drm/i915/bxt: add revision id for A1 stepping and use it
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 struct drm_device *dev = ring->dev;
40
41 if (!dev)
42 return false;
43
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48 return ringbuf->obj;
49 } else
50 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 int space = head - tail;
56 if (space <= 0)
57 space += size;
58 return space - I915_RING_FREE_SPACE;
59 }
60
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63 if (ringbuf->last_retired_head != -1) {
64 ringbuf->head = ringbuf->last_retired_head;
65 ringbuf->last_retired_head = -1;
66 }
67
68 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69 ringbuf->tail, ringbuf->size);
70 }
71
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74 intel_ring_update_space(ringbuf);
75 return ringbuf->space;
76 }
77
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80 struct drm_i915_private *dev_priv = ring->dev->dev_private;
81 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
84 static void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86 struct intel_ringbuffer *ringbuf = ring->buffer;
87 ringbuf->tail &= ringbuf->size - 1;
88 if (intel_ring_stopped(ring))
89 return;
90 ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
94 gen2_render_ring_flush(struct drm_i915_gem_request *req,
95 u32 invalidate_domains,
96 u32 flush_domains)
97 {
98 struct intel_engine_cs *ring = req->ring;
99 u32 cmd;
100 int ret;
101
102 cmd = MI_FLUSH;
103 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
104 cmd |= MI_NO_WRITE_FLUSH;
105
106 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
107 cmd |= MI_READ_FLUSH;
108
109 ret = intel_ring_begin(req, 2);
110 if (ret)
111 return ret;
112
113 intel_ring_emit(ring, cmd);
114 intel_ring_emit(ring, MI_NOOP);
115 intel_ring_advance(ring);
116
117 return 0;
118 }
119
120 static int
121 gen4_render_ring_flush(struct drm_i915_gem_request *req,
122 u32 invalidate_domains,
123 u32 flush_domains)
124 {
125 struct intel_engine_cs *ring = req->ring;
126 struct drm_device *dev = ring->dev;
127 u32 cmd;
128 int ret;
129
130 /*
131 * read/write caches:
132 *
133 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
134 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
135 * also flushed at 2d versus 3d pipeline switches.
136 *
137 * read-only caches:
138 *
139 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
140 * MI_READ_FLUSH is set, and is always flushed on 965.
141 *
142 * I915_GEM_DOMAIN_COMMAND may not exist?
143 *
144 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
145 * invalidated when MI_EXE_FLUSH is set.
146 *
147 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
148 * invalidated with every MI_FLUSH.
149 *
150 * TLBs:
151 *
152 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
153 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
154 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
155 * are flushed at any MI_FLUSH.
156 */
157
158 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
159 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
160 cmd &= ~MI_NO_WRITE_FLUSH;
161 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
162 cmd |= MI_EXE_FLUSH;
163
164 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
165 (IS_G4X(dev) || IS_GEN5(dev)))
166 cmd |= MI_INVALIDATE_ISP;
167
168 ret = intel_ring_begin(req, 2);
169 if (ret)
170 return ret;
171
172 intel_ring_emit(ring, cmd);
173 intel_ring_emit(ring, MI_NOOP);
174 intel_ring_advance(ring);
175
176 return 0;
177 }
178
179 /**
180 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
181 * implementing two workarounds on gen6. From section 1.4.7.1
182 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
183 *
184 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
185 * produced by non-pipelined state commands), software needs to first
186 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
187 * 0.
188 *
189 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
190 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
191 *
192 * And the workaround for these two requires this workaround first:
193 *
194 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
195 * BEFORE the pipe-control with a post-sync op and no write-cache
196 * flushes.
197 *
198 * And this last workaround is tricky because of the requirements on
199 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
200 * volume 2 part 1:
201 *
202 * "1 of the following must also be set:
203 * - Render Target Cache Flush Enable ([12] of DW1)
204 * - Depth Cache Flush Enable ([0] of DW1)
205 * - Stall at Pixel Scoreboard ([1] of DW1)
206 * - Depth Stall ([13] of DW1)
207 * - Post-Sync Operation ([13] of DW1)
208 * - Notify Enable ([8] of DW1)"
209 *
210 * The cache flushes require the workaround flush that triggered this
211 * one, so we can't use it. Depth stall would trigger the same.
