drm/i915: WA: FBC Render Nuke.
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 /*
37 * 965+ support PIPE_CONTROL commands, which provide finer grained control
38 * over cache flushing.
39 */
40 struct pipe_control {
41 struct drm_i915_gem_object *obj;
42 volatile u32 *cpu_page;
43 u32 gtt_offset;
44 };
45
46 static inline int ring_space(struct intel_ring_buffer *ring)
47 {
48 int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
49 if (space < 0)
50 space += ring->size;
51 return space;
52 }
53
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56 u32 invalidate_domains,
57 u32 flush_domains)
58 {
59 u32 cmd;
60 int ret;
61
62 cmd = MI_FLUSH;
63 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64 cmd |= MI_NO_WRITE_FLUSH;
65
66 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67 cmd |= MI_READ_FLUSH;
68
69 ret = intel_ring_begin(ring, 2);
70 if (ret)
71 return ret;
72
73 intel_ring_emit(ring, cmd);
74 intel_ring_emit(ring, MI_NOOP);
75 intel_ring_advance(ring);
76
77 return 0;
78 }
79
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82 u32 invalidate_domains,
83 u32 flush_domains)
84 {
85 struct drm_device *dev = ring->dev;
86 u32 cmd;
87 int ret;
88
89 /*
90 * read/write caches:
91 *
92 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
94 * also flushed at 2d versus 3d pipeline switches.
95 *
96 * read-only caches:
97 *
98 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99 * MI_READ_FLUSH is set, and is always flushed on 965.
100 *
101 * I915_GEM_DOMAIN_COMMAND may not exist?
102 *
103 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104 * invalidated when MI_EXE_FLUSH is set.
105 *
106 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107 * invalidated with every MI_FLUSH.
108 *
109 * TLBs:
110 *
111 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114 * are flushed at any MI_FLUSH.
115 */
116
117 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119 cmd &= ~MI_NO_WRITE_FLUSH;
120 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121 cmd |= MI_EXE_FLUSH;
122
123 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124 (IS_G4X(dev) || IS_GEN5(dev)))
125 cmd |= MI_INVALIDATE_ISP;
126
127 ret = intel_ring_begin(ring, 2);
128 if (ret)
129 return ret;
130
131 intel_ring_emit(ring, cmd);
132 intel_ring_emit(ring, MI_NOOP);
133 intel_ring_advance(ring);
134
135 return 0;
136 }
137
138 /**
139 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140 * implementing two workarounds on gen6. From section 1.4.7.1
141 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142 *
143 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144 * produced by non-pipelined state commands), software needs to first
145 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146 * 0.
147 *
148 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150 *
151 * And the workaround for these two requires this workaround first:
152 *
153 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154 * BEFORE the pipe-control with a post-sync op and no write-cache
155 * flushes.
156 *
157 * And this last workaround is tricky because of the requirements on
158 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159 * volume 2 part 1:
160 *
161 * "1 of the following must also be set:
162 * - Render Target Cache Flush Enable ([12] of DW1)
163 * - Depth Cache Flush Enable ([0] of DW1)
164 * - Stall at Pixel Scoreboard ([1] of DW1)
165 * - Depth Stall ([13] of DW1)
166 * - Post-Sync Operation ([13] of DW1)
167 * - Notify Enable ([8] of DW1)"
168 *
169 * The cache flushes require the workaround flush that triggered this
170 * one, so we can't use it. Depth stall would trigger the same.
171 * Post-sync nonzero is what triggered this second workaround, so we
172 * can't use that one either. Notify enable is IRQs, which aren't
173 * really our business. That leaves only stall at scoreboard.
174 */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178 struct pipe_control *pc = ring->private;
179 u32 scratch_addr = pc->gtt_offset + 128;
180 int ret;
181
182
183 ret = intel_ring_begin(ring, 6);
184 if (ret)
185 return ret;
186
187 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
188 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
189 PIPE_CONTROL_STALL_AT_SCOREBOARD);
190 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
191 intel_ring_emit(ring, 0); /* low dword */
192 intel_ring_emit(ring, 0); /* high dword */
193 intel_ring_emit(ring, MI_NOOP);
194 intel_ring_advance(ring);
195
196 ret = intel_ring_begin(ring, 6);
197 if (ret)
198 return ret;
199
200 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
201 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
202 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
203 intel_ring_emit(ring, 0);
204 intel_ring_emit(ring, 0);
205 intel_ring_emit(ring, MI_NOOP);
206 intel_ring_advance(ring);
207
208 return 0;
209 }
210
211 static int
212 gen6_render_ring_flush(struct intel_ring_buffer *ring,
213 u32 invalidate_domains, u32 flush_domains)
214 {
215 u32 flags = 0;
216 struct pipe_control *pc = ring->private;
217 u32 scratch_addr = pc->gtt_offset + 128;
218 int ret;
219
220 /* Force SNB workarounds for PIPE_CONTROL flushes */
221 ret = intel_emit_post_sync_nonzero_flush(ring);
222 if (ret)
223 return ret;
224
225 /* Just flush everything. Experiments have shown that reducing the
226 * number of bits based on the write domains has little performance
227 * impact.
228 */
229 if (flush_domains) {
230 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
231 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
232 /*
233 * Ensure that any following seqno writes only happen
234 * when the render cache is indeed flushed.
235 */
236 flags |= PIPE_CONTROL_CS_STALL;
237 }
238 if (invalidate_domains) {
239 flags |= PIPE_CONTROL_TLB_INVALIDATE;
240 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
243 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
244 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
245 /*
246 * TLB invalidate requires a post-sync write.
247 */
248 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
249 }
250
251 ret = intel_ring_begin(ring, 4);
252 if (ret)
253 return ret;
254
255 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
256 intel_ring_emit(ring, flags);
257 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
258 intel_ring_emit(ring, 0);
259 intel_ring_advance(ring);
260
261 return 0;
262 }
263
264 static int
265 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
266 {
267 int ret;
268
269 ret = intel_ring_begin(ring, 4);
270 if (ret)
271 return ret;
272
273 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
274 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
275 PIPE_CONTROL_STALL_AT_SCOREBOARD);
276 intel_ring_emit(ring, 0);
277 intel_ring_emit(ring, 0);
278 intel_ring_advance(ring);
279
280 return 0;
281 }
282
283 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
284 {
285 int ret;
286
287 if (!ring->fbc_dirty)
288 return 0;
289
290 ret = intel_ring_begin(ring, 4);
291 if (ret)
292 return ret;
293 intel_ring_emit(ring, MI_NOOP);
294 /* WaFbcNukeOn3DBlt:ivb/hsw */
295 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
296 intel_ring_emit(ring, MSG_FBC_REND_STATE);
297 intel_ring_emit(ring, value);
298 intel_ring_advance(ring);
299
300 ring->fbc_dirty = false;
301 return 0;
302 }
303
304 static int
305 gen7_render_ring_flush(struct intel_ring_buffer *ring,
306 u32 invalidate_domains, u32 flush_domains)
307 {
308 u32 flags = 0;
309 struct pipe_control *pc = ring->private;
310 u32 scratch_addr = pc->gtt_offset + 128;
311 int ret;
312
313 /*
314 * Ensure that any following seqno writes only happen when the render
315 * cache is indeed flushed.
316 *
317 * Workaround: 4th PIPE_CONTROL command (except the ones with only
318 * read-cache invalidate bits set) must have the CS_STALL bit set. We
319 * don't try to be clever and just set it unconditionally.
320 */
321 flags |= PIPE_CONTROL_CS_STALL;
322
323 /* Just flush everything. Experiments have shown that reducing the
324 * number of bits based on the write domains has little performance
325 * impact.
