Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
37 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
38 * to give some inclination as to some of the magic values used in the various
39 * workarounds!
40 */
41 #define CACHELINE_BYTES 64
42
43 static inline int __ring_space(int head, int tail, int size)
44 {
45 int space = head - (tail + I915_RING_FREE_SPACE);
46 if (space < 0)
47 space += size;
48 return space;
49 }
50
51 static inline int ring_space(struct intel_engine_cs *ring)
52 {
53 struct intel_ringbuffer *ringbuf = ring->buffer;
54 return __ring_space(ringbuf->head & HEAD_ADDR, ringbuf->tail, ringbuf->size);
55 }
56
57 static bool intel_ring_stopped(struct intel_engine_cs *ring)
58 {
59 struct drm_i915_private *dev_priv = ring->dev->dev_private;
60 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
61 }
62
63 void __intel_ring_advance(struct intel_engine_cs *ring)
64 {
65 struct intel_ringbuffer *ringbuf = ring->buffer;
66 ringbuf->tail &= ringbuf->size - 1;
67 if (intel_ring_stopped(ring))
68 return;
69 ring->write_tail(ring, ringbuf->tail);
70 }
71
72 static int
73 gen2_render_ring_flush(struct intel_engine_cs *ring,
74 u32 invalidate_domains,
75 u32 flush_domains)
76 {
77 u32 cmd;
78 int ret;
79
80 cmd = MI_FLUSH;
81 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
82 cmd |= MI_NO_WRITE_FLUSH;
83
84 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
85 cmd |= MI_READ_FLUSH;
86
87 ret = intel_ring_begin(ring, 2);
88 if (ret)
89 return ret;
90
91 intel_ring_emit(ring, cmd);
92 intel_ring_emit(ring, MI_NOOP);
93 intel_ring_advance(ring);
94
95 return 0;
96 }
97
98 static int
99 gen4_render_ring_flush(struct intel_engine_cs *ring,
100 u32 invalidate_domains,
101 u32 flush_domains)
102 {
103 struct drm_device *dev = ring->dev;
104 u32 cmd;
105 int ret;
106
107 /*
108 * read/write caches:
109 *
110 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
111 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
112 * also flushed at 2d versus 3d pipeline switches.
113 *
114 * read-only caches:
115 *
116 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
117 * MI_READ_FLUSH is set, and is always flushed on 965.
118 *
119 * I915_GEM_DOMAIN_COMMAND may not exist?
120 *
121 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
122 * invalidated when MI_EXE_FLUSH is set.
123 *
124 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
125 * invalidated with every MI_FLUSH.
126 *
127 * TLBs:
128 *
129 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
130 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
131 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
132 * are flushed at any MI_FLUSH.
133 */
134
135 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
136 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
137 cmd &= ~MI_NO_WRITE_FLUSH;
138 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
139 cmd |= MI_EXE_FLUSH;
140
141 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
142 (IS_G4X(dev) || IS_GEN5(dev)))
143 cmd |= MI_INVALIDATE_ISP;
144
145 ret = intel_ring_begin(ring, 2);
146 if (ret)
147 return ret;
148
149 intel_ring_emit(ring, cmd);
150 intel_ring_emit(ring, MI_NOOP);
151 intel_ring_advance(ring);
152
153 return 0;
154 }
155
156 /**
157 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
158 * implementing two workarounds on gen6. From section 1.4.7.1
159 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
160 *
161 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
162 * produced by non-pipelined state commands), software needs to first
163 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
164 * 0.
165 *
166 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
167 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
168 *
169 * And the workaround for these two requires this workaround first:
170 *
171 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
172 * BEFORE the pipe-control with a post-sync op and no write-cache
173 * flushes.
174 *
175 * And this last workaround is tricky because of the requirements on
176 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
177 * volume 2 part 1:
178 *
179 * "1 of the following must also be set:
180 * - Render Target Cache Flush Enable ([12] of DW1)
181 * - Depth Cache Flush Enable ([0] of DW1)
182 * - Stall at Pixel Scoreboard ([1] of DW1)
183 * - Depth Stall ([13] of DW1)
184 * - Post-Sync Operation ([13] of DW1)
185 * - Notify Enable ([8] of DW1)"
186 *
187 * The cache flushes require the workaround flush that triggered this
188 * one, so we can't use it. Depth stall would trigger the same.
189 * Post-sync nonzero is what triggered this second workaround, so we
190 * can't use that one either. Notify enable is IRQs, which aren't
191 * really our business. That leaves only stall at scoreboard.
192 */
193 static int
194 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
195 {
196 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
197 int ret;
198
199
200 ret = intel_ring_begin(ring, 6);
201 if (ret)
202 return ret;
203
204 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
205 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
206 PIPE_CONTROL_STALL_AT_SCOREBOARD);
207 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
208 intel_ring_emit(ring, 0); /* low dword */
209 intel_ring_emit(ring, 0); /* high dword */
210 intel_ring_emit(ring, MI_NOOP);
211 intel_ring_advance(ring);
212
213 ret = intel_ring_begin(ring, 6);
214 if (ret)
215 return ret;
216
217 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
218 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
219 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
220 intel_ring_emit(ring, 0);
221 intel_ring_emit(ring, 0);
222 intel_ring_emit(ring, MI_NOOP);
223 intel_ring_advance(ring);
224
225 return 0;
226 }
227
228 static int
229 gen6_render_ring_flush(struct intel_engine_cs *ring,
230 u32 invalidate_domains, u32 flush_domains)
231 {
232 u32 flags = 0;
233 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
234 int ret;
235
236 /* Force SNB workarounds for PIPE_CONTROL flushes */
237 ret = intel_emit_post_sync_nonzero_flush(ring);
238 if (ret)
239 return ret;
240
241 /* Just flush everything. Experiments have shown that reducing the
242 * number of bits based on the write domains has little performance
243 * impact.
244 */
245 if (flush_domains) {
246 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
247 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
248 /*
249 * Ensure that any following seqno writes only happen
250 * when the render cache is indeed flushed.
251 */
252 flags |= PIPE_CONTROL_CS_STALL;
253 }
254 if (invalidate_domains) {
255 flags |= PIPE_CONTROL_TLB_INVALIDATE;
256 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
257 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
258 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
259 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
260 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
261 /*
262 * TLB invalidate requires a post-sync write.
263 */
264 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
265 }
266
267 ret = intel_ring_begin(ring, 4);
268 if (ret)
269 return ret;
270
271 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
272 intel_ring_emit(ring, flags);
273 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
274 intel_ring_emit(ring, 0);
275 intel_ring_advance(ring);
276
277 return 0;
278 }
279
280 static int
281 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
282 {
283 int ret;
284
285 ret = intel_ring_begin(ring, 4);
286 if (ret)
287 return ret;
288
289 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
290 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
291 PIPE_CONTROL_STALL_AT_SCOREBOARD);
292 intel_ring_emit(ring, 0);
293 intel_ring_emit(ring, 0);
294 intel_ring_advance(ring);
295
296 return 0;
297 }
298
299 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
300 {
301 int ret;
302
303 if (!ring->fbc_dirty)
304 return 0;
305
306 ret = intel_ring_begin(ring, 6);
307 if (ret)
308 return ret;
309 /* WaFbcNukeOn3DBlt:ivb/hsw */
310 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
311 intel_ring_emit(ring, MSG_FBC_REND_STATE);
312 intel_ring_emit(ring, value);
313 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
314 intel_ring_emit(ring, MSG_FBC_REND_STATE);
315 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
316 intel_ring_advance(ring);
317
318 ring->fbc_dirty = false;
319 return 0;
320 }
321
322 static int
323 gen7_render_ring_flush(struct intel_engine_cs *ring,
324 u32 invalidate_domains, u32 flush_domains)
325 {
326 u32 flags = 0;
327 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
328 int ret;
329
330 /*
331 * Ensure that any following seqno writes only happen when the render
332 * cache is indeed flushed.
333 *
334 * Workaround: 4th PIPE_CONTROL command (except the ones with only
335 * read-cache invalidate bits set) must have the CS_STALL bit set. We
336 * don't try to be clever and just set it unconditionally.
337 */
338 flags |= PIPE_CONTROL_CS_STALL;
339
340 /* Just flush everything. Experiments have shown that reducing the
341 * number of bits based on the write domains has little performance
342 * impact.
343 */
344 if (flush_domains) {
345 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
346 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
347 }
348 if (invalidate_domains) {
349 flags |= PIPE_CONTROL_TLB_INVALIDATE;
350 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
351 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
352 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
353 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
354 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
355 /*
356 * TLB invalidate requires a post-sync write.
