drm/i915: Support 64b execbuf
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
37 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
38 * to give some inclination as to some of the magic values used in the various
39 * workarounds!
40 */
41 #define CACHELINE_BYTES 64
42
43 static inline int ring_space(struct intel_ring_buffer *ring)
44 {
45 int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
46 if (space < 0)
47 space += ring->size;
48 return space;
49 }
50
51 static bool intel_ring_stopped(struct intel_ring_buffer *ring)
52 {
53 struct drm_i915_private *dev_priv = ring->dev->dev_private;
54 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
55 }
56
57 void __intel_ring_advance(struct intel_ring_buffer *ring)
58 {
59 ring->tail &= ring->size - 1;
60 if (intel_ring_stopped(ring))
61 return;
62 ring->write_tail(ring, ring->tail);
63 }
64
65 static int
66 gen2_render_ring_flush(struct intel_ring_buffer *ring,
67 u32 invalidate_domains,
68 u32 flush_domains)
69 {
70 u32 cmd;
71 int ret;
72
73 cmd = MI_FLUSH;
74 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
75 cmd |= MI_NO_WRITE_FLUSH;
76
77 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
78 cmd |= MI_READ_FLUSH;
79
80 ret = intel_ring_begin(ring, 2);
81 if (ret)
82 return ret;
83
84 intel_ring_emit(ring, cmd);
85 intel_ring_emit(ring, MI_NOOP);
86 intel_ring_advance(ring);
87
88 return 0;
89 }
90
91 static int
92 gen4_render_ring_flush(struct intel_ring_buffer *ring,
93 u32 invalidate_domains,
94 u32 flush_domains)
95 {
96 struct drm_device *dev = ring->dev;
97 u32 cmd;
98 int ret;
99
100 /*
101 * read/write caches:
102 *
103 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
104 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
105 * also flushed at 2d versus 3d pipeline switches.
106 *
107 * read-only caches:
108 *
109 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
110 * MI_READ_FLUSH is set, and is always flushed on 965.
111 *
112 * I915_GEM_DOMAIN_COMMAND may not exist?
113 *
114 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
115 * invalidated when MI_EXE_FLUSH is set.
116 *
117 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
118 * invalidated with every MI_FLUSH.
119 *
120 * TLBs:
121 *
122 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
123 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
124 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
125 * are flushed at any MI_FLUSH.
126 */
127
128 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
129 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
130 cmd &= ~MI_NO_WRITE_FLUSH;
131 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
132 cmd |= MI_EXE_FLUSH;
133
134 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
135 (IS_G4X(dev) || IS_GEN5(dev)))
136 cmd |= MI_INVALIDATE_ISP;
137
138 ret = intel_ring_begin(ring, 2);
139 if (ret)
140 return ret;
141
142 intel_ring_emit(ring, cmd);
143 intel_ring_emit(ring, MI_NOOP);
144 intel_ring_advance(ring);
145
146 return 0;
147 }
148
149 /**
150 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
151 * implementing two workarounds on gen6. From section 1.4.7.1
152 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
153 *
154 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
155 * produced by non-pipelined state commands), software needs to first
156 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
157 * 0.
158 *
159 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
160 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
161 *
162 * And the workaround for these two requires this workaround first:
163 *
164 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
165 * BEFORE the pipe-control with a post-sync op and no write-cache
166 * flushes.
167 *
168 * And this last workaround is tricky because of the requirements on
169 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
170 * volume 2 part 1:
171 *
172 * "1 of the following must also be set:
173 * - Render Target Cache Flush Enable ([12] of DW1)
174 * - Depth Cache Flush Enable ([0] of DW1)
175 * - Stall at Pixel Scoreboard ([1] of DW1)
176 * - Depth Stall ([13] of DW1)
177 * - Post-Sync Operation ([13] of DW1)
178 * - Notify Enable ([8] of DW1)"
179 *
180 * The cache flushes require the workaround flush that triggered this
181 * one, so we can't use it. Depth stall would trigger the same.
182 * Post-sync nonzero is what triggered this second workaround, so we
183 * can't use that one either. Notify enable is IRQs, which aren't
184 * really our business. That leaves only stall at scoreboard.
185 */
186 static int
187 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
188 {
189 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
190 int ret;
191
192
193 ret = intel_ring_begin(ring, 6);
194 if (ret)
195 return ret;
196
197 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
198 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
199 PIPE_CONTROL_STALL_AT_SCOREBOARD);
200 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
201 intel_ring_emit(ring, 0); /* low dword */
202 intel_ring_emit(ring, 0); /* high dword */
203 intel_ring_emit(ring, MI_NOOP);
204 intel_ring_advance(ring);
205
206 ret = intel_ring_begin(ring, 6);
207 if (ret)
208 return ret;
209
210 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
211 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
212 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
213 intel_ring_emit(ring, 0);
214 intel_ring_emit(ring, 0);
215 intel_ring_emit(ring, MI_NOOP);
216 intel_ring_advance(ring);
217
218 return 0;
219 }
220
221 static int
222 gen6_render_ring_flush(struct intel_ring_buffer *ring,
223 u32 invalidate_domains, u32 flush_domains)
224 {
225 u32 flags = 0;
226 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
227 int ret;
228
229 /* Force SNB workarounds for PIPE_CONTROL flushes */
230 ret = intel_emit_post_sync_nonzero_flush(ring);
231 if (ret)
232 return ret;
233
234 /* Just flush everything. Experiments have shown that reducing the
235 * number of bits based on the write domains has little performance
236 * impact.
237 */
238 if (flush_domains) {
239 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
240 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
241 /*
242 * Ensure that any following seqno writes only happen
243 * when the render cache is indeed flushed.
244 */
245 flags |= PIPE_CONTROL_CS_STALL;
246 }
247 if (invalidate_domains) {
248 flags |= PIPE_CONTROL_TLB_INVALIDATE;
249 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
250 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
251 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
252 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
253 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
254 /*
255 * TLB invalidate requires a post-sync write.
256 */
257 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
258 }
259
260 ret = intel_ring_begin(ring, 4);
261 if (ret)
262 return ret;
263
264 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
265 intel_ring_emit(ring, flags);
266 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
267 intel_ring_emit(ring, 0);
268 intel_ring_advance(ring);
269
270 return 0;
271 }
272
273 static int
274 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
275 {
276 int ret;
277
278 ret = intel_ring_begin(ring, 4);
279 if (ret)
280 return ret;
281
282 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
283 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
284 PIPE_CONTROL_STALL_AT_SCOREBOARD);
285 intel_ring_emit(ring, 0);
286 intel_ring_emit(ring, 0);
287 intel_ring_advance(ring);
288
289 return 0;
290 }
291
292 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
293 {
294 int ret;
295
296 if (!ring->fbc_dirty)
297 return 0;
298
299 ret = intel_ring_begin(ring, 6);
300 if (ret)
301 return ret;
302 /* WaFbcNukeOn3DBlt:ivb/hsw */
303 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
304 intel_ring_emit(ring, MSG_FBC_REND_STATE);
305 intel_ring_emit(ring, value);
306 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
307 intel_ring_emit(ring, MSG_FBC_REND_STATE);
308 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
309 intel_ring_advance(ring);
310
311 ring->fbc_dirty = false;
312 return 0;
313 }
314
315 static int
316 gen7_render_ring_flush(struct intel_ring_buffer *ring,
317 u32 invalidate_domains, u32 flush_domains)
318 {
319 u32 flags = 0;
320 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
321 int ret;
322
323 /*
324 * Ensure that any following seqno writes only happen when the render
325 * cache is indeed flushed.
326 *
327 * Workaround: 4th PIPE_CONTROL command (except the ones with only
328 * read-cache invalidate bits set) must have the CS_STALL bit set. We
329 * don't try to be clever and just set it unconditionally.
330 */
331 flags |= PIPE_CONTROL_CS_STALL;
332
333 /* Just flush everything. Experiments have shown that reducing the
334 * number of bits based on the write domains has little performance
335 * impact.
336 */
337 if (flush_domains) {
338 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
339 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
340 }
341 if (invalidate_domains) {
342 flags |= PIPE_CONTROL_TLB_INVALIDATE;
343 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
344 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
345 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
346 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
347 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
348 /*
349 * TLB invalidate requires a post-sync write.
