drm/i915/gen8: Move WaDisablePartialInstShootdown to common init fn
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 struct drm_device *dev = ring->dev;
40
41 if (!dev)
42 return false;
43
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48 return ringbuf->obj;
49 } else
50 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 int space = head - tail;
56 if (space <= 0)
57 space += size;
58 return space - I915_RING_FREE_SPACE;
59 }
60
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63 if (ringbuf->last_retired_head != -1) {
64 ringbuf->head = ringbuf->last_retired_head;
65 ringbuf->last_retired_head = -1;
66 }
67
68 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69 ringbuf->tail, ringbuf->size);
70 }
71
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74 intel_ring_update_space(ringbuf);
75 return ringbuf->space;
76 }
77
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80 struct drm_i915_private *dev_priv = ring->dev->dev_private;
81 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
84 static void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86 struct intel_ringbuffer *ringbuf = ring->buffer;
87 ringbuf->tail &= ringbuf->size - 1;
88 if (intel_ring_stopped(ring))
89 return;
90 ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
94 gen2_render_ring_flush(struct drm_i915_gem_request *req,
95 u32 invalidate_domains,
96 u32 flush_domains)
97 {
98 struct intel_engine_cs *ring = req->ring;
99 u32 cmd;
100 int ret;
101
102 cmd = MI_FLUSH;
103 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
104 cmd |= MI_NO_WRITE_FLUSH;
105
106 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
107 cmd |= MI_READ_FLUSH;
108
109 ret = intel_ring_begin(req, 2);
110 if (ret)
111 return ret;
112
113 intel_ring_emit(ring, cmd);
114 intel_ring_emit(ring, MI_NOOP);
115 intel_ring_advance(ring);
116
117 return 0;
118 }
119
120 static int
121 gen4_render_ring_flush(struct drm_i915_gem_request *req,
122 u32 invalidate_domains,
123 u32 flush_domains)
124 {
125 struct intel_engine_cs *ring = req->ring;
126 struct drm_device *dev = ring->dev;
127 u32 cmd;
128 int ret;
129
130 /*
131 * read/write caches:
132 *
133 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
134 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
135 * also flushed at 2d versus 3d pipeline switches.
136 *
137 * read-only caches:
138 *
139 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
140 * MI_READ_FLUSH is set, and is always flushed on 965.
141 *
142 * I915_GEM_DOMAIN_COMMAND may not exist?
143 *
144 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
145 * invalidated when MI_EXE_FLUSH is set.
146 *
147 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
148 * invalidated with every MI_FLUSH.
149 *
150 * TLBs:
151 *
152 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
153 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
154 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
155 * are flushed at any MI_FLUSH.
156 */
157
158 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
159 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
160 cmd &= ~MI_NO_WRITE_FLUSH;
161 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
162 cmd |= MI_EXE_FLUSH;
163
164 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
165 (IS_G4X(dev) || IS_GEN5(dev)))
166 cmd |= MI_INVALIDATE_ISP;
167
168 ret = intel_ring_begin(req, 2);
169 if (ret)
170 return ret;
171
172 intel_ring_emit(ring, cmd);
173 intel_ring_emit(ring, MI_NOOP);
174 intel_ring_advance(ring);
175
176 return 0;
177 }
178
179 /**
180 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
181 * implementing two workarounds on gen6. From section 1.4.7.1
182 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
183 *
184 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
185 * produced by non-pipelined state commands), software needs to first
186 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
187 * 0.
188 *
189 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
190 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
191 *
192 * And the workaround for these two requires this workaround first:
193 *
194 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
195 * BEFORE the pipe-control with a post-sync op and no write-cache
196 * flushes.
197 *
198 * And this last workaround is tricky because of the requirements on
199 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
200 * volume 2 part 1:
201 *
202 * "1 of the following must also be set:
203 * - Render Target Cache Flush Enable ([12] of DW1)
204 * - Depth Cache Flush Enable ([0] of DW1)
205 * - Stall at Pixel Scoreboard ([1] of DW1)
206 * - Depth Stall ([13] of DW1)
207 * - Post-Sync Operation ([13] of DW1)
208 * - Notify Enable ([8] of DW1)"
209 *
210 * The cache flushes require the workaround flush that triggered this
211 * one, so we can't use it. Depth stall would trigger the same.
212 * Post-sync nonzero is what triggered this second workaround, so we
213 * can't use that one either. Notify enable is IRQs, which aren't
214 * really our business. That leaves only stall at scoreboard.
215 */
216 static int
217 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
218 {
219 struct intel_engine_cs *ring = req->ring;
220 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
221 int ret;
222
223 ret = intel_ring_begin(req, 6);
224 if (ret)
225 return ret;
226
227 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
229 PIPE_CONTROL_STALL_AT_SCOREBOARD);
230 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
231 intel_ring_emit(ring, 0); /* low dword */
232 intel_ring_emit(ring, 0); /* high dword */
233 intel_ring_emit(ring, MI_NOOP);
234 intel_ring_advance(ring);
235
236 ret = intel_ring_begin(req, 6);
237 if (ret)
238 return ret;
239
240 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
241 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
242 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
243 intel_ring_emit(ring, 0);
244 intel_ring_emit(ring, 0);
245 intel_ring_emit(ring, MI_NOOP);
246 intel_ring_advance(ring);
247
248 return 0;
249 }
250
251 static int
252 gen6_render_ring_flush(struct drm_i915_gem_request *req,
253 u32 invalidate_domains, u32 flush_domains)
254 {
255 struct intel_engine_cs *ring = req->ring;
256 u32 flags = 0;
257 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
258 int ret;
259
260 /* Force SNB workarounds for PIPE_CONTROL flushes */
261 ret = intel_emit_post_sync_nonzero_flush(req);
262 if (ret)
263 return ret;
264
265 /* Just flush everything. Experiments have shown that reducing the
266 * number of bits based on the write domains has little performance
267 * impact.
268 */
269 if (flush_domains) {
270 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
271 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
272 /*
273 * Ensure that any following seqno writes only happen
274 * when the render cache is indeed flushed.
275 */
276 flags |= PIPE_CONTROL_CS_STALL;
277 }
278 if (invalidate_domains) {
279 flags |= PIPE_CONTROL_TLB_INVALIDATE;
280 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
281 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
282 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
283 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
284 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
285 /*
286 * TLB invalidate requires a post-sync write.
287 */
288 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
289 }
290
291 ret = intel_ring_begin(req, 4);
292 if (ret)
293 return ret;
294
295 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
296 intel_ring_emit(ring, flags);
297 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
298 intel_ring_emit(ring, 0);
299 intel_ring_advance(ring);
300
301 return 0;
302 }
303
304 static int
305 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
306 {
307 struct intel_engine_cs *ring = req->ring;
308 int ret;
309
310 ret = intel_ring_begin(req, 4);
311 if (ret)
312 return ret;
313
314 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
315 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
316 PIPE_CONTROL_STALL_AT_SCOREBOARD);
317 intel_ring_emit(ring, 0);
318 intel_ring_emit(ring, 0);
319 intel_ring_advance(ring);
320
321 return 0;
322 }
323
324 static int
325 gen7_render_ring_flush(struct drm_i915_gem_request *req,
326 u32 invalidate_domains, u32 flush_domains)
327 {
328 struct intel_engine_cs *ring = req->ring;
329 u32 flags = 0;
330 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
331 int ret;
332
333 /*
334 * Ensure that any following seqno writes only happen when the render
335 * cache is indeed flushed.
336 *
337 * Workaround: 4th PIPE_CONTROL command (except the ones with only
338 * read-cache invalidate bits set) must have the CS_STALL bit set. We
339 * don't try to be clever and just set it unconditionally.
340 */
341 flags |= PIPE_CONTROL_CS_STALL;
342
343 /* Just flush everything. Experiments have shown that reducing the
344 * number of bits based on the write domains has little performance
345 * impact.
346 */
347 if (flush_domains) {
348 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
349 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
350 }
351 if (invalidate_domains) {
352 flags |= PIPE_CONTROL_TLB_INVALIDATE;
353 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
354 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
355 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
356 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
357 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
358 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
359 /*
360 * TLB invalidate requires a post-sync write.
361 */
362 flags |= PIPE_CONTROL_QW_WRITE;
363 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
364
365 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
366
367 /* Workaround: we must issue a pipe_control with CS-stall bit
368 * set before a pipe_control command that has the state cache
369 * invalidate bit set. */
370 gen7_render_ring_cs_stall_wa(req);
371 }
372
373 ret = intel_ring_begin(req, 4);
374 if (ret)
375 return ret;
376
377 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
378 intel_ring_emit(ring, flags);
379 intel_ring_emit(ring, scratch_addr);
380 intel_ring_emit(ring, 0);
381 intel_ring_advance(ring);
382
383 return 0;
384 }
385
386 static int
387 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
388 u32 flags, u32 scratch_addr)
389 {
390 struct intel_engine_cs *ring = req->ring;
391 int ret;
392
393 ret = intel_ring_begin(req, 6);
394 if (ret)
395 return ret;
396
397 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
398 intel_ring_emit(ring, flags);
399 intel_ring_emit(ring, scratch_addr);
400 intel_ring_emit(ring, 0);
401 intel_ring_emit(ring, 0);
402 intel_ring_emit(ring, 0);
403 intel_ring_advance(ring);
404
405 return 0;
406 }
407
408 static int
409 gen8_render_ring_flush(struct drm_i915_gem_request *req,
410 u32 invalidate_domains, u32 flush_domains)
411 {
412 u32 flags = 0;
413 u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
414 int ret;
415
416 flags |= PIPE_CONTROL_CS_STALL;
417
418 if (flush_domains) {
419 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
420 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
421 }
422 if (invalidate_domains) {
423 flags |= PIPE_CONTROL_TLB_INVALIDATE;
424 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
425 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
426 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
427 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
428 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
429 flags |= PIPE_CONTROL_QW_WRITE;
430 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
431
432 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
433 ret = gen8_emit_pipe_control(req,
434 PIPE_CONTROL_CS_STALL |
435 PIPE_CONTROL_STALL_AT_SCOREBOARD,
436 0);
437 if (ret)
438 return ret;
439 }
440
441 return gen8_emit_pipe_control(req, flags, scratch_addr);
442 }
443
444 static void ring_write_tail(struct intel_engine_cs *ring,
445 u32 value)
446 {
447 struct drm_i915_private *dev_priv = ring->dev->dev_private;
448 I915_WRITE_TAIL(ring, value);
449 }
450
451 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
452 {
453 struct drm_i915_private *dev_priv = ring->dev->dev_private;
454 u64 acthd;
455
456 if (INTEL_INFO(ring->dev)->gen >= 8)
457 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
458 RING_ACTHD_UDW(ring->mmio_base));
459 else if (INTEL_INFO(ring->dev)->gen >= 4)
460 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
461 else
462 acthd = I915_READ(ACTHD);
463
464 return acthd;
465 }
466
467 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
468 {
469 struct drm_i915_private *dev_priv = ring->dev->dev_private;
470 u32 addr;
471
472 addr = dev_priv->status_page_dmah->busaddr;
473 if (INTEL_INFO(ring->dev)->gen >= 4)
474 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
475 I915_WRITE(HWS_PGA, addr);
476 }
477
478 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
479 {
480 struct drm_device *dev = ring->dev;
481 struct drm_i915_private *dev_priv = ring->dev->dev_private;
482 u32 mmio = 0;
483
484 /* The ring status page addresses are no longer next to the rest of
485 * the ring registers as of gen7.
