Merge branch 'master' into for-next
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 /*
37 * 965+ support PIPE_CONTROL commands, which provide finer grained control
38 * over cache flushing.
39 */
40 struct pipe_control {
41 struct drm_i915_gem_object *obj;
42 volatile u32 *cpu_page;
43 u32 gtt_offset;
44 };
45
46 static inline int ring_space(struct intel_ring_buffer *ring)
47 {
48 int space = (ring->head & HEAD_ADDR) - (ring->tail + 8);
49 if (space < 0)
50 space += ring->size;
51 return space;
52 }
53
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56 u32 invalidate_domains,
57 u32 flush_domains)
58 {
59 u32 cmd;
60 int ret;
61
62 cmd = MI_FLUSH;
63 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64 cmd |= MI_NO_WRITE_FLUSH;
65
66 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67 cmd |= MI_READ_FLUSH;
68
69 ret = intel_ring_begin(ring, 2);
70 if (ret)
71 return ret;
72
73 intel_ring_emit(ring, cmd);
74 intel_ring_emit(ring, MI_NOOP);
75 intel_ring_advance(ring);
76
77 return 0;
78 }
79
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82 u32 invalidate_domains,
83 u32 flush_domains)
84 {
85 struct drm_device *dev = ring->dev;
86 u32 cmd;
87 int ret;
88
89 /*
90 * read/write caches:
91 *
92 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
94 * also flushed at 2d versus 3d pipeline switches.
95 *
96 * read-only caches:
97 *
98 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99 * MI_READ_FLUSH is set, and is always flushed on 965.
100 *
101 * I915_GEM_DOMAIN_COMMAND may not exist?
102 *
103 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104 * invalidated when MI_EXE_FLUSH is set.
105 *
106 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107 * invalidated with every MI_FLUSH.
108 *
109 * TLBs:
110 *
111 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114 * are flushed at any MI_FLUSH.
115 */
116
117 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119 cmd &= ~MI_NO_WRITE_FLUSH;
120 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121 cmd |= MI_EXE_FLUSH;
122
123 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124 (IS_G4X(dev) || IS_GEN5(dev)))
125 cmd |= MI_INVALIDATE_ISP;
126
127 ret = intel_ring_begin(ring, 2);
128 if (ret)
129 return ret;
130
131 intel_ring_emit(ring, cmd);
132 intel_ring_emit(ring, MI_NOOP);
133 intel_ring_advance(ring);
134
135 return 0;
136 }
137
138 /**
139 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140 * implementing two workarounds on gen6. From section 1.4.7.1
141 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142 *
143 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144 * produced by non-pipelined state commands), software needs to first
145 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146 * 0.
147 *
148 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150 *
151 * And the workaround for these two requires this workaround first:
152 *
153 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154 * BEFORE the pipe-control with a post-sync op and no write-cache
155 * flushes.
156 *
157 * And this last workaround is tricky because of the requirements on
158 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159 * volume 2 part 1:
160 *
161 * "1 of the following must also be set:
162 * - Render Target Cache Flush Enable ([12] of DW1)
163 * - Depth Cache Flush Enable ([0] of DW1)
164 * - Stall at Pixel Scoreboard ([1] of DW1)
165 * - Depth Stall ([13] of DW1)
166 * - Post-Sync Operation ([13] of DW1)
167 * - Notify Enable ([8] of DW1)"
168 *
169 * The cache flushes require the workaround flush that triggered this
170 * one, so we can't use it. Depth stall would trigger the same.
171 * Post-sync nonzero is what triggered this second workaround, so we
172 * can't use that one either. Notify enable is IRQs, which aren't
173 * really our business. That leaves only stall at scoreboard.
174 */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178 struct pipe_control *pc = ring->private;
179 u32 scratch_addr = pc->gtt_offset + 128;
180 int ret;
181
182
183 ret = intel_ring_begin(ring, 6);
184 if (ret)
185 return ret;
186
187 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
188 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
189 PIPE_CONTROL_STALL_AT_SCOREBOARD);
190 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
191 intel_ring_emit(ring, 0); /* low dword */
192 intel_ring_emit(ring, 0); /* high dword */
193 intel_ring_emit(ring, MI_NOOP);
194 intel_ring_advance(ring);
195
196 ret = intel_ring_begin(ring, 6);
197 if (ret)
198 return ret;
199
200 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
201 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
202 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
203 intel_ring_emit(ring, 0);
204 intel_ring_emit(ring, 0);
205 intel_ring_emit(ring, MI_NOOP);
206 intel_ring_advance(ring);
207
208 return 0;
209 }
210
211 static int
212 gen6_render_ring_flush(struct intel_ring_buffer *ring,
213 u32 invalidate_domains, u32 flush_domains)
214 {
215 u32 flags = 0;
216 struct pipe_control *pc = ring->private;
217 u32 scratch_addr = pc->gtt_offset + 128;
218 int ret;
219
220 /* Force SNB workarounds for PIPE_CONTROL flushes */
221 ret = intel_emit_post_sync_nonzero_flush(ring);
222 if (ret)
223 return ret;
224
225 /* Just flush everything. Experiments have shown that reducing the
226 * number of bits based on the write domains has little performance
227 * impact.
228 */
229 if (flush_domains) {
230 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
231 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
232 /*
233 * Ensure that any following seqno writes only happen
234 * when the render cache is indeed flushed.
235 */
236 flags |= PIPE_CONTROL_CS_STALL;
237 }
238 if (invalidate_domains) {
239 flags |= PIPE_CONTROL_TLB_INVALIDATE;
240 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
243 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
244 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
245 /*
246 * TLB invalidate requires a post-sync write.
247 */
248 flags |= PIPE_CONTROL_QW_WRITE;
249 }
250
251 ret = intel_ring_begin(ring, 4);
252 if (ret)
253 return ret;
254
255 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
256 intel_ring_emit(ring, flags);
257 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
258 intel_ring_emit(ring, 0);
259 intel_ring_advance(ring);
260
261 return 0;
262 }
263
264 static int
265 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
266 {
267 int ret;
268
269 ret = intel_ring_begin(ring, 4);
270 if (ret)
271 return ret;
272
273 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
274 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
275 PIPE_CONTROL_STALL_AT_SCOREBOARD);
276 intel_ring_emit(ring, 0);
277 intel_ring_emit(ring, 0);
278 intel_ring_advance(ring);
279
280 return 0;
281 }
282
283 static int
284 gen7_render_ring_flush(struct intel_ring_buffer *ring,
285 u32 invalidate_domains, u32 flush_domains)
286 {
287 u32 flags = 0;
288 struct pipe_control *pc = ring->private;
289 u32 scratch_addr = pc->gtt_offset + 128;
290 int ret;
291
292 /*
293 * Ensure that any following seqno writes only happen when the render
294 * cache is indeed flushed.
