Merge git://git.infradead.org/intel-iommu
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 struct drm_device *dev = ring->dev;
40
41 if (!dev)
42 return false;
43
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48 return ringbuf->obj;
49 } else
50 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 int space = head - tail;
56 if (space <= 0)
57 space += size;
58 return space - I915_RING_FREE_SPACE;
59 }
60
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63 if (ringbuf->last_retired_head != -1) {
64 ringbuf->head = ringbuf->last_retired_head;
65 ringbuf->last_retired_head = -1;
66 }
67
68 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69 ringbuf->tail, ringbuf->size);
70 }
71
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74 intel_ring_update_space(ringbuf);
75 return ringbuf->space;
76 }
77
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80 struct drm_i915_private *dev_priv = ring->dev->dev_private;
81 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
84 void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86 struct intel_ringbuffer *ringbuf = ring->buffer;
87 ringbuf->tail &= ringbuf->size - 1;
88 if (intel_ring_stopped(ring))
89 return;
90 ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
94 gen2_render_ring_flush(struct intel_engine_cs *ring,
95 u32 invalidate_domains,
96 u32 flush_domains)
97 {
98 u32 cmd;
99 int ret;
100
101 cmd = MI_FLUSH;
102 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
103 cmd |= MI_NO_WRITE_FLUSH;
104
105 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
106 cmd |= MI_READ_FLUSH;
107
108 ret = intel_ring_begin(ring, 2);
109 if (ret)
110 return ret;
111
112 intel_ring_emit(ring, cmd);
113 intel_ring_emit(ring, MI_NOOP);
114 intel_ring_advance(ring);
115
116 return 0;
117 }
118
119 static int
120 gen4_render_ring_flush(struct intel_engine_cs *ring,
121 u32 invalidate_domains,
122 u32 flush_domains)
123 {
124 struct drm_device *dev = ring->dev;
125 u32 cmd;
126 int ret;
127
128 /*
129 * read/write caches:
130 *
131 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
132 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
133 * also flushed at 2d versus 3d pipeline switches.
134 *
135 * read-only caches:
136 *
137 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
138 * MI_READ_FLUSH is set, and is always flushed on 965.
139 *
140 * I915_GEM_DOMAIN_COMMAND may not exist?
141 *
142 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
143 * invalidated when MI_EXE_FLUSH is set.
144 *
145 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
146 * invalidated with every MI_FLUSH.
147 *
148 * TLBs:
149 *
150 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
151 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
152 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
153 * are flushed at any MI_FLUSH.
154 */
155
156 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
157 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
158 cmd &= ~MI_NO_WRITE_FLUSH;
159 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
160 cmd |= MI_EXE_FLUSH;
161
162 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
163 (IS_G4X(dev) || IS_GEN5(dev)))
164 cmd |= MI_INVALIDATE_ISP;
165
166 ret = intel_ring_begin(ring, 2);
167 if (ret)
168 return ret;
169
170 intel_ring_emit(ring, cmd);
171 intel_ring_emit(ring, MI_NOOP);
172 intel_ring_advance(ring);
173
174 return 0;
175 }
176
177 /**
178 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
179 * implementing two workarounds on gen6. From section 1.4.7.1
180 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
181 *
182 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
183 * produced by non-pipelined state commands), software needs to first
184 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
185 * 0.
186 *
187 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
188 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
189 *
190 * And the workaround for these two requires this workaround first:
191 *
192 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
193 * BEFORE the pipe-control with a post-sync op and no write-cache
194 * flushes.
195 *
196 * And this last workaround is tricky because of the requirements on
197 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
198 * volume 2 part 1:
199 *
200 * "1 of the following must also be set:
201 * - Render Target Cache Flush Enable ([12] of DW1)
202 * - Depth Cache Flush Enable ([0] of DW1)
203 * - Stall at Pixel Scoreboard ([1] of DW1)
204 * - Depth Stall ([13] of DW1)
205 * - Post-Sync Operation ([13] of DW1)
206 * - Notify Enable ([8] of DW1)"
207 *
208 * The cache flushes require the workaround flush that triggered this
209 * one, so we can't use it. Depth stall would trigger the same.
210 * Post-sync nonzero is what triggered this second workaround, so we
211 * can't use that one either. Notify enable is IRQs, which aren't
212 * really our business. That leaves only stall at scoreboard.
213 */
214 static int
215 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
216 {
217 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
218 int ret;
219
220
221 ret = intel_ring_begin(ring, 6);
222 if (ret)
223 return ret;
224
225 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
226 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
227 PIPE_CONTROL_STALL_AT_SCOREBOARD);
228 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
229 intel_ring_emit(ring, 0); /* low dword */
230 intel_ring_emit(ring, 0); /* high dword */
231 intel_ring_emit(ring, MI_NOOP);
232 intel_ring_advance(ring);
233
234 ret = intel_ring_begin(ring, 6);
235 if (ret)
236 return ret;
237
238 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
239 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
240 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
241 intel_ring_emit(ring, 0);
242 intel_ring_emit(ring, 0);
243 intel_ring_emit(ring, MI_NOOP);
244 intel_ring_advance(ring);
245
246 return 0;
247 }
248
249 static int
250 gen6_render_ring_flush(struct intel_engine_cs *ring,
251 u32 invalidate_domains, u32 flush_domains)
252 {
253 u32 flags = 0;
254 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
255 int ret;
256
257 /* Force SNB workarounds for PIPE_CONTROL flushes */
258 ret = intel_emit_post_sync_nonzero_flush(ring);
259 if (ret)
260 return ret;
261
262 /* Just flush everything. Experiments have shown that reducing the
263 * number of bits based on the write domains has little performance
264 * impact.
265 */
266 if (flush_domains) {
267 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
268 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
269 /*
270 * Ensure that any following seqno writes only happen
271 * when the render cache is indeed flushed.
272 */
273 flags |= PIPE_CONTROL_CS_STALL;
274 }
275 if (invalidate_domains) {
276 flags |= PIPE_CONTROL_TLB_INVALIDATE;
277 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
278 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
279 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
280 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
281 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
282 /*
283 * TLB invalidate requires a post-sync write.
284 */
285 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
286 }
287
288 ret = intel_ring_begin(ring, 4);
289 if (ret)
290 return ret;
291
292 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
293 intel_ring_emit(ring, flags);
294 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
295 intel_ring_emit(ring, 0);
296 intel_ring_advance(ring);
297
298 return 0;
299 }
300
301 static int
302 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
303 {
304 int ret;
305
306 ret = intel_ring_begin(ring, 4);
307 if (ret)
308 return ret;
309
310 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
311 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
312 PIPE_CONTROL_STALL_AT_SCOREBOARD);
313 intel_ring_emit(ring, 0);
314 intel_ring_emit(ring, 0);
315 intel_ring_advance(ring);
316
317 return 0;
318 }
319
320 static int
321 gen7_render_ring_flush(struct intel_engine_cs *ring,
322 u32 invalidate_domains, u32 flush_domains)
323 {
324 u32 flags = 0;
325 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
326 int ret;
327
328 /*
329 * Ensure that any following seqno writes only happen when the render
330 * cache is indeed flushed.
331 *
332 * Workaround: 4th PIPE_CONTROL command (except the ones with only
333 * read-cache invalidate bits set) must have the CS_STALL bit set. We
334 * don't try to be clever and just set it unconditionally.
335 */
336 flags |= PIPE_CONTROL_CS_STALL;
337
338 /* Just flush everything. Experiments have shown that reducing the
339 * number of bits based on the write domains has little performance
340 * impact.
341 */
342 if (flush_domains) {
343 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
344 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
345 }
346 if (invalidate_domains) {
347 flags |= PIPE_CONTROL_TLB_INVALIDATE;
348 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
349 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
350 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
351 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
352 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
353 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
354 /*
355 * TLB invalidate requires a post-sync write.
356 */
357 flags |= PIPE_CONTROL_QW_WRITE;
358 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
359
360 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
361
362 /* Workaround: we must issue a pipe_control with CS-stall bit
363 * set before a pipe_control command that has the state cache
364 * invalidate bit set. */
365 gen7_render_ring_cs_stall_wa(ring);
366 }
367
368 ret = intel_ring_begin(ring, 4);
369 if (ret)
370 return ret;
371
372 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
373 intel_ring_emit(ring, flags);
374 intel_ring_emit(ring, scratch_addr);
375 intel_ring_emit(ring, 0);
376 intel_ring_advance(ring);
377
378 return 0;
379 }
380
381 static int
382 gen8_emit_pipe_control(struct intel_engine_cs *ring,
383 u32 flags, u32 scratch_addr)
384 {
385 int ret;
386
387 ret = intel_ring_begin(ring, 6);
388 if (ret)
389 return ret;
390
391 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
392 intel_ring_emit(ring, flags);
393 intel_ring_emit(ring, scratch_addr);
394 intel_ring_emit(ring, 0);
395 intel_ring_emit(ring, 0);
396 intel_ring_emit(ring, 0);
397 intel_ring_advance(ring);
398
399 return 0;
400 }
401
402 static int
403 gen8_render_ring_flush(struct intel_engine_cs *ring,
404 u32 invalidate_domains, u32 flush_domains)
405 {
406 u32 flags = 0;
407 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
408 int ret;
409
410 flags |= PIPE_CONTROL_CS_STALL;
411
412 if (flush_domains) {
413 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
414 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
415 }
416 if (invalidate_domains) {
417 flags |= PIPE_CONTROL_TLB_INVALIDATE;
418 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
419 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
420 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
421 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
422 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
423 flags |= PIPE_CONTROL_QW_WRITE;
424 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
425
426 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
427 ret = gen8_emit_pipe_control(ring,
428 PIPE_CONTROL_CS_STALL |
429 PIPE_CONTROL_STALL_AT_SCOREBOARD,
430 0);
431 if (ret)
432 return ret;
433 }
434
435 return gen8_emit_pipe_control(ring, flags, scratch_addr);
436 }
437
438 static void ring_write_tail(struct intel_engine_cs *ring,
439 u32 value)
440 {
441 struct drm_i915_private *dev_priv = ring->dev->dev_private;
442 I915_WRITE_TAIL(ring, value);
443 }
444
445 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
446 {
447 struct drm_i915_private *dev_priv = ring->dev->dev_private;
448 u64 acthd;
449
450 if (INTEL_INFO(ring->dev)->gen >= 8)
451 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
452 RING_ACTHD_UDW(ring->mmio_base));
453 else if (INTEL_INFO(ring->dev)->gen >= 4)
454 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
455 else
456 acthd = I915_READ(ACTHD);
457
458 return acthd;
459 }
460
461 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
462 {
463 struct drm_i915_private *dev_priv = ring->dev->dev_private;
464 u32 addr;
465
466 addr = dev_priv->status_page_dmah->busaddr;
467 if (INTEL_INFO(ring->dev)->gen >= 4)
468 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
469 I915_WRITE(HWS_PGA, addr);
470 }
471
472 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
473 {
474 struct drm_device *dev = ring->dev;
475 struct drm_i915_private *dev_priv = ring->dev->dev_private;
476 u32 mmio = 0;
477
478 /* The ring status page addresses are no longer next to the rest of
479 * the ring registers as of gen7.
