Merge tag 'omap-for-v3.11/fixes-against-rc1' of git://git.kernel.org/pub/scm/linux...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 /*
37 * 965+ support PIPE_CONTROL commands, which provide finer grained control
38 * over cache flushing.
39 */
40 struct pipe_control {
41 struct drm_i915_gem_object *obj;
42 volatile u32 *cpu_page;
43 u32 gtt_offset;
44 };
45
46 static inline int ring_space(struct intel_ring_buffer *ring)
47 {
48 int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
49 if (space < 0)
50 space += ring->size;
51 return space;
52 }
53
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56 u32 invalidate_domains,
57 u32 flush_domains)
58 {
59 u32 cmd;
60 int ret;
61
62 cmd = MI_FLUSH;
63 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64 cmd |= MI_NO_WRITE_FLUSH;
65
66 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67 cmd |= MI_READ_FLUSH;
68
69 ret = intel_ring_begin(ring, 2);
70 if (ret)
71 return ret;
72
73 intel_ring_emit(ring, cmd);
74 intel_ring_emit(ring, MI_NOOP);
75 intel_ring_advance(ring);
76
77 return 0;
78 }
79
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82 u32 invalidate_domains,
83 u32 flush_domains)
84 {
85 struct drm_device *dev = ring->dev;
86 u32 cmd;
87 int ret;
88
89 /*
90 * read/write caches:
91 *
92 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
94 * also flushed at 2d versus 3d pipeline switches.
95 *
96 * read-only caches:
97 *
98 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99 * MI_READ_FLUSH is set, and is always flushed on 965.
100 *
101 * I915_GEM_DOMAIN_COMMAND may not exist?
102 *
103 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104 * invalidated when MI_EXE_FLUSH is set.
105 *
106 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107 * invalidated with every MI_FLUSH.
108 *
109 * TLBs:
110 *
111 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114 * are flushed at any MI_FLUSH.
115 */
116
117 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119 cmd &= ~MI_NO_WRITE_FLUSH;
120 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121 cmd |= MI_EXE_FLUSH;
122
123 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124 (IS_G4X(dev) || IS_GEN5(dev)))
125 cmd |= MI_INVALIDATE_ISP;
126
127 ret = intel_ring_begin(ring, 2);
128 if (ret)
129 return ret;
130
131 intel_ring_emit(ring, cmd);
132 intel_ring_emit(ring, MI_NOOP);
133 intel_ring_advance(ring);
134
135 return 0;
136 }
137
138 /**
139 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140 * implementing two workarounds on gen6. From section 1.4.7.1
141 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142 *
143 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144 * produced by non-pipelined state commands), software needs to first
145 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146 * 0.
147 *
148 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150 *
151 * And the workaround for these two requires this workaround first:
152 *
153 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154 * BEFORE the pipe-control with a post-sync op and no write-cache
155 * flushes.
156 *
157 * And this last workaround is tricky because of the requirements on
158 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159 * volume 2 part 1:
160 *
161 * "1 of the following must also be set:
162 * - Render Target Cache Flush Enable ([12] of DW1)
163 * - Depth Cache Flush Enable ([0] of DW1)
164 * - Stall at Pixel Scoreboard ([1] of DW1)
165 * - Depth Stall ([13] of DW1)
166 * - Post-Sync Operation ([13] of DW1)
167 * - Notify Enable ([8] of DW1)"
168 *
169 * The cache flushes require the workaround flush that triggered this
170 * one, so we can't use it. Depth stall would trigger the same.
171 * Post-sync nonzero is what triggered this second workaround, so we
172 * can't use that one either. Notify enable is IRQs, which aren't
173 * really our business. That leaves only stall at scoreboard.
174 */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178 struct pipe_control *pc = ring->private;
179 u32 scratch_addr = pc->gtt_offset + 128;
180 int ret;
181
182
183 ret = intel_ring_begin(ring, 6);
184 if (ret)
185 return ret;
186
187 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
188 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
189 PIPE_CONTROL_STALL_AT_SCOREBOARD);
190 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
191 intel_ring_emit(ring, 0); /* low dword */
192 intel_ring_emit(ring, 0); /* high dword */
193 intel_ring_emit(ring, MI_NOOP);
194 intel_ring_advance(ring);
195
196 ret = intel_ring_begin(ring, 6);
197 if (ret)
198 return ret;
199
200 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
201 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
202 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
203 intel_ring_emit(ring, 0);
204 intel_ring_emit(ring, 0);
205 intel_ring_emit(ring, MI_NOOP);
206 intel_ring_advance(ring);
207
208 return 0;
209 }
210
211 static int
212 gen6_render_ring_flush(struct intel_ring_buffer *ring,
213 u32 invalidate_domains, u32 flush_domains)
214 {
215 u32 flags = 0;
216 struct pipe_control *pc = ring->private;
217 u32 scratch_addr = pc->gtt_offset + 128;
218 int ret;
219
220 /* Force SNB workarounds for PIPE_CONTROL flushes */
221 ret = intel_emit_post_sync_nonzero_flush(ring);
222 if (ret)
223 return ret;
224
225 /* Just flush everything. Experiments have shown that reducing the
226 * number of bits based on the write domains has little performance
227 * impact.
228 */
229 if (flush_domains) {
230 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
231 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
232 /*
233 * Ensure that any following seqno writes only happen
234 * when the render cache is indeed flushed.
235 */
236 flags |= PIPE_CONTROL_CS_STALL;
237 }
238 if (invalidate_domains) {
239 flags |= PIPE_CONTROL_TLB_INVALIDATE;
240 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
243 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
244 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
245 /*
246 * TLB invalidate requires a post-sync write.
247 */
248 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
249 }
250
251 ret = intel_ring_begin(ring, 4);
252 if (ret)
253 return ret;
254
255 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
256 intel_ring_emit(ring, flags);
257 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
258 intel_ring_emit(ring, 0);
259 intel_ring_advance(ring);
260
261 return 0;
262 }
263
264 static int
265 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
266 {
267 int ret;
268
269 ret = intel_ring_begin(ring, 4);
270 if (ret)
271 return ret;
272
273 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
274 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
275 PIPE_CONTROL_STALL_AT_SCOREBOARD);
276 intel_ring_emit(ring, 0);
277 intel_ring_emit(ring, 0);
278 intel_ring_advance(ring);
279
280 return 0;
281 }
282
283 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
284 {
285 int ret;
286
287 if (!ring->fbc_dirty)
288 return 0;
289
290 ret = intel_ring_begin(ring, 4);
291 if (ret)
292 return ret;
293 intel_ring_emit(ring, MI_NOOP);
294 /* WaFbcNukeOn3DBlt:ivb/hsw */
295 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
296 intel_ring_emit(ring, MSG_FBC_REND_STATE);
297 intel_ring_emit(ring, value);
298 intel_ring_advance(ring);
299
300 ring->fbc_dirty = false;
301 return 0;
302 }
303
304 static int
305 gen7_render_ring_flush(struct intel_ring_buffer *ring,
306 u32 invalidate_domains, u32 flush_domains)
307 {
308 u32 flags = 0;
309 struct pipe_control *pc = ring->private;
310 u32 scratch_addr = pc->gtt_offset + 128;
311 int ret;
312
313 /*
314 * Ensure that any following seqno writes only happen when the render
315 * cache is indeed flushed.
316 *
317 * Workaround: 4th PIPE_CONTROL command (except the ones with only
318 * read-cache invalidate bits set) must have the CS_STALL bit set. We
319 * don't try to be clever and just set it unconditionally.
320 */
321 flags |= PIPE_CONTROL_CS_STALL;
322
323 /* Just flush everything. Experiments have shown that reducing the
324 * number of bits based on the write domains has little performance
325 * impact.