350 */
351 flags |= PIPE_CONTROL_QW_WRITE;
352 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
353
354 /* Workaround: we must issue a pipe_control with CS-stall bit
355 * set before a pipe_control command that has the state cache
356 * invalidate bit set. */
357 gen7_render_ring_cs_stall_wa(ring);
358 }
359
360 ret = intel_ring_begin(ring, 4);
361 if (ret)
362 return ret;
363
364 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
365 intel_ring_emit(ring, flags);
366 intel_ring_emit(ring, scratch_addr);
367 intel_ring_emit(ring, 0);
368 intel_ring_advance(ring);
369
370 if (!invalidate_domains && flush_domains)
371 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
372
373 return 0;
374 }
375
376 static int
377 gen8_render_ring_flush(struct intel_ring_buffer *ring,
378 u32 invalidate_domains, u32 flush_domains)
379 {
380 u32 flags = 0;
381 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
382 int ret;
383
384 flags |= PIPE_CONTROL_CS_STALL;
385
386 if (flush_domains) {
387 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
388 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
389 }
390 if (invalidate_domains) {
391 flags |= PIPE_CONTROL_TLB_INVALIDATE;
392 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
393 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
394 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
395 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
396 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
397 flags |= PIPE_CONTROL_QW_WRITE;
398 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
399 }
400
401 ret = intel_ring_begin(ring, 6);
402 if (ret)
403 return ret;
404
405 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
406 intel_ring_emit(ring, flags);
407 intel_ring_emit(ring, scratch_addr);
408 intel_ring_emit(ring, 0);
409 intel_ring_emit(ring, 0);
410 intel_ring_emit(ring, 0);
411 intel_ring_advance(ring);
412
413 return 0;
414
415 }
416
417 static void ring_write_tail(struct intel_ring_buffer *ring,
418 u32 value)
419 {
420 struct drm_i915_private *dev_priv = ring->dev->dev_private;
421 I915_WRITE_TAIL(ring, value);
422 }
423
424 u64 intel_ring_get_active_head(struct intel_ring_buffer *ring)
425 {
426 struct drm_i915_private *dev_priv = ring->dev->dev_private;
427 u64 acthd;
428
429 if (INTEL_INFO(ring->dev)->gen >= 8)
430 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
431 RING_ACTHD_UDW(ring->mmio_base));
432 else if (INTEL_INFO(ring->dev)->gen >= 4)
433 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
434 else
435 acthd = I915_READ(ACTHD);
436
437 return acthd;
438 }
439
440 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
441 {
442 struct drm_i915_private *dev_priv = ring->dev->dev_private;
443 u32 addr;
444
445 addr = dev_priv->status_page_dmah->busaddr;
446 if (INTEL_INFO(ring->dev)->gen >= 4)
447 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
448 I915_WRITE(HWS_PGA, addr);
449 }
450
451 static bool stop_ring(struct intel_ring_buffer *ring)
452 {
453 struct drm_i915_private *dev_priv = to_i915(ring->dev);
454
455 if (!IS_GEN2(ring->dev)) {
456 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
457 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
458 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
459 return false;
460 }
461 }
462
463 I915_WRITE_CTL(ring, 0);
464 I915_WRITE_HEAD(ring, 0);
465 ring->write_tail(ring, 0);
466
467 if (!IS_GEN2(ring->dev)) {
468 (void)I915_READ_CTL(ring);
469 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
470 }
471
472 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
473 }
474
475 static int init_ring_common(struct intel_ring_buffer *ring)
476 {
477 struct drm_device *dev = ring->dev;
478 struct drm_i915_private *dev_priv = dev->dev_private;
479 struct drm_i915_gem_object *obj = ring->obj;
480 int ret = 0;
481
482 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
483
484 if (!stop_ring(ring)) {
485 /* G45 ring initialization often fails to reset head to zero */
486 DRM_DEBUG_KMS("%s head not reset to zero "
487 "ctl %08x head %08x tail %08x start %08x\n",
488 ring->name,
489 I915_READ_CTL(ring),
490 I915_READ_HEAD(ring),
491 I915_READ_TAIL(ring),
492 I915_READ_START(ring));
493
494 if (!stop_ring(ring)) {
495 DRM_ERROR("failed to set %s head to zero "
496 "ctl %08x head %08x tail %08x start %08x\n",
497 ring->name,
498 I915_READ_CTL(ring),
499 I915_READ_HEAD(ring),
500 I915_READ_TAIL(ring),
501 I915_READ_START(ring));
502 ret = -EIO;
503 goto out;
504 }
505 }
506
507 if (I915_NEED_GFX_HWS(dev))
508 intel_ring_setup_status_page(ring);
509 else
510 ring_setup_phys_status_page(ring);
511
512 /* Initialize the ring. This must happen _after_ we've cleared the ring
513 * registers with the above sequence (the readback of the HEAD registers
514 * also enforces ordering), otherwise the hw might lose the new ring
515 * register values. */
516 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
517 I915_WRITE_CTL(ring,
518 ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
519 | RING_VALID);
520
521 /* If the head is still not zero, the ring is dead */
522 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
523 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
524 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
525 DRM_ERROR("%s initialization failed "
526 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
527 ring->name,
528 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
529 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
530 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
531 ret = -EIO;
532 goto out;
533 }
534
535 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
536 i915_kernel_lost_context(ring->dev);
537 else {
538 ring->head = I915_READ_HEAD(ring);
539 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
540 ring->space = ring_space(ring);
541 ring->last_retired_head = -1;
542 }
543
544 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
545
546 out:
547 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
548
549 return ret;
550 }
551
552 static int
553 init_pipe_control(struct intel_ring_buffer *ring)
554 {
555 int ret;
556
557 if (ring->scratch.obj)
558 return 0;
559
560 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
561 if (ring->scratch.obj == NULL) {
562 DRM_ERROR("Failed to allocate seqno page\n");
563 ret = -ENOMEM;
564 goto err;
565 }
566
567 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
568 if (ret)
569 goto err_unref;
570
571 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
572 if (ret)
573 goto err_unref;
574
575 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
576 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
577 if (ring->scratch.cpu_page == NULL) {
578 ret = -ENOMEM;
579 goto err_unpin;
580 }
581
582 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
583 ring->name, ring->scratch.gtt_offset);
584 return 0;
585
586 err_unpin:
587 i915_gem_object_ggtt_unpin(ring->scratch.obj);
588 err_unref:
589 drm_gem_object_unreference(&ring->scratch.obj->base);
590 err:
591 return ret;
592 }
593
594 static int init_render_ring(struct intel_ring_buffer *ring)
595 {
596 struct drm_device *dev = ring->dev;
597 struct drm_i915_private *dev_priv = dev->dev_private;
598 int ret = init_ring_common(ring);
599
600 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
601 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
602 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
603
604 /* We need to disable the AsyncFlip performance optimisations in order
605 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
606 * programmed to '1' on all products.
607 *
608 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw
609 */
610 if (INTEL_INFO(dev)->gen >= 6)
611 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
612
613 /* Required for the hardware to program scanline values for waiting */
614 /* WaEnableFlushTlbInvalidationMode:snb */
615 if (INTEL_INFO(dev)->gen == 6)
616 I915_WRITE(GFX_MODE,
617 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
618
619 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
620 if (IS_GEN7(dev))
621 I915_WRITE(GFX_MODE_GEN7,
622 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
623 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
624
625 if (INTEL_INFO(dev)->gen >= 5) {
626 ret = init_pipe_control(ring);
627 if (ret)
628 return ret;
629 }
630
631 if (IS_GEN6(dev)) {
632 /* From the Sandybridge PRM, volume 1 part 3, page 24:
633 * "If this bit is set, STCunit will have LRA as replacement
634 * policy. [...] This bit must be reset. LRA replacement
635 * policy is not supported."
636 */
637 I915_WRITE(CACHE_MODE_0,
638 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
639 }
640
641 if (INTEL_INFO(dev)->gen >= 6)
642 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
643
644 if (HAS_L3_DPF(dev))
645 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
646
647 return ret;
648 }
649
650 static void render_ring_cleanup(struct intel_ring_buffer *ring)
651 {
652 struct drm_device *dev = ring->dev;
653
654 if (ring->scratch.obj == NULL)
655 return;
656
657 if (INTEL_INFO(dev)->gen >= 5) {
658 kunmap(sg_page(ring->scratch.obj->pages->sgl));
659 i915_gem_object_ggtt_unpin(ring->scratch.obj);
660 }
661
662 drm_gem_object_unreference(&ring->scratch.obj->base);
663 ring->scratch.obj = NULL;
664 }
665
666 static int gen6_signal(struct intel_ring_buffer *signaller,
667 unsigned int num_dwords)
668 {
669 struct drm_device *dev = signaller->dev;
670 struct drm_i915_private *dev_priv = dev->dev_private;
671 struct intel_ring_buffer *useless;
672 int i, ret;
673
674 /* NB: In order to be able to do semaphore MBOX updates for varying
675 * number of rings, it's easiest if we round up each individual update
676 * to a multiple of 2 (since ring updates must always be a multiple of
677 * 2) even though the actual update only requires 3 dwords.
