drm/i915: Handle set_cache_level errors in the pipe control scratch setup
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 static inline int ring_space(struct intel_ring_buffer *ring)
37 {
38 int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
39 if (space < 0)
40 space += ring->size;
41 return space;
42 }
43
44 void __intel_ring_advance(struct intel_ring_buffer *ring)
45 {
46 struct drm_i915_private *dev_priv = ring->dev->dev_private;
47
48 ring->tail &= ring->size - 1;
49 if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
50 return;
51 ring->write_tail(ring, ring->tail);
52 }
53
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56 u32 invalidate_domains,
57 u32 flush_domains)
58 {
59 u32 cmd;
60 int ret;
61
62 cmd = MI_FLUSH;
63 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64 cmd |= MI_NO_WRITE_FLUSH;
65
66 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67 cmd |= MI_READ_FLUSH;
68
69 ret = intel_ring_begin(ring, 2);
70 if (ret)
71 return ret;
72
73 intel_ring_emit(ring, cmd);
74 intel_ring_emit(ring, MI_NOOP);
75 intel_ring_advance(ring);
76
77 return 0;
78 }
79
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82 u32 invalidate_domains,
83 u32 flush_domains)
84 {
85 struct drm_device *dev = ring->dev;
86 u32 cmd;
87 int ret;
88
89 /*
90 * read/write caches:
91 *
92 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
94 * also flushed at 2d versus 3d pipeline switches.
95 *
96 * read-only caches:
97 *
98 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99 * MI_READ_FLUSH is set, and is always flushed on 965.
100 *
101 * I915_GEM_DOMAIN_COMMAND may not exist?
102 *
103 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104 * invalidated when MI_EXE_FLUSH is set.
105 *
106 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107 * invalidated with every MI_FLUSH.
108 *
109 * TLBs:
110 *
111 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114 * are flushed at any MI_FLUSH.
115 */
116
117 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119 cmd &= ~MI_NO_WRITE_FLUSH;
120 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121 cmd |= MI_EXE_FLUSH;
122
123 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124 (IS_G4X(dev) || IS_GEN5(dev)))
125 cmd |= MI_INVALIDATE_ISP;
126
127 ret = intel_ring_begin(ring, 2);
128 if (ret)
129 return ret;
130
131 intel_ring_emit(ring, cmd);
132 intel_ring_emit(ring, MI_NOOP);
133 intel_ring_advance(ring);
134
135 return 0;
136 }
137
138 /**
139 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140 * implementing two workarounds on gen6. From section 1.4.7.1
141 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142 *
143 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144 * produced by non-pipelined state commands), software needs to first
145 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146 * 0.
147 *
148 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150 *
151 * And the workaround for these two requires this workaround first:
152 *
153 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154 * BEFORE the pipe-control with a post-sync op and no write-cache
155 * flushes.
156 *
157 * And this last workaround is tricky because of the requirements on
158 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159 * volume 2 part 1:
160 *
161 * "1 of the following must also be set:
162 * - Render Target Cache Flush Enable ([12] of DW1)
163 * - Depth Cache Flush Enable ([0] of DW1)
164 * - Stall at Pixel Scoreboard ([1] of DW1)
165 * - Depth Stall ([13] of DW1)
166 * - Post-Sync Operation ([13] of DW1)
167 * - Notify Enable ([8] of DW1)"
168 *
169 * The cache flushes require the workaround flush that triggered this
170 * one, so we can't use it. Depth stall would trigger the same.
171 * Post-sync nonzero is what triggered this second workaround, so we
172 * can't use that one either. Notify enable is IRQs, which aren't
173 * really our business. That leaves only stall at scoreboard.
174 */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178 u32 scratch_addr = ring->scratch.gtt_offset + 128;
179 int ret;
180
181
182 ret = intel_ring_begin(ring, 6);
183 if (ret)
184 return ret;
185
186 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
187 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188 PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
190 intel_ring_emit(ring, 0); /* low dword */
191 intel_ring_emit(ring, 0); /* high dword */
192 intel_ring_emit(ring, MI_NOOP);
193 intel_ring_advance(ring);
194
195 ret = intel_ring_begin(ring, 6);
196 if (ret)
197 return ret;
198
199 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
200 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
201 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
202 intel_ring_emit(ring, 0);
203 intel_ring_emit(ring, 0);
204 intel_ring_emit(ring, MI_NOOP);
205 intel_ring_advance(ring);
206
207 return 0;
208 }
209
210 static int
211 gen6_render_ring_flush(struct intel_ring_buffer *ring,
212 u32 invalidate_domains, u32 flush_domains)
213 {
214 u32 flags = 0;
215 u32 scratch_addr = ring->scratch.gtt_offset + 128;
216 int ret;
217
218 /* Force SNB workarounds for PIPE_CONTROL flushes */
219 ret = intel_emit_post_sync_nonzero_flush(ring);
220 if (ret)
221 return ret;
222
223 /* Just flush everything. Experiments have shown that reducing the
224 * number of bits based on the write domains has little performance
225 * impact.
226 */
227 if (flush_domains) {
228 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
229 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
230 /*
231 * Ensure that any following seqno writes only happen
232 * when the render cache is indeed flushed.
233 */
234 flags |= PIPE_CONTROL_CS_STALL;
235 }
236 if (invalidate_domains) {
237 flags |= PIPE_CONTROL_TLB_INVALIDATE;
238 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
239 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
240 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
243 /*
244 * TLB invalidate requires a post-sync write.
245 */
246 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
247 }
248
249 ret = intel_ring_begin(ring, 4);
250 if (ret)
251 return ret;
252
253 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
254 intel_ring_emit(ring, flags);
255 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
256 intel_ring_emit(ring, 0);
257 intel_ring_advance(ring);
258
259 return 0;
260 }
261
262 static int
263 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
264 {
265 int ret;
266
267 ret = intel_ring_begin(ring, 4);
268 if (ret)
269 return ret;
270
271 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
272 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
273 PIPE_CONTROL_STALL_AT_SCOREBOARD);
274 intel_ring_emit(ring, 0);
275 intel_ring_emit(ring, 0);
276 intel_ring_advance(ring);
277
278 return 0;
279 }
280
281 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
282 {
283 int ret;
284
285 if (!ring->fbc_dirty)
286 return 0;
287
288 ret = intel_ring_begin(ring, 6);
289 if (ret)
290 return ret;
291 /* WaFbcNukeOn3DBlt:ivb/hsw */
292 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
293 intel_ring_emit(ring, MSG_FBC_REND_STATE);
294 intel_ring_emit(ring, value);
295 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
296 intel_ring_emit(ring, MSG_FBC_REND_STATE);
297 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
298 intel_ring_advance(ring);
299
300 ring->fbc_dirty = false;
301 return 0;
302 }
303
304 static int
305 gen7_render_ring_flush(struct intel_ring_buffer *ring,
306 u32 invalidate_domains, u32 flush_domains)
307 {
308 u32 flags = 0;
309 u32 scratch_addr = ring->scratch.gtt_offset + 128;
310 int ret;
311
312 /*
313 * Ensure that any following seqno writes only happen when the render
314 * cache is indeed flushed.
315 *
316 * Workaround: 4th PIPE_CONTROL command (except the ones with only
317 * read-cache invalidate bits set) must have the CS_STALL bit set. We
318 * don't try to be clever and just set it unconditionally.
319 */
320 flags |= PIPE_CONTROL_CS_STALL;
321
322 /* Just flush everything. Experiments have shown that reducing the
323 * number of bits based on the write domains has little performance
324 * impact.
325 */
326 if (flush_domains) {
327 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
328 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
329 }
330 if (invalidate_domains) {
331 flags |= PIPE_CONTROL_TLB_INVALIDATE;
332 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
333 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
334 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
335 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
336 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
337 /*
338 * TLB invalidate requires a post-sync write.
