Merge remote-tracking branch 'airlied/drm-next' into HEAD
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 static inline int ring_space(struct intel_ring_buffer *ring)
37 {
38 int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
39 if (space < 0)
40 space += ring->size;
41 return space;
42 }
43
44 void __intel_ring_advance(struct intel_ring_buffer *ring)
45 {
46 struct drm_i915_private *dev_priv = ring->dev->dev_private;
47
48 ring->tail &= ring->size - 1;
49 if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
50 return;
51 ring->write_tail(ring, ring->tail);
52 }
53
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56 u32 invalidate_domains,
57 u32 flush_domains)
58 {
59 u32 cmd;
60 int ret;
61
62 cmd = MI_FLUSH;
63 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64 cmd |= MI_NO_WRITE_FLUSH;
65
66 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67 cmd |= MI_READ_FLUSH;
68
69 ret = intel_ring_begin(ring, 2);
70 if (ret)
71 return ret;
72
73 intel_ring_emit(ring, cmd);
74 intel_ring_emit(ring, MI_NOOP);
75 intel_ring_advance(ring);
76
77 return 0;
78 }
79
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82 u32 invalidate_domains,
83 u32 flush_domains)
84 {
85 struct drm_device *dev = ring->dev;
86 u32 cmd;
87 int ret;
88
89 /*
90 * read/write caches:
91 *
92 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
94 * also flushed at 2d versus 3d pipeline switches.
95 *
96 * read-only caches:
97 *
98 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99 * MI_READ_FLUSH is set, and is always flushed on 965.
100 *
101 * I915_GEM_DOMAIN_COMMAND may not exist?
102 *
103 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104 * invalidated when MI_EXE_FLUSH is set.
105 *
106 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107 * invalidated with every MI_FLUSH.
108 *
109 * TLBs:
110 *
111 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114 * are flushed at any MI_FLUSH.
115 */
116
117 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119 cmd &= ~MI_NO_WRITE_FLUSH;
120 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121 cmd |= MI_EXE_FLUSH;
122
123 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124 (IS_G4X(dev) || IS_GEN5(dev)))
125 cmd |= MI_INVALIDATE_ISP;
126
127 ret = intel_ring_begin(ring, 2);
128 if (ret)
129 return ret;
130
131 intel_ring_emit(ring, cmd);
132 intel_ring_emit(ring, MI_NOOP);
133 intel_ring_advance(ring);
134
135 return 0;
136 }
137
138 /**
139 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140 * implementing two workarounds on gen6. From section 1.4.7.1
141 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142 *
143 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144 * produced by non-pipelined state commands), software needs to first
145 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146 * 0.
147 *
148 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150 *
151 * And the workaround for these two requires this workaround first:
152 *
153 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154 * BEFORE the pipe-control with a post-sync op and no write-cache
155 * flushes.
156 *
157 * And this last workaround is tricky because of the requirements on
158 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159 * volume 2 part 1:
160 *
161 * "1 of the following must also be set:
162 * - Render Target Cache Flush Enable ([12] of DW1)
163 * - Depth Cache Flush Enable ([0] of DW1)
164 * - Stall at Pixel Scoreboard ([1] of DW1)
165 * - Depth Stall ([13] of DW1)
166 * - Post-Sync Operation ([13] of DW1)
167 * - Notify Enable ([8] of DW1)"
168 *
169 * The cache flushes require the workaround flush that triggered this
170 * one, so we can't use it. Depth stall would trigger the same.
171 * Post-sync nonzero is what triggered this second workaround, so we
172 * can't use that one either. Notify enable is IRQs, which aren't
173 * really our business. That leaves only stall at scoreboard.
174 */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178 u32 scratch_addr = ring->scratch.gtt_offset + 128;
179 int ret;
180
181
182 ret = intel_ring_begin(ring, 6);
183 if (ret)
184 return ret;
185
186 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
187 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188 PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
190 intel_ring_emit(ring, 0); /* low dword */
191 intel_ring_emit(ring, 0); /* high dword */
192 intel_ring_emit(ring, MI_NOOP);
193 intel_ring_advance(ring);
194
195 ret = intel_ring_begin(ring, 6);
196 if (ret)
197 return ret;
198
199 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
200 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
201 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
202 intel_ring_emit(ring, 0);
203 intel_ring_emit(ring, 0);
204 intel_ring_emit(ring, MI_NOOP);
205 intel_ring_advance(ring);
206
207 return 0;
208 }
209
210 static int
211 gen6_render_ring_flush(struct intel_ring_buffer *ring,
212 u32 invalidate_domains, u32 flush_domains)
213 {
214 u32 flags = 0;
215 u32 scratch_addr = ring->scratch.gtt_offset + 128;
216 int ret;
217
218 /* Force SNB workarounds for PIPE_CONTROL flushes */
219 ret = intel_emit_post_sync_nonzero_flush(ring);
220 if (ret)
221 return ret;
222
223 /* Just flush everything. Experiments have shown that reducing the
224 * number of bits based on the write domains has little performance
225 * impact.
226 */
227 if (flush_domains) {
228 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
229 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
230 /*
231 * Ensure that any following seqno writes only happen
232 * when the render cache is indeed flushed.
233 */
234 flags |= PIPE_CONTROL_CS_STALL;
235 }
236 if (invalidate_domains) {
237 flags |= PIPE_CONTROL_TLB_INVALIDATE;
238 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
239 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
240 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
243 /*
244 * TLB invalidate requires a post-sync write.
245 */
246 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
247 }
248
249 ret = intel_ring_begin(ring, 4);
250 if (ret)
251 return ret;
252
253 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
254 intel_ring_emit(ring, flags);
255 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
256 intel_ring_emit(ring, 0);
257 intel_ring_advance(ring);
258
259 return 0;
260 }
261
262 static int
263 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
264 {
265 int ret;
266
267 ret = intel_ring_begin(ring, 4);
268 if (ret)
269 return ret;
270
271 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
272 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
273 PIPE_CONTROL_STALL_AT_SCOREBOARD);
274 intel_ring_emit(ring, 0);
275 intel_ring_emit(ring, 0);
276 intel_ring_advance(ring);
277
278 return 0;
279 }
280
281 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
282 {
283 int ret;
284
285 if (!ring->fbc_dirty)
286 return 0;
287
288 ret = intel_ring_begin(ring, 6);
289 if (ret)
290 return ret;
291 /* WaFbcNukeOn3DBlt:ivb/hsw */
292 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
293 intel_ring_emit(ring, MSG_FBC_REND_STATE);
294 intel_ring_emit(ring, value);
295 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
296 intel_ring_emit(ring, MSG_FBC_REND_STATE);
297 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
298 intel_ring_advance(ring);
299
300 ring->fbc_dirty = false;
301 return 0;
302 }
303
304 static int
305 gen7_render_ring_flush(struct intel_ring_buffer *ring,
306 u32 invalidate_domains, u32 flush_domains)
307 {
308 u32 flags = 0;
309 u32 scratch_addr = ring->scratch.gtt_offset + 128;
310 int ret;
311
312 /*
313 * Ensure that any following seqno writes only happen when the render
314 * cache is indeed flushed.
315 *
316 * Workaround: 4th PIPE_CONTROL command (except the ones with only
317 * read-cache invalidate bits set) must have the CS_STALL bit set. We
318 * don't try to be clever and just set it unconditionally.
319 */
320 flags |= PIPE_CONTROL_CS_STALL;
321
322 /* Just flush everything. Experiments have shown that reducing the
323 * number of bits based on the write domains has little performance
324 * impact.
325 */
326 if (flush_domains) {
327 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
328 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
329 }
330 if (invalidate_domains) {
331 flags |= PIPE_CONTROL_TLB_INVALIDATE;
332 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
333 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
334 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
335 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
336 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
337 /*
338 * TLB invalidate requires a post-sync write.
