Merge branch 'drm-armada-fixes' of git://ftp.arm.linux.org.uk/~rmk/linux-cubox into...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 static inline int ring_space(struct intel_ring_buffer *ring)
37 {
38 int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
39 if (space < 0)
40 space += ring->size;
41 return space;
42 }
43
44 void __intel_ring_advance(struct intel_ring_buffer *ring)
45 {
46 struct drm_i915_private *dev_priv = ring->dev->dev_private;
47
48 ring->tail &= ring->size - 1;
49 if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
50 return;
51 ring->write_tail(ring, ring->tail);
52 }
53
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56 u32 invalidate_domains,
57 u32 flush_domains)
58 {
59 u32 cmd;
60 int ret;
61
62 cmd = MI_FLUSH;
63 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64 cmd |= MI_NO_WRITE_FLUSH;
65
66 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67 cmd |= MI_READ_FLUSH;
68
69 ret = intel_ring_begin(ring, 2);
70 if (ret)
71 return ret;
72
73 intel_ring_emit(ring, cmd);
74 intel_ring_emit(ring, MI_NOOP);
75 intel_ring_advance(ring);
76
77 return 0;
78 }
79
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82 u32 invalidate_domains,
83 u32 flush_domains)
84 {
85 struct drm_device *dev = ring->dev;
86 u32 cmd;
87 int ret;
88
89 /*
90 * read/write caches:
91 *
92 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
94 * also flushed at 2d versus 3d pipeline switches.
95 *
96 * read-only caches:
97 *
98 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99 * MI_READ_FLUSH is set, and is always flushed on 965.
100 *
101 * I915_GEM_DOMAIN_COMMAND may not exist?
102 *
103 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104 * invalidated when MI_EXE_FLUSH is set.
105 *
106 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107 * invalidated with every MI_FLUSH.
108 *
109 * TLBs:
110 *
111 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114 * are flushed at any MI_FLUSH.
115 */
116
117 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119 cmd &= ~MI_NO_WRITE_FLUSH;
120 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121 cmd |= MI_EXE_FLUSH;
122
123 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124 (IS_G4X(dev) || IS_GEN5(dev)))
125 cmd |= MI_INVALIDATE_ISP;
126
127 ret = intel_ring_begin(ring, 2);
128 if (ret)
129 return ret;
130
131 intel_ring_emit(ring, cmd);
132 intel_ring_emit(ring, MI_NOOP);
133 intel_ring_advance(ring);
134
135 return 0;
136 }
137
138 /**
139 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140 * implementing two workarounds on gen6. From section 1.4.7.1
141 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142 *
143 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144 * produced by non-pipelined state commands), software needs to first
145 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146 * 0.
147 *
148 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150 *
151 * And the workaround for these two requires this workaround first:
152 *
153 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154 * BEFORE the pipe-control with a post-sync op and no write-cache
155 * flushes.
156 *
157 * And this last workaround is tricky because of the requirements on
158 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159 * volume 2 part 1:
160 *
161 * "1 of the following must also be set:
162 * - Render Target Cache Flush Enable ([12] of DW1)
163 * - Depth Cache Flush Enable ([0] of DW1)
164 * - Stall at Pixel Scoreboard ([1] of DW1)
165 * - Depth Stall ([13] of DW1)
166 * - Post-Sync Operation ([13] of DW1)
167 * - Notify Enable ([8] of DW1)"
168 *
169 * The cache flushes require the workaround flush that triggered this
170 * one, so we can't use it. Depth stall would trigger the same.
171 * Post-sync nonzero is what triggered this second workaround, so we
172 * can't use that one either. Notify enable is IRQs, which aren't
173 * really our business. That leaves only stall at scoreboard.
174 */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178 u32 scratch_addr = ring->scratch.gtt_offset + 128;
179 int ret;
180
181
182 ret = intel_ring_begin(ring, 6);
183 if (ret)
184 return ret;
185
186 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
187 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188 PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
190 intel_ring_emit(ring, 0); /* low dword */
191 intel_ring_emit(ring, 0); /* high dword */
192 intel_ring_emit(ring, MI_NOOP);
193 intel_ring_advance(ring);
194
195 ret = intel_ring_begin(ring, 6);
196 if (ret)
197 return ret;
198
199 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
200 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
201 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
202 intel_ring_emit(ring, 0);
203 intel_ring_emit(ring, 0);
204 intel_ring_emit(ring, MI_NOOP);
205 intel_ring_advance(ring);
206
207 return 0;
208 }
209
210 static int
211 gen6_render_ring_flush(struct intel_ring_buffer *ring,
212 u32 invalidate_domains, u32 flush_domains)
213 {
214 u32 flags = 0;
215 u32 scratch_addr = ring->scratch.gtt_offset + 128;
216 int ret;
217
218 /* Force SNB workarounds for PIPE_CONTROL flushes */
219 ret = intel_emit_post_sync_nonzero_flush(ring);
220 if (ret)
221 return ret;
222
223 /* Just flush everything. Experiments have shown that reducing the
224 * number of bits based on the write domains has little performance
225 * impact.
226 */
227 if (flush_domains) {
228 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
229 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
230 /*
231 * Ensure that any following seqno writes only happen
232 * when the render cache is indeed flushed.
233 */
234 flags |= PIPE_CONTROL_CS_STALL;
235 }
236 if (invalidate_domains) {
237 flags |= PIPE_CONTROL_TLB_INVALIDATE;
238 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
239 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
240 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
243 /*
244 * TLB invalidate requires a post-sync write.
245 */
246 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
247 }
248
249 ret = intel_ring_begin(ring, 4);
250 if (ret)
251 return ret;
252
253 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
254 intel_ring_emit(ring, flags);
255 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
256 intel_ring_emit(ring, 0);
257 intel_ring_advance(ring);
258
259 return 0;
260 }
261
262 static int
263 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
264 {
265 int ret;
266
267 ret = intel_ring_begin(ring, 4);
268 if (ret)
269 return ret;
270
271 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
272 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
273 PIPE_CONTROL_STALL_AT_SCOREBOARD);
274 intel_ring_emit(ring, 0);
275 intel_ring_emit(ring, 0);
276 intel_ring_advance(ring);
277
278 return 0;
279 }
280
281 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
282 {
283 int ret;
284
285 if (!ring->fbc_dirty)
286 return 0;
287
288 ret = intel_ring_begin(ring, 6);
289 if (ret)
290 return ret;
291 /* WaFbcNukeOn3DBlt:ivb/hsw */
292 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
293 intel_ring_emit(ring, MSG_FBC_REND_STATE);
294 intel_ring_emit(ring, value);
295 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
296 intel_ring_emit(ring, MSG_FBC_REND_STATE);
297 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
298 intel_ring_advance(ring);
299
300 ring->fbc_dirty = false;
301 return 0;
302 }
303
304 static int
305 gen7_render_ring_flush(struct intel_ring_buffer *ring,
306 u32 invalidate_domains, u32 flush_domains)
307 {
308 u32 flags = 0;
309 u32 scratch_addr = ring->scratch.gtt_offset + 128;
310 int ret;
311
312 /*
313 * Ensure that any following seqno writes only happen when the render
314 * cache is indeed flushed.
315 *
316 * Workaround: 4th PIPE_CONTROL command (except the ones with only
317 * read-cache invalidate bits set) must have the CS_STALL bit set. We
318 * don't try to be clever and just set it unconditionally.
319 */
320 flags |= PIPE_CONTROL_CS_STALL;
321
322 /* Just flush everything. Experiments have shown that reducing the
323 * number of bits based on the write domains has little performance
324 * impact.
325 */
326 if (flush_domains) {
327 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
328 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
329 }
330 if (invalidate_domains) {
331 flags |= PIPE_CONTROL_TLB_INVALIDATE;
332 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
333 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
334 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
335 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
336 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
337 /*
338 * TLB invalidate requires a post-sync write.