480 */
481 if (IS_GEN7(dev)) {
482 switch (ring->id) {
483 case RCS:
484 mmio = RENDER_HWS_PGA_GEN7;
485 break;
486 case BCS:
487 mmio = BLT_HWS_PGA_GEN7;
488 break;
489 /*
490 * VCS2 actually doesn't exist on Gen7. Only shut up
491 * gcc switch check warning
492 */
493 case VCS2:
494 case VCS:
495 mmio = BSD_HWS_PGA_GEN7;
496 break;
497 case VECS:
498 mmio = VEBOX_HWS_PGA_GEN7;
499 break;
500 }
501 } else if (IS_GEN6(ring->dev)) {
502 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
503 } else {
504 /* XXX: gen8 returns to sanity */
505 mmio = RING_HWS_PGA(ring->mmio_base);
506 }
507
508 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
509 POSTING_READ(mmio);
510
511 /*
512 * Flush the TLB for this page
513 *
514 * FIXME: These two bits have disappeared on gen8, so a question
515 * arises: do we still need this and if so how should we go about
516 * invalidating the TLB?
517 */
518 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
519 u32 reg = RING_INSTPM(ring->mmio_base);
520
521 /* ring should be idle before issuing a sync flush*/
522 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
523
524 I915_WRITE(reg,
525 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
526 INSTPM_SYNC_FLUSH));
527 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
528 1000))
529 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
530 ring->name);
531 }
532 }
533
534 static bool stop_ring(struct intel_engine_cs *ring)
535 {
536 struct drm_i915_private *dev_priv = to_i915(ring->dev);
537
538 if (!IS_GEN2(ring->dev)) {
539 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
540 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
541 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
542 /* Sometimes we observe that the idle flag is not
543 * set even though the ring is empty. So double
544 * check before giving up.
545 */
546 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
547 return false;
548 }
549 }
550
551 I915_WRITE_CTL(ring, 0);
552 I915_WRITE_HEAD(ring, 0);
553 ring->write_tail(ring, 0);
554
555 if (!IS_GEN2(ring->dev)) {
556 (void)I915_READ_CTL(ring);
557 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
558 }
559
560 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
561 }
562
563 static int init_ring_common(struct intel_engine_cs *ring)
564 {
565 struct drm_device *dev = ring->dev;
566 struct drm_i915_private *dev_priv = dev->dev_private;
567 struct intel_ringbuffer *ringbuf = ring->buffer;
568 struct drm_i915_gem_object *obj = ringbuf->obj;
569 int ret = 0;
570
571 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
572
573 if (!stop_ring(ring)) {
574 /* G45 ring initialization often fails to reset head to zero */
575 DRM_DEBUG_KMS("%s head not reset to zero "
576 "ctl %08x head %08x tail %08x start %08x\n",
577 ring->name,
578 I915_READ_CTL(ring),
579 I915_READ_HEAD(ring),
580 I915_READ_TAIL(ring),
581 I915_READ_START(ring));
582
583 if (!stop_ring(ring)) {
584 DRM_ERROR("failed to set %s head to zero "
585 "ctl %08x head %08x tail %08x start %08x\n",
586 ring->name,
587 I915_READ_CTL(ring),
588 I915_READ_HEAD(ring),
589 I915_READ_TAIL(ring),
590 I915_READ_START(ring));
591 ret = -EIO;
592 goto out;
593 }
594 }
595
596 if (I915_NEED_GFX_HWS(dev))
597 intel_ring_setup_status_page(ring);
598 else
599 ring_setup_phys_status_page(ring);
600
601 /* Enforce ordering by reading HEAD register back */
602 I915_READ_HEAD(ring);
603
604 /* Initialize the ring. This must happen _after_ we've cleared the ring
605 * registers with the above sequence (the readback of the HEAD registers
606 * also enforces ordering), otherwise the hw might lose the new ring
607 * register values. */
608 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
609
610 /* WaClearRingBufHeadRegAtInit:ctg,elk */
611 if (I915_READ_HEAD(ring))
612 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
613 ring->name, I915_READ_HEAD(ring));
614 I915_WRITE_HEAD(ring, 0);
615 (void)I915_READ_HEAD(ring);
616
617 I915_WRITE_CTL(ring,
618 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
619 | RING_VALID);
620
621 /* If the head is still not zero, the ring is dead */
622 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
623 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
624 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
625 DRM_ERROR("%s initialization failed "
626 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
627 ring->name,
628 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
629 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
630 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
631 ret = -EIO;
632 goto out;
633 }
634
635 ringbuf->last_retired_head = -1;
636 ringbuf->head = I915_READ_HEAD(ring);
637 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
638 intel_ring_update_space(ringbuf);
639
640 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
641
642 out:
643 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
644
645 return ret;
646 }
647
648 void
649 intel_fini_pipe_control(struct intel_engine_cs *ring)
650 {
651 struct drm_device *dev = ring->dev;
652
653 if (ring->scratch.obj == NULL)
654 return;
655
656 if (INTEL_INFO(dev)->gen >= 5) {
657 kunmap(sg_page(ring->scratch.obj->pages->sgl));
658 i915_gem_object_ggtt_unpin(ring->scratch.obj);
659 }
660
661 drm_gem_object_unreference(&ring->scratch.obj->base);
662 ring->scratch.obj = NULL;
663 }
664
665 int
666 intel_init_pipe_control(struct intel_engine_cs *ring)
667 {
668 int ret;
669
670 WARN_ON(ring->scratch.obj);
671
672 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
673 if (ring->scratch.obj == NULL) {
674 DRM_ERROR("Failed to allocate seqno page\n");
675 ret = -ENOMEM;
676 goto err;
677 }
678
679 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
680 if (ret)
681 goto err_unref;
682
683 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
684 if (ret)
685 goto err_unref;
686
687 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
688 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
689 if (ring->scratch.cpu_page == NULL) {
690 ret = -ENOMEM;
691 goto err_unpin;
692 }
693
694 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
695 ring->name, ring->scratch.gtt_offset);
696 return 0;
697
698 err_unpin:
699 i915_gem_object_ggtt_unpin(ring->scratch.obj);
700 err_unref:
701 drm_gem_object_unreference(&ring->scratch.obj->base);
702 err:
703 return ret;
704 }
705
706 static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
707 struct intel_context *ctx)
708 {
709 int ret, i;
710 struct drm_device *dev = ring->dev;
711 struct drm_i915_private *dev_priv = dev->dev_private;
712 struct i915_workarounds *w = &dev_priv->workarounds;
713
714 if (WARN_ON_ONCE(w->count == 0))
715 return 0;
716
717 ring->gpu_caches_dirty = true;
718 ret = intel_ring_flush_all_caches(ring);
719 if (ret)
720 return ret;
721
722 ret = intel_ring_begin(ring, (w->count * 2 + 2));
723 if (ret)
724 return ret;
725
726 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
727 for (i = 0; i < w->count; i++) {
728 intel_ring_emit(ring, w->reg[i].addr);
729 intel_ring_emit(ring, w->reg[i].value);
730 }
731 intel_ring_emit(ring, MI_NOOP);
732
733 intel_ring_advance(ring);
734
735 ring->gpu_caches_dirty = true;
736 ret = intel_ring_flush_all_caches(ring);
737 if (ret)
738 return ret;
739
740 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
741
742 return 0;
743 }
744
745 static int intel_rcs_ctx_init(struct intel_engine_cs *ring,
746 struct intel_context *ctx)
747 {
748 int ret;
749
750 ret = intel_ring_workarounds_emit(ring, ctx);
751 if (ret != 0)
752 return ret;
753
754 ret = i915_gem_render_state_init(ring);
755 if (ret)
756 DRM_ERROR("init render state: %d\n", ret);
757
758 return ret;
759 }
760
761 static int wa_add(struct drm_i915_private *dev_priv,
762 const u32 addr, const u32 mask, const u32 val)
763 {
764 const u32 idx = dev_priv->workarounds.count;
765
766 if (WARN_ON(idx >= I915_MAX_WA_REGS))
767 return -ENOSPC;
768
769 dev_priv->workarounds.reg[idx].addr = addr;
770 dev_priv->workarounds.reg[idx].value = val;
771 dev_priv->workarounds.reg[idx].mask = mask;
772
773 dev_priv->workarounds.count++;
774
775 return 0;
776 }
777
778 #define WA_REG(addr, mask, val) { \
779 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
780 if (r) \
781 return r; \
782 }
783
784 #define WA_SET_BIT_MASKED(addr, mask) \
785 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
786
787 #define WA_CLR_BIT_MASKED(addr, mask) \
788 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
789
790 #define WA_SET_FIELD_MASKED(addr, mask, value) \
791 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
792
793 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
794 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
795
796 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
797
798 static int bdw_init_workarounds(struct intel_engine_cs *ring)
799 {
800 struct drm_device *dev = ring->dev;
801 struct drm_i915_private *dev_priv = dev->dev_private;
802
803 /* WaDisablePartialInstShootdown:bdw */
804 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
805 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
806 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
807 STALL_DOP_GATING_DISABLE);
808
809 /* WaDisableDopClockGating:bdw */
810 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
811 DOP_CLOCK_GATING_DISABLE);
812
813 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
814 GEN8_SAMPLER_POWER_BYPASS_DIS);
815
816 /* Use Force Non-Coherent whenever executing a 3D context. This is a
817 * workaround for for a possible hang in the unlikely event a TLB
818 * invalidation occurs during a PSD flush.