339 */
340 flags |= PIPE_CONTROL_QW_WRITE;
341 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
342
343 /* Workaround: we must issue a pipe_control with CS-stall bit
344 * set before a pipe_control command that has the state cache
345 * invalidate bit set. */
346 gen7_render_ring_cs_stall_wa(ring);
347 }
348
349 ret = intel_ring_begin(ring, 4);
350 if (ret)
351 return ret;
352
353 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
354 intel_ring_emit(ring, flags);
355 intel_ring_emit(ring, scratch_addr);
356 intel_ring_emit(ring, 0);
357 intel_ring_advance(ring);
358
359 if (!invalidate_domains && flush_domains)
360 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
361
362 return 0;
363 }
364
365 static int
366 gen8_render_ring_flush(struct intel_ring_buffer *ring,
367 u32 invalidate_domains, u32 flush_domains)
368 {
369 u32 flags = 0;
370 u32 scratch_addr = ring->scratch.gtt_offset + 128;
371 int ret;
372
373 flags |= PIPE_CONTROL_CS_STALL;
374
375 if (flush_domains) {
376 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
377 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
378 }
379 if (invalidate_domains) {
380 flags |= PIPE_CONTROL_TLB_INVALIDATE;
381 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
382 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
383 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
384 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
385 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
386 flags |= PIPE_CONTROL_QW_WRITE;
387 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
388 }
389
390 ret = intel_ring_begin(ring, 6);
391 if (ret)
392 return ret;
393
394 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
395 intel_ring_emit(ring, flags);
396 intel_ring_emit(ring, scratch_addr);
397 intel_ring_emit(ring, 0);
398 intel_ring_emit(ring, 0);
399 intel_ring_emit(ring, 0);
400 intel_ring_advance(ring);
401
402 return 0;
403
404 }
405
406 static void ring_write_tail(struct intel_ring_buffer *ring,
407 u32 value)
408 {
409 struct drm_i915_private *dev_priv = ring->dev->dev_private;
410 I915_WRITE_TAIL(ring, value);
411 }
412
413 u64 intel_ring_get_active_head(struct intel_ring_buffer *ring)
414 {
415 struct drm_i915_private *dev_priv = ring->dev->dev_private;
416 u64 acthd;
417
418 if (INTEL_INFO(ring->dev)->gen >= 8)
419 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
420 RING_ACTHD_UDW(ring->mmio_base));
421 else if (INTEL_INFO(ring->dev)->gen >= 4)
422 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
423 else
424 acthd = I915_READ(ACTHD);
425
426 return acthd;
427 }
428
429 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
430 {
431 struct drm_i915_private *dev_priv = ring->dev->dev_private;
432 u32 addr;
433
434 addr = dev_priv->status_page_dmah->busaddr;
435 if (INTEL_INFO(ring->dev)->gen >= 4)
436 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
437 I915_WRITE(HWS_PGA, addr);
438 }
439
440 static bool stop_ring(struct intel_ring_buffer *ring)
441 {
442 struct drm_i915_private *dev_priv = to_i915(ring->dev);
443
444 if (!IS_GEN2(ring->dev)) {
445 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
446 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
447 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
448 return false;
449 }
450 }
451
452 I915_WRITE_CTL(ring, 0);
453 I915_WRITE_HEAD(ring, 0);
454 ring->write_tail(ring, 0);
455
456 if (!IS_GEN2(ring->dev)) {
457 (void)I915_READ_CTL(ring);
458 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
459 }
460
461 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
462 }
463
464 static int init_ring_common(struct intel_ring_buffer *ring)
465 {
466 struct drm_device *dev = ring->dev;
467 struct drm_i915_private *dev_priv = dev->dev_private;
468 struct drm_i915_gem_object *obj = ring->obj;
469 int ret = 0;
470
471 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
472
473 if (!stop_ring(ring)) {
474 /* G45 ring initialization often fails to reset head to zero */
475 DRM_DEBUG_KMS("%s head not reset to zero "
476 "ctl %08x head %08x tail %08x start %08x\n",
477 ring->name,
478 I915_READ_CTL(ring),
479 I915_READ_HEAD(ring),
480 I915_READ_TAIL(ring),
481 I915_READ_START(ring));
482
483 if (!stop_ring(ring)) {
484 DRM_ERROR("failed to set %s head to zero "
485 "ctl %08x head %08x tail %08x start %08x\n",
486 ring->name,
487 I915_READ_CTL(ring),
488 I915_READ_HEAD(ring),
489 I915_READ_TAIL(ring),
490 I915_READ_START(ring));
491 ret = -EIO;
492 goto out;
493 }
494 }
495
496 if (I915_NEED_GFX_HWS(dev))
497 intel_ring_setup_status_page(ring);
498 else
499 ring_setup_phys_status_page(ring);
500
501 /* Initialize the ring. This must happen _after_ we've cleared the ring
502 * registers with the above sequence (the readback of the HEAD registers
503 * also enforces ordering), otherwise the hw might lose the new ring
504 * register values. */
505 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
506 I915_WRITE_CTL(ring,
507 ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
508 | RING_VALID);
509
510 /* If the head is still not zero, the ring is dead */
511 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
512 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
513 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
514 DRM_ERROR("%s initialization failed "
515 "ctl %08x head %08x tail %08x start %08x\n",
516 ring->name,
517 I915_READ_CTL(ring),
518 I915_READ_HEAD(ring),
519 I915_READ_TAIL(ring),
520 I915_READ_START(ring));
521 ret = -EIO;
522 goto out;
523 }
524
525 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
526 i915_kernel_lost_context(ring->dev);
527 else {
528 ring->head = I915_READ_HEAD(ring);
529 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
530 ring->space = ring_space(ring);
531 ring->last_retired_head = -1;
532 }
533
534 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
535
536 out:
537 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
538
539 return ret;
540 }
541
542 static int
543 init_pipe_control(struct intel_ring_buffer *ring)
544 {
545 int ret;
546
547 if (ring->scratch.obj)
548 return 0;
549
550 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
551 if (ring->scratch.obj == NULL) {
552 DRM_ERROR("Failed to allocate seqno page\n");
553 ret = -ENOMEM;
554 goto err;
555 }
556
557 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
558 if (ret)
559 goto err_unref;
560
561 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
562 if (ret)
563 goto err_unref;
564
565 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
566 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
567 if (ring->scratch.cpu_page == NULL) {
568 ret = -ENOMEM;
569 goto err_unpin;
570 }
571
572 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
573 ring->name, ring->scratch.gtt_offset);
574 return 0;
575
576 err_unpin:
577 i915_gem_object_ggtt_unpin(ring->scratch.obj);
578 err_unref:
579 drm_gem_object_unreference(&ring->scratch.obj->base);
580 err:
581 return ret;
582 }
583
584 static int init_render_ring(struct intel_ring_buffer *ring)
585 {
586 struct drm_device *dev = ring->dev;
587 struct drm_i915_private *dev_priv = dev->dev_private;
588 int ret = init_ring_common(ring);
589
590 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
591 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
592 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
593
594 /* We need to disable the AsyncFlip performance optimisations in order
595 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
596 * programmed to '1' on all products.
597 *
598 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw
599 */
600 if (INTEL_INFO(dev)->gen >= 6)
601 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
602
603 /* Required for the hardware to program scanline values for waiting */
604 /* WaEnableFlushTlbInvalidationMode:snb */
605 if (INTEL_INFO(dev)->gen == 6)
606 I915_WRITE(GFX_MODE,
607 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
608
609 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
610 if (IS_GEN7(dev))
611 I915_WRITE(GFX_MODE_GEN7,
612 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
613 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
614
615 if (INTEL_INFO(dev)->gen >= 5) {
616 ret = init_pipe_control(ring);
617 if (ret)
618 return ret;
619 }
620
621 if (IS_GEN6(dev)) {
622 /* From the Sandybridge PRM, volume 1 part 3, page 24:
623 * "If this bit is set, STCunit will have LRA as replacement
624 * policy. [...] This bit must be reset. LRA replacement
625 * policy is not supported."