339 */
340 flags |= PIPE_CONTROL_QW_WRITE;
341 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
342
343 /* Workaround: we must issue a pipe_control with CS-stall bit
344 * set before a pipe_control command that has the state cache
345 * invalidate bit set. */
346 gen7_render_ring_cs_stall_wa(ring);
347 }
348
349 ret = intel_ring_begin(ring, 4);
350 if (ret)
351 return ret;
352
353 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
354 intel_ring_emit(ring, flags);
355 intel_ring_emit(ring, scratch_addr);
356 intel_ring_emit(ring, 0);
357 intel_ring_advance(ring);
358
359 if (!invalidate_domains && flush_domains)
360 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
361
362 return 0;
363 }
364
365 static int
366 gen8_render_ring_flush(struct intel_ring_buffer *ring,
367 u32 invalidate_domains, u32 flush_domains)
368 {
369 u32 flags = 0;
370 u32 scratch_addr = ring->scratch.gtt_offset + 128;
371 int ret;
372
373 flags |= PIPE_CONTROL_CS_STALL;
374
375 if (flush_domains) {
376 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
377 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
378 }
379 if (invalidate_domains) {
380 flags |= PIPE_CONTROL_TLB_INVALIDATE;
381 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
382 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
383 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
384 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
385 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
386 flags |= PIPE_CONTROL_QW_WRITE;
387 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
388 }
389
390 ret = intel_ring_begin(ring, 6);
391 if (ret)
392 return ret;
393
394 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
395 intel_ring_emit(ring, flags);
396 intel_ring_emit(ring, scratch_addr);
397 intel_ring_emit(ring, 0);
398 intel_ring_emit(ring, 0);
399 intel_ring_emit(ring, 0);
400 intel_ring_advance(ring);
401
402 return 0;
403
404 }
405
406 static void ring_write_tail(struct intel_ring_buffer *ring,
407 u32 value)
408 {
409 drm_i915_private_t *dev_priv = ring->dev->dev_private;
410 I915_WRITE_TAIL(ring, value);
411 }
412
413 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
414 {
415 drm_i915_private_t *dev_priv = ring->dev->dev_private;
416 u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
417 RING_ACTHD(ring->mmio_base) : ACTHD;
418
419 return I915_READ(acthd_reg);
420 }
421
422 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
423 {
424 struct drm_i915_private *dev_priv = ring->dev->dev_private;
425 u32 addr;
426
427 addr = dev_priv->status_page_dmah->busaddr;
428 if (INTEL_INFO(ring->dev)->gen >= 4)
429 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
430 I915_WRITE(HWS_PGA, addr);
431 }
432
433 static int init_ring_common(struct intel_ring_buffer *ring)
434 {
435 struct drm_device *dev = ring->dev;
436 drm_i915_private_t *dev_priv = dev->dev_private;
437 struct drm_i915_gem_object *obj = ring->obj;
438 int ret = 0;
439 u32 head;
440
441 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
442
443 if (I915_NEED_GFX_HWS(dev))
444 intel_ring_setup_status_page(ring);
445 else
446 ring_setup_phys_status_page(ring);
447
448 /* Stop the ring if it's running. */
449 I915_WRITE_CTL(ring, 0);
450 I915_WRITE_HEAD(ring, 0);
451 ring->write_tail(ring, 0);
452
453 head = I915_READ_HEAD(ring) & HEAD_ADDR;
454
455 /* G45 ring initialization fails to reset head to zero */
456 if (head != 0) {
457 DRM_DEBUG_KMS("%s head not reset to zero "
458 "ctl %08x head %08x tail %08x start %08x\n",
459 ring->name,
460 I915_READ_CTL(ring),
461 I915_READ_HEAD(ring),
462 I915_READ_TAIL(ring),
463 I915_READ_START(ring));
464
465 I915_WRITE_HEAD(ring, 0);
466
467 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
468 DRM_ERROR("failed to set %s head to zero "
469 "ctl %08x head %08x tail %08x start %08x\n",
470 ring->name,
471 I915_READ_CTL(ring),
472 I915_READ_HEAD(ring),
473 I915_READ_TAIL(ring),
474 I915_READ_START(ring));
475 }
476 }
477
478 /* Initialize the ring. This must happen _after_ we've cleared the ring
479 * registers with the above sequence (the readback of the HEAD registers
480 * also enforces ordering), otherwise the hw might lose the new ring
481 * register values. */
482 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
483 I915_WRITE_CTL(ring,
484 ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
485 | RING_VALID);
486
487 /* If the head is still not zero, the ring is dead */
488 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
489 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
490 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
491 DRM_ERROR("%s initialization failed "
492 "ctl %08x head %08x tail %08x start %08x\n",
493 ring->name,
494 I915_READ_CTL(ring),
495 I915_READ_HEAD(ring),
496 I915_READ_TAIL(ring),
497 I915_READ_START(ring));
498 ret = -EIO;
499 goto out;
500 }
501
502 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
503 i915_kernel_lost_context(ring->dev);
504 else {
505 ring->head = I915_READ_HEAD(ring);
506 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
507 ring->space = ring_space(ring);
508 ring->last_retired_head = -1;
509 }
510
511 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
512
513 out:
514 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
515
516 return ret;
517 }
518
519 static int
520 init_pipe_control(struct intel_ring_buffer *ring)
521 {
522 int ret;
523
524 if (ring->scratch.obj)
525 return 0;
526
527 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
528 if (ring->scratch.obj == NULL) {
529 DRM_ERROR("Failed to allocate seqno page\n");
530 ret = -ENOMEM;
531 goto err;
532 }
533
534 i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
535
536 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, true, false);
537 if (ret)
538 goto err_unref;
539
540 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
541 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
542 if (ring->scratch.cpu_page == NULL) {
543 ret = -ENOMEM;
544 goto err_unpin;
545 }
546
547 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
548 ring->name, ring->scratch.gtt_offset);
549 return 0;
550
551 err_unpin:
552 i915_gem_object_unpin(ring->scratch.obj);
553 err_unref:
554 drm_gem_object_unreference(&ring->scratch.obj->base);
555 err:
556 return ret;
557 }
558
559 static int init_render_ring(struct intel_ring_buffer *ring)
560 {
561 struct drm_device *dev = ring->dev;
562 struct drm_i915_private *dev_priv = dev->dev_private;
563 int ret = init_ring_common(ring);
564
565 if (INTEL_INFO(dev)->gen > 3)
566 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
567
568 /* We need to disable the AsyncFlip performance optimisations in order
569 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
570 * programmed to '1' on all products.
571 *
572 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
573 */
574 if (INTEL_INFO(dev)->gen >= 6)
575 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
576
577 /* Required for the hardware to program scanline values for waiting */
578 if (INTEL_INFO(dev)->gen == 6)
579 I915_WRITE(GFX_MODE,
580 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
581
582 if (IS_GEN7(dev))
583 I915_WRITE(GFX_MODE_GEN7,
584 _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
585 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
586
587 if (INTEL_INFO(dev)->gen >= 5) {
588 ret = init_pipe_control(ring);
589 if (ret)
590 return ret;
591 }
592
593 if (IS_GEN6(dev)) {
594 /* From the Sandybridge PRM, volume 1 part 3, page 24:
595 * "If this bit is set, STCunit will have LRA as replacement
596 * policy. [...] This bit must be reset. LRA replacement
597 * policy is not supported."
598 */
599 I915_WRITE(CACHE_MODE_0,
600 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
601
602 /* This is not explicitly set for GEN6, so read the register.
603 * see intel_ring_mi_set_context() for why we care.
604 * TODO: consider explicitly setting the bit for GEN5
605 */
606 ring->itlb_before_ctx_switch =
607 !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
608 }
609
610 if (INTEL_INFO(dev)->gen >= 6)
611 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
612
613 if (HAS_L3_DPF(dev))
614 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
615
616 return ret;
617 }
618
619 static void render_ring_cleanup(struct intel_ring_buffer *ring)
620 {
621 struct drm_device *dev = ring->dev;
622
623 if (ring->scratch.obj == NULL)
624 return;
625
626 if (INTEL_INFO(dev)->gen >= 5) {
627 kunmap(sg_page(ring->scratch.obj->pages->sgl));
628 i915_gem_object_unpin(ring->scratch.obj);
629 }
630
631 drm_gem_object_unreference(&ring->scratch.obj->base);
632 ring->scratch.obj = NULL;
633 }
634
635 static void
636 update_mboxes(struct intel_ring_buffer *ring,
637 u32 mmio_offset)
638 {
639 /* NB: In order to be able to do semaphore MBOX updates for varying number
640 * of rings, it's easiest if we round up each individual update to a
641 * multiple of 2 (since ring updates must always be a multiple of 2)
642 * even though the actual update only requires 3 dwords.