819 */
820 WA_SET_BIT_MASKED(HDC_CHICKEN0,
821 /* WaForceEnableNonCoherent:bdw */
822 HDC_FORCE_NON_COHERENT |
823 /* WaForceContextSaveRestoreNonCoherent:bdw */
824 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
825 /* WaHdcDisableFetchWhenMasked:bdw */
826 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
827 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
828 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
829
830 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
831 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
832 * polygons in the same 8x4 pixel/sample area to be processed without
833 * stalling waiting for the earlier ones to write to Hierarchical Z
834 * buffer."
835 *
836 * This optimization is off by default for Broadwell; turn it on.
837 */
838 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
839
840 /* Wa4x4STCOptimizationDisable:bdw */
841 WA_SET_BIT_MASKED(CACHE_MODE_1,
842 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
843
844 /*
845 * BSpec recommends 8x4 when MSAA is used,
846 * however in practice 16x4 seems fastest.
847 *
848 * Note that PS/WM thread counts depend on the WIZ hashing
849 * disable bit, which we don't touch here, but it's good
850 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
851 */
852 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
853 GEN6_WIZ_HASHING_MASK,
854 GEN6_WIZ_HASHING_16x4);
855
856 return 0;
857 }
858
859 static int chv_init_workarounds(struct intel_engine_cs *ring)
860 {
861 struct drm_device *dev = ring->dev;
862 struct drm_i915_private *dev_priv = dev->dev_private;
863
864 /* WaDisablePartialInstShootdown:chv */
865 /* WaDisableThreadStallDopClockGating:chv */
866 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
867 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
868 STALL_DOP_GATING_DISABLE);
869
870 /* Use Force Non-Coherent whenever executing a 3D context. This is a
871 * workaround for a possible hang in the unlikely event a TLB
872 * invalidation occurs during a PSD flush.
873 */
874 /* WaForceEnableNonCoherent:chv */
875 /* WaHdcDisableFetchWhenMasked:chv */
876 WA_SET_BIT_MASKED(HDC_CHICKEN0,
877 HDC_FORCE_NON_COHERENT |
878 HDC_DONOT_FETCH_MEM_WHEN_MASKED);
879
880 /* According to the CACHE_MODE_0 default value documentation, some
881 * CHV platforms disable this optimization by default. Turn it on.
882 */
883 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
884
885 /* Wa4x4STCOptimizationDisable:chv */
886 WA_SET_BIT_MASKED(CACHE_MODE_1,
887 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
888
889 /* Improve HiZ throughput on CHV. */
890 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
891
892 /*
893 * BSpec recommends 8x4 when MSAA is used,
894 * however in practice 16x4 seems fastest.
895 *
896 * Note that PS/WM thread counts depend on the WIZ hashing
897 * disable bit, which we don't touch here, but it's good
898 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
899 */
900 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
901 GEN6_WIZ_HASHING_MASK,
902 GEN6_WIZ_HASHING_16x4);
903
904 if (INTEL_REVID(dev) == SKL_REVID_C0 ||
905 INTEL_REVID(dev) == SKL_REVID_D0)
906 /* WaBarrierPerformanceFixDisable:skl */
907 WA_SET_BIT_MASKED(HDC_CHICKEN0,
908 HDC_FENCE_DEST_SLM_DISABLE |
909 HDC_BARRIER_PERFORMANCE_DISABLE);
910
911 return 0;
912 }
913
914 static int gen9_init_workarounds(struct intel_engine_cs *ring)
915 {
916 struct drm_device *dev = ring->dev;
917 struct drm_i915_private *dev_priv = dev->dev_private;
918
919 /* WaDisablePartialInstShootdown:skl */
920 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
921 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
922
923 /* Syncing dependencies between camera and graphics */
924 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
925 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
926
927 if (INTEL_REVID(dev) == SKL_REVID_A0 ||
928 INTEL_REVID(dev) == SKL_REVID_B0) {
929 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl */
930 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
931 GEN9_DG_MIRROR_FIX_ENABLE);
932 }
933
934 if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) {
935 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl */
936 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
937 GEN9_RHWO_OPTIMIZATION_DISABLE);
938 WA_SET_BIT_MASKED(GEN9_SLICE_COMMON_ECO_CHICKEN0,
939 DISABLE_PIXEL_MASK_CAMMING);
940 }
941
942 if (INTEL_REVID(dev) >= SKL_REVID_C0) {
943 /* WaEnableYV12BugFixInHalfSliceChicken7:skl */
944 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
945 GEN9_ENABLE_YV12_BUGFIX);
946 }
947
948 if (INTEL_REVID(dev) <= SKL_REVID_D0) {
949 /*
950 *Use Force Non-Coherent whenever executing a 3D context. This
951 * is a workaround for a possible hang in the unlikely event
952 * a TLB invalidation occurs during a PSD flush.
953 */
954 /* WaForceEnableNonCoherent:skl */
955 WA_SET_BIT_MASKED(HDC_CHICKEN0,
956 HDC_FORCE_NON_COHERENT);
957 }
958
959 /* Wa4x4STCOptimizationDisable:skl */
960 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
961
962 /* WaDisablePartialResolveInVc:skl */
963 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
964
965 /* WaCcsTlbPrefetchDisable:skl */
966 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
967 GEN9_CCS_TLB_PREFETCH_ENABLE);
968
969 return 0;
970 }
971
972 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
973 {
974 struct drm_device *dev = ring->dev;
975 struct drm_i915_private *dev_priv = dev->dev_private;
976 u8 vals[3] = { 0, 0, 0 };
977 unsigned int i;
978
979 for (i = 0; i < 3; i++) {
980 u8 ss;
981
982 /*
983 * Only consider slices where one, and only one, subslice has 7
984 * EUs
985 */
986 if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
987 continue;
988
989 /*
990 * subslice_7eu[i] != 0 (because of the check above) and
991 * ss_max == 4 (maximum number of subslices possible per slice)
992 *
993 * -> 0 <= ss <= 3;
994 */
995 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
996 vals[i] = 3 - ss;
997 }
998
999 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1000 return 0;
1001
1002 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1003 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1004 GEN9_IZ_HASHING_MASK(2) |
1005 GEN9_IZ_HASHING_MASK(1) |
1006 GEN9_IZ_HASHING_MASK(0),
1007 GEN9_IZ_HASHING(2, vals[2]) |
1008 GEN9_IZ_HASHING(1, vals[1]) |
1009 GEN9_IZ_HASHING(0, vals[0]));
1010
1011 return 0;
1012 }
1013
1014
1015 static int skl_init_workarounds(struct intel_engine_cs *ring)
1016 {
1017 struct drm_device *dev = ring->dev;
1018 struct drm_i915_private *dev_priv = dev->dev_private;
1019
1020 gen9_init_workarounds(ring);
1021
1022 /* WaDisablePowerCompilerClockGating:skl */
1023 if (INTEL_REVID(dev) == SKL_REVID_B0)
1024 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1025 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1026
1027 return skl_tune_iz_hashing(ring);
1028 }
1029
1030 int init_workarounds_ring(struct intel_engine_cs *ring)
1031 {
1032 struct drm_device *dev = ring->dev;
1033 struct drm_i915_private *dev_priv = dev->dev_private;
1034
1035 WARN_ON(ring->id != RCS);
1036
1037 dev_priv->workarounds.count = 0;
1038
1039 if (IS_BROADWELL(dev))
1040 return bdw_init_workarounds(ring);
1041
1042 if (IS_CHERRYVIEW(dev))
1043 return chv_init_workarounds(ring);
1044
1045 if (IS_SKYLAKE(dev))
1046 return skl_init_workarounds(ring);
1047 else if (IS_GEN9(dev))
1048 return gen9_init_workarounds(ring);
1049
1050 return 0;
1051 }
1052
1053 static int init_render_ring(struct intel_engine_cs *ring)
1054 {
1055 struct drm_device *dev = ring->dev;
1056 struct drm_i915_private *dev_priv = dev->dev_private;
1057 int ret = init_ring_common(ring);
1058 if (ret)
1059 return ret;
1060
1061 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1062 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1063 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1064
1065 /* We need to disable the AsyncFlip performance optimisations in order
1066 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1067 * programmed to '1' on all products.
1068 *
1069 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1070 */
1071 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
1072 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1073
1074 /* Required for the hardware to program scanline values for waiting */
1075 /* WaEnableFlushTlbInvalidationMode:snb */
1076 if (INTEL_INFO(dev)->gen == 6)
1077 I915_WRITE(GFX_MODE,
1078 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1079
1080 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1081 if (IS_GEN7(dev))
1082 I915_WRITE(GFX_MODE_GEN7,
1083 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1084 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1085
1086 if (IS_GEN6(dev)) {
1087 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1088 * "If this bit is set, STCunit will have LRA as replacement
1089 * policy. [...] This bit must be reset. LRA replacement
1090 * policy is not supported."