678 */
679 #define MBOX_UPDATE_DWORDS 4
680 if (i915_semaphore_is_enabled(dev))
681 num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
682
683 ret = intel_ring_begin(signaller, num_dwords);
684 if (ret)
685 return ret;
686 #undef MBOX_UPDATE_DWORDS
687
688 for_each_ring(useless, dev_priv, i) {
689 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
690 if (mbox_reg != GEN6_NOSYNC) {
691 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
692 intel_ring_emit(signaller, mbox_reg);
693 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
694 intel_ring_emit(signaller, MI_NOOP);
695 } else {
696 intel_ring_emit(signaller, MI_NOOP);
697 intel_ring_emit(signaller, MI_NOOP);
698 intel_ring_emit(signaller, MI_NOOP);
699 intel_ring_emit(signaller, MI_NOOP);
700 }
701 }
702
703 return 0;
704 }
705
706 /**
707 * gen6_add_request - Update the semaphore mailbox registers
708 *
709 * @ring - ring that is adding a request
710 * @seqno - return seqno stuck into the ring
711 *
712 * Update the mailbox registers in the *other* rings with the current seqno.
713 * This acts like a signal in the canonical semaphore.
714 */
715 static int
716 gen6_add_request(struct intel_ring_buffer *ring)
717 {
718 int ret;
719
720 ret = ring->semaphore.signal(ring, 4);
721 if (ret)
722 return ret;
723
724 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
725 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
726 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
727 intel_ring_emit(ring, MI_USER_INTERRUPT);
728 __intel_ring_advance(ring);
729
730 return 0;
731 }
732
733 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
734 u32 seqno)
735 {
736 struct drm_i915_private *dev_priv = dev->dev_private;
737 return dev_priv->last_seqno < seqno;
738 }
739
740 /**
741 * intel_ring_sync - sync the waiter to the signaller on seqno
742 *
743 * @waiter - ring that is waiting
744 * @signaller - ring which has, or will signal
745 * @seqno - seqno which the waiter will block on
746 */
747 static int
748 gen6_ring_sync(struct intel_ring_buffer *waiter,
749 struct intel_ring_buffer *signaller,
750 u32 seqno)
751 {
752 u32 dw1 = MI_SEMAPHORE_MBOX |
753 MI_SEMAPHORE_COMPARE |
754 MI_SEMAPHORE_REGISTER;
755 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
756 int ret;
757
758 /* Throughout all of the GEM code, seqno passed implies our current
759 * seqno is >= the last seqno executed. However for hardware the
760 * comparison is strictly greater than.
761 */
762 seqno -= 1;
763
764 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
765
766 ret = intel_ring_begin(waiter, 4);
767 if (ret)
768 return ret;
769
770 /* If seqno wrap happened, omit the wait with no-ops */
771 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
772 intel_ring_emit(waiter, dw1 | wait_mbox);
773 intel_ring_emit(waiter, seqno);
774 intel_ring_emit(waiter, 0);
775 intel_ring_emit(waiter, MI_NOOP);
776 } else {
777 intel_ring_emit(waiter, MI_NOOP);
778 intel_ring_emit(waiter, MI_NOOP);
779 intel_ring_emit(waiter, MI_NOOP);
780 intel_ring_emit(waiter, MI_NOOP);
781 }
782 intel_ring_advance(waiter);
783
784 return 0;
785 }
786
787 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
788 do { \
789 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
790 PIPE_CONTROL_DEPTH_STALL); \
791 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
792 intel_ring_emit(ring__, 0); \
793 intel_ring_emit(ring__, 0); \
794 } while (0)
795
796 static int
797 pc_render_add_request(struct intel_ring_buffer *ring)
798 {
799 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
800 int ret;
801
802 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
803 * incoherent with writes to memory, i.e. completely fubar,
804 * so we need to use PIPE_NOTIFY instead.
805 *
806 * However, we also need to workaround the qword write
807 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
808 * memory before requesting an interrupt.
809 */
810 ret = intel_ring_begin(ring, 32);
811 if (ret)
812 return ret;
813
814 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
815 PIPE_CONTROL_WRITE_FLUSH |
816 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
817 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
818 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
819 intel_ring_emit(ring, 0);
820 PIPE_CONTROL_FLUSH(ring, scratch_addr);
821 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
822 PIPE_CONTROL_FLUSH(ring, scratch_addr);
823 scratch_addr += 2 * CACHELINE_BYTES;
824 PIPE_CONTROL_FLUSH(ring, scratch_addr);
825 scratch_addr += 2 * CACHELINE_BYTES;
826 PIPE_CONTROL_FLUSH(ring, scratch_addr);
827 scratch_addr += 2 * CACHELINE_BYTES;
828 PIPE_CONTROL_FLUSH(ring, scratch_addr);
829 scratch_addr += 2 * CACHELINE_BYTES;
830 PIPE_CONTROL_FLUSH(ring, scratch_addr);
831
832 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
833 PIPE_CONTROL_WRITE_FLUSH |
834 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
835 PIPE_CONTROL_NOTIFY);
836 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
837 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
838 intel_ring_emit(ring, 0);
839 __intel_ring_advance(ring);
840
841 return 0;
842 }
843
844 static u32
845 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
846 {
847 /* Workaround to force correct ordering between irq and seqno writes on
848 * ivb (and maybe also on snb) by reading from a CS register (like
849 * ACTHD) before reading the status page. */
850 if (!lazy_coherency) {
851 struct drm_i915_private *dev_priv = ring->dev->dev_private;
852 POSTING_READ(RING_ACTHD(ring->mmio_base));
853 }
854
855 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
856 }
857
858 static u32
859 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
860 {
861 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
862 }
863
864 static void
865 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
866 {
867 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
868 }
869
870 static u32
871 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
872 {
873 return ring->scratch.cpu_page[0];
874 }
875
876 static void
877 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
878 {
879 ring->scratch.cpu_page[0] = seqno;
880 }
881
882 static bool
883 gen5_ring_get_irq(struct intel_ring_buffer *ring)
884 {
885 struct drm_device *dev = ring->dev;
886 struct drm_i915_private *dev_priv = dev->dev_private;
887 unsigned long flags;
888
889 if (!dev->irq_enabled)
890 return false;
891
892 spin_lock_irqsave(&dev_priv->irq_lock, flags);
893 if (ring->irq_refcount++ == 0)
894 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
895 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
896
897 return true;
898 }
899
900 static void
901 gen5_ring_put_irq(struct intel_ring_buffer *ring)
902 {
903 struct drm_device *dev = ring->dev;
904 struct drm_i915_private *dev_priv = dev->dev_private;
905 unsigned long flags;
906
907 spin_lock_irqsave(&dev_priv->irq_lock, flags);
908 if (--ring->irq_refcount == 0)
909 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
910 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
911 }
912
913 static bool
914 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
915 {
916 struct drm_device *dev = ring->dev;
917 struct drm_i915_private *dev_priv = dev->dev_private;
918 unsigned long flags;
919
920 if (!dev->irq_enabled)
921 return false;
922
923 spin_lock_irqsave(&dev_priv->irq_lock, flags);
924 if (ring->irq_refcount++ == 0) {
925 dev_priv->irq_mask &= ~ring->irq_enable_mask;
926 I915_WRITE(IMR, dev_priv->irq_mask);
927 POSTING_READ(IMR);
928 }
929 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
930
931 return true;
932 }
933
934 static void
935 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
936 {
937 struct drm_device *dev = ring->dev;
938 struct drm_i915_private *dev_priv = dev->dev_private;
939 unsigned long flags;
940
941 spin_lock_irqsave(&dev_priv->irq_lock, flags);
942 if (--ring->irq_refcount == 0) {
943 dev_priv->irq_mask |= ring->irq_enable_mask;
944 I915_WRITE(IMR, dev_priv->irq_mask);
945 POSTING_READ(IMR);
946 }
947 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
948 }
949
950 static bool
951 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
952 {
953 struct drm_device *dev = ring->dev;
954 struct drm_i915_private *dev_priv = dev->dev_private;
955 unsigned long flags;
956
957 if (!dev->irq_enabled)
958 return false;
959
960 spin_lock_irqsave(&dev_priv->irq_lock, flags);
961 if (ring->irq_refcount++ == 0) {
962 dev_priv->irq_mask &= ~ring->irq_enable_mask;
963 I915_WRITE16(IMR, dev_priv->irq_mask);
964 POSTING_READ16(IMR);
965 }
966 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
967
968 return true;
969 }
970
971 static void
972 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
973 {
974 struct drm_device *dev = ring->dev;
975 struct drm_i915_private *dev_priv = dev->dev_private;
976 unsigned long flags;
977
978 spin_lock_irqsave(&dev_priv->irq_lock, flags);
979 if (--ring->irq_refcount == 0) {
980 dev_priv->irq_mask |= ring->irq_enable_mask;
981 I915_WRITE16(IMR, dev_priv->irq_mask);
982 POSTING_READ16(IMR);
983 }
984 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
985 }
986
987 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
988 {
989 struct drm_device *dev = ring->dev;
990 struct drm_i915_private *dev_priv = ring->dev->dev_private;
991 u32 mmio = 0;
992
993 /* The ring status page addresses are no longer next to the rest of
994 * the ring registers as of gen7.