357 */
358 flags |= PIPE_CONTROL_QW_WRITE;
359 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
360
361 /* Workaround: we must issue a pipe_control with CS-stall bit
362 * set before a pipe_control command that has the state cache
363 * invalidate bit set. */
364 gen7_render_ring_cs_stall_wa(ring);
365 }
366
367 ret = intel_ring_begin(ring, 4);
368 if (ret)
369 return ret;
370
371 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
372 intel_ring_emit(ring, flags);
373 intel_ring_emit(ring, scratch_addr);
374 intel_ring_emit(ring, 0);
375 intel_ring_advance(ring);
376
377 if (!invalidate_domains && flush_domains)
378 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
379
380 return 0;
381 }
382
383 static int
384 gen8_render_ring_flush(struct intel_engine_cs *ring,
385 u32 invalidate_domains, u32 flush_domains)
386 {
387 u32 flags = 0;
388 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
389 int ret;
390
391 flags |= PIPE_CONTROL_CS_STALL;
392
393 if (flush_domains) {
394 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
395 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
396 }
397 if (invalidate_domains) {
398 flags |= PIPE_CONTROL_TLB_INVALIDATE;
399 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
400 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
401 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
402 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
403 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
404 flags |= PIPE_CONTROL_QW_WRITE;
405 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
406 }
407
408 ret = intel_ring_begin(ring, 6);
409 if (ret)
410 return ret;
411
412 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
413 intel_ring_emit(ring, flags);
414 intel_ring_emit(ring, scratch_addr);
415 intel_ring_emit(ring, 0);
416 intel_ring_emit(ring, 0);
417 intel_ring_emit(ring, 0);
418 intel_ring_advance(ring);
419
420 return 0;
421
422 }
423
424 static void ring_write_tail(struct intel_engine_cs *ring,
425 u32 value)
426 {
427 struct drm_i915_private *dev_priv = ring->dev->dev_private;
428 I915_WRITE_TAIL(ring, value);
429 }
430
431 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
432 {
433 struct drm_i915_private *dev_priv = ring->dev->dev_private;
434 u64 acthd;
435
436 if (INTEL_INFO(ring->dev)->gen >= 8)
437 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
438 RING_ACTHD_UDW(ring->mmio_base));
439 else if (INTEL_INFO(ring->dev)->gen >= 4)
440 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
441 else
442 acthd = I915_READ(ACTHD);
443
444 return acthd;
445 }
446
447 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
448 {
449 struct drm_i915_private *dev_priv = ring->dev->dev_private;
450 u32 addr;
451
452 addr = dev_priv->status_page_dmah->busaddr;
453 if (INTEL_INFO(ring->dev)->gen >= 4)
454 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
455 I915_WRITE(HWS_PGA, addr);
456 }
457
458 static bool stop_ring(struct intel_engine_cs *ring)
459 {
460 struct drm_i915_private *dev_priv = to_i915(ring->dev);
461
462 if (!IS_GEN2(ring->dev)) {
463 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
464 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
465 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
466 return false;
467 }
468 }
469
470 I915_WRITE_CTL(ring, 0);
471 I915_WRITE_HEAD(ring, 0);
472 ring->write_tail(ring, 0);
473
474 if (!IS_GEN2(ring->dev)) {
475 (void)I915_READ_CTL(ring);
476 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
477 }
478
479 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
480 }
481
482 static int init_ring_common(struct intel_engine_cs *ring)
483 {
484 struct drm_device *dev = ring->dev;
485 struct drm_i915_private *dev_priv = dev->dev_private;
486 struct intel_ringbuffer *ringbuf = ring->buffer;
487 struct drm_i915_gem_object *obj = ringbuf->obj;
488 int ret = 0;
489
490 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
491
492 if (!stop_ring(ring)) {
493 /* G45 ring initialization often fails to reset head to zero */
494 DRM_DEBUG_KMS("%s head not reset to zero "
495 "ctl %08x head %08x tail %08x start %08x\n",
496 ring->name,
497 I915_READ_CTL(ring),
498 I915_READ_HEAD(ring),
499 I915_READ_TAIL(ring),
500 I915_READ_START(ring));
501
502 if (!stop_ring(ring)) {
503 DRM_ERROR("failed to set %s head to zero "
504 "ctl %08x head %08x tail %08x start %08x\n",
505 ring->name,
506 I915_READ_CTL(ring),
507 I915_READ_HEAD(ring),
508 I915_READ_TAIL(ring),
509 I915_READ_START(ring));
510 ret = -EIO;
511 goto out;
512 }
513 }
514
515 if (I915_NEED_GFX_HWS(dev))
516 intel_ring_setup_status_page(ring);
517 else
518 ring_setup_phys_status_page(ring);
519
520 /* Initialize the ring. This must happen _after_ we've cleared the ring
521 * registers with the above sequence (the readback of the HEAD registers
522 * also enforces ordering), otherwise the hw might lose the new ring
523 * register values. */
524 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
525 I915_WRITE_CTL(ring,
526 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
527 | RING_VALID);
528
529 /* If the head is still not zero, the ring is dead */
530 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
531 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
532 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
533 DRM_ERROR("%s initialization failed "
534 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
535 ring->name,
536 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
537 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
538 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
539 ret = -EIO;
540 goto out;
541 }
542
543 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
544 i915_kernel_lost_context(ring->dev);
545 else {
546 ringbuf->head = I915_READ_HEAD(ring);
547 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
548 ringbuf->space = ring_space(ring);
549 ringbuf->last_retired_head = -1;
550 }
551
552 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
553
554 out:
555 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
556
557 return ret;
558 }
559
560 static int
561 init_pipe_control(struct intel_engine_cs *ring)
562 {
563 int ret;
564
565 if (ring->scratch.obj)
566 return 0;
567
568 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
569 if (ring->scratch.obj == NULL) {
570 DRM_ERROR("Failed to allocate seqno page\n");
571 ret = -ENOMEM;
572 goto err;
573 }
574
575 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
576 if (ret)
577 goto err_unref;
578
579 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
580 if (ret)
581 goto err_unref;
582
583 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
584 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
585 if (ring->scratch.cpu_page == NULL) {
586 ret = -ENOMEM;
587 goto err_unpin;
588 }
589
590 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
591 ring->name, ring->scratch.gtt_offset);
592 return 0;
593
594 err_unpin:
595 i915_gem_object_ggtt_unpin(ring->scratch.obj);
596 err_unref:
597 drm_gem_object_unreference(&ring->scratch.obj->base);
598 err:
599 return ret;
600 }
601
602 static int init_render_ring(struct intel_engine_cs *ring)
603 {
604 struct drm_device *dev = ring->dev;
605 struct drm_i915_private *dev_priv = dev->dev_private;
606 int ret = init_ring_common(ring);
607
608 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
609 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
610 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
611
612 /* We need to disable the AsyncFlip performance optimisations in order
613 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
614 * programmed to '1' on all products.
615 *
616 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
617 */
618 if (INTEL_INFO(dev)->gen >= 6)
619 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
620
621 /* Required for the hardware to program scanline values for waiting */
622 /* WaEnableFlushTlbInvalidationMode:snb */
623 if (INTEL_INFO(dev)->gen == 6)
624 I915_WRITE(GFX_MODE,
625 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
626
627 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
628 if (IS_GEN7(dev))
629 I915_WRITE(GFX_MODE_GEN7,
630 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
631 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
632
633 if (INTEL_INFO(dev)->gen >= 5) {
634 ret = init_pipe_control(ring);
635 if (ret)
636 return ret;
637 }
638
639 if (IS_GEN6(dev)) {
640 /* From the Sandybridge PRM, volume 1 part 3, page 24:
641 * "If this bit is set, STCunit will have LRA as replacement
642 * policy. [...] This bit must be reset. LRA replacement
643 * policy is not supported."
644 */
645 I915_WRITE(CACHE_MODE_0,
646 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
647 }
648
649 if (INTEL_INFO(dev)->gen >= 6)
650 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
651
652 if (HAS_L3_DPF(dev))
653 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
654
655 return ret;
656 }
657
658 static void render_ring_cleanup(struct intel_engine_cs *ring)
659 {
660 struct drm_device *dev = ring->dev;
661
662 if (ring->scratch.obj == NULL)
663 return;
664
665 if (INTEL_INFO(dev)->gen >= 5) {
666 kunmap(sg_page(ring->scratch.obj->pages->sgl));
667 i915_gem_object_ggtt_unpin(ring->scratch.obj);
668 }
669
670 drm_gem_object_unreference(&ring->scratch.obj->base);
671 ring->scratch.obj = NULL;
672 }
673
674 static int gen6_signal(struct intel_engine_cs *signaller,
675 unsigned int num_dwords)
676 {
677 struct drm_device *dev = signaller->dev;
678 struct drm_i915_private *dev_priv = dev->dev_private;
679 struct intel_engine_cs *useless;
680 int i, ret;
681
682 /* NB: In order to be able to do semaphore MBOX updates for varying
683 * number of rings, it's easiest if we round up each individual update
684 * to a multiple of 2 (since ring updates must always be a multiple of
685 * 2) even though the actual update only requires 3 dwords.