486 */
487 if (IS_GEN7(dev)) {
488 switch (ring->id) {
489 case RCS:
490 mmio = RENDER_HWS_PGA_GEN7;
491 break;
492 case BCS:
493 mmio = BLT_HWS_PGA_GEN7;
494 break;
495 /*
496 * VCS2 actually doesn't exist on Gen7. Only shut up
497 * gcc switch check warning
498 */
499 case VCS2:
500 case VCS:
501 mmio = BSD_HWS_PGA_GEN7;
502 break;
503 case VECS:
504 mmio = VEBOX_HWS_PGA_GEN7;
505 break;
506 }
507 } else if (IS_GEN6(ring->dev)) {
508 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
509 } else {
510 /* XXX: gen8 returns to sanity */
511 mmio = RING_HWS_PGA(ring->mmio_base);
512 }
513
514 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
515 POSTING_READ(mmio);
516
517 /*
518 * Flush the TLB for this page
519 *
520 * FIXME: These two bits have disappeared on gen8, so a question
521 * arises: do we still need this and if so how should we go about
522 * invalidating the TLB?
523 */
524 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
525 u32 reg = RING_INSTPM(ring->mmio_base);
526
527 /* ring should be idle before issuing a sync flush*/
528 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
529
530 I915_WRITE(reg,
531 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
532 INSTPM_SYNC_FLUSH));
533 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
534 1000))
535 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
536 ring->name);
537 }
538 }
539
540 static bool stop_ring(struct intel_engine_cs *ring)
541 {
542 struct drm_i915_private *dev_priv = to_i915(ring->dev);
543
544 if (!IS_GEN2(ring->dev)) {
545 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
546 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
547 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
548 /* Sometimes we observe that the idle flag is not
549 * set even though the ring is empty. So double
550 * check before giving up.
551 */
552 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
553 return false;
554 }
555 }
556
557 I915_WRITE_CTL(ring, 0);
558 I915_WRITE_HEAD(ring, 0);
559 ring->write_tail(ring, 0);
560
561 if (!IS_GEN2(ring->dev)) {
562 (void)I915_READ_CTL(ring);
563 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
564 }
565
566 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
567 }
568
569 static int init_ring_common(struct intel_engine_cs *ring)
570 {
571 struct drm_device *dev = ring->dev;
572 struct drm_i915_private *dev_priv = dev->dev_private;
573 struct intel_ringbuffer *ringbuf = ring->buffer;
574 struct drm_i915_gem_object *obj = ringbuf->obj;
575 int ret = 0;
576
577 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
578
579 if (!stop_ring(ring)) {
580 /* G45 ring initialization often fails to reset head to zero */
581 DRM_DEBUG_KMS("%s head not reset to zero "
582 "ctl %08x head %08x tail %08x start %08x\n",
583 ring->name,
584 I915_READ_CTL(ring),
585 I915_READ_HEAD(ring),
586 I915_READ_TAIL(ring),
587 I915_READ_START(ring));
588
589 if (!stop_ring(ring)) {
590 DRM_ERROR("failed to set %s head to zero "
591 "ctl %08x head %08x tail %08x start %08x\n",
592 ring->name,
593 I915_READ_CTL(ring),
594 I915_READ_HEAD(ring),
595 I915_READ_TAIL(ring),
596 I915_READ_START(ring));
597 ret = -EIO;
598 goto out;
599 }
600 }
601
602 if (I915_NEED_GFX_HWS(dev))
603 intel_ring_setup_status_page(ring);
604 else
605 ring_setup_phys_status_page(ring);
606
607 /* Enforce ordering by reading HEAD register back */
608 I915_READ_HEAD(ring);
609
610 /* Initialize the ring. This must happen _after_ we've cleared the ring
611 * registers with the above sequence (the readback of the HEAD registers
612 * also enforces ordering), otherwise the hw might lose the new ring
613 * register values. */
614 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
615
616 /* WaClearRingBufHeadRegAtInit:ctg,elk */
617 if (I915_READ_HEAD(ring))
618 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
619 ring->name, I915_READ_HEAD(ring));
620 I915_WRITE_HEAD(ring, 0);
621 (void)I915_READ_HEAD(ring);
622
623 I915_WRITE_CTL(ring,
624 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
625 | RING_VALID);
626
627 /* If the head is still not zero, the ring is dead */
628 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
629 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
630 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
631 DRM_ERROR("%s initialization failed "
632 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
633 ring->name,
634 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
635 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
636 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
637 ret = -EIO;
638 goto out;
639 }
640
641 ringbuf->last_retired_head = -1;
642 ringbuf->head = I915_READ_HEAD(ring);
643 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
644 intel_ring_update_space(ringbuf);
645
646 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
647
648 out:
649 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
650
651 return ret;
652 }
653
654 void
655 intel_fini_pipe_control(struct intel_engine_cs *ring)
656 {
657 struct drm_device *dev = ring->dev;
658
659 if (ring->scratch.obj == NULL)
660 return;
661
662 if (INTEL_INFO(dev)->gen >= 5) {
663 kunmap(sg_page(ring->scratch.obj->pages->sgl));
664 i915_gem_object_ggtt_unpin(ring->scratch.obj);
665 }
666
667 drm_gem_object_unreference(&ring->scratch.obj->base);
668 ring->scratch.obj = NULL;
669 }
670
671 int
672 intel_init_pipe_control(struct intel_engine_cs *ring)
673 {
674 int ret;
675
676 WARN_ON(ring->scratch.obj);
677
678 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
679 if (ring->scratch.obj == NULL) {
680 DRM_ERROR("Failed to allocate seqno page\n");
681 ret = -ENOMEM;
682 goto err;
683 }
684
685 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
686 if (ret)
687 goto err_unref;
688
689 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
690 if (ret)
691 goto err_unref;
692
693 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
694 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
695 if (ring->scratch.cpu_page == NULL) {
696 ret = -ENOMEM;
697 goto err_unpin;
698 }
699
700 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
701 ring->name, ring->scratch.gtt_offset);
702 return 0;
703
704 err_unpin:
705 i915_gem_object_ggtt_unpin(ring->scratch.obj);
706 err_unref:
707 drm_gem_object_unreference(&ring->scratch.obj->base);
708 err:
709 return ret;
710 }
711
712 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
713 {
714 int ret, i;
715 struct intel_engine_cs *ring = req->ring;
716 struct drm_device *dev = ring->dev;
717 struct drm_i915_private *dev_priv = dev->dev_private;
718 struct i915_workarounds *w = &dev_priv->workarounds;
719
720 if (WARN_ON_ONCE(w->count == 0))
721 return 0;
722
723 ring->gpu_caches_dirty = true;
724 ret = intel_ring_flush_all_caches(req);
725 if (ret)
726 return ret;
727
728 ret = intel_ring_begin(req, (w->count * 2 + 2));
729 if (ret)
730 return ret;
731
732 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
733 for (i = 0; i < w->count; i++) {
734 intel_ring_emit(ring, w->reg[i].addr);
735 intel_ring_emit(ring, w->reg[i].value);
736 }
737 intel_ring_emit(ring, MI_NOOP);
738
739 intel_ring_advance(ring);
740
741 ring->gpu_caches_dirty = true;
742 ret = intel_ring_flush_all_caches(req);
743 if (ret)
744 return ret;
745
746 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
747
748 return 0;
749 }
750
751 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
752 {
753 int ret;
754
755 ret = intel_ring_workarounds_emit(req);
756 if (ret != 0)
757 return ret;
758
759 ret = i915_gem_render_state_init(req);
760 if (ret)
761 DRM_ERROR("init render state: %d\n", ret);
762
763 return ret;
764 }
765
766 static int wa_add(struct drm_i915_private *dev_priv,
767 const u32 addr, const u32 mask, const u32 val)
768 {
769 const u32 idx = dev_priv->workarounds.count;
770
771 if (WARN_ON(idx >= I915_MAX_WA_REGS))
772 return -ENOSPC;
773
774 dev_priv->workarounds.reg[idx].addr = addr;
775 dev_priv->workarounds.reg[idx].value = val;
776 dev_priv->workarounds.reg[idx].mask = mask;
777
778 dev_priv->workarounds.count++;
779
780 return 0;
781 }
782
783 #define WA_REG(addr, mask, val) do { \
784 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
785 if (r) \
786 return r; \
787 } while (0)
788
789 #define WA_SET_BIT_MASKED(addr, mask) \
790 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
791
792 #define WA_CLR_BIT_MASKED(addr, mask) \
793 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
794
795 #define WA_SET_FIELD_MASKED(addr, mask, value) \
796 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
797
798 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
799 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
800
801 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
802
803 static int gen8_init_workarounds(struct intel_engine_cs *ring)
804 {
805 struct drm_device *dev = ring->dev;
806 struct drm_i915_private *dev_priv = dev->dev_private;
807
808 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
809
810 /* WaDisableAsyncFlipPerfMode:bdw,chv */
811 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
812
813 /* WaDisablePartialInstShootdown:bdw,chv */
814 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
815 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
816
817 return 0;
818 }
819
820 static int bdw_init_workarounds(struct intel_engine_cs *ring)
821 {
822 int ret;
823 struct drm_device *dev = ring->dev;
824 struct drm_i915_private *dev_priv = dev->dev_private;
825
826 ret = gen8_init_workarounds(ring);
827 if (ret)
828 return ret;
829
830 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
831 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
832
833 /* WaDisableDopClockGating:bdw */
834 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
835 DOP_CLOCK_GATING_DISABLE);
836
837 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
838 GEN8_SAMPLER_POWER_BYPASS_DIS);
839
840 /* Use Force Non-Coherent whenever executing a 3D context. This is a
841 * workaround for for a possible hang in the unlikely event a TLB
842 * invalidation occurs during a PSD flush.
843 */
844 WA_SET_BIT_MASKED(HDC_CHICKEN0,
845 /* WaForceEnableNonCoherent:bdw */
846 HDC_FORCE_NON_COHERENT |
847 /* WaForceContextSaveRestoreNonCoherent:bdw */
848 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
849 /* WaHdcDisableFetchWhenMasked:bdw */
850 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
851 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
852 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
853
854 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
855 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
856 * polygons in the same 8x4 pixel/sample area to be processed without
857 * stalling waiting for the earlier ones to write to Hierarchical Z
858 * buffer."