995 */
996 if (IS_GEN7(dev)) {
997 switch (ring->id) {
998 case RCS:
999 mmio = RENDER_HWS_PGA_GEN7;
1000 break;
1001 case BCS:
1002 mmio = BLT_HWS_PGA_GEN7;
1003 break;
1004 /*
1005 * VCS2 actually doesn't exist on Gen7. Only shut up
1006 * gcc switch check warning
1007 */
1008 case VCS2:
1009 case VCS:
1010 mmio = BSD_HWS_PGA_GEN7;
1011 break;
1012 case VECS:
1013 mmio = VEBOX_HWS_PGA_GEN7;
1014 break;
1015 }
1016 } else if (IS_GEN6(ring->dev)) {
1017 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1018 } else {
1019 /* XXX: gen8 returns to sanity */
1020 mmio = RING_HWS_PGA(ring->mmio_base);
1021 }
1022
1023 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1024 POSTING_READ(mmio);
1025
1026 /*
1027 * Flush the TLB for this page
1028 *
1029 * FIXME: These two bits have disappeared on gen8, so a question
1030 * arises: do we still need this and if so how should we go about
1031 * invalidating the TLB?
1032 */
1033 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1034 u32 reg = RING_INSTPM(ring->mmio_base);
1035
1036 /* ring should be idle before issuing a sync flush*/
1037 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1038
1039 I915_WRITE(reg,
1040 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1041 INSTPM_SYNC_FLUSH));
1042 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1043 1000))
1044 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1045 ring->name);
1046 }
1047 }
1048
1049 static int
1050 bsd_ring_flush(struct intel_ring_buffer *ring,
1051 u32 invalidate_domains,
1052 u32 flush_domains)
1053 {
1054 int ret;
1055
1056 ret = intel_ring_begin(ring, 2);
1057 if (ret)
1058 return ret;
1059
1060 intel_ring_emit(ring, MI_FLUSH);
1061 intel_ring_emit(ring, MI_NOOP);
1062 intel_ring_advance(ring);
1063 return 0;
1064 }
1065
1066 static int
1067 i9xx_add_request(struct intel_ring_buffer *ring)
1068 {
1069 int ret;
1070
1071 ret = intel_ring_begin(ring, 4);
1072 if (ret)
1073 return ret;
1074
1075 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1076 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1077 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1078 intel_ring_emit(ring, MI_USER_INTERRUPT);
1079 __intel_ring_advance(ring);
1080
1081 return 0;
1082 }
1083
1084 static bool
1085 gen6_ring_get_irq(struct intel_ring_buffer *ring)
1086 {
1087 struct drm_device *dev = ring->dev;
1088 struct drm_i915_private *dev_priv = dev->dev_private;
1089 unsigned long flags;
1090
1091 if (!dev->irq_enabled)
1092 return false;
1093
1094 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1095 if (ring->irq_refcount++ == 0) {
1096 if (HAS_L3_DPF(dev) && ring->id == RCS)
1097 I915_WRITE_IMR(ring,
1098 ~(ring->irq_enable_mask |
1099 GT_PARITY_ERROR(dev)));
1100 else
1101 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1102 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1103 }
1104 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1105
1106 return true;
1107 }
1108
1109 static void
1110 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1111 {
1112 struct drm_device *dev = ring->dev;
1113 struct drm_i915_private *dev_priv = dev->dev_private;
1114 unsigned long flags;
1115
1116 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1117 if (--ring->irq_refcount == 0) {
1118 if (HAS_L3_DPF(dev) && ring->id == RCS)
1119 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1120 else
1121 I915_WRITE_IMR(ring, ~0);
1122 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1123 }
1124 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1125 }
1126
1127 static bool
1128 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1129 {
1130 struct drm_device *dev = ring->dev;
1131 struct drm_i915_private *dev_priv = dev->dev_private;
1132 unsigned long flags;
1133
1134 if (!dev->irq_enabled)
1135 return false;
1136
1137 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1138 if (ring->irq_refcount++ == 0) {
1139 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1140 snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1141 }
1142 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1143
1144 return true;
1145 }
1146
1147 static void
1148 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1149 {
1150 struct drm_device *dev = ring->dev;
1151 struct drm_i915_private *dev_priv = dev->dev_private;
1152 unsigned long flags;
1153
1154 if (!dev->irq_enabled)
1155 return;
1156
1157 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1158 if (--ring->irq_refcount == 0) {
1159 I915_WRITE_IMR(ring, ~0);
1160 snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1161 }
1162 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1163 }
1164
1165 static bool
1166 gen8_ring_get_irq(struct intel_ring_buffer *ring)
1167 {
1168 struct drm_device *dev = ring->dev;
1169 struct drm_i915_private *dev_priv = dev->dev_private;
1170 unsigned long flags;
1171
1172 if (!dev->irq_enabled)
1173 return false;
1174
1175 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1176 if (ring->irq_refcount++ == 0) {
1177 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1178 I915_WRITE_IMR(ring,
1179 ~(ring->irq_enable_mask |
1180 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1181 } else {
1182 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1183 }
1184 POSTING_READ(RING_IMR(ring->mmio_base));
1185 }
1186 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1187
1188 return true;
1189 }
1190
1191 static void
1192 gen8_ring_put_irq(struct intel_ring_buffer *ring)
1193 {
1194 struct drm_device *dev = ring->dev;
1195 struct drm_i915_private *dev_priv = dev->dev_private;
1196 unsigned long flags;
1197
1198 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1199 if (--ring->irq_refcount == 0) {
1200 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1201 I915_WRITE_IMR(ring,
1202 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1203 } else {
1204 I915_WRITE_IMR(ring, ~0);
1205 }
1206 POSTING_READ(RING_IMR(ring->mmio_base));
1207 }
1208 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1209 }
1210
1211 static int
1212 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1213 u64 offset, u32 length,
1214 unsigned flags)
1215 {
1216 int ret;
1217
1218 ret = intel_ring_begin(ring, 2);
1219 if (ret)
1220 return ret;
1221
1222 intel_ring_emit(ring,
1223 MI_BATCH_BUFFER_START |
1224 MI_BATCH_GTT |
1225 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1226 intel_ring_emit(ring, offset);
1227 intel_ring_advance(ring);
1228
1229 return 0;
1230 }
1231
1232 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1233 #define I830_BATCH_LIMIT (256*1024)
1234 static int
1235 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1236 u64 offset, u32 len,
1237 unsigned flags)
1238 {
1239 int ret;
1240
1241 if (flags & I915_DISPATCH_PINNED) {
1242 ret = intel_ring_begin(ring, 4);
1243 if (ret)
1244 return ret;
1245
1246 intel_ring_emit(ring, MI_BATCH_BUFFER);
1247 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1248 intel_ring_emit(ring, offset + len - 8);
1249 intel_ring_emit(ring, MI_NOOP);
1250 intel_ring_advance(ring);