212 * Post-sync nonzero is what triggered this second workaround, so we
213 * can't use that one either. Notify enable is IRQs, which aren't
214 * really our business. That leaves only stall at scoreboard.
215 */
216 static int
217 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
218 {
219 struct intel_engine_cs *ring = req->ring;
220 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
221 int ret;
222
223 ret = intel_ring_begin(req, 6);
224 if (ret)
225 return ret;
226
227 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
229 PIPE_CONTROL_STALL_AT_SCOREBOARD);
230 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
231 intel_ring_emit(ring, 0); /* low dword */
232 intel_ring_emit(ring, 0); /* high dword */
233 intel_ring_emit(ring, MI_NOOP);
234 intel_ring_advance(ring);
235
236 ret = intel_ring_begin(req, 6);
237 if (ret)
238 return ret;
239
240 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
241 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
242 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
243 intel_ring_emit(ring, 0);
244 intel_ring_emit(ring, 0);
245 intel_ring_emit(ring, MI_NOOP);
246 intel_ring_advance(ring);
247
248 return 0;
249 }
250
251 static int
252 gen6_render_ring_flush(struct drm_i915_gem_request *req,
253 u32 invalidate_domains, u32 flush_domains)
254 {
255 struct intel_engine_cs *ring = req->ring;
256 u32 flags = 0;
257 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
258 int ret;
259
260 /* Force SNB workarounds for PIPE_CONTROL flushes */
261 ret = intel_emit_post_sync_nonzero_flush(req);
262 if (ret)
263 return ret;
264
265 /* Just flush everything. Experiments have shown that reducing the
266 * number of bits based on the write domains has little performance
267 * impact.
268 */
269 if (flush_domains) {
270 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
271 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
272 /*
273 * Ensure that any following seqno writes only happen
274 * when the render cache is indeed flushed.
275 */
276 flags |= PIPE_CONTROL_CS_STALL;
277 }
278 if (invalidate_domains) {
279 flags |= PIPE_CONTROL_TLB_INVALIDATE;
280 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
281 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
282 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
283 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
284 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
285 /*
286 * TLB invalidate requires a post-sync write.
287 */
288 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
289 }
290
291 ret = intel_ring_begin(req, 4);
292 if (ret)
293 return ret;
294
295 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
296 intel_ring_emit(ring, flags);
297 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
298 intel_ring_emit(ring, 0);
299 intel_ring_advance(ring);
300
301 return 0;
302 }
303
304 static int
305 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
306 {
307 struct intel_engine_cs *ring = req->ring;
308 int ret;
309
310 ret = intel_ring_begin(req, 4);
311 if (ret)
312 return ret;
313
314 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
315 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
316 PIPE_CONTROL_STALL_AT_SCOREBOARD);
317 intel_ring_emit(ring, 0);
318 intel_ring_emit(ring, 0);
319 intel_ring_advance(ring);
320
321 return 0;
322 }
323
324 static int
325 gen7_render_ring_flush(struct drm_i915_gem_request *req,
326 u32 invalidate_domains, u32 flush_domains)
327 {
328 struct intel_engine_cs *ring = req->ring;
329 u32 flags = 0;
330 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
331 int ret;
332
333 /*
334 * Ensure that any following seqno writes only happen when the render
335 * cache is indeed flushed.
336 *
337 * Workaround: 4th PIPE_CONTROL command (except the ones with only
338 * read-cache invalidate bits set) must have the CS_STALL bit set. We
339 * don't try to be clever and just set it unconditionally.
340 */
341 flags |= PIPE_CONTROL_CS_STALL;
342
343 /* Just flush everything. Experiments have shown that reducing the
344 * number of bits based on the write domains has little performance
345 * impact.