859 *
860 * This optimization is off by default for Broadwell; turn it on.
861 */
862 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
863
864 /* Wa4x4STCOptimizationDisable:bdw */
865 WA_SET_BIT_MASKED(CACHE_MODE_1,
866 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
867
868 /*
869 * BSpec recommends 8x4 when MSAA is used,
870 * however in practice 16x4 seems fastest.
871 *
872 * Note that PS/WM thread counts depend on the WIZ hashing
873 * disable bit, which we don't touch here, but it's good
874 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
875 */
876 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
877 GEN6_WIZ_HASHING_MASK,
878 GEN6_WIZ_HASHING_16x4);
879
880 return 0;
881 }
882
883 static int chv_init_workarounds(struct intel_engine_cs *ring)
884 {
885 int ret;
886 struct drm_device *dev = ring->dev;
887 struct drm_i915_private *dev_priv = dev->dev_private;
888
889 ret = gen8_init_workarounds(ring);
890 if (ret)
891 return ret;
892
893 /* WaDisableThreadStallDopClockGating:chv */
894 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
895
896 /* Use Force Non-Coherent whenever executing a 3D context. This is a
897 * workaround for a possible hang in the unlikely event a TLB
898 * invalidation occurs during a PSD flush.
899 */
900 /* WaForceEnableNonCoherent:chv */
901 /* WaHdcDisableFetchWhenMasked:chv */
902 WA_SET_BIT_MASKED(HDC_CHICKEN0,
903 HDC_FORCE_NON_COHERENT |
904 HDC_DONOT_FETCH_MEM_WHEN_MASKED);
905
906 /* According to the CACHE_MODE_0 default value documentation, some
907 * CHV platforms disable this optimization by default. Turn it on.
908 */
909 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
910
911 /* Wa4x4STCOptimizationDisable:chv */
912 WA_SET_BIT_MASKED(CACHE_MODE_1,
913 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
914
915 /* Improve HiZ throughput on CHV. */
916 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
917
918 /*
919 * BSpec recommends 8x4 when MSAA is used,
920 * however in practice 16x4 seems fastest.
921 *
922 * Note that PS/WM thread counts depend on the WIZ hashing
923 * disable bit, which we don't touch here, but it's good
924 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
925 */
926 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
927 GEN6_WIZ_HASHING_MASK,
928 GEN6_WIZ_HASHING_16x4);
929
930 return 0;
931 }
932
933 static int gen9_init_workarounds(struct intel_engine_cs *ring)
934 {
935 struct drm_device *dev = ring->dev;
936 struct drm_i915_private *dev_priv = dev->dev_private;
937 uint32_t tmp;
938
939 /* WaDisablePartialInstShootdown:skl,bxt */
940 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
941 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
942
943 /* Syncing dependencies between camera and graphics:skl,bxt */
944 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
945 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
946
947 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
948 INTEL_REVID(dev) == SKL_REVID_B0)) ||
949 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
950 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
951 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
952 GEN9_DG_MIRROR_FIX_ENABLE);
953 }
954
955 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
956 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
957 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
958 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
959 GEN9_RHWO_OPTIMIZATION_DISABLE);
960 /*
961 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
962 * but we do that in per ctx batchbuffer as there is an issue
963 * with this register not getting restored on ctx restore
964 */
965 }
966
967 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
968 IS_BROXTON(dev)) {
969 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
970 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
971 GEN9_ENABLE_YV12_BUGFIX);
972 }
973
974 /* Wa4x4STCOptimizationDisable:skl,bxt */
975 /* WaDisablePartialResolveInVc:skl,bxt */
976 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
977 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
978
979 /* WaCcsTlbPrefetchDisable:skl,bxt */
980 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
981 GEN9_CCS_TLB_PREFETCH_ENABLE);
982
983 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
984 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
985 (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
986 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
987 PIXEL_MASK_CAMMING_DISABLE);
988
989 /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
990 tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
991 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
992 (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
993 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
994 WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
995
996 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
997 if (IS_SKYLAKE(dev) ||
998 (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_B0)) {
999 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
1000 GEN8_SAMPLER_POWER_BYPASS_DIS);
1001 }
1002
1003 /* WaDisableSTUnitPowerOptimization:skl,bxt */
1004 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
1005
1006 return 0;
1007 }
1008
1009 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
1010 {
1011 struct drm_device *dev = ring->dev;
1012 struct drm_i915_private *dev_priv = dev->dev_private;
1013 u8 vals[3] = { 0, 0, 0 };
1014 unsigned int i;
1015
1016 for (i = 0; i < 3; i++) {
1017 u8 ss;
1018
1019 /*
1020 * Only consider slices where one, and only one, subslice has 7
1021 * EUs
1022 */
1023 if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
1024 continue;
1025
1026 /*
1027 * subslice_7eu[i] != 0 (because of the check above) and
1028 * ss_max == 4 (maximum number of subslices possible per slice)
1029 *
1030 * -> 0 <= ss <= 3;
1031 */
1032 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1033 vals[i] = 3 - ss;
1034 }
1035
1036 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1037 return 0;
1038
1039 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1040 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1041 GEN9_IZ_HASHING_MASK(2) |
1042 GEN9_IZ_HASHING_MASK(1) |
1043 GEN9_IZ_HASHING_MASK(0),
1044 GEN9_IZ_HASHING(2, vals[2]) |
1045 GEN9_IZ_HASHING(1, vals[1]) |
1046 GEN9_IZ_HASHING(0, vals[0]));
1047
1048 return 0;
1049 }
1050
1051
1052 static int skl_init_workarounds(struct intel_engine_cs *ring)
1053 {
1054 int ret;
1055 struct drm_device *dev = ring->dev;
1056 struct drm_i915_private *dev_priv = dev->dev_private;
1057
1058 ret = gen9_init_workarounds(ring);
1059 if (ret)
1060 return ret;
1061
1062 /* WaDisablePowerCompilerClockGating:skl */
1063 if (INTEL_REVID(dev) == SKL_REVID_B0)
1064 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1065 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1066
1067 if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1068 /*
1069 *Use Force Non-Coherent whenever executing a 3D context. This
1070 * is a workaround for a possible hang in the unlikely event
1071 * a TLB invalidation occurs during a PSD flush.
1072 */
1073 /* WaForceEnableNonCoherent:skl */
1074 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1075 HDC_FORCE_NON_COHERENT);
1076 }
1077
1078 if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1079 INTEL_REVID(dev) == SKL_REVID_D0)
1080 /* WaBarrierPerformanceFixDisable:skl */
1081 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1082 HDC_FENCE_DEST_SLM_DISABLE |
1083 HDC_BARRIER_PERFORMANCE_DISABLE);
1084
1085 /* WaDisableSbeCacheDispatchPortSharing:skl */
1086 if (INTEL_REVID(dev) <= SKL_REVID_F0) {
1087 WA_SET_BIT_MASKED(
1088 GEN7_HALF_SLICE_CHICKEN1,
1089 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1090 }
1091
1092 return skl_tune_iz_hashing(ring);
1093 }
1094
1095 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1096 {
1097 int ret;
1098 struct drm_device *dev = ring->dev;
1099 struct drm_i915_private *dev_priv = dev->dev_private;
1100
1101 ret = gen9_init_workarounds(ring);
1102 if (ret)
1103 return ret;
1104
1105 /* WaDisableThreadStallDopClockGating:bxt */
1106 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1107 STALL_DOP_GATING_DISABLE);
1108
1109 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1110 if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1111 WA_SET_BIT_MASKED(
1112 GEN7_HALF_SLICE_CHICKEN1,
1113 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1114 }
1115
1116 return 0;
1117 }
1118
1119 int init_workarounds_ring(struct intel_engine_cs *ring)
1120 {
1121 struct drm_device *dev = ring->dev;
1122 struct drm_i915_private *dev_priv = dev->dev_private;
1123
1124 WARN_ON(ring->id != RCS);
1125
1126 dev_priv->workarounds.count = 0;
1127
1128 if (IS_BROADWELL(dev))
1129 return bdw_init_workarounds(ring);
1130
1131 if (IS_CHERRYVIEW(dev))
1132 return chv_init_workarounds(ring);
1133
1134 if (IS_SKYLAKE(dev))
1135 return skl_init_workarounds(ring);
1136
1137 if (IS_BROXTON(dev))
1138 return bxt_init_workarounds(ring);
1139
1140 return 0;
1141 }
1142
1143 static int init_render_ring(struct intel_engine_cs *ring)
1144 {
1145 struct drm_device *dev = ring->dev;
1146 struct drm_i915_private *dev_priv = dev->dev_private;
1147 int ret = init_ring_common(ring);
1148 if (ret)
1149 return ret;
1150
1151 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1152 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1153 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1154
1155 /* We need to disable the AsyncFlip performance optimisations in order
1156 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1157 * programmed to '1' on all products.
1158 *
1159 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1160 */
1161 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1162 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1163
1164 /* Required for the hardware to program scanline values for waiting */
1165 /* WaEnableFlushTlbInvalidationMode:snb */
1166 if (INTEL_INFO(dev)->gen == 6)
1167 I915_WRITE(GFX_MODE,
1168 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1169
1170 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1171 if (IS_GEN7(dev))
1172 I915_WRITE(GFX_MODE_GEN7,
1173 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1174 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1175
1176 if (IS_GEN6(dev)) {
1177 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1178 * "If this bit is set, STCunit will have LRA as replacement
1179 * policy. [...] This bit must be reset. LRA replacement
1180 * policy is not supported."