1251 } else {
1252 u32 cs_offset = ring->scratch.gtt_offset;
1253
1254 if (len > I830_BATCH_LIMIT)
1255 return -ENOSPC;
1256
1257 ret = intel_ring_begin(ring, 9+3);
1258 if (ret)
1259 return ret;
1260 /* Blit the batch (which has now all relocs applied) to the stable batch
1261 * scratch bo area (so that the CS never stumbles over its tlb
1262 * invalidation bug) ... */
1263 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1264 XY_SRC_COPY_BLT_WRITE_ALPHA |
1265 XY_SRC_COPY_BLT_WRITE_RGB);
1266 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1267 intel_ring_emit(ring, 0);
1268 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1269 intel_ring_emit(ring, cs_offset);
1270 intel_ring_emit(ring, 0);
1271 intel_ring_emit(ring, 4096);
1272 intel_ring_emit(ring, offset);
1273 intel_ring_emit(ring, MI_FLUSH);
1274
1275 /* ... and execute it. */
1276 intel_ring_emit(ring, MI_BATCH_BUFFER);
1277 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1278 intel_ring_emit(ring, cs_offset + len - 8);
1279 intel_ring_advance(ring);
1280 }
1281
1282 return 0;
1283 }
1284
1285 static int
1286 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1287 u64 offset, u32 len,
1288 unsigned flags)
1289 {
1290 int ret;
1291
1292 ret = intel_ring_begin(ring, 2);
1293 if (ret)
1294 return ret;
1295
1296 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1297 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1298 intel_ring_advance(ring);
1299
1300 return 0;
1301 }
1302
1303 static void cleanup_status_page(struct intel_ring_buffer *ring)
1304 {
1305 struct drm_i915_gem_object *obj;
1306
1307 obj = ring->status_page.obj;
1308 if (obj == NULL)
1309 return;
1310
1311 kunmap(sg_page(obj->pages->sgl));
1312 i915_gem_object_ggtt_unpin(obj);
1313 drm_gem_object_unreference(&obj->base);
1314 ring->status_page.obj = NULL;
1315 }
1316
1317 static int init_status_page(struct intel_ring_buffer *ring)
1318 {
1319 struct drm_i915_gem_object *obj;
1320
1321 if ((obj = ring->status_page.obj) == NULL) {
1322 int ret;
1323
1324 obj = i915_gem_alloc_object(ring->dev, 4096);
1325 if (obj == NULL) {
1326 DRM_ERROR("Failed to allocate status page\n");
1327 return -ENOMEM;
1328 }
1329
1330 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1331 if (ret)
1332 goto err_unref;
1333
1334 ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
1335 if (ret) {
1336 err_unref:
1337 drm_gem_object_unreference(&obj->base);
1338 return ret;
1339 }
1340
1341 ring->status_page.obj = obj;
1342 }
1343
1344 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1345 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1346 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1347
1348 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1349 ring->name, ring->status_page.gfx_addr);
1350
1351 return 0;
1352 }
1353
1354 static int init_phys_status_page(struct intel_ring_buffer *ring)
1355 {
1356 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1357
1358 if (!dev_priv->status_page_dmah) {
1359 dev_priv->status_page_dmah =
1360 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1361 if (!dev_priv->status_page_dmah)
1362 return -ENOMEM;
1363 }
1364
1365 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1366 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1367
1368 return 0;
1369 }
1370
1371 static int allocate_ring_buffer(struct intel_ring_buffer *ring)
1372 {
1373 struct drm_device *dev = ring->dev;
1374 struct drm_i915_private *dev_priv = to_i915(dev);
1375 struct drm_i915_gem_object *obj;
1376 int ret;
1377
1378 if (ring->obj)
1379 return 0;
1380
1381 obj = NULL;
1382 if (!HAS_LLC(dev))
1383 obj = i915_gem_object_create_stolen(dev, ring->size);
1384 if (obj == NULL)
1385 obj = i915_gem_alloc_object(dev, ring->size);
1386 if (obj == NULL)
1387 return -ENOMEM;
1388
1389 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1390 if (ret)
1391 goto err_unref;
1392
1393 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1394 if (ret)
1395 goto err_unpin;
1396
1397 ring->virtual_start =
1398 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1399 ring->size);
1400 if (ring->virtual_start == NULL) {
1401 ret = -EINVAL;
1402 goto err_unpin;
1403 }
1404
1405 ring->obj = obj;
1406 return 0;
1407
1408 err_unpin:
1409 i915_gem_object_ggtt_unpin(obj);
1410 err_unref:
1411 drm_gem_object_unreference(&obj->base);
1412 return ret;
1413 }
1414
1415 static int intel_init_ring_buffer(struct drm_device *dev,
1416 struct intel_ring_buffer *ring)
1417 {
1418 int ret;
1419
1420 ring->dev = dev;
1421 INIT_LIST_HEAD(&ring->active_list);
1422 INIT_LIST_HEAD(&ring->request_list);
1423 ring->size = 32 * PAGE_SIZE;
1424 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1425
1426 init_waitqueue_head(&ring->irq_queue);
1427
1428 if (I915_NEED_GFX_HWS(dev)) {
1429 ret = init_status_page(ring);
1430 if (ret)
1431 return ret;
1432 } else {
1433 BUG_ON(ring->id != RCS);
1434 ret = init_phys_status_page(ring);
1435 if (ret)
1436 return ret;
1437 }
1438
1439 ret = allocate_ring_buffer(ring);
1440 if (ret) {
1441 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1442 return ret;
1443 }
1444
1445 /* Workaround an erratum on the i830 which causes a hang if
1446 * the TAIL pointer points to within the last 2 cachelines
1447 * of the buffer.
1448 */
1449 ring->effective_size = ring->size;
1450 if (IS_I830(dev) || IS_845G(dev))
1451 ring->effective_size -= 2 * CACHELINE_BYTES;
1452
1453 i915_cmd_parser_init_ring(ring);
1454
1455 return ring->init(ring);
1456 }
1457
1458 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1459 {
1460 struct drm_i915_private *dev_priv = to_i915(ring->dev);
1461
1462 if (ring->obj == NULL)
1463 return;
1464
1465 intel_stop_ring_buffer(ring);
1466 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1467
1468 iounmap(ring->virtual_start);
1469
1470 i915_gem_object_ggtt_unpin(ring->obj);
1471 drm_gem_object_unreference(&ring->obj->base);
1472 ring->obj = NULL;
1473 ring->preallocated_lazy_request = NULL;
1474 ring->outstanding_lazy_seqno = 0;
1475
1476 if (ring->cleanup)
1477 ring->cleanup(ring);
1478
1479 cleanup_status_page(ring);
1480 }
1481
1482 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1483 {
1484 struct drm_i915_gem_request *request;
1485 u32 seqno = 0, tail;
1486 int ret;
1487
1488 if (ring->last_retired_head != -1) {
1489 ring->head = ring->last_retired_head;
1490 ring->last_retired_head = -1;
1491
1492 ring->space = ring_space(ring);
1493 if (ring->space >= n)
1494 return 0;
1495 }
1496
1497 list_for_each_entry(request, &ring->request_list, list) {
1498 int space;
1499
1500 if (request->tail == -1)
1501 continue;
1502
1503 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1504 if (space < 0)
1505 space += ring->size;
1506 if (space >= n) {
1507 seqno = request->seqno;
1508 tail = request->tail;
1509 break;
1510 }
1511
1512 /* Consume this request in case we need more space than
1513 * is available and so need to prevent a race between
1514 * updating last_retired_head and direct reads of
1515 * I915_RING_HEAD. It also provides a nice sanity check.
