUSH.
143 */
144
145 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
146 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
147 cmd &= ~MI_NO_WRITE_FLUSH;
148 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
149 cmd |= MI_EXE_FLUSH;
150
151 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
152 (IS_G4X(dev) || IS_GEN5(dev)))
153 cmd |= MI_INVALIDATE_ISP;
154
155 ret = intel_ring_begin(ring, 2);
156 if (ret)
157 return ret;
158
159 intel_ring_emit(ring, cmd);
160 intel_ring_emit(ring, MI_NOOP);
161 intel_ring_advance(ring);
162
163 return 0;
164 }
165
166 /**
167 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
168 * implementing two workarounds on gen6. From section 1.4.7.1
169 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
170 *
171 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
172 * produced by non-pipelined state commands), software needs to first
173 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
174 * 0.
175 *
176 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
177 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
178 *
179 * And the workaround for these two requires this workaround first:
180 *
181 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
182 * BEFORE the pipe-control with a post-sync op and no write-cache
183 * flushes.
184 *
185 * And this last workaround is tricky because of the requirements on
186 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
187 * volume 2 part 1:
188 *
189 * "1 of the following must also be set:
190 * - Render Target Cache Flush Enable ([12] of DW1)
191 * - Depth Cache Flush Enable ([0] of DW1)
192 * - Stall at Pixel Scoreboard ([1] of DW1)
193 * - Depth Stall ([13] of DW1)
194 * - Post-Sync Operation ([13] of DW1)
195 * - Notify Enable ([8] of DW1)"
196 *
197 * The cache flushes require the workaround flush that triggered this
198 * one, so we can't use it. Depth stall would trigger the same.
199 * Post-sync nonzero is what triggered this second workaround, so we
200 * can't use that one either. Notify enable is IRQs, which aren't
201 * really our business. That leaves only stall at scoreboard.
202 */
203 static int
204 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
205 {
206 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
207 int ret;
208
209
210 ret = intel_ring_begin(ring, 6);
211 if (ret)
212 return ret;
213
214 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
215 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
216 PIPE_CONTROL_STALL_AT_SCOREBOARD);
217 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
218 intel_ring_emit(ring, 0); /* low dword */
219 intel_ring_emit(ring, 0); /* high dword */
220 intel_ring_emit(ring, MI_NOOP);
221 intel_ring_advance(ring);
222
223 ret = intel_ring_begin(ring, 6);
224 if (ret)
225 return ret;
226
227 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
229 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
230 intel_ring_emit(ring, 0);
231 intel_ring_emit(ring, 0);
232 intel_ring_emit(ring, MI_NOOP);
233 intel_ring_advance(ring);
234
235 return 0;
236 }
237
238 static int
239 gen6_render_ring_flush(struct intel_engine_cs *ring,
240 u32 invalidate_domains, u32 flush_domains)
241 {
242 u32 flags = 0;
243 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
244 int ret;
245
246 /* Force SNB workarounds for PIPE_CONTROL flushes */
247 ret = intel_emit_post_sync_nonzero_flush(ring);
248 if (ret)
249 return ret;
250
251 /* Just flush everything. Experiments have shown that reducing the
252 * number of bits based on the write domains has little performance
253 * impact.
254 */
255 if (flush_domains) {
256 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
257 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
258 /*
259 * Ensure that any following seqno writes only happen
260 * when the render cache is indeed flushed.
261 */
262 flags |= PIPE_CONTROL_CS_STALL;
263 }
264 if (invalidate_domains) {
265 flags |= PIPE_CONTROL_TLB_INVALIDATE;
266 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
267 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
268 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
269 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
270 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
271 /*
272 * TLB invalidate requires a post-sync write.
273 */
274 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
275 }
276
277 ret = intel_ring_begin(ring, 4);
278 if (ret)
279 return ret;
280
281 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
282 intel_ring_emit(ring, flags);
283 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
284 intel_ring_emit(ring, 0);
285 intel_ring_advance(ring);
286
287 return 0;
288 }
289
290 static int
291 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
292 {
293 int ret;
294
295 ret = intel_ring_begin(ring, 4);
296 if (ret)
297 return ret;
298
299 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
300 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
301 PIPE_CONTROL_STALL_AT_SCOREBOARD);
302 intel_ring_emit(ring, 0);
303 intel_ring_emit(ring, 0);
304 intel_ring_advance(ring);
305
306 return 0;
307 }
308
309 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
310 {
311 int ret;
312
313 if (!ring->fbc_dirty)
314 return 0;
315
316 ret = intel_ring_begin(ring, 6);
317 if (ret)
318 return ret;
319 /* WaFbcNukeOn3DBlt:ivb/hsw */
320 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
321 intel_ring_emit(ring, MSG_FBC_REND_STATE);
322 intel_ring_emit(ring, value);
323 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
324 intel_ring_emit(ring, MSG_FBC_REND_STATE);
325 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
326 intel_ring_advance(ring);
327
328 ring->fbc_dirty = false;
329 return 0;
330 }
331
332 static int
333 gen7_render_ring_flush(struct intel_engine_cs *ring,
334 u32 invalidate_domains, u32 flush_domains)
335 {
336 u32 flags = 0;
337 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
338 int ret;
339
340 /*
341 * Ensure that any following seqno writes only happen when the render
342 * cache is indeed flushed.
343 *
344 * Workaround: 4th PIPE_CONTROL command (except the ones with only
345 * read-cache invalidate bits set) must have the CS_STALL bit set. We
346 * don't try to be clever and just set it unconditionally.
347 */
348 flags |= PIPE_CONTROL_CS_STALL;
349
350 /* Just flush everything. Experiments have shown that reducing the
351 * number of bits based on the write domains has little performance
352 * impact.
353 */
354 if (flush_domains) {
355 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
356 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
357 }
358 if (invalidate_domains) {
359 flags |= PIPE_CONTROL_TLB_INVALIDATE;
360 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
361 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
362 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
363 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
364 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
365 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
366 /*
367 * TLB invalidate requires a post-sync write.
368 */
369 flags |= PIPE_CONTROL_QW_WRITE;
370 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
371
372 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
373
374 /* Workaround: we must issue a pipe_control with CS-stall bit
375 * set before a pipe_control command that has the state cache
376 * invalidate bit set. */
377 gen7_render_ring_cs_stall_wa(ring);
378 }
379
380 ret = intel_ring_begin(ring, 4);
381 if (ret)
382 return ret;
383
384 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
385 intel_ring_emit(ring, flags);
386 intel_ring_emit(ring, scratch_addr);
387 intel_ring_emit(ring, 0);
388 intel_ring_advance(ring);
389
390 if (!invalidate_domains && flush_domains)
391 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
392
393 return 0;
394 }
395
396 static int
397 gen8_emit_pipe_control(struct intel_engine_cs *ring,
398 u32 flags, u32 scratch_addr)
399 {
400 int ret;
401
402 ret = intel_ring_begin(ring, 6);
403 if (ret)
404 return ret;
405
406 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
407 intel_ring_emit(ring, flags);
408 intel_ring_emit(ring, scratch_addr);
409 intel_ring_emit(ring, 0);
410 intel_ring_emit(ring, 0);
411 intel_ring_emit(ring, 0);
412 intel_ring_advance(ring);
413
414 return 0;
415 }
416
417 static int
418 gen8_render_ring_flush(struct intel_engine_cs *ring,
419 u32 invalidate_domains, u32 flush_domains)
420 {
421 u32 flags = 0;
422 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
423 int ret;
424
425 flags |= PIPE_CONTROL_CS_STALL;
426
427 if (flush_domains) {
428 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
429 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
430 }
431 if (invalidate_domains) {
432 flags |= PIPE_CONTROL_TLB_INVALIDATE;
433 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
434 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
435 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
436 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
437 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
438 flags |= PIPE_CONTROL_QW_WRITE;
439 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
440
441 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
442 ret = gen8_emit_pipe_control(ring,
443 PIPE_CONTROL_CS_STALL |
444 PIPE_CONTROL_STALL_AT_SCOREBOARD,
445 0);
446 if (ret)
447 return ret;
448 }
449
450 ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
451 if (ret)
452 return ret;
453
454 if (!invalidate_domains && flush_domains)
455 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
456
457 return 0;
458 }
459
460 static void ring_write_tail(struct intel_engine_cs *ring,
461 u32 value)
462 {
463 struct drm_i915_private *dev_priv = ring->dev->dev_private;
464 I915_WRITE_TAIL(ring, value);
465 }
466
467 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
468 {
469 struct drm_i915_private *dev_priv = ring->dev->dev_private;
470 u64 acthd;
471
472 if (INTEL_INFO(ring->dev)->gen >= 8)
473 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
474 RING_ACTHD_UDW(ring->mmio_base));
475 else if (INTEL_INFO(ring->dev)->gen >= 4)
476 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
477 else
478 acthd = I915_READ(ACTHD);
479
480 return acthd;
481 }
482
483 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
484 {
485 struct drm_i915_private *dev_priv = ring->dev->dev_private;
486 u32 addr;
487
488 addr = dev_priv->status_page_dmah->busaddr;
489 if (INTEL_INFO(ring->dev)->gen >= 4)
490 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
491 I915_WRITE(HWS_PGA, addr);
492 }
493
494 static bool stop_ring(struct intel_engine_cs *ring)
495 {
496 struct drm_i915_private *dev_priv = to_i915(ring->dev);
497
498 if (!IS_GEN2(ring->dev)) {
499 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
500 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
501 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
502 /* Sometimes we observe that the idle flag is not
503 * set even though the ring is empty. So double
504 * check before giving up.