295 *
296 * Workaround: 4th PIPE_CONTROL command (except the ones with only
297 * read-cache invalidate bits set) must have the CS_STALL bit set. We
298 * don't try to be clever and just set it unconditionally.
299 */
300 flags |= PIPE_CONTROL_CS_STALL;
301
302 /* Just flush everything. Experiments have shown that reducing the
303 * number of bits based on the write domains has little performance
304 * impact.
305 */
306 if (flush_domains) {
307 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
308 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
309 }
310 if (invalidate_domains) {
311 flags |= PIPE_CONTROL_TLB_INVALIDATE;
312 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
313 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
314 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
315 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
316 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
317 /*
318 * TLB invalidate requires a post-sync write.
319 */
320 flags |= PIPE_CONTROL_QW_WRITE;
321
322 /* Workaround: we must issue a pipe_control with CS-stall bit
323 * set before a pipe_control command that has the state cache
324 * invalidate bit set. */
325 gen7_render_ring_cs_stall_wa(ring);
326 }
327
328 ret = intel_ring_begin(ring, 4);
329 if (ret)
330 return ret;
331
332 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
333 intel_ring_emit(ring, flags);
334 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
335 intel_ring_emit(ring, 0);
336 intel_ring_advance(ring);
337
338 return 0;
339 }
340
341 static void ring_write_tail(struct intel_ring_buffer *ring,
342 u32 value)
343 {
344 drm_i915_private_t *dev_priv = ring->dev->dev_private;
345 I915_WRITE_TAIL(ring, value);
346 }
347
348 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
349 {
350 drm_i915_private_t *dev_priv = ring->dev->dev_private;
351 u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
352 RING_ACTHD(ring->mmio_base) : ACTHD;
353
354 return I915_READ(acthd_reg);
355 }
356
357 static int init_ring_common(struct intel_ring_buffer *ring)
358 {
359 struct drm_device *dev = ring->dev;
360 drm_i915_private_t *dev_priv = dev->dev_private;
361 struct drm_i915_gem_object *obj = ring->obj;
362 int ret = 0;
363 u32 head;
364
365 if (HAS_FORCE_WAKE(dev))
366 gen6_gt_force_wake_get(dev_priv);
367
368 /* Stop the ring if it's running. */
369 I915_WRITE_CTL(ring, 0);
370 I915_WRITE_HEAD(ring, 0);
371 ring->write_tail(ring, 0);
372
373 head = I915_READ_HEAD(ring) & HEAD_ADDR;
374
375 /* G45 ring initialization fails to reset head to zero */
376 if (head != 0) {
377 DRM_DEBUG_KMS("%s head not reset to zero "
378 "ctl %08x head %08x tail %08x start %08x\n",
379 ring->name,
380 I915_READ_CTL(ring),
381 I915_READ_HEAD(ring),
382 I915_READ_TAIL(ring),
383 I915_READ_START(ring));
384
385 I915_WRITE_HEAD(ring, 0);
386
387 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
388 DRM_ERROR("failed to set %s head to zero "
389 "ctl %08x head %08x tail %08x start %08x\n",
390 ring->name,
391 I915_READ_CTL(ring),
392 I915_READ_HEAD(ring),
393 I915_READ_TAIL(ring),
394 I915_READ_START(ring));
395 }
396 }
397
398 /* Initialize the ring. This must happen _after_ we've cleared the ring
399 * registers with the above sequence (the readback of the HEAD registers
400 * also enforces ordering), otherwise the hw might lose the new ring
401 * register values. */
402 I915_WRITE_START(ring, obj->gtt_offset);
403 I915_WRITE_CTL(ring,
404 ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
405 | RING_VALID);
406
407 /* If the head is still not zero, the ring is dead */
408 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
409 I915_READ_START(ring) == obj->gtt_offset &&
410 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
411 DRM_ERROR("%s initialization failed "
412 "ctl %08x head %08x tail %08x start %08x\n",
413 ring->name,
414 I915_READ_CTL(ring),
415 I915_READ_HEAD(ring),
416 I915_READ_TAIL(ring),
417 I915_READ_START(ring));
418 ret = -EIO;
419 goto out;
420 }
421
422 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
423 i915_kernel_lost_context(ring->dev);
424 else {
425 ring->head = I915_READ_HEAD(ring);
426 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
427 ring->space = ring_space(ring);
428 ring->last_retired_head = -1;
429 }
430
431 out:
432 if (HAS_FORCE_WAKE(dev))
433 gen6_gt_force_wake_put(dev_priv);
434
435 return ret;
436 }
437
438 static int
439 init_pipe_control(struct intel_ring_buffer *ring)
440 {
441 struct pipe_control *pc;
442 struct drm_i915_gem_object *obj;
443 int ret;
444
445 if (ring->private)
446 return 0;
447
448 pc = kmalloc(sizeof(*pc), GFP_KERNEL);
449 if (!pc)
450 return -ENOMEM;
451
452 obj = i915_gem_alloc_object(ring->dev, 4096);
453 if (obj == NULL) {
454 DRM_ERROR("Failed to allocate seqno page\n");
455 ret = -ENOMEM;
456 goto err;
457 }
458
459 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
460
461 ret = i915_gem_object_pin(obj, 4096, true, false);
462 if (ret)
463 goto err_unref;
464
465 pc->gtt_offset = obj->gtt_offset;
466 pc->cpu_page = kmap(sg_page(obj->pages->sgl));
467 if (pc->cpu_page == NULL)
468 goto err_unpin;
469
470 pc->obj = obj;
471 ring->private = pc;
472 return 0;
473
474 err_unpin:
475 i915_gem_object_unpin(obj);
476 err_unref:
477 drm_gem_object_unreference(&obj->base);
478 err:
479 kfree(pc);
480 return ret;
481 }
482
483 static void
484 cleanup_pipe_control(struct intel_ring_buffer *ring)
485 {
486 struct pipe_control *pc = ring->private;
487 struct drm_i915_gem_object *obj;
488
489 if (!ring->private)
490 return;
491
492 obj = pc->obj;
493
494 kunmap(sg_page(obj->pages->sgl));
495 i915_gem_object_unpin(obj);
496 drm_gem_object_unreference(&obj->base);
497
498 kfree(pc);
499 ring->private = NULL;
500 }
501
502 static int init_render_ring(struct intel_ring_buffer *ring)
503 {
504 struct drm_device *dev = ring->dev;
505 struct drm_i915_private *dev_priv = dev->dev_private;
506 int ret = init_ring_common(ring);
507
508 if (INTEL_INFO(dev)->gen > 3) {
509 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
510 if (IS_GEN7(dev))
511 I915_WRITE(GFX_MODE_GEN7,
512 _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
513 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
514 }
515
516 if (INTEL_INFO(dev)->gen >= 5) {
517 ret = init_pipe_control(ring);
518 if (ret)
519 return ret;
520 }
521
522 if (IS_GEN6(dev)) {
523 /* From the Sandybridge PRM, volume 1 part 3, page 24:
524 * "If this bit is set, STCunit will have LRA as replacement
525 * policy. [...] This bit must be reset. LRA replacement
526 * policy is not supported."