1181 */
1182 I915_WRITE(CACHE_MODE_0,
1183 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1184 }
1185
1186 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1187 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1188
1189 if (HAS_L3_DPF(dev))
1190 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1191
1192 return init_workarounds_ring(ring);
1193 }
1194
1195 static void render_ring_cleanup(struct intel_engine_cs *ring)
1196 {
1197 struct drm_device *dev = ring->dev;
1198 struct drm_i915_private *dev_priv = dev->dev_private;
1199
1200 if (dev_priv->semaphore_obj) {
1201 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1202 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1203 dev_priv->semaphore_obj = NULL;
1204 }
1205
1206 intel_fini_pipe_control(ring);
1207 }
1208
1209 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1210 unsigned int num_dwords)
1211 {
1212 #define MBOX_UPDATE_DWORDS 8
1213 struct intel_engine_cs *signaller = signaller_req->ring;
1214 struct drm_device *dev = signaller->dev;
1215 struct drm_i915_private *dev_priv = dev->dev_private;
1216 struct intel_engine_cs *waiter;
1217 int i, ret, num_rings;
1218
1219 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1220 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1221 #undef MBOX_UPDATE_DWORDS
1222
1223 ret = intel_ring_begin(signaller_req, num_dwords);
1224 if (ret)
1225 return ret;
1226
1227 for_each_ring(waiter, dev_priv, i) {
1228 u32 seqno;
1229 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1230 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1231 continue;
1232
1233 seqno = i915_gem_request_get_seqno(signaller_req);
1234 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1235 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1236 PIPE_CONTROL_QW_WRITE |
1237 PIPE_CONTROL_FLUSH_ENABLE);
1238 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1239 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1240 intel_ring_emit(signaller, seqno);
1241 intel_ring_emit(signaller, 0);
1242 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1243 MI_SEMAPHORE_TARGET(waiter->id));
1244 intel_ring_emit(signaller, 0);
1245 }
1246
1247 return 0;
1248 }
1249
1250 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1251 unsigned int num_dwords)
1252 {
1253 #define MBOX_UPDATE_DWORDS 6
1254 struct intel_engine_cs *signaller = signaller_req->ring;
1255 struct drm_device *dev = signaller->dev;
1256 struct drm_i915_private *dev_priv = dev->dev_private;
1257 struct intel_engine_cs *waiter;
1258 int i, ret, num_rings;
1259
1260 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1261 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1262 #undef MBOX_UPDATE_DWORDS
1263
1264 ret = intel_ring_begin(signaller_req, num_dwords);
1265 if (ret)
1266 return ret;
1267
1268 for_each_ring(waiter, dev_priv, i) {
1269 u32 seqno;
1270 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1271 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1272 continue;
1273
1274 seqno = i915_gem_request_get_seqno(signaller_req);
1275 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1276 MI_FLUSH_DW_OP_STOREDW);
1277 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1278 MI_FLUSH_DW_USE_GTT);
1279 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1280 intel_ring_emit(signaller, seqno);
1281 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1282 MI_SEMAPHORE_TARGET(waiter->id));
1283 intel_ring_emit(signaller, 0);
1284 }
1285
1286 return 0;
1287 }
1288
1289 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1290 unsigned int num_dwords)
1291 {
1292 struct intel_engine_cs *signaller = signaller_req->ring;
1293 struct drm_device *dev = signaller->dev;
1294 struct drm_i915_private *dev_priv = dev->dev_private;
1295 struct intel_engine_cs *useless;
1296 int i, ret, num_rings;
1297
1298 #define MBOX_UPDATE_DWORDS 3
1299 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1300 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1301 #undef MBOX_UPDATE_DWORDS
1302
1303 ret = intel_ring_begin(signaller_req, num_dwords);
1304 if (ret)
1305 return ret;
1306
1307 for_each_ring(useless, dev_priv, i) {
1308 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1309 if (mbox_reg != GEN6_NOSYNC) {
1310 u32 seqno = i915_gem_request_get_seqno(signaller_req);
1311 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1312 intel_ring_emit(signaller, mbox_reg);
1313 intel_ring_emit(signaller, seqno);
1314 }
1315 }
1316
1317 /* If num_dwords was rounded, make sure the tail pointer is correct */
1318 if (num_rings % 2 == 0)
1319 intel_ring_emit(signaller, MI_NOOP);
1320
1321 return 0;
1322 }
1323
1324 /**
1325 * gen6_add_request - Update the semaphore mailbox registers
1326 *
1327 * @request - request to write to the ring
1328 *
1329 * Update the mailbox registers in the *other* rings with the current seqno.
1330 * This acts like a signal in the canonical semaphore.
1331 */
1332 static int
1333 gen6_add_request(struct drm_i915_gem_request *req)
1334 {
1335 struct intel_engine_cs *ring = req->ring;
1336 int ret;
1337
1338 if (ring->semaphore.signal)
1339 ret = ring->semaphore.signal(req, 4);
1340 else
1341 ret = intel_ring_begin(req, 4);
1342
1343 if (ret)
1344 return ret;
1345
1346 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1347 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1348 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1349 intel_ring_emit(ring, MI_USER_INTERRUPT);
1350 __intel_ring_advance(ring);
1351
1352 return 0;
1353 }
1354
1355 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1356 u32 seqno)
1357 {
1358 struct drm_i915_private *dev_priv = dev->dev_private;
1359 return dev_priv->last_seqno < seqno;
1360 }
1361
1362 /**
1363 * intel_ring_sync - sync the waiter to the signaller on seqno
1364 *
1365 * @waiter - ring that is waiting
1366 * @signaller - ring which has, or will signal
1367 * @seqno - seqno which the waiter will block on
1368 */
1369
1370 static int
1371 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1372 struct intel_engine_cs *signaller,
1373 u32 seqno)
1374 {
1375 struct intel_engine_cs *waiter = waiter_req->ring;
1376 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1377 int ret;
1378
1379 ret = intel_ring_begin(waiter_req, 4);
1380 if (ret)
1381 return ret;
1382
1383 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1384 MI_SEMAPHORE_GLOBAL_GTT |
1385 MI_SEMAPHORE_POLL |
1386 MI_SEMAPHORE_SAD_GTE_SDD);
1387 intel_ring_emit(waiter, seqno);
1388 intel_ring_emit(waiter,
1389 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1390 intel_ring_emit(waiter,
1391 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1392 intel_ring_advance(waiter);
1393 return 0;
1394 }
1395
1396 static int
1397 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1398 struct intel_engine_cs *signaller,
1399 u32 seqno)
1400 {
1401 struct intel_engine_cs *waiter = waiter_req->ring;
1402 u32 dw1 = MI_SEMAPHORE_MBOX |
1403 MI_SEMAPHORE_COMPARE |
1404 MI_SEMAPHORE_REGISTER;
1405 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1406 int ret;
1407
1408 /* Throughout all of the GEM code, seqno passed implies our current
1409 * seqno is >= the last seqno executed. However for hardware the
1410 * comparison is strictly greater than.
1411 */
1412 seqno -= 1;
1413
1414 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1415
1416 ret = intel_ring_begin(waiter_req, 4);
1417 if (ret)
1418 return ret;
1419
1420 /* If seqno wrap happened, omit the wait with no-ops */
1421 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1422 intel_ring_emit(waiter, dw1 | wait_mbox);
1423 intel_ring_emit(waiter, seqno);
1424 intel_ring_emit(waiter, 0);
1425 intel_ring_emit(waiter, MI_NOOP);
1426 } else {
1427 intel_ring_emit(waiter, MI_NOOP);
1428 intel_ring_emit(waiter, MI_NOOP);
1429 intel_ring_emit(waiter, MI_NOOP);
1430 intel_ring_emit(waiter, MI_NOOP);
1431 }
1432 intel_ring_advance(waiter);
1433
1434 return 0;
1435 }
1436
1437 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1438 do { \
1439 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1440 PIPE_CONTROL_DEPTH_STALL); \
1441 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1442 intel_ring_emit(ring__, 0); \
1443 intel_ring_emit(ring__, 0); \
1444 } while (0)
1445
1446 static int
1447 pc_render_add_request(struct drm_i915_gem_request *req)
1448 {
1449 struct intel_engine_cs *ring = req->ring;
1450 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1451 int ret;
1452
1453 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1454 * incoherent with writes to memory, i.e. completely fubar,
1455 * so we need to use PIPE_NOTIFY instead.
1456 *
1457 * However, we also need to workaround the qword write
1458 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1459 * memory before requesting an interrupt.
1460 */
1461 ret = intel_ring_begin(req, 32);
1462 if (ret)
1463 return ret;
1464
1465 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1466 PIPE_CONTROL_WRITE_FLUSH |
1467 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1468 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1469 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1470 intel_ring_emit(ring, 0);
1471 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1472 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1473 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1474 scratch_addr += 2 * CACHELINE_BYTES;
1475 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1476 scratch_addr += 2 * CACHELINE_BYTES;
1477 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1478 scratch_addr += 2 * CACHELINE_BYTES;
1479 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1480 scratch_addr += 2 * CACHELINE_BYTES;
1481 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1482
1483 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1484 PIPE_CONTROL_WRITE_FLUSH |
1485 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1486 PIPE_CONTROL_NOTIFY);
1487 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1488 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1489 intel_ring_emit(ring, 0);
1490 __intel_ring_advance(ring);
1491
1492 return 0;
1493 }
1494
1495 static u32
1496 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1497 {
1498 /* Workaround to force correct ordering between irq and seqno writes on
1499 * ivb (and maybe also on snb) by reading from a CS register (like
1500 * ACTHD) before reading the status page. */
1501 if (!lazy_coherency) {
1502 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1503 POSTING_READ(RING_ACTHD(ring->mmio_base));
1504 }
1505
1506 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1507 }
1508
1509 static u32
1510 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1511 {
1512 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1513 }
1514
1515 static void
1516 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1517 {
1518 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1519 }
1520
1521 static u32
1522 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1523 {
1524 return ring->scratch.cpu_page[0];
1525 }
1526
1527 static void
1528 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1529 {
1530 ring->scratch.cpu_page[0] = seqno;
1531 }
1532
1533 static bool
1534 gen5_ring_get_irq(struct intel_engine_cs *ring)
1535 {
1536 struct drm_device *dev = ring->dev;
1537 struct drm_i915_private *dev_priv = dev->dev_private;
1538 unsigned long flags;
1539
1540 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1541 return false;
1542
1543 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1544 if (ring->irq_refcount++ == 0)
1545 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1546 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1547
1548 return true;
1549 }
1550