326 */
327 if (flush_domains) {
328 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
329 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
330 }
331 if (invalidate_domains) {
332 flags |= PIPE_CONTROL_TLB_INVALIDATE;
333 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
334 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
335 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
336 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
337 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
338 /*
339 * TLB invalidate requires a post-sync write.
340 */
341 flags |= PIPE_CONTROL_QW_WRITE;
342 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
343
344 /* Workaround: we must issue a pipe_control with CS-stall bit
345 * set before a pipe_control command that has the state cache
346 * invalidate bit set. */
347 gen7_render_ring_cs_stall_wa(ring);
348 }
349
350 ret = intel_ring_begin(ring, 4);
351 if (ret)
352 return ret;
353
354 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
355 intel_ring_emit(ring, flags);
356 intel_ring_emit(ring, scratch_addr);
357 intel_ring_emit(ring, 0);
358 intel_ring_advance(ring);
359
360 if (flush_domains)
361 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
362
363 return 0;
364 }
365
366 static void ring_write_tail(struct intel_ring_buffer *ring,
367 u32 value)
368 {
369 drm_i915_private_t *dev_priv = ring->dev->dev_private;
370 I915_WRITE_TAIL(ring, value);
371 }
372
373 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
374 {
375 drm_i915_private_t *dev_priv = ring->dev->dev_private;
376 u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
377 RING_ACTHD(ring->mmio_base) : ACTHD;
378
379 return I915_READ(acthd_reg);
380 }
381
382 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
383 {
384 struct drm_i915_private *dev_priv = ring->dev->dev_private;
385 u32 addr;
386
387 addr = dev_priv->status_page_dmah->busaddr;
388 if (INTEL_INFO(ring->dev)->gen >= 4)
389 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
390 I915_WRITE(HWS_PGA, addr);
391 }
392
393 static int init_ring_common(struct intel_ring_buffer *ring)
394 {
395 struct drm_device *dev = ring->dev;
396 drm_i915_private_t *dev_priv = dev->dev_private;
397 struct drm_i915_gem_object *obj = ring->obj;
398 int ret = 0;
399 u32 head;
400
401 if (HAS_FORCE_WAKE(dev))
402 gen6_gt_force_wake_get(dev_priv);
403
404 if (I915_NEED_GFX_HWS(dev))
405 intel_ring_setup_status_page(ring);
406 else
407 ring_setup_phys_status_page(ring);
408
409 /* Stop the ring if it's running. */
410 I915_WRITE_CTL(ring, 0);
411 I915_WRITE_HEAD(ring, 0);
412 ring->write_tail(ring, 0);
413
414 head = I915_READ_HEAD(ring) & HEAD_ADDR;
415
416 /* G45 ring initialization fails to reset head to zero */
417 if (head != 0) {
418 DRM_DEBUG_KMS("%s head not reset to zero "
419 "ctl %08x head %08x tail %08x start %08x\n",
420 ring->name,
421 I915_READ_CTL(ring),
422 I915_READ_HEAD(ring),
423 I915_READ_TAIL(ring),
424 I915_READ_START(ring));
425
426 I915_WRITE_HEAD(ring, 0);
427
428 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
429 DRM_ERROR("failed to set %s head to zero "
430 "ctl %08x head %08x tail %08x start %08x\n",
431 ring->name,
432 I915_READ_CTL(ring),
433 I915_READ_HEAD(ring),
434 I915_READ_TAIL(ring),
435 I915_READ_START(ring));
436 }
437 }
438
439 /* Initialize the ring. This must happen _after_ we've cleared the ring
440 * registers with the above sequence (the readback of the HEAD registers
441 * also enforces ordering), otherwise the hw might lose the new ring
442 * register values. */
443 I915_WRITE_START(ring, obj->gtt_offset);
444 I915_WRITE_CTL(ring,
445 ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
446 | RING_VALID);
447
448 /* If the head is still not zero, the ring is dead */
449 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
450 I915_READ_START(ring) == obj->gtt_offset &&
451 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
452 DRM_ERROR("%s initialization failed "
453 "ctl %08x head %08x tail %08x start %08x\n",
454 ring->name,
455 I915_READ_CTL(ring),
456 I915_READ_HEAD(ring),
457 I915_READ_TAIL(ring),
458 I915_READ_START(ring));
459 ret = -EIO;
460 goto out;
461 }
462
463 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
464 i915_kernel_lost_context(ring->dev);
465 else {
466 ring->head = I915_READ_HEAD(ring);
467 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
468 ring->space = ring_space(ring);
469 ring->last_retired_head = -1;
470 }
471
472 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
473
474 out:
475 if (HAS_FORCE_WAKE(dev))
476 gen6_gt_force_wake_put(dev_priv);
477
478 return ret;
479 }
480
481 static int
482 init_pipe_control(struct intel_ring_buffer *ring)
483 {
484 struct pipe_control *pc;
485 struct drm_i915_gem_object *obj;
486 int ret;
487
488 if (ring->private)
489 return 0;
490
491 pc = kmalloc(sizeof(*pc), GFP_KERNEL);
492 if (!pc)
493 return -ENOMEM;
494
495 obj = i915_gem_alloc_object(ring->dev, 4096);
496 if (obj == NULL) {
497 DRM_ERROR("Failed to allocate seqno page\n");
498 ret = -ENOMEM;
499 goto err;
500 }
501
502 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
503
504 ret = i915_gem_object_pin(obj, 4096, true, false);
505 if (ret)
506 goto err_unref;
507
508 pc->gtt_offset = obj->gtt_offset;
509 pc->cpu_page = kmap(sg_page(obj->pages->sgl));
510 if (pc->cpu_page == NULL) {
511 ret = -ENOMEM;
512 goto err_unpin;
513 }
514
515 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
516 ring->name, pc->gtt_offset);
517
518 pc->obj = obj;
519 ring->private = pc;
520 return 0;
521
522 err_unpin:
523 i915_gem_object_unpin(obj);
524 err_unref:
525 drm_gem_object_unreference(&obj->base);
526 err:
527 kfree(pc);
528 return ret;
529 }
530
531 static void
532 cleanup_pipe_control(struct intel_ring_buffer *ring)
533 {
534 struct pipe_control *pc = ring->private;
535 struct drm_i915_gem_object *obj;
536
537 obj = pc->obj;
538
539 kunmap(sg_page(obj->pages->sgl));
540 i915_gem_object_unpin(obj);
541 drm_gem_object_unreference(&obj->base);
542
543 kfree(pc);
544 }
545
546 static int init_render_ring(struct intel_ring_buffer *ring)
547 {
548 struct drm_device *dev = ring->dev;
549 struct drm_i915_private *dev_priv = dev->dev_private;
550 int ret = init_ring_common(ring);
551
552 if (INTEL_INFO(dev)->gen > 3)
553 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
554
555 /* We need to disable the AsyncFlip performance optimisations in order
556 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
557 * programmed to '1' on all products.
558 *
559 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
560 */
561 if (INTEL_INFO(dev)->gen >= 6)
562 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
563
564 /* Required for the hardware to program scanline values for waiting */
565 if (INTEL_INFO(dev)->gen == 6)
566 I915_WRITE(GFX_MODE,
567 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
568
569 if (IS_GEN7(dev))
570 I915_WRITE(GFX_MODE_GEN7,
571 _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
572 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
573
574 if (INTEL_INFO(dev)->gen >= 5) {
575 ret = init_pipe_control(ring);
576 if (ret)
577 return ret;
578 }
579
580 if (IS_GEN6(dev)) {
581 /* From the Sandybridge PRM, volume 1 part 3, page 24:
582 * "If this bit is set, STCunit will have LRA as replacement
583 * policy. [...] This bit must be reset. LRA replacement
584 * policy is not supported."