527 */
528 I915_WRITE(CACHE_MODE_0,
529 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
530
531 /* This is not explicitly set for GEN6, so read the register.
532 * see intel_ring_mi_set_context() for why we care.
533 * TODO: consider explicitly setting the bit for GEN5
534 */
535 ring->itlb_before_ctx_switch =
536 !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
537 }
538
539 if (INTEL_INFO(dev)->gen >= 6)
540 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
541
542 if (HAS_L3_GPU_CACHE(dev))
543 I915_WRITE_IMR(ring, ~GEN6_RENDER_L3_PARITY_ERROR);
544
545 return ret;
546 }
547
548 static void render_ring_cleanup(struct intel_ring_buffer *ring)
549 {
550 if (!ring->private)
551 return;
552
553 cleanup_pipe_control(ring);
554 }
555
556 static void
557 update_mboxes(struct intel_ring_buffer *ring,
558 u32 seqno,
559 u32 mmio_offset)
560 {
561 intel_ring_emit(ring, MI_SEMAPHORE_MBOX |
562 MI_SEMAPHORE_GLOBAL_GTT |
563 MI_SEMAPHORE_REGISTER |
564 MI_SEMAPHORE_UPDATE);
565 intel_ring_emit(ring, seqno);
566 intel_ring_emit(ring, mmio_offset);
567 }
568
569 /**
570 * gen6_add_request - Update the semaphore mailbox registers
571 *
572 * @ring - ring that is adding a request
573 * @seqno - return seqno stuck into the ring
574 *
575 * Update the mailbox registers in the *other* rings with the current seqno.
576 * This acts like a signal in the canonical semaphore.
577 */
578 static int
579 gen6_add_request(struct intel_ring_buffer *ring,
580 u32 *seqno)
581 {
582 u32 mbox1_reg;
583 u32 mbox2_reg;
584 int ret;
585
586 ret = intel_ring_begin(ring, 10);
587 if (ret)
588 return ret;
589
590 mbox1_reg = ring->signal_mbox[0];
591 mbox2_reg = ring->signal_mbox[1];
592
593 *seqno = i915_gem_next_request_seqno(ring);
594
595 update_mboxes(ring, *seqno, mbox1_reg);
596 update_mboxes(ring, *seqno, mbox2_reg);
597 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
598 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
599 intel_ring_emit(ring, *seqno);
600 intel_ring_emit(ring, MI_USER_INTERRUPT);
601 intel_ring_advance(ring);
602
603 return 0;
604 }
605
606 /**
607 * intel_ring_sync - sync the waiter to the signaller on seqno
608 *
609 * @waiter - ring that is waiting
610 * @signaller - ring which has, or will signal
611 * @seqno - seqno which the waiter will block on
612 */
613 static int
614 gen6_ring_sync(struct intel_ring_buffer *waiter,
615 struct intel_ring_buffer *signaller,
616 u32 seqno)
617 {
618 int ret;
619 u32 dw1 = MI_SEMAPHORE_MBOX |
620 MI_SEMAPHORE_COMPARE |
621 MI_SEMAPHORE_REGISTER;
622
623 /* Throughout all of the GEM code, seqno passed implies our current
624 * seqno is >= the last seqno executed. However for hardware the
625 * comparison is strictly greater than.
626 */
627 seqno -= 1;
628
629 WARN_ON(signaller->semaphore_register[waiter->id] ==
630 MI_SEMAPHORE_SYNC_INVALID);
631
632 ret = intel_ring_begin(waiter, 4);
633 if (ret)
634 return ret;
635
636 intel_ring_emit(waiter,
637 dw1 | signaller->semaphore_register[waiter->id]);
638 intel_ring_emit(waiter, seqno);
639 intel_ring_emit(waiter, 0);
640 intel_ring_emit(waiter, MI_NOOP);
641 intel_ring_advance(waiter);
642
643 return 0;
644 }
645
646 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
647 do { \
648 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
649 PIPE_CONTROL_DEPTH_STALL); \
650 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
651 intel_ring_emit(ring__, 0); \
652 intel_ring_emit(ring__, 0); \
653 } while (0)
654
655 static int
656 pc_render_add_request(struct intel_ring_buffer *ring,
657 u32 *result)
658 {
659 u32 seqno = i915_gem_next_request_seqno(ring);
660 struct pipe_control *pc = ring->private;
661 u32 scratch_addr = pc->gtt_offset + 128;
662 int ret;
663
664 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
665 * incoherent with writes to memory, i.e. completely fubar,
666 * so we need to use PIPE_NOTIFY instead.
667 *
668 * However, we also need to workaround the qword write
669 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
670 * memory before requesting an interrupt.