1551 static void
1552 gen5_ring_put_irq(struct intel_engine_cs *ring)
1553 {
1554 struct drm_device *dev = ring->dev;
1555 struct drm_i915_private *dev_priv = dev->dev_private;
1556 unsigned long flags;
1557
1558 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1559 if (--ring->irq_refcount == 0)
1560 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1561 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1562 }
1563
1564 static bool
1565 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1566 {
1567 struct drm_device *dev = ring->dev;
1568 struct drm_i915_private *dev_priv = dev->dev_private;
1569 unsigned long flags;
1570
1571 if (!intel_irqs_enabled(dev_priv))
1572 return false;
1573
1574 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1575 if (ring->irq_refcount++ == 0) {
1576 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1577 I915_WRITE(IMR, dev_priv->irq_mask);
1578 POSTING_READ(IMR);
1579 }
1580 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1581
1582 return true;
1583 }
1584
1585 static void
1586 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1587 {
1588 struct drm_device *dev = ring->dev;
1589 struct drm_i915_private *dev_priv = dev->dev_private;
1590 unsigned long flags;
1591
1592 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1593 if (--ring->irq_refcount == 0) {
1594 dev_priv->irq_mask |= ring->irq_enable_mask;
1595 I915_WRITE(IMR, dev_priv->irq_mask);
1596 POSTING_READ(IMR);
1597 }
1598 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1599 }
1600
1601 static bool
1602 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1603 {
1604 struct drm_device *dev = ring->dev;
1605 struct drm_i915_private *dev_priv = dev->dev_private;
1606 unsigned long flags;
1607
1608 if (!intel_irqs_enabled(dev_priv))
1609 return false;
1610
1611 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1612 if (ring->irq_refcount++ == 0) {
1613 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1614 I915_WRITE16(IMR, dev_priv->irq_mask);
1615 POSTING_READ16(IMR);
1616 }
1617 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1618
1619 return true;
1620 }
1621
1622 static void
1623 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1624 {
1625 struct drm_device *dev = ring->dev;
1626 struct drm_i915_private *dev_priv = dev->dev_private;
1627 unsigned long flags;
1628
1629 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1630 if (--ring->irq_refcount == 0) {
1631 dev_priv->irq_mask |= ring->irq_enable_mask;
1632 I915_WRITE16(IMR, dev_priv->irq_mask);
1633 POSTING_READ16(IMR);
1634 }
1635 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1636 }
1637
1638 static int
1639 bsd_ring_flush(struct drm_i915_gem_request *req,
1640 u32 invalidate_domains,
1641 u32 flush_domains)
1642 {
1643 struct intel_engine_cs *ring = req->ring;
1644 int ret;
1645
1646 ret = intel_ring_begin(req, 2);
1647 if (ret)
1648 return ret;
1649
1650 intel_ring_emit(ring, MI_FLUSH);
1651 intel_ring_emit(ring, MI_NOOP);
1652 intel_ring_advance(ring);
1653 return 0;
1654 }
1655
1656 static int
1657 i9xx_add_request(struct drm_i915_gem_request *req)
1658 {
1659 struct intel_engine_cs *ring = req->ring;
1660 int ret;
1661
1662 ret = intel_ring_begin(req, 4);
1663 if (ret)
1664 return ret;
1665
1666 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1667 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1668 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1669 intel_ring_emit(ring, MI_USER_INTERRUPT);
1670 __intel_ring_advance(ring);
1671
1672 return 0;
1673 }
1674
1675 static bool
1676 gen6_ring_get_irq(struct intel_engine_cs *ring)
1677 {
1678 struct drm_device *dev = ring->dev;
1679 struct drm_i915_private *dev_priv = dev->dev_private;
1680 unsigned long flags;
1681
1682 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1683 return false;
1684
1685 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1686 if (ring->irq_refcount++ == 0) {
1687 if (HAS_L3_DPF(dev) && ring->id == RCS)
1688 I915_WRITE_IMR(ring,
1689 ~(ring->irq_enable_mask |
1690 GT_PARITY_ERROR(dev)));
1691 else
1692 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1693 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1694 }
1695 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1696
1697 return true;
1698 }
1699
1700 static void
1701 gen6_ring_put_irq(struct intel_engine_cs *ring)
1702 {
1703 struct drm_device *dev = ring->dev;
1704 struct drm_i915_private *dev_priv = dev->dev_private;
1705 unsigned long flags;
1706
1707 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1708 if (--ring->irq_refcount == 0) {
1709 if (HAS_L3_DPF(dev) && ring->id == RCS)
1710 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1711 else
1712 I915_WRITE_IMR(ring, ~0);
1713 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1714 }
1715 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1716 }
1717
1718 static bool
1719 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1720 {
1721 struct drm_device *dev = ring->dev;
1722 struct drm_i915_private *dev_priv = dev->dev_private;
1723 unsigned long flags;
1724
1725 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1726 return false;
1727
1728 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1729 if (ring->irq_refcount++ == 0) {
1730 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1731 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1732 }
1733 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1734
1735 return true;
1736 }
1737
1738 static void
1739 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1740 {
1741 struct drm_device *dev = ring->dev;
1742 struct drm_i915_private *dev_priv = dev->dev_private;
1743 unsigned long flags;
1744
1745 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1746 if (--ring->irq_refcount == 0) {
1747 I915_WRITE_IMR(ring, ~0);
1748 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1749 }
1750 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1751 }
1752
1753 static bool
1754 gen8_ring_get_irq(struct intel_engine_cs *ring)
1755 {
1756 struct drm_device *dev = ring->dev;
1757 struct drm_i915_private *dev_priv = dev->dev_private;
1758 unsigned long flags;
1759
1760 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1761 return false;
1762
1763 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1764 if (ring->irq_refcount++ == 0) {
1765 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1766 I915_WRITE_IMR(ring,
1767 ~(ring->irq_enable_mask |
1768 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1769 } else {
1770 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1771 }
1772 POSTING_READ(RING_IMR(ring->mmio_base));
1773 }
1774 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1775
1776 return true;
1777 }
1778
1779 static void
1780 gen8_ring_put_irq(struct intel_engine_cs *ring)
1781 {
1782 struct drm_device *dev = ring->dev;
1783 struct drm_i915_private *dev_priv = dev->dev_private;
1784 unsigned long flags;
1785
1786 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1787 if (--ring->irq_refcount == 0) {
1788 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1789 I915_WRITE_IMR(ring,
1790 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1791 } else {
1792 I915_WRITE_IMR(ring, ~0);
1793 }
1794 POSTING_READ(RING_IMR(ring->mmio_base));
1795 }
1796 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1797 }
1798
1799 static int
1800 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1801 u64 offset, u32 length,
1802 unsigned dispatch_flags)
1803 {
1804 struct intel_engine_cs *ring = req->ring;
1805 int ret;
1806
1807 ret = intel_ring_begin(req, 2);
1808 if (ret)
1809 return ret;
1810
1811 intel_ring_emit(ring,
1812 MI_BATCH_BUFFER_START |
1813 MI_BATCH_GTT |
1814 (dispatch_flags & I915_DISPATCH_SECURE ?
1815 0 : MI_BATCH_NON_SECURE_I965));
1816 intel_ring_emit(ring, offset);
1817 intel_ring_advance(ring);
1818
1819 return 0;
1820 }
1821
1822 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1823 #define I830_BATCH_LIMIT (256*1024)
1824 #define I830_TLB_ENTRIES (2)
1825 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1826 static int
1827 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1828 u64 offset, u32 len,
1829 unsigned dispatch_flags)
1830 {
1831 struct intel_engine_cs *ring = req->ring;
1832 u32 cs_offset = ring->scratch.gtt_offset;
1833 int ret;
1834
1835 ret = intel_ring_begin(req, 6);
1836 if (ret)
1837 return ret;
1838
1839 /* Evict the invalid PTE TLBs */
1840 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1841 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1842 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1843 intel_ring_emit(ring, cs_offset);
1844 intel_ring_emit(ring, 0xdeadbeef);
1845 intel_ring_emit(ring, MI_NOOP);
1846 intel_ring_advance(ring);
1847
1848 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1849 if (len > I830_BATCH_LIMIT)
1850 return -ENOSPC;
1851
1852 ret = intel_ring_begin(req, 6 + 2);
1853 if (ret)
1854 return ret;
1855
1856 /* Blit the batch (which has now all relocs applied) to the
1857 * stable batch scratch bo area (so that the CS never
1858 * stumbles over its tlb invalidation bug) ...
1859 */
1860 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1861 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1862 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1863 intel_ring_emit(ring, cs_offset);
1864 intel_ring_emit(ring, 4096);
1865 intel_ring_emit(ring, offset);
1866
1867 intel_ring_emit(ring, MI_FLUSH);
1868 intel_ring_emit(ring, MI_NOOP);
1869 intel_ring_advance(ring);
1870
1871 /* ... and execute it. */
1872 offset = cs_offset;
1873 }
1874
1875 ret = intel_ring_begin(req, 4);
1876 if (ret)
1877 return ret;
1878
1879 intel_ring_emit(ring, MI_BATCH_BUFFER);
1880 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1881 0 : MI_BATCH_NON_SECURE));
1882 intel_ring_emit(ring, offset + len - 8);
1883 intel_ring_emit(ring, MI_NOOP);
1884 intel_ring_advance(ring);
1885
1886 return 0;
1887 }
1888
1889 static int
1890 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1891 u64 offset, u32 len,
1892 unsigned dispatch_flags)
1893 {
1894 struct intel_engine_cs *ring = req->ring;
1895 int ret;
1896
1897 ret = intel_ring_begin(req, 2);
1898 if (ret)
1899 return ret;
1900
1901 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1902 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1903 0 : MI_BATCH_NON_SECURE));
1904 intel_ring_advance(ring);
1905
1906 return 0;
1907 }
1908
1909 static void cleanup_status_page(struct intel_engine_cs *ring)
1910 {
1911 struct drm_i915_gem_object *obj;
1912
1913 obj = ring->status_page.obj;
1914 if (obj == NULL)
1915 return;
1916
1917 kunmap(sg_page(obj->pages->sgl));
1918 i915_gem_object_ggtt_unpin(obj);
1919 drm_gem_object_unreference(&obj->base);
1920 ring->status_page.obj = NULL;
1921 }
1922
1923 static int init_status_page(struct intel_engine_cs *ring)
1924 {
1925 struct drm_i915_gem_object *obj;
1926
1927 if ((obj = ring->status_page.obj) == NULL) {
1928 unsigned flags;
1929 int ret;
1930
1931 obj = i915_gem_alloc_object(ring->dev, 4096);
1932 if (obj == NULL) {
1933 DRM_ERROR("Failed to allocate status page\n");
1934 return -ENOMEM;
1935 }
1936
1937 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1938 if (ret)
1939 goto err_unref;
1940
1941 flags = 0;
1942 if (!HAS_LLC(ring->dev))
1943 /* On g33, we cannot place HWS above 256MiB, so
1944 * restrict its pinning to the low mappable arena.
1945 * Though this restriction is not documented for
1946 * gen4, gen5, or byt, they also behave similarly
1947 * and hang if the HWS is placed at the top of the
1948 * GTT. To generalise, it appears that all !llc
1949 * platforms have issues with us placing the HWS
1950 * above the mappable region (even though we never
1951 * actualy map it).