626 */
627 I915_WRITE(CACHE_MODE_0,
628 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
629 }
630
631 if (INTEL_INFO(dev)->gen >= 6)
632 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
633
634 if (HAS_L3_DPF(dev))
635 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
636
637 return ret;
638 }
639
640 static void render_ring_cleanup(struct intel_ring_buffer *ring)
641 {
642 struct drm_device *dev = ring->dev;
643
644 if (ring->scratch.obj == NULL)
645 return;
646
647 if (INTEL_INFO(dev)->gen >= 5) {
648 kunmap(sg_page(ring->scratch.obj->pages->sgl));
649 i915_gem_object_ggtt_unpin(ring->scratch.obj);
650 }
651
652 drm_gem_object_unreference(&ring->scratch.obj->base);
653 ring->scratch.obj = NULL;
654 }
655
656 static void
657 update_mboxes(struct intel_ring_buffer *ring,
658 u32 mmio_offset)
659 {
660 /* NB: In order to be able to do semaphore MBOX updates for varying number
661 * of rings, it's easiest if we round up each individual update to a
662 * multiple of 2 (since ring updates must always be a multiple of 2)
663 * even though the actual update only requires 3 dwords.
664 */
665 #define MBOX_UPDATE_DWORDS 4
666 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
667 intel_ring_emit(ring, mmio_offset);
668 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
669 intel_ring_emit(ring, MI_NOOP);
670 }
671
672 /**
673 * gen6_add_request - Update the semaphore mailbox registers
674 *
675 * @ring - ring that is adding a request
676 * @seqno - return seqno stuck into the ring
677 *
678 * Update the mailbox registers in the *other* rings with the current seqno.
679 * This acts like a signal in the canonical semaphore.
680 */
681 static int
682 gen6_add_request(struct intel_ring_buffer *ring)
683 {
684 struct drm_device *dev = ring->dev;
685 struct drm_i915_private *dev_priv = dev->dev_private;
686 struct intel_ring_buffer *useless;
687 int i, ret, num_dwords = 4;
688
689 if (i915_semaphore_is_enabled(dev))
690 num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
691 #undef MBOX_UPDATE_DWORDS
692
693 ret = intel_ring_begin(ring, num_dwords);
694 if (ret)
695 return ret;
696
697 if (i915_semaphore_is_enabled(dev)) {
698 for_each_ring(useless, dev_priv, i) {
699 u32 mbox_reg = ring->signal_mbox[i];
700 if (mbox_reg != GEN6_NOSYNC)
701 update_mboxes(ring, mbox_reg);
702 }
703 }
704
705 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
706 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
707 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
708 intel_ring_emit(ring, MI_USER_INTERRUPT);
709 __intel_ring_advance(ring);
710
711 return 0;
712 }
713
714 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
715 u32 seqno)
716 {
717 struct drm_i915_private *dev_priv = dev->dev_private;
718 return dev_priv->last_seqno < seqno;
719 }
720
721 /**
722 * intel_ring_sync - sync the waiter to the signaller on seqno
723 *
724 * @waiter - ring that is waiting
725 * @signaller - ring which has, or will signal
726 * @seqno - seqno which the waiter will block on
727 */
728 static int
729 gen6_ring_sync(struct intel_ring_buffer *waiter,
730 struct intel_ring_buffer *signaller,
731 u32 seqno)
732 {
733 int ret;
734 u32 dw1 = MI_SEMAPHORE_MBOX |
735 MI_SEMAPHORE_COMPARE |
736 MI_SEMAPHORE_REGISTER;
737
738 /* Throughout all of the GEM code, seqno passed implies our current
739 * seqno is >= the last seqno executed. However for hardware the
740 * comparison is strictly greater than.
741 */
742 seqno -= 1;
743
744 WARN_ON(signaller->semaphore_register[waiter->id] ==
745 MI_SEMAPHORE_SYNC_INVALID);
746
747 ret = intel_ring_begin(waiter, 4);
748 if (ret)
749 return ret;
750
751 /* If seqno wrap happened, omit the wait with no-ops */
752 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
753 intel_ring_emit(waiter,
754 dw1 |
755 signaller->semaphore_register[waiter->id]);
756 intel_ring_emit(waiter, seqno);
757 intel_ring_emit(waiter, 0);
758 intel_ring_emit(waiter, MI_NOOP);
759 } else {
760 intel_ring_emit(waiter, MI_NOOP);
761 intel_ring_emit(waiter, MI_NOOP);
762 intel_ring_emit(waiter, MI_NOOP);
763 intel_ring_emit(waiter, MI_NOOP);
764 }
765 intel_ring_advance(waiter);
766
767 return 0;
768 }
769
770 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
771 do { \
772 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
773 PIPE_CONTROL_DEPTH_STALL); \
774 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
775 intel_ring_emit(ring__, 0); \
776 intel_ring_emit(ring__, 0); \
777 } while (0)
778
779 static int
780 pc_render_add_request(struct intel_ring_buffer *ring)
781 {
782 u32 scratch_addr = ring->scratch.gtt_offset + 128;
783 int ret;
784
785 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
786 * incoherent with writes to memory, i.e. completely fubar,
787 * so we need to use PIPE_NOTIFY instead.
788 *
789 * However, we also need to workaround the qword write
790 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
791 * memory before requesting an interrupt.
792 */
793 ret = intel_ring_begin(ring, 32);
794 if (ret)
795 return ret;
796
797 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
798 PIPE_CONTROL_WRITE_FLUSH |
799 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
800 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
801 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
802 intel_ring_emit(ring, 0);
803 PIPE_CONTROL_FLUSH(ring, scratch_addr);
804 scratch_addr += 128; /* write to separate cachelines */
805 PIPE_CONTROL_FLUSH(ring, scratch_addr);
806 scratch_addr += 128;
807 PIPE_CONTROL_FLUSH(ring, scratch_addr);
808 scratch_addr += 128;
809 PIPE_CONTROL_FLUSH(ring, scratch_addr);
810 scratch_addr += 128;
811 PIPE_CONTROL_FLUSH(ring, scratch_addr);
812 scratch_addr += 128;
813 PIPE_CONTROL_FLUSH(ring, scratch_addr);
814
815 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
816 PIPE_CONTROL_WRITE_FLUSH |
817 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
818 PIPE_CONTROL_NOTIFY);
819 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
820 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
821 intel_ring_emit(ring, 0);
822 __intel_ring_advance(ring);
823
824 return 0;
825 }
826
827 static u32
828 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
829 {
830 /* Workaround to force correct ordering between irq and seqno writes on
831 * ivb (and maybe also on snb) by reading from a CS register (like
832 * ACTHD) before reading the status page. */
833 if (!lazy_coherency) {
834 struct drm_i915_private *dev_priv = ring->dev->dev_private;
835 POSTING_READ(RING_ACTHD(ring->mmio_base));
836 }
837
838 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
839 }
840
841 static u32
842 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
843 {
844 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
845 }
846
847 static void
848 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
849 {
850 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
851 }
852
853 static u32
854 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
855 {
856 return ring->scratch.cpu_page[0];
857 }
858
859 static void
860 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
861 {
862 ring->scratch.cpu_page[0] = seqno;
863 }
864
865 static bool
866 gen5_ring_get_irq(struct intel_ring_buffer *ring)
867 {
868 struct drm_device *dev = ring->dev;
869 struct drm_i915_private *dev_priv = dev->dev_private;
870 unsigned long flags;
871
872 if (!dev->irq_enabled)
873 return false;
874
875 spin_lock_irqsave(&dev_priv->irq_lock, flags);
876 if (ring->irq_refcount++ == 0)
877 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
878 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
879
880 return true;
881 }
882
883 static void
884 gen5_ring_put_irq(struct intel_ring_buffer *ring)
885 {
886 struct drm_device *dev = ring->dev;
887 struct drm_i915_private *dev_priv = dev->dev_private;
888 unsigned long flags;
889
890 spin_lock_irqsave(&dev_priv->irq_lock, flags);
891 if (--ring->irq_refcount == 0)
892 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
893 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
894 }
895
896 static bool
897 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
898 {
899 struct drm_device *dev = ring->dev;
900 struct drm_i915_private *dev_priv = dev->dev_private;
901 unsigned long flags;
902
903 if (!dev->irq_enabled)
904 return false;
905
906 spin_lock_irqsave(&dev_priv->irq_lock, flags);
907 if (ring->irq_refcount++ == 0) {
908 dev_priv->irq_mask &= ~ring->irq_enable_mask;
909 I915_WRITE(IMR, dev_priv->irq_mask);
910 POSTING_READ(IMR);
911 }
912 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
913
914 return true;
915 }
916
917 static void
918 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
919 {
920 struct drm_device *dev = ring->dev;
921 struct drm_i915_private *dev_priv = dev->dev_private;
922 unsigned long flags;
923
924 spin_lock_irqsave(&dev_priv->irq_lock, flags);
925 if (--ring->irq_refcount == 0) {
926 dev_priv->irq_mask |= ring->irq_enable_mask;
927 I915_WRITE(IMR, dev_priv->irq_mask);
928 POSTING_READ(IMR);
929 }
930 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
931 }
932
933 static bool
934 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
935 {
936 struct drm_device *dev = ring->dev;
937 struct drm_i915_private *dev_priv = dev->dev_private;
938 unsigned long flags;
939
940 if (!dev->irq_enabled)
941 return false;
942
943 spin_lock_irqsave(&dev_priv->irq_lock, flags);
944 if (ring->irq_refcount++ == 0) {
945 dev_priv->irq_mask &= ~ring->irq_enable_mask;
946 I915_WRITE16(IMR, dev_priv->irq_mask);
947 POSTING_READ16(IMR);
948 }
949 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
950
951 return true;
952 }
953
954 static void
955 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
956 {
957 struct drm_device *dev = ring->dev;
958 struct drm_i915_private *dev_priv = dev->dev_private;
959 unsigned long flags;
960
961 spin_lock_irqsave(&dev_priv->irq_lock, flags);
962 if (--ring->irq_refcount == 0) {
963 dev_priv->irq_mask |= ring->irq_enable_mask;
964 I915_WRITE16(IMR, dev_priv->irq_mask);
965 POSTING_READ16(IMR);
966 }
967 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
968 }
969
970 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
971 {
972 struct drm_device *dev = ring->dev;
973 struct drm_i915_private *dev_priv = ring->dev->dev_private;
974 u32 mmio = 0;
975
976 /* The ring status page addresses are no longer next to the rest of
977 * the ring registers as of gen7.