505 */
506 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
507 return false;
508 }
509 }
510
511 I915_WRITE_CTL(ring, 0);
512 I915_WRITE_HEAD(ring, 0);
513 ring->write_tail(ring, 0);
514
515 if (!IS_GEN2(ring->dev)) {
516 (void)I915_READ_CTL(ring);
517 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
518 }
519
520 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
521 }
522
523 static int init_ring_common(struct intel_engine_cs *ring)
524 {
525 struct drm_device *dev = ring->dev;
526 struct drm_i915_private *dev_priv = dev->dev_private;
527 struct intel_ringbuffer *ringbuf = ring->buffer;
528 struct drm_i915_gem_object *obj = ringbuf->obj;
529 int ret = 0;
530
531 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
532
533 if (!stop_ring(ring)) {
534 /* G45 ring initialization often fails to reset head to zero */
535 DRM_DEBUG_KMS("%s head not reset to zero "
536 "ctl %08x head %08x tail %08x start %08x\n",
537 ring->name,
538 I915_READ_CTL(ring),
539 I915_READ_HEAD(ring),
540 I915_READ_TAIL(ring),
541 I915_READ_START(ring));
542
543 if (!stop_ring(ring)) {
544 DRM_ERROR("failed to set %s head to zero "
545 "ctl %08x head %08x tail %08x start %08x\n",
546 ring->name,
547 I915_READ_CTL(ring),
548 I915_READ_HEAD(ring),
549 I915_READ_TAIL(ring),
550 I915_READ_START(ring));
551 ret = -EIO;
552 goto out;
553 }
554 }
555
556 if (I915_NEED_GFX_HWS(dev))
557 intel_ring_setup_status_page(ring);
558 else
559 ring_setup_phys_status_page(ring);
560
561 /* Enforce ordering by reading HEAD register back */
562 I915_READ_HEAD(ring);
563
564 /* Initialize the ring. This must happen _after_ we've cleared the ring
565 * registers with the above sequence (the readback of the HEAD registers
566 * also enforces ordering), otherwise the hw might lose the new ring
567 * register values. */
568 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
569
570 /* WaClearRingBufHeadRegAtInit:ctg,elk */
571 if (I915_READ_HEAD(ring))
572 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
573 ring->name, I915_READ_HEAD(ring));
574 I915_WRITE_HEAD(ring, 0);
575 (void)I915_READ_HEAD(ring);
576
577 I915_WRITE_CTL(ring,
578 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
579 | RING_VALID);
580
581 /* If the head is still not zero, the ring is dead */
582 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
583 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
584 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
585 DRM_ERROR("%s initialization failed "
586 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
587 ring->name,
588 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
589 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
590 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
591 ret = -EIO;
592 goto out;
593 }
594
595 ringbuf->head = I915_READ_HEAD(ring);
596 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
597 ringbuf->space = intel_ring_space(ringbuf);
598 ringbuf->last_retired_head = -1;
599
600 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
601
602 out:
603 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
604
605 return ret;
606 }
607
608 void
609 intel_fini_pipe_control(struct intel_engine_cs *ring)
610 {
611 struct drm_device *dev = ring->dev;
612
613 if (ring->scratch.obj == NULL)
614 return;
615
616 if (INTEL_INFO(dev)->gen >= 5) {
617 kunmap(sg_page(ring->scratch.obj->pages->sgl));
618 i915_gem_object_ggtt_unpin(ring->scratch.obj);
619 }
620
621 drm_gem_object_unreference(&ring->scratch.obj->base);
622 ring->scratch.obj = NULL;
623 }
624
625 int
626 intel_init_pipe_control(struct intel_engine_cs *ring)
627 {
628 int ret;
629
630 if (ring->scratch.obj)
631 return 0;
632
633 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
634 if (ring->scratch.obj == NULL) {
635 DRM_ERROR("Failed to allocate seqno page\n");
636 ret = -ENOMEM;
637 goto err;
638 }
639
640 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
641 if (ret)
642 goto err_unref;
643
644 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
645 if (ret)
646 goto err_unref;
647
648 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
649 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
650 if (ring->scratch.cpu_page == NULL) {
651 ret = -ENOMEM;
652 goto err_unpin;
653 }
654
655 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
656 ring->name, ring->scratch.gtt_offset);
657 return 0;
658
659 err_unpin:
660 i915_gem_object_ggtt_unpin(ring->scratch.obj);
661 err_unref:
662 drm_gem_object_unreference(&ring->scratch.obj->base);
663 err:
664 return ret;
665 }
666
667 static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
668 struct intel_context *ctx)
669 {
670 int ret, i;
671 struct drm_device *dev = ring->dev;
672 struct drm_i915_private *dev_priv = dev->dev_private;
673 struct i915_workarounds *w = &dev_priv->workarounds;
674
675 if (WARN_ON(w->count == 0))
676 return 0;
677
678 ring->gpu_caches_dirty = true;
679 ret = intel_ring_flush_all_caches(ring);
680 if (ret)
681 return ret;
682
683 ret = intel_ring_begin(ring, (w->count * 2 + 2));
684 if (ret)
685 return ret;
686
687 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
688 for (i = 0; i < w->count; i++) {
689 intel_ring_emit(ring, w->reg[i].addr);
690 intel_ring_emit(ring, w->reg[i].value);
691 }
692 intel_ring_emit(ring, MI_NOOP);
693
694 intel_ring_advance(ring);
695
696 ring->gpu_caches_dirty = true;
697 ret = intel_ring_flush_all_caches(ring);
698 if (ret)
699 return ret;
700
701 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
702
703 return 0;
704 }
705
706 static int wa_add(struct drm_i915_private *dev_priv,
707 const u32 addr, const u32 mask, const u32 val)
708 {
709 const u32 idx = dev_priv->workarounds.count;
710
711 if (WARN_ON(idx >= I915_MAX_WA_REGS))
712 return -ENOSPC;
713
714 dev_priv->workarounds.reg[idx].addr = addr;
715 dev_priv->workarounds.reg[idx].value = val;
716 dev_priv->workarounds.reg[idx].mask = mask;
717
718 dev_priv->workarounds.count++;
719
720 return 0;
721 }
722
723 #define WA_REG(addr, mask, val) { \
724 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
725 if (r) \
726 return r; \
727 }
728
729 #define WA_SET_BIT_MASKED(addr, mask) \
730 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
731
732 #define WA_CLR_BIT_MASKED(addr, mask) \
733 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
734
735 #define WA_SET_FIELD_MASKED(addr, mask, value) \
736 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
737
738 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
739 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
740
741 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
742
743 static int bdw_init_workarounds(struct intel_engine_cs *ring)
744 {
745 struct drm_device *dev = ring->dev;
746 struct drm_i915_private *dev_priv = dev->dev_private;
747
748 /* WaDisablePartialInstShootdown:bdw */
749 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
750 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
751 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
752 STALL_DOP_GATING_DISABLE);
753
754 /* WaDisableDopClockGating:bdw */
755 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
756 DOP_CLOCK_GATING_DISABLE);
757
758 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
759 GEN8_SAMPLER_POWER_BYPASS_DIS);
760
761 /* Use Force Non-Coherent whenever executing a 3D context. This is a
762 * workaround for for a possible hang in the unlikely event a TLB
763 * invalidation occurs during a PSD flush.
764 */
765 /* WaDisableFenceDestinationToSLM:bdw (GT3 pre-production) */
766 WA_SET_BIT_MASKED(HDC_CHICKEN0,
767 HDC_FORCE_NON_COHERENT |
768 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
769
770 /* Wa4x4STCOptimizationDisable:bdw */
771 WA_SET_BIT_MASKED(CACHE_MODE_1,
772 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
773
774 /*
775 * BSpec recommends 8x4 when MSAA is used,
776 * however in practice 16x4 seems fastest.
777 *
778 * Note that PS/WM thread counts depend on the WIZ hashing
779 * disable bit, which we don't touch here, but it's good
780 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
781 */
782 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
783 GEN6_WIZ_HASHING_MASK,
784 GEN6_WIZ_HASHING_16x4);
785
786 return 0;
787 }
788
789 static int chv_init_workarounds(struct intel_engine_cs *ring)
790 {
791 struct drm_device *dev = ring->dev;
792 struct drm_i915_private *dev_priv = dev->dev_private;
793
794 /* WaDisablePartialInstShootdown:chv */
795 /* WaDisableThreadStallDopClockGating:chv */
796 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
797 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
798 STALL_DOP_GATING_DISABLE);
799
800 /* Use Force Non-Coherent whenever executing a 3D context. This is a
801 * workaround for a possible hang in the unlikely event a TLB
802 * invalidation occurs during a PSD flush.