1952 */
1953 flags |= PIN_MAPPABLE;
1954 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1955 if (ret) {
1956 err_unref:
1957 drm_gem_object_unreference(&obj->base);
1958 return ret;
1959 }
1960
1961 ring->status_page.obj = obj;
1962 }
1963
1964 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1965 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1966 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1967
1968 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1969 ring->name, ring->status_page.gfx_addr);
1970
1971 return 0;
1972 }
1973
1974 static int init_phys_status_page(struct intel_engine_cs *ring)
1975 {
1976 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1977
1978 if (!dev_priv->status_page_dmah) {
1979 dev_priv->status_page_dmah =
1980 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1981 if (!dev_priv->status_page_dmah)
1982 return -ENOMEM;
1983 }
1984
1985 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1986 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1987
1988 return 0;
1989 }
1990
1991 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1992 {
1993 iounmap(ringbuf->virtual_start);
1994 ringbuf->virtual_start = NULL;
1995 i915_gem_object_ggtt_unpin(ringbuf->obj);
1996 }
1997
1998 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1999 struct intel_ringbuffer *ringbuf)
2000 {
2001 struct drm_i915_private *dev_priv = to_i915(dev);
2002 struct drm_i915_gem_object *obj = ringbuf->obj;
2003 int ret;
2004
2005 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2006 if (ret)
2007 return ret;
2008
2009 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2010 if (ret) {
2011 i915_gem_object_ggtt_unpin(obj);
2012 return ret;
2013 }
2014
2015 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2016 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2017 if (ringbuf->virtual_start == NULL) {
2018 i915_gem_object_ggtt_unpin(obj);
2019 return -EINVAL;
2020 }
2021
2022 return 0;
2023 }
2024
2025 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2026 {
2027 drm_gem_object_unreference(&ringbuf->obj->base);
2028 ringbuf->obj = NULL;
2029 }
2030
2031 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2032 struct intel_ringbuffer *ringbuf)
2033 {
2034 struct drm_i915_gem_object *obj;
2035
2036 obj = NULL;
2037 if (!HAS_LLC(dev))
2038 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2039 if (obj == NULL)
2040 obj = i915_gem_alloc_object(dev, ringbuf->size);
2041 if (obj == NULL)
2042 return -ENOMEM;
2043
2044 /* mark ring buffers as read-only from GPU side by default */
2045 obj->gt_ro = 1;
2046
2047 ringbuf->obj = obj;
2048
2049 return 0;
2050 }
2051
2052 struct intel_ringbuffer *
2053 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2054 {
2055 struct intel_ringbuffer *ring;
2056 int ret;
2057
2058 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2059 if (ring == NULL)
2060 return ERR_PTR(-ENOMEM);
2061
2062 ring->ring = engine;
2063
2064 ring->size = size;
2065 /* Workaround an erratum on the i830 which causes a hang if
2066 * the TAIL pointer points to within the last 2 cachelines
2067 * of the buffer.
2068 */
2069 ring->effective_size = size;
2070 if (IS_I830(engine->dev) || IS_845G(engine->dev))
2071 ring->effective_size -= 2 * CACHELINE_BYTES;
2072
2073 ring->last_retired_head = -1;
2074 intel_ring_update_space(ring);
2075
2076 ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2077 if (ret) {
2078 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2079 engine->name, ret);
2080 kfree(ring);
2081 return ERR_PTR(ret);
2082 }
2083
2084 return ring;
2085 }
2086
2087 void
2088 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2089 {
2090 intel_destroy_ringbuffer_obj(ring);
2091 kfree(ring);
2092 }
2093
2094 static int intel_init_ring_buffer(struct drm_device *dev,
2095 struct intel_engine_cs *ring)
2096 {
2097 struct intel_ringbuffer *ringbuf;
2098 int ret;
2099
2100 WARN_ON(ring->buffer);
2101
2102 ring->dev = dev;
2103 INIT_LIST_HEAD(&ring->active_list);
2104 INIT_LIST_HEAD(&ring->request_list);
2105 INIT_LIST_HEAD(&ring->execlist_queue);
2106 i915_gem_batch_pool_init(dev, &ring->batch_pool);
2107 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2108
2109 init_waitqueue_head(&ring->irq_queue);
2110
2111 ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2112 if (IS_ERR(ringbuf))
2113 return PTR_ERR(ringbuf);
2114 ring->buffer = ringbuf;
2115
2116 if (I915_NEED_GFX_HWS(dev)) {
2117 ret = init_status_page(ring);
2118 if (ret)
2119 goto error;
2120 } else {
2121 BUG_ON(ring->id != RCS);
2122 ret = init_phys_status_page(ring);
2123 if (ret)
2124 goto error;
2125 }
2126
2127 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2128 if (ret) {
2129 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2130 ring->name, ret);
2131 intel_destroy_ringbuffer_obj(ringbuf);
2132 goto error;
2133 }
2134
2135 ret = i915_cmd_parser_init_ring(ring);
2136 if (ret)
2137 goto error;
2138
2139 return 0;
2140
2141 error:
2142 intel_ringbuffer_free(ringbuf);
2143 ring->buffer = NULL;
2144 return ret;
2145 }
2146
2147 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2148 {
2149 struct drm_i915_private *dev_priv;
2150
2151 if (!intel_ring_initialized(ring))
2152 return;
2153
2154 dev_priv = to_i915(ring->dev);
2155
2156 intel_stop_ring_buffer(ring);
2157 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2158
2159 intel_unpin_ringbuffer_obj(ring->buffer);
2160 intel_ringbuffer_free(ring->buffer);
2161 ring->buffer = NULL;
2162
2163 if (ring->cleanup)
2164 ring->cleanup(ring);
2165
2166 cleanup_status_page(ring);
2167
2168 i915_cmd_parser_fini_ring(ring);
2169 i915_gem_batch_pool_fini(&ring->batch_pool);
2170 }
2171
2172 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2173 {
2174 struct intel_ringbuffer *ringbuf = ring->buffer;
2175 struct drm_i915_gem_request *request;
2176 unsigned space;
2177 int ret;
2178
2179 if (intel_ring_space(ringbuf) >= n)
2180 return 0;
2181
2182 /* The whole point of reserving space is to not wait! */
2183 WARN_ON(ringbuf->reserved_in_use);
2184
2185 list_for_each_entry(request, &ring->request_list, list) {
2186 space = __intel_ring_space(request->postfix, ringbuf->tail,
2187 ringbuf->size);
2188 if (space >= n)
2189 break;
2190 }
2191
2192 if (WARN_ON(&request->list == &ring->request_list))
2193 return -ENOSPC;
2194
2195 ret = i915_wait_request(request);
2196 if (ret)
2197 return ret;
2198
2199 ringbuf->space = space;
2200 return 0;
2201 }
2202
2203 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2204 {
2205 uint32_t __iomem *virt;
2206 int rem = ringbuf->size - ringbuf->tail;
2207
2208 virt = ringbuf->virtual_start + ringbuf->tail;
2209 rem /= 4;
2210 while (rem--)
2211 iowrite32(MI_NOOP, virt++);
2212
2213 ringbuf->tail = 0;
2214 intel_ring_update_space(ringbuf);
2215 }
2216
2217 int intel_ring_idle(struct intel_engine_cs *ring)
2218 {
2219 struct drm_i915_gem_request *req;
2220
2221 /* Wait upon the last request to be completed */
2222 if (list_empty(&ring->request_list))
2223 return 0;
2224
2225 req = list_entry(ring->request_list.prev,
2226 struct drm_i915_gem_request,
2227 list);
2228
2229 /* Make sure we do not trigger any retires */
2230 return __i915_wait_request(req,
2231 atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2232 to_i915(ring->dev)->mm.interruptible,
2233 NULL, NULL);
2234 }
2235
2236 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2237 {
2238 request->ringbuf = request->ring->buffer;
2239 return 0;
2240 }
2241
2242 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2243 {
2244 /*
2245 * The first call merely notes the reserve request and is common for
2246 * all back ends. The subsequent localised _begin() call actually
2247 * ensures that the reservation is available. Without the begin, if
2248 * the request creator immediately submitted the request without
2249 * adding any commands to it then there might not actually be
2250 * sufficient room for the submission commands.
2251 */
2252 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2253
2254 return intel_ring_begin(request, 0);
2255 }
2256
2257 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2258 {
2259 WARN_ON(ringbuf->reserved_size);
2260 WARN_ON(ringbuf->reserved_in_use);
2261
2262 ringbuf->reserved_size = size;
2263 }
2264
2265 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2266 {
2267 WARN_ON(ringbuf->reserved_in_use);
2268
2269 ringbuf->reserved_size = 0;
2270 ringbuf->reserved_in_use = false;
2271 }
2272
2273 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2274 {
2275 WARN_ON(ringbuf->reserved_in_use);
2276
2277 ringbuf->reserved_in_use = true;
2278 ringbuf->reserved_tail = ringbuf->tail;
2279 }
2280
2281 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2282 {
2283 WARN_ON(!ringbuf->reserved_in_use);
2284 if (ringbuf->tail > ringbuf->reserved_tail) {
2285 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2286 "request reserved size too small: %d vs %d!\n",
2287 ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2288 } else {
2289 /*
2290 * The ring was wrapped while the reserved space was in use.
2291 * That means that some unknown amount of the ring tail was
2292 * no-op filled and skipped. Thus simply adding the ring size
2293 * to the tail and doing the above space check will not work.
2294 * Rather than attempt to track how much tail was skipped,
2295 * it is much simpler to say that also skipping the sanity
2296 * check every once in a while is not a big issue.
2297 */
2298 }
2299
2300 ringbuf->reserved_size = 0;
2301 ringbuf->reserved_in_use = false;
2302 }
2303
2304 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2305 {
2306 struct intel_ringbuffer *ringbuf = ring->buffer;
2307 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2308 int remain_actual = ringbuf->size - ringbuf->tail;
2309 int ret, total_bytes, wait_bytes = 0;
2310 bool need_wrap = false;
2311
2312 if (ringbuf->reserved_in_use)
2313 total_bytes = bytes;
2314 else
2315 total_bytes = bytes + ringbuf->reserved_size;
2316
2317 if (unlikely(bytes > remain_usable)) {
2318 /*
2319 * Not enough space for the basic request. So need to flush
2320 * out the remainder and then wait for base + reserved.
2321 */
2322 wait_bytes = remain_actual + total_bytes;
2323 need_wrap = true;
2324 } else {
2325 if (unlikely(total_bytes > remain_usable)) {
2326 /*
2327 * The base request will fit but the reserved space
2328 * falls off the end. So only need to to wait for the
2329 * reserved size after flushing out the remainder.