978 */
979 if (IS_GEN7(dev)) {
980 switch (ring->id) {
981 case RCS:
982 mmio = RENDER_HWS_PGA_GEN7;
983 break;
984 case BCS:
985 mmio = BLT_HWS_PGA_GEN7;
986 break;
987 case VCS:
988 mmio = BSD_HWS_PGA_GEN7;
989 break;
990 case VECS:
991 mmio = VEBOX_HWS_PGA_GEN7;
992 break;
993 }
994 } else if (IS_GEN6(ring->dev)) {
995 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
996 } else {
997 /* XXX: gen8 returns to sanity */
998 mmio = RING_HWS_PGA(ring->mmio_base);
999 }
1000
1001 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1002 POSTING_READ(mmio);
1003
1004 /*
1005 * Flush the TLB for this page
1006 *
1007 * FIXME: These two bits have disappeared on gen8, so a question
1008 * arises: do we still need this and if so how should we go about
1009 * invalidating the TLB?
1010 */
1011 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1012 u32 reg = RING_INSTPM(ring->mmio_base);
1013
1014 /* ring should be idle before issuing a sync flush*/
1015 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1016
1017 I915_WRITE(reg,
1018 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1019 INSTPM_SYNC_FLUSH));
1020 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1021 1000))
1022 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1023 ring->name);
1024 }
1025 }
1026
1027 static int
1028 bsd_ring_flush(struct intel_ring_buffer *ring,
1029 u32 invalidate_domains,
1030 u32 flush_domains)
1031 {
1032 int ret;
1033
1034 ret = intel_ring_begin(ring, 2);
1035 if (ret)
1036 return ret;
1037
1038 intel_ring_emit(ring, MI_FLUSH);
1039 intel_ring_emit(ring, MI_NOOP);
1040 intel_ring_advance(ring);
1041 return 0;
1042 }
1043
1044 static int
1045 i9xx_add_request(struct intel_ring_buffer *ring)
1046 {
1047 int ret;
1048
1049 ret = intel_ring_begin(ring, 4);
1050 if (ret)
1051 return ret;
1052
1053 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1054 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1055 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1056 intel_ring_emit(ring, MI_USER_INTERRUPT);
1057 __intel_ring_advance(ring);
1058
1059 return 0;
1060 }
1061
1062 static bool
1063 gen6_ring_get_irq(struct intel_ring_buffer *ring)
1064 {
1065 struct drm_device *dev = ring->dev;
1066 struct drm_i915_private *dev_priv = dev->dev_private;
1067 unsigned long flags;
1068
1069 if (!dev->irq_enabled)
1070 return false;
1071
1072 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1073 if (ring->irq_refcount++ == 0) {
1074 if (HAS_L3_DPF(dev) && ring->id == RCS)
1075 I915_WRITE_IMR(ring,
1076 ~(ring->irq_enable_mask |
1077 GT_PARITY_ERROR(dev)));
1078 else
1079 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1080 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1081 }
1082 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1083
1084 return true;
1085 }
1086
1087 static void
1088 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1089 {
1090 struct drm_device *dev = ring->dev;
1091 struct drm_i915_private *dev_priv = dev->dev_private;
1092 unsigned long flags;
1093
1094 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1095 if (--ring->irq_refcount == 0) {
1096 if (HAS_L3_DPF(dev) && ring->id == RCS)
1097 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1098 else
1099 I915_WRITE_IMR(ring, ~0);
1100 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1101 }
1102 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1103 }
1104
1105 static bool
1106 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1107 {
1108 struct drm_device *dev = ring->dev;
1109 struct drm_i915_private *dev_priv = dev->dev_private;
1110 unsigned long flags;
1111
1112 if (!dev->irq_enabled)
1113 return false;
1114
1115 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1116 if (ring->irq_refcount++ == 0) {
1117 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1118 snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1119 }
1120 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1121
1122 return true;
1123 }
1124
1125 static void
1126 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1127 {
1128 struct drm_device *dev = ring->dev;
1129 struct drm_i915_private *dev_priv = dev->dev_private;
1130 unsigned long flags;
1131
1132 if (!dev->irq_enabled)
1133 return;
1134
1135 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1136 if (--ring->irq_refcount == 0) {
1137 I915_WRITE_IMR(ring, ~0);
1138 snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1139 }
1140 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1141 }
1142
1143 static bool
1144 gen8_ring_get_irq(struct intel_ring_buffer *ring)
1145 {
1146 struct drm_device *dev = ring->dev;
1147 struct drm_i915_private *dev_priv = dev->dev_private;
1148 unsigned long flags;
1149
1150 if (!dev->irq_enabled)
1151 return false;
1152
1153 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1154 if (ring->irq_refcount++ == 0) {
1155 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1156 I915_WRITE_IMR(ring,
1157 ~(ring->irq_enable_mask |
1158 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1159 } else {
1160 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1161 }
1162 POSTING_READ(RING_IMR(ring->mmio_base));
1163 }
1164 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1165
1166 return true;
1167 }
1168
1169 static void
1170 gen8_ring_put_irq(struct intel_ring_buffer *ring)
1171 {
1172 struct drm_device *dev = ring->dev;
1173 struct drm_i915_private *dev_priv = dev->dev_private;
1174 unsigned long flags;
1175
1176 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1177 if (--ring->irq_refcount == 0) {
1178 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1179 I915_WRITE_IMR(ring,
1180 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1181 } else {
1182 I915_WRITE_IMR(ring, ~0);
1183 }
1184 POSTING_READ(RING_IMR(ring->mmio_base));
1185 }
1186 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1187 }
1188
1189 static int
1190 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1191 u32 offset, u32 length,
1192 unsigned flags)
1193 {
1194 int ret;
1195
1196 ret = intel_ring_begin(ring, 2);
1197 if (ret)
1198 return ret;
1199
1200 intel_ring_emit(ring,
1201 MI_BATCH_BUFFER_START |
1202 MI_BATCH_GTT |
1203 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1204 intel_ring_emit(ring, offset);
1205 intel_ring_advance(ring);
1206
1207 return 0;
1208 }
1209
1210 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1211 #define I830_BATCH_LIMIT (256*1024)
1212 static int
1213 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1214 u32 offset, u32 len,
1215 unsigned flags)
1216 {
1217 int ret;
1218
1219 if (flags & I915_DISPATCH_PINNED) {
1220 ret = intel_ring_begin(ring, 4);
1221 if (ret)
1222 return ret;
1223
1224 intel_ring_emit(ring, MI_BATCH_BUFFER);
1225 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1226 intel_ring_emit(ring, offset + len - 8);
1227 intel_ring_emit(ring, MI_NOOP);
1228 intel_ring_advance(ring);
1229 } else {
1230 u32 cs_offset = ring->scratch.gtt_offset;
1231
1232 if (len > I830_BATCH_LIMIT)
1233 return -ENOSPC;
1234
1235 ret = intel_ring_begin(ring, 9+3);
1236 if (ret)
1237 return ret;
1238 /* Blit the batch (which has now all relocs applied) to the stable batch