326 */
327 if (flush_domains) {
328 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
329 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
330 }
331 if (invalidate_domains) {
332 flags |= PIPE_CONTROL_TLB_INVALIDATE;
333 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
334 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
335 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
336 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
337 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
338 /*
339 * TLB invalidate requires a post-sync write.
340 */
341 flags |= PIPE_CONTROL_QW_WRITE;
342 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
343
344 /* Workaround: we must issue a pipe_control with CS-stall bit
345 * set before a pipe_control command that has the state cache
346 * invalidate bit set. */
347 gen7_render_ring_cs_stall_wa(ring);
348 }
349
350 ret = intel_ring_begin(ring, 4);
351 if (ret)
352 return ret;
353
354 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
355 intel_ring_emit(ring, flags);
356 intel_ring_emit(ring, scratch_addr);
357 intel_ring_emit(ring, 0);
358 intel_ring_advance(ring);
359
360 if (flush_domains)
361 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
362
363 return 0;
364 }
365
366 static void ring_write_tail(struct intel_ring_buffer *ring,
367 u32 value)
368 {
369 drm_i915_private_t *dev_priv = ring->dev->dev_private;
370 I915_WRITE_TAIL(ring, value);
371 }
372
373 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
374 {
375 drm_i915_private_t *dev_priv = ring->dev->dev_private;
376 u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
377 RING_ACTHD(ring->mmio_base) : ACTHD;
378
379 return I915_READ(acthd_reg);
380 }
381
382 static int init_ring_common(struct intel_ring_buffer *ring)
383 {
384 struct drm_device *dev = ring->dev;
385 drm_i915_private_t *dev_priv = dev->dev_private;
386 struct drm_i915_gem_object *obj = ring->obj;
387 int ret = 0;
388 u32 head;
389
390 if (HAS_FORCE_WAKE(dev))
391 gen6_gt_force_wake_get(dev_priv);
392
393 /* Stop the ring if it's running. */
394 I915_WRITE_CTL(ring, 0);
395 I915_WRITE_HEAD(ring, 0);
396 ring->write_tail(ring, 0);
397
398 head = I915_READ_HEAD(ring) & HEAD_ADDR;
399
400 /* G45 ring initialization fails to reset head to zero */
401 if (head != 0) {
402 DRM_DEBUG_KMS("%s head not reset to zero "
403 "ctl %08x head %08x tail %08x start %08x\n",
404 ring->name,
405 I915_READ_CTL(ring),
406 I915_READ_HEAD(ring),
407 I915_READ_TAIL(ring),
408 I915_READ_START(ring));
409
410 I915_WRITE_HEAD(ring, 0);
411
412 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
413 DRM_ERROR("failed to set %s head to zero "
414 "ctl %08x head %08x tail %08x start %08x\n",
415 ring->name,
416 I915_READ_CTL(ring),
417 I915_READ_HEAD(ring),
418 I915_READ_TAIL(ring),
419 I915_READ_START(ring));
420 }
421 }
422
423 /* Initialize the ring. This must happen _after_ we've cleared the ring
424 * registers with the above sequence (the readback of the HEAD registers
425 * also enforces ordering), otherwise the hw might lose the new ring
426 * register values. */
427 I915_WRITE_START(ring, obj->gtt_offset);
428 I915_WRITE_CTL(ring,
429 ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
430 | RING_VALID);
431
432 /* If the head is still not zero, the ring is dead */
433 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
434 I915_READ_START(ring) == obj->gtt_offset &&
435 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
436 DRM_ERROR("%s initialization failed "
437 "ctl %08x head %08x tail %08x start %08x\n",
438 ring->name,
439 I915_READ_CTL(ring),
440 I915_READ_HEAD(ring),
441 I915_READ_TAIL(ring),
442 I915_READ_START(ring));
443 ret = -EIO;
444 goto out;
445 }
446
447 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
448 i915_kernel_lost_context(ring->dev);
449 else {
450 ring->head = I915_READ_HEAD(ring);
451 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
452 ring->space = ring_space(ring);
453 ring->last_retired_head = -1;
454 }
455
456 out:
457 if (HAS_FORCE_WAKE(dev))
458 gen6_gt_force_wake_put(dev_priv);
459
460 return ret;
461 }
462
463 static int
464 init_pipe_control(struct intel_ring_buffer *ring)
465 {
466 struct pipe_control *pc;
467 struct drm_i915_gem_object *obj;
468 int ret;
469
470 if (ring->private)
471 return 0;
472
473 pc = kmalloc(sizeof(*pc), GFP_KERNEL);
474 if (!pc)
475 return -ENOMEM;
476
477 obj = i915_gem_alloc_object(ring->dev, 4096);
478 if (obj == NULL) {
479 DRM_ERROR("Failed to allocate seqno page\n");
480 ret = -ENOMEM;
481 goto err;
482 }
483
484 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
485
486 ret = i915_gem_object_pin(obj, 4096, true, false);
487 if (ret)
488 goto err_unref;
489
490 pc->gtt_offset = obj->gtt_offset;
491 pc->cpu_page = kmap(sg_page(obj->pages->sgl));
492 if (pc->cpu_page == NULL) {
493 ret = -ENOMEM;
494 goto err_unpin;
495 }
496
497 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
498 ring->name, pc->gtt_offset);
499
500 pc->obj = obj;
501 ring->private = pc;
502 return 0;
503
504 err_unpin:
505 i915_gem_object_unpin(obj);
506 err_unref:
507 drm_gem_object_unreference(&obj->base);
508 err:
509 kfree(pc);
510 return ret;
511 }
512
513 static void
514 cleanup_pipe_control(struct intel_ring_buffer *ring)
515 {
516 struct pipe_control *pc = ring->private;
517 struct drm_i915_gem_object *obj;
518
519 if (!ring->private)
520 return;
521
522 obj = pc->obj;
523
524 kunmap(sg_page(obj->pages->sgl));
525 i915_gem_object_unpin(obj);
526 drm_gem_object_unreference(&obj->base);
527
528 kfree(pc);
529 ring->private = NULL;
530 }
531
532 static int init_render_ring(struct intel_ring_buffer *ring)
533 {
534 struct drm_device *dev = ring->dev;
535 struct drm_i915_private *dev_priv = dev->dev_private;
536 int ret = init_ring_common(ring);
537
538 if (INTEL_INFO(dev)->gen > 3)
539 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
540
541 /* We need to disable the AsyncFlip performance optimisations in order
542 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
543 * programmed to '1' on all products.
544 *
545 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
546 */
547 if (INTEL_INFO(dev)->gen >= 6)
548 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
549
550 /* Required for the hardware to program scanline values for waiting */
551 if (INTEL_INFO(dev)->gen == 6)
552 I915_WRITE(GFX_MODE,
553 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
554
555 if (IS_GEN7(dev))
556 I915_WRITE(GFX_MODE_GEN7,
557 _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
558 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
559
560 if (INTEL_INFO(dev)->gen >= 5) {
561 ret = init_pipe_control(ring);
562 if (ret)
563 return ret;
564 }
565
566 if (IS_GEN6(dev)) {
567 /* From the Sandybridge PRM, volume 1 part 3, page 24:
568 * "If this bit is set, STCunit will have LRA as replacement
569 * policy. [...] This bit must be reset. LRA replacement
570 * policy is not supported."
571 */
572 I915_WRITE(CACHE_MODE_0,
573 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
574
575 /* This is not explicitly set for GEN6, so read the register.
576 * see intel_ring_mi_set_context() for why we care.