643 */
644 #define MBOX_UPDATE_DWORDS 4
645 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
646 intel_ring_emit(ring, mmio_offset);
647 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
648 intel_ring_emit(ring, MI_NOOP);
649 }
650
651 /**
652 * gen6_add_request - Update the semaphore mailbox registers
653 *
654 * @ring - ring that is adding a request
655 * @seqno - return seqno stuck into the ring
656 *
657 * Update the mailbox registers in the *other* rings with the current seqno.
658 * This acts like a signal in the canonical semaphore.
659 */
660 static int
661 gen6_add_request(struct intel_ring_buffer *ring)
662 {
663 struct drm_device *dev = ring->dev;
664 struct drm_i915_private *dev_priv = dev->dev_private;
665 struct intel_ring_buffer *useless;
666 int i, ret, num_dwords = 4;
667
668 if (i915_semaphore_is_enabled(dev))
669 num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
670 #undef MBOX_UPDATE_DWORDS
671
672 ret = intel_ring_begin(ring, num_dwords);
673 if (ret)
674 return ret;
675
676 if (i915_semaphore_is_enabled(dev)) {
677 for_each_ring(useless, dev_priv, i) {
678 u32 mbox_reg = ring->signal_mbox[i];
679 if (mbox_reg != GEN6_NOSYNC)
680 update_mboxes(ring, mbox_reg);
681 }
682 }
683
684 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
685 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
686 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
687 intel_ring_emit(ring, MI_USER_INTERRUPT);
688 __intel_ring_advance(ring);
689
690 return 0;
691 }
692
693 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
694 u32 seqno)
695 {
696 struct drm_i915_private *dev_priv = dev->dev_private;
697 return dev_priv->last_seqno < seqno;
698 }
699
700 /**
701 * intel_ring_sync - sync the waiter to the signaller on seqno
702 *
703 * @waiter - ring that is waiting
704 * @signaller - ring which has, or will signal
705 * @seqno - seqno which the waiter will block on
706 */
707 static int
708 gen6_ring_sync(struct intel_ring_buffer *waiter,
709 struct intel_ring_buffer *signaller,
710 u32 seqno)
711 {
712 int ret;
713 u32 dw1 = MI_SEMAPHORE_MBOX |
714 MI_SEMAPHORE_COMPARE |
715 MI_SEMAPHORE_REGISTER;
716
717 /* Throughout all of the GEM code, seqno passed implies our current
718 * seqno is >= the last seqno executed. However for hardware the
719 * comparison is strictly greater than.
720 */
721 seqno -= 1;
722
723 WARN_ON(signaller->semaphore_register[waiter->id] ==
724 MI_SEMAPHORE_SYNC_INVALID);
725
726 ret = intel_ring_begin(waiter, 4);
727 if (ret)
728 return ret;
729
730 /* If seqno wrap happened, omit the wait with no-ops */
731 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
732 intel_ring_emit(waiter,
733 dw1 |
734 signaller->semaphore_register[waiter->id]);
735 intel_ring_emit(waiter, seqno);
736 intel_ring_emit(waiter, 0);
737 intel_ring_emit(waiter, MI_NOOP);
738 } else {
739 intel_ring_emit(waiter, MI_NOOP);
740 intel_ring_emit(waiter, MI_NOOP);
741 intel_ring_emit(waiter, MI_NOOP);
742 intel_ring_emit(waiter, MI_NOOP);
743 }
744 intel_ring_advance(waiter);
745
746 return 0;
747 }
748
749 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
750 do { \
751 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
752 PIPE_CONTROL_DEPTH_STALL); \
753 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
754 intel_ring_emit(ring__, 0); \
755 intel_ring_emit(ring__, 0); \
756 } while (0)
757
758 static int
759 pc_render_add_request(struct intel_ring_buffer *ring)
760 {
761 u32 scratch_addr = ring->scratch.gtt_offset + 128;
762 int ret;
763
764 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
765 * incoherent with writes to memory, i.e. completely fubar,
766 * so we need to use PIPE_NOTIFY instead.
767 *
768 * However, we also need to workaround the qword write
769 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
770 * memory before requesting an interrupt.
771 */
772 ret = intel_ring_begin(ring, 32);
773 if (ret)
774 return ret;
775
776 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
777 PIPE_CONTROL_WRITE_FLUSH |
778 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
779 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
780 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
781 intel_ring_emit(ring, 0);
782 PIPE_CONTROL_FLUSH(ring, scratch_addr);
783 scratch_addr += 128; /* write to separate cachelines */
784 PIPE_CONTROL_FLUSH(ring, scratch_addr);
785 scratch_addr += 128;
786 PIPE_CONTROL_FLUSH(ring, scratch_addr);
787 scratch_addr += 128;
788 PIPE_CONTROL_FLUSH(ring, scratch_addr);
789 scratch_addr += 128;
790 PIPE_CONTROL_FLUSH(ring, scratch_addr);
791 scratch_addr += 128;
792 PIPE_CONTROL_FLUSH(ring, scratch_addr);
793
794 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
795 PIPE_CONTROL_WRITE_FLUSH |
796 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
797 PIPE_CONTROL_NOTIFY);
798 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
799 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
800 intel_ring_emit(ring, 0);
801 __intel_ring_advance(ring);
802
803 return 0;
804 }
805
806 static u32
807 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
808 {
809 /* Workaround to force correct ordering between irq and seqno writes on
810 * ivb (and maybe also on snb) by reading from a CS register (like
811 * ACTHD) before reading the status page. */
812 if (!lazy_coherency)
813 intel_ring_get_active_head(ring);
814 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
815 }
816
817 static u32
818 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
819 {
820 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
821 }
822
823 static void
824 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
825 {
826 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
827 }
828
829 static u32
830 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
831 {
832 return ring->scratch.cpu_page[0];
833 }
834
835 static void
836 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
837 {
838 ring->scratch.cpu_page[0] = seqno;
839 }
840
841 static bool
842 gen5_ring_get_irq(struct intel_ring_buffer *ring)
843 {
844 struct drm_device *dev = ring->dev;
845 drm_i915_private_t *dev_priv = dev->dev_private;
846 unsigned long flags;
847
848 if (!dev->irq_enabled)
849 return false;
850
851 spin_lock_irqsave(&dev_priv->irq_lock, flags);
852 if (ring->irq_refcount++ == 0)
853 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
854 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
855
856 return true;
857 }
858
859 static void
860 gen5_ring_put_irq(struct intel_ring_buffer *ring)
861 {
862 struct drm_device *dev = ring->dev;
863 drm_i915_private_t *dev_priv = dev->dev_private;
864 unsigned long flags;
865
866 spin_lock_irqsave(&dev_priv->irq_lock, flags);
867 if (--ring->irq_refcount == 0)
868 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
869 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
870 }
871
872 static bool
873 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
874 {
875 struct drm_device *dev = ring->dev;
876 drm_i915_private_t *dev_priv = dev->dev_private;
877 unsigned long flags;
878
879 if (!dev->irq_enabled)
880 return false;
881
882 spin_lock_irqsave(&dev_priv->irq_lock, flags);
883 if (ring->irq_refcount++ == 0) {
884 dev_priv->irq_mask &= ~ring->irq_enable_mask;
885 I915_WRITE(IMR, dev_priv->irq_mask);
886 POSTING_READ(IMR);
887 }
888 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
889
890 return true;
891 }
892
893 static void
894 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
895 {
896 struct drm_device *dev = ring->dev;
897 drm_i915_private_t *dev_priv = dev->dev_private;
898 unsigned long flags;
899
900 spin_lock_irqsave(&dev_priv->irq_lock, flags);
901 if (--ring->irq_refcount == 0) {
902 dev_priv->irq_mask |= ring->irq_enable_mask;
903 I915_WRITE(IMR, dev_priv->irq_mask);
904 POSTING_READ(IMR);
905 }
906 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
907 }
908
909 static bool
910 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
911 {
912 struct drm_device *dev = ring->dev;
913 drm_i915_private_t *dev_priv = dev->dev_private;
914 unsigned long flags;
915
916 if (!dev->irq_enabled)
917 return false;
918
919 spin_lock_irqsave(&dev_priv->irq_lock, flags);
920 if (ring->irq_refcount++ == 0) {
921 dev_priv->irq_mask &= ~ring->irq_enable_mask;
922 I915_WRITE16(IMR, dev_priv->irq_mask);
923 POSTING_READ16(IMR);
924 }
925 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
926
927 return true;
928 }
929
930 static void
931 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
932 {
933 struct drm_device *dev = ring->dev;
934 drm_i915_private_t *dev_priv = dev->dev_private;
935 unsigned long flags;
936
937 spin_lock_irqsave(&dev_priv->irq_lock, flags);
938 if (--ring->irq_refcount == 0) {
939 dev_priv->irq_mask |= ring->irq_enable_mask;
940 I915_WRITE16(IMR, dev_priv->irq_mask);
941 POSTING_READ16(IMR);
942 }
943 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
944 }
945
946 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
947 {
948 struct drm_device *dev = ring->dev;
949 drm_i915_private_t *dev_priv = ring->dev->dev_private;
950 u32 mmio = 0;
951
952 /* The ring status page addresses are no longer next to the rest of
953 * the ring registers as of gen7.