1091 */
1092 I915_WRITE(CACHE_MODE_0,
1093 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1094 }
1095
1096 if (INTEL_INFO(dev)->gen >= 6)
1097 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1098
1099 if (HAS_L3_DPF(dev))
1100 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1101
1102 return init_workarounds_ring(ring);
1103 }
1104
1105 static void render_ring_cleanup(struct intel_engine_cs *ring)
1106 {
1107 struct drm_device *dev = ring->dev;
1108 struct drm_i915_private *dev_priv = dev->dev_private;
1109
1110 if (dev_priv->semaphore_obj) {
1111 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1112 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1113 dev_priv->semaphore_obj = NULL;
1114 }
1115
1116 intel_fini_pipe_control(ring);
1117 }
1118
1119 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
1120 unsigned int num_dwords)
1121 {
1122 #define MBOX_UPDATE_DWORDS 8
1123 struct drm_device *dev = signaller->dev;
1124 struct drm_i915_private *dev_priv = dev->dev_private;
1125 struct intel_engine_cs *waiter;
1126 int i, ret, num_rings;
1127
1128 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1129 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1130 #undef MBOX_UPDATE_DWORDS
1131
1132 ret = intel_ring_begin(signaller, num_dwords);
1133 if (ret)
1134 return ret;
1135
1136 for_each_ring(waiter, dev_priv, i) {
1137 u32 seqno;
1138 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1139 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1140 continue;
1141
1142 seqno = i915_gem_request_get_seqno(
1143 signaller->outstanding_lazy_request);
1144 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1145 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1146 PIPE_CONTROL_QW_WRITE |
1147 PIPE_CONTROL_FLUSH_ENABLE);
1148 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1149 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1150 intel_ring_emit(signaller, seqno);
1151 intel_ring_emit(signaller, 0);
1152 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1153 MI_SEMAPHORE_TARGET(waiter->id));
1154 intel_ring_emit(signaller, 0);
1155 }
1156
1157 return 0;
1158 }
1159
1160 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
1161 unsigned int num_dwords)
1162 {
1163 #define MBOX_UPDATE_DWORDS 6
1164 struct drm_device *dev = signaller->dev;
1165 struct drm_i915_private *dev_priv = dev->dev_private;
1166 struct intel_engine_cs *waiter;
1167 int i, ret, num_rings;
1168
1169 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1170 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1171 #undef MBOX_UPDATE_DWORDS
1172
1173 ret = intel_ring_begin(signaller, num_dwords);
1174 if (ret)
1175 return ret;
1176
1177 for_each_ring(waiter, dev_priv, i) {
1178 u32 seqno;
1179 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1180 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1181 continue;
1182
1183 seqno = i915_gem_request_get_seqno(
1184 signaller->outstanding_lazy_request);
1185 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1186 MI_FLUSH_DW_OP_STOREDW);
1187 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1188 MI_FLUSH_DW_USE_GTT);
1189 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1190 intel_ring_emit(signaller, seqno);
1191 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1192 MI_SEMAPHORE_TARGET(waiter->id));
1193 intel_ring_emit(signaller, 0);
1194 }
1195
1196 return 0;
1197 }
1198
1199 static int gen6_signal(struct intel_engine_cs *signaller,
1200 unsigned int num_dwords)
1201 {
1202 struct drm_device *dev = signaller->dev;
1203 struct drm_i915_private *dev_priv = dev->dev_private;
1204 struct intel_engine_cs *useless;
1205 int i, ret, num_rings;
1206
1207 #define MBOX_UPDATE_DWORDS 3
1208 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1209 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1210 #undef MBOX_UPDATE_DWORDS
1211
1212 ret = intel_ring_begin(signaller, num_dwords);
1213 if (ret)
1214 return ret;
1215
1216 for_each_ring(useless, dev_priv, i) {
1217 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1218 if (mbox_reg != GEN6_NOSYNC) {
1219 u32 seqno = i915_gem_request_get_seqno(
1220 signaller->outstanding_lazy_request);
1221 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1222 intel_ring_emit(signaller, mbox_reg);
1223 intel_ring_emit(signaller, seqno);
1224 }
1225 }
1226
1227 /* If num_dwords was rounded, make sure the tail pointer is correct */
1228 if (num_rings % 2 == 0)
1229 intel_ring_emit(signaller, MI_NOOP);
1230
1231 return 0;
1232 }
1233
1234 /**
1235 * gen6_add_request - Update the semaphore mailbox registers
1236 *
1237 * @ring - ring that is adding a request
1238 * @seqno - return seqno stuck into the ring
1239 *
1240 * Update the mailbox registers in the *other* rings with the current seqno.
1241 * This acts like a signal in the canonical semaphore.
1242 */
1243 static int
1244 gen6_add_request(struct intel_engine_cs *ring)
1245 {
1246 int ret;
1247
1248 if (ring->semaphore.signal)
1249 ret = ring->semaphore.signal(ring, 4);
1250 else
1251 ret = intel_ring_begin(ring, 4);
1252
1253 if (ret)
1254 return ret;
1255
1256 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1257 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1258 intel_ring_emit(ring,
1259 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1260 intel_ring_emit(ring, MI_USER_INTERRUPT);
1261 __intel_ring_advance(ring);
1262
1263 return 0;
1264 }
1265
1266 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1267 u32 seqno)
1268 {
1269 struct drm_i915_private *dev_priv = dev->dev_private;
1270 return dev_priv->last_seqno < seqno;
1271 }
1272
1273 /**
1274 * intel_ring_sync - sync the waiter to the signaller on seqno
1275 *
1276 * @waiter - ring that is waiting
1277 * @signaller - ring which has, or will signal
1278 * @seqno - seqno which the waiter will block on
1279 */
1280
1281 static int
1282 gen8_ring_sync(struct intel_engine_cs *waiter,
1283 struct intel_engine_cs *signaller,
1284 u32 seqno)
1285 {
1286 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1287 int ret;
1288
1289 ret = intel_ring_begin(waiter, 4);
1290 if (ret)
1291 return ret;
1292
1293 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1294 MI_SEMAPHORE_GLOBAL_GTT |
1295 MI_SEMAPHORE_POLL |
1296 MI_SEMAPHORE_SAD_GTE_SDD);
1297 intel_ring_emit(waiter, seqno);
1298 intel_ring_emit(waiter,
1299 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1300 intel_ring_emit(waiter,
1301 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1302 intel_ring_advance(waiter);
1303 return 0;
1304 }
1305
1306 static int
1307 gen6_ring_sync(struct intel_engine_cs *waiter,
1308 struct intel_engine_cs *signaller,
1309 u32 seqno)
1310 {
1311 u32 dw1 = MI_SEMAPHORE_MBOX |
1312 MI_SEMAPHORE_COMPARE |
1313 MI_SEMAPHORE_REGISTER;
1314 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1315 int ret;
1316
1317 /* Throughout all of the GEM code, seqno passed implies our current
1318 * seqno is >= the last seqno executed. However for hardware the
1319 * comparison is strictly greater than.
1320 */
1321 seqno -= 1;
1322
1323 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1324
1325 ret = intel_ring_begin(waiter, 4);
1326 if (ret)
1327 return ret;
1328
1329 /* If seqno wrap happened, omit the wait with no-ops */
1330 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1331 intel_ring_emit(waiter, dw1 | wait_mbox);
1332 intel_ring_emit(waiter, seqno);
1333 intel_ring_emit(waiter, 0);
1334 intel_ring_emit(waiter, MI_NOOP);
1335 } else {
1336 intel_ring_emit(waiter, MI_NOOP);
1337 intel_ring_emit(waiter, MI_NOOP);
1338 intel_ring_emit(waiter, MI_NOOP);
1339 intel_ring_emit(waiter, MI_NOOP);
1340 }
1341 intel_ring_advance(waiter);
1342
1343 return 0;
1344 }
1345
1346 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1347 do { \
1348 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1349 PIPE_CONTROL_DEPTH_STALL); \
1350 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1351 intel_ring_emit(ring__, 0); \
1352 intel_ring_emit(ring__, 0); \
1353 } while (0)
1354
1355 static int
1356 pc_render_add_request(struct intel_engine_cs *ring)
1357 {
1358 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1359 int ret;
1360
1361 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1362 * incoherent with writes to memory, i.e. completely fubar,
1363 * so we need to use PIPE_NOTIFY instead.
1364 *
1365 * However, we also need to workaround the qword write
1366 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1367 * memory before requesting an interrupt.
1368 */
1369 ret = intel_ring_begin(ring, 32);
1370 if (ret)
1371 return ret;
1372
1373 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1374 PIPE_CONTROL_WRITE_FLUSH |
1375 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1376 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1377 intel_ring_emit(ring,
1378 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1379 intel_ring_emit(ring, 0);
1380 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1381 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1382 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1383 scratch_addr += 2 * CACHELINE_BYTES;
1384 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1385 scratch_addr += 2 * CACHELINE_BYTES;
1386 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1387 scratch_addr += 2 * CACHELINE_BYTES;
1388 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1389 scratch_addr += 2 * CACHELINE_BYTES;
1390 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1391
1392 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1393 PIPE_CONTROL_WRITE_FLUSH |
1394 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1395 PIPE_CONTROL_NOTIFY);
1396 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1397 intel_ring_emit(ring,
1398 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1399 intel_ring_emit(ring, 0);
1400 __intel_ring_advance(ring);
1401
1402 return 0;
1403 }
1404
1405 static u32
1406 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1407 {
1408 /* Workaround to force correct ordering between irq and seqno writes on
1409 * ivb (and maybe also on snb) by reading from a CS register (like
1410 * ACTHD) before reading the status page. */
1411 if (!lazy_coherency) {
1412 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1413 POSTING_READ(RING_ACTHD(ring->mmio_base));
1414 }
1415
1416 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1417 }
1418
1419 static u32
1420 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1421 {
1422 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1423 }
1424
1425 static void
1426 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1427 {
1428 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1429 }
1430
1431 static u32
1432 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1433 {
1434 return ring->scratch.cpu_page[0];
1435 }
1436
1437 static void
1438 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1439 {
1440 ring->scratch.cpu_page[0] = seqno;
1441 }
1442
1443 static bool
1444 gen5_ring_get_irq(struct intel_engine_cs *ring)
1445 {
1446 struct drm_device *dev = ring->dev;
1447 struct drm_i915_private *dev_priv = dev->dev_private;
1448 unsigned long flags;
1449
1450 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1451 return false;
1452
1453 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1454 if (ring->irq_refcount++ == 0)
1455 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1456 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1457
1458 return true;
1459 }
1460
1461 static void