2330 */
2331 wait_bytes = remain_actual + ringbuf->reserved_size;
2332 need_wrap = true;
2333 } else if (total_bytes > ringbuf->space) {
2334 /* No wrapping required, just waiting. */
2335 wait_bytes = total_bytes;
2336 }
2337 }
2338
2339 if (wait_bytes) {
2340 ret = ring_wait_for_space(ring, wait_bytes);
2341 if (unlikely(ret))
2342 return ret;
2343
2344 if (need_wrap)
2345 __wrap_ring_buffer(ringbuf);
2346 }
2347
2348 return 0;
2349 }
2350
2351 int intel_ring_begin(struct drm_i915_gem_request *req,
2352 int num_dwords)
2353 {
2354 struct intel_engine_cs *ring;
2355 struct drm_i915_private *dev_priv;
2356 int ret;
2357
2358 WARN_ON(req == NULL);
2359 ring = req->ring;
2360 dev_priv = ring->dev->dev_private;
2361
2362 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2363 dev_priv->mm.interruptible);
2364 if (ret)
2365 return ret;
2366
2367 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2368 if (ret)
2369 return ret;
2370
2371 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2372 return 0;
2373 }
2374
2375 /* Align the ring tail to a cacheline boundary */
2376 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2377 {
2378 struct intel_engine_cs *ring = req->ring;
2379 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2380 int ret;
2381
2382 if (num_dwords == 0)
2383 return 0;
2384
2385 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2386 ret = intel_ring_begin(req, num_dwords);
2387 if (ret)
2388 return ret;
2389
2390 while (num_dwords--)
2391 intel_ring_emit(ring, MI_NOOP);
2392
2393 intel_ring_advance(ring);
2394
2395 return 0;
2396 }
2397
2398 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2399 {
2400 struct drm_device *dev = ring->dev;
2401 struct drm_i915_private *dev_priv = dev->dev_private;
2402
2403 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2404 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2405 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2406 if (HAS_VEBOX(dev))
2407 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2408 }
2409
2410 ring->set_seqno(ring, seqno);
2411 ring->hangcheck.seqno = seqno;
2412 }
2413
2414 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2415 u32 value)
2416 {
2417 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2418
2419 /* Every tail move must follow the sequence below */
2420
2421 /* Disable notification that the ring is IDLE. The GT
2422 * will then assume that it is busy and bring it out of rc6.
2423 */
2424 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2425 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2426
2427 /* Clear the context id. Here be magic! */
2428 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2429
2430 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2431 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2432 GEN6_BSD_SLEEP_INDICATOR) == 0,
2433 50))
2434 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2435
2436 /* Now that the ring is fully powered up, update the tail */
2437 I915_WRITE_TAIL(ring, value);
2438 POSTING_READ(RING_TAIL(ring->mmio_base));
2439
2440 /* Let the ring send IDLE messages to the GT again,
2441 * and so let it sleep to conserve power when idle.
2442 */
2443 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2444 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2445 }
2446
2447 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2448 u32 invalidate, u32 flush)
2449 {
2450 struct intel_engine_cs *ring = req->ring;
2451 uint32_t cmd;
2452 int ret;
2453
2454 ret = intel_ring_begin(req, 4);
2455 if (ret)
2456 return ret;
2457
2458 cmd = MI_FLUSH_DW;
2459 if (INTEL_INFO(ring->dev)->gen >= 8)
2460 cmd += 1;
2461
2462 /* We always require a command barrier so that subsequent
2463 * commands, such as breadcrumb interrupts, are strictly ordered
2464 * wrt the contents of the write cache being flushed to memory
2465 * (and thus being coherent from the CPU).
2466 */
2467 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2468
2469 /*
2470 * Bspec vol 1c.5 - video engine command streamer:
2471 * "If ENABLED, all TLBs will be invalidated once the flush
2472 * operation is complete. This bit is only valid when the
2473 * Post-Sync Operation field is a value of 1h or 3h."
2474 */
2475 if (invalidate & I915_GEM_GPU_DOMAINS)
2476 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2477
2478 intel_ring_emit(ring, cmd);
2479 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2480 if (INTEL_INFO(ring->dev)->gen >= 8) {
2481 intel_ring_emit(ring, 0); /* upper addr */
2482 intel_ring_emit(ring, 0); /* value */
2483 } else {
2484 intel_ring_emit(ring, 0);
2485 intel_ring_emit(ring, MI_NOOP);
2486 }
2487 intel_ring_advance(ring);
2488 return 0;
2489 }
2490
2491 static int
2492 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2493 u64 offset, u32 len,
2494 unsigned dispatch_flags)
2495 {
2496 struct intel_engine_cs *ring = req->ring;
2497 bool ppgtt = USES_PPGTT(ring->dev) &&
2498 !(dispatch_flags & I915_DISPATCH_SECURE);
2499 int ret;
2500
2501 ret = intel_ring_begin(req, 4);
2502 if (ret)
2503 return ret;
2504
2505 /* FIXME(BDW): Address space and security selectors. */
2506 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2507 (dispatch_flags & I915_DISPATCH_RS ?
2508 MI_BATCH_RESOURCE_STREAMER : 0));
2509 intel_ring_emit(ring, lower_32_bits(offset));
2510 intel_ring_emit(ring, upper_32_bits(offset));
2511 intel_ring_emit(ring, MI_NOOP);
2512 intel_ring_advance(ring);
2513
2514 return 0;
2515 }
2516
2517 static int
2518 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2519 u64 offset, u32 len,
2520 unsigned dispatch_flags)
2521 {
2522 struct intel_engine_cs *ring = req->ring;
2523 int ret;
2524
2525 ret = intel_ring_begin(req, 2);
2526 if (ret)
2527 return ret;
2528
2529 intel_ring_emit(ring,
2530 MI_BATCH_BUFFER_START |
2531 (dispatch_flags & I915_DISPATCH_SECURE ?
2532 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2533 (dispatch_flags & I915_DISPATCH_RS ?
2534 MI_BATCH_RESOURCE_STREAMER : 0));
2535 /* bit0-7 is the length on GEN6+ */
2536 intel_ring_emit(ring, offset);
2537 intel_ring_advance(ring);
2538
2539 return 0;
2540 }
2541
2542 static int
2543 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2544 u64 offset, u32 len,
2545 unsigned dispatch_flags)
2546 {
2547 struct intel_engine_cs *ring = req->ring;
2548 int ret;
2549
2550 ret = intel_ring_begin(req, 2);
2551 if (ret)
2552 return ret;
2553
2554 intel_ring_emit(ring,
2555 MI_BATCH_BUFFER_START |
2556 (dispatch_flags & I915_DISPATCH_SECURE ?
2557 0 : MI_BATCH_NON_SECURE_I965));
2558 /* bit0-7 is the length on GEN6+ */
2559 intel_ring_emit(ring, offset);
2560 intel_ring_advance(ring);
2561
2562 return 0;
2563 }
2564
2565 /* Blitter support (SandyBridge+) */
2566
2567 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2568 u32 invalidate, u32 flush)
2569 {
2570 struct intel_engine_cs *ring = req->ring;
2571 struct drm_device *dev = ring->dev;
2572 uint32_t cmd;
2573 int ret;
2574
2575 ret = intel_ring_begin(req, 4);
2576 if (ret)
2577 return ret;
2578
2579 cmd = MI_FLUSH_DW;
2580 if (INTEL_INFO(dev)->gen >= 8)
2581 cmd += 1;
2582
2583 /* We always require a command barrier so that subsequent
2584 * commands, such as breadcrumb interrupts, are strictly ordered
2585 * wrt the contents of the write cache being flushed to memory
2586 * (and thus being coherent from the CPU).
2587 */
2588 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2589
2590 /*
2591 * Bspec vol 1c.3 - blitter engine command streamer:
2592 * "If ENABLED, all TLBs will be invalidated once the flush
2593 * operation is complete. This bit is only valid when the
2594 * Post-Sync Operation field is a value of 1h or 3h."
2595 */
2596 if (invalidate & I915_GEM_DOMAIN_RENDER)
2597 cmd |= MI_INVALIDATE_TLB;
2598 intel_ring_emit(ring, cmd);
2599 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2600 if (INTEL_INFO(dev)->gen >= 8) {
2601 intel_ring_emit(ring, 0); /* upper addr */
2602 intel_ring_emit(ring, 0); /* value */
2603 } else {
2604 intel_ring_emit(ring, 0);
2605 intel_ring_emit(ring, MI_NOOP);
2606 }
2607 intel_ring_advance(ring);
2608
2609 return 0;
2610 }
2611
2612 int intel_init_render_ring_buffer(struct drm_device *dev)
2613 {
2614 struct drm_i915_private *dev_priv = dev->dev_private;
2615 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2616 struct drm_i915_gem_object *obj;
2617 int ret;
2618
2619 ring->name = "render ring";
2620 ring->id = RCS;
2621 ring->mmio_base = RENDER_RING_BASE;
2622
2623 if (INTEL_INFO(dev)->gen >= 8) {
2624 if (i915_semaphore_is_enabled(dev)) {
2625 obj = i915_gem_alloc_object(dev, 4096);
2626 if (obj == NULL) {
2627 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2628 i915.semaphores = 0;
2629 } else {
2630 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2631 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2632 if (ret != 0) {
2633 drm_gem_object_unreference(&obj->base);
2634 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2635 i915.semaphores = 0;
2636 } else
2637 dev_priv->semaphore_obj = obj;
2638 }
2639 }
2640
2641 ring->init_context = intel_rcs_ctx_init;
2642 ring->add_request = gen6_add_request;
2643 ring->flush = gen8_render_ring_flush;
2644 ring->irq_get = gen8_ring_get_irq;
2645 ring->irq_put = gen8_ring_put_irq;
2646 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2647 ring->get_seqno = gen6_ring_get_seqno;
2648 ring->set_seqno = ring_set_seqno;
2649 if (i915_semaphore_is_enabled(dev)) {
2650 WARN_ON(!dev_priv->semaphore_obj);
2651 ring->semaphore.sync_to = gen8_ring_sync;
2652 ring->semaphore.signal = gen8_rcs_signal;
2653 GEN8_RING_SEMAPHORE_INIT;
2654 }
2655 } else if (INTEL_INFO(dev)->gen >= 6) {
2656 ring->add_request = gen6_add_request;
2657 ring->flush = gen7_render_ring_flush;
2658 if (INTEL_INFO(dev)->gen == 6)
2659 ring->flush = gen6_render_ring_flush;
2660 ring->irq_get = gen6_ring_get_irq;
2661 ring->irq_put = gen6_ring_put_irq;
2662 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2663 ring->get_seqno = gen6_ring_get_seqno;
2664 ring->set_seqno = ring_set_seqno;
2665 if (i915_semaphore_is_enabled(dev)) {
2666 ring->semaphore.sync_to = gen6_ring_sync;
2667 ring->semaphore.signal = gen6_signal;
2668 /*
2669 * The current semaphore is only applied on pre-gen8
2670 * platform. And there is no VCS2 ring on the pre-gen8
2671 * platform. So the semaphore between RCS and VCS2 is
2672 * initialized as INVALID. Gen8 will initialize the
2673 * sema between VCS2 and RCS later.
