Merge tag 'module-builtin_driver-v4.1-rc8' of git://git.kernel.org/pub/scm/linux...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 struct drm_device *dev = ring->dev;
40
41 if (!dev)
42 return false;
43
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48 return ringbuf->obj;
49 } else
50 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 int space = head - tail;
56 if (space <= 0)
57 space += size;
58 return space - I915_RING_FREE_SPACE;
59 }
60
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63 if (ringbuf->last_retired_head != -1) {
64 ringbuf->head = ringbuf->last_retired_head;
65 ringbuf->last_retired_head = -1;
66 }
67
68 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69 ringbuf->tail, ringbuf->size);
70 }
71
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74 intel_ring_update_space(ringbuf);
75 return ringbuf->space;
76 }
77
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80 struct drm_i915_private *dev_priv = ring->dev->dev_private;
81 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
84 void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86 struct intel_ringbuffer *ringbuf = ring->buffer;
87 ringbuf->tail &= ringbuf->size - 1;
88 if (intel_ring_stopped(ring))
89 return;
90 ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
94 gen2_render_ring_flush(struct intel_engine_cs *ring,
95 u32 invalidate_domains,
96 u32 flush_domains)
97 {
98 u32 cmd;
99 int ret;
100
101 cmd = MI_FLUSH;
102 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
103 cmd |= MI_NO_WRITE_FLUSH;
104
105 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
106 cmd |= MI_READ_FLUSH;
107
108 ret = intel_ring_begin(ring, 2);
109 if (ret)
110 return ret;
111
112 intel_ring_emit(ring, cmd);
113 intel_ring_emit(ring, MI_NOOP);
114 intel_ring_advance(ring);
115
116 return 0;
117 }
118
119 static int
120 gen4_render_ring_flush(struct intel_engine_cs *ring,
121 u32 invalidate_domains,
122 u32 flush_domains)
123 {
124 struct drm_device *dev = ring->dev;
125 u32 cmd;
126 int ret;
127
128 /*
129 * read/write caches:
130 *
131 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
132 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
133 * also flushed at 2d versus 3d pipeline switches.
134 *
135 * read-only caches:
136 *
137 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
138 * MI_READ_FLUSH is set, and is always flushed on 965.
139 *
140 * I915_GEM_DOMAIN_COMMAND may not exist?
141 *
142 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
143 * invalidated when MI_EXE_FLUSH is set.
144 *
145 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
146 * invalidated with every MI_FLUSH.
147 *
148 * TLBs:
149 *
150 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
151 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
152 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
153 * are flushed at any MI_FLUSH.
154 */
155
156 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
157 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
158 cmd &= ~MI_NO_WRITE_FLUSH;
159 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
160 cmd |= MI_EXE_FLUSH;
161
162 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
163 (IS_G4X(dev) || IS_GEN5(dev)))
164 cmd |= MI_INVALIDATE_ISP;
165
166 ret = intel_ring_begin(ring, 2);
167 if (ret)
168 return ret;
169
170 intel_ring_emit(ring, cmd);
171 intel_ring_emit(ring, MI_NOOP);
172 intel_ring_advance(ring);
173
174 return 0;
175 }
176
177 /**
178 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
179 * implementing two workarounds on gen6. From section 1.4.7.1
180 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
181 *
182 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
183 * produced by non-pipelined state commands), software needs to first
184 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
185 * 0.
186 *
187 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
188 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
189 *
190 * And the workaround for these two requires this workaround first:
191 *
192 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
193 * BEFORE the pipe-control with a post-sync op and no write-cache
194 * flushes.
195 *
196 * And this last workaround is tricky because of the requirements on
197 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
198 * volume 2 part 1:
199 *
200 * "1 of the following must also be set:
201 * - Render Target Cache Flush Enable ([12] of DW1)
202 * - Depth Cache Flush Enable ([0] of DW1)
203 * - Stall at Pixel Scoreboard ([1] of DW1)
204 * - Depth Stall ([13] of DW1)
205 * - Post-Sync Operation ([13] of DW1)
206 * - Notify Enable ([8] of DW1)"
207 *
208 * The cache flushes require the workaround flush that triggered this
209 * one, so we can't use it. Depth stall would trigger the same.
210 * Post-sync nonzero is what triggered this second workaround, so we
211 * can't use that one either. Notify enable is IRQs, which aren't
212 * really our business. That leaves only stall at scoreboard.
213 */
214 static int
215 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
216 {
217 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
218 int ret;
219
220
221 ret = intel_ring_begin(ring, 6);
222 if (ret)
223 return ret;
224
225 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
226 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
227 PIPE_CONTROL_STALL_AT_SCOREBOARD);
228 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
229 intel_ring_emit(ring, 0); /* low dword */
230 intel_ring_emit(ring, 0); /* high dword */
231 intel_ring_emit(ring, MI_NOOP);
232 intel_ring_advance(ring);
233
234 ret = intel_ring_begin(ring, 6);
235 if (ret)
236 return ret;
237
238 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
239 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
240 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
241 intel_ring_emit(ring, 0);
242 intel_ring_emit(ring, 0);
243 intel_ring_emit(ring, MI_NOOP);
244 intel_ring_advance(ring);
245
246 return 0;
247 }
248
249 static int
250 gen6_render_ring_flush(struct intel_engine_cs *ring,
251 u32 invalidate_domains, u32 flush_domains)
252 {
253 u32 flags = 0;
254 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
255 int ret;
256
257 /* Force SNB workarounds for PIPE_CONTROL flushes */
258 ret = intel_emit_post_sync_nonzero_flush(ring);
259 if (ret)
260 return ret;
261
262 /* Just flush everything. Experiments have shown that reducing the
263 * number of bits based on the write domains has little performance
264 * impact.
265 */
266 if (flush_domains) {
267 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
268 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
269 /*
270 * Ensure that any following seqno writes only happen
271 * when the render cache is indeed flushed.
272 */
273 flags |= PIPE_CONTROL_CS_STALL;
274 }
275 if (invalidate_domains) {
276 flags |= PIPE_CONTROL_TLB_INVALIDATE;
277 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
278 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
279 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
280 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
281 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
282 /*
283 * TLB invalidate requires a post-sync write.
284 */
285 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
286 }
287
288 ret = intel_ring_begin(ring, 4);
289 if (ret)
290 return ret;
291
292 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
293 intel_ring_emit(ring, flags);
294 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
295 intel_ring_emit(ring, 0);
296 intel_ring_advance(ring);
297
298 return 0;
299 }
300
301 static int
302 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
303 {
304 int ret;
305
306 ret = intel_ring_begin(ring, 4);
307 if (ret)
308 return ret;
309
310 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
311 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
312 PIPE_CONTROL_STALL_AT_SCOREBOARD);
313 intel_ring_emit(ring, 0);
314 intel_ring_emit(ring, 0);
315 intel_ring_advance(ring);
316
317 return 0;
318 }
319
320 static int
321 gen7_render_ring_flush(struct intel_engine_cs *ring,
322 u32 invalidate_domains, u32 flush_domains)
323 {
324 u32 flags = 0;
325 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
326 int ret;
327
328 /*
329 * Ensure that any following seqno writes only happen when the render
330 * cache is indeed flushed.
331 *
332 * Workaround: 4th PIPE_CONTROL command (except the ones with only
333 * read-cache invalidate bits set) must have the CS_STALL bit set. We
334 * don't try to be clever and just set it unconditionally.
335 */
336 flags |= PIPE_CONTROL_CS_STALL;
337
338 /* Just flush everything. Experiments have shown that reducing the
339 * number of bits based on the write domains has little performance
340 * impact.
341 */
342 if (flush_domains) {
343 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
344 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
345 }
346 if (invalidate_domains) {
347 flags |= PIPE_CONTROL_TLB_INVALIDATE;
348 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
349 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
350 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
351 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
352 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
353 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
354 /*
355 * TLB invalidate requires a post-sync write.
356 */
357 flags |= PIPE_CONTROL_QW_WRITE;
358 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
359
360 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
361
362 /* Workaround: we must issue a pipe_control with CS-stall bit
363 * set before a pipe_control command that has the state cache
364 * invalidate bit set. */
365 gen7_render_ring_cs_stall_wa(ring);
366 }
367
368 ret = intel_ring_begin(ring, 4);
369 if (ret)
370 return ret;
371
372 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
373 intel_ring_emit(ring, flags);
374 intel_ring_emit(ring, scratch_addr);
375 intel_ring_emit(ring, 0);
376 intel_ring_advance(ring);
377
378 return 0;
379 }
380
381 static int
382 gen8_emit_pipe_control(struct intel_engine_cs *ring,
383 u32 flags, u32 scratch_addr)
384 {
385 int ret;
386
387 ret = intel_ring_begin(ring, 6);
388 if (ret)
389 return ret;
390
391 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
392 intel_ring_emit(ring, flags);
393 intel_ring_emit(ring, scratch_addr);
394 intel_ring_emit(ring, 0);
395 intel_ring_emit(ring, 0);
396 intel_ring_emit(ring, 0);
397 intel_ring_advance(ring);
398
399 return 0;
400 }
401
402 static int
403 gen8_render_ring_flush(struct intel_engine_cs *ring,
404 u32 invalidate_domains, u32 flush_domains)
405 {
406 u32 flags = 0;
407 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
408 int ret;
409
410 flags |= PIPE_CONTROL_CS_STALL;
411
412 if (flush_domains) {
413 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
414 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
415 }
416 if (invalidate_domains) {
417 flags |= PIPE_CONTROL_TLB_INVALIDATE;
418 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
419 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
420 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
421 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
422 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
423 flags |= PIPE_CONTROL_QW_WRITE;
424 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
425
426 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
427 ret = gen8_emit_pipe_control(ring,
428 PIPE_CONTROL_CS_STALL |
429 PIPE_CONTROL_STALL_AT_SCOREBOARD,
430 0);
431 if (ret)
432 return ret;
433 }
434
435 return gen8_emit_pipe_control(ring, flags, scratch_addr);
436 }
437
438 static void ring_write_tail(struct intel_engine_cs *ring,
439 u32 value)
440 {
441 struct drm_i915_private *dev_priv = ring->dev->dev_private;
442 I915_WRITE_TAIL(ring, value);
443 }
444
445 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
446 {
447 struct drm_i915_private *dev_priv = ring->dev->dev_private;
448 u64 acthd;
449
450 if (INTEL_INFO(ring->dev)->gen >= 8)
451 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
452 RING_ACTHD_UDW(ring->mmio_base));
453 else if (INTEL_INFO(ring->dev)->gen >= 4)
454 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
455 else
456 acthd = I915_READ(ACTHD);
457
458 return acthd;
459 }
460
461 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
462 {
463 struct drm_i915_private *dev_priv = ring->dev->dev_private;
464 u32 addr;
465
466 addr = dev_priv->status_page_dmah->busaddr;
467 if (INTEL_INFO(ring->dev)->gen >= 4)
468 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
469 I915_WRITE(HWS_PGA, addr);
470 }
471
472 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
473 {
474 struct drm_device *dev = ring->dev;
475 struct drm_i915_private *dev_priv = ring->dev->dev_private;
476 u32 mmio = 0;
477
478 /* The ring status page addresses are no longer next to the rest of
479 * the ring registers as of gen7.