954 */
955 if (IS_GEN7(dev)) {
956 switch (ring->id) {
957 case RCS:
958 mmio = RENDER_HWS_PGA_GEN7;
959 break;
960 case BCS:
961 mmio = BLT_HWS_PGA_GEN7;
962 break;
963 case VCS:
964 mmio = BSD_HWS_PGA_GEN7;
965 break;
966 case VECS:
967 mmio = VEBOX_HWS_PGA_GEN7;
968 break;
969 }
970 } else if (IS_GEN6(ring->dev)) {
971 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
972 } else {
973 /* XXX: gen8 returns to sanity */
974 mmio = RING_HWS_PGA(ring->mmio_base);
975 }
976
977 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
978 POSTING_READ(mmio);
979
980 /* Flush the TLB for this page */
981 if (INTEL_INFO(dev)->gen >= 6) {
982 u32 reg = RING_INSTPM(ring->mmio_base);
983 I915_WRITE(reg,
984 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
985 INSTPM_SYNC_FLUSH));
986 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
987 1000))
988 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
989 ring->name);
990 }
991 }
992
993 static int
994 bsd_ring_flush(struct intel_ring_buffer *ring,
995 u32 invalidate_domains,
996 u32 flush_domains)
997 {
998 int ret;
999
1000 ret = intel_ring_begin(ring, 2);
1001 if (ret)
1002 return ret;
1003
1004 intel_ring_emit(ring, MI_FLUSH);
1005 intel_ring_emit(ring, MI_NOOP);
1006 intel_ring_advance(ring);
1007 return 0;
1008 }
1009
1010 static int
1011 i9xx_add_request(struct intel_ring_buffer *ring)
1012 {
1013 int ret;
1014
1015 ret = intel_ring_begin(ring, 4);
1016 if (ret)
1017 return ret;
1018
1019 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1020 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1021 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1022 intel_ring_emit(ring, MI_USER_INTERRUPT);
1023 __intel_ring_advance(ring);
1024
1025 return 0;
1026 }
1027
1028 static bool
1029 gen6_ring_get_irq(struct intel_ring_buffer *ring)
1030 {
1031 struct drm_device *dev = ring->dev;
1032 drm_i915_private_t *dev_priv = dev->dev_private;
1033 unsigned long flags;
1034
1035 if (!dev->irq_enabled)
1036 return false;
1037
1038 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1039 if (ring->irq_refcount++ == 0) {
1040 if (HAS_L3_DPF(dev) && ring->id == RCS)
1041 I915_WRITE_IMR(ring,
1042 ~(ring->irq_enable_mask |
1043 GT_PARITY_ERROR(dev)));
1044 else
1045 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1046 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1047 }
1048 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1049
1050 return true;
1051 }
1052
1053 static void
1054 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1055 {
1056 struct drm_device *dev = ring->dev;
1057 drm_i915_private_t *dev_priv = dev->dev_private;
1058 unsigned long flags;
1059
1060 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1061 if (--ring->irq_refcount == 0) {
1062 if (HAS_L3_DPF(dev) && ring->id == RCS)
1063 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1064 else
1065 I915_WRITE_IMR(ring, ~0);
1066 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1067 }
1068 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1069 }
1070
1071 static bool
1072 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1073 {
1074 struct drm_device *dev = ring->dev;
1075 struct drm_i915_private *dev_priv = dev->dev_private;
1076 unsigned long flags;
1077
1078 if (!dev->irq_enabled)
1079 return false;
1080
1081 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1082 if (ring->irq_refcount++ == 0) {
1083 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1084 snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1085 }
1086 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1087
1088 return true;
1089 }
1090
1091 static void
1092 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1093 {
1094 struct drm_device *dev = ring->dev;
1095 struct drm_i915_private *dev_priv = dev->dev_private;
1096 unsigned long flags;
1097
1098 if (!dev->irq_enabled)
1099 return;
1100
1101 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1102 if (--ring->irq_refcount == 0) {
1103 I915_WRITE_IMR(ring, ~0);
1104 snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1105 }
1106 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1107 }
1108
1109 static bool
1110 gen8_ring_get_irq(struct intel_ring_buffer *ring)
1111 {
1112 struct drm_device *dev = ring->dev;
1113 struct drm_i915_private *dev_priv = dev->dev_private;
1114 unsigned long flags;
1115
1116 if (!dev->irq_enabled)
1117 return false;
1118
1119 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1120 if (ring->irq_refcount++ == 0) {
1121 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1122 I915_WRITE_IMR(ring,
1123 ~(ring->irq_enable_mask |
1124 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1125 } else {
1126 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1127 }
1128 POSTING_READ(RING_IMR(ring->mmio_base));
1129 }
1130 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1131
1132 return true;
1133 }
1134
1135 static void
1136 gen8_ring_put_irq(struct intel_ring_buffer *ring)
1137 {
1138 struct drm_device *dev = ring->dev;
1139 struct drm_i915_private *dev_priv = dev->dev_private;
1140 unsigned long flags;
1141
1142 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1143 if (--ring->irq_refcount == 0) {
1144 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1145 I915_WRITE_IMR(ring,
1146 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1147 } else {
1148 I915_WRITE_IMR(ring, ~0);
1149 }
1150 POSTING_READ(RING_IMR(ring->mmio_base));
1151 }
1152 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1153 }
1154
1155 static int
1156 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1157 u32 offset, u32 length,
1158 unsigned flags)
1159 {
1160 int ret;
1161
1162 ret = intel_ring_begin(ring, 2);
1163 if (ret)
1164 return ret;
1165
1166 intel_ring_emit(ring,
1167 MI_BATCH_BUFFER_START |
1168 MI_BATCH_GTT |
1169 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1170 intel_ring_emit(ring, offset);
1171 intel_ring_advance(ring);
1172
1173 return 0;
1174 }
1175
1176 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1177 #define I830_BATCH_LIMIT (256*1024)
1178 static int
1179 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1180 u32 offset, u32 len,
1181 unsigned flags)
1182 {
1183 int ret;
1184
1185 if (flags & I915_DISPATCH_PINNED) {
1186 ret = intel_ring_begin(ring, 4);
1187 if (ret)
1188 return ret;
1189
1190 intel_ring_emit(ring, MI_BATCH_BUFFER);
1191 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1192 intel_ring_emit(ring, offset + len - 8);
1193 intel_ring_emit(ring, MI_NOOP);
1194 intel_ring_advance(ring);
1195 } else {
1196 u32 cs_offset = ring->scratch.gtt_offset;
1197
1198 if (len > I830_BATCH_LIMIT)
1199 return -ENOSPC;
1200
1201 ret = intel_ring_begin(ring, 9+3);
1202 if (ret)
1203 return ret;
1204 /* Blit the batch (which has now all relocs applied) to the stable batch
1205 * scratch bo area (so that the CS never stumbles over its tlb
1206 * invalidation bug) ... */
1207 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1208 XY_SRC_COPY_BLT_WRITE_ALPHA |
1209 XY_SRC_COPY_BLT_WRITE_RGB);