585 */
586 I915_WRITE(CACHE_MODE_0,
587 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
588
589 /* This is not explicitly set for GEN6, so read the register.
590 * see intel_ring_mi_set_context() for why we care.
591 * TODO: consider explicitly setting the bit for GEN5
592 */
593 ring->itlb_before_ctx_switch =
594 !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
595 }
596
597 if (INTEL_INFO(dev)->gen >= 6)
598 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
599
600 if (HAS_L3_GPU_CACHE(dev))
601 I915_WRITE_IMR(ring, ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
602
603 return ret;
604 }
605
606 static void render_ring_cleanup(struct intel_ring_buffer *ring)
607 {
608 struct drm_device *dev = ring->dev;
609
610 if (!ring->private)
611 return;
612
613 if (HAS_BROKEN_CS_TLB(dev))
614 drm_gem_object_unreference(to_gem_object(ring->private));
615
616 if (INTEL_INFO(dev)->gen >= 5)
617 cleanup_pipe_control(ring);
618
619 ring->private = NULL;
620 }
621
622 static void
623 update_mboxes(struct intel_ring_buffer *ring,
624 u32 mmio_offset)
625 {
626 /* NB: In order to be able to do semaphore MBOX updates for varying number
627 * of rings, it's easiest if we round up each individual update to a
628 * multiple of 2 (since ring updates must always be a multiple of 2)
629 * even though the actual update only requires 3 dwords.
630 */
631 #define MBOX_UPDATE_DWORDS 4
632 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
633 intel_ring_emit(ring, mmio_offset);
634 intel_ring_emit(ring, ring->outstanding_lazy_request);
635 intel_ring_emit(ring, MI_NOOP);
636 }
637
638 /**
639 * gen6_add_request - Update the semaphore mailbox registers
640 *
641 * @ring - ring that is adding a request
642 * @seqno - return seqno stuck into the ring
643 *
644 * Update the mailbox registers in the *other* rings with the current seqno.
645 * This acts like a signal in the canonical semaphore.
646 */
647 static int
648 gen6_add_request(struct intel_ring_buffer *ring)
649 {
650 struct drm_device *dev = ring->dev;
651 struct drm_i915_private *dev_priv = dev->dev_private;
652 struct intel_ring_buffer *useless;
653 int i, ret;
654
655 ret = intel_ring_begin(ring, ((I915_NUM_RINGS-1) *
656 MBOX_UPDATE_DWORDS) +
657 4);
658 if (ret)
659 return ret;
660 #undef MBOX_UPDATE_DWORDS
661
662 for_each_ring(useless, dev_priv, i) {
663 u32 mbox_reg = ring->signal_mbox[i];
664 if (mbox_reg != GEN6_NOSYNC)
665 update_mboxes(ring, mbox_reg);
666 }
667
668 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
669 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
670 intel_ring_emit(ring, ring->outstanding_lazy_request);
671 intel_ring_emit(ring, MI_USER_INTERRUPT);
672 intel_ring_advance(ring);
673
674 return 0;
675 }
676
677 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
678 u32 seqno)
679 {
680 struct drm_i915_private *dev_priv = dev->dev_private;
681 return dev_priv->last_seqno < seqno;
682 }
683
684 /**
685 * intel_ring_sync - sync the waiter to the signaller on seqno
686 *
687 * @waiter - ring that is waiting
688 * @signaller - ring which has, or will signal
689 * @seqno - seqno which the waiter will block on
690 */
691 static int
692 gen6_ring_sync(struct intel_ring_buffer *waiter,
693 struct intel_ring_buffer *signaller,
694 u32 seqno)
695 {
696 int ret;
697 u32 dw1 = MI_SEMAPHORE_MBOX |
698 MI_SEMAPHORE_COMPARE |
699 MI_SEMAPHORE_REGISTER;
700
701 /* Throughout all of the GEM code, seqno passed implies our current
702 * seqno is >= the last seqno executed. However for hardware the
703 * comparison is strictly greater than.
704 */
705 seqno -= 1;
706
707 WARN_ON(signaller->semaphore_register[waiter->id] ==
708 MI_SEMAPHORE_SYNC_INVALID);
709
710 ret = intel_ring_begin(waiter, 4);
711 if (ret)
712 return ret;
713
714 /* If seqno wrap happened, omit the wait with no-ops */
715 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
716 intel_ring_emit(waiter,
717 dw1 |
718 signaller->semaphore_register[waiter->id]);
719 intel_ring_emit(waiter, seqno);
720 intel_ring_emit(waiter, 0);
721 intel_ring_emit(waiter, MI_NOOP);
722 } else {
723 intel_ring_emit(waiter, MI_NOOP);
724 intel_ring_emit(waiter, MI_NOOP);
725 intel_ring_emit(waiter, MI_NOOP);
726 intel_ring_emit(waiter, MI_NOOP);
727 }
728 intel_ring_advance(waiter);
729
730 return 0;
731 }
732
733 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
734 do { \
735 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
736 PIPE_CONTROL_DEPTH_STALL); \
737 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
738 intel_ring_emit(ring__, 0); \
739 intel_ring_emit(ring__, 0); \
740 } while (0)
741
742 static int
743 pc_render_add_request(struct intel_ring_buffer *ring)
744 {
745 struct pipe_control *pc = ring->private;
746 u32 scratch_addr = pc->gtt_offset + 128;
747 int ret;
748
749 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
750 * incoherent with writes to memory, i.e. completely fubar,
751 * so we need to use PIPE_NOTIFY instead.
752 *
753 * However, we also need to workaround the qword write
754 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
755 * memory before requesting an interrupt.