480 */
481 if (IS_GEN7(dev)) {
482 switch (ring->id) {
483 case RCS:
484 mmio = RENDER_HWS_PGA_GEN7;
485 break;
486 case BCS:
487 mmio = BLT_HWS_PGA_GEN7;
488 break;
489 /*
490 * VCS2 actually doesn't exist on Gen7. Only shut up
491 * gcc switch check warning
492 */
493 case VCS2:
494 case VCS:
495 mmio = BSD_HWS_PGA_GEN7;
496 break;
497 case VECS:
498 mmio = VEBOX_HWS_PGA_GEN7;
499 break;
500 }
501 } else if (IS_GEN6(ring->dev)) {
502 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
503 } else {
504 /* XXX: gen8 returns to sanity */
505 mmio = RING_HWS_PGA(ring->mmio_base);
506 }
507
508 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
509 POSTING_READ(mmio);
510
511 /*
512 * Flush the TLB for this page
513 *
514 * FIXME: These two bits have disappeared on gen8, so a question
515 * arises: do we still need this and if so how should we go about
516 * invalidating the TLB?
517 */
518 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
519 u32 reg = RING_INSTPM(ring->mmio_base);
520
521 /* ring should be idle before issuing a sync flush*/
522 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
523
524 I915_WRITE(reg,
525 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
526 INSTPM_SYNC_FLUSH));
527 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
528 1000))
529 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
530 ring->name);
531 }
532 }
533
534 static bool stop_ring(struct intel_engine_cs *ring)
535 {
536 struct drm_i915_private *dev_priv = to_i915(ring->dev);
537
538 if (!IS_GEN2(ring->dev)) {
539 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
540 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
541 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
542 /* Sometimes we observe that the idle flag is not
543 * set even though the ring is empty. So double
544 * check before giving up.
545 */
546 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
547 return false;
548 }
549 }
550
551 I915_WRITE_CTL(ring, 0);
552 I915_WRITE_HEAD(ring, 0);
553 ring->write_tail(ring, 0);
554
555 if (!IS_GEN2(ring->dev)) {
556 (void)I915_READ_CTL(ring);
557 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
558 }
559
560 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
561 }
562
563 static int init_ring_common(struct intel_engine_cs *ring)
564 {
565 struct drm_device *dev = ring->dev;
566 struct drm_i915_private *dev_priv = dev->dev_private;
567 struct intel_ringbuffer *ringbuf = ring->buffer;
568 struct drm_i915_gem_object *obj = ringbuf->obj;
569 int ret = 0;
570
571 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
572
573 if (!stop_ring(ring)) {
574 /* G45 ring initialization often fails to reset head to zero */
575 DRM_DEBUG_KMS("%s head not reset to zero "
576 "ctl %08x head %08x tail %08x start %08x\n",
577 ring->name,
578 I915_READ_CTL(ring),
579 I915_READ_HEAD(ring),
580 I915_READ_TAIL(ring),
581 I915_READ_START(ring));
582
583 if (!stop_ring(ring)) {
584 DRM_ERROR("failed to set %s head to zero "
585 "ctl %08x head %08x tail %08x start %08x\n",
586 ring->name,
587 I915_READ_CTL(ring),
588 I915_READ_HEAD(ring),
589 I915_READ_TAIL(ring),
590 I915_READ_START(ring));
591 ret = -EIO;
592 goto out;
593 }
594 }
595
596 if (I915_NEED_GFX_HWS(dev))
597 intel_ring_setup_status_page(ring);
598 else
599 ring_setup_phys_status_page(ring);
600
601 /* Enforce ordering by reading HEAD register back */
602 I915_READ_HEAD(ring);
603
604 /* Initialize the ring. This must happen _after_ we've cleared the ring
605 * registers with the above sequence (the readback of the HEAD registers
606 * also enforces ordering), otherwise the hw might lose the new ring
607 * register values. */
608 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
609
610 /* WaClearRingBufHeadRegAtInit:ctg,elk */
611 if (I915_READ_HEAD(ring))
612 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
613 ring->name, I915_READ_HEAD(ring));
614 I915_WRITE_HEAD(ring, 0);
615 (void)I915_READ_HEAD(ring);
616
617 I915_WRITE_CTL(ring,
618 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
619 | RING_VALID);
620
621 /* If the head is still not zero, the ring is dead */
622 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
623 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
624 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
625 DRM_ERROR("%s initialization failed "
626 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
627 ring->name,
628 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
629 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
630 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
631 ret = -EIO;
632 goto out;
633 }
634
635 ringbuf->last_retired_head = -1;
636 ringbuf->head = I915_READ_HEAD(ring);
637 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
638 intel_ring_update_space(ringbuf);
639
640 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
641
642 out:
643 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
644
645 return ret;
646 }
647
648 void
649 intel_fini_pipe_control(struct intel_engine_cs *ring)
650 {
651 struct drm_device *dev = ring->dev;
652
653 if (ring->scratch.obj == NULL)
654 return;
655
656 if (INTEL_INFO(dev)->gen >= 5) {
657 kunmap(sg_page(ring->scratch.obj->pages->sgl));
658 i915_gem_object_ggtt_unpin(ring->scratch.obj);
659 }
660
661 drm_gem_object_unreference(&ring->scratch.obj->base);
662 ring->scratch.obj = NULL;
663 }
664
665 int
666 intel_init_pipe_control(struct intel_engine_cs *ring)
667 {
668 int ret;
669
670 WARN_ON(ring->scratch.obj);
671
672 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
673 if (ring->scratch.obj == NULL) {
674 DRM_ERROR("Failed to allocate seqno page\n");
675 ret = -ENOMEM;
676 goto err;
677 }
678
679 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
680 if (ret)
681 goto err_unref;
682
683 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
684 if (ret)
685 goto err_unref;
686
687 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
688 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
689 if (ring->scratch.cpu_page == NULL) {
690 ret = -ENOMEM;
691 goto err_unpin;
692 }
693
694 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
695 ring->name, ring->scratch.gtt_offset);
696 return 0;
697
698 err_unpin:
699 i915_gem_object_ggtt_unpin(ring->scratch.obj);
700 err_unref:
701 drm_gem_object_unreference(&ring->scratch.obj->base);
702 err:
703 return ret;
704 }
705
706 static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
707 struct intel_context *ctx)
708 {
709 int ret, i;
710 struct drm_device *dev = ring->dev;
711 struct drm_i915_private *dev_priv = dev->dev_private;
712 struct i915_workarounds *w = &dev_priv->workarounds;
713
714 if (WARN_ON_ONCE(w->count == 0))
715 return 0;
716
717 ring->gpu_caches_dirty = true;
718 ret = intel_ring_flush_all_caches(ring);
719 if (ret)
720 return ret;
721
722 ret = intel_ring_begin(ring, (w->count * 2 + 2));
723 if (ret)
724 return ret;
725
726 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
727 for (i = 0; i < w->count; i++) {
728 intel_ring_emit(ring, w->reg[i].addr);
729 intel_ring_emit(ring, w->reg[i].value);
730 }
731 intel_ring_emit(ring, MI_NOOP);
732
733 intel_ring_advance(ring);
734
735 ring->gpu_caches_dirty = true;
736 ret = intel_ring_flush_all_caches(ring);
737 if (ret)
738 return ret;
739
740 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
741
742 return 0;
743 }
744
745 static int intel_rcs_ctx_init(struct intel_engine_cs *ring,
746 struct intel_context *ctx)
747 {
748 int ret;
749
750 ret = intel_ring_workarounds_emit(ring, ctx);
751 if (ret != 0)
752 return ret;
753
754 ret = i915_gem_render_state_init(ring);
755 if (ret)
756 DRM_ERROR("init render state: %d\n", ret);
757
758 return ret;
759 }
760
761 static int wa_add(struct drm_i915_private *dev_priv,
762 const u32 addr, const u32 mask, const u32 val)
763 {
764 const u32 idx = dev_priv->workarounds.count;
765
766 if (WARN_ON(idx >= I915_MAX_WA_REGS))
767 return -ENOSPC;
768
769 dev_priv->workarounds.reg[idx].addr = addr;
770 dev_priv->workarounds.reg[idx].value = val;
771 dev_priv->workarounds.reg[idx].mask = mask;
772
773 dev_priv->workarounds.count++;
774
775 return 0;
776 }
777
778 #define WA_REG(addr, mask, val) { \
779 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
780 if (r) \
781 return r; \
782 }
783
784 #define WA_SET_BIT_MASKED(addr, mask) \
785 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
786
787 #define WA_CLR_BIT_MASKED(addr, mask) \
788 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
789
790 #define WA_SET_FIELD_MASKED(addr, mask, value) \
791 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
792
793 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
794 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
795
796 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
797
798 static int bdw_init_workarounds(struct intel_engine_cs *ring)
799 {
800 struct drm_device *dev = ring->dev;
801 struct drm_i915_private *dev_priv = dev->dev_private;
802
803 /* WaDisablePartialInstShootdown:bdw */
804 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
805 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
806 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
807 STALL_DOP_GATING_DISABLE);
808
809 /* WaDisableDopClockGating:bdw */
810 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
811 DOP_CLOCK_GATING_DISABLE);
812
813 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
814 GEN8_SAMPLER_POWER_BYPASS_DIS);
815
816 /* Use Force Non-Coherent whenever executing a 3D context. This is a
817 * workaround for for a possible hang in the unlikely event a TLB
818 * invalidation occurs during a PSD flush.