803 */
804 /* WaForceEnableNonCoherent:chv */
805 /* WaHdcDisableFetchWhenMasked:chv */
806 WA_SET_BIT_MASKED(HDC_CHICKEN0,
807 HDC_FORCE_NON_COHERENT |
808 HDC_DONOT_FETCH_MEM_WHEN_MASKED);
809
810 return 0;
811 }
812
813 int init_workarounds_ring(struct intel_engine_cs *ring)
814 {
815 struct drm_device *dev = ring->dev;
816 struct drm_i915_private *dev_priv = dev->dev_private;
817
818 WARN_ON(ring->id != RCS);
819
820 dev_priv->workarounds.count = 0;
821
822 if (IS_BROADWELL(dev))
823 return bdw_init_workarounds(ring);
824
825 if (IS_CHERRYVIEW(dev))
826 return chv_init_workarounds(ring);
827
828 return 0;
829 }
830
831 static int init_render_ring(struct intel_engine_cs *ring)
832 {
833 struct drm_device *dev = ring->dev;
834 struct drm_i915_private *dev_priv = dev->dev_private;
835 int ret = init_ring_common(ring);
836 if (ret)
837 return ret;
838
839 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
840 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
841 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
842
843 /* We need to disable the AsyncFlip performance optimisations in order
844 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
845 * programmed to '1' on all products.
846 *
847 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
848 */
849 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
850 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
851
852 /* Required for the hardware to program scanline values for waiting */
853 /* WaEnableFlushTlbInvalidationMode:snb */
854 if (INTEL_INFO(dev)->gen == 6)
855 I915_WRITE(GFX_MODE,
856 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
857
858 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
859 if (IS_GEN7(dev))
860 I915_WRITE(GFX_MODE_GEN7,
861 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
862 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
863
864 if (INTEL_INFO(dev)->gen >= 5) {
865 ret = intel_init_pipe_control(ring);
866 if (ret)
867 return ret;
868 }
869
870 if (IS_GEN6(dev)) {
871 /* From the Sandybridge PRM, volume 1 part 3, page 24:
872 * "If this bit is set, STCunit will have LRA as replacement
873 * policy. [...] This bit must be reset. LRA replacement
874 * policy is not supported."
875 */
876 I915_WRITE(CACHE_MODE_0,
877 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
878 }
879
880 if (INTEL_INFO(dev)->gen >= 6)
881 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
882
883 if (HAS_L3_DPF(dev))
884 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
885
886 return init_workarounds_ring(ring);
887 }
888
889 static void render_ring_cleanup(struct intel_engine_cs *ring)
890 {
891 struct drm_device *dev = ring->dev;
892 struct drm_i915_private *dev_priv = dev->dev_private;
893
894 if (dev_priv->semaphore_obj) {
895 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
896 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
897 dev_priv->semaphore_obj = NULL;
898 }
899
900 intel_fini_pipe_control(ring);
901 }
902
903 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
904 unsigned int num_dwords)
905 {
906 #define MBOX_UPDATE_DWORDS 8
907 struct drm_device *dev = signaller->dev;
908 struct drm_i915_private *dev_priv = dev->dev_private;
909 struct intel_engine_cs *waiter;
910 int i, ret, num_rings;
911
912 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
913 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
914 #undef MBOX_UPDATE_DWORDS
915
916 ret = intel_ring_begin(signaller, num_dwords);
917 if (ret)
918 return ret;
919
920 for_each_ring(waiter, dev_priv, i) {
921 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
922 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
923 continue;
924
925 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
926 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
927 PIPE_CONTROL_QW_WRITE |
928 PIPE_CONTROL_FLUSH_ENABLE);
929 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
930 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
931 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
932 intel_ring_emit(signaller, 0);
933 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
934 MI_SEMAPHORE_TARGET(waiter->id));
935 intel_ring_emit(signaller, 0);
936 }
937
938 return 0;
939 }
940
941 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
942 unsigned int num_dwords)
943 {
944 #define MBOX_UPDATE_DWORDS 6
945 struct drm_device *dev = signaller->dev;
946 struct drm_i915_private *dev_priv = dev->dev_private;
947 struct intel_engine_cs *waiter;
948 int i, ret, num_rings;
949
950 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
951 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
952 #undef MBOX_UPDATE_DWORDS
953
954 ret = intel_ring_begin(signaller, num_dwords);
955 if (ret)
956 return ret;
957
958 for_each_ring(waiter, dev_priv, i) {
959 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
960 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
961 continue;
962
963 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
964 MI_FLUSH_DW_OP_STOREDW);
965 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
966 MI_FLUSH_DW_USE_GTT);
967 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
968 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
969 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
970 MI_SEMAPHORE_TARGET(waiter->id));
971 intel_ring_emit(signaller, 0);
972 }
973
974 return 0;
975 }
976
977 static int gen6_signal(struct intel_engine_cs *signaller,
978 unsigned int num_dwords)
979 {
980 struct drm_device *dev = signaller->dev;
981 struct drm_i915_private *dev_priv = dev->dev_private;
982 struct intel_engine_cs *useless;
983 int i, ret, num_rings;
984
985 #define MBOX_UPDATE_DWORDS 3
986 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
987 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
988 #undef MBOX_UPDATE_DWORDS
989
990 ret = intel_ring_begin(signaller, num_dwords);
991 if (ret)
992 return ret;
993
994 for_each_ring(useless, dev_priv, i) {
995 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
996 if (mbox_reg != GEN6_NOSYNC) {
997 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
998 intel_ring_emit(signaller, mbox_reg);
999 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
1000 }
1001 }
1002
1003 /* If num_dwords was rounded, make sure the tail pointer is correct */
1004 if (num_rings % 2 == 0)
1005 intel_ring_emit(signaller, MI_NOOP);
1006
1007 return 0;
1008 }
1009
1010 /**
1011 * gen6_add_request - Update the semaphore mailbox registers
1012 *
1013 * @ring - ring that is adding a request
1014 * @seqno - return seqno stuck into the ring
1015 *
1016 * Update the mailbox registers in the *other* rings with the current seqno.
1017 * This acts like a signal in the canonical semaphore.
1018 */
1019 static int
1020 gen6_add_request(struct intel_engine_cs *ring)
1021 {
1022 int ret;
1023
1024 if (ring->semaphore.signal)
1025 ret = ring->semaphore.signal(ring, 4);
1026 else
1027 ret = intel_ring_begin(ring, 4);
1028
1029 if (ret)
1030 return ret;
1031
1032 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1033 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1034 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1035 intel_ring_emit(ring, MI_USER_INTERRUPT);
1036 __intel_ring_advance(ring);
1037
1038 return 0;
1039 }
1040
1041 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1042 u32 seqno)
1043 {
1044 struct drm_i915_private *dev_priv = dev->dev_private;
1045 return dev_priv->last_seqno < seqno;
1046 }
1047
1048 /**
1049 * intel_ring_sync - sync the waiter to the signaller on seqno
1050 *
1051 * @waiter - ring that is waiting
1052 * @signaller - ring which has, or will signal
1053 * @seqno - seqno which the waiter will block on
1054 */
1055
1056 static int
1057 gen8_ring_sync(struct intel_engine_cs *waiter,
1058 struct intel_engine_cs *signaller,
1059 u32 seqno)
1060 {
1061 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1062 int ret;
1063
1064 ret = intel_ring_begin(waiter, 4);
1065 if (ret)
1066 return ret;
1067
1068 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1069 MI_SEMAPHORE_GLOBAL_GTT |
1070 MI_SEMAPHORE_POLL |
1071 MI_SEMAPHORE_SAD_GTE_SDD);
1072 intel_ring_emit(waiter, seqno);
1073 intel_ring_emit(waiter,
1074 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1075 intel_ring_emit(waiter,
1076 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1077 intel_ring_advance(waiter);
1078 return 0;
1079 }
1080
1081 static int
1082 gen6_ring_sync(struct intel_engine_cs *waiter,
1083 struct intel_engine_cs *signaller,
1084 u32 seqno)
1085 {
1086 u32 dw1 = MI_SEMAPHORE_MBOX |
1087 MI_SEMAPHORE_COMPARE |
1088 MI_SEMAPHORE_REGISTER;
1089 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1090 int ret;
1091
1092 /* Throughout all of the GEM code, seqno passed implies our current
1093 * seqno is >= the last seqno executed. However for hardware the
1094 * comparison is strictly greater than.
1095 */
1096 seqno -= 1;
1097
1098 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1099
1100 ret = intel_ring_begin(waiter, 4);
1101 if (ret)
1102 return ret;
1103
1104 /* If seqno wrap happened, omit the wait with no-ops */
1105 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1106 intel_ring_emit(waiter, dw1 | wait_mbox);
1107 intel_ring_emit(waiter, seqno);
1108 intel_ring_emit(waiter, 0);
1109 intel_ring_emit(waiter, MI_NOOP);
1110 } else {
1111 intel_ring_emit(waiter, MI_NOOP);
1112 intel_ring_emit(waiter, MI_NOOP);
1113 intel_ring_emit(waiter, MI_NOOP);
1114 intel_ring_emit(waiter, MI_NOOP);
1115 }
1116 intel_ring_advance(waiter);
1117
1118 return 0;
1119 }
1120
1121 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1122 do { \
1123 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1124 PIPE_CONTROL_DEPTH_STALL); \
1125 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1126 intel_ring_emit(ring__, 0); \
1127 intel_ring_emit(ring__, 0); \
1128 } while (0)
1129
1130 static int
1131 pc_render_add_request(struct intel_engine_cs *ring)
1132 {
1133 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1134 int ret;
1135
1136 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1137 * incoherent with writes to memory, i.e. completely fubar,
1138 * so we need to use PIPE_NOTIFY instead.