671 */
672 ret = intel_ring_begin(ring, 32);
673 if (ret)
674 return ret;
675
676 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
677 PIPE_CONTROL_WRITE_FLUSH |
678 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
679 intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
680 intel_ring_emit(ring, seqno);
681 intel_ring_emit(ring, 0);
682 PIPE_CONTROL_FLUSH(ring, scratch_addr);
683 scratch_addr += 128; /* write to separate cachelines */
684 PIPE_CONTROL_FLUSH(ring, scratch_addr);
685 scratch_addr += 128;
686 PIPE_CONTROL_FLUSH(ring, scratch_addr);
687 scratch_addr += 128;
688 PIPE_CONTROL_FLUSH(ring, scratch_addr);
689 scratch_addr += 128;
690 PIPE_CONTROL_FLUSH(ring, scratch_addr);
691 scratch_addr += 128;
692 PIPE_CONTROL_FLUSH(ring, scratch_addr);
693
694 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
695 PIPE_CONTROL_WRITE_FLUSH |
696 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
697 PIPE_CONTROL_NOTIFY);
698 intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
699 intel_ring_emit(ring, seqno);
700 intel_ring_emit(ring, 0);
701 intel_ring_advance(ring);
702
703 *result = seqno;
704 return 0;
705 }
706
707 static u32
708 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
709 {
710 /* Workaround to force correct ordering between irq and seqno writes on
711 * ivb (and maybe also on snb) by reading from a CS register (like
712 * ACTHD) before reading the status page. */
713 if (!lazy_coherency)
714 intel_ring_get_active_head(ring);
715 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
716 }
717
718 static u32
719 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
720 {
721 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
722 }
723
724 static u32
725 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
726 {
727 struct pipe_control *pc = ring->private;
728 return pc->cpu_page[0];
729 }
730
731 static bool
732 gen5_ring_get_irq(struct intel_ring_buffer *ring)
733 {
734 struct drm_device *dev = ring->dev;
735 drm_i915_private_t *dev_priv = dev->dev_private;
736 unsigned long flags;
737
738 if (!dev->irq_enabled)
739 return false;
740
741 spin_lock_irqsave(&dev_priv->irq_lock, flags);
742 if (ring->irq_refcount++ == 0) {
743 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
744 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
745 POSTING_READ(GTIMR);
746 }
747 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
748
749 return true;
750 }
751
752 static void
753 gen5_ring_put_irq(struct intel_ring_buffer *ring)
754 {
755 struct drm_device *dev = ring->dev;
756 drm_i915_private_t *dev_priv = dev->dev_private;
757 unsigned long flags;
758
759 spin_lock_irqsave(&dev_priv->irq_lock, flags);
760 if (--ring->irq_refcount == 0) {
761 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
762 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
763 POSTING_READ(GTIMR);
764 }
765 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
766 }
767
768 static bool
769 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
770 {
771 struct drm_device *dev = ring->dev;
772 drm_i915_private_t *dev_priv = dev->dev_private;
773 unsigned long flags;
774
775 if (!dev->irq_enabled)
776 return false;
777
778 spin_lock_irqsave(&dev_priv->irq_lock, flags);
779 if (ring->irq_refcount++ == 0) {
780 dev_priv->irq_mask &= ~ring->irq_enable_mask;
781 I915_WRITE(IMR, dev_priv->irq_mask);
782 POSTING_READ(IMR);
783 }
784 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
785
786 return true;
787 }
788
789 static void
790 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
791 {
792 struct drm_device *dev = ring->dev;
793 drm_i915_private_t *dev_priv = dev->dev_private;
794 unsigned long flags;
795
796 spin_lock_irqsave(&dev_priv->irq_lock, flags);
797 if (--ring->irq_refcount == 0) {
798 dev_priv->irq_mask |= ring->irq_enable_mask;
799 I915_WRITE(IMR, dev_priv->irq_mask);
800 POSTING_READ(IMR);
801 }
802 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
803 }
804
805 static bool
806 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
807 {
808 struct drm_device *dev = ring->dev;
809 drm_i915_private_t *dev_priv = dev->dev_private;
810 unsigned long flags;
811
812 if (!dev->irq_enabled)
813 return false;
814
815 spin_lock_irqsave(&dev_priv->irq_lock, flags);
816 if (ring->irq_refcount++ == 0) {
817 dev_priv->irq_mask &= ~ring->irq_enable_mask;
818 I915_WRITE16(IMR, dev_priv->irq_mask);
819 POSTING_READ16(IMR);
820 }
821 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
822
823 return true;
824 }
825
826 static void
827 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
828 {
829 struct drm_device *dev = ring->dev;
830 drm_i915_private_t *dev_priv = dev->dev_private;
831 unsigned long flags;
832
833 spin_lock_irqsave(&dev_priv->irq_lock, flags);
834 if (--ring->irq_refcount == 0) {
835 dev_priv->irq_mask |= ring->irq_enable_mask;
836 I915_WRITE16(IMR, dev_priv->irq_mask);
837 POSTING_READ16(IMR);
838 }
839 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
840 }
841
842 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
843 {
844 struct drm_device *dev = ring->dev;
845 drm_i915_private_t *dev_priv = ring->dev->dev_private;
846 u32 mmio = 0;
847
848 /* The ring status page addresses are no longer next to the rest of
849 * the ring registers as of gen7.