346 */
347 if (flush_domains) {
348 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
349 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
350 }
351 if (invalidate_domains) {
352 flags |= PIPE_CONTROL_TLB_INVALIDATE;
353 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
354 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
355 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
356 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
357 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
358 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
359 /*
360 * TLB invalidate requires a post-sync write.
361 */
362 flags |= PIPE_CONTROL_QW_WRITE;
363 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
364
365 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
366
367 /* Workaround: we must issue a pipe_control with CS-stall bit
368 * set before a pipe_control command that has the state cache
369 * invalidate bit set. */
370 gen7_render_ring_cs_stall_wa(req);
371 }
372
373 ret = intel_ring_begin(req, 4);
374 if (ret)
375 return ret;
376
377 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
378 intel_ring_emit(ring, flags);
379 intel_ring_emit(ring, scratch_addr);
380 intel_ring_emit(ring, 0);
381 intel_ring_advance(ring);
382
383 return 0;
384 }
385
386 static int
387 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
388 u32 flags, u32 scratch_addr)
389 {
390 struct intel_engine_cs *ring = req->ring;
391 int ret;
392
393 ret = intel_ring_begin(req, 6);
394 if (ret)
395 return ret;
396
397 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
398 intel_ring_emit(ring, flags);
399 intel_ring_emit(ring, scratch_addr);
400 intel_ring_emit(ring, 0);
401 intel_ring_emit(ring, 0);
402 intel_ring_emit(ring, 0);
403 intel_ring_advance(ring);
404
405 return 0;
406 }
407
408 static int
409 gen8_render_ring_flush(struct drm_i915_gem_request *req,
410 u32 invalidate_domains, u32 flush_domains)
411 {
412 u32 flags = 0;
413 u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
414 int ret;
415
416 flags |= PIPE_CONTROL_CS_STALL;
417
418 if (flush_domains) {
419 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
420 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
421 }
422 if (invalidate_domains) {
423 flags |= PIPE_CONTROL_TLB_INVALIDATE;
424 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
425 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
426 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
427 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
428 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
429 flags |= PIPE_CONTROL_QW_WRITE;
430 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
431
432 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
433 ret = gen8_emit_pipe_control(req,
434 PIPE_CONTROL_CS_STALL |
435 PIPE_CONTROL_STALL_AT_SCOREBOARD,
436 0);
437 if (ret)
438 return ret;
439 }
440
441 return gen8_emit_pipe_control(req, flags, scratch_addr);
442 }
443
444 static void ring_write_tail(struct intel_engine_cs *ring,
445 u32 value)
446 {
447 struct drm_i915_private *dev_priv = ring->dev->dev_private;
448 I915_WRITE_TAIL(ring, value);
449 }
450
451 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
452 {
453 struct drm_i915_private *dev_priv = ring->dev->dev_private;
454 u64 acthd;
455
456 if (INTEL_INFO(ring->dev)->gen >= 8)
457 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
458 RING_ACTHD_UDW(ring->mmio_base));
459 else if (INTEL_INFO(ring->dev)->gen >= 4)
460 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
461 else
462 acthd = I915_READ(ACTHD);
463
464 return acthd;
465 }
466
467 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
468 {
469 struct drm_i915_private *dev_priv = ring->dev->dev_private;
470 u32 addr;
471
472 addr = dev_priv->status_page_dmah->busaddr;
473 if (INTEL_INFO(ring->dev)->gen >= 4)
474 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
475 I915_WRITE(HWS_PGA, addr);
476 }
477
478 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
479 {
480 struct drm_device *dev = ring->dev;
481 struct drm_i915_private *dev_priv = ring->dev->dev_private;
482 u32 mmio = 0;
483
484 /* The ring status page addresses are no longer next to the rest of
485 * the ring registers as of gen7.