577 * TODO: consider explicitly setting the bit for GEN5
578 */
579 ring->itlb_before_ctx_switch =
580 !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
581 }
582
583 if (INTEL_INFO(dev)->gen >= 6)
584 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
585
586 if (HAS_L3_GPU_CACHE(dev))
587 I915_WRITE_IMR(ring, ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
588
589 return ret;
590 }
591
592 static void render_ring_cleanup(struct intel_ring_buffer *ring)
593 {
594 struct drm_device *dev = ring->dev;
595
596 if (!ring->private)
597 return;
598
599 if (HAS_BROKEN_CS_TLB(dev))
600 drm_gem_object_unreference(to_gem_object(ring->private));
601
602 cleanup_pipe_control(ring);
603 }
604
605 static void
606 update_mboxes(struct intel_ring_buffer *ring,
607 u32 mmio_offset)
608 {
609 /* NB: In order to be able to do semaphore MBOX updates for varying number
610 * of rings, it's easiest if we round up each individual update to a
611 * multiple of 2 (since ring updates must always be a multiple of 2)
612 * even though the actual update only requires 3 dwords.
613 */
614 #define MBOX_UPDATE_DWORDS 4
615 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
616 intel_ring_emit(ring, mmio_offset);
617 intel_ring_emit(ring, ring->outstanding_lazy_request);
618 intel_ring_emit(ring, MI_NOOP);
619 }
620
621 /**
622 * gen6_add_request - Update the semaphore mailbox registers
623 *
624 * @ring - ring that is adding a request
625 * @seqno - return seqno stuck into the ring
626 *
627 * Update the mailbox registers in the *other* rings with the current seqno.
628 * This acts like a signal in the canonical semaphore.
629 */
630 static int
631 gen6_add_request(struct intel_ring_buffer *ring)
632 {
633 struct drm_device *dev = ring->dev;
634 struct drm_i915_private *dev_priv = dev->dev_private;
635 struct intel_ring_buffer *useless;
636 int i, ret;
637
638 ret = intel_ring_begin(ring, ((I915_NUM_RINGS-1) *
639 MBOX_UPDATE_DWORDS) +
640 4);
641 if (ret)
642 return ret;
643 #undef MBOX_UPDATE_DWORDS
644
645 for_each_ring(useless, dev_priv, i) {
646 u32 mbox_reg = ring->signal_mbox[i];
647 if (mbox_reg != GEN6_NOSYNC)
648 update_mboxes(ring, mbox_reg);
649 }
650
651 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
652 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
653 intel_ring_emit(ring, ring->outstanding_lazy_request);
654 intel_ring_emit(ring, MI_USER_INTERRUPT);
655 intel_ring_advance(ring);
656
657 return 0;
658 }
659
660 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
661 u32 seqno)
662 {
663 struct drm_i915_private *dev_priv = dev->dev_private;
664 return dev_priv->last_seqno < seqno;
665 }
666
667 /**
668 * intel_ring_sync - sync the waiter to the signaller on seqno
669 *
670 * @waiter - ring that is waiting
671 * @signaller - ring which has, or will signal
672 * @seqno - seqno which the waiter will block on
673 */
674 static int
675 gen6_ring_sync(struct intel_ring_buffer *waiter,
676 struct intel_ring_buffer *signaller,
677 u32 seqno)
678 {
679 int ret;
680 u32 dw1 = MI_SEMAPHORE_MBOX |
681 MI_SEMAPHORE_COMPARE |
682 MI_SEMAPHORE_REGISTER;
683
684 /* Throughout all of the GEM code, seqno passed implies our current
685 * seqno is >= the last seqno executed. However for hardware the
686 * comparison is strictly greater than.
687 */
688 seqno -= 1;
689
690 WARN_ON(signaller->semaphore_register[waiter->id] ==
691 MI_SEMAPHORE_SYNC_INVALID);
692
693 ret = intel_ring_begin(waiter, 4);
694 if (ret)
695 return ret;
696
697 /* If seqno wrap happened, omit the wait with no-ops */
698 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
699 intel_ring_emit(waiter,
700 dw1 |
701 signaller->semaphore_register[waiter->id]);
702 intel_ring_emit(waiter, seqno);
703 intel_ring_emit(waiter, 0);
704 intel_ring_emit(waiter, MI_NOOP);
705 } else {
706 intel_ring_emit(waiter, MI_NOOP);
707 intel_ring_emit(waiter, MI_NOOP);
708 intel_ring_emit(waiter, MI_NOOP);
709 intel_ring_emit(waiter, MI_NOOP);
710 }
711 intel_ring_advance(waiter);
712
713 return 0;
714 }
715
716 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
717 do { \
718 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
719 PIPE_CONTROL_DEPTH_STALL); \
720 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
721 intel_ring_emit(ring__, 0); \
722 intel_ring_emit(ring__, 0); \
723 } while (0)
724
725 static int
726 pc_render_add_request(struct intel_ring_buffer *ring)
727 {
728 struct pipe_control *pc = ring->private;
729 u32 scratch_addr = pc->gtt_offset + 128;
730 int ret;
731
732 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
733 * incoherent with writes to memory, i.e. completely fubar,
734 * so we need to use PIPE_NOTIFY instead.
735 *
736 * However, we also need to workaround the qword write
737 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
738 * memory before requesting an interrupt.
739 */
740 ret = intel_ring_begin(ring, 32);
741 if (ret)
742 return ret;
743
744 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
745 PIPE_CONTROL_WRITE_FLUSH |
746 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
747 intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
748 intel_ring_emit(ring, ring->outstanding_lazy_request);
749 intel_ring_emit(ring, 0);
750 PIPE_CONTROL_FLUSH(ring, scratch_addr);
751 scratch_addr += 128; /* write to separate cachelines */
752 PIPE_CONTROL_FLUSH(ring, scratch_addr);
753 scratch_addr += 128;
754 PIPE_CONTROL_FLUSH(ring, scratch_addr);
755 scratch_addr += 128;
756 PIPE_CONTROL_FLUSH(ring, scratch_addr);
757 scratch_addr += 128;
758 PIPE_CONTROL_FLUSH(ring, scratch_addr);
759 scratch_addr += 128;
760 PIPE_CONTROL_FLUSH(ring, scratch_addr);
761
762 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
763 PIPE_CONTROL_WRITE_FLUSH |
764 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
765 PIPE_CONTROL_NOTIFY);
766 intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
767 intel_ring_emit(ring, ring->outstanding_lazy_request);
768 intel_ring_emit(ring, 0);
769 intel_ring_advance(ring);
770
771 return 0;
772 }
773
774 static u32
775 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
776 {
777 /* Workaround to force correct ordering between irq and seqno writes on
778 * ivb (and maybe also on snb) by reading from a CS register (like
779 * ACTHD) before reading the status page. */
780 if (!lazy_coherency)
781 intel_ring_get_active_head(ring);
782 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
783 }
784
785 static u32
786 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
787 {
788 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
789 }
790
791 static void
792 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
793 {
794 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
795 }
796
797 static u32
798 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
799 {
800 struct pipe_control *pc = ring->private;
801 return pc->cpu_page[0];
802 }
803
804 static void
805 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
806 {
807 struct pipe_control *pc = ring->private;
808 pc->cpu_page[0] = seqno;
809 }
810
811 static bool