1239 * scratch bo area (so that the CS never stumbles over its tlb
1240 * invalidation bug) ... */
1241 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1242 XY_SRC_COPY_BLT_WRITE_ALPHA |
1243 XY_SRC_COPY_BLT_WRITE_RGB);
1244 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1245 intel_ring_emit(ring, 0);
1246 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1247 intel_ring_emit(ring, cs_offset);
1248 intel_ring_emit(ring, 0);
1249 intel_ring_emit(ring, 4096);
1250 intel_ring_emit(ring, offset);
1251 intel_ring_emit(ring, MI_FLUSH);
1252
1253 /* ... and execute it. */
1254 intel_ring_emit(ring, MI_BATCH_BUFFER);
1255 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1256 intel_ring_emit(ring, cs_offset + len - 8);
1257 intel_ring_advance(ring);
1258 }
1259
1260 return 0;
1261 }
1262
1263 static int
1264 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1265 u32 offset, u32 len,
1266 unsigned flags)
1267 {
1268 int ret;
1269
1270 ret = intel_ring_begin(ring, 2);
1271 if (ret)
1272 return ret;
1273
1274 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1275 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1276 intel_ring_advance(ring);
1277
1278 return 0;
1279 }
1280
1281 static void cleanup_status_page(struct intel_ring_buffer *ring)
1282 {
1283 struct drm_i915_gem_object *obj;
1284
1285 obj = ring->status_page.obj;
1286 if (obj == NULL)
1287 return;
1288
1289 kunmap(sg_page(obj->pages->sgl));
1290 i915_gem_object_ggtt_unpin(obj);
1291 drm_gem_object_unreference(&obj->base);
1292 ring->status_page.obj = NULL;
1293 }
1294
1295 static int init_status_page(struct intel_ring_buffer *ring)
1296 {
1297 struct drm_device *dev = ring->dev;
1298 struct drm_i915_gem_object *obj;
1299 int ret;
1300
1301 obj = i915_gem_alloc_object(dev, 4096);
1302 if (obj == NULL) {
1303 DRM_ERROR("Failed to allocate status page\n");
1304 ret = -ENOMEM;
1305 goto err;
1306 }
1307
1308 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1309 if (ret)
1310 goto err_unref;
1311
1312 ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
1313 if (ret)
1314 goto err_unref;
1315
1316 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1317 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1318 if (ring->status_page.page_addr == NULL) {
1319 ret = -ENOMEM;
1320 goto err_unpin;
1321 }
1322 ring->status_page.obj = obj;
1323 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1324
1325 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1326 ring->name, ring->status_page.gfx_addr);
1327
1328 return 0;
1329
1330 err_unpin:
1331 i915_gem_object_ggtt_unpin(obj);
1332 err_unref:
1333 drm_gem_object_unreference(&obj->base);
1334 err:
1335 return ret;
1336 }
1337
1338 static int init_phys_status_page(struct intel_ring_buffer *ring)
1339 {
1340 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1341
1342 if (!dev_priv->status_page_dmah) {
1343 dev_priv->status_page_dmah =
1344 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1345 if (!dev_priv->status_page_dmah)
1346 return -ENOMEM;
1347 }
1348
1349 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1350 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1351
1352 return 0;
1353 }
1354
1355 static int intel_init_ring_buffer(struct drm_device *dev,
1356 struct intel_ring_buffer *ring)
1357 {
1358 struct drm_i915_gem_object *obj;
1359 struct drm_i915_private *dev_priv = dev->dev_private;
1360 int ret;
1361
1362 ring->dev = dev;
1363 INIT_LIST_HEAD(&ring->active_list);
1364 INIT_LIST_HEAD(&ring->request_list);
1365 ring->size = 32 * PAGE_SIZE;
1366 memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1367
1368 init_waitqueue_head(&ring->irq_queue);
1369
1370 if (I915_NEED_GFX_HWS(dev)) {
1371 ret = init_status_page(ring);
1372 if (ret)
1373 return ret;
1374 } else {
1375 BUG_ON(ring->id != RCS);
1376 ret = init_phys_status_page(ring);
1377 if (ret)
1378 return ret;
1379 }
1380
1381 obj = NULL;
1382 if (!HAS_LLC(dev))
1383 obj = i915_gem_object_create_stolen(dev, ring->size);
1384 if (obj == NULL)
1385 obj = i915_gem_alloc_object(dev, ring->size);
1386 if (obj == NULL) {
1387 DRM_ERROR("Failed to allocate ringbuffer\n");
1388 ret = -ENOMEM;
1389 goto err_hws;
1390 }
1391
1392 ring->obj = obj;
1393
1394 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1395 if (ret)
1396 goto err_unref;
1397
1398 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1399 if (ret)
1400 goto err_unpin;
1401
1402 ring->virtual_start =
1403 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1404 ring->size);
1405 if (ring->virtual_start == NULL) {
1406 DRM_ERROR("Failed to map ringbuffer.\n");
1407 ret = -EINVAL;
1408 goto err_unpin;
1409 }
1410
1411 ret = ring->init(ring);
1412 if (ret)
1413 goto err_unmap;
1414
1415 /* Workaround an erratum on the i830 which causes a hang if
1416 * the TAIL pointer points to within the last 2 cachelines
1417 * of the buffer.
1418 */
1419 ring->effective_size = ring->size;
1420 if (IS_I830(ring->dev) || IS_845G(ring->dev))
1421 ring->effective_size -= 128;
1422
1423 i915_cmd_parser_init_ring(ring);
1424
1425 return 0;
1426
1427 err_unmap:
1428 iounmap(ring->virtual_start);
1429 err_unpin:
1430 i915_gem_object_ggtt_unpin(obj);
1431 err_unref:
1432 drm_gem_object_unreference(&obj->base);
1433 ring->obj = NULL;
1434 err_hws:
1435 cleanup_status_page(ring);
1436 return ret;
1437 }
1438
1439 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1440 {
1441 struct drm_i915_private *dev_priv;
1442 int ret;
1443
1444 if (ring->obj == NULL)
1445 return;
1446
1447 /* Disable the ring buffer. The ring must be idle at this point */
1448 dev_priv = ring->dev->dev_private;
1449 ret = intel_ring_idle(ring);
1450 if (ret && !i915_reset_in_progress(&dev_priv->gpu_error))
1451 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1452 ring->name, ret);
1453
1454 I915_WRITE_CTL(ring, 0);
1455
1456 iounmap(ring->virtual_start);
1457
1458 i915_gem_object_ggtt_unpin(ring->obj);
1459 drm_gem_object_unreference(&ring->obj->base);
1460 ring->obj = NULL;
1461 ring->preallocated_lazy_request = NULL;
1462 ring->outstanding_lazy_seqno = 0;
1463
1464 if (ring->cleanup)
1465 ring->cleanup(ring);
1466
1467 cleanup_status_page(ring);
1468 }
1469
1470 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1471 {
1472 struct drm_i915_gem_request *request;
1473 u32 seqno = 0, tail;
1474 int ret;
1475
1476 if (ring->last_retired_head != -1) {
1477 ring->head = ring->last_retired_head;
1478 ring->last_retired_head = -1;
1479
1480 ring->space = ring_space(ring);
1481 if (ring->space >= n)
1482 return 0;
1483 }
1484
1485 list_for_each_entry(request, &ring->request_list, list) {
1486 int space;
1487
1488 if (request->tail == -1)
1489 continue;
1490
1491 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1492 if (space < 0)
1493 space += ring->size;
1494 if (space >= n) {
1495 seqno = request->seqno;
1496 tail = request->tail;
1497 break;
1498 }
1499
1500 /* Consume this request in case we need more space than
1501 * is available and so need to prevent a race between
1502 * updating last_retired_head and direct reads of
1503 * I915_RING_HEAD. It also provides a nice sanity check.