1516 */
1517 request->tail = -1;
1518 }
1519
1520 if (seqno == 0)
1521 return -ENOSPC;
1522
1523 ret = i915_wait_seqno(ring, seqno);
1524 if (ret)
1525 return ret;
1526
1527 ring->head = tail;
1528 ring->space = ring_space(ring);
1529 if (WARN_ON(ring->space < n))
1530 return -ENOSPC;
1531
1532 return 0;
1533 }
1534
1535 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1536 {
1537 struct drm_device *dev = ring->dev;
1538 struct drm_i915_private *dev_priv = dev->dev_private;
1539 unsigned long end;
1540 int ret;
1541
1542 ret = intel_ring_wait_request(ring, n);
1543 if (ret != -ENOSPC)
1544 return ret;
1545
1546 /* force the tail write in case we have been skipping them */
1547 __intel_ring_advance(ring);
1548
1549 trace_i915_ring_wait_begin(ring);
1550 /* With GEM the hangcheck timer should kick us out of the loop,
1551 * leaving it early runs the risk of corrupting GEM state (due
1552 * to running on almost untested codepaths). But on resume
1553 * timers don't work yet, so prevent a complete hang in that
1554 * case by choosing an insanely large timeout. */
1555 end = jiffies + 60 * HZ;
1556
1557 do {
1558 ring->head = I915_READ_HEAD(ring);
1559 ring->space = ring_space(ring);
1560 if (ring->space >= n) {
1561 trace_i915_ring_wait_end(ring);
1562 return 0;
1563 }
1564
1565 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1566 dev->primary->master) {
1567 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1568 if (master_priv->sarea_priv)
1569 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1570 }
1571
1572 msleep(1);
1573
1574 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1575 dev_priv->mm.interruptible);
1576 if (ret)
1577 return ret;
1578 } while (!time_after(jiffies, end));
1579 trace_i915_ring_wait_end(ring);
1580 return -EBUSY;
1581 }
1582
1583 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1584 {
1585 uint32_t __iomem *virt;
1586 int rem = ring->size - ring->tail;
1587
1588 if (ring->space < rem) {
1589 int ret = ring_wait_for_space(ring, rem);
1590 if (ret)
1591 return ret;
1592 }
1593
1594 virt = ring->virtual_start + ring->tail;
1595 rem /= 4;
1596 while (rem--)
1597 iowrite32(MI_NOOP, virt++);
1598
1599 ring->tail = 0;
1600 ring->space = ring_space(ring);
1601
1602 return 0;
1603 }
1604
1605 int intel_ring_idle(struct intel_ring_buffer *ring)
1606 {
1607 u32 seqno;
1608 int ret;
1609
1610 /* We need to add any requests required to flush the objects and ring */
1611 if (ring->outstanding_lazy_seqno) {
1612 ret = i915_add_request(ring, NULL);
1613 if (ret)
1614 return ret;
1615 }
1616
1617 /* Wait upon the last request to be completed */
1618 if (list_empty(&ring->request_list))
1619 return 0;
1620
1621 seqno = list_entry(ring->request_list.prev,
1622 struct drm_i915_gem_request,
1623 list)->seqno;
1624
1625 return i915_wait_seqno(ring, seqno);
1626 }
1627
1628 static int
1629 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1630 {
1631 if (ring->outstanding_lazy_seqno)
1632 return 0;
1633
1634 if (ring->preallocated_lazy_request == NULL) {
1635 struct drm_i915_gem_request *request;
1636
1637 request = kmalloc(sizeof(*request), GFP_KERNEL);
1638 if (request == NULL)
1639 return -ENOMEM;
1640
1641 ring->preallocated_lazy_request = request;
1642 }
1643
1644 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1645 }
1646
1647 static int __intel_ring_prepare(struct intel_ring_buffer *ring,
1648 int bytes)
1649 {
1650 int ret;
1651
1652 if (unlikely(ring->tail + bytes > ring->effective_size)) {
1653 ret = intel_wrap_ring_buffer(ring);
1654 if (unlikely(ret))
1655 return ret;
1656 }
1657
1658 if (unlikely(ring->space < bytes)) {
1659 ret = ring_wait_for_space(ring, bytes);
1660 if (unlikely(ret))
1661 return ret;
1662 }
1663
1664 return 0;
1665 }
1666
1667 int intel_ring_begin(struct intel_ring_buffer *ring,
1668 int num_dwords)
1669 {
1670 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1671 int ret;
1672
1673 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1674 dev_priv->mm.interruptible);
1675 if (ret)
1676 return ret;
1677
1678 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1679 if (ret)
1680 return ret;
1681
1682 /* Preallocate the olr before touching the ring */
1683 ret = intel_ring_alloc_seqno(ring);
1684 if (ret)
1685 return ret;
1686
1687 ring->space -= num_dwords * sizeof(uint32_t);
1688 return 0;
1689 }
1690
1691 /* Align the ring tail to a cacheline boundary */
1692 int intel_ring_cacheline_align(struct intel_ring_buffer *ring)
1693 {
1694 int num_dwords = (ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1695 int ret;
1696
1697 if (num_dwords == 0)
1698 return 0;
1699
1700 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1701 ret = intel_ring_begin(ring, num_dwords);
1702 if (ret)
1703 return ret;
1704
1705 while (num_dwords--)
1706 intel_ring_emit(ring, MI_NOOP);
1707
1708 intel_ring_advance(ring);
1709
1710 return 0;
1711 }
1712
1713 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1714 {
1715 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1716
1717 BUG_ON(ring->outstanding_lazy_seqno);
1718
1719 if (INTEL_INFO(ring->dev)->gen >= 6) {
1720 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1721 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1722 if (HAS_VEBOX(ring->dev))
1723 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1724 }
1725
1726 ring->set_seqno(ring, seqno);
1727 ring->hangcheck.seqno = seqno;
1728 }
1729
1730 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1731 u32 value)
1732 {
1733 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1734
1735 /* Every tail move must follow the sequence below */
1736
1737 /* Disable notification that the ring is IDLE. The GT
1738 * will then assume that it is busy and bring it out of rc6.
1739 */
1740 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1741 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1742
1743 /* Clear the context id. Here be magic! */
1744 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1745
1746 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1747 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1748 GEN6_BSD_SLEEP_INDICATOR) == 0,
1749 50))
1750 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1751
1752 /* Now that the ring is fully powered up, update the tail */
1753 I915_WRITE_TAIL(ring, value);
1754 POSTING_READ(RING_TAIL(ring->mmio_base));
1755
1756 /* Let the ring send IDLE messages to the GT again,
1757 * and so let it sleep to conserve power when idle.
1758 */
1759 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1760 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1761 }
1762
1763 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1764 u32 invalidate, u32 flush)
1765 {
1766 uint32_t cmd;
1767 int ret;
1768
1769 ret = intel_ring_begin(ring, 4);
1770 if (ret)
1771 return ret;
1772
1773 cmd = MI_FLUSH_DW;
1774 if (INTEL_INFO(ring->dev)->gen >= 8)
1775 cmd += 1;
1776 /*
1777 * Bspec vol 1c.5 - video engine command streamer:
1778 * "If ENABLED, all TLBs will be invalidated once the flush
1779 * operation is complete. This bit is only valid when the
1780 * Post-Sync Operation field is a value of 1h or 3h."
1781 */
1782 if (invalidate & I915_GEM_GPU_DOMAINS)
1783 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1784 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1785 intel_ring_emit(ring, cmd);
1786 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1787 if (INTEL_INFO(ring->dev)->gen >= 8) {
1788 intel_ring_emit(ring, 0); /* upper addr */
1789 intel_ring_emit(ring, 0); /* value */
1790 } else {
1791 intel_ring_emit(ring, 0);
1792 intel_ring_emit(ring, MI_NOOP);
1793 }
1794 intel_ring_advance(ring);
1795 return 0;
1796 }
1797
1798 static int
1799 gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1800 u64 offset, u32 len,
1801 unsigned flags)
1802 {
1803 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1804 bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1805 !(flags & I915_DISPATCH_SECURE);
1806 int ret;
1807
1808 ret = intel_ring_begin(ring, 4);
1809 if (ret)
1810 return ret;
1811
1812 /* FIXME(BDW): Address space and security selectors. */
1813 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1814 intel_ring_emit(ring, lower_32_bits(offset));
1815 intel_ring_emit(ring, upper_32_bits(offset));
1816 intel_ring_emit(ring, MI_NOOP);
1817 intel_ring_advance(ring);
1818
1819 return 0;
1820 }
1821
1822 static int
1823 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1824 u64 offset, u32 len,
1825 unsigned flags)
1826 {
1827 int ret;
1828
1829 ret = intel_ring_begin(ring, 2);
1830 if (ret)
1831 return ret;
1832
1833 intel_ring_emit(ring,
1834 MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1835 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1836 /* bit0-7 is the length on GEN6+ */
1837 intel_ring_emit(ring, offset);
1838 intel_ring_advance(ring);
1839
1840 return 0;
1841 }
1842
1843 static int
1844 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1845 u64 offset, u32 len,
1846 unsigned flags)
1847 {
1848 int ret;
1849
1850 ret = intel_ring_begin(ring, 2);
1851 if (ret)
1852 return ret;
1853
1854 intel_ring_emit(ring,
1855 MI_BATCH_BUFFER_START |
1856 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1857 /* bit0-7 is the length on GEN6+ */
1858 intel_ring_emit(ring, offset);
1859 intel_ring_advance(ring);
1860
1861 return 0;
1862 }
1863
1864 /* Blitter support (SandyBridge+) */
1865
1866 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1867 u32 invalidate, u32 flush)
1868 {
1869 struct drm_device *dev = ring->dev;
1870 uint32_t cmd;
1871 int ret;
1872
1873 ret = intel_ring_begin(ring, 4);
1874 if (ret)
1875 return ret;
1876
1877 cmd = MI_FLUSH_DW;
1878 if (INTEL_INFO(ring->dev)->gen >= 8)
1879 cmd += 1;
1880 /*
1881 * Bspec vol 1c.3 - blitter engine command streamer:
1882 * "If ENABLED, all TLBs will be invalidated once the flush
1883 * operation is complete. This bit is only valid when the
1884 * Post-Sync Operation field is a value of 1h or 3h."