1210 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1211 intel_ring_emit(ring, 0);
1212 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1213 intel_ring_emit(ring, cs_offset);
1214 intel_ring_emit(ring, 0);
1215 intel_ring_emit(ring, 4096);
1216 intel_ring_emit(ring, offset);
1217 intel_ring_emit(ring, MI_FLUSH);
1218
1219 /* ... and execute it. */
1220 intel_ring_emit(ring, MI_BATCH_BUFFER);
1221 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1222 intel_ring_emit(ring, cs_offset + len - 8);
1223 intel_ring_advance(ring);
1224 }
1225
1226 return 0;
1227 }
1228
1229 static int
1230 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1231 u32 offset, u32 len,
1232 unsigned flags)
1233 {
1234 int ret;
1235
1236 ret = intel_ring_begin(ring, 2);
1237 if (ret)
1238 return ret;
1239
1240 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1241 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1242 intel_ring_advance(ring);
1243
1244 return 0;
1245 }
1246
1247 static void cleanup_status_page(struct intel_ring_buffer *ring)
1248 {
1249 struct drm_i915_gem_object *obj;
1250
1251 obj = ring->status_page.obj;
1252 if (obj == NULL)
1253 return;
1254
1255 kunmap(sg_page(obj->pages->sgl));
1256 i915_gem_object_unpin(obj);
1257 drm_gem_object_unreference(&obj->base);
1258 ring->status_page.obj = NULL;
1259 }
1260
1261 static int init_status_page(struct intel_ring_buffer *ring)
1262 {
1263 struct drm_device *dev = ring->dev;
1264 struct drm_i915_gem_object *obj;
1265 int ret;
1266
1267 obj = i915_gem_alloc_object(dev, 4096);
1268 if (obj == NULL) {
1269 DRM_ERROR("Failed to allocate status page\n");
1270 ret = -ENOMEM;
1271 goto err;
1272 }
1273
1274 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1275
1276 ret = i915_gem_obj_ggtt_pin(obj, 4096, true, false);
1277 if (ret != 0) {
1278 goto err_unref;
1279 }
1280
1281 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1282 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1283 if (ring->status_page.page_addr == NULL) {
1284 ret = -ENOMEM;
1285 goto err_unpin;
1286 }
1287 ring->status_page.obj = obj;
1288 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1289
1290 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1291 ring->name, ring->status_page.gfx_addr);
1292
1293 return 0;
1294
1295 err_unpin:
1296 i915_gem_object_unpin(obj);
1297 err_unref:
1298 drm_gem_object_unreference(&obj->base);
1299 err:
1300 return ret;
1301 }
1302
1303 static int init_phys_status_page(struct intel_ring_buffer *ring)
1304 {
1305 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1306
1307 if (!dev_priv->status_page_dmah) {
1308 dev_priv->status_page_dmah =
1309 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1310 if (!dev_priv->status_page_dmah)
1311 return -ENOMEM;
1312 }
1313
1314 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1315 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1316
1317 return 0;
1318 }
1319
1320 static int intel_init_ring_buffer(struct drm_device *dev,
1321 struct intel_ring_buffer *ring)
1322 {
1323 struct drm_i915_gem_object *obj;
1324 struct drm_i915_private *dev_priv = dev->dev_private;
1325 int ret;
1326
1327 ring->dev = dev;
1328 INIT_LIST_HEAD(&ring->active_list);
1329 INIT_LIST_HEAD(&ring->request_list);
1330 ring->size = 32 * PAGE_SIZE;
1331 memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1332
1333 init_waitqueue_head(&ring->irq_queue);
1334
1335 if (I915_NEED_GFX_HWS(dev)) {
1336 ret = init_status_page(ring);
1337 if (ret)
1338 return ret;
1339 } else {
1340 BUG_ON(ring->id != RCS);
1341 ret = init_phys_status_page(ring);
1342 if (ret)
1343 return ret;
1344 }
1345
1346 obj = NULL;
1347 if (!HAS_LLC(dev))
1348 obj = i915_gem_object_create_stolen(dev, ring->size);
1349 if (obj == NULL)
1350 obj = i915_gem_alloc_object(dev, ring->size);
1351 if (obj == NULL) {
1352 DRM_ERROR("Failed to allocate ringbuffer\n");
1353 ret = -ENOMEM;
1354 goto err_hws;
1355 }
1356
1357 ring->obj = obj;
1358
1359 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, true, false);
1360 if (ret)
1361 goto err_unref;
1362
1363 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1364 if (ret)
1365 goto err_unpin;
1366
1367 ring->virtual_start =
1368 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1369 ring->size);
1370 if (ring->virtual_start == NULL) {
1371 DRM_ERROR("Failed to map ringbuffer.\n");
1372 ret = -EINVAL;
1373 goto err_unpin;
1374 }
1375
1376 ret = ring->init(ring);
1377 if (ret)
1378 goto err_unmap;
1379
1380 /* Workaround an erratum on the i830 which causes a hang if
1381 * the TAIL pointer points to within the last 2 cachelines
1382 * of the buffer.
1383 */
1384 ring->effective_size = ring->size;
1385 if (IS_I830(ring->dev) || IS_845G(ring->dev))
1386 ring->effective_size -= 128;
1387
1388 return 0;
1389
1390 err_unmap:
1391 iounmap(ring->virtual_start);
1392 err_unpin:
1393 i915_gem_object_unpin(obj);
1394 err_unref:
1395 drm_gem_object_unreference(&obj->base);
1396 ring->obj = NULL;
1397 err_hws:
1398 cleanup_status_page(ring);
1399 return ret;
1400 }
1401
1402 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1403 {
1404 struct drm_i915_private *dev_priv;
1405 int ret;
1406
1407 if (ring->obj == NULL)
1408 return;
1409
1410 /* Disable the ring buffer. The ring must be idle at this point */
1411 dev_priv = ring->dev->dev_private;
1412 ret = intel_ring_idle(ring);
1413 if (ret && !i915_reset_in_progress(&dev_priv->gpu_error))
1414 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1415 ring->name, ret);
1416
1417 I915_WRITE_CTL(ring, 0);
1418
1419 iounmap(ring->virtual_start);
1420
1421 i915_gem_object_unpin(ring->obj);
1422 drm_gem_object_unreference(&ring->obj->base);
1423 ring->obj = NULL;
1424 ring->preallocated_lazy_request = NULL;
1425 ring->outstanding_lazy_seqno = 0;
1426
1427 if (ring->cleanup)
1428 ring->cleanup(ring);
1429
1430 cleanup_status_page(ring);
1431 }
1432
1433 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1434 {
1435 int ret;
1436
1437 ret = i915_wait_seqno(ring, seqno);
1438 if (!ret)
1439 i915_gem_retire_requests_ring(ring);
1440
1441 return ret;
1442 }
1443
1444 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1445 {
1446 struct drm_i915_gem_request *request;
1447 u32 seqno = 0;
1448 int ret;
1449
1450 i915_gem_retire_requests_ring(ring);
1451
1452 if (ring->last_retired_head != -1) {
1453 ring->head = ring->last_retired_head;
1454 ring->last_retired_head = -1;
1455 ring->space = ring_space(ring);
1456 if (ring->space >= n)
1457 return 0;
1458 }
1459
1460 list_for_each_entry(request, &ring->request_list, list) {
1461 int space;
1462
1463 if (request->tail == -1)
1464 continue;
1465
1466 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1467 if (space < 0)
1468 space += ring->size;
1469 if (space >= n) {
1470 seqno = request->seqno;
1471 break;
1472 }
1473
1474 /* Consume this request in case we need more space than
1475 * is available and so need to prevent a race between
1476 * updating last_retired_head and direct reads of
1477 * I915_RING_HEAD. It also provides a nice sanity check.