819 */
820 WA_SET_BIT_MASKED(HDC_CHICKEN0,
821 /* WaForceEnableNonCoherent:bdw */
822 HDC_FORCE_NON_COHERENT |
823 /* WaForceContextSaveRestoreNonCoherent:bdw */
824 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
825 /* WaHdcDisableFetchWhenMasked:bdw */
826 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
827 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
828 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
829
830 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
831 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
832 * polygons in the same 8x4 pixel/sample area to be processed without
833 * stalling waiting for the earlier ones to write to Hierarchical Z
834 * buffer."
835 *
836 * This optimization is off by default for Broadwell; turn it on.
837 */
838 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
839
840 /* Wa4x4STCOptimizationDisable:bdw */
841 WA_SET_BIT_MASKED(CACHE_MODE_1,
842 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
843
844 /*
845 * BSpec recommends 8x4 when MSAA is used,
846 * however in practice 16x4 seems fastest.
847 *
848 * Note that PS/WM thread counts depend on the WIZ hashing
849 * disable bit, which we don't touch here, but it's good
850 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
851 */
852 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
853 GEN6_WIZ_HASHING_MASK,
854 GEN6_WIZ_HASHING_16x4);
855
856 return 0;
857 }
858
859 static int chv_init_workarounds(struct intel_engine_cs *ring)
860 {
861 struct drm_device *dev = ring->dev;
862 struct drm_i915_private *dev_priv = dev->dev_private;
863
864 /* WaDisablePartialInstShootdown:chv */
865 /* WaDisableThreadStallDopClockGating:chv */
866 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
867 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
868 STALL_DOP_GATING_DISABLE);
869
870 /* Use Force Non-Coherent whenever executing a 3D context. This is a
871 * workaround for a possible hang in the unlikely event a TLB
872 * invalidation occurs during a PSD flush.
873 */
874 /* WaForceEnableNonCoherent:chv */
875 /* WaHdcDisableFetchWhenMasked:chv */
876 WA_SET_BIT_MASKED(HDC_CHICKEN0,
877 HDC_FORCE_NON_COHERENT |
878 HDC_DONOT_FETCH_MEM_WHEN_MASKED);
879
880 /* According to the CACHE_MODE_0 default value documentation, some
881 * CHV platforms disable this optimization by default. Turn it on.
882 */
883 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
884
885 /* Wa4x4STCOptimizationDisable:chv */
886 WA_SET_BIT_MASKED(CACHE_MODE_1,
887 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
888
889 /* Improve HiZ throughput on CHV. */
890 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
891
892 /*
893 * BSpec recommends 8x4 when MSAA is used,
894 * however in practice 16x4 seems fastest.
895 *
896 * Note that PS/WM thread counts depend on the WIZ hashing
897 * disable bit, which we don't touch here, but it's good
898 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
899 */
900 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
901 GEN6_WIZ_HASHING_MASK,
902 GEN6_WIZ_HASHING_16x4);
903
904 return 0;
905 }
906
907 static int gen9_init_workarounds(struct intel_engine_cs *ring)
908 {
909 struct drm_device *dev = ring->dev;
910 struct drm_i915_private *dev_priv = dev->dev_private;
911 uint32_t tmp;
912
913 /* WaDisablePartialInstShootdown:skl,bxt */
914 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
915 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
916
917 /* Syncing dependencies between camera and graphics:skl,bxt */
918 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
919 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
920
921 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
922 INTEL_REVID(dev) == SKL_REVID_B0)) ||
923 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
924 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
925 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
926 GEN9_DG_MIRROR_FIX_ENABLE);
927 }
928
929 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
930 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
931 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
932 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
933 GEN9_RHWO_OPTIMIZATION_DISABLE);
934 WA_SET_BIT_MASKED(GEN9_SLICE_COMMON_ECO_CHICKEN0,
935 DISABLE_PIXEL_MASK_CAMMING);
936 }
937
938 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
939 IS_BROXTON(dev)) {
940 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
941 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
942 GEN9_ENABLE_YV12_BUGFIX);
943 }
944
945 /* Wa4x4STCOptimizationDisable:skl,bxt */
946 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
947
948 /* WaDisablePartialResolveInVc:skl,bxt */
949 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
950
951 /* WaCcsTlbPrefetchDisable:skl,bxt */
952 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
953 GEN9_CCS_TLB_PREFETCH_ENABLE);
954
955 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
956 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
957 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
958 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
959 PIXEL_MASK_CAMMING_DISABLE);
960
961 /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
962 tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
963 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
964 (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
965 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
966 WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
967
968 return 0;
969 }
970
971 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
972 {
973 struct drm_device *dev = ring->dev;
974 struct drm_i915_private *dev_priv = dev->dev_private;
975 u8 vals[3] = { 0, 0, 0 };
976 unsigned int i;
977
978 for (i = 0; i < 3; i++) {
979 u8 ss;
980
981 /*
982 * Only consider slices where one, and only one, subslice has 7
983 * EUs
984 */
985 if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
986 continue;
987
988 /*
989 * subslice_7eu[i] != 0 (because of the check above) and
990 * ss_max == 4 (maximum number of subslices possible per slice)
991 *
992 * -> 0 <= ss <= 3;
993 */
994 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
995 vals[i] = 3 - ss;
996 }
997
998 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
999 return 0;
1000
1001 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1002 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1003 GEN9_IZ_HASHING_MASK(2) |
1004 GEN9_IZ_HASHING_MASK(1) |
1005 GEN9_IZ_HASHING_MASK(0),
1006 GEN9_IZ_HASHING(2, vals[2]) |
1007 GEN9_IZ_HASHING(1, vals[1]) |
1008 GEN9_IZ_HASHING(0, vals[0]));
1009
1010 return 0;
1011 }
1012
1013
1014 static int skl_init_workarounds(struct intel_engine_cs *ring)
1015 {
1016 struct drm_device *dev = ring->dev;
1017 struct drm_i915_private *dev_priv = dev->dev_private;
1018
1019 gen9_init_workarounds(ring);
1020
1021 /* WaDisablePowerCompilerClockGating:skl */
1022 if (INTEL_REVID(dev) == SKL_REVID_B0)
1023 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1024 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1025
1026 if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1027 INTEL_REVID(dev) == SKL_REVID_D0)
1028 /* WaBarrierPerformanceFixDisable:skl */
1029 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1030 HDC_FENCE_DEST_SLM_DISABLE |
1031 HDC_BARRIER_PERFORMANCE_DISABLE);
1032
1033 if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1034 /*
1035 *Use Force Non-Coherent whenever executing a 3D context. This
1036 * is a workaround for a possible hang in the unlikely event
1037 * a TLB invalidation occurs during a PSD flush.
1038 */
1039 /* WaForceEnableNonCoherent:skl */
1040 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1041 HDC_FORCE_NON_COHERENT);
1042 }
1043
1044 return skl_tune_iz_hashing(ring);
1045 }
1046
1047 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1048 {
1049 struct drm_device *dev = ring->dev;
1050 struct drm_i915_private *dev_priv = dev->dev_private;
1051
1052 gen9_init_workarounds(ring);
1053
1054 /* WaDisableThreadStallDopClockGating:bxt */
1055 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1056 STALL_DOP_GATING_DISABLE);
1057
1058 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1059 if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1060 WA_SET_BIT_MASKED(
1061 GEN7_HALF_SLICE_CHICKEN1,
1062 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1063 }
1064
1065 return 0;
1066 }
1067
1068 int init_workarounds_ring(struct intel_engine_cs *ring)
1069 {
1070 struct drm_device *dev = ring->dev;
1071 struct drm_i915_private *dev_priv = dev->dev_private;
1072
1073 WARN_ON(ring->id != RCS);
1074
1075 dev_priv->workarounds.count = 0;
1076
1077 if (IS_BROADWELL(dev))
1078 return bdw_init_workarounds(ring);
1079
1080 if (IS_CHERRYVIEW(dev))
1081 return chv_init_workarounds(ring);
1082
1083 if (IS_SKYLAKE(dev))
1084 return skl_init_workarounds(ring);
1085
1086 if (IS_BROXTON(dev))
1087 return bxt_init_workarounds(ring);
1088
1089 return 0;
1090 }
1091
1092 static int init_render_ring(struct intel_engine_cs *ring)
1093 {
1094 struct drm_device *dev = ring->dev;
1095 struct drm_i915_private *dev_priv = dev->dev_private;
1096 int ret = init_ring_common(ring);
1097 if (ret)
1098 return ret;
1099
1100 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1101 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1102 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1103
1104 /* We need to disable the AsyncFlip performance optimisations in order
1105 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1106 * programmed to '1' on all products.
1107 *
1108 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1109 */
1110 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
1111 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1112
1113 /* Required for the hardware to program scanline values for waiting */
1114 /* WaEnableFlushTlbInvalidationMode:snb */
1115 if (INTEL_INFO(dev)->gen == 6)
1116 I915_WRITE(GFX_MODE,
1117 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1118
1119 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1120 if (IS_GEN7(dev))
1121 I915_WRITE(GFX_MODE_GEN7,
1122 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1123 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1124
1125 if (IS_GEN6(dev)) {
1126 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1127 * "If this bit is set, STCunit will have LRA as replacement
1128 * policy. [...] This bit must be reset. LRA replacement
1129 * policy is not supported."