850 */
851 if (IS_GEN7(dev)) {
852 switch (ring->id) {
853 case RCS:
854 mmio = RENDER_HWS_PGA_GEN7;
855 break;
856 case BCS:
857 mmio = BLT_HWS_PGA_GEN7;
858 break;
859 case VCS:
860 mmio = BSD_HWS_PGA_GEN7;
861 break;
862 }
863 } else if (IS_GEN6(ring->dev)) {
864 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
865 } else {
866 mmio = RING_HWS_PGA(ring->mmio_base);
867 }
868
869 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
870 POSTING_READ(mmio);
871 }
872
873 static int
874 bsd_ring_flush(struct intel_ring_buffer *ring,
875 u32 invalidate_domains,
876 u32 flush_domains)
877 {
878 int ret;
879
880 ret = intel_ring_begin(ring, 2);
881 if (ret)
882 return ret;
883
884 intel_ring_emit(ring, MI_FLUSH);
885 intel_ring_emit(ring, MI_NOOP);
886 intel_ring_advance(ring);
887 return 0;
888 }
889
890 static int
891 i9xx_add_request(struct intel_ring_buffer *ring,
892 u32 *result)
893 {
894 u32 seqno;
895 int ret;
896
897 ret = intel_ring_begin(ring, 4);
898 if (ret)
899 return ret;
900
901 seqno = i915_gem_next_request_seqno(ring);
902
903 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
904 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
905 intel_ring_emit(ring, seqno);
906 intel_ring_emit(ring, MI_USER_INTERRUPT);
907 intel_ring_advance(ring);
908
909 *result = seqno;
910 return 0;
911 }
912
913 static bool
914 gen6_ring_get_irq(struct intel_ring_buffer *ring)
915 {
916 struct drm_device *dev = ring->dev;
917 drm_i915_private_t *dev_priv = dev->dev_private;
918 unsigned long flags;
919
920 if (!dev->irq_enabled)
921 return false;
922
923 /* It looks like we need to prevent the gt from suspending while waiting
924 * for an notifiy irq, otherwise irqs seem to get lost on at least the
925 * blt/bsd rings on ivb. */
926 gen6_gt_force_wake_get(dev_priv);
927
928 spin_lock_irqsave(&dev_priv->irq_lock, flags);
929 if (ring->irq_refcount++ == 0) {
930 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
931 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask |
932 GEN6_RENDER_L3_PARITY_ERROR));
933 else
934 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
935 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
936 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
937 POSTING_READ(GTIMR);
938 }
939 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
940
941 return true;
942 }
943
944 static void
945 gen6_ring_put_irq(struct intel_ring_buffer *ring)
946 {
947 struct drm_device *dev = ring->dev;
948 drm_i915_private_t *dev_priv = dev->dev_private;
949 unsigned long flags;
950
951 spin_lock_irqsave(&dev_priv->irq_lock, flags);
952 if (--ring->irq_refcount == 0) {
953 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
954 I915_WRITE_IMR(ring, ~GEN6_RENDER_L3_PARITY_ERROR);
955 else
956 I915_WRITE_IMR(ring, ~0);
957 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
958 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
959 POSTING_READ(GTIMR);
960 }
961 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
962
963 gen6_gt_force_wake_put(dev_priv);
964 }
965
966 static int
967 i965_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 length)
968 {
969 int ret;
970
971 ret = intel_ring_begin(ring, 2);
972 if (ret)
973 return ret;
974
975 intel_ring_emit(ring,
976 MI_BATCH_BUFFER_START |
977 MI_BATCH_GTT |
978 MI_BATCH_NON_SECURE_I965);
979 intel_ring_emit(ring, offset);
980 intel_ring_advance(ring);
981
982 return 0;
983 }
984
985 static int
986 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
987 u32 offset, u32 len)
988 {
989 int ret;
990
991 ret = intel_ring_begin(ring, 4);
992 if (ret)
993 return ret;
994
995 intel_ring_emit(ring, MI_BATCH_BUFFER);
996 intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
997 intel_ring_emit(ring, offset + len - 8);
998 intel_ring_emit(ring, 0);
999 intel_ring_advance(ring);
1000
1001 return 0;
1002 }
1003
1004 static int
1005 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1006 u32 offset, u32 len)
1007 {
1008 int ret;
1009
1010 ret = intel_ring_begin(ring, 2);
1011 if (ret)
1012 return ret;
1013
1014 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1015 intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
1016 intel_ring_advance(ring);
1017
1018 return 0;
1019 }
1020
1021 static void cleanup_status_page(struct intel_ring_buffer *ring)
1022 {
1023 struct drm_i915_gem_object *obj;
1024
1025 obj = ring->status_page.obj;
1026 if (obj == NULL)
1027 return;
1028
1029 kunmap(sg_page(obj->pages->sgl));
1030 i915_gem_object_unpin(obj);
1031 drm_gem_object_unreference(&obj->base);
1032 ring->status_page.obj = NULL;
1033 }
1034
1035 static int init_status_page(struct intel_ring_buffer *ring)
1036 {
1037 struct drm_device *dev = ring->dev;
1038 struct drm_i915_gem_object *obj;
1039 int ret;
1040
1041 obj = i915_gem_alloc_object(dev, 4096);
1042 if (obj == NULL) {
1043 DRM_ERROR("Failed to allocate status page\n");
1044 ret = -ENOMEM;
1045 goto err;
1046 }
1047
1048 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1049
1050 ret = i915_gem_object_pin(obj, 4096, true, false);
1051 if (ret != 0) {
1052 goto err_unref;
1053 }
1054
1055 ring->status_page.gfx_addr = obj->gtt_offset;
1056 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1057 if (ring->status_page.page_addr == NULL) {
1058 ret = -ENOMEM;
1059 goto err_unpin;
1060 }
1061 ring->status_page.obj = obj;
1062 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1063
1064 intel_ring_setup_status_page(ring);
1065 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1066 ring->name, ring->status_page.gfx_addr);
1067
1068 return 0;
1069
1070 err_unpin:
1071 i915_gem_object_unpin(obj);
1072 err_unref:
1073 drm_gem_object_unreference(&obj->base);
1074 err:
1075 return ret;
1076 }
1077
1078 static int intel_init_ring_buffer(struct drm_device *dev,
1079 struct intel_ring_buffer *ring)
1080 {
1081 struct drm_i915_gem_object *obj;
1082 struct drm_i915_private *dev_priv = dev->dev_private;
1083 int ret;
1084
1085 ring->dev = dev;
1086 INIT_LIST_HEAD(&ring->active_list);
1087 INIT_LIST_HEAD(&ring->request_list);
1088 ring->size = 32 * PAGE_SIZE;
1089
1090 init_waitqueue_head(&ring->irq_queue);
1091
1092 if (I915_NEED_GFX_HWS(dev)) {
1093 ret = init_status_page(ring);
1094 if (ret)
1095 return ret;
1096 }
1097
1098 obj = i915_gem_alloc_object(dev, ring->size);
1099 if (obj == NULL) {
1100 DRM_ERROR("Failed to allocate ringbuffer\n");
1101 ret = -ENOMEM;
1102 goto err_hws;
1103 }
1104
1105 ring->obj = obj;
1106
1107 ret = i915_gem_object_pin(obj, PAGE_SIZE, true, false);
1108 if (ret)
1109 goto err_unref;
1110
1111 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1112 if (ret)
1113 goto err_unpin;
1114
1115 ring->virtual_start =
1116 ioremap_wc(dev_priv->mm.gtt->gma_bus_addr + obj->gtt_offset,
1117 ring->size);
1118 if (ring->virtual_start == NULL) {
1119 DRM_ERROR("Failed to map ringbuffer.\n");
1120 ret = -EINVAL;
1121 goto err_unpin;
1122 }
1123
1124 ret = ring->init(ring);
1125 if (ret)
1126 goto err_unmap;
1127
1128 /* Workaround an erratum on the i830 which causes a hang if
1129 * the TAIL pointer points to within the last 2 cachelines
1130 * of the buffer.