486 */
487 if (IS_GEN7(dev)) {
488 switch (ring->id) {
489 case RCS:
490 mmio = RENDER_HWS_PGA_GEN7;
491 break;
492 case BCS:
493 mmio = BLT_HWS_PGA_GEN7;
494 break;
495 /*
496 * VCS2 actually doesn't exist on Gen7. Only shut up
497 * gcc switch check warning
498 */
499 case VCS2:
500 case VCS:
501 mmio = BSD_HWS_PGA_GEN7;
502 break;
503 case VECS:
504 mmio = VEBOX_HWS_PGA_GEN7;
505 break;
506 }
507 } else if (IS_GEN6(ring->dev)) {
508 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
509 } else {
510 /* XXX: gen8 returns to sanity */
511 mmio = RING_HWS_PGA(ring->mmio_base);
512 }
513
514 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
515 POSTING_READ(mmio);
516
517 /*
518 * Flush the TLB for this page
519 *
520 * FIXME: These two bits have disappeared on gen8, so a question
521 * arises: do we still need this and if so how should we go about
522 * invalidating the TLB?
523 */
524 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
525 u32 reg = RING_INSTPM(ring->mmio_base);
526
527 /* ring should be idle before issuing a sync flush*/
528 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
529
530 I915_WRITE(reg,
531 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
532 INSTPM_SYNC_FLUSH));
533 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
534 1000))
535 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
536 ring->name);
537 }
538 }
539
540 static bool stop_ring(struct intel_engine_cs *ring)
541 {
542 struct drm_i915_private *dev_priv = to_i915(ring->dev);
543
544 if (!IS_GEN2(ring->dev)) {
545 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
546 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
547 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
548 /* Sometimes we observe that the idle flag is not
549 * set even though the ring is empty. So double
550 * check before giving up.
551 */
552 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
553 return false;
554 }
555 }
556
557 I915_WRITE_CTL(ring, 0);
558 I915_WRITE_HEAD(ring, 0);
559 ring->write_tail(ring, 0);
560
561 if (!IS_GEN2(ring->dev)) {
562 (void)I915_READ_CTL(ring);
563 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
564 }
565
566 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
567 }
568
569 static int init_ring_common(struct intel_engine_cs *ring)
570 {
571 struct drm_device *dev = ring->dev;
572 struct drm_i915_private *dev_priv = dev->dev_private;
573 struct intel_ringbuffer *ringbuf = ring->buffer;
574 struct drm_i915_gem_object *obj = ringbuf->obj;
575 int ret = 0;
576
577 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
578
579 if (!stop_ring(ring)) {
580 /* G45 ring initialization often fails to reset head to zero */
581 DRM_DEBUG_KMS("%s head not reset to zero "
582 "ctl %08x head %08x tail %08x start %08x\n",
583 ring->name,
584 I915_READ_CTL(ring),
585 I915_READ_HEAD(ring),
586 I915_READ_TAIL(ring),
587 I915_READ_START(ring));
588
589 if (!stop_ring(ring)) {
590 DRM_ERROR("failed to set %s head to zero "
591 "ctl %08x head %08x tail %08x start %08x\n",
592 ring->name,
593 I915_READ_CTL(ring),
594 I915_READ_HEAD(ring),
595 I915_READ_TAIL(ring),
596 I915_READ_START(ring));
597 ret = -EIO;
598 goto out;
599 }
600 }
601
602 if (I915_NEED_GFX_HWS(dev))
603 intel_ring_setup_status_page(ring);
604 else
605 ring_setup_phys_status_page(ring);
606
607 /* Enforce ordering by reading HEAD register back */
608 I915_READ_HEAD(ring);
609
610 /* Initialize the ring. This must happen _after_ we've cleared the ring
611 * registers with the above sequence (the readback of the HEAD registers
612 * also enforces ordering), otherwise the hw might lose the new ring
613 * register values. */
614 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
615
616 /* WaClearRingBufHeadRegAtInit:ctg,elk */
617 if (I915_READ_HEAD(ring))
618 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
619 ring->name, I915_READ_HEAD(ring));
620 I915_WRITE_HEAD(ring, 0);
621 (void)I915_READ_HEAD(ring);
622
623 I915_WRITE_CTL(ring,
624 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
625 | RING_VALID);
626
627 /* If the head is still not zero, the ring is dead */
628 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
629 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
630 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
631 DRM_ERROR("%s initialization failed "
632 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
633 ring->name,
634 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
635 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
636 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
637 ret = -EIO;
638 goto out;
639 }
640
641 ringbuf->last_retired_head = -1;
642 ringbuf->head = I915_READ_HEAD(ring);