1130 */
1131 I915_WRITE(CACHE_MODE_0,
1132 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1133 }
1134
1135 if (INTEL_INFO(dev)->gen >= 6)
1136 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1137
1138 if (HAS_L3_DPF(dev))
1139 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1140
1141 return init_workarounds_ring(ring);
1142 }
1143
1144 static void render_ring_cleanup(struct intel_engine_cs *ring)
1145 {
1146 struct drm_device *dev = ring->dev;
1147 struct drm_i915_private *dev_priv = dev->dev_private;
1148
1149 if (dev_priv->semaphore_obj) {
1150 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1151 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1152 dev_priv->semaphore_obj = NULL;
1153 }
1154
1155 intel_fini_pipe_control(ring);
1156 }
1157
1158 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
1159 unsigned int num_dwords)
1160 {
1161 #define MBOX_UPDATE_DWORDS 8
1162 struct drm_device *dev = signaller->dev;
1163 struct drm_i915_private *dev_priv = dev->dev_private;
1164 struct intel_engine_cs *waiter;
1165 int i, ret, num_rings;
1166
1167 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1168 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1169 #undef MBOX_UPDATE_DWORDS
1170
1171 ret = intel_ring_begin(signaller, num_dwords);
1172 if (ret)
1173 return ret;
1174
1175 for_each_ring(waiter, dev_priv, i) {
1176 u32 seqno;
1177 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1178 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1179 continue;
1180
1181 seqno = i915_gem_request_get_seqno(
1182 signaller->outstanding_lazy_request);
1183 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1184 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1185 PIPE_CONTROL_QW_WRITE |
1186 PIPE_CONTROL_FLUSH_ENABLE);
1187 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1188 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1189 intel_ring_emit(signaller, seqno);
1190 intel_ring_emit(signaller, 0);
1191 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1192 MI_SEMAPHORE_TARGET(waiter->id));
1193 intel_ring_emit(signaller, 0);
1194 }
1195
1196 return 0;
1197 }
1198
1199 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
1200 unsigned int num_dwords)
1201 {
1202 #define MBOX_UPDATE_DWORDS 6
1203 struct drm_device *dev = signaller->dev;
1204 struct drm_i915_private *dev_priv = dev->dev_private;
1205 struct intel_engine_cs *waiter;
1206 int i, ret, num_rings;
1207
1208 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1209 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1210 #undef MBOX_UPDATE_DWORDS
1211
1212 ret = intel_ring_begin(signaller, num_dwords);
1213 if (ret)
1214 return ret;
1215
1216 for_each_ring(waiter, dev_priv, i) {
1217 u32 seqno;
1218 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1219 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1220 continue;
1221
1222 seqno = i915_gem_request_get_seqno(
1223 signaller->outstanding_lazy_request);
1224 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1225 MI_FLUSH_DW_OP_STOREDW);
1226 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1227 MI_FLUSH_DW_USE_GTT);
1228 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1229 intel_ring_emit(signaller, seqno);
1230 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1231 MI_SEMAPHORE_TARGET(waiter->id));
1232 intel_ring_emit(signaller, 0);
1233 }
1234
1235 return 0;
1236 }
1237
1238 static int gen6_signal(struct intel_engine_cs *signaller,
1239 unsigned int num_dwords)
1240 {
1241 struct drm_device *dev = signaller->dev;
1242 struct drm_i915_private *dev_priv = dev->dev_private;
1243 struct intel_engine_cs *useless;
1244 int i, ret, num_rings;
1245
1246 #define MBOX_UPDATE_DWORDS 3
1247 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1248 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1249 #undef MBOX_UPDATE_DWORDS
1250
1251 ret = intel_ring_begin(signaller, num_dwords);
1252 if (ret)
1253 return ret;
1254
1255 for_each_ring(useless, dev_priv, i) {
1256 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1257 if (mbox_reg != GEN6_NOSYNC) {
1258 u32 seqno = i915_gem_request_get_seqno(
1259 signaller->outstanding_lazy_request);
1260 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1261 intel_ring_emit(signaller, mbox_reg);
1262 intel_ring_emit(signaller, seqno);
1263 }
1264 }
1265
1266 /* If num_dwords was rounded, make sure the tail pointer is correct */
1267 if (num_rings % 2 == 0)
1268 intel_ring_emit(signaller, MI_NOOP);
1269
1270 return 0;
1271 }
1272
1273 /**
1274 * gen6_add_request - Update the semaphore mailbox registers
1275 *
1276 * @ring - ring that is adding a request
1277 * @seqno - return seqno stuck into the ring
1278 *
1279 * Update the mailbox registers in the *other* rings with the current seqno.
1280 * This acts like a signal in the canonical semaphore.
1281 */
1282 static int
1283 gen6_add_request(struct intel_engine_cs *ring)
1284 {
1285 int ret;
1286
1287 if (ring->semaphore.signal)
1288 ret = ring->semaphore.signal(ring, 4);
1289 else
1290 ret = intel_ring_begin(ring, 4);
1291
1292 if (ret)
1293 return ret;
1294
1295 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1296 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1297 intel_ring_emit(ring,
1298 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1299 intel_ring_emit(ring, MI_USER_INTERRUPT);
1300 __intel_ring_advance(ring);
1301
1302 return 0;
1303 }
1304
1305 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1306 u32 seqno)
1307 {
1308 struct drm_i915_private *dev_priv = dev->dev_private;
1309 return dev_priv->last_seqno < seqno;
1310 }
1311
1312 /**
1313 * intel_ring_sync - sync the waiter to the signaller on seqno
1314 *
1315 * @waiter - ring that is waiting
1316 * @signaller - ring which has, or will signal
1317 * @seqno - seqno which the waiter will block on
1318 */
1319
1320 static int
1321 gen8_ring_sync(struct intel_engine_cs *waiter,
1322 struct intel_engine_cs *signaller,
1323 u32 seqno)
1324 {
1325 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1326 int ret;
1327
1328 ret = intel_ring_begin(waiter, 4);
1329 if (ret)
1330 return ret;
1331
1332 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1333 MI_SEMAPHORE_GLOBAL_GTT |
1334 MI_SEMAPHORE_POLL |
1335 MI_SEMAPHORE_SAD_GTE_SDD);
1336 intel_ring_emit(waiter, seqno);
1337 intel_ring_emit(waiter,
1338 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1339 intel_ring_emit(waiter,
1340 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1341 intel_ring_advance(waiter);
1342 return 0;
1343 }
1344
1345 static int
1346 gen6_ring_sync(struct intel_engine_cs *waiter,
1347 struct intel_engine_cs *signaller,
1348 u32 seqno)
1349 {
1350 u32 dw1 = MI_SEMAPHORE_MBOX |
1351 MI_SEMAPHORE_COMPARE |
1352 MI_SEMAPHORE_REGISTER;
1353 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1354 int ret;
1355
1356 /* Throughout all of the GEM code, seqno passed implies our current
1357 * seqno is >= the last seqno executed. However for hardware the
1358 * comparison is strictly greater than.
1359 */
1360 seqno -= 1;
1361
1362 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1363
1364 ret = intel_ring_begin(waiter, 4);
1365 if (ret)
1366 return ret;
1367
1368 /* If seqno wrap happened, omit the wait with no-ops */
1369 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1370 intel_ring_emit(waiter, dw1 | wait_mbox);
1371 intel_ring_emit(waiter, seqno);
1372 intel_ring_emit(waiter, 0);
1373 intel_ring_emit(waiter, MI_NOOP);
1374 } else {
1375 intel_ring_emit(waiter, MI_NOOP);
1376 intel_ring_emit(waiter, MI_NOOP);
1377 intel_ring_emit(waiter, MI_NOOP);
1378 intel_ring_emit(waiter, MI_NOOP);
1379 }
1380 intel_ring_advance(waiter);
1381
1382 return 0;
1383 }
1384
1385 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1386 do { \
1387 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1388 PIPE_CONTROL_DEPTH_STALL); \
1389 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1390 intel_ring_emit(ring__, 0); \
1391 intel_ring_emit(ring__, 0); \
1392 } while (0)
1393
1394 static int
1395 pc_render_add_request(struct intel_engine_cs *ring)
1396 {
1397 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1398 int ret;
1399
1400 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1401 * incoherent with writes to memory, i.e. completely fubar,
1402 * so we need to use PIPE_NOTIFY instead.
1403 *
1404 * However, we also need to workaround the qword write
1405 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1406 * memory before requesting an interrupt.