1462 gen5_ring_put_irq(struct intel_engine_cs *ring)
1463 {
1464 struct drm_device *dev = ring->dev;
1465 struct drm_i915_private *dev_priv = dev->dev_private;
1466 unsigned long flags;
1467
1468 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1469 if (--ring->irq_refcount == 0)
1470 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1471 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1472 }
1473
1474 static bool
1475 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1476 {
1477 struct drm_device *dev = ring->dev;
1478 struct drm_i915_private *dev_priv = dev->dev_private;
1479 unsigned long flags;
1480
1481 if (!intel_irqs_enabled(dev_priv))
1482 return false;
1483
1484 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1485 if (ring->irq_refcount++ == 0) {
1486 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1487 I915_WRITE(IMR, dev_priv->irq_mask);
1488 POSTING_READ(IMR);
1489 }
1490 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1491
1492 return true;
1493 }
1494
1495 static void
1496 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1497 {
1498 struct drm_device *dev = ring->dev;
1499 struct drm_i915_private *dev_priv = dev->dev_private;
1500 unsigned long flags;
1501
1502 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1503 if (--ring->irq_refcount == 0) {
1504 dev_priv->irq_mask |= ring->irq_enable_mask;
1505 I915_WRITE(IMR, dev_priv->irq_mask);
1506 POSTING_READ(IMR);
1507 }
1508 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1509 }
1510
1511 static bool
1512 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1513 {
1514 struct drm_device *dev = ring->dev;
1515 struct drm_i915_private *dev_priv = dev->dev_private;
1516 unsigned long flags;
1517
1518 if (!intel_irqs_enabled(dev_priv))
1519 return false;
1520
1521 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1522 if (ring->irq_refcount++ == 0) {
1523 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1524 I915_WRITE16(IMR, dev_priv->irq_mask);
1525 POSTING_READ16(IMR);
1526 }
1527 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1528
1529 return true;
1530 }
1531
1532 static void
1533 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1534 {
1535 struct drm_device *dev = ring->dev;
1536 struct drm_i915_private *dev_priv = dev->dev_private;
1537 unsigned long flags;
1538
1539 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1540 if (--ring->irq_refcount == 0) {
1541 dev_priv->irq_mask |= ring->irq_enable_mask;
1542 I915_WRITE16(IMR, dev_priv->irq_mask);
1543 POSTING_READ16(IMR);
1544 }
1545 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1546 }
1547
1548 static int
1549 bsd_ring_flush(struct intel_engine_cs *ring,
1550 u32 invalidate_domains,
1551 u32 flush_domains)
1552 {
1553 int ret;
1554
1555 ret = intel_ring_begin(ring, 2);
1556 if (ret)
1557 return ret;
1558
1559 intel_ring_emit(ring, MI_FLUSH);
1560 intel_ring_emit(ring, MI_NOOP);
1561 intel_ring_advance(ring);
1562 return 0;
1563 }
1564
1565 static int
1566 i9xx_add_request(struct intel_engine_cs *ring)
1567 {
1568 int ret;
1569
1570 ret = intel_ring_begin(ring, 4);
1571 if (ret)
1572 return ret;
1573
1574 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1575 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1576 intel_ring_emit(ring,
1577 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1578 intel_ring_emit(ring, MI_USER_INTERRUPT);
1579 __intel_ring_advance(ring);
1580
1581 return 0;
1582 }
1583
1584 static bool
1585 gen6_ring_get_irq(struct intel_engine_cs *ring)
1586 {
1587 struct drm_device *dev = ring->dev;
1588 struct drm_i915_private *dev_priv = dev->dev_private;
1589 unsigned long flags;
1590
1591 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1592 return false;
1593
1594 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1595 if (ring->irq_refcount++ == 0) {
1596 if (HAS_L3_DPF(dev) && ring->id == RCS)
1597 I915_WRITE_IMR(ring,
1598 ~(ring->irq_enable_mask |
1599 GT_PARITY_ERROR(dev)));
1600 else
1601 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1602 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1603 }
1604 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1605
1606 return true;
1607 }
1608
1609 static void
1610 gen6_ring_put_irq(struct intel_engine_cs *ring)
1611 {
1612 struct drm_device *dev = ring->dev;
1613 struct drm_i915_private *dev_priv = dev->dev_private;
1614 unsigned long flags;
1615
1616 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1617 if (--ring->irq_refcount == 0) {
1618 if (HAS_L3_DPF(dev) && ring->id == RCS)
1619 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1620 else
1621 I915_WRITE_IMR(ring, ~0);
1622 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1623 }
1624 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1625 }
1626
1627 static bool
1628 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1629 {
1630 struct drm_device *dev = ring->dev;
1631 struct drm_i915_private *dev_priv = dev->dev_private;
1632 unsigned long flags;
1633
1634 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1635 return false;
1636
1637 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1638 if (ring->irq_refcount++ == 0) {
1639 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1640 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1641 }
1642 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1643
1644 return true;
1645 }
1646
1647 static void
1648 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1649 {
1650 struct drm_device *dev = ring->dev;
1651 struct drm_i915_private *dev_priv = dev->dev_private;
1652 unsigned long flags;
1653
1654 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1655 if (--ring->irq_refcount == 0) {
1656 I915_WRITE_IMR(ring, ~0);
1657 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1658 }
1659 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1660 }
1661
1662 static bool
1663 gen8_ring_get_irq(struct intel_engine_cs *ring)
1664 {
1665 struct drm_device *dev = ring->dev;
1666 struct drm_i915_private *dev_priv = dev->dev_private;
1667 unsigned long flags;
1668
1669 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1670 return false;
1671
1672 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1673 if (ring->irq_refcount++ == 0) {
1674 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1675 I915_WRITE_IMR(ring,
1676 ~(ring->irq_enable_mask |
1677 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1678 } else {
1679 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1680 }
1681 POSTING_READ(RING_IMR(ring->mmio_base));
1682 }
1683 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1684
1685 return true;
1686 }
1687
1688 static void
1689 gen8_ring_put_irq(struct intel_engine_cs *ring)
1690 {
1691 struct drm_device *dev = ring->dev;
1692 struct drm_i915_private *dev_priv = dev->dev_private;
1693 unsigned long flags;
1694
1695 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1696 if (--ring->irq_refcount == 0) {
1697 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1698 I915_WRITE_IMR(ring,
1699 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1700 } else {
1701 I915_WRITE_IMR(ring, ~0);
1702 }
1703 POSTING_READ(RING_IMR(ring->mmio_base));
1704 }
1705 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1706 }
1707
1708 static int
1709 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1710 u64 offset, u32 length,
1711 unsigned dispatch_flags)
1712 {
1713 int ret;
1714
1715 ret = intel_ring_begin(ring, 2);
1716 if (ret)
1717 return ret;
1718
1719 intel_ring_emit(ring,
1720 MI_BATCH_BUFFER_START |
1721 MI_BATCH_GTT |
1722 (dispatch_flags & I915_DISPATCH_SECURE ?
1723 0 : MI_BATCH_NON_SECURE_I965));
1724 intel_ring_emit(ring, offset);
1725 intel_ring_advance(ring);
1726
1727 return 0;
1728 }
1729
1730 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1731 #define I830_BATCH_LIMIT (256*1024)
1732 #define I830_TLB_ENTRIES (2)
1733 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1734 static int
1735 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1736 u64 offset, u32 len,
1737 unsigned dispatch_flags)
1738 {
1739 u32 cs_offset = ring->scratch.gtt_offset;
1740 int ret;
1741
1742 ret = intel_ring_begin(ring, 6);
1743 if (ret)
1744 return ret;
1745
1746 /* Evict the invalid PTE TLBs */
1747 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1748 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1749 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1750 intel_ring_emit(ring, cs_offset);
1751 intel_ring_emit(ring, 0xdeadbeef);
1752 intel_ring_emit(ring, MI_NOOP);
1753 intel_ring_advance(ring);
1754
1755 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1756 if (len > I830_BATCH_LIMIT)
1757 return -ENOSPC;
1758
1759 ret = intel_ring_begin(ring, 6 + 2);
1760 if (ret)
1761 return ret;
1762
1763 /* Blit the batch (which has now all relocs applied) to the
1764 * stable batch scratch bo area (so that the CS never
1765 * stumbles over its tlb invalidation bug) ...
1766 */
1767 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1768 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1769 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1770 intel_ring_emit(ring, cs_offset);
1771 intel_ring_emit(ring, 4096);
1772 intel_ring_emit(ring, offset);
1773
1774 intel_ring_emit(ring, MI_FLUSH);
1775 intel_ring_emit(ring, MI_NOOP);
1776 intel_ring_advance(ring);
1777
1778 /* ... and execute it. */
1779 offset = cs_offset;
1780 }
1781
1782 ret = intel_ring_begin(ring, 4);
1783 if (ret)
1784 return ret;
1785
1786 intel_ring_emit(ring, MI_BATCH_BUFFER);
1787 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1788 0 : MI_BATCH_NON_SECURE));
1789 intel_ring_emit(ring, offset + len - 8);
1790 intel_ring_emit(ring, MI_NOOP);
1791 intel_ring_advance(ring);
1792
1793 return 0;
1794 }
1795
1796 static int
1797 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1798 u64 offset, u32 len,
1799 unsigned dispatch_flags)
1800 {
1801 int ret;
1802
1803 ret = intel_ring_begin(ring, 2);
1804 if (ret)
1805 return ret;
1806
1807 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1808 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1809 0 : MI_BATCH_NON_SECURE));
1810 intel_ring_advance(ring);
1811
1812 return 0;
1813 }
1814
1815 static void cleanup_status_page(struct intel_engine_cs *ring)
1816 {
1817 struct drm_i915_gem_object *obj;
1818
1819 obj = ring->status_page.obj;
1820 if (obj == NULL)
1821 return;
1822
1823 kunmap(sg_page(obj->pages->sgl));
1824 i915_gem_object_ggtt_unpin(obj);
1825 drm_gem_object_unreference(&obj->base);
1826 ring->status_page.obj = NULL;
1827 }
1828
1829 static int init_status_page(struct intel_engine_cs *ring)
1830 {
1831 struct drm_i915_gem_object *obj;
1832
1833 if ((obj = ring->status_page.obj) == NULL) {
1834 unsigned flags;
1835 int ret;
1836
1837 obj = i915_gem_alloc_object(ring->dev, 4096);
1838 if (obj == NULL) {
1839 DRM_ERROR("Failed to allocate status page\n");
1840 return -ENOMEM;
1841 }
1842
1843 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1844 if (ret)
1845 goto err_unref;
1846
1847 flags = 0;
1848 if (!HAS_LLC(ring->dev))
1849 /* On g33, we cannot place HWS above 256MiB, so
1850 * restrict its pinning to the low mappable arena.
1851 * Though this restriction is not documented for
1852 * gen4, gen5, or byt, they also behave similarly
1853 * and hang if the HWS is placed at the top of the
1854 * GTT. To generalise, it appears that all !llc
1855 * platforms have issues with us placing the HWS
1856 * above the mappable region (even though we never
1857 * actualy map it).