339 */
340 flags |= PIPE_CONTROL_QW_WRITE;
341 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
342
343 /* Workaround: we must issue a pipe_control with CS-stall bit
344 * set before a pipe_control command that has the state cache
345 * invalidate bit set. */
346 gen7_render_ring_cs_stall_wa(ring);
347 }
348
349 ret = intel_ring_begin(ring, 4);
350 if (ret)
351 return ret;
352
353 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
354 intel_ring_emit(ring, flags);
355 intel_ring_emit(ring, scratch_addr);
356 intel_ring_emit(ring, 0);
357 intel_ring_advance(ring);
358
359 if (!invalidate_domains && flush_domains)
360 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
361
362 return 0;
363 }
364
365 static int
366 gen8_render_ring_flush(struct intel_ring_buffer *ring,
367 u32 invalidate_domains, u32 flush_domains)
368 {
369 u32 flags = 0;
370 u32 scratch_addr = ring->scratch.gtt_offset + 128;
371 int ret;
372
373 flags |= PIPE_CONTROL_CS_STALL;
374
375 if (flush_domains) {
376 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
377 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
378 }
379 if (invalidate_domains) {
380 flags |= PIPE_CONTROL_TLB_INVALIDATE;
381 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
382 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
383 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
384 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
385 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
386 flags |= PIPE_CONTROL_QW_WRITE;
387 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
388 }
389
390 ret = intel_ring_begin(ring, 6);
391 if (ret)
392 return ret;
393
394 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
395 intel_ring_emit(ring, flags);
396 intel_ring_emit(ring, scratch_addr);
397 intel_ring_emit(ring, 0);
398 intel_ring_emit(ring, 0);
399 intel_ring_emit(ring, 0);
400 intel_ring_advance(ring);
401
402 return 0;
403
404 }
405
406 static void ring_write_tail(struct intel_ring_buffer *ring,
407 u32 value)
408 {
409 drm_i915_private_t *dev_priv = ring->dev->dev_private;
410 I915_WRITE_TAIL(ring, value);
411 }
412
413 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
414 {
415 drm_i915_private_t *dev_priv = ring->dev->dev_private;
416 u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
417 RING_ACTHD(ring->mmio_base) : ACTHD;
418
419 return I915_READ(acthd_reg);
420 }
421
422 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
423 {
424 struct drm_i915_private *dev_priv = ring->dev->dev_private;
425 u32 addr;
426
427 addr = dev_priv->status_page_dmah->busaddr;
428 if (INTEL_INFO(ring->dev)->gen >= 4)
429 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
430 I915_WRITE(HWS_PGA, addr);
431 }
432
433 static int init_ring_common(struct intel_ring_buffer *ring)
434 {
435 struct drm_device *dev = ring->dev;
436 drm_i915_private_t *dev_priv = dev->dev_private;
437 struct drm_i915_gem_object *obj = ring->obj;
438 int ret = 0;
439 u32 head;
440
441 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
442
443 if (I915_NEED_GFX_HWS(dev))
444 intel_ring_setup_status_page(ring);
445 else
446 ring_setup_phys_status_page(ring);
447
448 /* Stop the ring if it's running. */
449 I915_WRITE_CTL(ring, 0);
450 I915_WRITE_HEAD(ring, 0);
451 ring->write_tail(ring, 0);
452
453 head = I915_READ_HEAD(ring) & HEAD_ADDR;
454
455 /* G45 ring initialization fails to reset head to zero */
456 if (head != 0) {
457 DRM_DEBUG_KMS("%s head not reset to zero "
458 "ctl %08x head %08x tail %08x start %08x\n",
459 ring->name,
460 I915_READ_CTL(ring),
461 I915_READ_HEAD(ring),
462 I915_READ_TAIL(ring),
463 I915_READ_START(ring));
464
465 I915_WRITE_HEAD(ring, 0);
466
467 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
468 DRM_ERROR("failed to set %s head to zero "
469 "ctl %08x head %08x tail %08x start %08x\n",
470 ring->name,
471 I915_READ_CTL(ring),
472 I915_READ_HEAD(ring),
473 I915_READ_TAIL(ring),
474 I915_READ_START(ring));
475 }
476 }
477
478 /* Initialize the ring. This must happen _after_ we've cleared the ring
479 * registers with the above sequence (the readback of the HEAD registers
480 * also enforces ordering), otherwise the hw might lose the new ring
481 * register values. */
482 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
483 I915_WRITE_CTL(ring,
484 ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
485 | RING_VALID);
486
487 /* If the head is still not zero, the ring is dead */
488 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
489 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
490 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
491 DRM_ERROR("%s initialization failed "
492 "ctl %08x head %08x tail %08x start %08x\n",
493 ring->name,
494 I915_READ_CTL(ring),
495 I915_READ_HEAD(ring),
496 I915_READ_TAIL(ring),
497 I915_READ_START(ring));
498 ret = -EIO;
499 goto out;
500 }
501
502 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
503 i915_kernel_lost_context(ring->dev);
504 else {
505 ring->head = I915_READ_HEAD(ring);
506 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
507 ring->space = ring_space(ring);
508 ring->last_retired_head = -1;
509 }
510
511 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
512
513 out:
514 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
515
516 return ret;
517 }
518
519 static int
520 init_pipe_control(struct intel_ring_buffer *ring)
521 {
522 int ret;
523
524 if (ring->scratch.obj)
525 return 0;
526
527 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
528 if (ring->scratch.obj == NULL) {
529 DRM_ERROR("Failed to allocate seqno page\n");
530 ret = -ENOMEM;
531 goto err;
532 }
533
534 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
535 if (ret)
536 goto err_unref;
537
538 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
539 if (ret)
540 goto err_unref;
541
542 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
543 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
544 if (ring->scratch.cpu_page == NULL) {
545 ret = -ENOMEM;
546 goto err_unpin;
547 }
548
549 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
550 ring->name, ring->scratch.gtt_offset);
551 return 0;
552
553 err_unpin:
554 i915_gem_object_ggtt_unpin(ring->scratch.obj);
555 err_unref:
556 drm_gem_object_unreference(&ring->scratch.obj->base);
557 err:
558 return ret;
559 }
560
561 static int init_render_ring(struct intel_ring_buffer *ring)
562 {
563 struct drm_device *dev = ring->dev;
564 struct drm_i915_private *dev_priv = dev->dev_private;
565 int ret = init_ring_common(ring);
566
567 if (INTEL_INFO(dev)->gen > 3)
568 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
569
570 /* We need to disable the AsyncFlip performance optimisations in order
571 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
572 * programmed to '1' on all products.
573 *
574 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
575 */
576 if (INTEL_INFO(dev)->gen >= 6)
577 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
578
579 /* Required for the hardware to program scanline values for waiting */
580 if (INTEL_INFO(dev)->gen == 6)
581 I915_WRITE(GFX_MODE,
582 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
583
584 if (IS_GEN7(dev))
585 I915_WRITE(GFX_MODE_GEN7,
586 _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
587 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
588
589 if (INTEL_INFO(dev)->gen >= 5) {
590 ret = init_pipe_control(ring);
591 if (ret)
592 return ret;
593 }
594
595 if (IS_GEN6(dev)) {
596 /* From the Sandybridge PRM, volume 1 part 3, page 24:
597 * "If this bit is set, STCunit will have LRA as replacement
598 * policy. [...] This bit must be reset. LRA replacement
599 * policy is not supported."
600 */
601 I915_WRITE(CACHE_MODE_0,
602 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
603
604 /* This is not explicitly set for GEN6, so read the register.
605 * see intel_ring_mi_set_context() for why we care.