686 */
687 #define MBOX_UPDATE_DWORDS 4
688 if (i915_semaphore_is_enabled(dev))
689 num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
690 else
691 return intel_ring_begin(signaller, num_dwords);
692
693 ret = intel_ring_begin(signaller, num_dwords);
694 if (ret)
695 return ret;
696 #undef MBOX_UPDATE_DWORDS
697
698 for_each_ring(useless, dev_priv, i) {
699 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
700 if (mbox_reg != GEN6_NOSYNC) {
701 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
702 intel_ring_emit(signaller, mbox_reg);
703 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
704 intel_ring_emit(signaller, MI_NOOP);
705 } else {
706 intel_ring_emit(signaller, MI_NOOP);
707 intel_ring_emit(signaller, MI_NOOP);
708 intel_ring_emit(signaller, MI_NOOP);
709 intel_ring_emit(signaller, MI_NOOP);
710 }
711 }
712
713 return 0;
714 }
715
716 /**
717 * gen6_add_request - Update the semaphore mailbox registers
718 *
719 * @ring - ring that is adding a request
720 * @seqno - return seqno stuck into the ring
721 *
722 * Update the mailbox registers in the *other* rings with the current seqno.
723 * This acts like a signal in the canonical semaphore.
724 */
725 static int
726 gen6_add_request(struct intel_engine_cs *ring)
727 {
728 int ret;
729
730 ret = ring->semaphore.signal(ring, 4);
731 if (ret)
732 return ret;
733
734 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
735 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
736 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
737 intel_ring_emit(ring, MI_USER_INTERRUPT);
738 __intel_ring_advance(ring);
739
740 return 0;
741 }
742
743 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
744 u32 seqno)
745 {
746 struct drm_i915_private *dev_priv = dev->dev_private;
747 return dev_priv->last_seqno < seqno;
748 }
749
750 /**
751 * intel_ring_sync - sync the waiter to the signaller on seqno
752 *
753 * @waiter - ring that is waiting
754 * @signaller - ring which has, or will signal
755 * @seqno - seqno which the waiter will block on
756 */
757 static int
758 gen6_ring_sync(struct intel_engine_cs *waiter,
759 struct intel_engine_cs *signaller,
760 u32 seqno)
761 {
762 u32 dw1 = MI_SEMAPHORE_MBOX |
763 MI_SEMAPHORE_COMPARE |
764 MI_SEMAPHORE_REGISTER;
765 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
766 int ret;
767
768 /* Throughout all of the GEM code, seqno passed implies our current
769 * seqno is >= the last seqno executed. However for hardware the
770 * comparison is strictly greater than.
771 */
772 seqno -= 1;
773
774 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
775
776 ret = intel_ring_begin(waiter, 4);
777 if (ret)
778 return ret;
779
780 /* If seqno wrap happened, omit the wait with no-ops */
781 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
782 intel_ring_emit(waiter, dw1 | wait_mbox);
783 intel_ring_emit(waiter, seqno);
784 intel_ring_emit(waiter, 0);
785 intel_ring_emit(waiter, MI_NOOP);
786 } else {
787 intel_ring_emit(waiter, MI_NOOP);
788 intel_ring_emit(waiter, MI_NOOP);
789 intel_ring_emit(waiter, MI_NOOP);
790 intel_ring_emit(waiter, MI_NOOP);
791 }
792 intel_ring_advance(waiter);
793
794 return 0;
795 }
796
797 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
798 do { \
799 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
800 PIPE_CONTROL_DEPTH_STALL); \
801 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
802 intel_ring_emit(ring__, 0); \
803 intel_ring_emit(ring__, 0); \
804 } while (0)
805
806 static int
807 pc_render_add_request(struct intel_engine_cs *ring)
808 {
809 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
810 int ret;
811
812 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
813 * incoherent with writes to memory, i.e. completely fubar,
814 * so we need to use PIPE_NOTIFY instead.
815 *
816 * However, we also need to workaround the qword write
817 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
818 * memory before requesting an interrupt.
819 */
820 ret = intel_ring_begin(ring, 32);
821 if (ret)
822 return ret;
823
824 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
825 PIPE_CONTROL_WRITE_FLUSH |
826 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
827 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
828 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
829 intel_ring_emit(ring, 0);
830 PIPE_CONTROL_FLUSH(ring, scratch_addr);
831 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
832 PIPE_CONTROL_FLUSH(ring, scratch_addr);
833 scratch_addr += 2 * CACHELINE_BYTES;
834 PIPE_CONTROL_FLUSH(ring, scratch_addr);
835 scratch_addr += 2 * CACHELINE_BYTES;
836 PIPE_CONTROL_FLUSH(ring, scratch_addr);
837 scratch_addr += 2 * CACHELINE_BYTES;
838 PIPE_CONTROL_FLUSH(ring, scratch_addr);
839 scratch_addr += 2 * CACHELINE_BYTES;
840 PIPE_CONTROL_FLUSH(ring, scratch_addr);
841
842 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
843 PIPE_CONTROL_WRITE_FLUSH |
844 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
845 PIPE_CONTROL_NOTIFY);
846 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
847 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
848 intel_ring_emit(ring, 0);
849 __intel_ring_advance(ring);
850
851 return 0;
852 }
853
854 static u32
855 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
856 {
857 /* Workaround to force correct ordering between irq and seqno writes on
858 * ivb (and maybe also on snb) by reading from a CS register (like
859 * ACTHD) before reading the status page. */
860 if (!lazy_coherency) {
861 struct drm_i915_private *dev_priv = ring->dev->dev_private;
862 POSTING_READ(RING_ACTHD(ring->mmio_base));
863 }
864
865 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
866 }
867
868 static u32
869 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
870 {
871 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
872 }
873
874 static void
875 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
876 {
877 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
878 }
879
880 static u32
881 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
882 {
883 return ring->scratch.cpu_page[0];
884 }
885
886 static void
887 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
888 {
889 ring->scratch.cpu_page[0] = seqno;
890 }
891
892 static bool
893 gen5_ring_get_irq(struct intel_engine_cs *ring)
894 {
895 struct drm_device *dev = ring->dev;
896 struct drm_i915_private *dev_priv = dev->dev_private;
897 unsigned long flags;
898
899 if (!dev->irq_enabled)
900 return false;
901
902 spin_lock_irqsave(&dev_priv->irq_lock, flags);
903 if (ring->irq_refcount++ == 0)
904 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
905 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
906
907 return true;
908 }
909
910 static void
911 gen5_ring_put_irq(struct intel_engine_cs *ring)
912 {
913 struct drm_device *dev = ring->dev;
914 struct drm_i915_private *dev_priv = dev->dev_private;
915 unsigned long flags;
916
917 spin_lock_irqsave(&dev_priv->irq_lock, flags);
918 if (--ring->irq_refcount == 0)
919 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
920 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
921 }
922
923 static bool
924 i9xx_ring_get_irq(struct intel_engine_cs *ring)
925 {
926 struct drm_device *dev = ring->dev;
927 struct drm_i915_private *dev_priv = dev->dev_private;
928 unsigned long flags;
929
930 if (!dev->irq_enabled)
931 return false;
932
933 spin_lock_irqsave(&dev_priv->irq_lock, flags);
934 if (ring->irq_refcount++ == 0) {
935 dev_priv->irq_mask &= ~ring->irq_enable_mask;
936 I915_WRITE(IMR, dev_priv->irq_mask);
937 POSTING_READ(IMR);
938 }
939 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
940
941 return true;
942 }
943
944 static void
945 i9xx_ring_put_irq(struct intel_engine_cs *ring)
946 {
947 struct drm_device *dev = ring->dev;
948 struct drm_i915_private *dev_priv = dev->dev_private;
949 unsigned long flags;
950
951 spin_lock_irqsave(&dev_priv->irq_lock, flags);
952 if (--ring->irq_refcount == 0) {
953 dev_priv->irq_mask |= ring->irq_enable_mask;
954 I915_WRITE(IMR, dev_priv->irq_mask);
955 POSTING_READ(IMR);
956 }
957 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
958 }
959
960 static bool
961 i8xx_ring_get_irq(struct intel_engine_cs *ring)
962 {
963 struct drm_device *dev = ring->dev;
964 struct drm_i915_private *dev_priv = dev->dev_private;
965 unsigned long flags;
966
967 if (!dev->irq_enabled)
968 return false;
969
970 spin_lock_irqsave(&dev_priv->irq_lock, flags);
971 if (ring->irq_refcount++ == 0) {
972 dev_priv->irq_mask &= ~ring->irq_enable_mask;
973 I915_WRITE16(IMR, dev_priv->irq_mask);
974 POSTING_READ16(IMR);
975 }
976 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
977
978 return true;
979 }
980
981 static void
982 i8xx_ring_put_irq(struct intel_engine_cs *ring)
983 {
984 struct drm_device *dev = ring->dev;
985 struct drm_i915_private *dev_priv = dev->dev_private;
986 unsigned long flags;
987
988 spin_lock_irqsave(&dev_priv->irq_lock, flags);
989 if (--ring->irq_refcount == 0) {
990 dev_priv->irq_mask |= ring->irq_enable_mask;
991 I915_WRITE16(IMR, dev_priv->irq_mask);
992 POSTING_READ16(IMR);
993 }
994 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
995 }
996
997 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
998 {
999 struct drm_device *dev = ring->dev;
1000 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1001 u32 mmio = 0;
1002
1003 /* The ring status page addresses are no longer next to the rest of
1004 * the ring registers as of gen7.