1478 */
1479 request->tail = -1;
1480 }
1481
1482 if (seqno == 0)
1483 return -ENOSPC;
1484
1485 ret = intel_ring_wait_seqno(ring, seqno);
1486 if (ret)
1487 return ret;
1488
1489 if (WARN_ON(ring->last_retired_head == -1))
1490 return -ENOSPC;
1491
1492 ring->head = ring->last_retired_head;
1493 ring->last_retired_head = -1;
1494 ring->space = ring_space(ring);
1495 if (WARN_ON(ring->space < n))
1496 return -ENOSPC;
1497
1498 return 0;
1499 }
1500
1501 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1502 {
1503 struct drm_device *dev = ring->dev;
1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505 unsigned long end;
1506 int ret;
1507
1508 ret = intel_ring_wait_request(ring, n);
1509 if (ret != -ENOSPC)
1510 return ret;
1511
1512 /* force the tail write in case we have been skipping them */
1513 __intel_ring_advance(ring);
1514
1515 trace_i915_ring_wait_begin(ring);
1516 /* With GEM the hangcheck timer should kick us out of the loop,
1517 * leaving it early runs the risk of corrupting GEM state (due
1518 * to running on almost untested codepaths). But on resume
1519 * timers don't work yet, so prevent a complete hang in that
1520 * case by choosing an insanely large timeout. */
1521 end = jiffies + 60 * HZ;
1522
1523 do {
1524 ring->head = I915_READ_HEAD(ring);
1525 ring->space = ring_space(ring);
1526 if (ring->space >= n) {
1527 trace_i915_ring_wait_end(ring);
1528 return 0;
1529 }
1530
1531 if (dev->primary->master) {
1532 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1533 if (master_priv->sarea_priv)
1534 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1535 }
1536
1537 msleep(1);
1538
1539 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1540 dev_priv->mm.interruptible);
1541 if (ret)
1542 return ret;
1543 } while (!time_after(jiffies, end));
1544 trace_i915_ring_wait_end(ring);
1545 return -EBUSY;
1546 }
1547
1548 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1549 {
1550 uint32_t __iomem *virt;
1551 int rem = ring->size - ring->tail;
1552
1553 if (ring->space < rem) {
1554 int ret = ring_wait_for_space(ring, rem);
1555 if (ret)
1556 return ret;
1557 }
1558
1559 virt = ring->virtual_start + ring->tail;
1560 rem /= 4;
1561 while (rem--)
1562 iowrite32(MI_NOOP, virt++);
1563
1564 ring->tail = 0;
1565 ring->space = ring_space(ring);
1566
1567 return 0;
1568 }
1569
1570 int intel_ring_idle(struct intel_ring_buffer *ring)
1571 {
1572 u32 seqno;
1573 int ret;
1574
1575 /* We need to add any requests required to flush the objects and ring */
1576 if (ring->outstanding_lazy_seqno) {
1577 ret = i915_add_request(ring, NULL);
1578 if (ret)
1579 return ret;
1580 }
1581
1582 /* Wait upon the last request to be completed */
1583 if (list_empty(&ring->request_list))
1584 return 0;
1585
1586 seqno = list_entry(ring->request_list.prev,
1587 struct drm_i915_gem_request,
1588 list)->seqno;
1589
1590 return i915_wait_seqno(ring, seqno);
1591 }
1592
1593 static int
1594 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1595 {
1596 if (ring->outstanding_lazy_seqno)
1597 return 0;
1598
1599 if (ring->preallocated_lazy_request == NULL) {
1600 struct drm_i915_gem_request *request;
1601
1602 request = kmalloc(sizeof(*request), GFP_KERNEL);
1603 if (request == NULL)
1604 return -ENOMEM;
1605
1606 ring->preallocated_lazy_request = request;
1607 }
1608
1609 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1610 }
1611
1612 static int __intel_ring_prepare(struct intel_ring_buffer *ring,
1613 int bytes)
1614 {
1615 int ret;
1616
1617 if (unlikely(ring->tail + bytes > ring->effective_size)) {
1618 ret = intel_wrap_ring_buffer(ring);
1619 if (unlikely(ret))
1620 return ret;
1621 }
1622
1623 if (unlikely(ring->space < bytes)) {
1624 ret = ring_wait_for_space(ring, bytes);
1625 if (unlikely(ret))
1626 return ret;
1627 }
1628
1629 return 0;
1630 }
1631
1632 int intel_ring_begin(struct intel_ring_buffer *ring,
1633 int num_dwords)
1634 {
1635 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1636 int ret;
1637
1638 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1639 dev_priv->mm.interruptible);
1640 if (ret)
1641 return ret;
1642
1643 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1644 if (ret)
1645 return ret;
1646
1647 /* Preallocate the olr before touching the ring */
1648 ret = intel_ring_alloc_seqno(ring);
1649 if (ret)
1650 return ret;
1651
1652 ring->space -= num_dwords * sizeof(uint32_t);
1653 return 0;
1654 }
1655
1656 /* Align the ring tail to a cacheline boundary */
1657 int intel_ring_cacheline_align(struct intel_ring_buffer *ring)
1658 {
1659 int num_dwords = (64 - (ring->tail & 63)) / sizeof(uint32_t);
1660 int ret;
1661
1662 if (num_dwords == 0)
1663 return 0;
1664
1665 ret = intel_ring_begin(ring, num_dwords);
1666 if (ret)
1667 return ret;
1668
1669 while (num_dwords--)
1670 intel_ring_emit(ring, MI_NOOP);
1671
1672 intel_ring_advance(ring);
1673
1674 return 0;
1675 }
1676
1677 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1678 {
1679 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1680
1681 BUG_ON(ring->outstanding_lazy_seqno);
1682
1683 if (INTEL_INFO(ring->dev)->gen >= 6) {
1684 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1685 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1686 if (HAS_VEBOX(ring->dev))
1687 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1688 }
1689
1690 ring->set_seqno(ring, seqno);
1691 ring->hangcheck.seqno = seqno;
1692 }
1693
1694 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1695 u32 value)
1696 {
1697 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1698
1699 /* Every tail move must follow the sequence below */
1700
1701 /* Disable notification that the ring is IDLE. The GT
1702 * will then assume that it is busy and bring it out of rc6.
1703 */
1704 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1705 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1706
1707 /* Clear the context id. Here be magic! */
1708 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1709
1710 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1711 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1712 GEN6_BSD_SLEEP_INDICATOR) == 0,
1713 50))
1714 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1715
1716 /* Now that the ring is fully powered up, update the tail */
1717 I915_WRITE_TAIL(ring, value);
1718 POSTING_READ(RING_TAIL(ring->mmio_base));
1719
1720 /* Let the ring send IDLE messages to the GT again,
1721 * and so let it sleep to conserve power when idle.
1722 */
1723 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1724 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1725 }
1726
1727 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1728 u32 invalidate, u32 flush)
1729 {
1730 uint32_t cmd;
1731 int ret;
1732
1733 ret = intel_ring_begin(ring, 4);
1734 if (ret)
1735 return ret;
1736
1737 cmd = MI_FLUSH_DW;
1738 if (INTEL_INFO(ring->dev)->gen >= 8)
1739 cmd += 1;
1740 /*
1741 * Bspec vol 1c.5 - video engine command streamer:
1742 * "If ENABLED, all TLBs will be invalidated once the flush
1743 * operation is complete. This bit is only valid when the
1744 * Post-Sync Operation field is a value of 1h or 3h."