606 * TODO: consider explicitly setting the bit for GEN5
607 */
608 ring->itlb_before_ctx_switch =
609 !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
610 }
611
612 if (INTEL_INFO(dev)->gen >= 6)
613 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
614
615 if (HAS_L3_DPF(dev))
616 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
617
618 return ret;
619 }
620
621 static void render_ring_cleanup(struct intel_ring_buffer *ring)
622 {
623 struct drm_device *dev = ring->dev;
624
625 if (ring->scratch.obj == NULL)
626 return;
627
628 if (INTEL_INFO(dev)->gen >= 5) {
629 kunmap(sg_page(ring->scratch.obj->pages->sgl));
630 i915_gem_object_ggtt_unpin(ring->scratch.obj);
631 }
632
633 drm_gem_object_unreference(&ring->scratch.obj->base);
634 ring->scratch.obj = NULL;
635 }
636
637 static void
638 update_mboxes(struct intel_ring_buffer *ring,
639 u32 mmio_offset)
640 {
641 /* NB: In order to be able to do semaphore MBOX updates for varying number
642 * of rings, it's easiest if we round up each individual update to a
643 * multiple of 2 (since ring updates must always be a multiple of 2)
644 * even though the actual update only requires 3 dwords.
645 */
646 #define MBOX_UPDATE_DWORDS 4
647 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
648 intel_ring_emit(ring, mmio_offset);
649 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
650 intel_ring_emit(ring, MI_NOOP);
651 }
652
653 /**
654 * gen6_add_request - Update the semaphore mailbox registers
655 *
656 * @ring - ring that is adding a request
657 * @seqno - return seqno stuck into the ring
658 *
659 * Update the mailbox registers in the *other* rings with the current seqno.
660 * This acts like a signal in the canonical semaphore.
661 */
662 static int
663 gen6_add_request(struct intel_ring_buffer *ring)
664 {
665 struct drm_device *dev = ring->dev;
666 struct drm_i915_private *dev_priv = dev->dev_private;
667 struct intel_ring_buffer *useless;
668 int i, ret, num_dwords = 4;
669
670 if (i915_semaphore_is_enabled(dev))
671 num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
672 #undef MBOX_UPDATE_DWORDS
673
674 ret = intel_ring_begin(ring, num_dwords);
675 if (ret)
676 return ret;
677
678 if (i915_semaphore_is_enabled(dev)) {
679 for_each_ring(useless, dev_priv, i) {
680 u32 mbox_reg = ring->signal_mbox[i];
681 if (mbox_reg != GEN6_NOSYNC)
682 update_mboxes(ring, mbox_reg);
683 }
684 }
685
686 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
687 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
688 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
689 intel_ring_emit(ring, MI_USER_INTERRUPT);
690 __intel_ring_advance(ring);
691
692 return 0;
693 }
694
695 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
696 u32 seqno)
697 {
698 struct drm_i915_private *dev_priv = dev->dev_private;
699 return dev_priv->last_seqno < seqno;
700 }
701
702 /**
703 * intel_ring_sync - sync the waiter to the signaller on seqno
704 *
705 * @waiter - ring that is waiting
706 * @signaller - ring which has, or will signal
707 * @seqno - seqno which the waiter will block on
708 */
709 static int
710 gen6_ring_sync(struct intel_ring_buffer *waiter,
711 struct intel_ring_buffer *signaller,
712 u32 seqno)
713 {
714 int ret;
715 u32 dw1 = MI_SEMAPHORE_MBOX |
716 MI_SEMAPHORE_COMPARE |
717 MI_SEMAPHORE_REGISTER;
718
719 /* Throughout all of the GEM code, seqno passed implies our current
720 * seqno is >= the last seqno executed. However for hardware the
721 * comparison is strictly greater than.
722 */
723 seqno -= 1;
724
725 WARN_ON(signaller->semaphore_register[waiter->id] ==
726 MI_SEMAPHORE_SYNC_INVALID);
727
728 ret = intel_ring_begin(waiter, 4);
729 if (ret)
730 return ret;
731
732 /* If seqno wrap happened, omit the wait with no-ops */
733 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
734 intel_ring_emit(waiter,
735 dw1 |
736 signaller->semaphore_register[waiter->id]);
737 intel_ring_emit(waiter, seqno);
738 intel_ring_emit(waiter, 0);
739 intel_ring_emit(waiter, MI_NOOP);
740 } else {
741 intel_ring_emit(waiter, MI_NOOP);
742 intel_ring_emit(waiter, MI_NOOP);
743 intel_ring_emit(waiter, MI_NOOP);
744 intel_ring_emit(waiter, MI_NOOP);
745 }
746 intel_ring_advance(waiter);
747
748 return 0;
749 }
750
751 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
752 do { \
753 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
754 PIPE_CONTROL_DEPTH_STALL); \
755 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
756 intel_ring_emit(ring__, 0); \
757 intel_ring_emit(ring__, 0); \
758 } while (0)
759
760 static int
761 pc_render_add_request(struct intel_ring_buffer *ring)
762 {
763 u32 scratch_addr = ring->scratch.gtt_offset + 128;
764 int ret;
765
766 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
767 * incoherent with writes to memory, i.e. completely fubar,
768 * so we need to use PIPE_NOTIFY instead.
769 *
770 * However, we also need to workaround the qword write
771 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
772 * memory before requesting an interrupt.
773 */
774 ret = intel_ring_begin(ring, 32);
775 if (ret)
776 return ret;
777
778 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
779 PIPE_CONTROL_WRITE_FLUSH |
780 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
781 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
782 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
783 intel_ring_emit(ring, 0);
784 PIPE_CONTROL_FLUSH(ring, scratch_addr);
785 scratch_addr += 128; /* write to separate cachelines */
786 PIPE_CONTROL_FLUSH(ring, scratch_addr);
787 scratch_addr += 128;
788 PIPE_CONTROL_FLUSH(ring, scratch_addr);
789 scratch_addr += 128;
790 PIPE_CONTROL_FLUSH(ring, scratch_addr);
791 scratch_addr += 128;
792 PIPE_CONTROL_FLUSH(ring, scratch_addr);
793 scratch_addr += 128;
794 PIPE_CONTROL_FLUSH(ring, scratch_addr);
795
796 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
797 PIPE_CONTROL_WRITE_FLUSH |
798 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
799 PIPE_CONTROL_NOTIFY);
800 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
801 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
802 intel_ring_emit(ring, 0);
803 __intel_ring_advance(ring);
804
805 return 0;
806 }
807
808 static u32
809 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
810 {
811 /* Workaround to force correct ordering between irq and seqno writes on
812 * ivb (and maybe also on snb) by reading from a CS register (like
813 * ACTHD) before reading the status page. */
814 if (!lazy_coherency)
815 intel_ring_get_active_head(ring);
816 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
817 }
818
819 static u32
820 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
821 {
822 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
823 }
824
825 static void
826 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
827 {
828 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
829 }
830
831 static u32
832 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
833 {
834 return ring->scratch.cpu_page[0];
835 }
836
837 static void
838 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
839 {
840 ring->scratch.cpu_page[0] = seqno;
841 }
842
843 static bool
844 gen5_ring_get_irq(struct intel_ring_buffer *ring)
845 {
846 struct drm_device *dev = ring->dev;
847 drm_i915_private_t *dev_priv = dev->dev_private;
848 unsigned long flags;
849
850 if (!dev->irq_enabled)
851 return false;
852
853 spin_lock_irqsave(&dev_priv->irq_lock, flags);
854 if (ring->irq_refcount++ == 0)
855 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
856 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
857
858 return true;
859 }
860
861 static void
862 gen5_ring_put_irq(struct intel_ring_buffer *ring)
863 {
864 struct drm_device *dev = ring->dev;
865 drm_i915_private_t *dev_priv = dev->dev_private;
866 unsigned long flags;
867
868 spin_lock_irqsave(&dev_priv->irq_lock, flags);
869 if (--ring->irq_refcount == 0)
870 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
871 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
872 }
873
874 static bool
875 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
876 {
877 struct drm_device *dev = ring->dev;
878 drm_i915_private_t *dev_priv = dev->dev_private;
879 unsigned long flags;
880
881 if (!dev->irq_enabled)
882 return false;
883
884 spin_lock_irqsave(&dev_priv->irq_lock, flags);
885 if (ring->irq_refcount++ == 0) {
886 dev_priv->irq_mask &= ~ring->irq_enable_mask;
887 I915_WRITE(IMR, dev_priv->irq_mask);
888 POSTING_READ(IMR);
889 }
890 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
891
892 return true;
893 }
894
895 static void
896 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
897 {
898 struct drm_device *dev = ring->dev;
899 drm_i915_private_t *dev_priv = dev->dev_private;
900 unsigned long flags;
901
902 spin_lock_irqsave(&dev_priv->irq_lock, flags);
903 if (--ring->irq_refcount == 0) {
904 dev_priv->irq_mask |= ring->irq_enable_mask;
905 I915_WRITE(IMR, dev_priv->irq_mask);
906 POSTING_READ(IMR);
907 }
908 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
909 }
910
911 static bool
912 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
913 {
914 struct drm_device *dev = ring->dev;
915 drm_i915_private_t *dev_priv = dev->dev_private;
916 unsigned long flags;
917
918 if (!dev->irq_enabled)
919 return false;
920
921 spin_lock_irqsave(&dev_priv->irq_lock, flags);
922 if (ring->irq_refcount++ == 0) {
923 dev_priv->irq_mask &= ~ring->irq_enable_mask;
924 I915_WRITE16(IMR, dev_priv->irq_mask);
925 POSTING_READ16(IMR);
926 }
927 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
928
929 return true;
930 }
931
932 static void
933 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
934 {
935 struct drm_device *dev = ring->dev;
936 drm_i915_private_t *dev_priv = dev->dev_private;
937 unsigned long flags;
938
939 spin_lock_irqsave(&dev_priv->irq_lock, flags);
940 if (--ring->irq_refcount == 0) {
941 dev_priv->irq_mask |= ring->irq_enable_mask;
942 I915_WRITE16(IMR, dev_priv->irq_mask);
943 POSTING_READ16(IMR);
944 }
945 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
946 }
947
948 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
949 {
950 struct drm_device *dev = ring->dev;
951 drm_i915_private_t *dev_priv = ring->dev->dev_private;
952 u32 mmio = 0;
953
954 /* The ring status page addresses are no longer next to the rest of
955 * the ring registers as of gen7.