1885 */
1886 if (invalidate & I915_GEM_DOMAIN_RENDER)
1887 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1888 MI_FLUSH_DW_OP_STOREDW;
1889 intel_ring_emit(ring, cmd);
1890 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1891 if (INTEL_INFO(ring->dev)->gen >= 8) {
1892 intel_ring_emit(ring, 0); /* upper addr */
1893 intel_ring_emit(ring, 0); /* value */
1894 } else {
1895 intel_ring_emit(ring, 0);
1896 intel_ring_emit(ring, MI_NOOP);
1897 }
1898 intel_ring_advance(ring);
1899
1900 if (IS_GEN7(dev) && !invalidate && flush)
1901 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1902
1903 return 0;
1904 }
1905
1906 int intel_init_render_ring_buffer(struct drm_device *dev)
1907 {
1908 struct drm_i915_private *dev_priv = dev->dev_private;
1909 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1910
1911 ring->name = "render ring";
1912 ring->id = RCS;
1913 ring->mmio_base = RENDER_RING_BASE;
1914
1915 if (INTEL_INFO(dev)->gen >= 6) {
1916 ring->add_request = gen6_add_request;
1917 ring->flush = gen7_render_ring_flush;
1918 if (INTEL_INFO(dev)->gen == 6)
1919 ring->flush = gen6_render_ring_flush;
1920 if (INTEL_INFO(dev)->gen >= 8) {
1921 ring->flush = gen8_render_ring_flush;
1922 ring->irq_get = gen8_ring_get_irq;
1923 ring->irq_put = gen8_ring_put_irq;
1924 } else {
1925 ring->irq_get = gen6_ring_get_irq;
1926 ring->irq_put = gen6_ring_put_irq;
1927 }
1928 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1929 ring->get_seqno = gen6_ring_get_seqno;
1930 ring->set_seqno = ring_set_seqno;
1931 ring->semaphore.sync_to = gen6_ring_sync;
1932 ring->semaphore.signal = gen6_signal;
1933 /*
1934 * The current semaphore is only applied on pre-gen8 platform.
1935 * And there is no VCS2 ring on the pre-gen8 platform. So the
1936 * semaphore between RCS and VCS2 is initialized as INVALID.
1937 * Gen8 will initialize the sema between VCS2 and RCS later.
1938 */
1939 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1940 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
1941 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
1942 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
1943 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
1944 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
1945 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
1946 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
1947 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
1948 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
1949 } else if (IS_GEN5(dev)) {
1950 ring->add_request = pc_render_add_request;
1951 ring->flush = gen4_render_ring_flush;
1952 ring->get_seqno = pc_render_get_seqno;
1953 ring->set_seqno = pc_render_set_seqno;
1954 ring->irq_get = gen5_ring_get_irq;
1955 ring->irq_put = gen5_ring_put_irq;
1956 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1957 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1958 } else {
1959 ring->add_request = i9xx_add_request;
1960 if (INTEL_INFO(dev)->gen < 4)
1961 ring->flush = gen2_render_ring_flush;
1962 else
1963 ring->flush = gen4_render_ring_flush;
1964 ring->get_seqno = ring_get_seqno;
1965 ring->set_seqno = ring_set_seqno;
1966 if (IS_GEN2(dev)) {
1967 ring->irq_get = i8xx_ring_get_irq;
1968 ring->irq_put = i8xx_ring_put_irq;
1969 } else {
1970 ring->irq_get = i9xx_ring_get_irq;
1971 ring->irq_put = i9xx_ring_put_irq;
1972 }
1973 ring->irq_enable_mask = I915_USER_INTERRUPT;
1974 }
1975 ring->write_tail = ring_write_tail;
1976 if (IS_HASWELL(dev))
1977 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1978 else if (IS_GEN8(dev))
1979 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
1980 else if (INTEL_INFO(dev)->gen >= 6)
1981 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1982 else if (INTEL_INFO(dev)->gen >= 4)
1983 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1984 else if (IS_I830(dev) || IS_845G(dev))
1985 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1986 else
1987 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1988 ring->init = init_render_ring;
1989 ring->cleanup = render_ring_cleanup;
1990
1991 /* Workaround batchbuffer to combat CS tlb bug. */
1992 if (HAS_BROKEN_CS_TLB(dev)) {
1993 struct drm_i915_gem_object *obj;
1994 int ret;
1995
1996 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1997 if (obj == NULL) {
1998 DRM_ERROR("Failed to allocate batch bo\n");
1999 return -ENOMEM;
2000 }
2001
2002 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2003 if (ret != 0) {
2004 drm_gem_object_unreference(&obj->base);
2005 DRM_ERROR("Failed to ping batch bo\n");
2006 return ret;
2007 }
2008
2009 ring->scratch.obj = obj;
2010 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2011 }
2012
2013 return intel_init_ring_buffer(dev, ring);
2014 }
2015
2016 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2017 {
2018 struct drm_i915_private *dev_priv = dev->dev_private;
2019 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2020 int ret;
2021
2022 ring->name = "render ring";
2023 ring->id = RCS;
2024 ring->mmio_base = RENDER_RING_BASE;
2025
2026 if (INTEL_INFO(dev)->gen >= 6) {
2027 /* non-kms not supported on gen6+ */
2028 return -ENODEV;
2029 }
2030
2031 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2032 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2033 * the special gen5 functions. */
2034 ring->add_request = i9xx_add_request;
2035 if (INTEL_INFO(dev)->gen < 4)
2036 ring->flush = gen2_render_ring_flush;
2037 else
2038 ring->flush = gen4_render_ring_flush;
2039 ring->get_seqno = ring_get_seqno;
2040 ring->set_seqno = ring_set_seqno;
2041 if (IS_GEN2(dev)) {
2042 ring->irq_get = i8xx_ring_get_irq;
2043 ring->irq_put = i8xx_ring_put_irq;
2044 } else {
2045 ring->irq_get = i9xx_ring_get_irq;
2046 ring->irq_put = i9xx_ring_put_irq;
2047 }
2048 ring->irq_enable_mask = I915_USER_INTERRUPT;
2049 ring->write_tail = ring_write_tail;
2050 if (INTEL_INFO(dev)->gen >= 4)
2051 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2052 else if (IS_I830(dev) || IS_845G(dev))
2053 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2054 else
2055 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2056 ring->init = init_render_ring;
2057 ring->cleanup = render_ring_cleanup;
2058
2059 ring->dev = dev;
2060 INIT_LIST_HEAD(&ring->active_list);
2061 INIT_LIST_HEAD(&ring->request_list);
2062
2063 ring->size = size;
2064 ring->effective_size = ring->size;
2065 if (IS_I830(ring->dev) || IS_845G(ring->dev))
2066 ring->effective_size -= 2 * CACHELINE_BYTES;
2067
2068 ring->virtual_start = ioremap_wc(start, size);
2069 if (ring->virtual_start == NULL) {
2070 DRM_ERROR("can not ioremap virtual address for"
2071 " ring buffer\n");
2072 return -ENOMEM;
2073 }
2074
2075 if (!I915_NEED_GFX_HWS(dev)) {
2076 ret = init_phys_status_page(ring);
2077 if (ret)
2078 return ret;
2079 }
2080
2081 return 0;
2082 }
2083
2084 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2085 {
2086 struct drm_i915_private *dev_priv = dev->dev_private;
2087 struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
2088
2089 ring->name = "bsd ring";
2090 ring->id = VCS;
2091
2092 ring->write_tail = ring_write_tail;
2093 if (INTEL_INFO(dev)->gen >= 6) {
2094 ring->mmio_base = GEN6_BSD_RING_BASE;
2095 /* gen6 bsd needs a special wa for tail updates */
2096 if (IS_GEN6(dev))
2097 ring->write_tail = gen6_bsd_ring_write_tail;
2098 ring->flush = gen6_bsd_ring_flush;
2099 ring->add_request = gen6_add_request;
2100 ring->get_seqno = gen6_ring_get_seqno;
2101 ring->set_seqno = ring_set_seqno;
2102 if (INTEL_INFO(dev)->gen >= 8) {
2103 ring->irq_enable_mask =
2104 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2105 ring->irq_get = gen8_ring_get_irq;
2106 ring->irq_put = gen8_ring_put_irq;
2107 ring->dispatch_execbuffer =
2108 gen8_ring_dispatch_execbuffer;
2109 } else {
2110 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2111 ring->irq_get = gen6_ring_get_irq;
2112 ring->irq_put = gen6_ring_put_irq;
2113 ring->dispatch_execbuffer =
2114 gen6_ring_dispatch_execbuffer;
2115 }
2116 ring->semaphore.sync_to = gen6_ring_sync;
2117 ring->semaphore.signal = gen6_signal;
2118 /*
2119 * The current semaphore is only applied on pre-gen8 platform.