756 */
757 ret = intel_ring_begin(ring, 32);
758 if (ret)
759 return ret;
760
761 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
762 PIPE_CONTROL_WRITE_FLUSH |
763 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
764 intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
765 intel_ring_emit(ring, ring->outstanding_lazy_request);
766 intel_ring_emit(ring, 0);
767 PIPE_CONTROL_FLUSH(ring, scratch_addr);
768 scratch_addr += 128; /* write to separate cachelines */
769 PIPE_CONTROL_FLUSH(ring, scratch_addr);
770 scratch_addr += 128;
771 PIPE_CONTROL_FLUSH(ring, scratch_addr);
772 scratch_addr += 128;
773 PIPE_CONTROL_FLUSH(ring, scratch_addr);
774 scratch_addr += 128;
775 PIPE_CONTROL_FLUSH(ring, scratch_addr);
776 scratch_addr += 128;
777 PIPE_CONTROL_FLUSH(ring, scratch_addr);
778
779 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
780 PIPE_CONTROL_WRITE_FLUSH |
781 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
782 PIPE_CONTROL_NOTIFY);
783 intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
784 intel_ring_emit(ring, ring->outstanding_lazy_request);
785 intel_ring_emit(ring, 0);
786 intel_ring_advance(ring);
787
788 return 0;
789 }
790
791 static u32
792 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
793 {
794 /* Workaround to force correct ordering between irq and seqno writes on
795 * ivb (and maybe also on snb) by reading from a CS register (like
796 * ACTHD) before reading the status page. */
797 if (!lazy_coherency)
798 intel_ring_get_active_head(ring);
799 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
800 }
801
802 static u32
803 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
804 {
805 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
806 }
807
808 static void
809 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
810 {
811 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
812 }
813
814 static u32
815 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
816 {
817 struct pipe_control *pc = ring->private;
818 return pc->cpu_page[0];
819 }
820
821 static void
822 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
823 {
824 struct pipe_control *pc = ring->private;
825 pc->cpu_page[0] = seqno;
826 }
827
828 static bool
829 gen5_ring_get_irq(struct intel_ring_buffer *ring)
830 {
831 struct drm_device *dev = ring->dev;
832 drm_i915_private_t *dev_priv = dev->dev_private;
833 unsigned long flags;
834
835 if (!dev->irq_enabled)
836 return false;
837
838 spin_lock_irqsave(&dev_priv->irq_lock, flags);
839 if (ring->irq_refcount.gt++ == 0) {
840 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
841 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
842 POSTING_READ(GTIMR);
843 }
844 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
845
846 return true;
847 }
848
849 static void
850 gen5_ring_put_irq(struct intel_ring_buffer *ring)
851 {
852 struct drm_device *dev = ring->dev;
853 drm_i915_private_t *dev_priv = dev->dev_private;
854 unsigned long flags;
855
856 spin_lock_irqsave(&dev_priv->irq_lock, flags);
857 if (--ring->irq_refcount.gt == 0) {
858 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
859 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
860 POSTING_READ(GTIMR);
861 }
862 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
863 }
864
865 static bool
866 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
867 {
868 struct drm_device *dev = ring->dev;
869 drm_i915_private_t *dev_priv = dev->dev_private;
870 unsigned long flags;
871
872 if (!dev->irq_enabled)
873 return false;
874
875 spin_lock_irqsave(&dev_priv->irq_lock, flags);
876 if (ring->irq_refcount.gt++ == 0) {
877 dev_priv->irq_mask &= ~ring->irq_enable_mask;
878 I915_WRITE(IMR, dev_priv->irq_mask);
879 POSTING_READ(IMR);
880 }
881 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
882
883 return true;
884 }
885
886 static void
887 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
888 {
889 struct drm_device *dev = ring->dev;
890 drm_i915_private_t *dev_priv = dev->dev_private;
891 unsigned long flags;
892
893 spin_lock_irqsave(&dev_priv->irq_lock, flags);
894 if (--ring->irq_refcount.gt == 0) {
895 dev_priv->irq_mask |= ring->irq_enable_mask;
896 I915_WRITE(IMR, dev_priv->irq_mask);
897 POSTING_READ(IMR);
898 }
899 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
900 }
901
902 static bool
903 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
904 {
905 struct drm_device *dev = ring->dev;
906 drm_i915_private_t *dev_priv = dev->dev_private;
907 unsigned long flags;
908
909 if (!dev->irq_enabled)
910 return false;
911
912 spin_lock_irqsave(&dev_priv->irq_lock, flags);
913 if (ring->irq_refcount.gt++ == 0) {
914 dev_priv->irq_mask &= ~ring->irq_enable_mask;
915 I915_WRITE16(IMR, dev_priv->irq_mask);
916 POSTING_READ16(IMR);
917 }
918 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
919
920 return true;
921 }
922
923 static void
924 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
925 {
926 struct drm_device *dev = ring->dev;
927 drm_i915_private_t *dev_priv = dev->dev_private;
928 unsigned long flags;
929
930 spin_lock_irqsave(&dev_priv->irq_lock, flags);
931 if (--ring->irq_refcount.gt == 0) {
932 dev_priv->irq_mask |= ring->irq_enable_mask;
933 I915_WRITE16(IMR, dev_priv->irq_mask);
934 POSTING_READ16(IMR);
935 }
936 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
937 }
938
939 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
940 {
941 struct drm_device *dev = ring->dev;
942 drm_i915_private_t *dev_priv = ring->dev->dev_private;
943 u32 mmio = 0;
944
945 /* The ring status page addresses are no longer next to the rest of
946 * the ring registers as of gen7.
947 */
948 if (IS_GEN7(dev)) {
949 switch (ring->id) {
950 case RCS:
951 mmio = RENDER_HWS_PGA_GEN7;
952 break;
953 case BCS:
954 mmio = BLT_HWS_PGA_GEN7;
955 break;
956 case VCS:
957 mmio = BSD_HWS_PGA_GEN7;
958 break;
959 case VECS:
960 mmio = VEBOX_HWS_PGA_GEN7;
961 break;
962 }
963 } else if (IS_GEN6(ring->dev)) {
964 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
965 } else {
966 mmio = RING_HWS_PGA(ring->mmio_base);
967 }
968
969 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
970 POSTING_READ(mmio);
971 }
972
973 static int
974 bsd_ring_flush(struct intel_ring_buffer *ring,
975 u32 invalidate_domains,
976 u32 flush_domains)
977 {
978 int ret;
979
980 ret = intel_ring_begin(ring, 2);
981 if (ret)
982 return ret;
983
984 intel_ring_emit(ring, MI_FLUSH);
985 intel_ring_emit(ring, MI_NOOP);
986 intel_ring_advance(ring);
987 return 0;
988 }
989
990 static int
991 i9xx_add_request(struct intel_ring_buffer *ring)
992 {
993 int ret;
994
995 ret = intel_ring_begin(ring, 4);
996 if (ret)
997 return ret;
998
999 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1000 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1001 intel_ring_emit(ring, ring->outstanding_lazy_request);
1002 intel_ring_emit(ring, MI_USER_INTERRUPT);
1003 intel_ring_advance(ring);
1004
1005 return 0;
1006 }
1007
1008 static bool
1009 gen6_ring_get_irq(struct intel_ring_buffer *ring)
1010 {
1011 struct drm_device *dev = ring->dev;
1012 drm_i915_private_t *dev_priv = dev->dev_private;
1013 unsigned long flags;
1014
1015 if (!dev->irq_enabled)
1016 return false;
1017
1018 /* It looks like we need to prevent the gt from suspending while waiting
1019 * for an notifiy irq, otherwise irqs seem to get lost on at least the
1020 * blt/bsd rings on ivb. */
1021 gen6_gt_force_wake_get(dev_priv);
1022
1023 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1024 if (ring->irq_refcount.gt++ == 0) {
1025 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
1026 I915_WRITE_IMR(ring,
1027 ~(ring->irq_enable_mask |
1028 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1029 else
1030 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1031 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
1032 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1033 POSTING_READ(GTIMR);
1034 }
1035 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1036
1037 return true;
1038 }
1039
1040 static void
1041 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1042 {