643 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
644 intel_ring_update_space(ringbuf);
645
646 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
647
648 out:
649 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
650
651 return ret;
652 }
653
654 void
655 intel_fini_pipe_control(struct intel_engine_cs *ring)
656 {
657 struct drm_device *dev = ring->dev;
658
659 if (ring->scratch.obj == NULL)
660 return;
661
662 if (INTEL_INFO(dev)->gen >= 5) {
663 kunmap(sg_page(ring->scratch.obj->pages->sgl));
664 i915_gem_object_ggtt_unpin(ring->scratch.obj);
665 }
666
667 drm_gem_object_unreference(&ring->scratch.obj->base);
668 ring->scratch.obj = NULL;
669 }
670
671 int
672 intel_init_pipe_control(struct intel_engine_cs *ring)
673 {
674 int ret;
675
676 WARN_ON(ring->scratch.obj);
677
678 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
679 if (ring->scratch.obj == NULL) {
680 DRM_ERROR("Failed to allocate seqno page\n");
681 ret = -ENOMEM;
682 goto err;
683 }
684
685 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
686 if (ret)
687 goto err_unref;
688
689 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
690 if (ret)
691 goto err_unref;
692
693 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
694 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
695 if (ring->scratch.cpu_page == NULL) {
696 ret = -ENOMEM;
697 goto err_unpin;
698 }
699
700 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
701 ring->name, ring->scratch.gtt_offset);
702 return 0;
703
704 err_unpin:
705 i915_gem_object_ggtt_unpin(ring->scratch.obj);
706 err_unref:
707 drm_gem_object_unreference(&ring->scratch.obj->base);
708 err:
709 return ret;
710 }
711
712 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
713 {
714 int ret, i;
715 struct intel_engine_cs *ring = req->ring;
716 struct drm_device *dev = ring->dev;
717 struct drm_i915_private *dev_priv = dev->dev_private;
718 struct i915_workarounds *w = &dev_priv->workarounds;
719
720 if (w->count == 0)
721 return 0;
722
723 ring->gpu_caches_dirty = true;
724 ret = intel_ring_flush_all_caches(req);
725 if (ret)
726 return ret;
727
728 ret = intel_ring_begin(req, (w->count * 2 + 2));
729 if (ret)
730 return ret;
731
732 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
733 for (i = 0; i < w->count; i++) {
734 intel_ring_emit(ring, w->reg[i].addr);
735 intel_ring_emit(ring, w->reg[i].value);
736 }
737 intel_ring_emit(ring, MI_NOOP);
738
739 intel_ring_advance(ring);
740
741 ring->gpu_caches_dirty = true;
742 ret = intel_ring_flush_all_caches(req);
743 if (ret)
744 return ret;
745
746 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
747
748 return 0;
749 }
750
751 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
752 {
753 int ret;
754
755 ret = intel_ring_workarounds_emit(req);
756 if (ret != 0)
757 return ret;
758
759 ret = i915_gem_render_state_init(req);
760 if (ret)
761 DRM_ERROR("init render state: %d\n", ret);
762
763 return ret;
764 }
765
766 static int wa_add(struct drm_i915_private *dev_priv,
767 const u32 addr, const u32 mask, const u32 val)
768 {
769 const u32 idx = dev_priv->workarounds.count;
770
771 if (WARN_ON(idx >= I915_MAX_WA_REGS))
772 return -ENOSPC;
773
774 dev_priv->workarounds.reg[idx].addr = addr;
775 dev_priv->workarounds.reg[idx].value = val;
776 dev_priv->workarounds.reg[idx].mask = mask;
777
778 dev_priv->workarounds.count++;
779
780 return 0;
781 }
782
783 #define WA_REG(addr, mask, val) do { \
784 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
785 if (r) \
786 return r; \
787 } while (0)
788
789 #define WA_SET_BIT_MASKED(addr, mask) \
790 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
791
792 #define WA_CLR_BIT_MASKED(addr, mask) \
793 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
794
795 #define WA_SET_FIELD_MASKED(addr, mask, value) \
796 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
797
798 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
799 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
800
801 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
802
803 static int gen8_init_workarounds(struct intel_engine_cs *ring)
804 {
805 struct drm_device *dev = ring->dev;
806 struct drm_i915_private *dev_priv = dev->dev_private;
807
808 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
809
810 /* WaDisableAsyncFlipPerfMode:bdw,chv */
811 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
812
813 /* WaDisablePartialInstShootdown:bdw,chv */
814 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
815 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
816
817 /* Use Force Non-Coherent whenever executing a 3D context. This is a
818 * workaround for for a possible hang in the unlikely event a TLB
819 * invalidation occurs during a PSD flush.