1131 */
1132 ring->effective_size = ring->size;
1133 if (IS_I830(ring->dev) || IS_845G(ring->dev))
1134 ring->effective_size -= 128;
1135
1136 return 0;
1137
1138 err_unmap:
1139 iounmap(ring->virtual_start);
1140 err_unpin:
1141 i915_gem_object_unpin(obj);
1142 err_unref:
1143 drm_gem_object_unreference(&obj->base);
1144 ring->obj = NULL;
1145 err_hws:
1146 cleanup_status_page(ring);
1147 return ret;
1148 }
1149
1150 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1151 {
1152 struct drm_i915_private *dev_priv;
1153 int ret;
1154
1155 if (ring->obj == NULL)
1156 return;
1157
1158 /* Disable the ring buffer. The ring must be idle at this point */
1159 dev_priv = ring->dev->dev_private;
1160 ret = intel_wait_ring_idle(ring);
1161 if (ret)
1162 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1163 ring->name, ret);
1164
1165 I915_WRITE_CTL(ring, 0);
1166
1167 iounmap(ring->virtual_start);
1168
1169 i915_gem_object_unpin(ring->obj);
1170 drm_gem_object_unreference(&ring->obj->base);
1171 ring->obj = NULL;
1172
1173 if (ring->cleanup)
1174 ring->cleanup(ring);
1175
1176 cleanup_status_page(ring);
1177 }
1178
1179 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1180 {
1181 uint32_t __iomem *virt;
1182 int rem = ring->size - ring->tail;
1183
1184 if (ring->space < rem) {
1185 int ret = intel_wait_ring_buffer(ring, rem);
1186 if (ret)
1187 return ret;
1188 }
1189
1190 virt = ring->virtual_start + ring->tail;
1191 rem /= 4;
1192 while (rem--)
1193 iowrite32(MI_NOOP, virt++);
1194
1195 ring->tail = 0;
1196 ring->space = ring_space(ring);
1197
1198 return 0;
1199 }
1200
1201 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1202 {
1203 int ret;
1204
1205 ret = i915_wait_seqno(ring, seqno);
1206 if (!ret)
1207 i915_gem_retire_requests_ring(ring);
1208
1209 return ret;
1210 }
1211
1212 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1213 {
1214 struct drm_i915_gem_request *request;
1215 u32 seqno = 0;
1216 int ret;
1217
1218 i915_gem_retire_requests_ring(ring);
1219
1220 if (ring->last_retired_head != -1) {
1221 ring->head = ring->last_retired_head;
1222 ring->last_retired_head = -1;
1223 ring->space = ring_space(ring);
1224 if (ring->space >= n)
1225 return 0;
1226 }
1227
1228 list_for_each_entry(request, &ring->request_list, list) {
1229 int space;
1230
1231 if (request->tail == -1)
1232 continue;
1233
1234 space = request->tail - (ring->tail + 8);
1235 if (space < 0)
1236 space += ring->size;
1237 if (space >= n) {
1238 seqno = request->seqno;
1239 break;
1240 }
1241
1242 /* Consume this request in case we need more space than
1243 * is available and so need to prevent a race between
1244 * updating last_retired_head and direct reads of
1245 * I915_RING_HEAD. It also provides a nice sanity check.
1246 */
1247 request->tail = -1;
1248 }
1249
1250 if (seqno == 0)
1251 return -ENOSPC;
1252
1253 ret = intel_ring_wait_seqno(ring, seqno);
1254 if (ret)
1255 return ret;
1256
1257 if (WARN_ON(ring->last_retired_head == -1))
1258 return -ENOSPC;
1259
1260 ring->head = ring->last_retired_head;
1261 ring->last_retired_head = -1;
1262 ring->space = ring_space(ring);
1263 if (WARN_ON(ring->space < n))
1264 return -ENOSPC;
1265
1266 return 0;
1267 }
1268
1269 int intel_wait_ring_buffer(struct intel_ring_buffer *ring, int n)
1270 {
1271 struct drm_device *dev = ring->dev;
1272 struct drm_i915_private *dev_priv = dev->dev_private;
1273 unsigned long end;
1274 int ret;
1275
1276 ret = intel_ring_wait_request(ring, n);
1277 if (ret != -ENOSPC)
1278 return ret;
1279
1280 trace_i915_ring_wait_begin(ring);
1281 /* With GEM the hangcheck timer should kick us out of the loop,
1282 * leaving it early runs the risk of corrupting GEM state (due
1283 * to running on almost untested codepaths). But on resume
1284 * timers don't work yet, so prevent a complete hang in that
1285 * case by choosing an insanely large timeout. */
1286 end = jiffies + 60 * HZ;
1287
1288 do {
1289 ring->head = I915_READ_HEAD(ring);
1290 ring->space = ring_space(ring);
1291 if (ring->space >= n) {
1292 trace_i915_ring_wait_end(ring);
1293 return 0;
1294 }
1295
1296 if (dev->primary->master) {
1297 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1298 if (master_priv->sarea_priv)
1299 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1300 }
1301
1302 msleep(1);
1303
1304 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
1305 if (ret)
1306 return ret;
1307 } while (!time_after(jiffies, end));
1308 trace_i915_ring_wait_end(ring);
1309 return -EBUSY;
1310 }
1311
1312 int intel_ring_begin(struct intel_ring_buffer *ring,
1313 int num_dwords)
1314 {
1315 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1316 int n = 4*num_dwords;
1317 int ret;
1318
1319 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
1320 if (ret)
1321 return ret;
1322
1323 if (unlikely(ring->tail + n > ring->effective_size)) {
1324 ret = intel_wrap_ring_buffer(ring);
1325 if (unlikely(ret))
1326 return ret;
1327 }
1328
1329 if (unlikely(ring->space < n)) {
1330 ret = intel_wait_ring_buffer(ring, n);
1331 if (unlikely(ret))
1332 return ret;
1333 }
1334
1335 ring->space -= n;
1336 return 0;
1337 }
1338
1339 void intel_ring_advance(struct intel_ring_buffer *ring)
1340 {
1341 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1342
1343 ring->tail &= ring->size - 1;
1344 if (dev_priv->stop_rings & intel_ring_flag(ring))
1345 return;
1346 ring->write_tail(ring, ring->tail);
1347 }
1348
1349
1350 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1351 u32 value)
1352 {
1353 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1354
1355 /* Every tail move must follow the sequence below */
1356
1357 /* Disable notification that the ring is IDLE. The GT
1358 * will then assume that it is busy and bring it out of rc6.