1043 struct drm_device *dev = ring->dev;
1044 drm_i915_private_t *dev_priv = dev->dev_private;
1045 unsigned long flags;
1046
1047 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1048 if (--ring->irq_refcount.gt == 0) {
1049 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
1050 I915_WRITE_IMR(ring,
1051 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1052 else
1053 I915_WRITE_IMR(ring, ~0);
1054 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
1055 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1056 POSTING_READ(GTIMR);
1057 }
1058 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1059
1060 gen6_gt_force_wake_put(dev_priv);
1061 }
1062
1063 static bool
1064 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1065 {
1066 struct drm_device *dev = ring->dev;
1067 struct drm_i915_private *dev_priv = dev->dev_private;
1068 unsigned long flags;
1069
1070 if (!dev->irq_enabled)
1071 return false;
1072
1073 spin_lock_irqsave(&dev_priv->rps.lock, flags);
1074 if (ring->irq_refcount.pm++ == 0) {
1075 u32 pm_imr = I915_READ(GEN6_PMIMR);
1076 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1077 I915_WRITE(GEN6_PMIMR, pm_imr & ~ring->irq_enable_mask);
1078 POSTING_READ(GEN6_PMIMR);
1079 }
1080 spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
1081
1082 return true;
1083 }
1084
1085 static void
1086 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1087 {
1088 struct drm_device *dev = ring->dev;
1089 struct drm_i915_private *dev_priv = dev->dev_private;
1090 unsigned long flags;
1091
1092 if (!dev->irq_enabled)
1093 return;
1094
1095 spin_lock_irqsave(&dev_priv->rps.lock, flags);
1096 if (--ring->irq_refcount.pm == 0) {
1097 u32 pm_imr = I915_READ(GEN6_PMIMR);
1098 I915_WRITE_IMR(ring, ~0);
1099 I915_WRITE(GEN6_PMIMR, pm_imr | ring->irq_enable_mask);
1100 POSTING_READ(GEN6_PMIMR);
1101 }
1102 spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
1103 }
1104
1105 static int
1106 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1107 u32 offset, u32 length,
1108 unsigned flags)
1109 {
1110 int ret;
1111
1112 ret = intel_ring_begin(ring, 2);
1113 if (ret)
1114 return ret;
1115
1116 intel_ring_emit(ring,
1117 MI_BATCH_BUFFER_START |
1118 MI_BATCH_GTT |
1119 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1120 intel_ring_emit(ring, offset);
1121 intel_ring_advance(ring);
1122
1123 return 0;
1124 }
1125
1126 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1127 #define I830_BATCH_LIMIT (256*1024)
1128 static int
1129 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1130 u32 offset, u32 len,
1131 unsigned flags)
1132 {
1133 int ret;
1134
1135 if (flags & I915_DISPATCH_PINNED) {
1136 ret = intel_ring_begin(ring, 4);
1137 if (ret)
1138 return ret;
1139
1140 intel_ring_emit(ring, MI_BATCH_BUFFER);
1141 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1142 intel_ring_emit(ring, offset + len - 8);
1143 intel_ring_emit(ring, MI_NOOP);
1144 intel_ring_advance(ring);
1145 } else {
1146 struct drm_i915_gem_object *obj = ring->private;
1147 u32 cs_offset = obj->gtt_offset;
1148
1149 if (len > I830_BATCH_LIMIT)
1150 return -ENOSPC;
1151
1152 ret = intel_ring_begin(ring, 9+3);
1153 if (ret)
1154 return ret;
1155 /* Blit the batch (which has now all relocs applied) to the stable batch
1156 * scratch bo area (so that the CS never stumbles over its tlb
1157 * invalidation bug) ... */
1158 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1159 XY_SRC_COPY_BLT_WRITE_ALPHA |
1160 XY_SRC_COPY_BLT_WRITE_RGB);
1161 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1162 intel_ring_emit(ring, 0);
1163 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1164 intel_ring_emit(ring, cs_offset);
1165 intel_ring_emit(ring, 0);
1166 intel_ring_emit(ring, 4096);
1167 intel_ring_emit(ring, offset);
1168 intel_ring_emit(ring, MI_FLUSH);
1169
1170 /* ... and execute it. */
1171 intel_ring_emit(ring, MI_BATCH_BUFFER);
1172 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1173 intel_ring_emit(ring, cs_offset + len - 8);
1174 intel_ring_advance(ring);
1175 }
1176
1177 return 0;
1178 }
1179
1180 static int
1181 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1182 u32 offset, u32 len,
1183 unsigned flags)
1184 {
1185 int ret;
1186
1187 ret = intel_ring_begin(ring, 2);
1188 if (ret)
1189 return ret;
1190
1191 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1192 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1193 intel_ring_advance(ring);
1194
1195 return 0;
1196 }
1197
1198 static void cleanup_status_page(struct intel_ring_buffer *ring)
1199 {
1200 struct drm_i915_gem_object *obj;
1201
1202 obj = ring->status_page.obj;
1203 if (obj == NULL)
1204 return;
1205
1206 kunmap(sg_page(obj->pages->sgl));
1207 i915_gem_object_unpin(obj);
1208 drm_gem_object_unreference(&obj->base);
1209 ring->status_page.obj = NULL;
1210 }
1211
1212 static int init_status_page(struct intel_ring_buffer *ring)
1213 {
1214 struct drm_device *dev = ring->dev;
1215 struct drm_i915_gem_object *obj;
1216 int ret;
1217
1218 obj = i915_gem_alloc_object(dev, 4096);
1219 if (obj == NULL) {
1220 DRM_ERROR("Failed to allocate status page\n");
1221 ret = -ENOMEM;
1222 goto err;
1223 }
1224
1225 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1226
1227 ret = i915_gem_object_pin(obj, 4096, true, false);
1228 if (ret != 0) {
1229 goto err_unref;
1230 }
1231
1232 ring->status_page.gfx_addr = obj->gtt_offset;
1233 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1234 if (ring->status_page.page_addr == NULL) {
1235 ret = -ENOMEM;
1236 goto err_unpin;
1237 }
1238 ring->status_page.obj = obj;
1239 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1240
1241 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1242 ring->name, ring->status_page.gfx_addr);
1243
1244 return 0;
1245
1246 err_unpin:
1247 i915_gem_object_unpin(obj);
1248 err_unref:
1249 drm_gem_object_unreference(&obj->base);
1250 err:
1251 return ret;
1252 }
1253
1254 static int init_phys_status_page(struct intel_ring_buffer *ring)
1255 {
1256 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1257
1258 if (!dev_priv->status_page_dmah) {
1259 dev_priv->status_page_dmah =
1260 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1261 if (!dev_priv->status_page_dmah)
1262 return -ENOMEM;
1263 }
1264
1265 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1266 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1267
1268 return 0;
1269 }
1270
1271 static int intel_init_ring_buffer(struct drm_device *dev,
1272 struct intel_ring_buffer *ring)
1273 {
1274 struct drm_i915_gem_object *obj;
1275 struct drm_i915_private *dev_priv = dev->dev_private;
1276 int ret;
1277
1278 ring->dev = dev;
1279 INIT_LIST_HEAD(&ring->active_list);
1280 INIT_LIST_HEAD(&ring->request_list);
1281 ring->size = 32 * PAGE_SIZE;
1282 memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1283
1284 init_waitqueue_head(&ring->irq_queue);
1285
1286 if (I915_NEED_GFX_HWS(dev)) {
1287 ret = init_status_page(ring);
1288 if (ret)
1289 return ret;
1290 } else {
1291 BUG_ON(ring->id != RCS);
1292 ret = init_phys_status_page(ring);
1293 if (ret)
1294 return ret;
1295 }
1296
1297 obj = NULL;
1298 if (!HAS_LLC(dev))
1299 obj = i915_gem_object_create_stolen(dev, ring->size);
1300 if (obj == NULL)
1301 obj = i915_gem_alloc_object(dev, ring->size);
1302 if (obj == NULL) {
1303 DRM_ERROR("Failed to allocate ringbuffer\n");
1304 ret = -ENOMEM;
1305 goto err_hws;
1306 }
1307
1308 ring->obj = obj;
1309
1310 ret = i915_gem_object_pin(obj, PAGE_SIZE, true, false);
1311 if (ret)
1312 goto err_unref;
1313
1314 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1315 if (ret)
1316 goto err_unpin;
1317
1318 ring->virtual_start =
1319 ioremap_wc(dev_priv->gtt.mappable_base + obj->gtt_offset,
1320 ring->size);
1321 if (ring->virtual_start == NULL) {
1322 DRM_ERROR("Failed to map ringbuffer.\n");
1323 ret = -EINVAL;
1324 goto err_unpin;
1325 }
1326
1327 ret = ring->init(ring);
1328 if (ret)
1329 goto err_unmap;
1330
1331 /* Workaround an erratum on the i830 which causes a hang if
1332 * the TAIL pointer points to within the last 2 cachelines
1333 * of the buffer.