1139 *
1140 * However, we also need to workaround the qword write
1141 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1142 * memory before requesting an interrupt.
1143 */
1144 ret = intel_ring_begin(ring, 32);
1145 if (ret)
1146 return ret;
1147
1148 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1149 PIPE_CONTROL_WRITE_FLUSH |
1150 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1151 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1152 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1153 intel_ring_emit(ring, 0);
1154 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1155 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1156 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1157 scratch_addr += 2 * CACHELINE_BYTES;
1158 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1159 scratch_addr += 2 * CACHELINE_BYTES;
1160 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1161 scratch_addr += 2 * CACHELINE_BYTES;
1162 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1163 scratch_addr += 2 * CACHELINE_BYTES;
1164 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1165
1166 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1167 PIPE_CONTROL_WRITE_FLUSH |
1168 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1169 PIPE_CONTROL_NOTIFY);
1170 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1171 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1172 intel_ring_emit(ring, 0);
1173 __intel_ring_advance(ring);
1174
1175 return 0;
1176 }
1177
1178 static u32
1179 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1180 {
1181 /* Workaround to force correct ordering between irq and seqno writes on
1182 * ivb (and maybe also on snb) by reading from a CS register (like
1183 * ACTHD) before reading the status page. */
1184 if (!lazy_coherency) {
1185 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1186 POSTING_READ(RING_ACTHD(ring->mmio_base));
1187 }
1188
1189 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1190 }
1191
1192 static u32
1193 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1194 {
1195 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1196 }
1197
1198 static void
1199 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1200 {
1201 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1202 }
1203
1204 static u32
1205 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1206 {
1207 return ring->scratch.cpu_page[0];
1208 }
1209
1210 static void
1211 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1212 {
1213 ring->scratch.cpu_page[0] = seqno;
1214 }
1215
1216 static bool
1217 gen5_ring_get_irq(struct intel_engine_cs *ring)
1218 {
1219 struct drm_device *dev = ring->dev;
1220 struct drm_i915_private *dev_priv = dev->dev_private;
1221 unsigned long flags;
1222
1223 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1224 return false;
1225
1226 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1227 if (ring->irq_refcount++ == 0)
1228 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1229 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1230
1231 return true;
1232 }
1233
1234 static void
1235 gen5_ring_put_irq(struct intel_engine_cs *ring)
1236 {
1237 struct drm_device *dev = ring->dev;
1238 struct drm_i915_private *dev_priv = dev->dev_private;
1239 unsigned long flags;
1240
1241 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1242 if (--ring->irq_refcount == 0)
1243 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1244 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1245 }
1246
1247 static bool
1248 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1249 {
1250 struct drm_device *dev = ring->dev;
1251 struct drm_i915_private *dev_priv = dev->dev_private;
1252 unsigned long flags;
1253
1254 if (!intel_irqs_enabled(dev_priv))
1255 return false;
1256
1257 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1258 if (ring->irq_refcount++ == 0) {
1259 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1260 I915_WRITE(IMR, dev_priv->irq_mask);
1261 POSTING_READ(IMR);
1262 }
1263 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1264
1265 return true;
1266 }
1267
1268 static void
1269 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1270 {
1271 struct drm_device *dev = ring->dev;
1272 struct drm_i915_private *dev_priv = dev->dev_private;
1273 unsigned long flags;
1274
1275 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1276 if (--ring->irq_refcount == 0) {
1277 dev_priv->irq_mask |= ring->irq_enable_mask;
1278 I915_WRITE(IMR, dev_priv->irq_mask);
1279 POSTING_READ(IMR);
1280 }
1281 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1282 }
1283
1284 static bool
1285 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1286 {
1287 struct drm_device *dev = ring->dev;
1288 struct drm_i915_private *dev_priv = dev->dev_private;
1289 unsigned long flags;
1290
1291 if (!intel_irqs_enabled(dev_priv))
1292 return false;
1293
1294 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1295 if (ring->irq_refcount++ == 0) {
1296 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1297 I915_WRITE16(IMR, dev_priv->irq_mask);
1298 POSTING_READ16(IMR);
1299 }
1300 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1301
1302 return true;
1303 }
1304
1305 static void
1306 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1307 {
1308 struct drm_device *dev = ring->dev;
1309 struct drm_i915_private *dev_priv = dev->dev_private;
1310 unsigned long flags;
1311
1312 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1313 if (--ring->irq_refcount == 0) {
1314 dev_priv->irq_mask |= ring->irq_enable_mask;
1315 I915_WRITE16(IMR, dev_priv->irq_mask);
1316 POSTING_READ16(IMR);
1317 }
1318 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1319 }
1320
1321 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1322 {
1323 struct drm_device *dev = ring->dev;
1324 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1325 u32 mmio = 0;
1326
1327 /* The ring status page addresses are no longer next to the rest of
1328 * the ring registers as of gen7.
1329 */
1330 if (IS_GEN7(dev)) {
1331 switch (ring->id) {
1332 case RCS:
1333 mmio = RENDER_HWS_PGA_GEN7;
1334 break;
1335 case BCS:
1336 mmio = BLT_HWS_PGA_GEN7;
1337 break;
1338 /*
1339 * VCS2 actually doesn't exist on Gen7. Only shut up
1340 * gcc switch check warning
1341 */
1342 case VCS2:
1343 case VCS:
1344 mmio = BSD_HWS_PGA_GEN7;
1345 break;
1346 case VECS:
1347 mmio = VEBOX_HWS_PGA_GEN7;
1348 break;
1349 }
1350 } else if (IS_GEN6(ring->dev)) {
1351 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1352 } else {
1353 /* XXX: gen8 returns to sanity */
1354 mmio = RING_HWS_PGA(ring->mmio_base);
1355 }
1356
1357 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1358 POSTING_READ(mmio);
1359
1360 /*
1361 * Flush the TLB for this page
1362 *
1363 * FIXME: These two bits have disappeared on gen8, so a question
1364 * arises: do we still need this and if so how should we go about
1365 * invalidating the TLB?
1366 */
1367 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1368 u32 reg = RING_INSTPM(ring->mmio_base);
1369
1370 /* ring should be idle before issuing a sync flush*/
1371 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1372
1373 I915_WRITE(reg,
1374 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1375 INSTPM_SYNC_FLUSH));
1376 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1377 1000))
1378 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1379 ring->name);
1380 }
1381 }
1382
1383 static int
1384 bsd_ring_flush(struct intel_engine_cs *ring,
1385 u32 invalidate_domains,
1386 u32 flush_domains)
1387 {
1388 int ret;
1389
1390 ret = intel_ring_begin(ring, 2);
1391 if (ret)
1392 return ret;
1393
1394 intel_ring_emit(ring, MI_FLUSH);
1395 intel_ring_emit(ring, MI_NOOP);
1396 intel_ring_advance(ring);
1397 return 0;
1398 }
1399
1400 static int
1401 i9xx_add_request(struct intel_engine_cs *ring)
1402 {
1403 int ret;
1404
1405 ret = intel_ring_begin(ring, 4);
1406 if (ret)
1407 return ret;
1408
1409 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1410 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1411 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1412 intel_ring_emit(ring, MI_USER_INTERRUPT);
1413 __intel_ring_advance(ring);
1414
1415 return 0;
1416 }
1417
1418 static bool
1419 gen6_ring_get_irq(struct intel_engine_cs *ring)
1420 {
1421 struct drm_device *dev = ring->dev;
1422 struct drm_i915_private *dev_priv = dev->dev_private;
1423 unsigned long flags;
1424
1425 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1426 return false;
1427
1428 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1429 if (ring->irq_refcount++ == 0) {
1430 if (HAS_L3_DPF(dev) && ring->id == RCS)
1431 I915_WRITE_IMR(ring,
1432 ~(ring->irq_enable_mask |
1433 GT_PARITY_ERROR(dev)));
1434 else
1435 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1436 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1437 }
1438 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1439
1440 return true;
1441 }
1442
1443 static void
1444 gen6_ring_put_irq(struct intel_engine_cs *ring)
1445 {
1446 struct drm_device *dev = ring->dev;
1447 struct drm_i915_private *dev_priv = dev->dev_private;
1448 unsigned long flags;
1449
1450 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1451 if (--ring->irq_refcount == 0) {
1452 if (HAS_L3_DPF(dev) && ring->id == RCS)
1453 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1454 else
1455 I915_WRITE_IMR(ring, ~0);
1456 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1457 }
1458 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1459 }
1460
1461 static bool
1462 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1463 {
1464 struct drm_device *dev = ring->dev;
1465 struct drm_i915_private *dev_priv = dev->dev_private;
1466 unsigned long flags;
1467
1468 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1469 return false;
1470
1471 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1472 if (ring->irq_refcount++ == 0) {
1473 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1474 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1475 }
1476 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1477
1478 return true;