812 gen5_ring_get_irq(struct intel_ring_buffer *ring)
813 {
814 struct drm_device *dev = ring->dev;
815 drm_i915_private_t *dev_priv = dev->dev_private;
816 unsigned long flags;
817
818 if (!dev->irq_enabled)
819 return false;
820
821 spin_lock_irqsave(&dev_priv->irq_lock, flags);
822 if (ring->irq_refcount.gt++ == 0) {
823 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
824 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
825 POSTING_READ(GTIMR);
826 }
827 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
828
829 return true;
830 }
831
832 static void
833 gen5_ring_put_irq(struct intel_ring_buffer *ring)
834 {
835 struct drm_device *dev = ring->dev;
836 drm_i915_private_t *dev_priv = dev->dev_private;
837 unsigned long flags;
838
839 spin_lock_irqsave(&dev_priv->irq_lock, flags);
840 if (--ring->irq_refcount.gt == 0) {
841 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
842 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
843 POSTING_READ(GTIMR);
844 }
845 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
846 }
847
848 static bool
849 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
850 {
851 struct drm_device *dev = ring->dev;
852 drm_i915_private_t *dev_priv = dev->dev_private;
853 unsigned long flags;
854
855 if (!dev->irq_enabled)
856 return false;
857
858 spin_lock_irqsave(&dev_priv->irq_lock, flags);
859 if (ring->irq_refcount.gt++ == 0) {
860 dev_priv->irq_mask &= ~ring->irq_enable_mask;
861 I915_WRITE(IMR, dev_priv->irq_mask);
862 POSTING_READ(IMR);
863 }
864 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
865
866 return true;
867 }
868
869 static void
870 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
871 {
872 struct drm_device *dev = ring->dev;
873 drm_i915_private_t *dev_priv = dev->dev_private;
874 unsigned long flags;
875
876 spin_lock_irqsave(&dev_priv->irq_lock, flags);
877 if (--ring->irq_refcount.gt == 0) {
878 dev_priv->irq_mask |= ring->irq_enable_mask;
879 I915_WRITE(IMR, dev_priv->irq_mask);
880 POSTING_READ(IMR);
881 }
882 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
883 }
884
885 static bool
886 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
887 {
888 struct drm_device *dev = ring->dev;
889 drm_i915_private_t *dev_priv = dev->dev_private;
890 unsigned long flags;
891
892 if (!dev->irq_enabled)
893 return false;
894
895 spin_lock_irqsave(&dev_priv->irq_lock, flags);
896 if (ring->irq_refcount.gt++ == 0) {
897 dev_priv->irq_mask &= ~ring->irq_enable_mask;
898 I915_WRITE16(IMR, dev_priv->irq_mask);
899 POSTING_READ16(IMR);
900 }
901 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
902
903 return true;
904 }
905
906 static void
907 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
908 {
909 struct drm_device *dev = ring->dev;
910 drm_i915_private_t *dev_priv = dev->dev_private;
911 unsigned long flags;
912
913 spin_lock_irqsave(&dev_priv->irq_lock, flags);
914 if (--ring->irq_refcount.gt == 0) {
915 dev_priv->irq_mask |= ring->irq_enable_mask;
916 I915_WRITE16(IMR, dev_priv->irq_mask);
917 POSTING_READ16(IMR);
918 }
919 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
920 }
921
922 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
923 {
924 struct drm_device *dev = ring->dev;
925 drm_i915_private_t *dev_priv = ring->dev->dev_private;
926 u32 mmio = 0;
927
928 /* The ring status page addresses are no longer next to the rest of
929 * the ring registers as of gen7.
930 */
931 if (IS_GEN7(dev)) {
932 switch (ring->id) {
933 case RCS:
934 mmio = RENDER_HWS_PGA_GEN7;
935 break;
936 case BCS:
937 mmio = BLT_HWS_PGA_GEN7;
938 break;
939 case VCS:
940 mmio = BSD_HWS_PGA_GEN7;
941 break;
942 case VECS:
943 mmio = VEBOX_HWS_PGA_GEN7;
944 break;
945 }
946 } else if (IS_GEN6(ring->dev)) {
947 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
948 } else {
949 mmio = RING_HWS_PGA(ring->mmio_base);
950 }
951
952 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
953 POSTING_READ(mmio);
954 }
955
956 static int
957 bsd_ring_flush(struct intel_ring_buffer *ring,
958 u32 invalidate_domains,
959 u32 flush_domains)
960 {
961 int ret;
962
963 ret = intel_ring_begin(ring, 2);
964 if (ret)
965 return ret;
966
967 intel_ring_emit(ring, MI_FLUSH);
968 intel_ring_emit(ring, MI_NOOP);
969 intel_ring_advance(ring);
970 return 0;
971 }
972
973 static int
974 i9xx_add_request(struct intel_ring_buffer *ring)
975 {
976 int ret;
977
978 ret = intel_ring_begin(ring, 4);
979 if (ret)
980 return ret;
981
982 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
983 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
984 intel_ring_emit(ring, ring->outstanding_lazy_request);
985 intel_ring_emit(ring, MI_USER_INTERRUPT);
986 intel_ring_advance(ring);
987
988 return 0;
989 }
990
991 static bool
992 gen6_ring_get_irq(struct intel_ring_buffer *ring)
993 {
994 struct drm_device *dev = ring->dev;
995 drm_i915_private_t *dev_priv = dev->dev_private;
996 unsigned long flags;
997
998 if (!dev->irq_enabled)
999 return false;
1000
1001 /* It looks like we need to prevent the gt from suspending while waiting
1002 * for an notifiy irq, otherwise irqs seem to get lost on at least the
1003 * blt/bsd rings on ivb. */
1004 gen6_gt_force_wake_get(dev_priv);
1005
1006 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1007 if (ring->irq_refcount.gt++ == 0) {
1008 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
1009 I915_WRITE_IMR(ring,
1010 ~(ring->irq_enable_mask |
1011 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1012 else
1013 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1014 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
1015 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1016 POSTING_READ(GTIMR);
1017 }
1018 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1019
1020 return true;
1021 }
1022
1023 static void
1024 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1025 {
1026 struct drm_device *dev = ring->dev;
1027 drm_i915_private_t *dev_priv = dev->dev_private;
1028 unsigned long flags;
1029
1030 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1031 if (--ring->irq_refcount.gt == 0) {
1032 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
1033 I915_WRITE_IMR(ring,
1034 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1035 else
1036 I915_WRITE_IMR(ring, ~0);
1037 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
1038 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1039 POSTING_READ(GTIMR);
1040 }
1041 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1042
1043 gen6_gt_force_wake_put(dev_priv);
1044 }
1045
1046 static bool
1047 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1048 {
1049 struct drm_device *dev = ring->dev;
1050 struct drm_i915_private *dev_priv = dev->dev_private;
1051 unsigned long flags;
1052
1053 if (!dev->irq_enabled)
1054 return false;
1055
1056 spin_lock_irqsave(&dev_priv->rps.lock, flags);
1057 if (ring->irq_refcount.pm++ == 0) {
1058 u32 pm_imr = I915_READ(GEN6_PMIMR);
1059 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1060 I915_WRITE(GEN6_PMIMR, pm_imr & ~ring->irq_enable_mask);
1061 POSTING_READ(GEN6_PMIMR);
1062 }