1005 */
1006 if (IS_GEN7(dev)) {
1007 switch (ring->id) {
1008 case RCS:
1009 mmio = RENDER_HWS_PGA_GEN7;
1010 break;
1011 case BCS:
1012 mmio = BLT_HWS_PGA_GEN7;
1013 break;
1014 /*
1015 * VCS2 actually doesn't exist on Gen7. Only shut up
1016 * gcc switch check warning
1017 */
1018 case VCS2:
1019 case VCS:
1020 mmio = BSD_HWS_PGA_GEN7;
1021 break;
1022 case VECS:
1023 mmio = VEBOX_HWS_PGA_GEN7;
1024 break;
1025 }
1026 } else if (IS_GEN6(ring->dev)) {
1027 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1028 } else {
1029 /* XXX: gen8 returns to sanity */
1030 mmio = RING_HWS_PGA(ring->mmio_base);
1031 }
1032
1033 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1034 POSTING_READ(mmio);
1035
1036 /*
1037 * Flush the TLB for this page
1038 *
1039 * FIXME: These two bits have disappeared on gen8, so a question
1040 * arises: do we still need this and if so how should we go about
1041 * invalidating the TLB?
1042 */
1043 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1044 u32 reg = RING_INSTPM(ring->mmio_base);
1045
1046 /* ring should be idle before issuing a sync flush*/
1047 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1048
1049 I915_WRITE(reg,
1050 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1051 INSTPM_SYNC_FLUSH));
1052 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1053 1000))
1054 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1055 ring->name);
1056 }
1057 }
1058
1059 static int
1060 bsd_ring_flush(struct intel_engine_cs *ring,
1061 u32 invalidate_domains,
1062 u32 flush_domains)
1063 {
1064 int ret;
1065
1066 ret = intel_ring_begin(ring, 2);
1067 if (ret)
1068 return ret;
1069
1070 intel_ring_emit(ring, MI_FLUSH);
1071 intel_ring_emit(ring, MI_NOOP);
1072 intel_ring_advance(ring);
1073 return 0;
1074 }
1075
1076 static int
1077 i9xx_add_request(struct intel_engine_cs *ring)
1078 {
1079 int ret;
1080
1081 ret = intel_ring_begin(ring, 4);
1082 if (ret)
1083 return ret;
1084
1085 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1086 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1087 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1088 intel_ring_emit(ring, MI_USER_INTERRUPT);
1089 __intel_ring_advance(ring);
1090
1091 return 0;
1092 }
1093
1094 static bool
1095 gen6_ring_get_irq(struct intel_engine_cs *ring)
1096 {
1097 struct drm_device *dev = ring->dev;
1098 struct drm_i915_private *dev_priv = dev->dev_private;
1099 unsigned long flags;
1100
1101 if (!dev->irq_enabled)
1102 return false;
1103
1104 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1105 if (ring->irq_refcount++ == 0) {
1106 if (HAS_L3_DPF(dev) && ring->id == RCS)
1107 I915_WRITE_IMR(ring,
1108 ~(ring->irq_enable_mask |
1109 GT_PARITY_ERROR(dev)));
1110 else
1111 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1112 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1113 }
1114 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1115
1116 return true;
1117 }
1118
1119 static void
1120 gen6_ring_put_irq(struct intel_engine_cs *ring)
1121 {
1122 struct drm_device *dev = ring->dev;
1123 struct drm_i915_private *dev_priv = dev->dev_private;
1124 unsigned long flags;
1125
1126 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1127 if (--ring->irq_refcount == 0) {
1128 if (HAS_L3_DPF(dev) && ring->id == RCS)
1129 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1130 else
1131 I915_WRITE_IMR(ring, ~0);
1132 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1133 }
1134 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1135 }
1136
1137 static bool
1138 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1139 {
1140 struct drm_device *dev = ring->dev;
1141 struct drm_i915_private *dev_priv = dev->dev_private;
1142 unsigned long flags;
1143
1144 if (!dev->irq_enabled)
1145 return false;
1146
1147 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1148 if (ring->irq_refcount++ == 0) {
1149 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1150 snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1151 }
1152 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1153
1154 return true;
1155 }
1156
1157 static void
1158 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1159 {
1160 struct drm_device *dev = ring->dev;
1161 struct drm_i915_private *dev_priv = dev->dev_private;
1162 unsigned long flags;
1163
1164 if (!dev->irq_enabled)
1165 return;
1166
1167 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1168 if (--ring->irq_refcount == 0) {
1169 I915_WRITE_IMR(ring, ~0);
1170 snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1171 }
1172 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1173 }
1174
1175 static bool
1176 gen8_ring_get_irq(struct intel_engine_cs *ring)
1177 {
1178 struct drm_device *dev = ring->dev;
1179 struct drm_i915_private *dev_priv = dev->dev_private;
1180 unsigned long flags;
1181
1182 if (!dev->irq_enabled)
1183 return false;
1184
1185 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1186 if (ring->irq_refcount++ == 0) {
1187 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1188 I915_WRITE_IMR(ring,
1189 ~(ring->irq_enable_mask |
1190 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1191 } else {
1192 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1193 }
1194 POSTING_READ(RING_IMR(ring->mmio_base));
1195 }
1196 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1197
1198 return true;
1199 }
1200
1201 static void
1202 gen8_ring_put_irq(struct intel_engine_cs *ring)
1203 {
1204 struct drm_device *dev = ring->dev;
1205 struct drm_i915_private *dev_priv = dev->dev_private;
1206 unsigned long flags;
1207
1208 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1209 if (--ring->irq_refcount == 0) {
1210 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1211 I915_WRITE_IMR(ring,
1212 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1213 } else {
1214 I915_WRITE_IMR(ring, ~0);
1215 }
1216 POSTING_READ(RING_IMR(ring->mmio_base));
1217 }
1218 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1219 }
1220
1221 static int
1222 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1223 u64 offset, u32 length,
1224 unsigned flags)
1225 {
1226 int ret;
1227
1228 ret = intel_ring_begin(ring, 2);
1229 if (ret)
1230 return ret;
1231
1232 intel_ring_emit(ring,
1233 MI_BATCH_BUFFER_START |
1234 MI_BATCH_GTT |
1235 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1236 intel_ring_emit(ring, offset);
1237 intel_ring_advance(ring);
1238
1239 return 0;
1240 }
1241
1242 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1243 #define I830_BATCH_LIMIT (256*1024)
1244 static int
1245 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1246 u64 offset, u32 len,
1247 unsigned flags)
1248 {
1249 int ret;
1250
1251 if (flags & I915_DISPATCH_PINNED) {
1252 ret = intel_ring_begin(ring, 4);
1253 if (ret)
1254 return ret;
1255
1256 intel_ring_emit(ring, MI_BATCH_BUFFER);
1257 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1258 intel_ring_emit(ring, offset + len - 8);
1259 intel_ring_emit(ring, MI_NOOP);
1260 intel_ring_advance(ring);
1261 } else {
1262 u32 cs_offset = ring->scratch.gtt_offset;
1263
1264 if (len > I830_BATCH_LIMIT)
1265 return -ENOSPC;
1266
1267 ret = intel_ring_begin(ring, 9+3);
1268 if (ret)
1269 return ret;
1270 /* Blit the batch (which has now all relocs applied) to the stable batch
1271 * scratch bo area (so that the CS never stumbles over its tlb
1272 * invalidation bug) ... */
1273 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1274 XY_SRC_COPY_BLT_WRITE_ALPHA |
1275 XY_SRC_COPY_BLT_WRITE_RGB);
1276 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1277 intel_ring_emit(ring, 0);
1278 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1279 intel_ring_emit(ring, cs_offset);
1280 intel_ring_emit(ring, 0);
1281 intel_ring_emit(ring, 4096);
1282 intel_ring_emit(ring, offset);
1283 intel_ring_emit(ring, MI_FLUSH);
1284
1285 /* ... and execute it. */
1286 intel_ring_emit(ring, MI_BATCH_BUFFER);
1287 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1288 intel_ring_emit(ring, cs_offset + len - 8);
1289 intel_ring_advance(ring);
1290 }
1291
1292 return 0;
1293 }
1294
1295 static int
1296 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1297 u64 offset, u32 len,
1298 unsigned flags)