2120 * And there is no VCS2 ring on the pre-gen8 platform. So the
2121 * semaphore between VCS and VCS2 is initialized as INVALID.
2122 * Gen8 will initialize the sema between VCS2 and VCS later.
2123 */
2124 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2125 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2126 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2127 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2128 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2129 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2130 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2131 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2132 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2133 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2134 } else {
2135 ring->mmio_base = BSD_RING_BASE;
2136 ring->flush = bsd_ring_flush;
2137 ring->add_request = i9xx_add_request;
2138 ring->get_seqno = ring_get_seqno;
2139 ring->set_seqno = ring_set_seqno;
2140 if (IS_GEN5(dev)) {
2141 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2142 ring->irq_get = gen5_ring_get_irq;
2143 ring->irq_put = gen5_ring_put_irq;
2144 } else {
2145 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2146 ring->irq_get = i9xx_ring_get_irq;
2147 ring->irq_put = i9xx_ring_put_irq;
2148 }
2149 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2150 }
2151 ring->init = init_ring_common;
2152
2153 return intel_init_ring_buffer(dev, ring);
2154 }
2155
2156 /**
2157 * Initialize the second BSD ring for Broadwell GT3.
2158 * It is noted that this only exists on Broadwell GT3.
2159 */
2160 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2161 {
2162 struct drm_i915_private *dev_priv = dev->dev_private;
2163 struct intel_ring_buffer *ring = &dev_priv->ring[VCS2];
2164
2165 if ((INTEL_INFO(dev)->gen != 8)) {
2166 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2167 return -EINVAL;
2168 }
2169
2170 ring->name = "bds2_ring";
2171 ring->id = VCS2;
2172
2173 ring->write_tail = ring_write_tail;
2174 ring->mmio_base = GEN8_BSD2_RING_BASE;
2175 ring->flush = gen6_bsd_ring_flush;
2176 ring->add_request = gen6_add_request;
2177 ring->get_seqno = gen6_ring_get_seqno;
2178 ring->set_seqno = ring_set_seqno;
2179 ring->irq_enable_mask =
2180 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2181 ring->irq_get = gen8_ring_get_irq;
2182 ring->irq_put = gen8_ring_put_irq;
2183 ring->dispatch_execbuffer =
2184 gen8_ring_dispatch_execbuffer;
2185 ring->semaphore.sync_to = gen6_ring_sync;
2186 /*
2187 * The current semaphore is only applied on the pre-gen8. And there
2188 * is no bsd2 ring on the pre-gen8. So now the semaphore_register
2189 * between VCS2 and other ring is initialized as invalid.
2190 * Gen8 will initialize the sema between VCS2 and other ring later.
2191 */
2192 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2193 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2194 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2195 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2196 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2197 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2198 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2199 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2200 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2201 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2202
2203 ring->init = init_ring_common;
2204
2205 return intel_init_ring_buffer(dev, ring);
2206 }
2207
2208 int intel_init_blt_ring_buffer(struct drm_device *dev)
2209 {
2210 struct drm_i915_private *dev_priv = dev->dev_private;
2211 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
2212
2213 ring->name = "blitter ring";
2214 ring->id = BCS;
2215
2216 ring->mmio_base = BLT_RING_BASE;
2217 ring->write_tail = ring_write_tail;
2218 ring->flush = gen6_ring_flush;
2219 ring->add_request = gen6_add_request;
2220 ring->get_seqno = gen6_ring_get_seqno;
2221 ring->set_seqno = ring_set_seqno;
2222 if (INTEL_INFO(dev)->gen >= 8) {
2223 ring->irq_enable_mask =
2224 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2225 ring->irq_get = gen8_ring_get_irq;
2226 ring->irq_put = gen8_ring_put_irq;
2227 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2228 } else {
2229 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2230 ring->irq_get = gen6_ring_get_irq;
2231 ring->irq_put = gen6_ring_put_irq;
2232 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2233 }
2234 ring->semaphore.sync_to = gen6_ring_sync;
2235 ring->semaphore.signal = gen6_signal;
2236 /*
2237 * The current semaphore is only applied on pre-gen8 platform. And
2238 * there is no VCS2 ring on the pre-gen8 platform. So the semaphore
2239 * between BCS and VCS2 is initialized as INVALID.
2240 * Gen8 will initialize the sema between BCS and VCS2 later.
2241 */
2242 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2243 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2244 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2245 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2246 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2247 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2248 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2249 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2250 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2251 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2252 ring->init = init_ring_common;
2253
2254 return intel_init_ring_buffer(dev, ring);
2255 }
2256
2257 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2258 {
2259 struct drm_i915_private *dev_priv = dev->dev_private;
2260 struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2261
2262 ring->name = "video enhancement ring";
2263 ring->id = VECS;
2264
2265 ring->mmio_base = VEBOX_RING_BASE;
2266 ring->write_tail = ring_write_tail;
2267 ring->flush = gen6_ring_flush;
2268 ring->add_request = gen6_add_request;
2269 ring->get_seqno = gen6_ring_get_seqno;
2270 ring->set_seqno = ring_set_seqno;
2271
2272 if (INTEL_INFO(dev)->gen >= 8) {
2273 ring->irq_enable_mask =
2274 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2275 ring->irq_get = gen8_ring_get_irq;
2276 ring->irq_put = gen8_ring_put_irq;
2277 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2278 } else {
2279 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2280 ring->irq_get = hsw_vebox_get_irq;
2281 ring->irq_put = hsw_vebox_put_irq;
2282 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2283 }
2284 ring->semaphore.sync_to = gen6_ring_sync;
2285 ring->semaphore.signal = gen6_signal;
2286 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2287 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2288 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2289 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2290 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2291 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2292 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2293 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2294 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2295 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2296 ring->init = init_ring_common;
2297
2298 return intel_init_ring_buffer(dev, ring);
2299 }
2300
2301 int
2302 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2303 {
2304 int ret;
2305
2306 if (!ring->gpu_caches_dirty)
2307 return 0;
2308
2309 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2310 if (ret)
2311 return ret;
2312
2313 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2314
2315 ring->gpu_caches_dirty = false;
2316 return 0;
2317 }
2318
2319 int
2320 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2321 {
2322 uint32_t flush_domains;
2323 int ret;
2324
2325 flush_domains = 0;
2326 if (ring->gpu_caches_dirty)
2327 flush_domains = I915_GEM_GPU_DOMAINS;
2328
2329 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2330 if (ret)
2331 return ret;
2332
2333 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2334
2335 ring->gpu_caches_dirty = false;
2336 return 0;
2337 }
2338
2339 void
2340 intel_stop_ring_buffer(struct intel_ring_buffer *ring)
2341 {
2342 int ret;
2343
2344 if (!intel_ring_initialized(ring))
2345 return;
2346
2347 ret = intel_ring_idle(ring);
2348 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2349 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2350 ring->name, ret);
2351
2352 stop_ring(ring);
2353 }
This page took 0.089107 seconds and 6 git commands to generate.