1407 */
1408 ret = intel_ring_begin(ring, 32);
1409 if (ret)
1410 return ret;
1411
1412 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1413 PIPE_CONTROL_WRITE_FLUSH |
1414 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1415 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1416 intel_ring_emit(ring,
1417 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1418 intel_ring_emit(ring, 0);
1419 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1420 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1421 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1422 scratch_addr += 2 * CACHELINE_BYTES;
1423 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1424 scratch_addr += 2 * CACHELINE_BYTES;
1425 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1426 scratch_addr += 2 * CACHELINE_BYTES;
1427 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1428 scratch_addr += 2 * CACHELINE_BYTES;
1429 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1430
1431 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1432 PIPE_CONTROL_WRITE_FLUSH |
1433 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1434 PIPE_CONTROL_NOTIFY);
1435 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1436 intel_ring_emit(ring,
1437 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1438 intel_ring_emit(ring, 0);
1439 __intel_ring_advance(ring);
1440
1441 return 0;
1442 }
1443
1444 static u32
1445 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1446 {
1447 /* Workaround to force correct ordering between irq and seqno writes on
1448 * ivb (and maybe also on snb) by reading from a CS register (like
1449 * ACTHD) before reading the status page. */
1450 if (!lazy_coherency) {
1451 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1452 POSTING_READ(RING_ACTHD(ring->mmio_base));
1453 }
1454
1455 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1456 }
1457
1458 static u32
1459 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1460 {
1461 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1462 }
1463
1464 static void
1465 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1466 {
1467 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1468 }
1469
1470 static u32
1471 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1472 {
1473 return ring->scratch.cpu_page[0];
1474 }
1475
1476 static void
1477 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1478 {
1479 ring->scratch.cpu_page[0] = seqno;
1480 }
1481
1482 static bool
1483 gen5_ring_get_irq(struct intel_engine_cs *ring)
1484 {
1485 struct drm_device *dev = ring->dev;
1486 struct drm_i915_private *dev_priv = dev->dev_private;
1487 unsigned long flags;
1488
1489 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1490 return false;
1491
1492 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1493 if (ring->irq_refcount++ == 0)
1494 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1495 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1496
1497 return true;
1498 }
1499
1500 static void
1501 gen5_ring_put_irq(struct intel_engine_cs *ring)
1502 {
1503 struct drm_device *dev = ring->dev;
1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505 unsigned long flags;
1506
1507 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1508 if (--ring->irq_refcount == 0)
1509 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1510 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1511 }
1512
1513 static bool
1514 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1515 {
1516 struct drm_device *dev = ring->dev;
1517 struct drm_i915_private *dev_priv = dev->dev_private;
1518 unsigned long flags;
1519
1520 if (!intel_irqs_enabled(dev_priv))
1521 return false;
1522
1523 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1524 if (ring->irq_refcount++ == 0) {
1525 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1526 I915_WRITE(IMR, dev_priv->irq_mask);
1527 POSTING_READ(IMR);
1528 }
1529 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1530
1531 return true;
1532 }
1533
1534 static void
1535 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1536 {
1537 struct drm_device *dev = ring->dev;
1538 struct drm_i915_private *dev_priv = dev->dev_private;
1539 unsigned long flags;
1540
1541 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1542 if (--ring->irq_refcount == 0) {
1543 dev_priv->irq_mask |= ring->irq_enable_mask;
1544 I915_WRITE(IMR, dev_priv->irq_mask);
1545 POSTING_READ(IMR);
1546 }
1547 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1548 }
1549
1550 static bool
1551 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1552 {
1553 struct drm_device *dev = ring->dev;
1554 struct drm_i915_private *dev_priv = dev->dev_private;
1555 unsigned long flags;
1556
1557 if (!intel_irqs_enabled(dev_priv))
1558 return false;
1559
1560 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1561 if (ring->irq_refcount++ == 0) {
1562 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1563 I915_WRITE16(IMR, dev_priv->irq_mask);
1564 POSTING_READ16(IMR);
1565 }
1566 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1567
1568 return true;
1569 }
1570
1571 static void
1572 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1573 {
1574 struct drm_device *dev = ring->dev;
1575 struct drm_i915_private *dev_priv = dev->dev_private;
1576 unsigned long flags;
1577
1578 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1579 if (--ring->irq_refcount == 0) {
1580 dev_priv->irq_mask |= ring->irq_enable_mask;
1581 I915_WRITE16(IMR, dev_priv->irq_mask);
1582 POSTING_READ16(IMR);
1583 }
1584 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1585 }
1586
1587 static int
1588 bsd_ring_flush(struct intel_engine_cs *ring,
1589 u32 invalidate_domains,
1590 u32 flush_domains)
1591 {
1592 int ret;
1593
1594 ret = intel_ring_begin(ring, 2);
1595 if (ret)
1596 return ret;
1597
1598 intel_ring_emit(ring, MI_FLUSH);
1599 intel_ring_emit(ring, MI_NOOP);
1600 intel_ring_advance(ring);
1601 return 0;
1602 }
1603
1604 static int
1605 i9xx_add_request(struct intel_engine_cs *ring)
1606 {
1607 int ret;
1608
1609 ret = intel_ring_begin(ring, 4);
1610 if (ret)
1611 return ret;
1612
1613 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1614 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1615 intel_ring_emit(ring,
1616 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1617 intel_ring_emit(ring, MI_USER_INTERRUPT);
1618 __intel_ring_advance(ring);
1619
1620 return 0;
1621 }
1622
1623 static bool
1624 gen6_ring_get_irq(struct intel_engine_cs *ring)
1625 {
1626 struct drm_device *dev = ring->dev;
1627 struct drm_i915_private *dev_priv = dev->dev_private;
1628 unsigned long flags;
1629
1630 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1631 return false;
1632
1633 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1634 if (ring->irq_refcount++ == 0) {
1635 if (HAS_L3_DPF(dev) && ring->id == RCS)
1636 I915_WRITE_IMR(ring,
1637 ~(ring->irq_enable_mask |
1638 GT_PARITY_ERROR(dev)));
1639 else
1640 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1641 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1642 }
1643 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1644
1645 return true;
1646 }
1647
1648 static void
1649 gen6_ring_put_irq(struct intel_engine_cs *ring)
1650 {
1651 struct drm_device *dev = ring->dev;
1652 struct drm_i915_private *dev_priv = dev->dev_private;
1653 unsigned long flags;
1654
1655 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1656 if (--ring->irq_refcount == 0) {
1657 if (HAS_L3_DPF(dev) && ring->id == RCS)
1658 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1659 else
1660 I915_WRITE_IMR(ring, ~0);
1661 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1662 }
1663 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1664 }
1665
1666 static bool
1667 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1668 {
1669 struct drm_device *dev = ring->dev;
1670 struct drm_i915_private *dev_priv = dev->dev_private;
1671 unsigned long flags;
1672
1673 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1674 return false;
1675
1676 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1677 if (ring->irq_refcount++ == 0) {
1678 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1679 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1680 }
1681 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1682
1683 return true;
1684 }
1685
1686 static void
1687 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1688 {
1689 struct drm_device *dev = ring->dev;
1690 struct drm_i915_private *dev_priv = dev->dev_private;
1691 unsigned long flags;
1692
1693 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1694 if (--ring->irq_refcount == 0) {
1695 I915_WRITE_IMR(ring, ~0);
1696 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1697 }
1698 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1699 }
1700
1701 static bool
1702 gen8_ring_get_irq(struct intel_engine_cs *ring)
1703 {
1704 struct drm_device *dev = ring->dev;
1705 struct drm_i915_private *dev_priv = dev->dev_private;
1706 unsigned long flags;
1707
1708 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1709 return false;
1710
1711 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1712 if (ring->irq_refcount++ == 0) {
1713 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1714 I915_WRITE_IMR(ring,
1715 ~(ring->irq_enable_mask |
1716 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1717 } else {
1718 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1719 }
1720 POSTING_READ(RING_IMR(ring->mmio_base));
1721 }
1722 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1723
1724 return true;
1725 }
1726
1727 static void
1728 gen8_ring_put_irq(struct intel_engine_cs *ring)
1729 {
1730 struct drm_device *dev = ring->dev;
1731 struct drm_i915_private *dev_priv = dev->dev_private;
1732 unsigned long flags;
1733
1734 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1735 if (--ring->irq_refcount == 0) {
1736 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1737 I915_WRITE_IMR(ring,
1738 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1739 } else {
1740 I915_WRITE_IMR(ring, ~0);
1741 }
1742 POSTING_READ(RING_IMR(ring->mmio_base));
1743 }
1744 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1745 }
1746
1747 static int
1748 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1749 u64 offset, u32 length,
1750 unsigned dispatch_flags)
1751 {
1752 int ret;
1753
1754 ret = intel_ring_begin(ring, 2);
1755 if (ret)
1756 return ret;
1757
1758 intel_ring_emit(ring,
1759 MI_BATCH_BUFFER_START |
1760 MI_BATCH_GTT |
1761 (dispatch_flags & I915_DISPATCH_SECURE ?
1762 0 : MI_BATCH_NON_SECURE_I965));
1763 intel_ring_emit(ring, offset);
1764 intel_ring_advance(ring);
1765
1766 return 0;
1767 }
1768
1769 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1770 #define I830_BATCH_LIMIT (256*1024)
1771 #define I830_TLB_ENTRIES (2)
1772 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1773 static int
1774 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1775 u64 offset, u32 len,
1776 unsigned dispatch_flags)
1777 {
1778 u32 cs_offset = ring->scratch.gtt_offset;
1779 int ret;
1780
1781 ret = intel_ring_begin(ring, 6);
1782 if (ret)
1783 return ret;
1784
1785 /* Evict the invalid PTE TLBs */
1786 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1787 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1788 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1789 intel_ring_emit(ring, cs_offset);
1790 intel_ring_emit(ring, 0xdeadbeef);
1791 intel_ring_emit(ring, MI_NOOP);
1792 intel_ring_advance(ring);
1793
1794 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1795 if (len > I830_BATCH_LIMIT)
1796 return -ENOSPC;
1797
1798 ret = intel_ring_begin(ring, 6 + 2);
1799 if (ret)
1800 return ret;
1801
1802 /* Blit the batch (which has now all relocs applied) to the
1803 * stable batch scratch bo area (so that the CS never
1804 * stumbles over its tlb invalidation bug) ...
1805 */
1806 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1807 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1808 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1809 intel_ring_emit(ring, cs_offset);
1810 intel_ring_emit(ring, 4096);
1811 intel_ring_emit(ring, offset);
1812
1813 intel_ring_emit(ring, MI_FLUSH);
1814 intel_ring_emit(ring, MI_NOOP);
1815 intel_ring_advance(ring);
1816
1817 /* ... and execute it. */
1818 offset = cs_offset;
1819 }
1820
1821 ret = intel_ring_begin(ring, 4);
1822 if (ret)
1823 return ret;
1824
1825 intel_ring_emit(ring, MI_BATCH_BUFFER);
1826 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1827 0 : MI_BATCH_NON_SECURE));
1828 intel_ring_emit(ring, offset + len - 8);
1829 intel_ring_emit(ring, MI_NOOP);
1830 intel_ring_advance(ring);
1831
1832 return 0;
1833 }
1834
1835 static int
1836 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1837 u64 offset, u32 len,
1838 unsigned dispatch_flags)
1839 {
1840 int ret;
1841
1842 ret = intel_ring_begin(ring, 2);
1843 if (ret)
1844 return ret;
1845
1846 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1847 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1848 0 : MI_BATCH_NON_SECURE));
1849 intel_ring_advance(ring);
1850
1851 return 0;
1852 }
1853
1854 static void cleanup_status_page(struct intel_engine_cs *ring)
1855 {
1856 struct drm_i915_gem_object *obj;
1857
1858 obj = ring->status_page.obj;
1859 if (obj == NULL)
1860 return;
1861
1862 kunmap(sg_page(obj->pages->sgl));
1863 i915_gem_object_ggtt_unpin(obj);
1864 drm_gem_object_unreference(&obj->base);
1865 ring->status_page.obj = NULL;
1866 }
1867
1868 static int init_status_page(struct intel_engine_cs *ring)
1869 {
1870 struct drm_i915_gem_object *obj;
1871
1872 if ((obj = ring->status_page.obj) == NULL) {
1873 unsigned flags;
1874 int ret;
1875
1876 obj = i915_gem_alloc_object(ring->dev, 4096);
1877 if (obj == NULL) {
1878 DRM_ERROR("Failed to allocate status page\n");
1879 return -ENOMEM;
1880 }
1881
1882 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1883 if (ret)
1884 goto err_unref;
1885
1886 flags = 0;
1887 if (!HAS_LLC(ring->dev))
1888 /* On g33, we cannot place HWS above 256MiB, so
1889 * restrict its pinning to the low mappable arena.