1359 */
1360 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1361 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1362
1363 /* Clear the context id. Here be magic! */
1364 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1365
1366 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1367 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1368 GEN6_BSD_SLEEP_INDICATOR) == 0,
1369 50))
1370 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1371
1372 /* Now that the ring is fully powered up, update the tail */
1373 I915_WRITE_TAIL(ring, value);
1374 POSTING_READ(RING_TAIL(ring->mmio_base));
1375
1376 /* Let the ring send IDLE messages to the GT again,
1377 * and so let it sleep to conserve power when idle.
1378 */
1379 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1380 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1381 }
1382
1383 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1384 u32 invalidate, u32 flush)
1385 {
1386 uint32_t cmd;
1387 int ret;
1388
1389 ret = intel_ring_begin(ring, 4);
1390 if (ret)
1391 return ret;
1392
1393 cmd = MI_FLUSH_DW;
1394 if (invalidate & I915_GEM_GPU_DOMAINS)
1395 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1396 intel_ring_emit(ring, cmd);
1397 intel_ring_emit(ring, 0);
1398 intel_ring_emit(ring, 0);
1399 intel_ring_emit(ring, MI_NOOP);
1400 intel_ring_advance(ring);
1401 return 0;
1402 }
1403
1404 static int
1405 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1406 u32 offset, u32 len)
1407 {
1408 int ret;
1409
1410 ret = intel_ring_begin(ring, 2);
1411 if (ret)
1412 return ret;
1413
1414 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
1415 /* bit0-7 is the length on GEN6+ */
1416 intel_ring_emit(ring, offset);
1417 intel_ring_advance(ring);
1418
1419 return 0;
1420 }
1421
1422 /* Blitter support (SandyBridge+) */
1423
1424 static int blt_ring_flush(struct intel_ring_buffer *ring,
1425 u32 invalidate, u32 flush)
1426 {
1427 uint32_t cmd;
1428 int ret;
1429
1430 ret = intel_ring_begin(ring, 4);
1431 if (ret)
1432 return ret;
1433
1434 cmd = MI_FLUSH_DW;
1435 if (invalidate & I915_GEM_DOMAIN_RENDER)
1436 cmd |= MI_INVALIDATE_TLB;
1437 intel_ring_emit(ring, cmd);
1438 intel_ring_emit(ring, 0);
1439 intel_ring_emit(ring, 0);
1440 intel_ring_emit(ring, MI_NOOP);
1441 intel_ring_advance(ring);
1442 return 0;
1443 }
1444
1445 int intel_init_render_ring_buffer(struct drm_device *dev)
1446 {
1447 drm_i915_private_t *dev_priv = dev->dev_private;
1448 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1449
1450 ring->name = "render ring";
1451 ring->id = RCS;
1452 ring->mmio_base = RENDER_RING_BASE;
1453
1454 if (INTEL_INFO(dev)->gen >= 6) {
1455 ring->add_request = gen6_add_request;
1456 ring->flush = gen7_render_ring_flush;
1457 if (INTEL_INFO(dev)->gen == 6)
1458 ring->flush = gen6_render_ring_flush;
1459 ring->irq_get = gen6_ring_get_irq;
1460 ring->irq_put = gen6_ring_put_irq;
1461 ring->irq_enable_mask = GT_USER_INTERRUPT;
1462 ring->get_seqno = gen6_ring_get_seqno;
1463 ring->sync_to = gen6_ring_sync;
1464 ring->semaphore_register[0] = MI_SEMAPHORE_SYNC_INVALID;
1465 ring->semaphore_register[1] = MI_SEMAPHORE_SYNC_RV;
1466 ring->semaphore_register[2] = MI_SEMAPHORE_SYNC_RB;
1467 ring->signal_mbox[0] = GEN6_VRSYNC;
1468 ring->signal_mbox[1] = GEN6_BRSYNC;
1469 } else if (IS_GEN5(dev)) {
1470 ring->add_request = pc_render_add_request;
1471 ring->flush = gen4_render_ring_flush;
1472 ring->get_seqno = pc_render_get_seqno;
1473 ring->irq_get = gen5_ring_get_irq;
1474 ring->irq_put = gen5_ring_put_irq;
1475 ring->irq_enable_mask = GT_USER_INTERRUPT | GT_PIPE_NOTIFY;
1476 } else {
1477 ring->add_request = i9xx_add_request;
1478 if (INTEL_INFO(dev)->gen < 4)
1479 ring->flush = gen2_render_ring_flush;
1480 else
1481 ring->flush = gen4_render_ring_flush;
1482 ring->get_seqno = ring_get_seqno;
1483 if (IS_GEN2(dev)) {
1484 ring->irq_get = i8xx_ring_get_irq;
1485 ring->irq_put = i8xx_ring_put_irq;
1486 } else {
1487 ring->irq_get = i9xx_ring_get_irq;
1488 ring->irq_put = i9xx_ring_put_irq;
1489 }
1490 ring->irq_enable_mask = I915_USER_INTERRUPT;
1491 }
1492 ring->write_tail = ring_write_tail;
1493 if (INTEL_INFO(dev)->gen >= 6)
1494 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1495 else if (INTEL_INFO(dev)->gen >= 4)
1496 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1497 else if (IS_I830(dev) || IS_845G(dev))
1498 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1499 else
1500 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1501 ring->init = init_render_ring;
1502 ring->cleanup = render_ring_cleanup;
1503
1504
1505 if (!I915_NEED_GFX_HWS(dev)) {
1506 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1507 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1508 }
1509
1510 return intel_init_ring_buffer(dev, ring);
1511 }
1512
1513 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1514 {
1515 drm_i915_private_t *dev_priv = dev->dev_private;
1516 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1517
1518 ring->name = "render ring";
1519 ring->id = RCS;
1520 ring->mmio_base = RENDER_RING_BASE;
1521
1522 if (INTEL_INFO(dev)->gen >= 6) {
1523 /* non-kms not supported on gen6+ */
1524 return -ENODEV;
1525 }
1526