1063 spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
1064
1065 return true;
1066 }
1067
1068 static void
1069 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1070 {
1071 struct drm_device *dev = ring->dev;
1072 struct drm_i915_private *dev_priv = dev->dev_private;
1073 unsigned long flags;
1074
1075 if (!dev->irq_enabled)
1076 return;
1077
1078 spin_lock_irqsave(&dev_priv->rps.lock, flags);
1079 if (--ring->irq_refcount.pm == 0) {
1080 u32 pm_imr = I915_READ(GEN6_PMIMR);
1081 I915_WRITE_IMR(ring, ~0);
1082 I915_WRITE(GEN6_PMIMR, pm_imr | ring->irq_enable_mask);
1083 POSTING_READ(GEN6_PMIMR);
1084 }
1085 spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
1086 }
1087
1088 static int
1089 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1090 u32 offset, u32 length,
1091 unsigned flags)
1092 {
1093 int ret;
1094
1095 ret = intel_ring_begin(ring, 2);
1096 if (ret)
1097 return ret;
1098
1099 intel_ring_emit(ring,
1100 MI_BATCH_BUFFER_START |
1101 MI_BATCH_GTT |
1102 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1103 intel_ring_emit(ring, offset);
1104 intel_ring_advance(ring);
1105
1106 return 0;
1107 }
1108
1109 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1110 #define I830_BATCH_LIMIT (256*1024)
1111 static int
1112 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1113 u32 offset, u32 len,
1114 unsigned flags)
1115 {
1116 int ret;
1117
1118 if (flags & I915_DISPATCH_PINNED) {
1119 ret = intel_ring_begin(ring, 4);
1120 if (ret)
1121 return ret;
1122
1123 intel_ring_emit(ring, MI_BATCH_BUFFER);
1124 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1125 intel_ring_emit(ring, offset + len - 8);
1126 intel_ring_emit(ring, MI_NOOP);
1127 intel_ring_advance(ring);
1128 } else {
1129 struct drm_i915_gem_object *obj = ring->private;
1130 u32 cs_offset = obj->gtt_offset;
1131
1132 if (len > I830_BATCH_LIMIT)
1133 return -ENOSPC;
1134
1135 ret = intel_ring_begin(ring, 9+3);
1136 if (ret)
1137 return ret;
1138 /* Blit the batch (which has now all relocs applied) to the stable batch
1139 * scratch bo area (so that the CS never stumbles over its tlb
1140 * invalidation bug) ... */
1141 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1142 XY_SRC_COPY_BLT_WRITE_ALPHA |
1143 XY_SRC_COPY_BLT_WRITE_RGB);
1144 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1145 intel_ring_emit(ring, 0);
1146 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1147 intel_ring_emit(ring, cs_offset);
1148 intel_ring_emit(ring, 0);
1149 intel_ring_emit(ring, 4096);
1150 intel_ring_emit(ring, offset);
1151 intel_ring_emit(ring, MI_FLUSH);
1152
1153 /* ... and execute it. */
1154 intel_ring_emit(ring, MI_BATCH_BUFFER);
1155 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1156 intel_ring_emit(ring, cs_offset + len - 8);
1157 intel_ring_advance(ring);
1158 }
1159
1160 return 0;
1161 }
1162
1163 static int
1164 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1165 u32 offset, u32 len,
1166 unsigned flags)
1167 {
1168 int ret;
1169
1170 ret = intel_ring_begin(ring, 2);
1171 if (ret)
1172 return ret;
1173
1174 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1175 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1176 intel_ring_advance(ring);
1177
1178 return 0;
1179 }
1180
1181 static void cleanup_status_page(struct intel_ring_buffer *ring)
1182 {
1183 struct drm_i915_gem_object *obj;
1184
1185 obj = ring->status_page.obj;
1186 if (obj == NULL)
1187 return;
1188
1189 kunmap(sg_page(obj->pages->sgl));
1190 i915_gem_object_unpin(obj);
1191 drm_gem_object_unreference(&obj->base);
1192 ring->status_page.obj = NULL;
1193 }
1194
1195 static int init_status_page(struct intel_ring_buffer *ring)
1196 {
1197 struct drm_device *dev = ring->dev;
1198 struct drm_i915_gem_object *obj;
1199 int ret;
1200
1201 obj = i915_gem_alloc_object(dev, 4096);
1202 if (obj == NULL) {
1203 DRM_ERROR("Failed to allocate status page\n");
1204 ret = -ENOMEM;
1205 goto err;
1206 }
1207
1208 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1209
1210 ret = i915_gem_object_pin(obj, 4096, true, false);
1211 if (ret != 0) {
1212 goto err_unref;
1213 }
1214
1215 ring->status_page.gfx_addr = obj->gtt_offset;
1216 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1217 if (ring->status_page.page_addr == NULL) {
1218 ret = -ENOMEM;
1219 goto err_unpin;
1220 }
1221 ring->status_page.obj = obj;
1222 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1223
1224 intel_ring_setup_status_page(ring);
1225 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1226 ring->name, ring->status_page.gfx_addr);
1227
1228 return 0;
1229
1230 err_unpin:
1231 i915_gem_object_unpin(obj);
1232 err_unref:
1233 drm_gem_object_unreference(&obj->base);
1234 err:
1235 return ret;
1236 }
1237
1238 static int init_phys_hws_pga(struct intel_ring_buffer *ring)
1239 {
1240 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1241 u32 addr;
1242
1243 if (!dev_priv->status_page_dmah) {
1244 dev_priv->status_page_dmah =
1245 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1246 if (!dev_priv->status_page_dmah)
1247 return -ENOMEM;
1248 }
1249
1250 addr = dev_priv->status_page_dmah->busaddr;
1251 if (INTEL_INFO(ring->dev)->gen >= 4)
1252 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
1253 I915_WRITE(HWS_PGA, addr);
1254
1255 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1256 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1257
1258 return 0;
1259 }
1260
1261 static int intel_init_ring_buffer(struct drm_device *dev,
1262 struct intel_ring_buffer *ring)
1263 {
1264 struct drm_i915_gem_object *obj;
1265 struct drm_i915_private *dev_priv = dev->dev_private;
1266 int ret;
1267
1268 ring->dev = dev;
1269 INIT_LIST_HEAD(&ring->active_list);
1270 INIT_LIST_HEAD(&ring->request_list);
1271 ring->size = 32 * PAGE_SIZE;
1272 memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1273
1274 init_waitqueue_head(&ring->irq_queue);
1275
1276 if (I915_NEED_GFX_HWS(dev)) {
1277 ret = init_status_page(ring);
1278 if (ret)
1279 return ret;
1280 } else {
1281 BUG_ON(ring->id != RCS);
1282 ret = init_phys_hws_pga(ring);
1283 if (ret)
1284 return ret;
1285 }
1286
1287 obj = NULL;
1288 if (!HAS_LLC(dev))
1289 obj = i915_gem_object_create_stolen(dev, ring->size);
1290 if (obj == NULL)
1291 obj = i915_gem_alloc_object(dev, ring->size);
1292 if (obj == NULL) {
1293 DRM_ERROR("Failed to allocate ringbuffer\n");
1294 ret = -ENOMEM;
1295 goto err_hws;
1296 }
1297
1298 ring->obj = obj;
1299
1300 ret = i915_gem_object_pin(obj, PAGE_SIZE, true, false);
1301 if (ret)
1302 goto err_unref;
1303
1304 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1305 if (ret)
1306 goto err_unpin;
1307
1308 ring->virtual_start =
1309 ioremap_wc(dev_priv->gtt.mappable_base + obj->gtt_offset,
1310 ring->size);
1311 if (ring->virtual_start == NULL) {
1312 DRM_ERROR("Failed to map ringbuffer.\n");
1313 ret = -EINVAL;
1314 goto err_unpin;
1315 }
1316
1317 ret = ring->init(ring);
1318 if (ret)
1319 goto err_unmap;
1320
1321 /* Workaround an erratum on the i830 which causes a hang if
1322 * the TAIL pointer points to within the last 2 cachelines
1323 * of the buffer.