956 */
957 if (IS_GEN7(dev)) {
958 switch (ring->id) {
959 case RCS:
960 mmio = RENDER_HWS_PGA_GEN7;
961 break;
962 case BCS:
963 mmio = BLT_HWS_PGA_GEN7;
964 break;
965 case VCS:
966 mmio = BSD_HWS_PGA_GEN7;
967 break;
968 case VECS:
969 mmio = VEBOX_HWS_PGA_GEN7;
970 break;
971 }
972 } else if (IS_GEN6(ring->dev)) {
973 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
974 } else {
975 /* XXX: gen8 returns to sanity */
976 mmio = RING_HWS_PGA(ring->mmio_base);
977 }
978
979 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
980 POSTING_READ(mmio);
981
982 /* Flush the TLB for this page */
983 if (INTEL_INFO(dev)->gen >= 6) {
984 u32 reg = RING_INSTPM(ring->mmio_base);
985 I915_WRITE(reg,
986 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
987 INSTPM_SYNC_FLUSH));
988 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
989 1000))
990 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
991 ring->name);
992 }
993 }
994
995 static int
996 bsd_ring_flush(struct intel_ring_buffer *ring,
997 u32 invalidate_domains,
998 u32 flush_domains)
999 {
1000 int ret;
1001
1002 ret = intel_ring_begin(ring, 2);
1003 if (ret)
1004 return ret;
1005
1006 intel_ring_emit(ring, MI_FLUSH);
1007 intel_ring_emit(ring, MI_NOOP);
1008 intel_ring_advance(ring);
1009 return 0;
1010 }
1011
1012 static int
1013 i9xx_add_request(struct intel_ring_buffer *ring)
1014 {
1015 int ret;
1016
1017 ret = intel_ring_begin(ring, 4);
1018 if (ret)
1019 return ret;
1020
1021 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1022 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1023 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1024 intel_ring_emit(ring, MI_USER_INTERRUPT);
1025 __intel_ring_advance(ring);
1026
1027 return 0;
1028 }
1029
1030 static bool
1031 gen6_ring_get_irq(struct intel_ring_buffer *ring)
1032 {
1033 struct drm_device *dev = ring->dev;
1034 drm_i915_private_t *dev_priv = dev->dev_private;
1035 unsigned long flags;
1036
1037 if (!dev->irq_enabled)
1038 return false;
1039
1040 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1041 if (ring->irq_refcount++ == 0) {
1042 if (HAS_L3_DPF(dev) && ring->id == RCS)
1043 I915_WRITE_IMR(ring,
1044 ~(ring->irq_enable_mask |
1045 GT_PARITY_ERROR(dev)));
1046 else
1047 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1048 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1049 }
1050 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1051
1052 return true;
1053 }
1054
1055 static void
1056 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1057 {
1058 struct drm_device *dev = ring->dev;
1059 drm_i915_private_t *dev_priv = dev->dev_private;
1060 unsigned long flags;
1061
1062 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1063 if (--ring->irq_refcount == 0) {
1064 if (HAS_L3_DPF(dev) && ring->id == RCS)
1065 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1066 else
1067 I915_WRITE_IMR(ring, ~0);
1068 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1069 }
1070 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1071 }
1072
1073 static bool
1074 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1075 {
1076 struct drm_device *dev = ring->dev;
1077 struct drm_i915_private *dev_priv = dev->dev_private;
1078 unsigned long flags;
1079
1080 if (!dev->irq_enabled)
1081 return false;
1082
1083 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1084 if (ring->irq_refcount++ == 0) {
1085 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1086 snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1087 }
1088 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1089
1090 return true;
1091 }
1092
1093 static void
1094 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1095 {
1096 struct drm_device *dev = ring->dev;
1097 struct drm_i915_private *dev_priv = dev->dev_private;
1098 unsigned long flags;
1099
1100 if (!dev->irq_enabled)
1101 return;
1102
1103 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1104 if (--ring->irq_refcount == 0) {
1105 I915_WRITE_IMR(ring, ~0);
1106 snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1107 }
1108 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1109 }
1110
1111 static bool
1112 gen8_ring_get_irq(struct intel_ring_buffer *ring)
1113 {
1114 struct drm_device *dev = ring->dev;
1115 struct drm_i915_private *dev_priv = dev->dev_private;
1116 unsigned long flags;
1117
1118 if (!dev->irq_enabled)
1119 return false;
1120
1121 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1122 if (ring->irq_refcount++ == 0) {
1123 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1124 I915_WRITE_IMR(ring,
1125 ~(ring->irq_enable_mask |
1126 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1127 } else {
1128 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1129 }
1130 POSTING_READ(RING_IMR(ring->mmio_base));
1131 }
1132 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1133
1134 return true;
1135 }
1136
1137 static void
1138 gen8_ring_put_irq(struct intel_ring_buffer *ring)
1139 {
1140 struct drm_device *dev = ring->dev;
1141 struct drm_i915_private *dev_priv = dev->dev_private;
1142 unsigned long flags;
1143
1144 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1145 if (--ring->irq_refcount == 0) {
1146 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1147 I915_WRITE_IMR(ring,
1148 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1149 } else {
1150 I915_WRITE_IMR(ring, ~0);
1151 }
1152 POSTING_READ(RING_IMR(ring->mmio_base));
1153 }
1154 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1155 }
1156
1157 static int
1158 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1159 u32 offset, u32 length,
1160 unsigned flags)
1161 {
1162 int ret;
1163
1164 ret = intel_ring_begin(ring, 2);
1165 if (ret)
1166 return ret;
1167
1168 intel_ring_emit(ring,
1169 MI_BATCH_BUFFER_START |
1170 MI_BATCH_GTT |
1171 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1172 intel_ring_emit(ring, offset);
1173 intel_ring_advance(ring);
1174
1175 return 0;
1176 }
1177
1178 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1179 #define I830_BATCH_LIMIT (256*1024)
1180 static int
1181 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1182 u32 offset, u32 len,
1183 unsigned flags)
1184 {
1185 int ret;
1186
1187 if (flags & I915_DISPATCH_PINNED) {
1188 ret = intel_ring_begin(ring, 4);
1189 if (ret)
1190 return ret;
1191
1192 intel_ring_emit(ring, MI_BATCH_BUFFER);
1193 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1194 intel_ring_emit(ring, offset + len - 8);
1195 intel_ring_emit(ring, MI_NOOP);
1196 intel_ring_advance(ring);
1197 } else {
1198 u32 cs_offset = ring->scratch.gtt_offset;
1199
1200 if (len > I830_BATCH_LIMIT)
1201 return -ENOSPC;
1202
1203 ret = intel_ring_begin(ring, 9+3);
1204 if (ret)
1205 return ret;
1206 /* Blit the batch (which has now all relocs applied) to the stable batch
1207 * scratch bo area (so that the CS never stumbles over its tlb
1208 * invalidation bug) ... */