1858 */
1859 flags |= PIN_MAPPABLE;
1860 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1861 if (ret) {
1862 err_unref:
1863 drm_gem_object_unreference(&obj->base);
1864 return ret;
1865 }
1866
1867 ring->status_page.obj = obj;
1868 }
1869
1870 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1871 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1872 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1873
1874 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1875 ring->name, ring->status_page.gfx_addr);
1876
1877 return 0;
1878 }
1879
1880 static int init_phys_status_page(struct intel_engine_cs *ring)
1881 {
1882 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1883
1884 if (!dev_priv->status_page_dmah) {
1885 dev_priv->status_page_dmah =
1886 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1887 if (!dev_priv->status_page_dmah)
1888 return -ENOMEM;
1889 }
1890
1891 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1892 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1893
1894 return 0;
1895 }
1896
1897 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1898 {
1899 iounmap(ringbuf->virtual_start);
1900 ringbuf->virtual_start = NULL;
1901 i915_gem_object_ggtt_unpin(ringbuf->obj);
1902 }
1903
1904 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1905 struct intel_ringbuffer *ringbuf)
1906 {
1907 struct drm_i915_private *dev_priv = to_i915(dev);
1908 struct drm_i915_gem_object *obj = ringbuf->obj;
1909 int ret;
1910
1911 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1912 if (ret)
1913 return ret;
1914
1915 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1916 if (ret) {
1917 i915_gem_object_ggtt_unpin(obj);
1918 return ret;
1919 }
1920
1921 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1922 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1923 if (ringbuf->virtual_start == NULL) {
1924 i915_gem_object_ggtt_unpin(obj);
1925 return -EINVAL;
1926 }
1927
1928 return 0;
1929 }
1930
1931 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1932 {
1933 drm_gem_object_unreference(&ringbuf->obj->base);
1934 ringbuf->obj = NULL;
1935 }
1936
1937 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1938 struct intel_ringbuffer *ringbuf)
1939 {
1940 struct drm_i915_gem_object *obj;
1941
1942 obj = NULL;
1943 if (!HAS_LLC(dev))
1944 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1945 if (obj == NULL)
1946 obj = i915_gem_alloc_object(dev, ringbuf->size);
1947 if (obj == NULL)
1948 return -ENOMEM;
1949
1950 /* mark ring buffers as read-only from GPU side by default */
1951 obj->gt_ro = 1;
1952
1953 ringbuf->obj = obj;
1954
1955 return 0;
1956 }
1957
1958 static int intel_init_ring_buffer(struct drm_device *dev,
1959 struct intel_engine_cs *ring)
1960 {
1961 struct intel_ringbuffer *ringbuf;
1962 int ret;
1963
1964 WARN_ON(ring->buffer);
1965
1966 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1967 if (!ringbuf)
1968 return -ENOMEM;
1969 ring->buffer = ringbuf;
1970
1971 ring->dev = dev;
1972 INIT_LIST_HEAD(&ring->active_list);
1973 INIT_LIST_HEAD(&ring->request_list);
1974 INIT_LIST_HEAD(&ring->execlist_queue);
1975 ringbuf->size = 32 * PAGE_SIZE;
1976 ringbuf->ring = ring;
1977 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1978
1979 init_waitqueue_head(&ring->irq_queue);
1980
1981 if (I915_NEED_GFX_HWS(dev)) {
1982 ret = init_status_page(ring);
1983 if (ret)
1984 goto error;
1985 } else {
1986 BUG_ON(ring->id != RCS);
1987 ret = init_phys_status_page(ring);
1988 if (ret)
1989 goto error;
1990 }
1991
1992 WARN_ON(ringbuf->obj);
1993
1994 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1995 if (ret) {
1996 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
1997 ring->name, ret);
1998 goto error;
1999 }
2000
2001 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2002 if (ret) {
2003 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2004 ring->name, ret);
2005 intel_destroy_ringbuffer_obj(ringbuf);
2006 goto error;
2007 }
2008
2009 /* Workaround an erratum on the i830 which causes a hang if
2010 * the TAIL pointer points to within the last 2 cachelines
2011 * of the buffer.
2012 */
2013 ringbuf->effective_size = ringbuf->size;
2014 if (IS_I830(dev) || IS_845G(dev))
2015 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2016
2017 ret = i915_cmd_parser_init_ring(ring);
2018 if (ret)
2019 goto error;
2020
2021 return 0;
2022
2023 error:
2024 kfree(ringbuf);
2025 ring->buffer = NULL;
2026 return ret;
2027 }
2028
2029 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2030 {
2031 struct drm_i915_private *dev_priv;
2032 struct intel_ringbuffer *ringbuf;
2033
2034 if (!intel_ring_initialized(ring))
2035 return;
2036
2037 dev_priv = to_i915(ring->dev);
2038 ringbuf = ring->buffer;
2039
2040 intel_stop_ring_buffer(ring);
2041 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2042
2043 intel_unpin_ringbuffer_obj(ringbuf);
2044 intel_destroy_ringbuffer_obj(ringbuf);
2045 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2046
2047 if (ring->cleanup)
2048 ring->cleanup(ring);
2049
2050 cleanup_status_page(ring);
2051
2052 i915_cmd_parser_fini_ring(ring);
2053
2054 kfree(ringbuf);
2055 ring->buffer = NULL;
2056 }
2057
2058 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
2059 {
2060 struct intel_ringbuffer *ringbuf = ring->buffer;
2061 struct drm_i915_gem_request *request;
2062 int ret;
2063
2064 if (intel_ring_space(ringbuf) >= n)
2065 return 0;
2066
2067 list_for_each_entry(request, &ring->request_list, list) {
2068 if (__intel_ring_space(request->postfix, ringbuf->tail,
2069 ringbuf->size) >= n) {
2070 break;
2071 }
2072 }
2073
2074 if (&request->list == &ring->request_list)
2075 return -ENOSPC;
2076
2077 ret = i915_wait_request(request);
2078 if (ret)
2079 return ret;
2080
2081 i915_gem_retire_requests_ring(ring);
2082
2083 return 0;
2084 }
2085
2086 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2087 {
2088 struct drm_device *dev = ring->dev;
2089 struct drm_i915_private *dev_priv = dev->dev_private;
2090 struct intel_ringbuffer *ringbuf = ring->buffer;
2091 unsigned long end;
2092 int ret;
2093
2094 ret = intel_ring_wait_request(ring, n);
2095 if (ret != -ENOSPC)
2096 return ret;
2097
2098 /* force the tail write in case we have been skipping them */
2099 __intel_ring_advance(ring);
2100
2101 /* With GEM the hangcheck timer should kick us out of the loop,
2102 * leaving it early runs the risk of corrupting GEM state (due
2103 * to running on almost untested codepaths). But on resume
2104 * timers don't work yet, so prevent a complete hang in that
2105 * case by choosing an insanely large timeout. */
2106 end = jiffies + 60 * HZ;
2107
2108 ret = 0;
2109 trace_i915_ring_wait_begin(ring);
2110 do {
2111 if (intel_ring_space(ringbuf) >= n)
2112 break;
2113 ringbuf->head = I915_READ_HEAD(ring);
2114 if (intel_ring_space(ringbuf) >= n)
2115 break;
2116
2117 msleep(1);
2118
2119 if (dev_priv->mm.interruptible && signal_pending(current)) {
2120 ret = -ERESTARTSYS;
2121 break;
2122 }
2123
2124 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2125 dev_priv->mm.interruptible);
2126 if (ret)
2127 break;
2128
2129 if (time_after(jiffies, end)) {
2130 ret = -EBUSY;
2131 break;
2132 }
2133 } while (1);
2134 trace_i915_ring_wait_end(ring);
2135 return ret;
2136 }
2137
2138 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
2139 {
2140 uint32_t __iomem *virt;
2141 struct intel_ringbuffer *ringbuf = ring->buffer;
2142 int rem = ringbuf->size - ringbuf->tail;
2143
2144 if (ringbuf->space < rem) {
2145 int ret = ring_wait_for_space(ring, rem);
2146 if (ret)
2147 return ret;
2148 }
2149
2150 virt = ringbuf->virtual_start + ringbuf->tail;
2151 rem /= 4;
2152 while (rem--)
2153 iowrite32(MI_NOOP, virt++);
2154
2155 ringbuf->tail = 0;
2156 intel_ring_update_space(ringbuf);
2157
2158 return 0;
2159 }
2160
2161 int intel_ring_idle(struct intel_engine_cs *ring)
2162 {
2163 struct drm_i915_gem_request *req;
2164 int ret;
2165
2166 /* We need to add any requests required to flush the objects and ring */
2167 if (ring->outstanding_lazy_request) {
2168 ret = i915_add_request(ring);
2169 if (ret)
2170 return ret;
2171 }
2172
2173 /* Wait upon the last request to be completed */
2174 if (list_empty(&ring->request_list))
2175 return 0;
2176
2177 req = list_entry(ring->request_list.prev,
2178 struct drm_i915_gem_request,
2179 list);
2180
2181 return i915_wait_request(req);
2182 }
2183
2184 static int
2185 intel_ring_alloc_request(struct intel_engine_cs *ring)
2186 {
2187 int ret;
2188 struct drm_i915_gem_request *request;
2189 struct drm_i915_private *dev_private = ring->dev->dev_private;
2190
2191 if (ring->outstanding_lazy_request)
2192 return 0;
2193
2194 request = kzalloc(sizeof(*request), GFP_KERNEL);
2195 if (request == NULL)
2196 return -ENOMEM;
2197
2198 kref_init(&request->ref);
2199 request->ring = ring;
2200 request->ringbuf = ring->buffer;
2201 request->uniq = dev_private->request_uniq++;
2202
2203 ret = i915_gem_get_seqno(ring->dev, &request->seqno);
2204 if (ret) {
2205 kfree(request);
2206 return ret;
2207 }
2208
2209 ring->outstanding_lazy_request = request;
2210 return 0;
2211 }
2212
2213 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2214 int bytes)
2215 {
2216 struct intel_ringbuffer *ringbuf = ring->buffer;
2217 int ret;
2218
2219 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2220 ret = intel_wrap_ring_buffer(ring);
2221 if (unlikely(ret))
2222 return ret;
2223 }
2224
2225 if (unlikely(ringbuf->space < bytes)) {
2226 ret = ring_wait_for_space(ring, bytes);
2227 if (unlikely(ret))
2228 return ret;
2229 }
2230
2231 return 0;
2232 }
2233
2234 int intel_ring_begin(struct intel_engine_cs *ring,
2235 int num_dwords)
2236 {
2237 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2238 int ret;
2239
2240 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2241 dev_priv->mm.interruptible);
2242 if (ret)
2243 return ret;
2244
2245 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2246 if (ret)
2247 return ret;
2248
2249 /* Preallocate the olr before touching the ring */
2250 ret = intel_ring_alloc_request(ring);
2251 if (ret)
2252 return ret;
2253
2254 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2255 return 0;
2256 }
2257
2258 /* Align the ring tail to a cacheline boundary */
2259 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2260 {
2261 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2262 int ret;
2263
2264 if (num_dwords == 0)
2265 return 0;
2266
2267 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2268 ret = intel_ring_begin(ring, num_dwords);
2269 if (ret)
2270 return ret;
2271
2272 while (num_dwords--)
2273 intel_ring_emit(ring, MI_NOOP);
2274
2275 intel_ring_advance(ring);
2276
2277 return 0;
2278 }
2279
2280 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2281 {
2282 struct drm_device *dev = ring->dev;
2283 struct drm_i915_private *dev_priv = dev->dev_private;
2284
2285 BUG_ON(ring->outstanding_lazy_request);
2286
2287 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2288 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2289 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2290 if (HAS_VEBOX(dev))
2291 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2292 }
2293
2294 ring->set_seqno(ring, seqno);
2295 ring->hangcheck.seqno = seqno;
2296 }
2297
2298 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2299 u32 value)
2300 {
2301 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2302
2303 /* Every tail move must follow the sequence below */
2304
2305 /* Disable notification that the ring is IDLE. The GT
2306 * will then assume that it is busy and bring it out of rc6.