1479 }
1480
1481 static void
1482 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1483 {
1484 struct drm_device *dev = ring->dev;
1485 struct drm_i915_private *dev_priv = dev->dev_private;
1486 unsigned long flags;
1487
1488 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1489 if (--ring->irq_refcount == 0) {
1490 I915_WRITE_IMR(ring, ~0);
1491 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1492 }
1493 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1494 }
1495
1496 static bool
1497 gen8_ring_get_irq(struct intel_engine_cs *ring)
1498 {
1499 struct drm_device *dev = ring->dev;
1500 struct drm_i915_private *dev_priv = dev->dev_private;
1501 unsigned long flags;
1502
1503 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1504 return false;
1505
1506 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1507 if (ring->irq_refcount++ == 0) {
1508 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1509 I915_WRITE_IMR(ring,
1510 ~(ring->irq_enable_mask |
1511 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1512 } else {
1513 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1514 }
1515 POSTING_READ(RING_IMR(ring->mmio_base));
1516 }
1517 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1518
1519 return true;
1520 }
1521
1522 static void
1523 gen8_ring_put_irq(struct intel_engine_cs *ring)
1524 {
1525 struct drm_device *dev = ring->dev;
1526 struct drm_i915_private *dev_priv = dev->dev_private;
1527 unsigned long flags;
1528
1529 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1530 if (--ring->irq_refcount == 0) {
1531 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1532 I915_WRITE_IMR(ring,
1533 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1534 } else {
1535 I915_WRITE_IMR(ring, ~0);
1536 }
1537 POSTING_READ(RING_IMR(ring->mmio_base));
1538 }
1539 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1540 }
1541
1542 static int
1543 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1544 u64 offset, u32 length,
1545 unsigned flags)
1546 {
1547 int ret;
1548
1549 ret = intel_ring_begin(ring, 2);
1550 if (ret)
1551 return ret;
1552
1553 intel_ring_emit(ring,
1554 MI_BATCH_BUFFER_START |
1555 MI_BATCH_GTT |
1556 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1557 intel_ring_emit(ring, offset);
1558 intel_ring_advance(ring);
1559
1560 return 0;
1561 }
1562
1563 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1564 #define I830_BATCH_LIMIT (256*1024)
1565 #define I830_TLB_ENTRIES (2)
1566 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1567 static int
1568 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1569 u64 offset, u32 len,
1570 unsigned flags)
1571 {
1572 u32 cs_offset = ring->scratch.gtt_offset;
1573 int ret;
1574
1575 ret = intel_ring_begin(ring, 6);
1576 if (ret)
1577 return ret;
1578
1579 /* Evict the invalid PTE TLBs */
1580 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1581 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1582 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1583 intel_ring_emit(ring, cs_offset);
1584 intel_ring_emit(ring, 0xdeadbeef);
1585 intel_ring_emit(ring, MI_NOOP);
1586 intel_ring_advance(ring);
1587
1588 if ((flags & I915_DISPATCH_PINNED) == 0) {
1589 if (len > I830_BATCH_LIMIT)
1590 return -ENOSPC;
1591
1592 ret = intel_ring_begin(ring, 6 + 2);
1593 if (ret)
1594 return ret;
1595
1596 /* Blit the batch (which has now all relocs applied) to the
1597 * stable batch scratch bo area (so that the CS never
1598 * stumbles over its tlb invalidation bug) ...
1599 */
1600 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1601 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1602 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1603 intel_ring_emit(ring, cs_offset);
1604 intel_ring_emit(ring, 4096);
1605 intel_ring_emit(ring, offset);
1606
1607 intel_ring_emit(ring, MI_FLUSH);
1608 intel_ring_emit(ring, MI_NOOP);
1609 intel_ring_advance(ring);
1610
1611 /* ... and execute it. */
1612 offset = cs_offset;
1613 }
1614
1615 ret = intel_ring_begin(ring, 4);
1616 if (ret)
1617 return ret;
1618
1619 intel_ring_emit(ring, MI_BATCH_BUFFER);
1620 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1621 intel_ring_emit(ring, offset + len - 8);
1622 intel_ring_emit(ring, MI_NOOP);
1623 intel_ring_advance(ring);
1624
1625 return 0;
1626 }
1627
1628 static int
1629 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1630 u64 offset, u32 len,
1631 unsigned flags)
1632 {
1633 int ret;
1634
1635 ret = intel_ring_begin(ring, 2);
1636 if (ret)
1637 return ret;
1638
1639 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1640 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1641 intel_ring_advance(ring);
1642
1643 return 0;
1644 }
1645
1646 static void cleanup_status_page(struct intel_engine_cs *ring)
1647 {
1648 struct drm_i915_gem_object *obj;
1649
1650 obj = ring->status_page.obj;
1651 if (obj == NULL)
1652 return;
1653
1654 kunmap(sg_page(obj->pages->sgl));
1655 i915_gem_object_ggtt_unpin(obj);
1656 drm_gem_object_unreference(&obj->base);
1657 ring->status_page.obj = NULL;
1658 }
1659
1660 static int init_status_page(struct intel_engine_cs *ring)
1661 {
1662 struct drm_i915_gem_object *obj;
1663
1664 if ((obj = ring->status_page.obj) == NULL) {
1665 unsigned flags;
1666 int ret;
1667
1668 obj = i915_gem_alloc_object(ring->dev, 4096);
1669 if (obj == NULL) {
1670 DRM_ERROR("Failed to allocate status page\n");
1671 return -ENOMEM;
1672 }
1673
1674 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1675 if (ret)
1676 goto err_unref;
1677
1678 flags = 0;
1679 if (!HAS_LLC(ring->dev))
1680 /* On g33, we cannot place HWS above 256MiB, so
1681 * restrict its pinning to the low mappable arena.
1682 * Though this restriction is not documented for
1683 * gen4, gen5, or byt, they also behave similarly
1684 * and hang if the HWS is placed at the top of the
1685 * GTT. To generalise, it appears that all !llc
1686 * platforms have issues with us placing the HWS
1687 * above the mappable region (even though we never
1688 * actualy map it).
1689 */
1690 flags |= PIN_MAPPABLE;
1691 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1692 if (ret) {
1693 err_unref:
1694 drm_gem_object_unreference(&obj->base);
1695 return ret;
1696 }
1697
1698 ring->status_page.obj = obj;
1699 }
1700
1701 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1702 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1703 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1704
1705 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1706 ring->name, ring->status_page.gfx_addr);
1707
1708 return 0;
1709 }
1710
1711 static int init_phys_status_page(struct intel_engine_cs *ring)
1712 {
1713 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1714
1715 if (!dev_priv->status_page_dmah) {
1716 dev_priv->status_page_dmah =
1717 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1718 if (!dev_priv->status_page_dmah)
1719 return -ENOMEM;
1720 }
1721
1722 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1723 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1724
1725 return 0;
1726 }
1727
1728 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1729 {
1730 iounmap(ringbuf->virtual_start);
1731 ringbuf->virtual_start = NULL;
1732 i915_gem_object_ggtt_unpin(ringbuf->obj);
1733 }
1734
1735 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1736 struct intel_ringbuffer *ringbuf)
1737 {
1738 struct drm_i915_private *dev_priv = to_i915(dev);
1739 struct drm_i915_gem_object *obj = ringbuf->obj;
1740 int ret;
1741
1742 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1743 if (ret)
1744 return ret;
1745
1746 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1747 if (ret) {
1748 i915_gem_object_ggtt_unpin(obj);
1749 return ret;
1750 }
1751
1752 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1753 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1754 if (ringbuf->virtual_start == NULL) {
1755 i915_gem_object_ggtt_unpin(obj);
1756 return -EINVAL;
1757 }
1758
1759 return 0;
1760 }
1761
1762 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1763 {
1764 drm_gem_object_unreference(&ringbuf->obj->base);
1765 ringbuf->obj = NULL;
1766 }
1767
1768 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1769 struct intel_ringbuffer *ringbuf)
1770 {
1771 struct drm_i915_gem_object *obj;
1772
1773 obj = NULL;
1774 if (!HAS_LLC(dev))
1775 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1776 if (obj == NULL)
1777 obj = i915_gem_alloc_object(dev, ringbuf->size);
1778 if (obj == NULL)
1779 return -ENOMEM;
1780
1781 /* mark ring buffers as read-only from GPU side by default */
1782 obj->gt_ro = 1;
1783
1784 ringbuf->obj = obj;
1785
1786 return 0;
1787 }
1788
1789 static int intel_init_ring_buffer(struct drm_device *dev,
1790 struct intel_engine_cs *ring)
1791 {
1792 struct intel_ringbuffer *ringbuf = ring->buffer;
1793 int ret;
1794
1795 if (ringbuf == NULL) {
1796 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1797 if (!ringbuf)
1798 return -ENOMEM;
1799 ring->buffer = ringbuf;
1800 }
1801
1802 ring->dev = dev;
1803 INIT_LIST_HEAD(&ring->active_list);
1804 INIT_LIST_HEAD(&ring->request_list);
1805 INIT_LIST_HEAD(&ring->execlist_queue);
1806 ringbuf->size = 32 * PAGE_SIZE;
1807 ringbuf->ring = ring;
1808 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1809
1810 init_waitqueue_head(&ring->irq_queue);
1811
1812 if (I915_NEED_GFX_HWS(dev)) {
1813 ret = init_status_page(ring);
1814 if (ret)
1815 goto error;
1816 } else {
1817 BUG_ON(ring->id != RCS);
1818 ret = init_phys_status_page(ring);
1819 if (ret)
1820 goto error;
1821 }
1822
1823 if (ringbuf->obj == NULL) {
1824 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1825 if (ret) {
1826 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
1827 ring->name, ret);
1828 goto error;
1829 }
1830
1831 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1832 if (ret) {
1833 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
1834 ring->name, ret);
1835 intel_destroy_ringbuffer_obj(ringbuf);
1836 goto error;
1837 }
1838 }
1839
1840 /* Workaround an erratum on the i830 which causes a hang if
1841 * the TAIL pointer points to within the last 2 cachelines
1842 * of the buffer.