1209 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1210 XY_SRC_COPY_BLT_WRITE_ALPHA |
1211 XY_SRC_COPY_BLT_WRITE_RGB);
1212 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1213 intel_ring_emit(ring, 0);
1214 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1215 intel_ring_emit(ring, cs_offset);
1216 intel_ring_emit(ring, 0);
1217 intel_ring_emit(ring, 4096);
1218 intel_ring_emit(ring, offset);
1219 intel_ring_emit(ring, MI_FLUSH);
1220
1221 /* ... and execute it. */
1222 intel_ring_emit(ring, MI_BATCH_BUFFER);
1223 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1224 intel_ring_emit(ring, cs_offset + len - 8);
1225 intel_ring_advance(ring);
1226 }
1227
1228 return 0;
1229 }
1230
1231 static int
1232 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1233 u32 offset, u32 len,
1234 unsigned flags)
1235 {
1236 int ret;
1237
1238 ret = intel_ring_begin(ring, 2);
1239 if (ret)
1240 return ret;
1241
1242 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1243 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1244 intel_ring_advance(ring);
1245
1246 return 0;
1247 }
1248
1249 static void cleanup_status_page(struct intel_ring_buffer *ring)
1250 {
1251 struct drm_i915_gem_object *obj;
1252
1253 obj = ring->status_page.obj;
1254 if (obj == NULL)
1255 return;
1256
1257 kunmap(sg_page(obj->pages->sgl));
1258 i915_gem_object_ggtt_unpin(obj);
1259 drm_gem_object_unreference(&obj->base);
1260 ring->status_page.obj = NULL;
1261 }
1262
1263 static int init_status_page(struct intel_ring_buffer *ring)
1264 {
1265 struct drm_device *dev = ring->dev;
1266 struct drm_i915_gem_object *obj;
1267 int ret;
1268
1269 obj = i915_gem_alloc_object(dev, 4096);
1270 if (obj == NULL) {
1271 DRM_ERROR("Failed to allocate status page\n");
1272 ret = -ENOMEM;
1273 goto err;
1274 }
1275
1276 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1277
1278 ret = i915_gem_obj_ggtt_pin(obj, 4096, PIN_MAPPABLE);
1279 if (ret)
1280 goto err_unref;
1281
1282 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1283 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1284 if (ring->status_page.page_addr == NULL) {
1285 ret = -ENOMEM;
1286 goto err_unpin;
1287 }
1288 ring->status_page.obj = obj;
1289 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1290
1291 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1292 ring->name, ring->status_page.gfx_addr);
1293
1294 return 0;
1295
1296 err_unpin:
1297 i915_gem_object_ggtt_unpin(obj);
1298 err_unref:
1299 drm_gem_object_unreference(&obj->base);
1300 err:
1301 return ret;
1302 }
1303
1304 static int init_phys_status_page(struct intel_ring_buffer *ring)
1305 {
1306 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1307
1308 if (!dev_priv->status_page_dmah) {
1309 dev_priv->status_page_dmah =
1310 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1311 if (!dev_priv->status_page_dmah)
1312 return -ENOMEM;
1313 }
1314
1315 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1316 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1317
1318 return 0;
1319 }
1320
1321 static int intel_init_ring_buffer(struct drm_device *dev,
1322 struct intel_ring_buffer *ring)
1323 {
1324 struct drm_i915_gem_object *obj;
1325 struct drm_i915_private *dev_priv = dev->dev_private;
1326 int ret;
1327
1328 ring->dev = dev;
1329 INIT_LIST_HEAD(&ring->active_list);
1330 INIT_LIST_HEAD(&ring->request_list);
1331 ring->size = 32 * PAGE_SIZE;
1332 memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1333
1334 init_waitqueue_head(&ring->irq_queue);
1335
1336 if (I915_NEED_GFX_HWS(dev)) {
1337 ret = init_status_page(ring);
1338 if (ret)
1339 return ret;
1340 } else {
1341 BUG_ON(ring->id != RCS);
1342 ret = init_phys_status_page(ring);
1343 if (ret)
1344 return ret;
1345 }
1346
1347 obj = NULL;
1348 if (!HAS_LLC(dev))
1349 obj = i915_gem_object_create_stolen(dev, ring->size);
1350 if (obj == NULL)
1351 obj = i915_gem_alloc_object(dev, ring->size);
1352 if (obj == NULL) {
1353 DRM_ERROR("Failed to allocate ringbuffer\n");
1354 ret = -ENOMEM;
1355 goto err_hws;
1356 }
1357
1358 ring->obj = obj;
1359
1360 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1361 if (ret)
1362 goto err_unref;
1363
1364 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1365 if (ret)
1366 goto err_unpin;
1367
1368 ring->virtual_start =
1369 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1370 ring->size);
1371 if (ring->virtual_start == NULL) {
1372 DRM_ERROR("Failed to map ringbuffer.\n");
1373 ret = -EINVAL;
1374 goto err_unpin;
1375 }
1376
1377 ret = ring->init(ring);
1378 if (ret)
1379 goto err_unmap;
1380
1381 /* Workaround an erratum on the i830 which causes a hang if
1382 * the TAIL pointer points to within the last 2 cachelines
1383 * of the buffer.
1384 */
1385 ring->effective_size = ring->size;
1386 if (IS_I830(ring->dev) || IS_845G(ring->dev))
1387 ring->effective_size -= 128;
1388
1389 return 0;
1390
1391 err_unmap:
1392 iounmap(ring->virtual_start);
1393 err_unpin:
1394 i915_gem_object_ggtt_unpin(obj);
1395 err_unref:
1396 drm_gem_object_unreference(&obj->base);
1397 ring->obj = NULL;
1398 err_hws:
1399 cleanup_status_page(ring);
1400 return ret;
1401 }
1402
1403 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1404 {
1405 struct drm_i915_private *dev_priv;
1406 int ret;
1407
1408 if (ring->obj == NULL)
1409 return;
1410
1411 /* Disable the ring buffer. The ring must be idle at this point */
1412 dev_priv = ring->dev->dev_private;
1413 ret = intel_ring_idle(ring);
1414 if (ret && !i915_reset_in_progress(&dev_priv->gpu_error))
1415 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1416 ring->name, ret);
1417
1418 I915_WRITE_CTL(ring, 0);
1419
1420 iounmap(ring->virtual_start);
1421
1422 i915_gem_object_ggtt_unpin(ring->obj);
1423 drm_gem_object_unreference(&ring->obj->base);
1424 ring->obj = NULL;
1425 ring->preallocated_lazy_request = NULL;
1426 ring->outstanding_lazy_seqno = 0;
1427
1428 if (ring->cleanup)
1429 ring->cleanup(ring);
1430
1431 cleanup_status_page(ring);
1432 }
1433
1434 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1435 {
1436 struct drm_i915_gem_request *request;
1437 u32 seqno = 0, tail;
1438 int ret;
1439
1440 if (ring->last_retired_head != -1) {
1441 ring->head = ring->last_retired_head;
1442 ring->last_retired_head = -1;
1443
1444 ring->space = ring_space(ring);
1445 if (ring->space >= n)
1446 return 0;
1447 }
1448
1449 list_for_each_entry(request, &ring->request_list, list) {
1450 int space;
1451
1452 if (request->tail == -1)
1453 continue;
1454
1455 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1456 if (space < 0)
1457 space += ring->size;
1458 if (space >= n) {
1459 seqno = request->seqno;
1460 tail = request->tail;
1461 break;
1462 }
1463
1464 /* Consume this request in case we need more space than
1465 * is available and so need to prevent a race between
1466 * updating last_retired_head and direct reads of
1467 * I915_RING_HEAD. It also provides a nice sanity check.