1890 * Though this restriction is not documented for
1891 * gen4, gen5, or byt, they also behave similarly
1892 * and hang if the HWS is placed at the top of the
1893 * GTT. To generalise, it appears that all !llc
1894 * platforms have issues with us placing the HWS
1895 * above the mappable region (even though we never
1896 * actualy map it).
1897 */
1898 flags |= PIN_MAPPABLE;
1899 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1900 if (ret) {
1901 err_unref:
1902 drm_gem_object_unreference(&obj->base);
1903 return ret;
1904 }
1905
1906 ring->status_page.obj = obj;
1907 }
1908
1909 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1910 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1911 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1912
1913 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1914 ring->name, ring->status_page.gfx_addr);
1915
1916 return 0;
1917 }
1918
1919 static int init_phys_status_page(struct intel_engine_cs *ring)
1920 {
1921 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1922
1923 if (!dev_priv->status_page_dmah) {
1924 dev_priv->status_page_dmah =
1925 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1926 if (!dev_priv->status_page_dmah)
1927 return -ENOMEM;
1928 }
1929
1930 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1931 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1932
1933 return 0;
1934 }
1935
1936 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1937 {
1938 iounmap(ringbuf->virtual_start);
1939 ringbuf->virtual_start = NULL;
1940 i915_gem_object_ggtt_unpin(ringbuf->obj);
1941 }
1942
1943 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1944 struct intel_ringbuffer *ringbuf)
1945 {
1946 struct drm_i915_private *dev_priv = to_i915(dev);
1947 struct drm_i915_gem_object *obj = ringbuf->obj;
1948 int ret;
1949
1950 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1951 if (ret)
1952 return ret;
1953
1954 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1955 if (ret) {
1956 i915_gem_object_ggtt_unpin(obj);
1957 return ret;
1958 }
1959
1960 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1961 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1962 if (ringbuf->virtual_start == NULL) {
1963 i915_gem_object_ggtt_unpin(obj);
1964 return -EINVAL;
1965 }
1966
1967 return 0;
1968 }
1969
1970 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1971 {
1972 drm_gem_object_unreference(&ringbuf->obj->base);
1973 ringbuf->obj = NULL;
1974 }
1975
1976 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1977 struct intel_ringbuffer *ringbuf)
1978 {
1979 struct drm_i915_gem_object *obj;
1980
1981 obj = NULL;
1982 if (!HAS_LLC(dev))
1983 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1984 if (obj == NULL)
1985 obj = i915_gem_alloc_object(dev, ringbuf->size);
1986 if (obj == NULL)
1987 return -ENOMEM;
1988
1989 /* mark ring buffers as read-only from GPU side by default */
1990 obj->gt_ro = 1;
1991
1992 ringbuf->obj = obj;
1993
1994 return 0;
1995 }
1996
1997 static int intel_init_ring_buffer(struct drm_device *dev,
1998 struct intel_engine_cs *ring)
1999 {
2000 struct intel_ringbuffer *ringbuf;
2001 int ret;
2002
2003 WARN_ON(ring->buffer);
2004
2005 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2006 if (!ringbuf)
2007 return -ENOMEM;
2008 ring->buffer = ringbuf;
2009
2010 ring->dev = dev;
2011 INIT_LIST_HEAD(&ring->active_list);
2012 INIT_LIST_HEAD(&ring->request_list);
2013 INIT_LIST_HEAD(&ring->execlist_queue);
2014 i915_gem_batch_pool_init(dev, &ring->batch_pool);
2015 ringbuf->size = 32 * PAGE_SIZE;
2016 ringbuf->ring = ring;
2017 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2018
2019 init_waitqueue_head(&ring->irq_queue);
2020
2021 if (I915_NEED_GFX_HWS(dev)) {
2022 ret = init_status_page(ring);
2023 if (ret)
2024 goto error;
2025 } else {
2026 BUG_ON(ring->id != RCS);
2027 ret = init_phys_status_page(ring);
2028 if (ret)
2029 goto error;
2030 }
2031
2032 WARN_ON(ringbuf->obj);
2033
2034 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2035 if (ret) {
2036 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2037 ring->name, ret);
2038 goto error;
2039 }
2040
2041 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2042 if (ret) {
2043 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2044 ring->name, ret);
2045 intel_destroy_ringbuffer_obj(ringbuf);
2046 goto error;
2047 }
2048
2049 /* Workaround an erratum on the i830 which causes a hang if
2050 * the TAIL pointer points to within the last 2 cachelines
2051 * of the buffer.
2052 */
2053 ringbuf->effective_size = ringbuf->size;
2054 if (IS_I830(dev) || IS_845G(dev))
2055 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2056
2057 ret = i915_cmd_parser_init_ring(ring);
2058 if (ret)
2059 goto error;
2060
2061 return 0;
2062
2063 error:
2064 kfree(ringbuf);
2065 ring->buffer = NULL;
2066 return ret;
2067 }
2068
2069 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2070 {
2071 struct drm_i915_private *dev_priv;
2072 struct intel_ringbuffer *ringbuf;
2073
2074 if (!intel_ring_initialized(ring))
2075 return;
2076
2077 dev_priv = to_i915(ring->dev);
2078 ringbuf = ring->buffer;
2079
2080 intel_stop_ring_buffer(ring);
2081 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2082
2083 intel_unpin_ringbuffer_obj(ringbuf);
2084 intel_destroy_ringbuffer_obj(ringbuf);
2085 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2086
2087 if (ring->cleanup)
2088 ring->cleanup(ring);
2089
2090 cleanup_status_page(ring);
2091
2092 i915_cmd_parser_fini_ring(ring);
2093 i915_gem_batch_pool_fini(&ring->batch_pool);
2094
2095 kfree(ringbuf);
2096 ring->buffer = NULL;
2097 }
2098
2099 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2100 {
2101 struct intel_ringbuffer *ringbuf = ring->buffer;
2102 struct drm_i915_gem_request *request;
2103 unsigned space;
2104 int ret;
2105
2106 if (intel_ring_space(ringbuf) >= n)
2107 return 0;
2108
2109 list_for_each_entry(request, &ring->request_list, list) {
2110 space = __intel_ring_space(request->postfix, ringbuf->tail,
2111 ringbuf->size);
2112 if (space >= n)
2113 break;
2114 }
2115
2116 if (WARN_ON(&request->list == &ring->request_list))
2117 return -ENOSPC;
2118
2119 ret = i915_wait_request(request);
2120 if (ret)
2121 return ret;
2122
2123 ringbuf->space = space;
2124 return 0;
2125 }
2126
2127 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
2128 {
2129 uint32_t __iomem *virt;
2130 struct intel_ringbuffer *ringbuf = ring->buffer;
2131 int rem = ringbuf->size - ringbuf->tail;
2132
2133 if (ringbuf->space < rem) {
2134 int ret = ring_wait_for_space(ring, rem);
2135 if (ret)
2136 return ret;
2137 }
2138
2139 virt = ringbuf->virtual_start + ringbuf->tail;
2140 rem /= 4;
2141 while (rem--)
2142 iowrite32(MI_NOOP, virt++);
2143
2144 ringbuf->tail = 0;
2145 intel_ring_update_space(ringbuf);
2146
2147 return 0;
2148 }
2149
2150 int intel_ring_idle(struct intel_engine_cs *ring)
2151 {
2152 struct drm_i915_gem_request *req;
2153 int ret;
2154
2155 /* We need to add any requests required to flush the objects and ring */
2156 if (ring->outstanding_lazy_request) {
2157 ret = i915_add_request(ring);
2158 if (ret)
2159 return ret;
2160 }
2161
2162 /* Wait upon the last request to be completed */
2163 if (list_empty(&ring->request_list))
2164 return 0;
2165
2166 req = list_entry(ring->request_list.prev,
2167 struct drm_i915_gem_request,
2168 list);
2169
2170 /* Make sure we do not trigger any retires */
2171 return __i915_wait_request(req,
2172 atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2173 to_i915(ring->dev)->mm.interruptible,
2174 NULL, NULL);
2175 }
2176
2177 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2178 {
2179 request->ringbuf = request->ring->buffer;
2180 return 0;
2181 }
2182
2183 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2184 int bytes)
2185 {
2186 struct intel_ringbuffer *ringbuf = ring->buffer;
2187 int ret;
2188
2189 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2190 ret = intel_wrap_ring_buffer(ring);
2191 if (unlikely(ret))
2192 return ret;
2193 }
2194
2195 if (unlikely(ringbuf->space < bytes)) {
2196 ret = ring_wait_for_space(ring, bytes);
2197 if (unlikely(ret))
2198 return ret;
2199 }
2200
2201 return 0;
2202 }
2203
2204 int intel_ring_begin(struct intel_engine_cs *ring,
2205 int num_dwords)
2206 {
2207 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2208 int ret;
2209
2210 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2211 dev_priv->mm.interruptible);
2212 if (ret)
2213 return ret;
2214
2215 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2216 if (ret)
2217 return ret;
2218
2219 /* Preallocate the olr before touching the ring */
2220 ret = i915_gem_request_alloc(ring, ring->default_context);
2221 if (ret)
2222 return ret;
2223
2224 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2225 return 0;
2226 }
2227
2228 /* Align the ring tail to a cacheline boundary */
2229 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2230 {
2231 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2232 int ret;
2233
2234 if (num_dwords == 0)
2235 return 0;
2236
2237 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2238 ret = intel_ring_begin(ring, num_dwords);
2239 if (ret)
2240 return ret;
2241
2242 while (num_dwords--)
2243 intel_ring_emit(ring, MI_NOOP);
2244
2245 intel_ring_advance(ring);
2246
2247 return 0;
2248 }
2249
2250 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2251 {
2252 struct drm_device *dev = ring->dev;
2253 struct drm_i915_private *dev_priv = dev->dev_private;
2254
2255 BUG_ON(ring->outstanding_lazy_request);
2256
2257 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2258 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2259 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2260 if (HAS_VEBOX(dev))
2261 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2262 }
2263
2264 ring->set_seqno(ring, seqno);
2265 ring->hangcheck.seqno = seqno;
2266 }
2267
2268 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2269 u32 value)
2270 {
2271 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2272
2273 /* Every tail move must follow the sequence below */
2274
2275 /* Disable notification that the ring is IDLE. The GT
2276 * will then assume that it is busy and bring it out of rc6.