1324 */
1325 ring->effective_size = ring->size;
1326 if (IS_I830(ring->dev) || IS_845G(ring->dev))
1327 ring->effective_size -= 128;
1328
1329 return 0;
1330
1331 err_unmap:
1332 iounmap(ring->virtual_start);
1333 err_unpin:
1334 i915_gem_object_unpin(obj);
1335 err_unref:
1336 drm_gem_object_unreference(&obj->base);
1337 ring->obj = NULL;
1338 err_hws:
1339 cleanup_status_page(ring);
1340 return ret;
1341 }
1342
1343 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1344 {
1345 struct drm_i915_private *dev_priv;
1346 int ret;
1347
1348 if (ring->obj == NULL)
1349 return;
1350
1351 /* Disable the ring buffer. The ring must be idle at this point */
1352 dev_priv = ring->dev->dev_private;
1353 ret = intel_ring_idle(ring);
1354 if (ret)
1355 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1356 ring->name, ret);
1357
1358 I915_WRITE_CTL(ring, 0);
1359
1360 iounmap(ring->virtual_start);
1361
1362 i915_gem_object_unpin(ring->obj);
1363 drm_gem_object_unreference(&ring->obj->base);
1364 ring->obj = NULL;
1365
1366 if (ring->cleanup)
1367 ring->cleanup(ring);
1368
1369 cleanup_status_page(ring);
1370 }
1371
1372 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1373 {
1374 int ret;
1375
1376 ret = i915_wait_seqno(ring, seqno);
1377 if (!ret)
1378 i915_gem_retire_requests_ring(ring);
1379
1380 return ret;
1381 }
1382
1383 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1384 {
1385 struct drm_i915_gem_request *request;
1386 u32 seqno = 0;
1387 int ret;
1388
1389 i915_gem_retire_requests_ring(ring);
1390
1391 if (ring->last_retired_head != -1) {
1392 ring->head = ring->last_retired_head;
1393 ring->last_retired_head = -1;
1394 ring->space = ring_space(ring);
1395 if (ring->space >= n)
1396 return 0;
1397 }
1398
1399 list_for_each_entry(request, &ring->request_list, list) {
1400 int space;
1401
1402 if (request->tail == -1)
1403 continue;
1404
1405 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1406 if (space < 0)
1407 space += ring->size;
1408 if (space >= n) {
1409 seqno = request->seqno;
1410 break;
1411 }
1412
1413 /* Consume this request in case we need more space than
1414 * is available and so need to prevent a race between
1415 * updating last_retired_head and direct reads of
1416 * I915_RING_HEAD. It also provides a nice sanity check.
1417 */
1418 request->tail = -1;
1419 }
1420
1421 if (seqno == 0)
1422 return -ENOSPC;
1423
1424 ret = intel_ring_wait_seqno(ring, seqno);
1425 if (ret)
1426 return ret;
1427
1428 if (WARN_ON(ring->last_retired_head == -1))
1429 return -ENOSPC;
1430
1431 ring->head = ring->last_retired_head;
1432 ring->last_retired_head = -1;
1433 ring->space = ring_space(ring);
1434 if (WARN_ON(ring->space < n))
1435 return -ENOSPC;
1436
1437 return 0;
1438 }
1439
1440 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1441 {
1442 struct drm_device *dev = ring->dev;
1443 struct drm_i915_private *dev_priv = dev->dev_private;
1444 unsigned long end;
1445 int ret;
1446
1447 ret = intel_ring_wait_request(ring, n);
1448 if (ret != -ENOSPC)
1449 return ret;
1450
1451 trace_i915_ring_wait_begin(ring);
1452 /* With GEM the hangcheck timer should kick us out of the loop,
1453 * leaving it early runs the risk of corrupting GEM state (due
1454 * to running on almost untested codepaths). But on resume
1455 * timers don't work yet, so prevent a complete hang in that
1456 * case by choosing an insanely large timeout. */
1457 end = jiffies + 60 * HZ;
1458
1459 do {
1460 ring->head = I915_READ_HEAD(ring);
1461 ring->space = ring_space(ring);
1462 if (ring->space >= n) {
1463 trace_i915_ring_wait_end(ring);
1464 return 0;
1465 }
1466
1467 if (dev->primary->master) {
1468 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1469 if (master_priv->sarea_priv)
1470 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1471 }
1472
1473 msleep(1);
1474
1475 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1476 dev_priv->mm.interruptible);
1477 if (ret)
1478 return ret;
1479 } while (!time_after(jiffies, end));
1480 trace_i915_ring_wait_end(ring);
1481 return -EBUSY;
1482 }
1483
1484 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1485 {
1486 uint32_t __iomem *virt;
1487 int rem = ring->size - ring->tail;
1488
1489 if (ring->space < rem) {
1490 int ret = ring_wait_for_space(ring, rem);
1491 if (ret)
1492 return ret;
1493 }
1494
1495 virt = ring->virtual_start + ring->tail;
1496 rem /= 4;
1497 while (rem--)
1498 iowrite32(MI_NOOP, virt++);
1499
1500 ring->tail = 0;
1501 ring->space = ring_space(ring);
1502
1503 return 0;
1504 }
1505
1506 int intel_ring_idle(struct intel_ring_buffer *ring)
1507 {
1508 u32 seqno;
1509 int ret;
1510
1511 /* We need to add any requests required to flush the objects and ring */
1512 if (ring->outstanding_lazy_request) {
1513 ret = i915_add_request(ring, NULL, NULL);
1514 if (ret)
1515 return ret;
1516 }
1517
1518 /* Wait upon the last request to be completed */
1519 if (list_empty(&ring->request_list))
1520 return 0;
1521
1522 seqno = list_entry(ring->request_list.prev,
1523 struct drm_i915_gem_request,
1524 list)->seqno;
1525
1526 return i915_wait_seqno(ring, seqno);
1527 }
1528
1529 static int
1530 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1531 {
1532 if (ring->outstanding_lazy_request)
1533 return 0;
1534
1535 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_request);
1536 }
1537
1538 static int __intel_ring_begin(struct intel_ring_buffer *ring,
1539 int bytes)
1540 {
1541 int ret;
1542
1543 if (unlikely(ring->tail + bytes > ring->effective_size)) {
1544 ret = intel_wrap_ring_buffer(ring);
1545 if (unlikely(ret))
1546 return ret;
1547 }
1548
1549 if (unlikely(ring->space < bytes)) {
1550 ret = ring_wait_for_space(ring, bytes);
1551 if (unlikely(ret))
1552 return ret;
1553 }
1554
1555 ring->space -= bytes;
1556 return 0;
1557 }
1558
1559 int intel_ring_begin(struct intel_ring_buffer *ring,
1560 int num_dwords)
1561 {
1562 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1563 int ret;
1564
1565 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1566 dev_priv->mm.interruptible);
1567 if (ret)
1568 return ret;
1569
1570 /* Preallocate the olr before touching the ring */
1571 ret = intel_ring_alloc_seqno(ring);
1572 if (ret)
1573 return ret;
1574
1575 return __intel_ring_begin(ring, num_dwords * sizeof(uint32_t));
1576 }
1577
1578 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1579 {
1580 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1581
1582 BUG_ON(ring->outstanding_lazy_request);
1583
1584 if (INTEL_INFO(ring->dev)->gen >= 6) {
1585 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1586 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1587 }
1588
1589 ring->set_seqno(ring, seqno);
1590 ring->hangcheck.seqno = seqno;
1591 }
1592
1593 void intel_ring_advance(struct intel_ring_buffer *ring)
1594 {
1595 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1596
1597 ring->tail &= ring->size - 1;
1598 if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
1599 return;
1600 ring->write_tail(ring, ring->tail);
1601 }
1602
1603
1604 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1605 u32 value)
1606 {
1607 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1608
1609 /* Every tail move must follow the sequence below */
1610
1611 /* Disable notification that the ring is IDLE. The GT
1612 * will then assume that it is busy and bring it out of rc6.