1745 */
1746 if (invalidate & I915_GEM_GPU_DOMAINS)
1747 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1748 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1749 intel_ring_emit(ring, cmd);
1750 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1751 if (INTEL_INFO(ring->dev)->gen >= 8) {
1752 intel_ring_emit(ring, 0); /* upper addr */
1753 intel_ring_emit(ring, 0); /* value */
1754 } else {
1755 intel_ring_emit(ring, 0);
1756 intel_ring_emit(ring, MI_NOOP);
1757 }
1758 intel_ring_advance(ring);
1759 return 0;
1760 }
1761
1762 static int
1763 gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1764 u32 offset, u32 len,
1765 unsigned flags)
1766 {
1767 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1768 bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1769 !(flags & I915_DISPATCH_SECURE);
1770 int ret;
1771
1772 ret = intel_ring_begin(ring, 4);
1773 if (ret)
1774 return ret;
1775
1776 /* FIXME(BDW): Address space and security selectors. */
1777 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1778 intel_ring_emit(ring, offset);
1779 intel_ring_emit(ring, 0);
1780 intel_ring_emit(ring, MI_NOOP);
1781 intel_ring_advance(ring);
1782
1783 return 0;
1784 }
1785
1786 static int
1787 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1788 u32 offset, u32 len,
1789 unsigned flags)
1790 {
1791 int ret;
1792
1793 ret = intel_ring_begin(ring, 2);
1794 if (ret)
1795 return ret;
1796
1797 intel_ring_emit(ring,
1798 MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1799 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1800 /* bit0-7 is the length on GEN6+ */
1801 intel_ring_emit(ring, offset);
1802 intel_ring_advance(ring);
1803
1804 return 0;
1805 }
1806
1807 static int
1808 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1809 u32 offset, u32 len,
1810 unsigned flags)
1811 {
1812 int ret;
1813
1814 ret = intel_ring_begin(ring, 2);
1815 if (ret)
1816 return ret;
1817
1818 intel_ring_emit(ring,
1819 MI_BATCH_BUFFER_START |
1820 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1821 /* bit0-7 is the length on GEN6+ */
1822 intel_ring_emit(ring, offset);
1823 intel_ring_advance(ring);
1824
1825 return 0;
1826 }
1827
1828 /* Blitter support (SandyBridge+) */
1829
1830 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1831 u32 invalidate, u32 flush)
1832 {
1833 struct drm_device *dev = ring->dev;
1834 uint32_t cmd;
1835 int ret;
1836
1837 ret = intel_ring_begin(ring, 4);
1838 if (ret)
1839 return ret;
1840
1841 cmd = MI_FLUSH_DW;
1842 if (INTEL_INFO(ring->dev)->gen >= 8)
1843 cmd += 1;
1844 /*
1845 * Bspec vol 1c.3 - blitter engine command streamer:
1846 * "If ENABLED, all TLBs will be invalidated once the flush
1847 * operation is complete. This bit is only valid when the
1848 * Post-Sync Operation field is a value of 1h or 3h."
1849 */
1850 if (invalidate & I915_GEM_DOMAIN_RENDER)
1851 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1852 MI_FLUSH_DW_OP_STOREDW;
1853 intel_ring_emit(ring, cmd);
1854 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1855 if (INTEL_INFO(ring->dev)->gen >= 8) {
1856 intel_ring_emit(ring, 0); /* upper addr */
1857 intel_ring_emit(ring, 0); /* value */
1858 } else {
1859 intel_ring_emit(ring, 0);
1860 intel_ring_emit(ring, MI_NOOP);
1861 }
1862 intel_ring_advance(ring);
1863
1864 if (IS_GEN7(dev) && !invalidate && flush)
1865 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1866
1867 return 0;
1868 }
1869
1870 int intel_init_render_ring_buffer(struct drm_device *dev)
1871 {
1872 drm_i915_private_t *dev_priv = dev->dev_private;
1873 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1874
1875 ring->name = "render ring";
1876 ring->id = RCS;
1877 ring->mmio_base = RENDER_RING_BASE;
1878
1879 if (INTEL_INFO(dev)->gen >= 6) {
1880 ring->add_request = gen6_add_request;
1881 ring->flush = gen7_render_ring_flush;
1882 if (INTEL_INFO(dev)->gen == 6)
1883 ring->flush = gen6_render_ring_flush;
1884 if (INTEL_INFO(dev)->gen >= 8) {
1885 ring->flush = gen8_render_ring_flush;
1886 ring->irq_get = gen8_ring_get_irq;
1887 ring->irq_put = gen8_ring_put_irq;
1888 } else {
1889 ring->irq_get = gen6_ring_get_irq;
1890 ring->irq_put = gen6_ring_put_irq;
1891 }
1892 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1893 ring->get_seqno = gen6_ring_get_seqno;
1894 ring->set_seqno = ring_set_seqno;
1895 ring->sync_to = gen6_ring_sync;
1896 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1897 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1898 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1899 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1900 ring->signal_mbox[RCS] = GEN6_NOSYNC;
1901 ring->signal_mbox[VCS] = GEN6_VRSYNC;
1902 ring->signal_mbox[BCS] = GEN6_BRSYNC;
1903 ring->signal_mbox[VECS] = GEN6_VERSYNC;
1904 } else if (IS_GEN5(dev)) {
1905 ring->add_request = pc_render_add_request;
1906 ring->flush = gen4_render_ring_flush;
1907 ring->get_seqno = pc_render_get_seqno;
1908 ring->set_seqno = pc_render_set_seqno;
1909 ring->irq_get = gen5_ring_get_irq;
1910 ring->irq_put = gen5_ring_put_irq;
1911 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1912 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1913 } else {
1914 ring->add_request = i9xx_add_request;
1915 if (INTEL_INFO(dev)->gen < 4)
1916 ring->flush = gen2_render_ring_flush;
1917 else
1918 ring->flush = gen4_render_ring_flush;
1919 ring->get_seqno = ring_get_seqno;
1920 ring->set_seqno = ring_set_seqno;
1921 if (IS_GEN2(dev)) {
1922 ring->irq_get = i8xx_ring_get_irq;
1923 ring->irq_put = i8xx_ring_put_irq;
1924 } else {
1925 ring->irq_get = i9xx_ring_get_irq;
1926 ring->irq_put = i9xx_ring_put_irq;
1927 }
1928 ring->irq_enable_mask = I915_USER_INTERRUPT;
1929 }
1930 ring->write_tail = ring_write_tail;
1931 if (IS_HASWELL(dev))
1932 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1933 else if (IS_GEN8(dev))
1934 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
1935 else if (INTEL_INFO(dev)->gen >= 6)
1936 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1937 else if (INTEL_INFO(dev)->gen >= 4)
1938 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1939 else if (IS_I830(dev) || IS_845G(dev))
1940 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1941 else
1942 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1943 ring->init = init_render_ring;
1944 ring->cleanup = render_ring_cleanup;
1945
1946 /* Workaround batchbuffer to combat CS tlb bug. */
1947 if (HAS_BROKEN_CS_TLB(dev)) {
1948 struct drm_i915_gem_object *obj;
1949 int ret;
1950
1951 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1952 if (obj == NULL) {
1953 DRM_ERROR("Failed to allocate batch bo\n");
1954 return -ENOMEM;
1955 }
1956
1957 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
1958 if (ret != 0) {
1959 drm_gem_object_unreference(&obj->base);
1960 DRM_ERROR("Failed to ping batch bo\n");
1961 return ret;
1962 }
1963
1964 ring->scratch.obj = obj;
1965 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
1966 }
1967
1968 return intel_init_ring_buffer(dev, ring);
1969 }
1970
1971 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1972 {
1973 drm_i915_private_t *dev_priv = dev->dev_private;
1974 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1975 int ret;
1976
1977 ring->name = "render ring";
1978 ring->id = RCS;
1979 ring->mmio_base = RENDER_RING_BASE;
1980
1981 if (INTEL_INFO(dev)->gen >= 6) {
1982 /* non-kms not supported on gen6+ */
1983 return -ENODEV;
1984 }
1985
1986 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1987 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1988 * the special gen5 functions. */
1989 ring->add_request = i9xx_add_request;