1334 */
1335 ring->effective_size = ring->size;
1336 if (IS_I830(ring->dev) || IS_845G(ring->dev))
1337 ring->effective_size -= 128;
1338
1339 return 0;
1340
1341 err_unmap:
1342 iounmap(ring->virtual_start);
1343 err_unpin:
1344 i915_gem_object_unpin(obj);
1345 err_unref:
1346 drm_gem_object_unreference(&obj->base);
1347 ring->obj = NULL;
1348 err_hws:
1349 cleanup_status_page(ring);
1350 return ret;
1351 }
1352
1353 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1354 {
1355 struct drm_i915_private *dev_priv;
1356 int ret;
1357
1358 if (ring->obj == NULL)
1359 return;
1360
1361 /* Disable the ring buffer. The ring must be idle at this point */
1362 dev_priv = ring->dev->dev_private;
1363 ret = intel_ring_idle(ring);
1364 if (ret)
1365 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1366 ring->name, ret);
1367
1368 I915_WRITE_CTL(ring, 0);
1369
1370 iounmap(ring->virtual_start);
1371
1372 i915_gem_object_unpin(ring->obj);
1373 drm_gem_object_unreference(&ring->obj->base);
1374 ring->obj = NULL;
1375
1376 if (ring->cleanup)
1377 ring->cleanup(ring);
1378
1379 cleanup_status_page(ring);
1380 }
1381
1382 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1383 {
1384 int ret;
1385
1386 ret = i915_wait_seqno(ring, seqno);
1387 if (!ret)
1388 i915_gem_retire_requests_ring(ring);
1389
1390 return ret;
1391 }
1392
1393 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1394 {
1395 struct drm_i915_gem_request *request;
1396 u32 seqno = 0;
1397 int ret;
1398
1399 i915_gem_retire_requests_ring(ring);
1400
1401 if (ring->last_retired_head != -1) {
1402 ring->head = ring->last_retired_head;
1403 ring->last_retired_head = -1;
1404 ring->space = ring_space(ring);
1405 if (ring->space >= n)
1406 return 0;
1407 }
1408
1409 list_for_each_entry(request, &ring->request_list, list) {
1410 int space;
1411
1412 if (request->tail == -1)
1413 continue;
1414
1415 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1416 if (space < 0)
1417 space += ring->size;
1418 if (space >= n) {
1419 seqno = request->seqno;
1420 break;
1421 }
1422
1423 /* Consume this request in case we need more space than
1424 * is available and so need to prevent a race between
1425 * updating last_retired_head and direct reads of
1426 * I915_RING_HEAD. It also provides a nice sanity check.
1427 */
1428 request->tail = -1;
1429 }
1430
1431 if (seqno == 0)
1432 return -ENOSPC;
1433
1434 ret = intel_ring_wait_seqno(ring, seqno);
1435 if (ret)
1436 return ret;
1437
1438 if (WARN_ON(ring->last_retired_head == -1))
1439 return -ENOSPC;
1440
1441 ring->head = ring->last_retired_head;
1442 ring->last_retired_head = -1;
1443 ring->space = ring_space(ring);
1444 if (WARN_ON(ring->space < n))
1445 return -ENOSPC;
1446
1447 return 0;
1448 }
1449
1450 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1451 {
1452 struct drm_device *dev = ring->dev;
1453 struct drm_i915_private *dev_priv = dev->dev_private;
1454 unsigned long end;
1455 int ret;
1456
1457 ret = intel_ring_wait_request(ring, n);
1458 if (ret != -ENOSPC)
1459 return ret;
1460
1461 trace_i915_ring_wait_begin(ring);
1462 /* With GEM the hangcheck timer should kick us out of the loop,
1463 * leaving it early runs the risk of corrupting GEM state (due
1464 * to running on almost untested codepaths). But on resume
1465 * timers don't work yet, so prevent a complete hang in that
1466 * case by choosing an insanely large timeout. */
1467 end = jiffies + 60 * HZ;
1468
1469 do {
1470 ring->head = I915_READ_HEAD(ring);
1471 ring->space = ring_space(ring);
1472 if (ring->space >= n) {
1473 trace_i915_ring_wait_end(ring);
1474 return 0;
1475 }
1476
1477 if (dev->primary->master) {
1478 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1479 if (master_priv->sarea_priv)
1480 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1481 }
1482
1483 msleep(1);
1484
1485 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1486 dev_priv->mm.interruptible);
1487 if (ret)
1488 return ret;
1489 } while (!time_after(jiffies, end));
1490 trace_i915_ring_wait_end(ring);
1491 return -EBUSY;
1492 }
1493
1494 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1495 {
1496 uint32_t __iomem *virt;
1497 int rem = ring->size - ring->tail;
1498
1499 if (ring->space < rem) {
1500 int ret = ring_wait_for_space(ring, rem);
1501 if (ret)
1502 return ret;
1503 }
1504
1505 virt = ring->virtual_start + ring->tail;
1506 rem /= 4;
1507 while (rem--)
1508 iowrite32(MI_NOOP, virt++);
1509
1510 ring->tail = 0;
1511 ring->space = ring_space(ring);
1512
1513 return 0;
1514 }
1515
1516 int intel_ring_idle(struct intel_ring_buffer *ring)
1517 {
1518 u32 seqno;
1519 int ret;
1520
1521 /* We need to add any requests required to flush the objects and ring */
1522 if (ring->outstanding_lazy_request) {
1523 ret = i915_add_request(ring, NULL);
1524 if (ret)
1525 return ret;
1526 }
1527
1528 /* Wait upon the last request to be completed */
1529 if (list_empty(&ring->request_list))
1530 return 0;
1531
1532 seqno = list_entry(ring->request_list.prev,
1533 struct drm_i915_gem_request,
1534 list)->seqno;
1535
1536 return i915_wait_seqno(ring, seqno);
1537 }
1538
1539 static int
1540 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1541 {
1542 if (ring->outstanding_lazy_request)
1543 return 0;
1544
1545 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_request);
1546 }
1547
1548 static int __intel_ring_begin(struct intel_ring_buffer *ring,
1549 int bytes)
1550 {
1551 int ret;
1552
1553 if (unlikely(ring->tail + bytes > ring->effective_size)) {
1554 ret = intel_wrap_ring_buffer(ring);
1555 if (unlikely(ret))
1556 return ret;
1557 }
1558
1559 if (unlikely(ring->space < bytes)) {
1560 ret = ring_wait_for_space(ring, bytes);
1561 if (unlikely(ret))
1562 return ret;
1563 }
1564
1565 ring->space -= bytes;
1566 return 0;
1567 }
1568
1569 int intel_ring_begin(struct intel_ring_buffer *ring,
1570 int num_dwords)
1571 {
1572 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1573 int ret;
1574
1575 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1576 dev_priv->mm.interruptible);
1577 if (ret)
1578 return ret;
1579
1580 /* Preallocate the olr before touching the ring */
1581 ret = intel_ring_alloc_seqno(ring);
1582 if (ret)
1583 return ret;
1584
1585 return __intel_ring_begin(ring, num_dwords * sizeof(uint32_t));
1586 }
1587
1588 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1589 {
1590 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1591
1592 BUG_ON(ring->outstanding_lazy_request);
1593
1594 if (INTEL_INFO(ring->dev)->gen >= 6) {
1595 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1596 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1597 }
1598
1599 ring->set_seqno(ring, seqno);
1600 ring->hangcheck.seqno = seqno;
1601 }
1602
1603 void intel_ring_advance(struct intel_ring_buffer *ring)
1604 {
1605 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1606
1607 ring->tail &= ring->size - 1;
1608 if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
1609 return;
1610 ring->write_tail(ring, ring->tail);
1611 }
1612
1613
1614 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1615 u32 value)
1616 {
1617 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1618
1619 /* Every tail move must follow the sequence below */
1620
1621 /* Disable notification that the ring is IDLE. The GT
1622 * will then assume that it is busy and bring it out of rc6.