1613 */
1614 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1615 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1616
1617 /* Clear the context id. Here be magic! */
1618 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1619
1620 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1621 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1622 GEN6_BSD_SLEEP_INDICATOR) == 0,
1623 50))
1624 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1625
1626 /* Now that the ring is fully powered up, update the tail */
1627 I915_WRITE_TAIL(ring, value);
1628 POSTING_READ(RING_TAIL(ring->mmio_base));
1629
1630 /* Let the ring send IDLE messages to the GT again,
1631 * and so let it sleep to conserve power when idle.
1632 */
1633 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1634 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1635 }
1636
1637 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1638 u32 invalidate, u32 flush)
1639 {
1640 uint32_t cmd;
1641 int ret;
1642
1643 ret = intel_ring_begin(ring, 4);
1644 if (ret)
1645 return ret;
1646
1647 cmd = MI_FLUSH_DW;
1648 /*
1649 * Bspec vol 1c.5 - video engine command streamer:
1650 * "If ENABLED, all TLBs will be invalidated once the flush
1651 * operation is complete. This bit is only valid when the
1652 * Post-Sync Operation field is a value of 1h or 3h."
1653 */
1654 if (invalidate & I915_GEM_GPU_DOMAINS)
1655 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1656 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1657 intel_ring_emit(ring, cmd);
1658 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1659 intel_ring_emit(ring, 0);
1660 intel_ring_emit(ring, MI_NOOP);
1661 intel_ring_advance(ring);
1662 return 0;
1663 }
1664
1665 static int
1666 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1667 u32 offset, u32 len,
1668 unsigned flags)
1669 {
1670 int ret;
1671
1672 ret = intel_ring_begin(ring, 2);
1673 if (ret)
1674 return ret;
1675
1676 intel_ring_emit(ring,
1677 MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1678 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1679 /* bit0-7 is the length on GEN6+ */
1680 intel_ring_emit(ring, offset);
1681 intel_ring_advance(ring);
1682
1683 return 0;
1684 }
1685
1686 static int
1687 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1688 u32 offset, u32 len,
1689 unsigned flags)
1690 {
1691 int ret;
1692
1693 ret = intel_ring_begin(ring, 2);
1694 if (ret)
1695 return ret;
1696
1697 intel_ring_emit(ring,
1698 MI_BATCH_BUFFER_START |
1699 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1700 /* bit0-7 is the length on GEN6+ */
1701 intel_ring_emit(ring, offset);
1702 intel_ring_advance(ring);
1703
1704 return 0;
1705 }
1706
1707 /* Blitter support (SandyBridge+) */
1708
1709 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1710 u32 invalidate, u32 flush)
1711 {
1712 struct drm_device *dev = ring->dev;
1713 uint32_t cmd;
1714 int ret;
1715
1716 ret = intel_ring_begin(ring, 4);
1717 if (ret)
1718 return ret;
1719
1720 cmd = MI_FLUSH_DW;
1721 /*
1722 * Bspec vol 1c.3 - blitter engine command streamer:
1723 * "If ENABLED, all TLBs will be invalidated once the flush
1724 * operation is complete. This bit is only valid when the
1725 * Post-Sync Operation field is a value of 1h or 3h."
1726 */
1727 if (invalidate & I915_GEM_DOMAIN_RENDER)
1728 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1729 MI_FLUSH_DW_OP_STOREDW;
1730 intel_ring_emit(ring, cmd);
1731 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1732 intel_ring_emit(ring, 0);
1733 intel_ring_emit(ring, MI_NOOP);
1734 intel_ring_advance(ring);
1735
1736 if (IS_GEN7(dev) && flush)
1737 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1738
1739 return 0;
1740 }
1741
1742 int intel_init_render_ring_buffer(struct drm_device *dev)
1743 {
1744 drm_i915_private_t *dev_priv = dev->dev_private;
1745 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1746
1747 ring->name = "render ring";
1748 ring->id = RCS;
1749 ring->mmio_base = RENDER_RING_BASE;
1750
1751 if (INTEL_INFO(dev)->gen >= 6) {
1752 ring->add_request = gen6_add_request;
1753 ring->flush = gen7_render_ring_flush;
1754 if (INTEL_INFO(dev)->gen == 6)
1755 ring->flush = gen6_render_ring_flush;
1756 ring->irq_get = gen6_ring_get_irq;
1757 ring->irq_put = gen6_ring_put_irq;
1758 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1759 ring->get_seqno = gen6_ring_get_seqno;
1760 ring->set_seqno = ring_set_seqno;
1761 ring->sync_to = gen6_ring_sync;
1762 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1763 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1764 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1765 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1766 ring->signal_mbox[RCS] = GEN6_NOSYNC;
1767 ring->signal_mbox[VCS] = GEN6_VRSYNC;
1768 ring->signal_mbox[BCS] = GEN6_BRSYNC;
1769 ring->signal_mbox[VECS] = GEN6_VERSYNC;
1770 } else if (IS_GEN5(dev)) {
1771 ring->add_request = pc_render_add_request;
1772 ring->flush = gen4_render_ring_flush;
1773 ring->get_seqno = pc_render_get_seqno;
1774 ring->set_seqno = pc_render_set_seqno;
1775 ring->irq_get = gen5_ring_get_irq;
1776 ring->irq_put = gen5_ring_put_irq;
1777 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1778 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1779 } else {
1780 ring->add_request = i9xx_add_request;
1781 if (INTEL_INFO(dev)->gen < 4)
1782 ring->flush = gen2_render_ring_flush;
1783 else
1784 ring->flush = gen4_render_ring_flush;
1785 ring->get_seqno = ring_get_seqno;
1786 ring->set_seqno = ring_set_seqno;
1787 if (IS_GEN2(dev)) {
1788 ring->irq_get = i8xx_ring_get_irq;
1789 ring->irq_put = i8xx_ring_put_irq;
1790 } else {
1791 ring->irq_get = i9xx_ring_get_irq;
1792 ring->irq_put = i9xx_ring_put_irq;
1793 }
1794 ring->irq_enable_mask = I915_USER_INTERRUPT;
1795 }
1796 ring->write_tail = ring_write_tail;
1797 if (IS_HASWELL(dev))
1798 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1799 else if (INTEL_INFO(dev)->gen >= 6)
1800 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1801 else if (INTEL_INFO(dev)->gen >= 4)
1802 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1803 else if (IS_I830(dev) || IS_845G(dev))
1804 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1805 else
1806 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1807 ring->init = init_render_ring;
1808 ring->cleanup = render_ring_cleanup;
1809
1810 /* Workaround batchbuffer to combat CS tlb bug. */
1811 if (HAS_BROKEN_CS_TLB(dev)) {
1812 struct drm_i915_gem_object *obj;
1813 int ret;
1814
1815 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1816 if (obj == NULL) {
1817 DRM_ERROR("Failed to allocate batch bo\n");
1818 return -ENOMEM;
1819 }
1820
1821 ret = i915_gem_object_pin(obj, 0, true, false);
1822 if (ret != 0) {
1823 drm_gem_object_unreference(&obj->base);
1824 DRM_ERROR("Failed to ping batch bo\n");
1825 return ret;
1826 }
1827
1828 ring->private = obj;
1829 }
1830
1831 return intel_init_ring_buffer(dev, ring);
1832 }
1833
1834 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1835 {
1836 drm_i915_private_t *dev_priv = dev->dev_private;
1837 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1838 int ret;
1839
1840 ring->name = "render ring";