1843 */
1844 ringbuf->effective_size = ringbuf->size;
1845 if (IS_I830(dev) || IS_845G(dev))
1846 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1847
1848 ret = i915_cmd_parser_init_ring(ring);
1849 if (ret)
1850 goto error;
1851
1852 ret = ring->init(ring);
1853 if (ret)
1854 goto error;
1855
1856 return 0;
1857
1858 error:
1859 kfree(ringbuf);
1860 ring->buffer = NULL;
1861 return ret;
1862 }
1863
1864 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1865 {
1866 struct drm_i915_private *dev_priv;
1867 struct intel_ringbuffer *ringbuf;
1868
1869 if (!intel_ring_initialized(ring))
1870 return;
1871
1872 dev_priv = to_i915(ring->dev);
1873 ringbuf = ring->buffer;
1874
1875 intel_stop_ring_buffer(ring);
1876 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1877
1878 intel_unpin_ringbuffer_obj(ringbuf);
1879 intel_destroy_ringbuffer_obj(ringbuf);
1880 ring->preallocated_lazy_request = NULL;
1881 ring->outstanding_lazy_seqno = 0;
1882
1883 if (ring->cleanup)
1884 ring->cleanup(ring);
1885
1886 cleanup_status_page(ring);
1887
1888 i915_cmd_parser_fini_ring(ring);
1889
1890 kfree(ringbuf);
1891 ring->buffer = NULL;
1892 }
1893
1894 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1895 {
1896 struct intel_ringbuffer *ringbuf = ring->buffer;
1897 struct drm_i915_gem_request *request;
1898 u32 seqno = 0;
1899 int ret;
1900
1901 if (ringbuf->last_retired_head != -1) {
1902 ringbuf->head = ringbuf->last_retired_head;
1903 ringbuf->last_retired_head = -1;
1904
1905 ringbuf->space = intel_ring_space(ringbuf);
1906 if (ringbuf->space >= n)
1907 return 0;
1908 }
1909
1910 list_for_each_entry(request, &ring->request_list, list) {
1911 if (__intel_ring_space(request->tail, ringbuf->tail,
1912 ringbuf->size) >= n) {
1913 seqno = request->seqno;
1914 break;
1915 }
1916 }
1917
1918 if (seqno == 0)
1919 return -ENOSPC;
1920
1921 ret = i915_wait_seqno(ring, seqno);
1922 if (ret)
1923 return ret;
1924
1925 i915_gem_retire_requests_ring(ring);
1926 ringbuf->head = ringbuf->last_retired_head;
1927 ringbuf->last_retired_head = -1;
1928
1929 ringbuf->space = intel_ring_space(ringbuf);
1930 return 0;
1931 }
1932
1933 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1934 {
1935 struct drm_device *dev = ring->dev;
1936 struct drm_i915_private *dev_priv = dev->dev_private;
1937 struct intel_ringbuffer *ringbuf = ring->buffer;
1938 unsigned long end;
1939 int ret;
1940
1941 ret = intel_ring_wait_request(ring, n);
1942 if (ret != -ENOSPC)
1943 return ret;
1944
1945 /* force the tail write in case we have been skipping them */
1946 __intel_ring_advance(ring);
1947
1948 /* With GEM the hangcheck timer should kick us out of the loop,
1949 * leaving it early runs the risk of corrupting GEM state (due
1950 * to running on almost untested codepaths). But on resume
1951 * timers don't work yet, so prevent a complete hang in that
1952 * case by choosing an insanely large timeout. */
1953 end = jiffies + 60 * HZ;
1954
1955 trace_i915_ring_wait_begin(ring);
1956 do {
1957 ringbuf->head = I915_READ_HEAD(ring);
1958 ringbuf->space = intel_ring_space(ringbuf);
1959 if (ringbuf->space >= n) {
1960 ret = 0;
1961 break;
1962 }
1963
1964 msleep(1);
1965
1966 if (dev_priv->mm.interruptible && signal_pending(current)) {
1967 ret = -ERESTARTSYS;
1968 break;
1969 }
1970
1971 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1972 dev_priv->mm.interruptible);
1973 if (ret)
1974 break;
1975
1976 if (time_after(jiffies, end)) {
1977 ret = -EBUSY;
1978 break;
1979 }
1980 } while (1);
1981 trace_i915_ring_wait_end(ring);
1982 return ret;
1983 }
1984
1985 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1986 {
1987 uint32_t __iomem *virt;
1988 struct intel_ringbuffer *ringbuf = ring->buffer;
1989 int rem = ringbuf->size - ringbuf->tail;
1990
1991 if (ringbuf->space < rem) {
1992 int ret = ring_wait_for_space(ring, rem);
1993 if (ret)
1994 return ret;
1995 }
1996
1997 virt = ringbuf->virtual_start + ringbuf->tail;
1998 rem /= 4;
1999 while (rem--)
2000 iowrite32(MI_NOOP, virt++);
2001
2002 ringbuf->tail = 0;
2003 ringbuf->space = intel_ring_space(ringbuf);
2004
2005 return 0;
2006 }
2007
2008 int intel_ring_idle(struct intel_engine_cs *ring)
2009 {
2010 u32 seqno;
2011 int ret;
2012
2013 /* We need to add any requests required to flush the objects and ring */
2014 if (ring->outstanding_lazy_seqno) {
2015 ret = i915_add_request(ring, NULL);
2016 if (ret)
2017 return ret;
2018 }
2019
2020 /* Wait upon the last request to be completed */
2021 if (list_empty(&ring->request_list))
2022 return 0;
2023
2024 seqno = list_entry(ring->request_list.prev,
2025 struct drm_i915_gem_request,
2026 list)->seqno;
2027
2028 return i915_wait_seqno(ring, seqno);
2029 }
2030
2031 static int
2032 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
2033 {
2034 if (ring->outstanding_lazy_seqno)
2035 return 0;
2036
2037 if (ring->preallocated_lazy_request == NULL) {
2038 struct drm_i915_gem_request *request;
2039
2040 request = kmalloc(sizeof(*request), GFP_KERNEL);
2041 if (request == NULL)
2042 return -ENOMEM;
2043
2044 ring->preallocated_lazy_request = request;
2045 }
2046
2047 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
2048 }
2049
2050 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2051 int bytes)
2052 {
2053 struct intel_ringbuffer *ringbuf = ring->buffer;
2054 int ret;
2055
2056 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2057 ret = intel_wrap_ring_buffer(ring);
2058 if (unlikely(ret))
2059 return ret;
2060 }
2061
2062 if (unlikely(ringbuf->space < bytes)) {
2063 ret = ring_wait_for_space(ring, bytes);
2064 if (unlikely(ret))
2065 return ret;
2066 }
2067
2068 return 0;
2069 }
2070
2071 int intel_ring_begin(struct intel_engine_cs *ring,
2072 int num_dwords)
2073 {
2074 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2075 int ret;
2076
2077 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2078 dev_priv->mm.interruptible);
2079 if (ret)
2080 return ret;
2081
2082 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2083 if (ret)
2084 return ret;
2085
2086 /* Preallocate the olr before touching the ring */
2087 ret = intel_ring_alloc_seqno(ring);
2088 if (ret)
2089 return ret;
2090
2091 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2092 return 0;
2093 }
2094
2095 /* Align the ring tail to a cacheline boundary */
2096 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2097 {
2098 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2099 int ret;
2100
2101 if (num_dwords == 0)
2102 return 0;
2103
2104 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2105 ret = intel_ring_begin(ring, num_dwords);
2106 if (ret)
2107 return ret;
2108
2109 while (num_dwords--)
2110 intel_ring_emit(ring, MI_NOOP);
2111
2112 intel_ring_advance(ring);
2113
2114 return 0;
2115 }
2116
2117 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2118 {
2119 struct drm_device *dev = ring->dev;
2120 struct drm_i915_private *dev_priv = dev->dev_private;
2121
2122 BUG_ON(ring->outstanding_lazy_seqno);
2123
2124 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2125 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2126 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2127 if (HAS_VEBOX(dev))
2128 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2129 }
2130
2131 ring->set_seqno(ring, seqno);
2132 ring->hangcheck.seqno = seqno;
2133 }
2134
2135 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2136 u32 value)
2137 {
2138 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2139
2140 /* Every tail move must follow the sequence below */
2141
2142 /* Disable notification that the ring is IDLE. The GT
2143 * will then assume that it is busy and bring it out of rc6.
2144 */
2145 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2146 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2147
2148 /* Clear the context id. Here be magic! */
2149 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2150
2151 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2152 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2153 GEN6_BSD_SLEEP_INDICATOR) == 0,
2154 50))
2155 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2156
2157 /* Now that the ring is fully powered up, update the tail */
2158 I915_WRITE_TAIL(ring, value);
2159 POSTING_READ(RING_TAIL(ring->mmio_base));
2160
2161 /* Let the ring send IDLE messages to the GT again,
2162 * and so let it sleep to conserve power when idle.