1504 */
1505 request->tail = -1;
1506 }
1507
1508 if (seqno == 0)
1509 return -ENOSPC;
1510
1511 ret = i915_wait_seqno(ring, seqno);
1512 if (ret)
1513 return ret;
1514
1515 ring->head = tail;
1516 ring->space = ring_space(ring);
1517 if (WARN_ON(ring->space < n))
1518 return -ENOSPC;
1519
1520 return 0;
1521 }
1522
1523 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1524 {
1525 struct drm_device *dev = ring->dev;
1526 struct drm_i915_private *dev_priv = dev->dev_private;
1527 unsigned long end;
1528 int ret;
1529
1530 ret = intel_ring_wait_request(ring, n);
1531 if (ret != -ENOSPC)
1532 return ret;
1533
1534 /* force the tail write in case we have been skipping them */
1535 __intel_ring_advance(ring);
1536
1537 trace_i915_ring_wait_begin(ring);
1538 /* With GEM the hangcheck timer should kick us out of the loop,
1539 * leaving it early runs the risk of corrupting GEM state (due
1540 * to running on almost untested codepaths). But on resume
1541 * timers don't work yet, so prevent a complete hang in that
1542 * case by choosing an insanely large timeout. */
1543 end = jiffies + 60 * HZ;
1544
1545 do {
1546 ring->head = I915_READ_HEAD(ring);
1547 ring->space = ring_space(ring);
1548 if (ring->space >= n) {
1549 trace_i915_ring_wait_end(ring);
1550 return 0;
1551 }
1552
1553 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1554 dev->primary->master) {
1555 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1556 if (master_priv->sarea_priv)
1557 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1558 }
1559
1560 msleep(1);
1561
1562 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1563 dev_priv->mm.interruptible);
1564 if (ret)
1565 return ret;
1566 } while (!time_after(jiffies, end));
1567 trace_i915_ring_wait_end(ring);
1568 return -EBUSY;
1569 }
1570
1571 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1572 {
1573 uint32_t __iomem *virt;
1574 int rem = ring->size - ring->tail;
1575
1576 if (ring->space < rem) {
1577 int ret = ring_wait_for_space(ring, rem);
1578 if (ret)
1579 return ret;
1580 }
1581
1582 virt = ring->virtual_start + ring->tail;
1583 rem /= 4;
1584 while (rem--)
1585 iowrite32(MI_NOOP, virt++);
1586
1587 ring->tail = 0;
1588 ring->space = ring_space(ring);
1589
1590 return 0;
1591 }
1592
1593 int intel_ring_idle(struct intel_ring_buffer *ring)
1594 {
1595 u32 seqno;
1596 int ret;
1597
1598 /* We need to add any requests required to flush the objects and ring */
1599 if (ring->outstanding_lazy_seqno) {
1600 ret = i915_add_request(ring, NULL);
1601 if (ret)
1602 return ret;
1603 }
1604
1605 /* Wait upon the last request to be completed */
1606 if (list_empty(&ring->request_list))
1607 return 0;
1608
1609 seqno = list_entry(ring->request_list.prev,
1610 struct drm_i915_gem_request,
1611 list)->seqno;
1612
1613 return i915_wait_seqno(ring, seqno);
1614 }
1615
1616 static int
1617 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1618 {
1619 if (ring->outstanding_lazy_seqno)
1620 return 0;
1621
1622 if (ring->preallocated_lazy_request == NULL) {
1623 struct drm_i915_gem_request *request;
1624
1625 request = kmalloc(sizeof(*request), GFP_KERNEL);
1626 if (request == NULL)
1627 return -ENOMEM;
1628
1629 ring->preallocated_lazy_request = request;
1630 }
1631
1632 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1633 }
1634
1635 static int __intel_ring_prepare(struct intel_ring_buffer *ring,
1636 int bytes)
1637 {
1638 int ret;
1639
1640 if (unlikely(ring->tail + bytes > ring->effective_size)) {
1641 ret = intel_wrap_ring_buffer(ring);
1642 if (unlikely(ret))
1643 return ret;
1644 }
1645
1646 if (unlikely(ring->space < bytes)) {
1647 ret = ring_wait_for_space(ring, bytes);
1648 if (unlikely(ret))
1649 return ret;
1650 }
1651
1652 return 0;
1653 }
1654
1655 int intel_ring_begin(struct intel_ring_buffer *ring,
1656 int num_dwords)
1657 {
1658 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1659 int ret;
1660
1661 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1662 dev_priv->mm.interruptible);
1663 if (ret)
1664 return ret;
1665
1666 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1667 if (ret)
1668 return ret;
1669
1670 /* Preallocate the olr before touching the ring */
1671 ret = intel_ring_alloc_seqno(ring);
1672 if (ret)
1673 return ret;
1674
1675 ring->space -= num_dwords * sizeof(uint32_t);
1676 return 0;
1677 }
1678
1679 /* Align the ring tail to a cacheline boundary */
1680 int intel_ring_cacheline_align(struct intel_ring_buffer *ring)
1681 {
1682 int num_dwords = (64 - (ring->tail & 63)) / sizeof(uint32_t);
1683 int ret;
1684
1685 if (num_dwords == 0)
1686 return 0;
1687
1688 ret = intel_ring_begin(ring, num_dwords);
1689 if (ret)
1690 return ret;
1691
1692 while (num_dwords--)
1693 intel_ring_emit(ring, MI_NOOP);
1694
1695 intel_ring_advance(ring);
1696
1697 return 0;
1698 }
1699
1700 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1701 {
1702 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1703
1704 BUG_ON(ring->outstanding_lazy_seqno);
1705
1706 if (INTEL_INFO(ring->dev)->gen >= 6) {
1707 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1708 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1709 if (HAS_VEBOX(ring->dev))
1710 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1711 }
1712
1713 ring->set_seqno(ring, seqno);
1714 ring->hangcheck.seqno = seqno;
1715 }
1716
1717 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1718 u32 value)
1719 {
1720 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1721
1722 /* Every tail move must follow the sequence below */
1723
1724 /* Disable notification that the ring is IDLE. The GT
1725 * will then assume that it is busy and bring it out of rc6.
1726 */
1727 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1728 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1729
1730 /* Clear the context id. Here be magic! */
1731 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1732
1733 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1734 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1735 GEN6_BSD_SLEEP_INDICATOR) == 0,
1736 50))
1737 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1738
1739 /* Now that the ring is fully powered up, update the tail */
1740 I915_WRITE_TAIL(ring, value);
1741 POSTING_READ(RING_TAIL(ring->mmio_base));
1742
1743 /* Let the ring send IDLE messages to the GT again,
1744 * and so let it sleep to conserve power when idle.
1745 */
1746 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1747 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1748 }
1749
1750 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1751 u32 invalidate, u32 flush)
1752 {
1753 uint32_t cmd;
1754 int ret;
1755
1756 ret = intel_ring_begin(ring, 4);
1757 if (ret)
1758 return ret;
1759
1760 cmd = MI_FLUSH_DW;
1761 if (INTEL_INFO(ring->dev)->gen >= 8)
1762 cmd += 1;
1763 /*
1764 * Bspec vol 1c.5 - video engine command streamer:
1765 * "If ENABLED, all TLBs will be invalidated once the flush
1766 * operation is complete. This bit is only valid when the
1767 * Post-Sync Operation field is a value of 1h or 3h."