2307 */
2308 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2309 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2310
2311 /* Clear the context id. Here be magic! */
2312 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2313
2314 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2315 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2316 GEN6_BSD_SLEEP_INDICATOR) == 0,
2317 50))
2318 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2319
2320 /* Now that the ring is fully powered up, update the tail */
2321 I915_WRITE_TAIL(ring, value);
2322 POSTING_READ(RING_TAIL(ring->mmio_base));
2323
2324 /* Let the ring send IDLE messages to the GT again,
2325 * and so let it sleep to conserve power when idle.
2326 */
2327 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2328 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2329 }
2330
2331 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2332 u32 invalidate, u32 flush)
2333 {
2334 uint32_t cmd;
2335 int ret;
2336
2337 ret = intel_ring_begin(ring, 4);
2338 if (ret)
2339 return ret;
2340
2341 cmd = MI_FLUSH_DW;
2342 if (INTEL_INFO(ring->dev)->gen >= 8)
2343 cmd += 1;
2344
2345 /* We always require a command barrier so that subsequent
2346 * commands, such as breadcrumb interrupts, are strictly ordered
2347 * wrt the contents of the write cache being flushed to memory
2348 * (and thus being coherent from the CPU).
2349 */
2350 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2351
2352 /*
2353 * Bspec vol 1c.5 - video engine command streamer:
2354 * "If ENABLED, all TLBs will be invalidated once the flush
2355 * operation is complete. This bit is only valid when the
2356 * Post-Sync Operation field is a value of 1h or 3h."
2357 */
2358 if (invalidate & I915_GEM_GPU_DOMAINS)
2359 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2360
2361 intel_ring_emit(ring, cmd);
2362 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2363 if (INTEL_INFO(ring->dev)->gen >= 8) {
2364 intel_ring_emit(ring, 0); /* upper addr */
2365 intel_ring_emit(ring, 0); /* value */
2366 } else {
2367 intel_ring_emit(ring, 0);
2368 intel_ring_emit(ring, MI_NOOP);
2369 }
2370 intel_ring_advance(ring);
2371 return 0;
2372 }
2373
2374 static int
2375 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2376 u64 offset, u32 len,
2377 unsigned dispatch_flags)
2378 {
2379 bool ppgtt = USES_PPGTT(ring->dev) &&
2380 !(dispatch_flags & I915_DISPATCH_SECURE);
2381 int ret;
2382
2383 ret = intel_ring_begin(ring, 4);
2384 if (ret)
2385 return ret;
2386
2387 /* FIXME(BDW): Address space and security selectors. */
2388 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2389 intel_ring_emit(ring, lower_32_bits(offset));
2390 intel_ring_emit(ring, upper_32_bits(offset));
2391 intel_ring_emit(ring, MI_NOOP);
2392 intel_ring_advance(ring);
2393
2394 return 0;
2395 }
2396
2397 static int
2398 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2399 u64 offset, u32 len,
2400 unsigned dispatch_flags)
2401 {
2402 int ret;
2403
2404 ret = intel_ring_begin(ring, 2);
2405 if (ret)
2406 return ret;
2407
2408 intel_ring_emit(ring,
2409 MI_BATCH_BUFFER_START |
2410 (dispatch_flags & I915_DISPATCH_SECURE ?
2411 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2412 /* bit0-7 is the length on GEN6+ */
2413 intel_ring_emit(ring, offset);
2414 intel_ring_advance(ring);
2415
2416 return 0;
2417 }
2418
2419 static int
2420 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2421 u64 offset, u32 len,
2422 unsigned dispatch_flags)
2423 {
2424 int ret;
2425
2426 ret = intel_ring_begin(ring, 2);
2427 if (ret)
2428 return ret;
2429
2430 intel_ring_emit(ring,
2431 MI_BATCH_BUFFER_START |
2432 (dispatch_flags & I915_DISPATCH_SECURE ?
2433 0 : MI_BATCH_NON_SECURE_I965));
2434 /* bit0-7 is the length on GEN6+ */
2435 intel_ring_emit(ring, offset);
2436 intel_ring_advance(ring);
2437
2438 return 0;
2439 }
2440
2441 /* Blitter support (SandyBridge+) */
2442
2443 static int gen6_ring_flush(struct intel_engine_cs *ring,
2444 u32 invalidate, u32 flush)
2445 {
2446 struct drm_device *dev = ring->dev;
2447 uint32_t cmd;
2448 int ret;
2449
2450 ret = intel_ring_begin(ring, 4);
2451 if (ret)
2452 return ret;
2453
2454 cmd = MI_FLUSH_DW;
2455 if (INTEL_INFO(dev)->gen >= 8)
2456 cmd += 1;
2457
2458 /* We always require a command barrier so that subsequent
2459 * commands, such as breadcrumb interrupts, are strictly ordered
2460 * wrt the contents of the write cache being flushed to memory
2461 * (and thus being coherent from the CPU).
2462 */
2463 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2464
2465 /*
2466 * Bspec vol 1c.3 - blitter engine command streamer:
2467 * "If ENABLED, all TLBs will be invalidated once the flush
2468 * operation is complete. This bit is only valid when the
2469 * Post-Sync Operation field is a value of 1h or 3h."
2470 */
2471 if (invalidate & I915_GEM_DOMAIN_RENDER)
2472 cmd |= MI_INVALIDATE_TLB;
2473 intel_ring_emit(ring, cmd);
2474 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2475 if (INTEL_INFO(dev)->gen >= 8) {
2476 intel_ring_emit(ring, 0); /* upper addr */
2477 intel_ring_emit(ring, 0); /* value */
2478 } else {
2479 intel_ring_emit(ring, 0);
2480 intel_ring_emit(ring, MI_NOOP);
2481 }
2482 intel_ring_advance(ring);
2483
2484 return 0;
2485 }
2486
2487 int intel_init_render_ring_buffer(struct drm_device *dev)
2488 {
2489 struct drm_i915_private *dev_priv = dev->dev_private;
2490 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2491 struct drm_i915_gem_object *obj;
2492 int ret;
2493
2494 ring->name = "render ring";
2495 ring->id = RCS;
2496 ring->mmio_base = RENDER_RING_BASE;
2497
2498 if (INTEL_INFO(dev)->gen >= 8) {
2499 if (i915_semaphore_is_enabled(dev)) {
2500 obj = i915_gem_alloc_object(dev, 4096);
2501 if (obj == NULL) {
2502 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2503 i915.semaphores = 0;
2504 } else {
2505 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2506 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2507 if (ret != 0) {
2508 drm_gem_object_unreference(&obj->base);
2509 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2510 i915.semaphores = 0;
2511 } else
2512 dev_priv->semaphore_obj = obj;
2513 }
2514 }
2515
2516 ring->init_context = intel_rcs_ctx_init;
2517 ring->add_request = gen6_add_request;
2518 ring->flush = gen8_render_ring_flush;
2519 ring->irq_get = gen8_ring_get_irq;
2520 ring->irq_put = gen8_ring_put_irq;
2521 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2522 ring->get_seqno = gen6_ring_get_seqno;
2523 ring->set_seqno = ring_set_seqno;
2524 if (i915_semaphore_is_enabled(dev)) {
2525 WARN_ON(!dev_priv->semaphore_obj);
2526 ring->semaphore.sync_to = gen8_ring_sync;
2527 ring->semaphore.signal = gen8_rcs_signal;
2528 GEN8_RING_SEMAPHORE_INIT;
2529 }
2530 } else if (INTEL_INFO(dev)->gen >= 6) {
2531 ring->add_request = gen6_add_request;
2532 ring->flush = gen7_render_ring_flush;
2533 if (INTEL_INFO(dev)->gen == 6)
2534 ring->flush = gen6_render_ring_flush;
2535 ring->irq_get = gen6_ring_get_irq;
2536 ring->irq_put = gen6_ring_put_irq;
2537 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2538 ring->get_seqno = gen6_ring_get_seqno;
2539 ring->set_seqno = ring_set_seqno;
2540 if (i915_semaphore_is_enabled(dev)) {
2541 ring->semaphore.sync_to = gen6_ring_sync;
2542 ring->semaphore.signal = gen6_signal;
2543 /*
2544 * The current semaphore is only applied on pre-gen8
2545 * platform. And there is no VCS2 ring on the pre-gen8
2546 * platform. So the semaphore between RCS and VCS2 is
2547 * initialized as INVALID. Gen8 will initialize the
2548 * sema between VCS2 and RCS later.