1841 ring->id = RCS;
1842 ring->mmio_base = RENDER_RING_BASE;
1843
1844 if (INTEL_INFO(dev)->gen >= 6) {
1845 /* non-kms not supported on gen6+ */
1846 return -ENODEV;
1847 }
1848
1849 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1850 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1851 * the special gen5 functions. */
1852 ring->add_request = i9xx_add_request;
1853 if (INTEL_INFO(dev)->gen < 4)
1854 ring->flush = gen2_render_ring_flush;
1855 else
1856 ring->flush = gen4_render_ring_flush;
1857 ring->get_seqno = ring_get_seqno;
1858 ring->set_seqno = ring_set_seqno;
1859 if (IS_GEN2(dev)) {
1860 ring->irq_get = i8xx_ring_get_irq;
1861 ring->irq_put = i8xx_ring_put_irq;
1862 } else {
1863 ring->irq_get = i9xx_ring_get_irq;
1864 ring->irq_put = i9xx_ring_put_irq;
1865 }
1866 ring->irq_enable_mask = I915_USER_INTERRUPT;
1867 ring->write_tail = ring_write_tail;
1868 if (INTEL_INFO(dev)->gen >= 4)
1869 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1870 else if (IS_I830(dev) || IS_845G(dev))
1871 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1872 else
1873 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1874 ring->init = init_render_ring;
1875 ring->cleanup = render_ring_cleanup;
1876
1877 ring->dev = dev;
1878 INIT_LIST_HEAD(&ring->active_list);
1879 INIT_LIST_HEAD(&ring->request_list);
1880
1881 ring->size = size;
1882 ring->effective_size = ring->size;
1883 if (IS_I830(ring->dev) || IS_845G(ring->dev))
1884 ring->effective_size -= 128;
1885
1886 ring->virtual_start = ioremap_wc(start, size);
1887 if (ring->virtual_start == NULL) {
1888 DRM_ERROR("can not ioremap virtual address for"
1889 " ring buffer\n");
1890 return -ENOMEM;
1891 }
1892
1893 if (!I915_NEED_GFX_HWS(dev)) {
1894 ret = init_phys_hws_pga(ring);
1895 if (ret)
1896 return ret;
1897 }
1898
1899 return 0;
1900 }
1901
1902 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1903 {
1904 drm_i915_private_t *dev_priv = dev->dev_private;
1905 struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1906
1907 ring->name = "bsd ring";
1908 ring->id = VCS;
1909
1910 ring->write_tail = ring_write_tail;
1911 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1912 ring->mmio_base = GEN6_BSD_RING_BASE;
1913 /* gen6 bsd needs a special wa for tail updates */
1914 if (IS_GEN6(dev))
1915 ring->write_tail = gen6_bsd_ring_write_tail;
1916 ring->flush = gen6_bsd_ring_flush;
1917 ring->add_request = gen6_add_request;
1918 ring->get_seqno = gen6_ring_get_seqno;
1919 ring->set_seqno = ring_set_seqno;
1920 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1921 ring->irq_get = gen6_ring_get_irq;
1922 ring->irq_put = gen6_ring_put_irq;
1923 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1924 ring->sync_to = gen6_ring_sync;
1925 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
1926 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
1927 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
1928 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
1929 ring->signal_mbox[RCS] = GEN6_RVSYNC;
1930 ring->signal_mbox[VCS] = GEN6_NOSYNC;
1931 ring->signal_mbox[BCS] = GEN6_BVSYNC;
1932 ring->signal_mbox[VECS] = GEN6_VEVSYNC;
1933 } else {
1934 ring->mmio_base = BSD_RING_BASE;
1935 ring->flush = bsd_ring_flush;
1936 ring->add_request = i9xx_add_request;
1937 ring->get_seqno = ring_get_seqno;
1938 ring->set_seqno = ring_set_seqno;
1939 if (IS_GEN5(dev)) {
1940 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
1941 ring->irq_get = gen5_ring_get_irq;
1942 ring->irq_put = gen5_ring_put_irq;
1943 } else {
1944 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1945 ring->irq_get = i9xx_ring_get_irq;
1946 ring->irq_put = i9xx_ring_put_irq;
1947 }
1948 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1949 }
1950 ring->init = init_ring_common;
1951
1952 return intel_init_ring_buffer(dev, ring);
1953 }
1954
1955 int intel_init_blt_ring_buffer(struct drm_device *dev)
1956 {
1957 drm_i915_private_t *dev_priv = dev->dev_private;
1958 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1959
1960 ring->name = "blitter ring";
1961 ring->id = BCS;
1962
1963 ring->mmio_base = BLT_RING_BASE;
1964 ring->write_tail = ring_write_tail;
1965 ring->flush = gen6_ring_flush;
1966 ring->add_request = gen6_add_request;
1967 ring->get_seqno = gen6_ring_get_seqno;
1968 ring->set_seqno = ring_set_seqno;
1969 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
1970 ring->irq_get = gen6_ring_get_irq;
1971 ring->irq_put = gen6_ring_put_irq;
1972 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1973 ring->sync_to = gen6_ring_sync;
1974 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
1975 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
1976 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
1977 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
1978 ring->signal_mbox[RCS] = GEN6_RBSYNC;
1979 ring->signal_mbox[VCS] = GEN6_VBSYNC;
1980 ring->signal_mbox[BCS] = GEN6_NOSYNC;
1981 ring->signal_mbox[VECS] = GEN6_VEBSYNC;
1982 ring->init = init_ring_common;
1983
1984 return intel_init_ring_buffer(dev, ring);
1985 }
1986
1987 int intel_init_vebox_ring_buffer(struct drm_device *dev)
1988 {
1989 drm_i915_private_t *dev_priv = dev->dev_private;
1990 struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
1991
1992 ring->name = "video enhancement ring";
1993 ring->id = VECS;
1994
1995 ring->mmio_base = VEBOX_RING_BASE;
1996 ring->write_tail = ring_write_tail;
1997 ring->flush = gen6_ring_flush;
1998 ring->add_request = gen6_add_request;
1999 ring->get_seqno = gen6_ring_get_seqno;
2000 ring->set_seqno = ring_set_seqno;
2001 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT |
2002 PM_VEBOX_CS_ERROR_INTERRUPT;
2003 ring->irq_get = hsw_vebox_get_irq;
2004 ring->irq_put = hsw_vebox_put_irq;
2005 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2006 ring->sync_to = gen6_ring_sync;
2007 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
2008 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
2009 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
2010 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2011 ring->signal_mbox[RCS] = GEN6_RVESYNC;
2012 ring->signal_mbox[VCS] = GEN6_VVESYNC;
2013 ring->signal_mbox[BCS] = GEN6_BVESYNC;
2014 ring->signal_mbox[VECS] = GEN6_NOSYNC;
2015 ring->init = init_ring_common;
2016
2017 return intel_init_ring_buffer(dev, ring);
2018 }
2019
2020 int
2021 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2022 {
2023 int ret;
2024
2025 if (!ring->gpu_caches_dirty)
2026 return 0;
2027
2028 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2029 if (ret)
2030 return ret;
2031
2032 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2033
2034 ring->gpu_caches_dirty = false;
2035 return 0;
2036 }
2037
2038 int
2039 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2040 {
2041 uint32_t flush_domains;
2042 int ret;
2043
2044 flush_domains = 0;
2045 if (ring->gpu_caches_dirty)
2046 flush_domains = I915_GEM_GPU_DOMAINS;
2047
2048 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2049 if (ret)
2050 return ret;
2051
2052 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2053
2054 ring->gpu_caches_dirty = false;
2055 return 0;
2056 }
This page took 0.072085 seconds and 6 git commands to generate.