2163 */
2164 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2165 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2166 }
2167
2168 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2169 u32 invalidate, u32 flush)
2170 {
2171 uint32_t cmd;
2172 int ret;
2173
2174 ret = intel_ring_begin(ring, 4);
2175 if (ret)
2176 return ret;
2177
2178 cmd = MI_FLUSH_DW;
2179 if (INTEL_INFO(ring->dev)->gen >= 8)
2180 cmd += 1;
2181 /*
2182 * Bspec vol 1c.5 - video engine command streamer:
2183 * "If ENABLED, all TLBs will be invalidated once the flush
2184 * operation is complete. This bit is only valid when the
2185 * Post-Sync Operation field is a value of 1h or 3h."
2186 */
2187 if (invalidate & I915_GEM_GPU_DOMAINS)
2188 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
2189 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2190 intel_ring_emit(ring, cmd);
2191 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2192 if (INTEL_INFO(ring->dev)->gen >= 8) {
2193 intel_ring_emit(ring, 0); /* upper addr */
2194 intel_ring_emit(ring, 0); /* value */
2195 } else {
2196 intel_ring_emit(ring, 0);
2197 intel_ring_emit(ring, MI_NOOP);
2198 }
2199 intel_ring_advance(ring);
2200 return 0;
2201 }
2202
2203 static int
2204 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2205 u64 offset, u32 len,
2206 unsigned flags)
2207 {
2208 bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
2209 int ret;
2210
2211 ret = intel_ring_begin(ring, 4);
2212 if (ret)
2213 return ret;
2214
2215 /* FIXME(BDW): Address space and security selectors. */
2216 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2217 intel_ring_emit(ring, lower_32_bits(offset));
2218 intel_ring_emit(ring, upper_32_bits(offset));
2219 intel_ring_emit(ring, MI_NOOP);
2220 intel_ring_advance(ring);
2221
2222 return 0;
2223 }
2224
2225 static int
2226 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2227 u64 offset, u32 len,
2228 unsigned flags)
2229 {
2230 int ret;
2231
2232 ret = intel_ring_begin(ring, 2);
2233 if (ret)
2234 return ret;
2235
2236 intel_ring_emit(ring,
2237 MI_BATCH_BUFFER_START |
2238 (flags & I915_DISPATCH_SECURE ?
2239 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2240 /* bit0-7 is the length on GEN6+ */
2241 intel_ring_emit(ring, offset);
2242 intel_ring_advance(ring);
2243
2244 return 0;
2245 }
2246
2247 static int
2248 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2249 u64 offset, u32 len,
2250 unsigned flags)
2251 {
2252 int ret;
2253
2254 ret = intel_ring_begin(ring, 2);
2255 if (ret)
2256 return ret;
2257
2258 intel_ring_emit(ring,
2259 MI_BATCH_BUFFER_START |
2260 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2261 /* bit0-7 is the length on GEN6+ */
2262 intel_ring_emit(ring, offset);
2263 intel_ring_advance(ring);
2264
2265 return 0;
2266 }
2267
2268 /* Blitter support (SandyBridge+) */
2269
2270 static int gen6_ring_flush(struct intel_engine_cs *ring,
2271 u32 invalidate, u32 flush)
2272 {
2273 struct drm_device *dev = ring->dev;
2274 struct drm_i915_private *dev_priv = dev->dev_private;
2275 uint32_t cmd;
2276 int ret;
2277
2278 ret = intel_ring_begin(ring, 4);
2279 if (ret)
2280 return ret;
2281
2282 cmd = MI_FLUSH_DW;
2283 if (INTEL_INFO(ring->dev)->gen >= 8)
2284 cmd += 1;
2285 /*
2286 * Bspec vol 1c.3 - blitter engine command streamer:
2287 * "If ENABLED, all TLBs will be invalidated once the flush
2288 * operation is complete. This bit is only valid when the
2289 * Post-Sync Operation field is a value of 1h or 3h."
2290 */
2291 if (invalidate & I915_GEM_DOMAIN_RENDER)
2292 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2293 MI_FLUSH_DW_OP_STOREDW;
2294 intel_ring_emit(ring, cmd);
2295 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2296 if (INTEL_INFO(ring->dev)->gen >= 8) {
2297 intel_ring_emit(ring, 0); /* upper addr */
2298 intel_ring_emit(ring, 0); /* value */
2299 } else {
2300 intel_ring_emit(ring, 0);
2301 intel_ring_emit(ring, MI_NOOP);
2302 }
2303 intel_ring_advance(ring);
2304
2305 if (!invalidate && flush) {
2306 if (IS_GEN7(dev))
2307 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2308 else if (IS_BROADWELL(dev))
2309 dev_priv->fbc.need_sw_cache_clean = true;
2310 }
2311
2312 return 0;
2313 }
2314
2315 int intel_init_render_ring_buffer(struct drm_device *dev)
2316 {
2317 struct drm_i915_private *dev_priv = dev->dev_private;
2318 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2319 struct drm_i915_gem_object *obj;
2320 int ret;
2321
2322 ring->name = "render ring";
2323 ring->id = RCS;
2324 ring->mmio_base = RENDER_RING_BASE;
2325
2326 if (INTEL_INFO(dev)->gen >= 8) {
2327 if (i915_semaphore_is_enabled(dev)) {
2328 obj = i915_gem_alloc_object(dev, 4096);
2329 if (obj == NULL) {
2330 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2331 i915.semaphores = 0;
2332 } else {
2333 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2334 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2335 if (ret != 0) {
2336 drm_gem_object_unreference(&obj->base);
2337 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2338 i915.semaphores = 0;
2339 } else
2340 dev_priv->semaphore_obj = obj;
2341 }
2342 }
2343
2344 ring->init_context = intel_ring_workarounds_emit;
2345 ring->add_request = gen6_add_request;
2346 ring->flush = gen8_render_ring_flush;
2347 ring->irq_get = gen8_ring_get_irq;
2348 ring->irq_put = gen8_ring_put_irq;
2349 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2350 ring->get_seqno = gen6_ring_get_seqno;
2351 ring->set_seqno = ring_set_seqno;
2352 if (i915_semaphore_is_enabled(dev)) {
2353 WARN_ON(!dev_priv->semaphore_obj);
2354 ring->semaphore.sync_to = gen8_ring_sync;
2355 ring->semaphore.signal = gen8_rcs_signal;
2356 GEN8_RING_SEMAPHORE_INIT;
2357 }
2358 } else if (INTEL_INFO(dev)->gen >= 6) {
2359 ring->add_request = gen6_add_request;
2360 ring->flush = gen7_render_ring_flush;
2361 if (INTEL_INFO(dev)->gen == 6)
2362 ring->flush = gen6_render_ring_flush;
2363 ring->irq_get = gen6_ring_get_irq;
2364 ring->irq_put = gen6_ring_put_irq;
2365 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2366 ring->get_seqno = gen6_ring_get_seqno;
2367 ring->set_seqno = ring_set_seqno;
2368 if (i915_semaphore_is_enabled(dev)) {
2369 ring->semaphore.sync_to = gen6_ring_sync;
2370 ring->semaphore.signal = gen6_signal;
2371 /*
2372 * The current semaphore is only applied on pre-gen8
2373 * platform. And there is no VCS2 ring on the pre-gen8
2374 * platform. So the semaphore between RCS and VCS2 is
2375 * initialized as INVALID. Gen8 will initialize the
2376 * sema between VCS2 and RCS later.