1623 */
1624 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1625 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1626
1627 /* Clear the context id. Here be magic! */
1628 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1629
1630 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1631 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1632 GEN6_BSD_SLEEP_INDICATOR) == 0,
1633 50))
1634 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1635
1636 /* Now that the ring is fully powered up, update the tail */
1637 I915_WRITE_TAIL(ring, value);
1638 POSTING_READ(RING_TAIL(ring->mmio_base));
1639
1640 /* Let the ring send IDLE messages to the GT again,
1641 * and so let it sleep to conserve power when idle.
1642 */
1643 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1644 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1645 }
1646
1647 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1648 u32 invalidate, u32 flush)
1649 {
1650 uint32_t cmd;
1651 int ret;
1652
1653 ret = intel_ring_begin(ring, 4);
1654 if (ret)
1655 return ret;
1656
1657 cmd = MI_FLUSH_DW;
1658 /*
1659 * Bspec vol 1c.5 - video engine command streamer:
1660 * "If ENABLED, all TLBs will be invalidated once the flush
1661 * operation is complete. This bit is only valid when the
1662 * Post-Sync Operation field is a value of 1h or 3h."
1663 */
1664 if (invalidate & I915_GEM_GPU_DOMAINS)
1665 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1666 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1667 intel_ring_emit(ring, cmd);
1668 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1669 intel_ring_emit(ring, 0);
1670 intel_ring_emit(ring, MI_NOOP);
1671 intel_ring_advance(ring);
1672 return 0;
1673 }
1674
1675 static int
1676 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1677 u32 offset, u32 len,
1678 unsigned flags)
1679 {
1680 int ret;
1681
1682 ret = intel_ring_begin(ring, 2);
1683 if (ret)
1684 return ret;
1685
1686 intel_ring_emit(ring,
1687 MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1688 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1689 /* bit0-7 is the length on GEN6+ */
1690 intel_ring_emit(ring, offset);
1691 intel_ring_advance(ring);
1692
1693 return 0;
1694 }
1695
1696 static int
1697 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1698 u32 offset, u32 len,
1699 unsigned flags)
1700 {
1701 int ret;
1702
1703 ret = intel_ring_begin(ring, 2);
1704 if (ret)
1705 return ret;
1706
1707 intel_ring_emit(ring,
1708 MI_BATCH_BUFFER_START |
1709 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1710 /* bit0-7 is the length on GEN6+ */
1711 intel_ring_emit(ring, offset);
1712 intel_ring_advance(ring);
1713
1714 return 0;
1715 }
1716
1717 /* Blitter support (SandyBridge+) */
1718
1719 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1720 u32 invalidate, u32 flush)
1721 {
1722 struct drm_device *dev = ring->dev;
1723 uint32_t cmd;
1724 int ret;
1725
1726 ret = intel_ring_begin(ring, 4);
1727 if (ret)
1728 return ret;
1729
1730 cmd = MI_FLUSH_DW;
1731 /*
1732 * Bspec vol 1c.3 - blitter engine command streamer:
1733 * "If ENABLED, all TLBs will be invalidated once the flush
1734 * operation is complete. This bit is only valid when the
1735 * Post-Sync Operation field is a value of 1h or 3h."
1736 */
1737 if (invalidate & I915_GEM_DOMAIN_RENDER)
1738 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1739 MI_FLUSH_DW_OP_STOREDW;
1740 intel_ring_emit(ring, cmd);
1741 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1742 intel_ring_emit(ring, 0);
1743 intel_ring_emit(ring, MI_NOOP);
1744 intel_ring_advance(ring);
1745
1746 if (IS_GEN7(dev) && flush)
1747 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1748
1749 return 0;
1750 }
1751
1752 int intel_init_render_ring_buffer(struct drm_device *dev)
1753 {
1754 drm_i915_private_t *dev_priv = dev->dev_private;
1755 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1756
1757 ring->name = "render ring";
1758 ring->id = RCS;
1759 ring->mmio_base = RENDER_RING_BASE;
1760
1761 if (INTEL_INFO(dev)->gen >= 6) {
1762 ring->add_request = gen6_add_request;
1763 ring->flush = gen7_render_ring_flush;
1764 if (INTEL_INFO(dev)->gen == 6)
1765 ring->flush = gen6_render_ring_flush;
1766 ring->irq_get = gen6_ring_get_irq;
1767 ring->irq_put = gen6_ring_put_irq;
1768 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1769 ring->get_seqno = gen6_ring_get_seqno;
1770 ring->set_seqno = ring_set_seqno;
1771 ring->sync_to = gen6_ring_sync;
1772 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1773 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1774 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1775 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1776 ring->signal_mbox[RCS] = GEN6_NOSYNC;
1777 ring->signal_mbox[VCS] = GEN6_VRSYNC;
1778 ring->signal_mbox[BCS] = GEN6_BRSYNC;
1779 ring->signal_mbox[VECS] = GEN6_VERSYNC;
1780 } else if (IS_GEN5(dev)) {
1781 ring->add_request = pc_render_add_request;
1782 ring->flush = gen4_render_ring_flush;
1783 ring->get_seqno = pc_render_get_seqno;
1784 ring->set_seqno = pc_render_set_seqno;
1785 ring->irq_get = gen5_ring_get_irq;
1786 ring->irq_put = gen5_ring_put_irq;
1787 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1788 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1789 } else {
1790 ring->add_request = i9xx_add_request;
1791 if (INTEL_INFO(dev)->gen < 4)
1792 ring->flush = gen2_render_ring_flush;
1793 else
1794 ring->flush = gen4_render_ring_flush;
1795 ring->get_seqno = ring_get_seqno;
1796 ring->set_seqno = ring_set_seqno;
1797 if (IS_GEN2(dev)) {
1798 ring->irq_get = i8xx_ring_get_irq;
1799 ring->irq_put = i8xx_ring_put_irq;
1800 } else {
1801 ring->irq_get = i9xx_ring_get_irq;
1802 ring->irq_put = i9xx_ring_put_irq;
1803 }
1804 ring->irq_enable_mask = I915_USER_INTERRUPT;
1805 }
1806 ring->write_tail = ring_write_tail;
1807 if (IS_HASWELL(dev))
1808 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1809 else if (INTEL_INFO(dev)->gen >= 6)
1810 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1811 else if (INTEL_INFO(dev)->gen >= 4)
1812 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1813 else if (IS_I830(dev) || IS_845G(dev))
1814 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1815 else
1816 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1817 ring->init = init_render_ring;
1818 ring->cleanup = render_ring_cleanup;
1819
1820 /* Workaround batchbuffer to combat CS tlb bug. */
1821 if (HAS_BROKEN_CS_TLB(dev)) {
1822 struct drm_i915_gem_object *obj;
1823 int ret;
1824
1825 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1826 if (obj == NULL) {
1827 DRM_ERROR("Failed to allocate batch bo\n");
1828 return -ENOMEM;
1829 }
1830
1831 ret = i915_gem_object_pin(obj, 0, true, false);
1832 if (ret != 0) {
1833 drm_gem_object_unreference(&obj->base);
1834 DRM_ERROR("Failed to ping batch bo\n");
1835 return ret;
1836 }
1837
1838 ring->private = obj;
1839 }
1840
1841 return intel_init_ring_buffer(dev, ring);
1842 }
1843
1844 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1845 {
1846 drm_i915_private_t *dev_priv = dev->dev_private;
1847 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1848 int ret;
1849
1850 ring->name = "render ring";