1768 */
1769 if (invalidate & I915_GEM_GPU_DOMAINS)
1770 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1771 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1772 intel_ring_emit(ring, cmd);
1773 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1774 if (INTEL_INFO(ring->dev)->gen >= 8) {
1775 intel_ring_emit(ring, 0); /* upper addr */
1776 intel_ring_emit(ring, 0); /* value */
1777 } else {
1778 intel_ring_emit(ring, 0);
1779 intel_ring_emit(ring, MI_NOOP);
1780 }
1781 intel_ring_advance(ring);
1782 return 0;
1783 }
1784
1785 static int
1786 gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1787 u32 offset, u32 len,
1788 unsigned flags)
1789 {
1790 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1791 bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1792 !(flags & I915_DISPATCH_SECURE);
1793 int ret;
1794
1795 ret = intel_ring_begin(ring, 4);
1796 if (ret)
1797 return ret;
1798
1799 /* FIXME(BDW): Address space and security selectors. */
1800 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1801 intel_ring_emit(ring, offset);
1802 intel_ring_emit(ring, 0);
1803 intel_ring_emit(ring, MI_NOOP);
1804 intel_ring_advance(ring);
1805
1806 return 0;
1807 }
1808
1809 static int
1810 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1811 u32 offset, u32 len,
1812 unsigned flags)
1813 {
1814 int ret;
1815
1816 ret = intel_ring_begin(ring, 2);
1817 if (ret)
1818 return ret;
1819
1820 intel_ring_emit(ring,
1821 MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1822 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1823 /* bit0-7 is the length on GEN6+ */
1824 intel_ring_emit(ring, offset);
1825 intel_ring_advance(ring);
1826
1827 return 0;
1828 }
1829
1830 static int
1831 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1832 u32 offset, u32 len,
1833 unsigned flags)
1834 {
1835 int ret;
1836
1837 ret = intel_ring_begin(ring, 2);
1838 if (ret)
1839 return ret;
1840
1841 intel_ring_emit(ring,
1842 MI_BATCH_BUFFER_START |
1843 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1844 /* bit0-7 is the length on GEN6+ */
1845 intel_ring_emit(ring, offset);
1846 intel_ring_advance(ring);
1847
1848 return 0;
1849 }
1850
1851 /* Blitter support (SandyBridge+) */
1852
1853 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1854 u32 invalidate, u32 flush)
1855 {
1856 struct drm_device *dev = ring->dev;
1857 uint32_t cmd;
1858 int ret;
1859
1860 ret = intel_ring_begin(ring, 4);
1861 if (ret)
1862 return ret;
1863
1864 cmd = MI_FLUSH_DW;
1865 if (INTEL_INFO(ring->dev)->gen >= 8)
1866 cmd += 1;
1867 /*
1868 * Bspec vol 1c.3 - blitter engine command streamer:
1869 * "If ENABLED, all TLBs will be invalidated once the flush
1870 * operation is complete. This bit is only valid when the
1871 * Post-Sync Operation field is a value of 1h or 3h."
1872 */
1873 if (invalidate & I915_GEM_DOMAIN_RENDER)
1874 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1875 MI_FLUSH_DW_OP_STOREDW;
1876 intel_ring_emit(ring, cmd);
1877 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1878 if (INTEL_INFO(ring->dev)->gen >= 8) {
1879 intel_ring_emit(ring, 0); /* upper addr */
1880 intel_ring_emit(ring, 0); /* value */
1881 } else {
1882 intel_ring_emit(ring, 0);
1883 intel_ring_emit(ring, MI_NOOP);
1884 }
1885 intel_ring_advance(ring);
1886
1887 if (IS_GEN7(dev) && !invalidate && flush)
1888 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1889
1890 return 0;
1891 }
1892
1893 int intel_init_render_ring_buffer(struct drm_device *dev)
1894 {
1895 struct drm_i915_private *dev_priv = dev->dev_private;
1896 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1897
1898 ring->name = "render ring";
1899 ring->id = RCS;
1900 ring->mmio_base = RENDER_RING_BASE;
1901
1902 if (INTEL_INFO(dev)->gen >= 6) {
1903 ring->add_request = gen6_add_request;
1904 ring->flush = gen7_render_ring_flush;
1905 if (INTEL_INFO(dev)->gen == 6)
1906 ring->flush = gen6_render_ring_flush;
1907 if (INTEL_INFO(dev)->gen >= 8) {
1908 ring->flush = gen8_render_ring_flush;
1909 ring->irq_get = gen8_ring_get_irq;
1910 ring->irq_put = gen8_ring_put_irq;
1911 } else {
1912 ring->irq_get = gen6_ring_get_irq;
1913 ring->irq_put = gen6_ring_put_irq;
1914 }
1915 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1916 ring->get_seqno = gen6_ring_get_seqno;
1917 ring->set_seqno = ring_set_seqno;
1918 ring->sync_to = gen6_ring_sync;
1919 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1920 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1921 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1922 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1923 ring->signal_mbox[RCS] = GEN6_NOSYNC;
1924 ring->signal_mbox[VCS] = GEN6_VRSYNC;
1925 ring->signal_mbox[BCS] = GEN6_BRSYNC;
1926 ring->signal_mbox[VECS] = GEN6_VERSYNC;
1927 } else if (IS_GEN5(dev)) {
1928 ring->add_request = pc_render_add_request;
1929 ring->flush = gen4_render_ring_flush;
1930 ring->get_seqno = pc_render_get_seqno;
1931 ring->set_seqno = pc_render_set_seqno;
1932 ring->irq_get = gen5_ring_get_irq;
1933 ring->irq_put = gen5_ring_put_irq;
1934 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1935 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1936 } else {
1937 ring->add_request = i9xx_add_request;
1938 if (INTEL_INFO(dev)->gen < 4)
1939 ring->flush = gen2_render_ring_flush;
1940 else
1941 ring->flush = gen4_render_ring_flush;
1942 ring->get_seqno = ring_get_seqno;
1943 ring->set_seqno = ring_set_seqno;
1944 if (IS_GEN2(dev)) {
1945 ring->irq_get = i8xx_ring_get_irq;
1946 ring->irq_put = i8xx_ring_put_irq;
1947 } else {
1948 ring->irq_get = i9xx_ring_get_irq;
1949 ring->irq_put = i9xx_ring_put_irq;
1950 }
1951 ring->irq_enable_mask = I915_USER_INTERRUPT;
1952 }
1953 ring->write_tail = ring_write_tail;
1954 if (IS_HASWELL(dev))
1955 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1956 else if (IS_GEN8(dev))
1957 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
1958 else if (INTEL_INFO(dev)->gen >= 6)
1959 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1960 else if (INTEL_INFO(dev)->gen >= 4)
1961 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1962 else if (IS_I830(dev) || IS_845G(dev))
1963 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1964 else
1965 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1966 ring->init = init_render_ring;
1967 ring->cleanup = render_ring_cleanup;
1968
1969 /* Workaround batchbuffer to combat CS tlb bug. */
1970 if (HAS_BROKEN_CS_TLB(dev)) {
1971 struct drm_i915_gem_object *obj;
1972 int ret;
1973
1974 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1975 if (obj == NULL) {
1976 DRM_ERROR("Failed to allocate batch bo\n");
1977 return -ENOMEM;
1978 }
1979
1980 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
1981 if (ret != 0) {
1982 drm_gem_object_unreference(&obj->base);
1983 DRM_ERROR("Failed to ping batch bo\n");
1984 return ret;
1985 }
1986
1987 ring->scratch.obj = obj;
1988 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
1989 }
1990
1991 return intel_init_ring_buffer(dev, ring);
1992 }
1993
1994 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1995 {
1996 struct drm_i915_private *dev_priv = dev->dev_private;
1997 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1998 int ret;
1999
2000 ring->name = "render ring";
2001 ring->id = RCS;
2002 ring->mmio_base = RENDER_RING_BASE;
2003
2004 if (INTEL_INFO(dev)->gen >= 6) {
2005 /* non-kms not supported on gen6+ */
2006 return -ENODEV;
2007 }
2008
2009 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2010 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2011 * the special gen5 functions. */
2012 ring->add_request = i9xx_add_request;
2013 if (INTEL_INFO(dev)->gen < 4)