2377 */
2378 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2379 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2380 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2381 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2382 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2383 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2384 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2385 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2386 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2387 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2388 }
2389 } else if (IS_GEN5(dev)) {
2390 ring->add_request = pc_render_add_request;
2391 ring->flush = gen4_render_ring_flush;
2392 ring->get_seqno = pc_render_get_seqno;
2393 ring->set_seqno = pc_render_set_seqno;
2394 ring->irq_get = gen5_ring_get_irq;
2395 ring->irq_put = gen5_ring_put_irq;
2396 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2397 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2398 } else {
2399 ring->add_request = i9xx_add_request;
2400 if (INTEL_INFO(dev)->gen < 4)
2401 ring->flush = gen2_render_ring_flush;
2402 else
2403 ring->flush = gen4_render_ring_flush;
2404 ring->get_seqno = ring_get_seqno;
2405 ring->set_seqno = ring_set_seqno;
2406 if (IS_GEN2(dev)) {
2407 ring->irq_get = i8xx_ring_get_irq;
2408 ring->irq_put = i8xx_ring_put_irq;
2409 } else {
2410 ring->irq_get = i9xx_ring_get_irq;
2411 ring->irq_put = i9xx_ring_put_irq;
2412 }
2413 ring->irq_enable_mask = I915_USER_INTERRUPT;
2414 }
2415 ring->write_tail = ring_write_tail;
2416
2417 if (IS_HASWELL(dev))
2418 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2419 else if (IS_GEN8(dev))
2420 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2421 else if (INTEL_INFO(dev)->gen >= 6)
2422 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2423 else if (INTEL_INFO(dev)->gen >= 4)
2424 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2425 else if (IS_I830(dev) || IS_845G(dev))
2426 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2427 else
2428 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2429 ring->init = init_render_ring;
2430 ring->cleanup = render_ring_cleanup;
2431
2432 /* Workaround batchbuffer to combat CS tlb bug. */
2433 if (HAS_BROKEN_CS_TLB(dev)) {
2434 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2435 if (obj == NULL) {
2436 DRM_ERROR("Failed to allocate batch bo\n");
2437 return -ENOMEM;
2438 }
2439
2440 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2441 if (ret != 0) {
2442 drm_gem_object_unreference(&obj->base);
2443 DRM_ERROR("Failed to ping batch bo\n");
2444 return ret;
2445 }
2446
2447 ring->scratch.obj = obj;
2448 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2449 }
2450
2451 return intel_init_ring_buffer(dev, ring);
2452 }
2453
2454 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2455 {
2456 struct drm_i915_private *dev_priv = dev->dev_private;
2457 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2458
2459 ring->name = "bsd ring";
2460 ring->id = VCS;
2461
2462 ring->write_tail = ring_write_tail;
2463 if (INTEL_INFO(dev)->gen >= 6) {
2464 ring->mmio_base = GEN6_BSD_RING_BASE;
2465 /* gen6 bsd needs a special wa for tail updates */
2466 if (IS_GEN6(dev))
2467 ring->write_tail = gen6_bsd_ring_write_tail;
2468 ring->flush = gen6_bsd_ring_flush;
2469 ring->add_request = gen6_add_request;
2470 ring->get_seqno = gen6_ring_get_seqno;
2471 ring->set_seqno = ring_set_seqno;
2472 if (INTEL_INFO(dev)->gen >= 8) {
2473 ring->irq_enable_mask =
2474 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2475 ring->irq_get = gen8_ring_get_irq;
2476 ring->irq_put = gen8_ring_put_irq;
2477 ring->dispatch_execbuffer =
2478 gen8_ring_dispatch_execbuffer;
2479 if (i915_semaphore_is_enabled(dev)) {
2480 ring->semaphore.sync_to = gen8_ring_sync;
2481 ring->semaphore.signal = gen8_xcs_signal;
2482 GEN8_RING_SEMAPHORE_INIT;
2483 }
2484 } else {
2485 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2486 ring->irq_get = gen6_ring_get_irq;
2487 ring->irq_put = gen6_ring_put_irq;
2488 ring->dispatch_execbuffer =
2489 gen6_ring_dispatch_execbuffer;
2490 if (i915_semaphore_is_enabled(dev)) {
2491 ring->semaphore.sync_to = gen6_ring_sync;
2492 ring->semaphore.signal = gen6_signal;
2493 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2494 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2495 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2496 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2497 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2498 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2499 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2500 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2501 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2502 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2503 }
2504 }
2505 } else {
2506 ring->mmio_base = BSD_RING_BASE;
2507 ring->flush = bsd_ring_flush;
2508 ring->add_request = i9xx_add_request;
2509 ring->get_seqno = ring_get_seqno;
2510 ring->set_seqno = ring_set_seqno;
2511 if (IS_GEN5(dev)) {
2512 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2513 ring->irq_get = gen5_ring_get_irq;
2514 ring->irq_put = gen5_ring_put_irq;
2515 } else {
2516 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2517 ring->irq_get = i9xx_ring_get_irq;
2518 ring->irq_put = i9xx_ring_put_irq;
2519 }
2520 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2521 }
2522 ring->init = init_ring_common;
2523
2524 return intel_init_ring_buffer(dev, ring);
2525 }
2526
2527 /**
2528 * Initialize the second BSD ring for Broadwell GT3.
2529 * It is noted that this only exists on Broadwell GT3.
2530 */
2531 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2532 {
2533 struct drm_i915_private *dev_priv = dev->dev_private;
2534 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2535
2536 if ((INTEL_INFO(dev)->gen != 8)) {
2537 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2538 return -EINVAL;
2539 }
2540
2541 ring->name = "bsd2 ring";
2542 ring->id = VCS2;
2543
2544 ring->write_tail = ring_write_tail;
2545 ring->mmio_base = GEN8_BSD2_RING_BASE;
2546 ring->flush = gen6_bsd_ring_flush;
2547 ring->add_request = gen6_add_request;
2548 ring->get_seqno = gen6_ring_get_seqno;
2549 ring->set_seqno = ring_set_seqno;
2550 ring->irq_enable_mask =
2551 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2552 ring->irq_get = gen8_ring_get_irq;
2553 ring->irq_put = gen8_ring_put_irq;
2554 ring->dispatch_execbuffer =
2555 gen8_ring_dispatch_execbuffer;
2556 if (i915_semaphore_is_enabled(dev)) {
2557 ring->semaphore.sync_to = gen8_ring_sync;
2558 ring->semaphore.signal = gen8_xcs_signal;
2559 GEN8_RING_SEMAPHORE_INIT;
2560 }
2561 ring->init = init_ring_common;
2562
2563 return intel_init_ring_buffer(dev, ring);
2564 }
2565
2566 int intel_init_blt_ring_buffer(struct drm_device *dev)
2567 {
2568 struct drm_i915_private *dev_priv = dev->dev_private;
2569 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2570
2571 ring->name = "blitter ring";
2572 ring->id = BCS;
2573
2574 ring->mmio_base = BLT_RING_BASE;
2575 ring->write_tail = ring_write_tail;
2576 ring->flush = gen6_ring_flush;
2577 ring->add_request = gen6_add_request;
2578 ring->get_seqno = gen6_ring_get_seqno;
2579 ring->set_seqno = ring_set_seqno;
2580 if (INTEL_INFO(dev)->gen >= 8) {
2581 ring->irq_enable_mask =
2582 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2583 ring->irq_get = gen8_ring_get_irq;
2584 ring->irq_put = gen8_ring_put_irq;
2585 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2586 if (i915_semaphore_is_enabled(dev)) {
2587 ring->semaphore.sync_to = gen8_ring_sync;
2588 ring->semaphore.signal = gen8_xcs_signal;
2589 GEN8_RING_SEMAPHORE_INIT;
2590 }
2591 } else {
2592 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2593 ring->irq_get = gen6_ring_get_irq;
2594 ring->irq_put = gen6_ring_put_irq;
2595 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2596 if (i915_semaphore_is_enabled(dev)) {
2597 ring->semaphore.signal = gen6_signal;
2598 ring->semaphore.sync_to = gen6_ring_sync;
2599 /*
2600 * The current semaphore is only applied on pre-gen8
2601 * platform. And there is no VCS2 ring on the pre-gen8
2602 * platform. So the semaphore between BCS and VCS2 is
2603 * initialized as INVALID. Gen8 will initialize the
2604 * sema between BCS and VCS2 later.
2605 */
2606 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2607 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2608 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2609 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2610 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2611 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2612 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2613 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2614 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2615 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2616 }
2617 }
2618 ring->init = init_ring_common;
2619
2620 return intel_init_ring_buffer(dev, ring);
2621 }
2622
2623 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2624 {
2625 struct drm_i915_private *dev_priv = dev->dev_private;
2626 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2627
2628 ring->name = "video enhancement ring";
2629 ring->id = VECS;
2630
2631 ring->mmio_base = VEBOX_RING_BASE;
2632 ring->write_tail = ring_write_tail;
2633 ring->flush = gen6_ring_flush;
2634 ring->add_request = gen6_add_request;
2635 ring->get_seqno = gen6_ring_get_seqno;
2636 ring->set_seqno = ring_set_seqno;
2637
2638 if (INTEL_INFO(dev)->gen >= 8) {
2639 ring->irq_enable_mask =
2640 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2641 ring->irq_get = gen8_ring_get_irq;
2642 ring->irq_put = gen8_ring_put_irq;
2643 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2644 if (i915_semaphore_is_enabled(dev)) {
2645 ring->semaphore.sync_to = gen8_ring_sync;
2646 ring->semaphore.signal = gen8_xcs_signal;
2647 GEN8_RING_SEMAPHORE_INIT;
2648 }
2649 } else {
2650 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2651 ring->irq_get = hsw_vebox_get_irq;
2652 ring->irq_put = hsw_vebox_put_irq;
2653 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2654 if (i915_semaphore_is_enabled(dev)) {
2655 ring->semaphore.sync_to = gen6_ring_sync;
2656 ring->semaphore.signal = gen6_signal;
2657 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2658 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2659 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2660 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2661 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2662 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2663 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2664 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2665 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2666 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2667 }
2668 }
2669 ring->init = init_ring_common;
2670
2671 return intel_init_ring_buffer(dev, ring);
2672 }
2673
2674 int
2675 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2676 {
2677 int ret;
2678
2679 if (!ring->gpu_caches_dirty)
2680 return 0;
2681
2682 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2683 if (ret)
2684 return ret;
2685
2686 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2687
2688 ring->gpu_caches_dirty = false;
2689 return 0;
2690 }
2691
2692 int
2693 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2694 {
2695 uint32_t flush_domains;
2696 int ret;
2697
2698 flush_domains = 0;
2699 if (ring->gpu_caches_dirty)
2700 flush_domains = I915_GEM_GPU_DOMAINS;
2701
2702 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2703 if (ret)
2704 return ret;
2705
2706 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2707
2708 ring->gpu_caches_dirty = false;
2709 return 0;
2710 }
2711
2712 void
2713 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2714 {
2715 int ret;
2716
2717 if (!intel_ring_initialized(ring))
2718 return;
2719
2720 ret = intel_ring_idle(ring);
2721 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2722 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2723 ring->name, ret);
2724
2725 stop_ring(ring);
2726 }
This page took 0.089099 seconds and 6 git commands to generate.