1851 ring->id = RCS;
1852 ring->mmio_base = RENDER_RING_BASE;
1853
1854 if (INTEL_INFO(dev)->gen >= 6) {
1855 /* non-kms not supported on gen6+ */
1856 return -ENODEV;
1857 }
1858
1859 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1860 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1861 * the special gen5 functions. */
1862 ring->add_request = i9xx_add_request;
1863 if (INTEL_INFO(dev)->gen < 4)
1864 ring->flush = gen2_render_ring_flush;
1865 else
1866 ring->flush = gen4_render_ring_flush;
1867 ring->get_seqno = ring_get_seqno;
1868 ring->set_seqno = ring_set_seqno;
1869 if (IS_GEN2(dev)) {
1870 ring->irq_get = i8xx_ring_get_irq;
1871 ring->irq_put = i8xx_ring_put_irq;
1872 } else {
1873 ring->irq_get = i9xx_ring_get_irq;
1874 ring->irq_put = i9xx_ring_put_irq;
1875 }
1876 ring->irq_enable_mask = I915_USER_INTERRUPT;
1877 ring->write_tail = ring_write_tail;
1878 if (INTEL_INFO(dev)->gen >= 4)
1879 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1880 else if (IS_I830(dev) || IS_845G(dev))
1881 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1882 else
1883 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1884 ring->init = init_render_ring;
1885 ring->cleanup = render_ring_cleanup;
1886
1887 ring->dev = dev;
1888 INIT_LIST_HEAD(&ring->active_list);
1889 INIT_LIST_HEAD(&ring->request_list);
1890
1891 ring->size = size;
1892 ring->effective_size = ring->size;
1893 if (IS_I830(ring->dev) || IS_845G(ring->dev))
1894 ring->effective_size -= 128;
1895
1896 ring->virtual_start = ioremap_wc(start, size);
1897 if (ring->virtual_start == NULL) {
1898 DRM_ERROR("can not ioremap virtual address for"
1899 " ring buffer\n");
1900 return -ENOMEM;
1901 }
1902
1903 if (!I915_NEED_GFX_HWS(dev)) {
1904 ret = init_phys_status_page(ring);
1905 if (ret)
1906 return ret;
1907 }
1908
1909 return 0;
1910 }
1911
1912 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1913 {
1914 drm_i915_private_t *dev_priv = dev->dev_private;
1915 struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1916
1917 ring->name = "bsd ring";
1918 ring->id = VCS;
1919
1920 ring->write_tail = ring_write_tail;
1921 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1922 ring->mmio_base = GEN6_BSD_RING_BASE;
1923 /* gen6 bsd needs a special wa for tail updates */
1924 if (IS_GEN6(dev))
1925 ring->write_tail = gen6_bsd_ring_write_tail;
1926 ring->flush = gen6_bsd_ring_flush;
1927 ring->add_request = gen6_add_request;
1928 ring->get_seqno = gen6_ring_get_seqno;
1929 ring->set_seqno = ring_set_seqno;
1930 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1931 ring->irq_get = gen6_ring_get_irq;
1932 ring->irq_put = gen6_ring_put_irq;
1933 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1934 ring->sync_to = gen6_ring_sync;
1935 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
1936 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
1937 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
1938 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
1939 ring->signal_mbox[RCS] = GEN6_RVSYNC;
1940 ring->signal_mbox[VCS] = GEN6_NOSYNC;
1941 ring->signal_mbox[BCS] = GEN6_BVSYNC;
1942 ring->signal_mbox[VECS] = GEN6_VEVSYNC;
1943 } else {
1944 ring->mmio_base = BSD_RING_BASE;
1945 ring->flush = bsd_ring_flush;
1946 ring->add_request = i9xx_add_request;
1947 ring->get_seqno = ring_get_seqno;
1948 ring->set_seqno = ring_set_seqno;
1949 if (IS_GEN5(dev)) {
1950 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
1951 ring->irq_get = gen5_ring_get_irq;
1952 ring->irq_put = gen5_ring_put_irq;
1953 } else {
1954 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1955 ring->irq_get = i9xx_ring_get_irq;
1956 ring->irq_put = i9xx_ring_put_irq;
1957 }
1958 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1959 }
1960 ring->init = init_ring_common;
1961
1962 return intel_init_ring_buffer(dev, ring);
1963 }
1964
1965 int intel_init_blt_ring_buffer(struct drm_device *dev)
1966 {
1967 drm_i915_private_t *dev_priv = dev->dev_private;
1968 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1969
1970 ring->name = "blitter ring";
1971 ring->id = BCS;
1972
1973 ring->mmio_base = BLT_RING_BASE;
1974 ring->write_tail = ring_write_tail;
1975 ring->flush = gen6_ring_flush;
1976 ring->add_request = gen6_add_request;
1977 ring->get_seqno = gen6_ring_get_seqno;
1978 ring->set_seqno = ring_set_seqno;
1979 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
1980 ring->irq_get = gen6_ring_get_irq;
1981 ring->irq_put = gen6_ring_put_irq;
1982 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1983 ring->sync_to = gen6_ring_sync;
1984 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
1985 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
1986 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
1987 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
1988 ring->signal_mbox[RCS] = GEN6_RBSYNC;
1989 ring->signal_mbox[VCS] = GEN6_VBSYNC;
1990 ring->signal_mbox[BCS] = GEN6_NOSYNC;
1991 ring->signal_mbox[VECS] = GEN6_VEBSYNC;
1992 ring->init = init_ring_common;
1993
1994 return intel_init_ring_buffer(dev, ring);
1995 }
1996
1997 int intel_init_vebox_ring_buffer(struct drm_device *dev)
1998 {
1999 drm_i915_private_t *dev_priv = dev->dev_private;
2000 struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2001
2002 ring->name = "video enhancement ring";
2003 ring->id = VECS;
2004
2005 ring->mmio_base = VEBOX_RING_BASE;
2006 ring->write_tail = ring_write_tail;
2007 ring->flush = gen6_ring_flush;
2008 ring->add_request = gen6_add_request;
2009 ring->get_seqno = gen6_ring_get_seqno;
2010 ring->set_seqno = ring_set_seqno;
2011 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT |
2012 PM_VEBOX_CS_ERROR_INTERRUPT;
2013 ring->irq_get = hsw_vebox_get_irq;
2014 ring->irq_put = hsw_vebox_put_irq;
2015 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2016 ring->sync_to = gen6_ring_sync;
2017 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
2018 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
2019 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
2020 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2021 ring->signal_mbox[RCS] = GEN6_RVESYNC;
2022 ring->signal_mbox[VCS] = GEN6_VVESYNC;
2023 ring->signal_mbox[BCS] = GEN6_BVESYNC;
2024 ring->signal_mbox[VECS] = GEN6_NOSYNC;
2025 ring->init = init_ring_common;
2026
2027 return intel_init_ring_buffer(dev, ring);
2028 }
2029
2030 int
2031 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2032 {
2033 int ret;
2034
2035 if (!ring->gpu_caches_dirty)
2036 return 0;
2037
2038 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2039 if (ret)
2040 return ret;
2041
2042 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2043
2044 ring->gpu_caches_dirty = false;
2045 return 0;
2046 }
2047
2048 int
2049 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2050 {
2051 uint32_t flush_domains;
2052 int ret;
2053
2054 flush_domains = 0;
2055 if (ring->gpu_caches_dirty)
2056 flush_domains = I915_GEM_GPU_DOMAINS;
2057
2058 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2059 if (ret)
2060 return ret;
2061
2062 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2063
2064 ring->gpu_caches_dirty = false;
2065 return 0;
2066 }
This page took 0.072277 seconds and 6 git commands to generate.