2014 ring->flush = gen2_render_ring_flush;
2015 else
2016 ring->flush = gen4_render_ring_flush;
2017 ring->get_seqno = ring_get_seqno;
2018 ring->set_seqno = ring_set_seqno;
2019 if (IS_GEN2(dev)) {
2020 ring->irq_get = i8xx_ring_get_irq;
2021 ring->irq_put = i8xx_ring_put_irq;
2022 } else {
2023 ring->irq_get = i9xx_ring_get_irq;
2024 ring->irq_put = i9xx_ring_put_irq;
2025 }
2026 ring->irq_enable_mask = I915_USER_INTERRUPT;
2027 ring->write_tail = ring_write_tail;
2028 if (INTEL_INFO(dev)->gen >= 4)
2029 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2030 else if (IS_I830(dev) || IS_845G(dev))
2031 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2032 else
2033 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2034 ring->init = init_render_ring;
2035 ring->cleanup = render_ring_cleanup;
2036
2037 ring->dev = dev;
2038 INIT_LIST_HEAD(&ring->active_list);
2039 INIT_LIST_HEAD(&ring->request_list);
2040
2041 ring->size = size;
2042 ring->effective_size = ring->size;
2043 if (IS_I830(ring->dev) || IS_845G(ring->dev))
2044 ring->effective_size -= 128;
2045
2046 ring->virtual_start = ioremap_wc(start, size);
2047 if (ring->virtual_start == NULL) {
2048 DRM_ERROR("can not ioremap virtual address for"
2049 " ring buffer\n");
2050 return -ENOMEM;
2051 }
2052
2053 if (!I915_NEED_GFX_HWS(dev)) {
2054 ret = init_phys_status_page(ring);
2055 if (ret)
2056 return ret;
2057 }
2058
2059 return 0;
2060 }
2061
2062 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2063 {
2064 struct drm_i915_private *dev_priv = dev->dev_private;
2065 struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
2066
2067 ring->name = "bsd ring";
2068 ring->id = VCS;
2069
2070 ring->write_tail = ring_write_tail;
2071 if (INTEL_INFO(dev)->gen >= 6) {
2072 ring->mmio_base = GEN6_BSD_RING_BASE;
2073 /* gen6 bsd needs a special wa for tail updates */
2074 if (IS_GEN6(dev))
2075 ring->write_tail = gen6_bsd_ring_write_tail;
2076 ring->flush = gen6_bsd_ring_flush;
2077 ring->add_request = gen6_add_request;
2078 ring->get_seqno = gen6_ring_get_seqno;
2079 ring->set_seqno = ring_set_seqno;
2080 if (INTEL_INFO(dev)->gen >= 8) {
2081 ring->irq_enable_mask =
2082 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2083 ring->irq_get = gen8_ring_get_irq;
2084 ring->irq_put = gen8_ring_put_irq;
2085 ring->dispatch_execbuffer =
2086 gen8_ring_dispatch_execbuffer;
2087 } else {
2088 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2089 ring->irq_get = gen6_ring_get_irq;
2090 ring->irq_put = gen6_ring_put_irq;
2091 ring->dispatch_execbuffer =
2092 gen6_ring_dispatch_execbuffer;
2093 }
2094 ring->sync_to = gen6_ring_sync;
2095 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
2096 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2097 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
2098 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
2099 ring->signal_mbox[RCS] = GEN6_RVSYNC;
2100 ring->signal_mbox[VCS] = GEN6_NOSYNC;
2101 ring->signal_mbox[BCS] = GEN6_BVSYNC;
2102 ring->signal_mbox[VECS] = GEN6_VEVSYNC;
2103 } else {
2104 ring->mmio_base = BSD_RING_BASE;
2105 ring->flush = bsd_ring_flush;
2106 ring->add_request = i9xx_add_request;
2107 ring->get_seqno = ring_get_seqno;
2108 ring->set_seqno = ring_set_seqno;
2109 if (IS_GEN5(dev)) {
2110 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2111 ring->irq_get = gen5_ring_get_irq;
2112 ring->irq_put = gen5_ring_put_irq;
2113 } else {
2114 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2115 ring->irq_get = i9xx_ring_get_irq;
2116 ring->irq_put = i9xx_ring_put_irq;
2117 }
2118 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2119 }
2120 ring->init = init_ring_common;
2121
2122 return intel_init_ring_buffer(dev, ring);
2123 }
2124
2125 int intel_init_blt_ring_buffer(struct drm_device *dev)
2126 {
2127 struct drm_i915_private *dev_priv = dev->dev_private;
2128 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
2129
2130 ring->name = "blitter ring";
2131 ring->id = BCS;
2132
2133 ring->mmio_base = BLT_RING_BASE;
2134 ring->write_tail = ring_write_tail;
2135 ring->flush = gen6_ring_flush;
2136 ring->add_request = gen6_add_request;
2137 ring->get_seqno = gen6_ring_get_seqno;
2138 ring->set_seqno = ring_set_seqno;
2139 if (INTEL_INFO(dev)->gen >= 8) {
2140 ring->irq_enable_mask =
2141 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2142 ring->irq_get = gen8_ring_get_irq;
2143 ring->irq_put = gen8_ring_put_irq;
2144 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2145 } else {
2146 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2147 ring->irq_get = gen6_ring_get_irq;
2148 ring->irq_put = gen6_ring_put_irq;
2149 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2150 }
2151 ring->sync_to = gen6_ring_sync;
2152 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
2153 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
2154 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2155 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
2156 ring->signal_mbox[RCS] = GEN6_RBSYNC;
2157 ring->signal_mbox[VCS] = GEN6_VBSYNC;
2158 ring->signal_mbox[BCS] = GEN6_NOSYNC;
2159 ring->signal_mbox[VECS] = GEN6_VEBSYNC;
2160 ring->init = init_ring_common;
2161
2162 return intel_init_ring_buffer(dev, ring);
2163 }
2164
2165 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2166 {
2167 struct drm_i915_private *dev_priv = dev->dev_private;
2168 struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2169
2170 ring->name = "video enhancement ring";
2171 ring->id = VECS;
2172
2173 ring->mmio_base = VEBOX_RING_BASE;
2174 ring->write_tail = ring_write_tail;
2175 ring->flush = gen6_ring_flush;
2176 ring->add_request = gen6_add_request;
2177 ring->get_seqno = gen6_ring_get_seqno;
2178 ring->set_seqno = ring_set_seqno;
2179
2180 if (INTEL_INFO(dev)->gen >= 8) {
2181 ring->irq_enable_mask =
2182 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2183 ring->irq_get = gen8_ring_get_irq;
2184 ring->irq_put = gen8_ring_put_irq;
2185 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2186 } else {
2187 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2188 ring->irq_get = hsw_vebox_get_irq;
2189 ring->irq_put = hsw_vebox_put_irq;
2190 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2191 }
2192 ring->sync_to = gen6_ring_sync;
2193 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
2194 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
2195 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
2196 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2197 ring->signal_mbox[RCS] = GEN6_RVESYNC;
2198 ring->signal_mbox[VCS] = GEN6_VVESYNC;
2199 ring->signal_mbox[BCS] = GEN6_BVESYNC;
2200 ring->signal_mbox[VECS] = GEN6_NOSYNC;
2201 ring->init = init_ring_common;
2202
2203 return intel_init_ring_buffer(dev, ring);
2204 }
2205
2206 int
2207 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2208 {
2209 int ret;
2210
2211 if (!ring->gpu_caches_dirty)
2212 return 0;
2213
2214 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2215 if (ret)
2216 return ret;
2217
2218 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2219
2220 ring->gpu_caches_dirty = false;
2221 return 0;
2222 }
2223
2224 int
2225 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2226 {
2227 uint32_t flush_domains;
2228 int ret;
2229
2230 flush_domains = 0;
2231 if (ring->gpu_caches_dirty)
2232 flush_domains = I915_GEM_GPU_DOMAINS;
2233
2234 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2235 if (ret)
2236 return ret;
2237
2238 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2239
2240 ring->gpu_caches_dirty = false;
2241 return 0;
2242 }
This page took 0.07528 seconds and 6 git commands to generate.