1468 */
1469 request->tail = -1;
1470 }
1471
1472 if (seqno == 0)
1473 return -ENOSPC;
1474
1475 ret = i915_wait_seqno(ring, seqno);
1476 if (ret)
1477 return ret;
1478
1479 ring->head = tail;
1480 ring->space = ring_space(ring);
1481 if (WARN_ON(ring->space < n))
1482 return -ENOSPC;
1483
1484 return 0;
1485 }
1486
1487 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1488 {
1489 struct drm_device *dev = ring->dev;
1490 struct drm_i915_private *dev_priv = dev->dev_private;
1491 unsigned long end;
1492 int ret;
1493
1494 ret = intel_ring_wait_request(ring, n);
1495 if (ret != -ENOSPC)
1496 return ret;
1497
1498 /* force the tail write in case we have been skipping them */
1499 __intel_ring_advance(ring);
1500
1501 trace_i915_ring_wait_begin(ring);
1502 /* With GEM the hangcheck timer should kick us out of the loop,
1503 * leaving it early runs the risk of corrupting GEM state (due
1504 * to running on almost untested codepaths). But on resume
1505 * timers don't work yet, so prevent a complete hang in that
1506 * case by choosing an insanely large timeout. */
1507 end = jiffies + 60 * HZ;
1508
1509 do {
1510 ring->head = I915_READ_HEAD(ring);
1511 ring->space = ring_space(ring);
1512 if (ring->space >= n) {
1513 trace_i915_ring_wait_end(ring);
1514 return 0;
1515 }
1516
1517 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1518 dev->primary->master) {
1519 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1520 if (master_priv->sarea_priv)
1521 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1522 }
1523
1524 msleep(1);
1525
1526 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1527 dev_priv->mm.interruptible);
1528 if (ret)
1529 return ret;
1530 } while (!time_after(jiffies, end));
1531 trace_i915_ring_wait_end(ring);
1532 return -EBUSY;
1533 }
1534
1535 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1536 {
1537 uint32_t __iomem *virt;
1538 int rem = ring->size - ring->tail;
1539
1540 if (ring->space < rem) {
1541 int ret = ring_wait_for_space(ring, rem);
1542 if (ret)
1543 return ret;
1544 }
1545
1546 virt = ring->virtual_start + ring->tail;
1547 rem /= 4;
1548 while (rem--)
1549 iowrite32(MI_NOOP, virt++);
1550
1551 ring->tail = 0;
1552 ring->space = ring_space(ring);
1553
1554 return 0;
1555 }
1556
1557 int intel_ring_idle(struct intel_ring_buffer *ring)
1558 {
1559 u32 seqno;
1560 int ret;
1561
1562 /* We need to add any requests required to flush the objects and ring */
1563 if (ring->outstanding_lazy_seqno) {
1564 ret = i915_add_request(ring, NULL);
1565 if (ret)
1566 return ret;
1567 }
1568
1569 /* Wait upon the last request to be completed */
1570 if (list_empty(&ring->request_list))
1571 return 0;
1572
1573 seqno = list_entry(ring->request_list.prev,
1574 struct drm_i915_gem_request,
1575 list)->seqno;
1576
1577 return i915_wait_seqno(ring, seqno);
1578 }
1579
1580 static int
1581 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1582 {
1583 if (ring->outstanding_lazy_seqno)
1584 return 0;
1585
1586 if (ring->preallocated_lazy_request == NULL) {
1587 struct drm_i915_gem_request *request;
1588
1589 request = kmalloc(sizeof(*request), GFP_KERNEL);
1590 if (request == NULL)
1591 return -ENOMEM;
1592
1593 ring->preallocated_lazy_request = request;
1594 }
1595
1596 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1597 }
1598
1599 static int __intel_ring_prepare(struct intel_ring_buffer *ring,
1600 int bytes)
1601 {
1602 int ret;
1603
1604 if (unlikely(ring->tail + bytes > ring->effective_size)) {
1605 ret = intel_wrap_ring_buffer(ring);
1606 if (unlikely(ret))
1607 return ret;
1608 }
1609
1610 if (unlikely(ring->space < bytes)) {
1611 ret = ring_wait_for_space(ring, bytes);
1612 if (unlikely(ret))
1613 return ret;
1614 }
1615
1616 return 0;
1617 }
1618
1619 int intel_ring_begin(struct intel_ring_buffer *ring,
1620 int num_dwords)
1621 {
1622 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1623 int ret;
1624
1625 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1626 dev_priv->mm.interruptible);
1627 if (ret)
1628 return ret;
1629
1630 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1631 if (ret)
1632 return ret;
1633
1634 /* Preallocate the olr before touching the ring */
1635 ret = intel_ring_alloc_seqno(ring);
1636 if (ret)
1637 return ret;
1638
1639 ring->space -= num_dwords * sizeof(uint32_t);
1640 return 0;
1641 }
1642
1643 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1644 {
1645 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1646
1647 BUG_ON(ring->outstanding_lazy_seqno);
1648
1649 if (INTEL_INFO(ring->dev)->gen >= 6) {
1650 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1651 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1652 if (HAS_VEBOX(ring->dev))
1653 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1654 }
1655
1656 ring->set_seqno(ring, seqno);
1657 ring->hangcheck.seqno = seqno;
1658 }
1659
1660 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1661 u32 value)
1662 {
1663 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1664
1665 /* Every tail move must follow the sequence below */
1666
1667 /* Disable notification that the ring is IDLE. The GT
1668 * will then assume that it is busy and bring it out of rc6.
1669 */
1670 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1671 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1672
1673 /* Clear the context id. Here be magic! */
1674 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1675
1676 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1677 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1678 GEN6_BSD_SLEEP_INDICATOR) == 0,
1679 50))
1680 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1681
1682 /* Now that the ring is fully powered up, update the tail */
1683 I915_WRITE_TAIL(ring, value);
1684 POSTING_READ(RING_TAIL(ring->mmio_base));
1685
1686 /* Let the ring send IDLE messages to the GT again,
1687 * and so let it sleep to conserve power when idle.
1688 */
1689 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1690 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1691 }
1692
1693 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1694 u32 invalidate, u32 flush)
1695 {
1696 uint32_t cmd;
1697 int ret;
1698
1699 ret = intel_ring_begin(ring, 4);
1700 if (ret)
1701 return ret;
1702
1703 cmd = MI_FLUSH_DW;
1704 if (INTEL_INFO(ring->dev)->gen >= 8)
1705 cmd += 1;
1706 /*
1707 * Bspec vol 1c.5 - video engine command streamer:
1708 * "If ENABLED, all TLBs will be invalidated once the flush
1709 * operation is complete. This bit is only valid when the
1710 * Post-Sync Operation field is a value of 1h or 3h."