1299 {
1300 int ret;
1301
1302 ret = intel_ring_begin(ring, 2);
1303 if (ret)
1304 return ret;
1305
1306 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1307 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1308 intel_ring_advance(ring);
1309
1310 return 0;
1311 }
1312
1313 static void cleanup_status_page(struct intel_engine_cs *ring)
1314 {
1315 struct drm_i915_gem_object *obj;
1316
1317 obj = ring->status_page.obj;
1318 if (obj == NULL)
1319 return;
1320
1321 kunmap(sg_page(obj->pages->sgl));
1322 i915_gem_object_ggtt_unpin(obj);
1323 drm_gem_object_unreference(&obj->base);
1324 ring->status_page.obj = NULL;
1325 }
1326
1327 static int init_status_page(struct intel_engine_cs *ring)
1328 {
1329 struct drm_i915_gem_object *obj;
1330
1331 if ((obj = ring->status_page.obj) == NULL) {
1332 int ret;
1333
1334 obj = i915_gem_alloc_object(ring->dev, 4096);
1335 if (obj == NULL) {
1336 DRM_ERROR("Failed to allocate status page\n");
1337 return -ENOMEM;
1338 }
1339
1340 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1341 if (ret)
1342 goto err_unref;
1343
1344 ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
1345 if (ret) {
1346 err_unref:
1347 drm_gem_object_unreference(&obj->base);
1348 return ret;
1349 }
1350
1351 ring->status_page.obj = obj;
1352 }
1353
1354 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1355 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1356 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1357
1358 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1359 ring->name, ring->status_page.gfx_addr);
1360
1361 return 0;
1362 }
1363
1364 static int init_phys_status_page(struct intel_engine_cs *ring)
1365 {
1366 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1367
1368 if (!dev_priv->status_page_dmah) {
1369 dev_priv->status_page_dmah =
1370 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1371 if (!dev_priv->status_page_dmah)
1372 return -ENOMEM;
1373 }
1374
1375 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1376 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1377
1378 return 0;
1379 }
1380
1381 static int allocate_ring_buffer(struct intel_engine_cs *ring)
1382 {
1383 struct drm_device *dev = ring->dev;
1384 struct drm_i915_private *dev_priv = to_i915(dev);
1385 struct intel_ringbuffer *ringbuf = ring->buffer;
1386 struct drm_i915_gem_object *obj;
1387 int ret;
1388
1389 if (intel_ring_initialized(ring))
1390 return 0;
1391
1392 obj = NULL;
1393 if (!HAS_LLC(dev))
1394 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1395 if (obj == NULL)
1396 obj = i915_gem_alloc_object(dev, ringbuf->size);
1397 if (obj == NULL)
1398 return -ENOMEM;
1399
1400 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1401 if (ret)
1402 goto err_unref;
1403
1404 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1405 if (ret)
1406 goto err_unpin;
1407
1408 ringbuf->virtual_start =
1409 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1410 ringbuf->size);
1411 if (ringbuf->virtual_start == NULL) {
1412 ret = -EINVAL;
1413 goto err_unpin;
1414 }
1415
1416 ringbuf->obj = obj;
1417 return 0;
1418
1419 err_unpin:
1420 i915_gem_object_ggtt_unpin(obj);
1421 err_unref:
1422 drm_gem_object_unreference(&obj->base);
1423 return ret;
1424 }
1425
1426 static int intel_init_ring_buffer(struct drm_device *dev,
1427 struct intel_engine_cs *ring)
1428 {
1429 struct intel_ringbuffer *ringbuf = ring->buffer;
1430 int ret;
1431
1432 if (ringbuf == NULL) {
1433 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1434 if (!ringbuf)
1435 return -ENOMEM;
1436 ring->buffer = ringbuf;
1437 }
1438
1439 ring->dev = dev;
1440 INIT_LIST_HEAD(&ring->active_list);
1441 INIT_LIST_HEAD(&ring->request_list);
1442 ringbuf->size = 32 * PAGE_SIZE;
1443 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1444
1445 init_waitqueue_head(&ring->irq_queue);
1446
1447 if (I915_NEED_GFX_HWS(dev)) {
1448 ret = init_status_page(ring);
1449 if (ret)
1450 goto error;
1451 } else {
1452 BUG_ON(ring->id != RCS);
1453 ret = init_phys_status_page(ring);
1454 if (ret)
1455 goto error;
1456 }
1457
1458 ret = allocate_ring_buffer(ring);
1459 if (ret) {
1460 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1461 goto error;
1462 }
1463
1464 /* Workaround an erratum on the i830 which causes a hang if
1465 * the TAIL pointer points to within the last 2 cachelines
1466 * of the buffer.
1467 */
1468 ringbuf->effective_size = ringbuf->size;
1469 if (IS_I830(dev) || IS_845G(dev))
1470 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1471
1472 ret = i915_cmd_parser_init_ring(ring);
1473 if (ret)
1474 goto error;
1475
1476 ret = ring->init(ring);
1477 if (ret)
1478 goto error;
1479
1480 return 0;
1481
1482 error:
1483 kfree(ringbuf);
1484 ring->buffer = NULL;
1485 return ret;
1486 }
1487
1488 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1489 {
1490 struct drm_i915_private *dev_priv = to_i915(ring->dev);
1491 struct intel_ringbuffer *ringbuf = ring->buffer;
1492
1493 if (!intel_ring_initialized(ring))
1494 return;
1495
1496 intel_stop_ring_buffer(ring);
1497 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1498
1499 iounmap(ringbuf->virtual_start);
1500
1501 i915_gem_object_ggtt_unpin(ringbuf->obj);
1502 drm_gem_object_unreference(&ringbuf->obj->base);
1503 ringbuf->obj = NULL;
1504 ring->preallocated_lazy_request = NULL;
1505 ring->outstanding_lazy_seqno = 0;
1506
1507 if (ring->cleanup)
1508 ring->cleanup(ring);
1509
1510 cleanup_status_page(ring);
1511
1512 i915_cmd_parser_fini_ring(ring);
1513
1514 kfree(ringbuf);
1515 ring->buffer = NULL;
1516 }
1517
1518 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1519 {
1520 struct intel_ringbuffer *ringbuf = ring->buffer;
1521 struct drm_i915_gem_request *request;
1522 u32 seqno = 0;
1523 int ret;
1524
1525 if (ringbuf->last_retired_head != -1) {
1526 ringbuf->head = ringbuf->last_retired_head;
1527 ringbuf->last_retired_head = -1;
1528
1529 ringbuf->space = ring_space(ring);
1530 if (ringbuf->space >= n)
1531 return 0;
1532 }
1533
1534 list_for_each_entry(request, &ring->request_list, list) {
1535 if (__ring_space(request->tail, ringbuf->tail, ringbuf->size) >= n) {
1536 seqno = request->seqno;
1537 break;
1538 }
1539 }
1540
1541 if (seqno == 0)
1542 return -ENOSPC;
1543
1544 ret = i915_wait_seqno(ring, seqno);
1545 if (ret)
1546 return ret;
1547
1548 i915_gem_retire_requests_ring(ring);
1549 ringbuf->head = ringbuf->last_retired_head;
1550 ringbuf->last_retired_head = -1;
1551
1552 ringbuf->space = ring_space(ring);
1553 return 0;
1554 }
1555
1556 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1557 {
1558 struct drm_device *dev = ring->dev;
1559 struct drm_i915_private *dev_priv = dev->dev_private;
1560 struct intel_ringbuffer *ringbuf = ring->buffer;
1561 unsigned long end;
1562 int ret;
1563
1564 ret = intel_ring_wait_request(ring, n);
1565 if (ret != -ENOSPC)
1566 return ret;
1567
1568 /* force the tail write in case we have been skipping them */
1569 __intel_ring_advance(ring);
1570
1571 /* With GEM the hangcheck timer should kick us out of the loop,
1572 * leaving it early runs the risk of corrupting GEM state (due
1573 * to running on almost untested codepaths). But on resume
1574 * timers don't work yet, so prevent a complete hang in that
1575 * case by choosing an insanely large timeout. */
1576 end = jiffies + 60 * HZ;
1577
1578 trace_i915_ring_wait_begin(ring);
1579 do {
1580 ringbuf->head = I915_READ_HEAD(ring);
1581 ringbuf->space = ring_space(ring);
1582 if (ringbuf->space >= n) {
1583 ret = 0;
1584 break;
1585 }
1586
1587 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1588 dev->primary->master) {
1589 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1590 if (master_priv->sarea_priv)
1591 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1592 }
1593
1594 msleep(1);
1595
1596 if (dev_priv->mm.interruptible && signal_pending(current)) {
1597 ret = -ERESTARTSYS;
1598 break;
1599 }
1600
1601 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1602 dev_priv->mm.interruptible);
1603 if (ret)
1604 break;
1605
1606 if (time_after(jiffies, end)) {
1607 ret = -EBUSY;
1608 break;
1609 }
1610 } while (1);
1611 trace_i915_ring_wait_end(ring);
1612 return ret;
1613 }
1614
1615 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1616 {