2674 */
2675 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2676 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2677 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2678 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2679 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2680 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2681 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2682 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2683 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2684 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2685 }
2686 } else if (IS_GEN5(dev)) {
2687 ring->add_request = pc_render_add_request;
2688 ring->flush = gen4_render_ring_flush;
2689 ring->get_seqno = pc_render_get_seqno;
2690 ring->set_seqno = pc_render_set_seqno;
2691 ring->irq_get = gen5_ring_get_irq;
2692 ring->irq_put = gen5_ring_put_irq;
2693 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2694 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2695 } else {
2696 ring->add_request = i9xx_add_request;
2697 if (INTEL_INFO(dev)->gen < 4)
2698 ring->flush = gen2_render_ring_flush;
2699 else
2700 ring->flush = gen4_render_ring_flush;
2701 ring->get_seqno = ring_get_seqno;
2702 ring->set_seqno = ring_set_seqno;
2703 if (IS_GEN2(dev)) {
2704 ring->irq_get = i8xx_ring_get_irq;
2705 ring->irq_put = i8xx_ring_put_irq;
2706 } else {
2707 ring->irq_get = i9xx_ring_get_irq;
2708 ring->irq_put = i9xx_ring_put_irq;
2709 }
2710 ring->irq_enable_mask = I915_USER_INTERRUPT;
2711 }
2712 ring->write_tail = ring_write_tail;
2713
2714 if (IS_HASWELL(dev))
2715 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2716 else if (IS_GEN8(dev))
2717 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2718 else if (INTEL_INFO(dev)->gen >= 6)
2719 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2720 else if (INTEL_INFO(dev)->gen >= 4)
2721 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2722 else if (IS_I830(dev) || IS_845G(dev))
2723 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2724 else
2725 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2726 ring->init_hw = init_render_ring;
2727 ring->cleanup = render_ring_cleanup;
2728
2729 /* Workaround batchbuffer to combat CS tlb bug. */
2730 if (HAS_BROKEN_CS_TLB(dev)) {
2731 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2732 if (obj == NULL) {
2733 DRM_ERROR("Failed to allocate batch bo\n");
2734 return -ENOMEM;
2735 }
2736
2737 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2738 if (ret != 0) {
2739 drm_gem_object_unreference(&obj->base);
2740 DRM_ERROR("Failed to ping batch bo\n");
2741 return ret;
2742 }
2743
2744 ring->scratch.obj = obj;
2745 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2746 }
2747
2748 ret = intel_init_ring_buffer(dev, ring);
2749 if (ret)
2750 return ret;
2751
2752 if (INTEL_INFO(dev)->gen >= 5) {
2753 ret = intel_init_pipe_control(ring);
2754 if (ret)
2755 return ret;
2756 }
2757
2758 return 0;
2759 }
2760
2761 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2762 {
2763 struct drm_i915_private *dev_priv = dev->dev_private;
2764 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2765
2766 ring->name = "bsd ring";
2767 ring->id = VCS;
2768
2769 ring->write_tail = ring_write_tail;
2770 if (INTEL_INFO(dev)->gen >= 6) {
2771 ring->mmio_base = GEN6_BSD_RING_BASE;
2772 /* gen6 bsd needs a special wa for tail updates */
2773 if (IS_GEN6(dev))
2774 ring->write_tail = gen6_bsd_ring_write_tail;
2775 ring->flush = gen6_bsd_ring_flush;
2776 ring->add_request = gen6_add_request;
2777 ring->get_seqno = gen6_ring_get_seqno;
2778 ring->set_seqno = ring_set_seqno;
2779 if (INTEL_INFO(dev)->gen >= 8) {
2780 ring->irq_enable_mask =
2781 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2782 ring->irq_get = gen8_ring_get_irq;
2783 ring->irq_put = gen8_ring_put_irq;
2784 ring->dispatch_execbuffer =
2785 gen8_ring_dispatch_execbuffer;
2786 if (i915_semaphore_is_enabled(dev)) {
2787 ring->semaphore.sync_to = gen8_ring_sync;
2788 ring->semaphore.signal = gen8_xcs_signal;
2789 GEN8_RING_SEMAPHORE_INIT;
2790 }
2791 } else {
2792 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2793 ring->irq_get = gen6_ring_get_irq;
2794 ring->irq_put = gen6_ring_put_irq;
2795 ring->dispatch_execbuffer =
2796 gen6_ring_dispatch_execbuffer;
2797 if (i915_semaphore_is_enabled(dev)) {
2798 ring->semaphore.sync_to = gen6_ring_sync;
2799 ring->semaphore.signal = gen6_signal;
2800 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2801 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2802 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2803 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2804 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2805 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2806 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2807 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2808 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2809 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2810 }
2811 }
2812 } else {
2813 ring->mmio_base = BSD_RING_BASE;
2814 ring->flush = bsd_ring_flush;
2815 ring->add_request = i9xx_add_request;
2816 ring->get_seqno = ring_get_seqno;
2817 ring->set_seqno = ring_set_seqno;
2818 if (IS_GEN5(dev)) {
2819 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2820 ring->irq_get = gen5_ring_get_irq;
2821 ring->irq_put = gen5_ring_put_irq;
2822 } else {
2823 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2824 ring->irq_get = i9xx_ring_get_irq;
2825 ring->irq_put = i9xx_ring_put_irq;
2826 }
2827 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2828 }
2829 ring->init_hw = init_ring_common;
2830
2831 return intel_init_ring_buffer(dev, ring);
2832 }
2833
2834 /**
2835 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2836 */
2837 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2838 {
2839 struct drm_i915_private *dev_priv = dev->dev_private;
2840 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2841
2842 ring->name = "bsd2 ring";
2843 ring->id = VCS2;
2844
2845 ring->write_tail = ring_write_tail;
2846 ring->mmio_base = GEN8_BSD2_RING_BASE;
2847 ring->flush = gen6_bsd_ring_flush;
2848 ring->add_request = gen6_add_request;
2849 ring->get_seqno = gen6_ring_get_seqno;
2850 ring->set_seqno = ring_set_seqno;
2851 ring->irq_enable_mask =
2852 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2853 ring->irq_get = gen8_ring_get_irq;
2854 ring->irq_put = gen8_ring_put_irq;
2855 ring->dispatch_execbuffer =
2856 gen8_ring_dispatch_execbuffer;
2857 if (i915_semaphore_is_enabled(dev)) {
2858 ring->semaphore.sync_to = gen8_ring_sync;
2859 ring->semaphore.signal = gen8_xcs_signal;
2860 GEN8_RING_SEMAPHORE_INIT;
2861 }
2862 ring->init_hw = init_ring_common;
2863
2864 return intel_init_ring_buffer(dev, ring);
2865 }
2866
2867 int intel_init_blt_ring_buffer(struct drm_device *dev)
2868 {
2869 struct drm_i915_private *dev_priv = dev->dev_private;
2870 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2871
2872 ring->name = "blitter ring";
2873 ring->id = BCS;
2874
2875 ring->mmio_base = BLT_RING_BASE;
2876 ring->write_tail = ring_write_tail;
2877 ring->flush = gen6_ring_flush;
2878 ring->add_request = gen6_add_request;
2879 ring->get_seqno = gen6_ring_get_seqno;
2880 ring->set_seqno = ring_set_seqno;
2881 if (INTEL_INFO(dev)->gen >= 8) {
2882 ring->irq_enable_mask =
2883 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2884 ring->irq_get = gen8_ring_get_irq;
2885 ring->irq_put = gen8_ring_put_irq;
2886 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2887 if (i915_semaphore_is_enabled(dev)) {
2888 ring->semaphore.sync_to = gen8_ring_sync;
2889 ring->semaphore.signal = gen8_xcs_signal;
2890 GEN8_RING_SEMAPHORE_INIT;
2891 }
2892 } else {
2893 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2894 ring->irq_get = gen6_ring_get_irq;
2895 ring->irq_put = gen6_ring_put_irq;
2896 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2897 if (i915_semaphore_is_enabled(dev)) {
2898 ring->semaphore.signal = gen6_signal;
2899 ring->semaphore.sync_to = gen6_ring_sync;
2900 /*
2901 * The current semaphore is only applied on pre-gen8
2902 * platform. And there is no VCS2 ring on the pre-gen8
2903 * platform. So the semaphore between BCS and VCS2 is
2904 * initialized as INVALID. Gen8 will initialize the
2905 * sema between BCS and VCS2 later.
2906 */
2907 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2908 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2909 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2910 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2911 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2912 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2913 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2914 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2915 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2916 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2917 }
2918 }
2919 ring->init_hw = init_ring_common;
2920
2921 return intel_init_ring_buffer(dev, ring);
2922 }
2923
2924 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2925 {
2926 struct drm_i915_private *dev_priv = dev->dev_private;
2927 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2928
2929 ring->name = "video enhancement ring";
2930 ring->id = VECS;
2931
2932 ring->mmio_base = VEBOX_RING_BASE;
2933 ring->write_tail = ring_write_tail;
2934 ring->flush = gen6_ring_flush;
2935 ring->add_request = gen6_add_request;
2936 ring->get_seqno = gen6_ring_get_seqno;
2937 ring->set_seqno = ring_set_seqno;
2938
2939 if (INTEL_INFO(dev)->gen >= 8) {
2940 ring->irq_enable_mask =
2941 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2942 ring->irq_get = gen8_ring_get_irq;
2943 ring->irq_put = gen8_ring_put_irq;
2944 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2945 if (i915_semaphore_is_enabled(dev)) {
2946 ring->semaphore.sync_to = gen8_ring_sync;
2947 ring->semaphore.signal = gen8_xcs_signal;
2948 GEN8_RING_SEMAPHORE_INIT;
2949 }
2950 } else {
2951 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2952 ring->irq_get = hsw_vebox_get_irq;
2953 ring->irq_put = hsw_vebox_put_irq;
2954 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2955 if (i915_semaphore_is_enabled(dev)) {
2956 ring->semaphore.sync_to = gen6_ring_sync;
2957 ring->semaphore.signal = gen6_signal;
2958 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2959 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2960 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2961 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2962 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2963 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2964 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2965 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2966 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2967 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2968 }
2969 }
2970 ring->init_hw = init_ring_common;
2971
2972 return intel_init_ring_buffer(dev, ring);
2973 }
2974
2975 int
2976 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
2977 {
2978 struct intel_engine_cs *ring = req->ring;
2979 int ret;
2980
2981 if (!ring->gpu_caches_dirty)
2982 return 0;
2983
2984 ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
2985 if (ret)
2986 return ret;
2987
2988 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
2989
2990 ring->gpu_caches_dirty = false;
2991 return 0;
2992 }
2993
2994 int
2995 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
2996 {
2997 struct intel_engine_cs *ring = req->ring;
2998 uint32_t flush_domains;
2999 int ret;
3000
3001 flush_domains = 0;
3002 if (ring->gpu_caches_dirty)
3003 flush_domains = I915_GEM_GPU_DOMAINS;
3004
3005 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3006 if (ret)
3007 return ret;
3008
3009 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3010
3011 ring->gpu_caches_dirty = false;
3012 return 0;
3013 }
3014
3015 void
3016 intel_stop_ring_buffer(struct intel_engine_cs *ring)
3017 {
3018 int ret;
3019
3020 if (!intel_ring_initialized(ring))
3021 return;
3022
3023 ret = intel_ring_idle(ring);
3024 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3025 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3026 ring->name, ret);
3027
3028 stop_ring(ring);
3029 }
This page took 0.090969 seconds and 6 git commands to generate.