2277 */
2278 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2279 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2280
2281 /* Clear the context id. Here be magic! */
2282 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2283
2284 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2285 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2286 GEN6_BSD_SLEEP_INDICATOR) == 0,
2287 50))
2288 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2289
2290 /* Now that the ring is fully powered up, update the tail */
2291 I915_WRITE_TAIL(ring, value);
2292 POSTING_READ(RING_TAIL(ring->mmio_base));
2293
2294 /* Let the ring send IDLE messages to the GT again,
2295 * and so let it sleep to conserve power when idle.
2296 */
2297 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2298 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2299 }
2300
2301 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2302 u32 invalidate, u32 flush)
2303 {
2304 uint32_t cmd;
2305 int ret;
2306
2307 ret = intel_ring_begin(ring, 4);
2308 if (ret)
2309 return ret;
2310
2311 cmd = MI_FLUSH_DW;
2312 if (INTEL_INFO(ring->dev)->gen >= 8)
2313 cmd += 1;
2314
2315 /* We always require a command barrier so that subsequent
2316 * commands, such as breadcrumb interrupts, are strictly ordered
2317 * wrt the contents of the write cache being flushed to memory
2318 * (and thus being coherent from the CPU).
2319 */
2320 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2321
2322 /*
2323 * Bspec vol 1c.5 - video engine command streamer:
2324 * "If ENABLED, all TLBs will be invalidated once the flush
2325 * operation is complete. This bit is only valid when the
2326 * Post-Sync Operation field is a value of 1h or 3h."
2327 */
2328 if (invalidate & I915_GEM_GPU_DOMAINS)
2329 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2330
2331 intel_ring_emit(ring, cmd);
2332 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2333 if (INTEL_INFO(ring->dev)->gen >= 8) {
2334 intel_ring_emit(ring, 0); /* upper addr */
2335 intel_ring_emit(ring, 0); /* value */
2336 } else {
2337 intel_ring_emit(ring, 0);
2338 intel_ring_emit(ring, MI_NOOP);
2339 }
2340 intel_ring_advance(ring);
2341 return 0;
2342 }
2343
2344 static int
2345 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2346 u64 offset, u32 len,
2347 unsigned dispatch_flags)
2348 {
2349 bool ppgtt = USES_PPGTT(ring->dev) &&
2350 !(dispatch_flags & I915_DISPATCH_SECURE);
2351 int ret;
2352
2353 ret = intel_ring_begin(ring, 4);
2354 if (ret)
2355 return ret;
2356
2357 /* FIXME(BDW): Address space and security selectors. */
2358 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2359 intel_ring_emit(ring, lower_32_bits(offset));
2360 intel_ring_emit(ring, upper_32_bits(offset));
2361 intel_ring_emit(ring, MI_NOOP);
2362 intel_ring_advance(ring);
2363
2364 return 0;
2365 }
2366
2367 static int
2368 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2369 u64 offset, u32 len,
2370 unsigned dispatch_flags)
2371 {
2372 int ret;
2373
2374 ret = intel_ring_begin(ring, 2);
2375 if (ret)
2376 return ret;
2377
2378 intel_ring_emit(ring,
2379 MI_BATCH_BUFFER_START |
2380 (dispatch_flags & I915_DISPATCH_SECURE ?
2381 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2382 /* bit0-7 is the length on GEN6+ */
2383 intel_ring_emit(ring, offset);
2384 intel_ring_advance(ring);
2385
2386 return 0;
2387 }
2388
2389 static int
2390 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2391 u64 offset, u32 len,
2392 unsigned dispatch_flags)
2393 {
2394 int ret;
2395
2396 ret = intel_ring_begin(ring, 2);
2397 if (ret)
2398 return ret;
2399
2400 intel_ring_emit(ring,
2401 MI_BATCH_BUFFER_START |
2402 (dispatch_flags & I915_DISPATCH_SECURE ?
2403 0 : MI_BATCH_NON_SECURE_I965));
2404 /* bit0-7 is the length on GEN6+ */
2405 intel_ring_emit(ring, offset);
2406 intel_ring_advance(ring);
2407
2408 return 0;
2409 }
2410
2411 /* Blitter support (SandyBridge+) */
2412
2413 static int gen6_ring_flush(struct intel_engine_cs *ring,
2414 u32 invalidate, u32 flush)
2415 {
2416 struct drm_device *dev = ring->dev;
2417 uint32_t cmd;
2418 int ret;
2419
2420 ret = intel_ring_begin(ring, 4);
2421 if (ret)
2422 return ret;
2423
2424 cmd = MI_FLUSH_DW;
2425 if (INTEL_INFO(dev)->gen >= 8)
2426 cmd += 1;
2427
2428 /* We always require a command barrier so that subsequent
2429 * commands, such as breadcrumb interrupts, are strictly ordered
2430 * wrt the contents of the write cache being flushed to memory
2431 * (and thus being coherent from the CPU).
2432 */
2433 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2434
2435 /*
2436 * Bspec vol 1c.3 - blitter engine command streamer:
2437 * "If ENABLED, all TLBs will be invalidated once the flush
2438 * operation is complete. This bit is only valid when the
2439 * Post-Sync Operation field is a value of 1h or 3h."
2440 */
2441 if (invalidate & I915_GEM_DOMAIN_RENDER)
2442 cmd |= MI_INVALIDATE_TLB;
2443 intel_ring_emit(ring, cmd);
2444 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2445 if (INTEL_INFO(dev)->gen >= 8) {
2446 intel_ring_emit(ring, 0); /* upper addr */
2447 intel_ring_emit(ring, 0); /* value */
2448 } else {
2449 intel_ring_emit(ring, 0);
2450 intel_ring_emit(ring, MI_NOOP);
2451 }
2452 intel_ring_advance(ring);
2453
2454 return 0;
2455 }
2456
2457 int intel_init_render_ring_buffer(struct drm_device *dev)
2458 {
2459 struct drm_i915_private *dev_priv = dev->dev_private;
2460 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2461 struct drm_i915_gem_object *obj;
2462 int ret;
2463
2464 ring->name = "render ring";
2465 ring->id = RCS;
2466 ring->mmio_base = RENDER_RING_BASE;
2467
2468 if (INTEL_INFO(dev)->gen >= 8) {
2469 if (i915_semaphore_is_enabled(dev)) {
2470 obj = i915_gem_alloc_object(dev, 4096);
2471 if (obj == NULL) {
2472 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2473 i915.semaphores = 0;
2474 } else {
2475 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2476 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2477 if (ret != 0) {
2478 drm_gem_object_unreference(&obj->base);
2479 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2480 i915.semaphores = 0;
2481 } else
2482 dev_priv->semaphore_obj = obj;
2483 }
2484 }
2485
2486 ring->init_context = intel_rcs_ctx_init;
2487 ring->add_request = gen6_add_request;
2488 ring->flush = gen8_render_ring_flush;
2489 ring->irq_get = gen8_ring_get_irq;
2490 ring->irq_put = gen8_ring_put_irq;
2491 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2492 ring->get_seqno = gen6_ring_get_seqno;
2493 ring->set_seqno = ring_set_seqno;
2494 if (i915_semaphore_is_enabled(dev)) {
2495 WARN_ON(!dev_priv->semaphore_obj);
2496 ring->semaphore.sync_to = gen8_ring_sync;
2497 ring->semaphore.signal = gen8_rcs_signal;
2498 GEN8_RING_SEMAPHORE_INIT;
2499 }
2500 } else if (INTEL_INFO(dev)->gen >= 6) {
2501 ring->add_request = gen6_add_request;
2502 ring->flush = gen7_render_ring_flush;
2503 if (INTEL_INFO(dev)->gen == 6)
2504 ring->flush = gen6_render_ring_flush;
2505 ring->irq_get = gen6_ring_get_irq;
2506 ring->irq_put = gen6_ring_put_irq;
2507 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2508 ring->get_seqno = gen6_ring_get_seqno;
2509 ring->set_seqno = ring_set_seqno;
2510 if (i915_semaphore_is_enabled(dev)) {
2511 ring->semaphore.sync_to = gen6_ring_sync;
2512 ring->semaphore.signal = gen6_signal;
2513 /*
2514 * The current semaphore is only applied on pre-gen8
2515 * platform. And there is no VCS2 ring on the pre-gen8
2516 * platform. So the semaphore between RCS and VCS2 is
2517 * initialized as INVALID. Gen8 will initialize the
2518 * sema between VCS2 and RCS later.