1617 uint32_t __iomem *virt;
1618 struct intel_ringbuffer *ringbuf = ring->buffer;
1619 int rem = ringbuf->size - ringbuf->tail;
1620
1621 if (ringbuf->space < rem) {
1622 int ret = ring_wait_for_space(ring, rem);
1623 if (ret)
1624 return ret;
1625 }
1626
1627 virt = ringbuf->virtual_start + ringbuf->tail;
1628 rem /= 4;
1629 while (rem--)
1630 iowrite32(MI_NOOP, virt++);
1631
1632 ringbuf->tail = 0;
1633 ringbuf->space = ring_space(ring);
1634
1635 return 0;
1636 }
1637
1638 int intel_ring_idle(struct intel_engine_cs *ring)
1639 {
1640 u32 seqno;
1641 int ret;
1642
1643 /* We need to add any requests required to flush the objects and ring */
1644 if (ring->outstanding_lazy_seqno) {
1645 ret = i915_add_request(ring, NULL);
1646 if (ret)
1647 return ret;
1648 }
1649
1650 /* Wait upon the last request to be completed */
1651 if (list_empty(&ring->request_list))
1652 return 0;
1653
1654 seqno = list_entry(ring->request_list.prev,
1655 struct drm_i915_gem_request,
1656 list)->seqno;
1657
1658 return i915_wait_seqno(ring, seqno);
1659 }
1660
1661 static int
1662 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
1663 {
1664 if (ring->outstanding_lazy_seqno)
1665 return 0;
1666
1667 if (ring->preallocated_lazy_request == NULL) {
1668 struct drm_i915_gem_request *request;
1669
1670 request = kmalloc(sizeof(*request), GFP_KERNEL);
1671 if (request == NULL)
1672 return -ENOMEM;
1673
1674 ring->preallocated_lazy_request = request;
1675 }
1676
1677 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1678 }
1679
1680 static int __intel_ring_prepare(struct intel_engine_cs *ring,
1681 int bytes)
1682 {
1683 struct intel_ringbuffer *ringbuf = ring->buffer;
1684 int ret;
1685
1686 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1687 ret = intel_wrap_ring_buffer(ring);
1688 if (unlikely(ret))
1689 return ret;
1690 }
1691
1692 if (unlikely(ringbuf->space < bytes)) {
1693 ret = ring_wait_for_space(ring, bytes);
1694 if (unlikely(ret))
1695 return ret;
1696 }
1697
1698 return 0;
1699 }
1700
1701 int intel_ring_begin(struct intel_engine_cs *ring,
1702 int num_dwords)
1703 {
1704 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1705 int ret;
1706
1707 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1708 dev_priv->mm.interruptible);
1709 if (ret)
1710 return ret;
1711
1712 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1713 if (ret)
1714 return ret;
1715
1716 /* Preallocate the olr before touching the ring */
1717 ret = intel_ring_alloc_seqno(ring);
1718 if (ret)
1719 return ret;
1720
1721 ring->buffer->space -= num_dwords * sizeof(uint32_t);
1722 return 0;
1723 }
1724
1725 /* Align the ring tail to a cacheline boundary */
1726 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
1727 {
1728 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1729 int ret;
1730
1731 if (num_dwords == 0)
1732 return 0;
1733
1734 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1735 ret = intel_ring_begin(ring, num_dwords);
1736 if (ret)
1737 return ret;
1738
1739 while (num_dwords--)
1740 intel_ring_emit(ring, MI_NOOP);
1741
1742 intel_ring_advance(ring);
1743
1744 return 0;
1745 }
1746
1747 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
1748 {
1749 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1750
1751 BUG_ON(ring->outstanding_lazy_seqno);
1752
1753 if (INTEL_INFO(ring->dev)->gen >= 6) {
1754 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1755 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1756 if (HAS_VEBOX(ring->dev))
1757 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1758 }
1759
1760 ring->set_seqno(ring, seqno);
1761 ring->hangcheck.seqno = seqno;
1762 }
1763
1764 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
1765 u32 value)
1766 {
1767 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1768
1769 /* Every tail move must follow the sequence below */
1770
1771 /* Disable notification that the ring is IDLE. The GT
1772 * will then assume that it is busy and bring it out of rc6.
1773 */
1774 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1775 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1776
1777 /* Clear the context id. Here be magic! */
1778 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1779
1780 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1781 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1782 GEN6_BSD_SLEEP_INDICATOR) == 0,
1783 50))
1784 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1785
1786 /* Now that the ring is fully powered up, update the tail */
1787 I915_WRITE_TAIL(ring, value);
1788 POSTING_READ(RING_TAIL(ring->mmio_base));
1789
1790 /* Let the ring send IDLE messages to the GT again,
1791 * and so let it sleep to conserve power when idle.
1792 */
1793 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1794 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1795 }
1796
1797 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
1798 u32 invalidate, u32 flush)
1799 {
1800 uint32_t cmd;
1801 int ret;
1802
1803 ret = intel_ring_begin(ring, 4);
1804 if (ret)
1805 return ret;
1806
1807 cmd = MI_FLUSH_DW;
1808 if (INTEL_INFO(ring->dev)->gen >= 8)
1809 cmd += 1;
1810 /*
1811 * Bspec vol 1c.5 - video engine command streamer:
1812 * "If ENABLED, all TLBs will be invalidated once the flush
1813 * operation is complete. This bit is only valid when the
1814 * Post-Sync Operation field is a value of 1h or 3h."
1815 */
1816 if (invalidate & I915_GEM_GPU_DOMAINS)
1817 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1818 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1819 intel_ring_emit(ring, cmd);
1820 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1821 if (INTEL_INFO(ring->dev)->gen >= 8) {
1822 intel_ring_emit(ring, 0); /* upper addr */
1823 intel_ring_emit(ring, 0); /* value */
1824 } else {
1825 intel_ring_emit(ring, 0);
1826 intel_ring_emit(ring, MI_NOOP);
1827 }
1828 intel_ring_advance(ring);
1829 return 0;
1830 }
1831
1832 static int
1833 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1834 u64 offset, u32 len,
1835 unsigned flags)
1836 {
1837 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1838 bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1839 !(flags & I915_DISPATCH_SECURE);
1840 int ret;
1841
1842 ret = intel_ring_begin(ring, 4);
1843 if (ret)
1844 return ret;
1845
1846 /* FIXME(BDW): Address space and security selectors. */
1847 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1848 intel_ring_emit(ring, lower_32_bits(offset));
1849 intel_ring_emit(ring, upper_32_bits(offset));
1850 intel_ring_emit(ring, MI_NOOP);
1851 intel_ring_advance(ring);
1852
1853 return 0;
1854 }
1855
1856 static int
1857 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1858 u64 offset, u32 len,
1859 unsigned flags)
1860 {
1861 int ret;
1862
1863 ret = intel_ring_begin(ring, 2);
1864 if (ret)
1865 return ret;
1866
1867 intel_ring_emit(ring,
1868 MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1869 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1870 /* bit0-7 is the length on GEN6+ */
1871 intel_ring_emit(ring, offset);
1872 intel_ring_advance(ring);
1873
1874 return 0;
1875 }
1876
1877 static int
1878 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1879 u64 offset, u32 len,
1880 unsigned flags)
1881 {
1882 int ret;
1883
1884 ret = intel_ring_begin(ring, 2);
1885 if (ret)
1886 return ret;
1887
1888 intel_ring_emit(ring,
1889 MI_BATCH_BUFFER_START |
1890 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1891 /* bit0-7 is the length on GEN6+ */
1892 intel_ring_emit(ring, offset);
1893 intel_ring_advance(ring);
1894
1895 return 0;
1896 }
1897
1898 /* Blitter support (SandyBridge+) */
1899
1900 static int gen6_ring_flush(struct intel_engine_cs *ring,
1901 u32 invalidate, u32 flush)
1902 {
1903 struct drm_device *dev = ring->dev;
1904 uint32_t cmd;
1905 int ret;
1906
1907 ret = intel_ring_begin(ring, 4);
1908 if (ret)
1909 return ret;
1910
1911 cmd = MI_FLUSH_DW;
1912 if (INTEL_INFO(ring->dev)->gen >= 8)
1913 cmd += 1;
1914 /*
1915 * Bspec vol 1c.3 - blitter engine command streamer:
1916 * "If ENABLED, all TLBs will be invalidated once the flush
1917 * operation is complete. This bit is only valid when the
1918 * Post-Sync Operation field is a value of 1h or 3h."