2549 */
2550 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2551 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2552 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2553 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2554 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2555 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2556 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2557 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2558 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2559 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2560 }
2561 } else if (IS_GEN5(dev)) {
2562 ring->add_request = pc_render_add_request;
2563 ring->flush = gen4_render_ring_flush;
2564 ring->get_seqno = pc_render_get_seqno;
2565 ring->set_seqno = pc_render_set_seqno;
2566 ring->irq_get = gen5_ring_get_irq;
2567 ring->irq_put = gen5_ring_put_irq;
2568 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2569 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2570 } else {
2571 ring->add_request = i9xx_add_request;
2572 if (INTEL_INFO(dev)->gen < 4)
2573 ring->flush = gen2_render_ring_flush;
2574 else
2575 ring->flush = gen4_render_ring_flush;
2576 ring->get_seqno = ring_get_seqno;
2577 ring->set_seqno = ring_set_seqno;
2578 if (IS_GEN2(dev)) {
2579 ring->irq_get = i8xx_ring_get_irq;
2580 ring->irq_put = i8xx_ring_put_irq;
2581 } else {
2582 ring->irq_get = i9xx_ring_get_irq;
2583 ring->irq_put = i9xx_ring_put_irq;
2584 }
2585 ring->irq_enable_mask = I915_USER_INTERRUPT;
2586 }
2587 ring->write_tail = ring_write_tail;
2588
2589 if (IS_HASWELL(dev))
2590 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2591 else if (IS_GEN8(dev))
2592 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2593 else if (INTEL_INFO(dev)->gen >= 6)
2594 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2595 else if (INTEL_INFO(dev)->gen >= 4)
2596 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2597 else if (IS_I830(dev) || IS_845G(dev))
2598 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2599 else
2600 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2601 ring->init_hw = init_render_ring;
2602 ring->cleanup = render_ring_cleanup;
2603
2604 /* Workaround batchbuffer to combat CS tlb bug. */
2605 if (HAS_BROKEN_CS_TLB(dev)) {
2606 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2607 if (obj == NULL) {
2608 DRM_ERROR("Failed to allocate batch bo\n");
2609 return -ENOMEM;
2610 }
2611
2612 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2613 if (ret != 0) {
2614 drm_gem_object_unreference(&obj->base);
2615 DRM_ERROR("Failed to ping batch bo\n");
2616 return ret;
2617 }
2618
2619 ring->scratch.obj = obj;
2620 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2621 }
2622
2623 ret = intel_init_ring_buffer(dev, ring);
2624 if (ret)
2625 return ret;
2626
2627 if (INTEL_INFO(dev)->gen >= 5) {
2628 ret = intel_init_pipe_control(ring);
2629 if (ret)
2630 return ret;
2631 }
2632
2633 return 0;
2634 }
2635
2636 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2637 {
2638 struct drm_i915_private *dev_priv = dev->dev_private;
2639 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2640
2641 ring->name = "bsd ring";
2642 ring->id = VCS;
2643
2644 ring->write_tail = ring_write_tail;
2645 if (INTEL_INFO(dev)->gen >= 6) {
2646 ring->mmio_base = GEN6_BSD_RING_BASE;
2647 /* gen6 bsd needs a special wa for tail updates */
2648 if (IS_GEN6(dev))
2649 ring->write_tail = gen6_bsd_ring_write_tail;
2650 ring->flush = gen6_bsd_ring_flush;
2651 ring->add_request = gen6_add_request;
2652 ring->get_seqno = gen6_ring_get_seqno;
2653 ring->set_seqno = ring_set_seqno;
2654 if (INTEL_INFO(dev)->gen >= 8) {
2655 ring->irq_enable_mask =
2656 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2657 ring->irq_get = gen8_ring_get_irq;
2658 ring->irq_put = gen8_ring_put_irq;
2659 ring->dispatch_execbuffer =
2660 gen8_ring_dispatch_execbuffer;
2661 if (i915_semaphore_is_enabled(dev)) {
2662 ring->semaphore.sync_to = gen8_ring_sync;
2663 ring->semaphore.signal = gen8_xcs_signal;
2664 GEN8_RING_SEMAPHORE_INIT;
2665 }
2666 } else {
2667 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2668 ring->irq_get = gen6_ring_get_irq;
2669 ring->irq_put = gen6_ring_put_irq;
2670 ring->dispatch_execbuffer =
2671 gen6_ring_dispatch_execbuffer;
2672 if (i915_semaphore_is_enabled(dev)) {
2673 ring->semaphore.sync_to = gen6_ring_sync;
2674 ring->semaphore.signal = gen6_signal;
2675 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2676 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2677 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2678 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2679 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2680 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2681 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2682 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2683 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2684 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2685 }
2686 }
2687 } else {
2688 ring->mmio_base = BSD_RING_BASE;
2689 ring->flush = bsd_ring_flush;
2690 ring->add_request = i9xx_add_request;
2691 ring->get_seqno = ring_get_seqno;
2692 ring->set_seqno = ring_set_seqno;
2693 if (IS_GEN5(dev)) {
2694 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2695 ring->irq_get = gen5_ring_get_irq;
2696 ring->irq_put = gen5_ring_put_irq;
2697 } else {
2698 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2699 ring->irq_get = i9xx_ring_get_irq;
2700 ring->irq_put = i9xx_ring_put_irq;
2701 }
2702 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2703 }
2704 ring->init_hw = init_ring_common;
2705
2706 return intel_init_ring_buffer(dev, ring);
2707 }
2708
2709 /**
2710 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2711 */
2712 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2713 {
2714 struct drm_i915_private *dev_priv = dev->dev_private;
2715 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2716
2717 ring->name = "bsd2 ring";
2718 ring->id = VCS2;
2719
2720 ring->write_tail = ring_write_tail;
2721 ring->mmio_base = GEN8_BSD2_RING_BASE;
2722 ring->flush = gen6_bsd_ring_flush;
2723 ring->add_request = gen6_add_request;
2724 ring->get_seqno = gen6_ring_get_seqno;
2725 ring->set_seqno = ring_set_seqno;
2726 ring->irq_enable_mask =
2727 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2728 ring->irq_get = gen8_ring_get_irq;
2729 ring->irq_put = gen8_ring_put_irq;
2730 ring->dispatch_execbuffer =
2731 gen8_ring_dispatch_execbuffer;
2732 if (i915_semaphore_is_enabled(dev)) {
2733 ring->semaphore.sync_to = gen8_ring_sync;
2734 ring->semaphore.signal = gen8_xcs_signal;
2735 GEN8_RING_SEMAPHORE_INIT;
2736 }
2737 ring->init_hw = init_ring_common;
2738
2739 return intel_init_ring_buffer(dev, ring);
2740 }
2741
2742 int intel_init_blt_ring_buffer(struct drm_device *dev)
2743 {
2744 struct drm_i915_private *dev_priv = dev->dev_private;
2745 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2746
2747 ring->name = "blitter ring";
2748 ring->id = BCS;
2749
2750 ring->mmio_base = BLT_RING_BASE;
2751 ring->write_tail = ring_write_tail;
2752 ring->flush = gen6_ring_flush;
2753 ring->add_request = gen6_add_request;
2754 ring->get_seqno = gen6_ring_get_seqno;
2755 ring->set_seqno = ring_set_seqno;
2756 if (INTEL_INFO(dev)->gen >= 8) {
2757 ring->irq_enable_mask =
2758 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2759 ring->irq_get = gen8_ring_get_irq;
2760 ring->irq_put = gen8_ring_put_irq;
2761 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2762 if (i915_semaphore_is_enabled(dev)) {
2763 ring->semaphore.sync_to = gen8_ring_sync;
2764 ring->semaphore.signal = gen8_xcs_signal;
2765 GEN8_RING_SEMAPHORE_INIT;
2766 }
2767 } else {
2768 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2769 ring->irq_get = gen6_ring_get_irq;
2770 ring->irq_put = gen6_ring_put_irq;
2771 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2772 if (i915_semaphore_is_enabled(dev)) {
2773 ring->semaphore.signal = gen6_signal;
2774 ring->semaphore.sync_to = gen6_ring_sync;
2775 /*
2776 * The current semaphore is only applied on pre-gen8
2777 * platform. And there is no VCS2 ring on the pre-gen8
2778 * platform. So the semaphore between BCS and VCS2 is
2779 * initialized as INVALID. Gen8 will initialize the
2780 * sema between BCS and VCS2 later.
2781 */
2782 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2783 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2784 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2785 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2786 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2787 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2788 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2789 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2790 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2791 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2792 }
2793 }
2794 ring->init_hw = init_ring_common;
2795
2796 return intel_init_ring_buffer(dev, ring);
2797 }
2798
2799 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2800 {
2801 struct drm_i915_private *dev_priv = dev->dev_private;
2802 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2803
2804 ring->name = "video enhancement ring";
2805 ring->id = VECS;
2806
2807 ring->mmio_base = VEBOX_RING_BASE;
2808 ring->write_tail = ring_write_tail;
2809 ring->flush = gen6_ring_flush;
2810 ring->add_request = gen6_add_request;
2811 ring->get_seqno = gen6_ring_get_seqno;
2812 ring->set_seqno = ring_set_seqno;
2813
2814 if (INTEL_INFO(dev)->gen >= 8) {
2815 ring->irq_enable_mask =
2816 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2817 ring->irq_get = gen8_ring_get_irq;
2818 ring->irq_put = gen8_ring_put_irq;
2819 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2820 if (i915_semaphore_is_enabled(dev)) {
2821 ring->semaphore.sync_to = gen8_ring_sync;
2822 ring->semaphore.signal = gen8_xcs_signal;
2823 GEN8_RING_SEMAPHORE_INIT;
2824 }
2825 } else {
2826 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2827 ring->irq_get = hsw_vebox_get_irq;
2828 ring->irq_put = hsw_vebox_put_irq;
2829 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2830 if (i915_semaphore_is_enabled(dev)) {
2831 ring->semaphore.sync_to = gen6_ring_sync;
2832 ring->semaphore.signal = gen6_signal;
2833 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2834 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2835 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2836 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2837 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2838 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2839 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2840 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2841 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2842 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2843 }
2844 }
2845 ring->init_hw = init_ring_common;
2846
2847 return intel_init_ring_buffer(dev, ring);
2848 }
2849
2850 int
2851 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2852 {
2853 int ret;
2854
2855 if (!ring->gpu_caches_dirty)
2856 return 0;
2857
2858 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2859 if (ret)
2860 return ret;
2861
2862 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2863
2864 ring->gpu_caches_dirty = false;
2865 return 0;
2866 }
2867
2868 int
2869 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2870 {
2871 uint32_t flush_domains;
2872 int ret;
2873
2874 flush_domains = 0;
2875 if (ring->gpu_caches_dirty)
2876 flush_domains = I915_GEM_GPU_DOMAINS;
2877
2878 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2879 if (ret)
2880 return ret;
2881
2882 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2883
2884 ring->gpu_caches_dirty = false;
2885 return 0;
2886 }
2887
2888 void
2889 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2890 {
2891 int ret;
2892
2893 if (!intel_ring_initialized(ring))
2894 return;
2895
2896 ret = intel_ring_idle(ring);
2897 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2898 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2899 ring->name, ret);
2900
2901 stop_ring(ring);
2902 }
This page took 0.093759 seconds and 6 git commands to generate.