2519 */
2520 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2521 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2522 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2523 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2524 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2525 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2526 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2527 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2528 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2529 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2530 }
2531 } else if (IS_GEN5(dev)) {
2532 ring->add_request = pc_render_add_request;
2533 ring->flush = gen4_render_ring_flush;
2534 ring->get_seqno = pc_render_get_seqno;
2535 ring->set_seqno = pc_render_set_seqno;
2536 ring->irq_get = gen5_ring_get_irq;
2537 ring->irq_put = gen5_ring_put_irq;
2538 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2539 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2540 } else {
2541 ring->add_request = i9xx_add_request;
2542 if (INTEL_INFO(dev)->gen < 4)
2543 ring->flush = gen2_render_ring_flush;
2544 else
2545 ring->flush = gen4_render_ring_flush;
2546 ring->get_seqno = ring_get_seqno;
2547 ring->set_seqno = ring_set_seqno;
2548 if (IS_GEN2(dev)) {
2549 ring->irq_get = i8xx_ring_get_irq;
2550 ring->irq_put = i8xx_ring_put_irq;
2551 } else {
2552 ring->irq_get = i9xx_ring_get_irq;
2553 ring->irq_put = i9xx_ring_put_irq;
2554 }
2555 ring->irq_enable_mask = I915_USER_INTERRUPT;
2556 }
2557 ring->write_tail = ring_write_tail;
2558
2559 if (IS_HASWELL(dev))
2560 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2561 else if (IS_GEN8(dev))
2562 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2563 else if (INTEL_INFO(dev)->gen >= 6)
2564 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2565 else if (INTEL_INFO(dev)->gen >= 4)
2566 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2567 else if (IS_I830(dev) || IS_845G(dev))
2568 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2569 else
2570 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2571 ring->init_hw = init_render_ring;
2572 ring->cleanup = render_ring_cleanup;
2573
2574 /* Workaround batchbuffer to combat CS tlb bug. */
2575 if (HAS_BROKEN_CS_TLB(dev)) {
2576 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2577 if (obj == NULL) {
2578 DRM_ERROR("Failed to allocate batch bo\n");
2579 return -ENOMEM;
2580 }
2581
2582 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2583 if (ret != 0) {
2584 drm_gem_object_unreference(&obj->base);
2585 DRM_ERROR("Failed to ping batch bo\n");
2586 return ret;
2587 }
2588
2589 ring->scratch.obj = obj;
2590 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2591 }
2592
2593 ret = intel_init_ring_buffer(dev, ring);
2594 if (ret)
2595 return ret;
2596
2597 if (INTEL_INFO(dev)->gen >= 5) {
2598 ret = intel_init_pipe_control(ring);
2599 if (ret)
2600 return ret;
2601 }
2602
2603 return 0;
2604 }
2605
2606 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2607 {
2608 struct drm_i915_private *dev_priv = dev->dev_private;
2609 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2610
2611 ring->name = "bsd ring";
2612 ring->id = VCS;
2613
2614 ring->write_tail = ring_write_tail;
2615 if (INTEL_INFO(dev)->gen >= 6) {
2616 ring->mmio_base = GEN6_BSD_RING_BASE;
2617 /* gen6 bsd needs a special wa for tail updates */
2618 if (IS_GEN6(dev))
2619 ring->write_tail = gen6_bsd_ring_write_tail;
2620 ring->flush = gen6_bsd_ring_flush;
2621 ring->add_request = gen6_add_request;
2622 ring->get_seqno = gen6_ring_get_seqno;
2623 ring->set_seqno = ring_set_seqno;
2624 if (INTEL_INFO(dev)->gen >= 8) {
2625 ring->irq_enable_mask =
2626 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2627 ring->irq_get = gen8_ring_get_irq;
2628 ring->irq_put = gen8_ring_put_irq;
2629 ring->dispatch_execbuffer =
2630 gen8_ring_dispatch_execbuffer;
2631 if (i915_semaphore_is_enabled(dev)) {
2632 ring->semaphore.sync_to = gen8_ring_sync;
2633 ring->semaphore.signal = gen8_xcs_signal;
2634 GEN8_RING_SEMAPHORE_INIT;
2635 }
2636 } else {
2637 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2638 ring->irq_get = gen6_ring_get_irq;
2639 ring->irq_put = gen6_ring_put_irq;
2640 ring->dispatch_execbuffer =
2641 gen6_ring_dispatch_execbuffer;
2642 if (i915_semaphore_is_enabled(dev)) {
2643 ring->semaphore.sync_to = gen6_ring_sync;
2644 ring->semaphore.signal = gen6_signal;
2645 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2646 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2647 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2648 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2649 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2650 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2651 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2652 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2653 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2654 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2655 }
2656 }
2657 } else {
2658 ring->mmio_base = BSD_RING_BASE;
2659 ring->flush = bsd_ring_flush;
2660 ring->add_request = i9xx_add_request;
2661 ring->get_seqno = ring_get_seqno;
2662 ring->set_seqno = ring_set_seqno;
2663 if (IS_GEN5(dev)) {
2664 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2665 ring->irq_get = gen5_ring_get_irq;
2666 ring->irq_put = gen5_ring_put_irq;
2667 } else {
2668 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2669 ring->irq_get = i9xx_ring_get_irq;
2670 ring->irq_put = i9xx_ring_put_irq;
2671 }
2672 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2673 }
2674 ring->init_hw = init_ring_common;
2675
2676 return intel_init_ring_buffer(dev, ring);
2677 }
2678
2679 /**
2680 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2681 */
2682 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2683 {
2684 struct drm_i915_private *dev_priv = dev->dev_private;
2685 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2686
2687 ring->name = "bsd2 ring";
2688 ring->id = VCS2;
2689
2690 ring->write_tail = ring_write_tail;
2691 ring->mmio_base = GEN8_BSD2_RING_BASE;
2692 ring->flush = gen6_bsd_ring_flush;
2693 ring->add_request = gen6_add_request;
2694 ring->get_seqno = gen6_ring_get_seqno;
2695 ring->set_seqno = ring_set_seqno;
2696 ring->irq_enable_mask =
2697 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2698 ring->irq_get = gen8_ring_get_irq;
2699 ring->irq_put = gen8_ring_put_irq;
2700 ring->dispatch_execbuffer =
2701 gen8_ring_dispatch_execbuffer;
2702 if (i915_semaphore_is_enabled(dev)) {
2703 ring->semaphore.sync_to = gen8_ring_sync;
2704 ring->semaphore.signal = gen8_xcs_signal;
2705 GEN8_RING_SEMAPHORE_INIT;
2706 }
2707 ring->init_hw = init_ring_common;
2708
2709 return intel_init_ring_buffer(dev, ring);
2710 }
2711
2712 int intel_init_blt_ring_buffer(struct drm_device *dev)
2713 {
2714 struct drm_i915_private *dev_priv = dev->dev_private;
2715 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2716
2717 ring->name = "blitter ring";
2718 ring->id = BCS;
2719
2720 ring->mmio_base = BLT_RING_BASE;
2721 ring->write_tail = ring_write_tail;
2722 ring->flush = gen6_ring_flush;
2723 ring->add_request = gen6_add_request;
2724 ring->get_seqno = gen6_ring_get_seqno;
2725 ring->set_seqno = ring_set_seqno;
2726 if (INTEL_INFO(dev)->gen >= 8) {
2727 ring->irq_enable_mask =
2728 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2729 ring->irq_get = gen8_ring_get_irq;
2730 ring->irq_put = gen8_ring_put_irq;
2731 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2732 if (i915_semaphore_is_enabled(dev)) {
2733 ring->semaphore.sync_to = gen8_ring_sync;
2734 ring->semaphore.signal = gen8_xcs_signal;
2735 GEN8_RING_SEMAPHORE_INIT;
2736 }
2737 } else {
2738 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2739 ring->irq_get = gen6_ring_get_irq;
2740 ring->irq_put = gen6_ring_put_irq;
2741 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2742 if (i915_semaphore_is_enabled(dev)) {
2743 ring->semaphore.signal = gen6_signal;
2744 ring->semaphore.sync_to = gen6_ring_sync;
2745 /*
2746 * The current semaphore is only applied on pre-gen8
2747 * platform. And there is no VCS2 ring on the pre-gen8
2748 * platform. So the semaphore between BCS and VCS2 is
2749 * initialized as INVALID. Gen8 will initialize the
2750 * sema between BCS and VCS2 later.
2751 */
2752 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2753 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2754 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2755 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2756 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2757 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2758 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2759 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2760 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2761 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2762 }
2763 }
2764 ring->init_hw = init_ring_common;
2765
2766 return intel_init_ring_buffer(dev, ring);
2767 }
2768
2769 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2770 {
2771 struct drm_i915_private *dev_priv = dev->dev_private;
2772 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2773
2774 ring->name = "video enhancement ring";
2775 ring->id = VECS;
2776
2777 ring->mmio_base = VEBOX_RING_BASE;
2778 ring->write_tail = ring_write_tail;
2779 ring->flush = gen6_ring_flush;
2780 ring->add_request = gen6_add_request;
2781 ring->get_seqno = gen6_ring_get_seqno;
2782 ring->set_seqno = ring_set_seqno;
2783
2784 if (INTEL_INFO(dev)->gen >= 8) {
2785 ring->irq_enable_mask =
2786 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2787 ring->irq_get = gen8_ring_get_irq;
2788 ring->irq_put = gen8_ring_put_irq;
2789 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2790 if (i915_semaphore_is_enabled(dev)) {
2791 ring->semaphore.sync_to = gen8_ring_sync;
2792 ring->semaphore.signal = gen8_xcs_signal;
2793 GEN8_RING_SEMAPHORE_INIT;
2794 }
2795 } else {
2796 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2797 ring->irq_get = hsw_vebox_get_irq;
2798 ring->irq_put = hsw_vebox_put_irq;
2799 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2800 if (i915_semaphore_is_enabled(dev)) {
2801 ring->semaphore.sync_to = gen6_ring_sync;
2802 ring->semaphore.signal = gen6_signal;
2803 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2804 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2805 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2806 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2807 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2808 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2809 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2810 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2811 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2812 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2813 }
2814 }
2815 ring->init_hw = init_ring_common;
2816
2817 return intel_init_ring_buffer(dev, ring);
2818 }
2819
2820 int
2821 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2822 {
2823 int ret;
2824
2825 if (!ring->gpu_caches_dirty)
2826 return 0;
2827
2828 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2829 if (ret)
2830 return ret;
2831
2832 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2833
2834 ring->gpu_caches_dirty = false;
2835 return 0;
2836 }
2837
2838 int
2839 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2840 {
2841 uint32_t flush_domains;
2842 int ret;
2843
2844 flush_domains = 0;
2845 if (ring->gpu_caches_dirty)
2846 flush_domains = I915_GEM_GPU_DOMAINS;
2847
2848 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2849 if (ret)
2850 return ret;
2851
2852 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2853
2854 ring->gpu_caches_dirty = false;
2855 return 0;
2856 }
2857
2858 void
2859 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2860 {
2861 int ret;
2862
2863 if (!intel_ring_initialized(ring))
2864 return;
2865
2866 ret = intel_ring_idle(ring);
2867 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2868 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2869 ring->name, ret);
2870
2871 stop_ring(ring);
2872 }
This page took 0.103492 seconds and 6 git commands to generate.