1527 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1528 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1529 * the special gen5 functions. */
1530 ring->add_request = i9xx_add_request;
1531 if (INTEL_INFO(dev)->gen < 4)
1532 ring->flush = gen2_render_ring_flush;
1533 else
1534 ring->flush = gen4_render_ring_flush;
1535 ring->get_seqno = ring_get_seqno;
1536 if (IS_GEN2(dev)) {
1537 ring->irq_get = i8xx_ring_get_irq;
1538 ring->irq_put = i8xx_ring_put_irq;
1539 } else {
1540 ring->irq_get = i9xx_ring_get_irq;
1541 ring->irq_put = i9xx_ring_put_irq;
1542 }
1543 ring->irq_enable_mask = I915_USER_INTERRUPT;
1544 ring->write_tail = ring_write_tail;
1545 if (INTEL_INFO(dev)->gen >= 4)
1546 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1547 else if (IS_I830(dev) || IS_845G(dev))
1548 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1549 else
1550 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1551 ring->init = init_render_ring;
1552 ring->cleanup = render_ring_cleanup;
1553
1554 if (!I915_NEED_GFX_HWS(dev))
1555 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1556
1557 ring->dev = dev;
1558 INIT_LIST_HEAD(&ring->active_list);
1559 INIT_LIST_HEAD(&ring->request_list);
1560
1561 ring->size = size;
1562 ring->effective_size = ring->size;
1563 if (IS_I830(ring->dev))
1564 ring->effective_size -= 128;
1565
1566 ring->virtual_start = ioremap_wc(start, size);
1567 if (ring->virtual_start == NULL) {
1568 DRM_ERROR("can not ioremap virtual address for"
1569 " ring buffer\n");
1570 return -ENOMEM;
1571 }
1572
1573 return 0;
1574 }
1575
1576 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1577 {
1578 drm_i915_private_t *dev_priv = dev->dev_private;
1579 struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1580
1581 ring->name = "bsd ring";
1582 ring->id = VCS;
1583
1584 ring->write_tail = ring_write_tail;
1585 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1586 ring->mmio_base = GEN6_BSD_RING_BASE;
1587 /* gen6 bsd needs a special wa for tail updates */
1588 if (IS_GEN6(dev))
1589 ring->write_tail = gen6_bsd_ring_write_tail;
1590 ring->flush = gen6_ring_flush;
1591 ring->add_request = gen6_add_request;
1592 ring->get_seqno = gen6_ring_get_seqno;
1593 ring->irq_enable_mask = GEN6_BSD_USER_INTERRUPT;
1594 ring->irq_get = gen6_ring_get_irq;
1595 ring->irq_put = gen6_ring_put_irq;
1596 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1597 ring->sync_to = gen6_ring_sync;
1598 ring->semaphore_register[0] = MI_SEMAPHORE_SYNC_VR;
1599 ring->semaphore_register[1] = MI_SEMAPHORE_SYNC_INVALID;
1600 ring->semaphore_register[2] = MI_SEMAPHORE_SYNC_VB;
1601 ring->signal_mbox[0] = GEN6_RVSYNC;
1602 ring->signal_mbox[1] = GEN6_BVSYNC;
1603 } else {
1604 ring->mmio_base = BSD_RING_BASE;
1605 ring->flush = bsd_ring_flush;
1606 ring->add_request = i9xx_add_request;
1607 ring->get_seqno = ring_get_seqno;
1608 if (IS_GEN5(dev)) {
1609 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1610 ring->irq_get = gen5_ring_get_irq;
1611 ring->irq_put = gen5_ring_put_irq;
1612 } else {
1613 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1614 ring->irq_get = i9xx_ring_get_irq;
1615 ring->irq_put = i9xx_ring_put_irq;
1616 }
1617 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1618 }
1619 ring->init = init_ring_common;
1620
1621
1622 return intel_init_ring_buffer(dev, ring);
1623 }
1624
1625 int intel_init_blt_ring_buffer(struct drm_device *dev)
1626 {
1627 drm_i915_private_t *dev_priv = dev->dev_private;
1628 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1629
1630 ring->name = "blitter ring";
1631 ring->id = BCS;
1632
1633 ring->mmio_base = BLT_RING_BASE;
1634 ring->write_tail = ring_write_tail;
1635 ring->flush = blt_ring_flush;
1636 ring->add_request = gen6_add_request;
1637 ring->get_seqno = gen6_ring_get_seqno;
1638 ring->irq_enable_mask = GEN6_BLITTER_USER_INTERRUPT;
1639 ring->irq_get = gen6_ring_get_irq;
1640 ring->irq_put = gen6_ring_put_irq;
1641 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1642 ring->sync_to = gen6_ring_sync;
1643 ring->semaphore_register[0] = MI_SEMAPHORE_SYNC_BR;
1644 ring->semaphore_register[1] = MI_SEMAPHORE_SYNC_BV;
1645 ring->semaphore_register[2] = MI_SEMAPHORE_SYNC_INVALID;
1646 ring->signal_mbox[0] = GEN6_RBSYNC;
1647 ring->signal_mbox[1] = GEN6_VBSYNC;
1648 ring->init = init_ring_common;
1649
1650 return intel_init_ring_buffer(dev, ring);
1651 }
1652
1653 int
1654 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
1655 {
1656 int ret;
1657
1658 if (!ring->gpu_caches_dirty)
1659 return 0;
1660
1661 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
1662 if (ret)
1663 return ret;
1664
1665 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
1666
1667 ring->gpu_caches_dirty = false;
1668 return 0;
1669 }
1670
1671 int
1672 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
1673 {
1674 uint32_t flush_domains;
1675 int ret;
1676
1677 flush_domains = 0;
1678 if (ring->gpu_caches_dirty)
1679 flush_domains = I915_GEM_GPU_DOMAINS;
1680
1681 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
1682 if (ret)
1683 return ret;
1684
1685 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
1686
1687 ring->gpu_caches_dirty = false;
1688 return 0;
1689 }
This page took 0.104995 seconds and 6 git commands to generate.