1990 if (INTEL_INFO(dev)->gen < 4)
1991 ring->flush = gen2_render_ring_flush;
1992 else
1993 ring->flush = gen4_render_ring_flush;
1994 ring->get_seqno = ring_get_seqno;
1995 ring->set_seqno = ring_set_seqno;
1996 if (IS_GEN2(dev)) {
1997 ring->irq_get = i8xx_ring_get_irq;
1998 ring->irq_put = i8xx_ring_put_irq;
1999 } else {
2000 ring->irq_get = i9xx_ring_get_irq;
2001 ring->irq_put = i9xx_ring_put_irq;
2002 }
2003 ring->irq_enable_mask = I915_USER_INTERRUPT;
2004 ring->write_tail = ring_write_tail;
2005 if (INTEL_INFO(dev)->gen >= 4)
2006 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2007 else if (IS_I830(dev) || IS_845G(dev))
2008 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2009 else
2010 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2011 ring->init = init_render_ring;
2012 ring->cleanup = render_ring_cleanup;
2013
2014 ring->dev = dev;
2015 INIT_LIST_HEAD(&ring->active_list);
2016 INIT_LIST_HEAD(&ring->request_list);
2017
2018 ring->size = size;
2019 ring->effective_size = ring->size;
2020 if (IS_I830(ring->dev) || IS_845G(ring->dev))
2021 ring->effective_size -= 128;
2022
2023 ring->virtual_start = ioremap_wc(start, size);
2024 if (ring->virtual_start == NULL) {
2025 DRM_ERROR("can not ioremap virtual address for"
2026 " ring buffer\n");
2027 return -ENOMEM;
2028 }
2029
2030 if (!I915_NEED_GFX_HWS(dev)) {
2031 ret = init_phys_status_page(ring);
2032 if (ret)
2033 return ret;
2034 }
2035
2036 return 0;
2037 }
2038
2039 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2040 {
2041 drm_i915_private_t *dev_priv = dev->dev_private;
2042 struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
2043
2044 ring->name = "bsd ring";
2045 ring->id = VCS;
2046
2047 ring->write_tail = ring_write_tail;
2048 if (INTEL_INFO(dev)->gen >= 6) {
2049 ring->mmio_base = GEN6_BSD_RING_BASE;
2050 /* gen6 bsd needs a special wa for tail updates */
2051 if (IS_GEN6(dev))
2052 ring->write_tail = gen6_bsd_ring_write_tail;
2053 ring->flush = gen6_bsd_ring_flush;
2054 ring->add_request = gen6_add_request;
2055 ring->get_seqno = gen6_ring_get_seqno;
2056 ring->set_seqno = ring_set_seqno;
2057 if (INTEL_INFO(dev)->gen >= 8) {
2058 ring->irq_enable_mask =
2059 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2060 ring->irq_get = gen8_ring_get_irq;
2061 ring->irq_put = gen8_ring_put_irq;
2062 ring->dispatch_execbuffer =
2063 gen8_ring_dispatch_execbuffer;
2064 } else {
2065 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2066 ring->irq_get = gen6_ring_get_irq;
2067 ring->irq_put = gen6_ring_put_irq;
2068 ring->dispatch_execbuffer =
2069 gen6_ring_dispatch_execbuffer;
2070 }
2071 ring->sync_to = gen6_ring_sync;
2072 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
2073 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2074 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
2075 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
2076 ring->signal_mbox[RCS] = GEN6_RVSYNC;
2077 ring->signal_mbox[VCS] = GEN6_NOSYNC;
2078 ring->signal_mbox[BCS] = GEN6_BVSYNC;
2079 ring->signal_mbox[VECS] = GEN6_VEVSYNC;
2080 } else {
2081 ring->mmio_base = BSD_RING_BASE;
2082 ring->flush = bsd_ring_flush;
2083 ring->add_request = i9xx_add_request;
2084 ring->get_seqno = ring_get_seqno;
2085 ring->set_seqno = ring_set_seqno;
2086 if (IS_GEN5(dev)) {
2087 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2088 ring->irq_get = gen5_ring_get_irq;
2089 ring->irq_put = gen5_ring_put_irq;
2090 } else {
2091 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2092 ring->irq_get = i9xx_ring_get_irq;
2093 ring->irq_put = i9xx_ring_put_irq;
2094 }
2095 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2096 }
2097 ring->init = init_ring_common;
2098
2099 return intel_init_ring_buffer(dev, ring);
2100 }
2101
2102 int intel_init_blt_ring_buffer(struct drm_device *dev)
2103 {
2104 drm_i915_private_t *dev_priv = dev->dev_private;
2105 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
2106
2107 ring->name = "blitter ring";
2108 ring->id = BCS;
2109
2110 ring->mmio_base = BLT_RING_BASE;
2111 ring->write_tail = ring_write_tail;
2112 ring->flush = gen6_ring_flush;
2113 ring->add_request = gen6_add_request;
2114 ring->get_seqno = gen6_ring_get_seqno;
2115 ring->set_seqno = ring_set_seqno;
2116 if (INTEL_INFO(dev)->gen >= 8) {
2117 ring->irq_enable_mask =
2118 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2119 ring->irq_get = gen8_ring_get_irq;
2120 ring->irq_put = gen8_ring_put_irq;
2121 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2122 } else {
2123 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2124 ring->irq_get = gen6_ring_get_irq;
2125 ring->irq_put = gen6_ring_put_irq;
2126 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2127 }
2128 ring->sync_to = gen6_ring_sync;
2129 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
2130 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
2131 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2132 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
2133 ring->signal_mbox[RCS] = GEN6_RBSYNC;
2134 ring->signal_mbox[VCS] = GEN6_VBSYNC;
2135 ring->signal_mbox[BCS] = GEN6_NOSYNC;
2136 ring->signal_mbox[VECS] = GEN6_VEBSYNC;
2137 ring->init = init_ring_common;
2138
2139 return intel_init_ring_buffer(dev, ring);
2140 }
2141
2142 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2143 {
2144 drm_i915_private_t *dev_priv = dev->dev_private;
2145 struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2146
2147 ring->name = "video enhancement ring";
2148 ring->id = VECS;
2149
2150 ring->mmio_base = VEBOX_RING_BASE;
2151 ring->write_tail = ring_write_tail;
2152 ring->flush = gen6_ring_flush;
2153 ring->add_request = gen6_add_request;
2154 ring->get_seqno = gen6_ring_get_seqno;
2155 ring->set_seqno = ring_set_seqno;
2156
2157 if (INTEL_INFO(dev)->gen >= 8) {
2158 ring->irq_enable_mask =
2159 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2160 ring->irq_get = gen8_ring_get_irq;
2161 ring->irq_put = gen8_ring_put_irq;
2162 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2163 } else {
2164 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2165 ring->irq_get = hsw_vebox_get_irq;
2166 ring->irq_put = hsw_vebox_put_irq;
2167 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2168 }
2169 ring->sync_to = gen6_ring_sync;
2170 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
2171 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
2172 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
2173 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2174 ring->signal_mbox[RCS] = GEN6_RVESYNC;
2175 ring->signal_mbox[VCS] = GEN6_VVESYNC;
2176 ring->signal_mbox[BCS] = GEN6_BVESYNC;
2177 ring->signal_mbox[VECS] = GEN6_NOSYNC;
2178 ring->init = init_ring_common;
2179
2180 return intel_init_ring_buffer(dev, ring);
2181 }
2182
2183 int
2184 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2185 {
2186 int ret;
2187
2188 if (!ring->gpu_caches_dirty)
2189 return 0;
2190
2191 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2192 if (ret)
2193 return ret;
2194
2195 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2196
2197 ring->gpu_caches_dirty = false;
2198 return 0;
2199 }
2200
2201 int
2202 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2203 {
2204 uint32_t flush_domains;
2205 int ret;
2206
2207 flush_domains = 0;
2208 if (ring->gpu_caches_dirty)
2209 flush_domains = I915_GEM_GPU_DOMAINS;
2210
2211 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2212 if (ret)
2213 return ret;
2214
2215 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2216
2217 ring->gpu_caches_dirty = false;
2218 return 0;
2219 }
This page took 0.083927 seconds and 6 git commands to generate.