1919 */
1920 if (invalidate & I915_GEM_DOMAIN_RENDER)
1921 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1922 MI_FLUSH_DW_OP_STOREDW;
1923 intel_ring_emit(ring, cmd);
1924 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1925 if (INTEL_INFO(ring->dev)->gen >= 8) {
1926 intel_ring_emit(ring, 0); /* upper addr */
1927 intel_ring_emit(ring, 0); /* value */
1928 } else {
1929 intel_ring_emit(ring, 0);
1930 intel_ring_emit(ring, MI_NOOP);
1931 }
1932 intel_ring_advance(ring);
1933
1934 if (IS_GEN7(dev) && !invalidate && flush)
1935 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1936
1937 return 0;
1938 }
1939
1940 int intel_init_render_ring_buffer(struct drm_device *dev)
1941 {
1942 struct drm_i915_private *dev_priv = dev->dev_private;
1943 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1944
1945 ring->name = "render ring";
1946 ring->id = RCS;
1947 ring->mmio_base = RENDER_RING_BASE;
1948
1949 if (INTEL_INFO(dev)->gen >= 6) {
1950 ring->add_request = gen6_add_request;
1951 ring->flush = gen7_render_ring_flush;
1952 if (INTEL_INFO(dev)->gen == 6)
1953 ring->flush = gen6_render_ring_flush;
1954 if (INTEL_INFO(dev)->gen >= 8) {
1955 ring->flush = gen8_render_ring_flush;
1956 ring->irq_get = gen8_ring_get_irq;
1957 ring->irq_put = gen8_ring_put_irq;
1958 } else {
1959 ring->irq_get = gen6_ring_get_irq;
1960 ring->irq_put = gen6_ring_put_irq;
1961 }
1962 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1963 ring->get_seqno = gen6_ring_get_seqno;
1964 ring->set_seqno = ring_set_seqno;
1965 ring->semaphore.sync_to = gen6_ring_sync;
1966 ring->semaphore.signal = gen6_signal;
1967 /*
1968 * The current semaphore is only applied on pre-gen8 platform.
1969 * And there is no VCS2 ring on the pre-gen8 platform. So the
1970 * semaphore between RCS and VCS2 is initialized as INVALID.
1971 * Gen8 will initialize the sema between VCS2 and RCS later.
1972 */
1973 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1974 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
1975 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
1976 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
1977 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
1978 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
1979 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
1980 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
1981 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
1982 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
1983 } else if (IS_GEN5(dev)) {
1984 ring->add_request = pc_render_add_request;
1985 ring->flush = gen4_render_ring_flush;
1986 ring->get_seqno = pc_render_get_seqno;
1987 ring->set_seqno = pc_render_set_seqno;
1988 ring->irq_get = gen5_ring_get_irq;
1989 ring->irq_put = gen5_ring_put_irq;
1990 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1991 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1992 } else {
1993 ring->add_request = i9xx_add_request;
1994 if (INTEL_INFO(dev)->gen < 4)
1995 ring->flush = gen2_render_ring_flush;
1996 else
1997 ring->flush = gen4_render_ring_flush;
1998 ring->get_seqno = ring_get_seqno;
1999 ring->set_seqno = ring_set_seqno;
2000 if (IS_GEN2(dev)) {
2001 ring->irq_get = i8xx_ring_get_irq;
2002 ring->irq_put = i8xx_ring_put_irq;
2003 } else {
2004 ring->irq_get = i9xx_ring_get_irq;
2005 ring->irq_put = i9xx_ring_put_irq;
2006 }
2007 ring->irq_enable_mask = I915_USER_INTERRUPT;
2008 }
2009 ring->write_tail = ring_write_tail;
2010 if (IS_HASWELL(dev))
2011 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2012 else if (IS_GEN8(dev))
2013 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2014 else if (INTEL_INFO(dev)->gen >= 6)
2015 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2016 else if (INTEL_INFO(dev)->gen >= 4)
2017 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2018 else if (IS_I830(dev) || IS_845G(dev))
2019 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2020 else
2021 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2022 ring->init = init_render_ring;
2023 ring->cleanup = render_ring_cleanup;
2024
2025 /* Workaround batchbuffer to combat CS tlb bug. */
2026 if (HAS_BROKEN_CS_TLB(dev)) {
2027 struct drm_i915_gem_object *obj;
2028 int ret;
2029
2030 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
2031 if (obj == NULL) {
2032 DRM_ERROR("Failed to allocate batch bo\n");
2033 return -ENOMEM;
2034 }
2035
2036 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2037 if (ret != 0) {
2038 drm_gem_object_unreference(&obj->base);
2039 DRM_ERROR("Failed to ping batch bo\n");
2040 return ret;
2041 }
2042
2043 ring->scratch.obj = obj;
2044 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2045 }
2046
2047 return intel_init_ring_buffer(dev, ring);
2048 }
2049
2050 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2051 {
2052 struct drm_i915_private *dev_priv = dev->dev_private;
2053 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2054 struct intel_ringbuffer *ringbuf = ring->buffer;
2055 int ret;
2056
2057 if (ringbuf == NULL) {
2058 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2059 if (!ringbuf)
2060 return -ENOMEM;
2061 ring->buffer = ringbuf;
2062 }
2063
2064 ring->name = "render ring";
2065 ring->id = RCS;
2066 ring->mmio_base = RENDER_RING_BASE;
2067
2068 if (INTEL_INFO(dev)->gen >= 6) {
2069 /* non-kms not supported on gen6+ */
2070 ret = -ENODEV;
2071 goto err_ringbuf;
2072 }
2073
2074 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2075 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2076 * the special gen5 functions. */
2077 ring->add_request = i9xx_add_request;
2078 if (INTEL_INFO(dev)->gen < 4)
2079 ring->flush = gen2_render_ring_flush;
2080 else
2081 ring->flush = gen4_render_ring_flush;
2082 ring->get_seqno = ring_get_seqno;
2083 ring->set_seqno = ring_set_seqno;
2084 if (IS_GEN2(dev)) {
2085 ring->irq_get = i8xx_ring_get_irq;
2086 ring->irq_put = i8xx_ring_put_irq;
2087 } else {
2088 ring->irq_get = i9xx_ring_get_irq;
2089 ring->irq_put = i9xx_ring_put_irq;
2090 }
2091 ring->irq_enable_mask = I915_USER_INTERRUPT;
2092 ring->write_tail = ring_write_tail;
2093 if (INTEL_INFO(dev)->gen >= 4)
2094 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2095 else if (IS_I830(dev) || IS_845G(dev))
2096 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2097 else
2098 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2099 ring->init = init_render_ring;
2100 ring->cleanup = render_ring_cleanup;
2101
2102 ring->dev = dev;
2103 INIT_LIST_HEAD(&ring->active_list);
2104 INIT_LIST_HEAD(&ring->request_list);
2105
2106 ringbuf->size = size;
2107 ringbuf->effective_size = ringbuf->size;
2108 if (IS_I830(ring->dev) || IS_845G(ring->dev))
2109 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2110
2111 ringbuf->virtual_start = ioremap_wc(start, size);
2112 if (ringbuf->virtual_start == NULL) {
2113 DRM_ERROR("can not ioremap virtual address for"
2114 " ring buffer\n");
2115 ret = -ENOMEM;
2116 goto err_ringbuf;
2117 }
2118
2119 if (!I915_NEED_GFX_HWS(dev)) {
2120 ret = init_phys_status_page(ring);
2121 if (ret)
2122 goto err_vstart;
2123 }
2124
2125 return 0;
2126
2127 err_vstart:
2128 iounmap(ringbuf->virtual_start);
2129 err_ringbuf:
2130 kfree(ringbuf);
2131 ring->buffer = NULL;
2132 return ret;
2133 }
2134
2135 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2136 {
2137 struct drm_i915_private *dev_priv = dev->dev_private;
2138 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2139
2140 ring->name = "bsd ring";
2141 ring->id = VCS;
2142
2143 ring->write_tail = ring_write_tail;
2144 if (INTEL_INFO(dev)->gen >= 6) {
2145 ring->mmio_base = GEN6_BSD_RING_BASE;
2146 /* gen6 bsd needs a special wa for tail updates */
2147 if (IS_GEN6(dev))
2148 ring->write_tail = gen6_bsd_ring_write_tail;
2149 ring->flush = gen6_bsd_ring_flush;
2150 ring->add_request = gen6_add_request;
2151 ring->get_seqno = gen6_ring_get_seqno;
2152 ring->set_seqno = ring_set_seqno;
2153 if (INTEL_INFO(dev)->gen >= 8) {
2154 ring->irq_enable_mask =
2155 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2156 ring->irq_get = gen8_ring_get_irq;
2157 ring->irq_put = gen8_ring_put_irq;
2158 ring->dispatch_execbuffer =
2159 gen8_ring_dispatch_execbuffer;
2160 } else {
2161 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2162 ring->irq_get = gen6_ring_get_irq;
2163 ring->irq_put = gen6_ring_put_irq;
2164 ring->dispatch_execbuffer =
2165 gen6_ring_dispatch_execbuffer;
2166 }
2167 ring->semaphore.sync_to = gen6_ring_sync;
2168 ring->semaphore.signal = gen6_signal;
2169 /*
2170 * The current semaphore is only applied on pre-gen8 platform.