1711 */
1712 if (invalidate & I915_GEM_GPU_DOMAINS)
1713 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1714 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1715 intel_ring_emit(ring, cmd);
1716 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1717 if (INTEL_INFO(ring->dev)->gen >= 8) {
1718 intel_ring_emit(ring, 0); /* upper addr */
1719 intel_ring_emit(ring, 0); /* value */
1720 } else {
1721 intel_ring_emit(ring, 0);
1722 intel_ring_emit(ring, MI_NOOP);
1723 }
1724 intel_ring_advance(ring);
1725 return 0;
1726 }
1727
1728 static int
1729 gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1730 u32 offset, u32 len,
1731 unsigned flags)
1732 {
1733 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1734 bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1735 !(flags & I915_DISPATCH_SECURE);
1736 int ret;
1737
1738 ret = intel_ring_begin(ring, 4);
1739 if (ret)
1740 return ret;
1741
1742 /* FIXME(BDW): Address space and security selectors. */
1743 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1744 intel_ring_emit(ring, offset);
1745 intel_ring_emit(ring, 0);
1746 intel_ring_emit(ring, MI_NOOP);
1747 intel_ring_advance(ring);
1748
1749 return 0;
1750 }
1751
1752 static int
1753 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1754 u32 offset, u32 len,
1755 unsigned flags)
1756 {
1757 int ret;
1758
1759 ret = intel_ring_begin(ring, 2);
1760 if (ret)
1761 return ret;
1762
1763 intel_ring_emit(ring,
1764 MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1765 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1766 /* bit0-7 is the length on GEN6+ */
1767 intel_ring_emit(ring, offset);
1768 intel_ring_advance(ring);
1769
1770 return 0;
1771 }
1772
1773 static int
1774 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1775 u32 offset, u32 len,
1776 unsigned flags)
1777 {
1778 int ret;
1779
1780 ret = intel_ring_begin(ring, 2);
1781 if (ret)
1782 return ret;
1783
1784 intel_ring_emit(ring,
1785 MI_BATCH_BUFFER_START |
1786 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1787 /* bit0-7 is the length on GEN6+ */
1788 intel_ring_emit(ring, offset);
1789 intel_ring_advance(ring);
1790
1791 return 0;
1792 }
1793
1794 /* Blitter support (SandyBridge+) */
1795
1796 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1797 u32 invalidate, u32 flush)
1798 {
1799 struct drm_device *dev = ring->dev;
1800 uint32_t cmd;
1801 int ret;
1802
1803 ret = intel_ring_begin(ring, 4);
1804 if (ret)
1805 return ret;
1806
1807 cmd = MI_FLUSH_DW;
1808 if (INTEL_INFO(ring->dev)->gen >= 8)
1809 cmd += 1;
1810 /*
1811 * Bspec vol 1c.3 - blitter engine command streamer:
1812 * "If ENABLED, all TLBs will be invalidated once the flush
1813 * operation is complete. This bit is only valid when the
1814 * Post-Sync Operation field is a value of 1h or 3h."
1815 */
1816 if (invalidate & I915_GEM_DOMAIN_RENDER)
1817 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1818 MI_FLUSH_DW_OP_STOREDW;
1819 intel_ring_emit(ring, cmd);
1820 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1821 if (INTEL_INFO(ring->dev)->gen >= 8) {
1822 intel_ring_emit(ring, 0); /* upper addr */
1823 intel_ring_emit(ring, 0); /* value */
1824 } else {
1825 intel_ring_emit(ring, 0);
1826 intel_ring_emit(ring, MI_NOOP);
1827 }
1828 intel_ring_advance(ring);
1829
1830 if (IS_GEN7(dev) && !invalidate && flush)
1831 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1832
1833 return 0;
1834 }
1835
1836 int intel_init_render_ring_buffer(struct drm_device *dev)
1837 {
1838 drm_i915_private_t *dev_priv = dev->dev_private;
1839 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1840
1841 ring->name = "render ring";
1842 ring->id = RCS;
1843 ring->mmio_base = RENDER_RING_BASE;
1844
1845 if (INTEL_INFO(dev)->gen >= 6) {
1846 ring->add_request = gen6_add_request;
1847 ring->flush = gen7_render_ring_flush;
1848 if (INTEL_INFO(dev)->gen == 6)
1849 ring->flush = gen6_render_ring_flush;
1850 if (INTEL_INFO(dev)->gen >= 8) {
1851 ring->flush = gen8_render_ring_flush;
1852 ring->irq_get = gen8_ring_get_irq;
1853 ring->irq_put = gen8_ring_put_irq;
1854 } else {
1855 ring->irq_get = gen6_ring_get_irq;
1856 ring->irq_put = gen6_ring_put_irq;
1857 }
1858 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1859 ring->get_seqno = gen6_ring_get_seqno;
1860 ring->set_seqno = ring_set_seqno;
1861 ring->sync_to = gen6_ring_sync;
1862 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1863 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1864 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1865 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1866 ring->signal_mbox[RCS] = GEN6_NOSYNC;
1867 ring->signal_mbox[VCS] = GEN6_VRSYNC;
1868 ring->signal_mbox[BCS] = GEN6_BRSYNC;
1869 ring->signal_mbox[VECS] = GEN6_VERSYNC;
1870 } else if (IS_GEN5(dev)) {
1871 ring->add_request = pc_render_add_request;
1872 ring->flush = gen4_render_ring_flush;
1873 ring->get_seqno = pc_render_get_seqno;
1874 ring->set_seqno = pc_render_set_seqno;
1875 ring->irq_get = gen5_ring_get_irq;
1876 ring->irq_put = gen5_ring_put_irq;
1877 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1878 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1879 } else {
1880 ring->add_request = i9xx_add_request;
1881 if (INTEL_INFO(dev)->gen < 4)
1882 ring->flush = gen2_render_ring_flush;
1883 else
1884 ring->flush = gen4_render_ring_flush;
1885 ring->get_seqno = ring_get_seqno;
1886 ring->set_seqno = ring_set_seqno;
1887 if (IS_GEN2(dev)) {
1888 ring->irq_get = i8xx_ring_get_irq;
1889 ring->irq_put = i8xx_ring_put_irq;
1890 } else {
1891 ring->irq_get = i9xx_ring_get_irq;
1892 ring->irq_put = i9xx_ring_put_irq;
1893 }
1894 ring->irq_enable_mask = I915_USER_INTERRUPT;
1895 }
1896 ring->write_tail = ring_write_tail;
1897 if (IS_HASWELL(dev))
1898 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1899 else if (IS_GEN8(dev))
1900 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
1901 else if (INTEL_INFO(dev)->gen >= 6)
1902 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1903 else if (INTEL_INFO(dev)->gen >= 4)
1904 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1905 else if (IS_I830(dev) || IS_845G(dev))
1906 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1907 else
1908 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1909 ring->init = init_render_ring;
1910 ring->cleanup = render_ring_cleanup;
1911
1912 /* Workaround batchbuffer to combat CS tlb bug. */
1913 if (HAS_BROKEN_CS_TLB(dev)) {
1914 struct drm_i915_gem_object *obj;
1915 int ret;
1916
1917 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1918 if (obj == NULL) {
1919 DRM_ERROR("Failed to allocate batch bo\n");
1920 return -ENOMEM;
1921 }
1922
1923 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1924 if (ret != 0) {
1925 drm_gem_object_unreference(&obj->base);
1926 DRM_ERROR("Failed to ping batch bo\n");
1927 return ret;
1928 }
1929
1930 ring->scratch.obj = obj;
1931 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
1932 }
1933
1934 return intel_init_ring_buffer(dev, ring);
1935 }
1936
1937 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1938 {
1939 drm_i915_private_t *dev_priv = dev->dev_private;
1940 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1941 int ret;
1942
1943 ring->name = "render ring";
1944 ring->id = RCS;
1945 ring->mmio_base = RENDER_RING_BASE;
1946
1947 if (INTEL_INFO(dev)->gen >= 6) {
1948 /* non-kms not supported on gen6+ */
1949 return -ENODEV;
1950 }
1951
1952 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1953 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1954 * the special gen5 functions. */
1955 ring->add_request = i9xx_add_request;
1956 if (INTEL_INFO(dev)->gen < 4)