2171 * And there is no VCS2 ring on the pre-gen8 platform. So the
2172 * semaphore between VCS and VCS2 is initialized as INVALID.
2173 * Gen8 will initialize the sema between VCS2 and VCS later.
2174 */
2175 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2176 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2177 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2178 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2179 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2180 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2181 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2182 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2183 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2184 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2185 } else {
2186 ring->mmio_base = BSD_RING_BASE;
2187 ring->flush = bsd_ring_flush;
2188 ring->add_request = i9xx_add_request;
2189 ring->get_seqno = ring_get_seqno;
2190 ring->set_seqno = ring_set_seqno;
2191 if (IS_GEN5(dev)) {
2192 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2193 ring->irq_get = gen5_ring_get_irq;
2194 ring->irq_put = gen5_ring_put_irq;
2195 } else {
2196 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2197 ring->irq_get = i9xx_ring_get_irq;
2198 ring->irq_put = i9xx_ring_put_irq;
2199 }
2200 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2201 }
2202 ring->init = init_ring_common;
2203
2204 return intel_init_ring_buffer(dev, ring);
2205 }
2206
2207 /**
2208 * Initialize the second BSD ring for Broadwell GT3.
2209 * It is noted that this only exists on Broadwell GT3.
2210 */
2211 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2212 {
2213 struct drm_i915_private *dev_priv = dev->dev_private;
2214 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2215
2216 if ((INTEL_INFO(dev)->gen != 8)) {
2217 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2218 return -EINVAL;
2219 }
2220
2221 ring->name = "bds2_ring";
2222 ring->id = VCS2;
2223
2224 ring->write_tail = ring_write_tail;
2225 ring->mmio_base = GEN8_BSD2_RING_BASE;
2226 ring->flush = gen6_bsd_ring_flush;
2227 ring->add_request = gen6_add_request;
2228 ring->get_seqno = gen6_ring_get_seqno;
2229 ring->set_seqno = ring_set_seqno;
2230 ring->irq_enable_mask =
2231 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2232 ring->irq_get = gen8_ring_get_irq;
2233 ring->irq_put = gen8_ring_put_irq;
2234 ring->dispatch_execbuffer =
2235 gen8_ring_dispatch_execbuffer;
2236 ring->semaphore.sync_to = gen6_ring_sync;
2237 ring->semaphore.signal = gen6_signal;
2238 /*
2239 * The current semaphore is only applied on the pre-gen8. And there
2240 * is no bsd2 ring on the pre-gen8. So now the semaphore_register
2241 * between VCS2 and other ring is initialized as invalid.
2242 * Gen8 will initialize the sema between VCS2 and other ring later.
2243 */
2244 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2245 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2246 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2247 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2248 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2249 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2250 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2251 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2252 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2253 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2254
2255 ring->init = init_ring_common;
2256
2257 return intel_init_ring_buffer(dev, ring);
2258 }
2259
2260 int intel_init_blt_ring_buffer(struct drm_device *dev)
2261 {
2262 struct drm_i915_private *dev_priv = dev->dev_private;
2263 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2264
2265 ring->name = "blitter ring";
2266 ring->id = BCS;
2267
2268 ring->mmio_base = BLT_RING_BASE;
2269 ring->write_tail = ring_write_tail;
2270 ring->flush = gen6_ring_flush;
2271 ring->add_request = gen6_add_request;
2272 ring->get_seqno = gen6_ring_get_seqno;
2273 ring->set_seqno = ring_set_seqno;
2274 if (INTEL_INFO(dev)->gen >= 8) {
2275 ring->irq_enable_mask =
2276 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2277 ring->irq_get = gen8_ring_get_irq;
2278 ring->irq_put = gen8_ring_put_irq;
2279 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2280 } else {
2281 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2282 ring->irq_get = gen6_ring_get_irq;
2283 ring->irq_put = gen6_ring_put_irq;
2284 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2285 }
2286 ring->semaphore.sync_to = gen6_ring_sync;
2287 ring->semaphore.signal = gen6_signal;
2288 /*
2289 * The current semaphore is only applied on pre-gen8 platform. And
2290 * there is no VCS2 ring on the pre-gen8 platform. So the semaphore
2291 * between BCS and VCS2 is initialized as INVALID.
2292 * Gen8 will initialize the sema between BCS and VCS2 later.
2293 */
2294 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2295 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2296 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2297 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2298 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2299 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2300 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2301 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2302 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2303 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2304 ring->init = init_ring_common;
2305
2306 return intel_init_ring_buffer(dev, ring);
2307 }
2308
2309 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2310 {
2311 struct drm_i915_private *dev_priv = dev->dev_private;
2312 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2313
2314 ring->name = "video enhancement ring";
2315 ring->id = VECS;
2316
2317 ring->mmio_base = VEBOX_RING_BASE;
2318 ring->write_tail = ring_write_tail;
2319 ring->flush = gen6_ring_flush;
2320 ring->add_request = gen6_add_request;
2321 ring->get_seqno = gen6_ring_get_seqno;
2322 ring->set_seqno = ring_set_seqno;
2323
2324 if (INTEL_INFO(dev)->gen >= 8) {
2325 ring->irq_enable_mask =
2326 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2327 ring->irq_get = gen8_ring_get_irq;
2328 ring->irq_put = gen8_ring_put_irq;
2329 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2330 } else {
2331 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2332 ring->irq_get = hsw_vebox_get_irq;
2333 ring->irq_put = hsw_vebox_put_irq;
2334 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2335 }
2336 ring->semaphore.sync_to = gen6_ring_sync;
2337 ring->semaphore.signal = gen6_signal;
2338 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2339 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2340 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2341 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2342 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2343 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2344 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2345 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2346 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2347 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2348 ring->init = init_ring_common;
2349
2350 return intel_init_ring_buffer(dev, ring);
2351 }
2352
2353 int
2354 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2355 {
2356 int ret;
2357
2358 if (!ring->gpu_caches_dirty)
2359 return 0;
2360
2361 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2362 if (ret)
2363 return ret;
2364
2365 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2366
2367 ring->gpu_caches_dirty = false;
2368 return 0;
2369 }
2370
2371 int
2372 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2373 {
2374 uint32_t flush_domains;
2375 int ret;
2376
2377 flush_domains = 0;
2378 if (ring->gpu_caches_dirty)
2379 flush_domains = I915_GEM_GPU_DOMAINS;
2380
2381 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2382 if (ret)
2383 return ret;
2384
2385 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2386
2387 ring->gpu_caches_dirty = false;
2388 return 0;
2389 }
2390
2391 void
2392 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2393 {
2394 int ret;
2395
2396 if (!intel_ring_initialized(ring))
2397 return;
2398
2399 ret = intel_ring_idle(ring);
2400 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2401 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2402 ring->name, ret);
2403
2404 stop_ring(ring);
2405 }
This page took 0.138624 seconds and 6 git commands to generate.