1957 ring->flush = gen2_render_ring_flush;
1958 else
1959 ring->flush = gen4_render_ring_flush;
1960 ring->get_seqno = ring_get_seqno;
1961 ring->set_seqno = ring_set_seqno;
1962 if (IS_GEN2(dev)) {
1963 ring->irq_get = i8xx_ring_get_irq;
1964 ring->irq_put = i8xx_ring_put_irq;
1965 } else {
1966 ring->irq_get = i9xx_ring_get_irq;
1967 ring->irq_put = i9xx_ring_put_irq;
1968 }
1969 ring->irq_enable_mask = I915_USER_INTERRUPT;
1970 ring->write_tail = ring_write_tail;
1971 if (INTEL_INFO(dev)->gen >= 4)
1972 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1973 else if (IS_I830(dev) || IS_845G(dev))
1974 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1975 else
1976 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1977 ring->init = init_render_ring;
1978 ring->cleanup = render_ring_cleanup;
1979
1980 ring->dev = dev;
1981 INIT_LIST_HEAD(&ring->active_list);
1982 INIT_LIST_HEAD(&ring->request_list);
1983
1984 ring->size = size;
1985 ring->effective_size = ring->size;
1986 if (IS_I830(ring->dev) || IS_845G(ring->dev))
1987 ring->effective_size -= 128;
1988
1989 ring->virtual_start = ioremap_wc(start, size);
1990 if (ring->virtual_start == NULL) {
1991 DRM_ERROR("can not ioremap virtual address for"
1992 " ring buffer\n");
1993 return -ENOMEM;
1994 }
1995
1996 if (!I915_NEED_GFX_HWS(dev)) {
1997 ret = init_phys_status_page(ring);
1998 if (ret)
1999 return ret;
2000 }
2001
2002 return 0;
2003 }
2004
2005 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2006 {
2007 drm_i915_private_t *dev_priv = dev->dev_private;
2008 struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
2009
2010 ring->name = "bsd ring";
2011 ring->id = VCS;
2012
2013 ring->write_tail = ring_write_tail;
2014 if (INTEL_INFO(dev)->gen >= 6) {
2015 ring->mmio_base = GEN6_BSD_RING_BASE;
2016 /* gen6 bsd needs a special wa for tail updates */
2017 if (IS_GEN6(dev))
2018 ring->write_tail = gen6_bsd_ring_write_tail;
2019 ring->flush = gen6_bsd_ring_flush;
2020 ring->add_request = gen6_add_request;
2021 ring->get_seqno = gen6_ring_get_seqno;
2022 ring->set_seqno = ring_set_seqno;
2023 if (INTEL_INFO(dev)->gen >= 8) {
2024 ring->irq_enable_mask =
2025 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2026 ring->irq_get = gen8_ring_get_irq;
2027 ring->irq_put = gen8_ring_put_irq;
2028 ring->dispatch_execbuffer =
2029 gen8_ring_dispatch_execbuffer;
2030 } else {
2031 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2032 ring->irq_get = gen6_ring_get_irq;
2033 ring->irq_put = gen6_ring_put_irq;
2034 ring->dispatch_execbuffer =
2035 gen6_ring_dispatch_execbuffer;
2036 }
2037 ring->sync_to = gen6_ring_sync;
2038 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
2039 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2040 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
2041 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
2042 ring->signal_mbox[RCS] = GEN6_RVSYNC;
2043 ring->signal_mbox[VCS] = GEN6_NOSYNC;
2044 ring->signal_mbox[BCS] = GEN6_BVSYNC;
2045 ring->signal_mbox[VECS] = GEN6_VEVSYNC;
2046 } else {
2047 ring->mmio_base = BSD_RING_BASE;
2048 ring->flush = bsd_ring_flush;
2049 ring->add_request = i9xx_add_request;
2050 ring->get_seqno = ring_get_seqno;
2051 ring->set_seqno = ring_set_seqno;
2052 if (IS_GEN5(dev)) {
2053 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2054 ring->irq_get = gen5_ring_get_irq;
2055 ring->irq_put = gen5_ring_put_irq;
2056 } else {
2057 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2058 ring->irq_get = i9xx_ring_get_irq;
2059 ring->irq_put = i9xx_ring_put_irq;
2060 }
2061 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2062 }
2063 ring->init = init_ring_common;
2064
2065 return intel_init_ring_buffer(dev, ring);
2066 }
2067
2068 int intel_init_blt_ring_buffer(struct drm_device *dev)
2069 {
2070 drm_i915_private_t *dev_priv = dev->dev_private;
2071 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
2072
2073 ring->name = "blitter ring";
2074 ring->id = BCS;
2075
2076 ring->mmio_base = BLT_RING_BASE;
2077 ring->write_tail = ring_write_tail;
2078 ring->flush = gen6_ring_flush;
2079 ring->add_request = gen6_add_request;
2080 ring->get_seqno = gen6_ring_get_seqno;
2081 ring->set_seqno = ring_set_seqno;
2082 if (INTEL_INFO(dev)->gen >= 8) {
2083 ring->irq_enable_mask =
2084 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2085 ring->irq_get = gen8_ring_get_irq;
2086 ring->irq_put = gen8_ring_put_irq;
2087 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2088 } else {
2089 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2090 ring->irq_get = gen6_ring_get_irq;
2091 ring->irq_put = gen6_ring_put_irq;
2092 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2093 }
2094 ring->sync_to = gen6_ring_sync;
2095 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
2096 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
2097 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2098 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
2099 ring->signal_mbox[RCS] = GEN6_RBSYNC;
2100 ring->signal_mbox[VCS] = GEN6_VBSYNC;
2101 ring->signal_mbox[BCS] = GEN6_NOSYNC;
2102 ring->signal_mbox[VECS] = GEN6_VEBSYNC;
2103 ring->init = init_ring_common;
2104
2105 return intel_init_ring_buffer(dev, ring);
2106 }
2107
2108 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2109 {
2110 drm_i915_private_t *dev_priv = dev->dev_private;
2111 struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2112
2113 ring->name = "video enhancement ring";
2114 ring->id = VECS;
2115
2116 ring->mmio_base = VEBOX_RING_BASE;
2117 ring->write_tail = ring_write_tail;
2118 ring->flush = gen6_ring_flush;
2119 ring->add_request = gen6_add_request;
2120 ring->get_seqno = gen6_ring_get_seqno;
2121 ring->set_seqno = ring_set_seqno;
2122
2123 if (INTEL_INFO(dev)->gen >= 8) {
2124 ring->irq_enable_mask =
2125 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2126 ring->irq_get = gen8_ring_get_irq;
2127 ring->irq_put = gen8_ring_put_irq;
2128 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2129 } else {
2130 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2131 ring->irq_get = hsw_vebox_get_irq;
2132 ring->irq_put = hsw_vebox_put_irq;
2133 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2134 }
2135 ring->sync_to = gen6_ring_sync;
2136 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
2137 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
2138 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
2139 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2140 ring->signal_mbox[RCS] = GEN6_RVESYNC;
2141 ring->signal_mbox[VCS] = GEN6_VVESYNC;
2142 ring->signal_mbox[BCS] = GEN6_BVESYNC;
2143 ring->signal_mbox[VECS] = GEN6_NOSYNC;
2144 ring->init = init_ring_common;
2145
2146 return intel_init_ring_buffer(dev, ring);
2147 }
2148
2149 int
2150 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2151 {
2152 int ret;
2153
2154 if (!ring->gpu_caches_dirty)
2155 return 0;
2156
2157 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2158 if (ret)
2159 return ret;
2160
2161 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2162
2163 ring->gpu_caches_dirty = false;
2164 return 0;
2165 }
2166
2167 int
2168 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2169 {
2170 uint32_t flush_domains;
2171 int ret;
2172
2173 flush_domains = 0;
2174 if (ring->gpu_caches_dirty)
2175 flush_domains = I915_GEM_GPU_DOMAINS;
2176
2177 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2178 if (ret)
2179 return ret;
2180
2181 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2182
2183 ring->gpu_caches_dirty = false;
2184 return 0;
2185 }
This page took 0.076951 seconds and 6 git commands to generate.