820 */
821 /* WaForceEnableNonCoherent:bdw,chv */
822 /* WaHdcDisableFetchWhenMasked:bdw,chv */
823 WA_SET_BIT_MASKED(HDC_CHICKEN0,
824 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
825 HDC_FORCE_NON_COHERENT);
826
827 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
828 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
829 * polygons in the same 8x4 pixel/sample area to be processed without
830 * stalling waiting for the earlier ones to write to Hierarchical Z
831 * buffer."
832 *
833 * This optimization is off by default for BDW and CHV; turn it on.
834 */
835 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
836
837 /* Wa4x4STCOptimizationDisable:bdw,chv */
838 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
839
840 /*
841 * BSpec recommends 8x4 when MSAA is used,
842 * however in practice 16x4 seems fastest.
843 *
844 * Note that PS/WM thread counts depend on the WIZ hashing
845 * disable bit, which we don't touch here, but it's good
846 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
847 */
848 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
849 GEN6_WIZ_HASHING_MASK,
850 GEN6_WIZ_HASHING_16x4);
851
852 return 0;
853 }
854
855 static int bdw_init_workarounds(struct intel_engine_cs *ring)
856 {
857 int ret;
858 struct drm_device *dev = ring->dev;
859 struct drm_i915_private *dev_priv = dev->dev_private;
860
861 ret = gen8_init_workarounds(ring);
862 if (ret)
863 return ret;
864
865 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
866 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
867
868 /* WaDisableDopClockGating:bdw */
869 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
870 DOP_CLOCK_GATING_DISABLE);
871
872 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
873 GEN8_SAMPLER_POWER_BYPASS_DIS);
874
875 WA_SET_BIT_MASKED(HDC_CHICKEN0,
876 /* WaForceContextSaveRestoreNonCoherent:bdw */
877 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
878 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
879 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
880
881 return 0;
882 }
883
884 static int chv_init_workarounds(struct intel_engine_cs *ring)
885 {
886 int ret;
887 struct drm_device *dev = ring->dev;
888 struct drm_i915_private *dev_priv = dev->dev_private;
889
890 ret = gen8_init_workarounds(ring);
891 if (ret)
892 return ret;
893
894 /* WaDisableThreadStallDopClockGating:chv */
895 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
896
897 /* Improve HiZ throughput on CHV. */
898 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
899
900 return 0;
901 }
902
903 static int gen9_init_workarounds(struct intel_engine_cs *ring)
904 {
905 struct drm_device *dev = ring->dev;
906 struct drm_i915_private *dev_priv = dev->dev_private;
907 uint32_t tmp;
908
909 /* WaEnableLbsSlaRetryTimerDecrement:skl */
910 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
911 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
912
913 /* WaDisableKillLogic:bxt,skl */
914 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
915 ECOCHK_DIS_TLB);
916
917 /* WaDisablePartialInstShootdown:skl,bxt */
918 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
919 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
920
921 /* Syncing dependencies between camera and graphics:skl,bxt */
922 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
923 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
924
925 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
926 INTEL_REVID(dev) == SKL_REVID_B0)) ||
927 (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A1)) {
928 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
929 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
930 GEN9_DG_MIRROR_FIX_ENABLE);
931 }
932
933 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
934 (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A1)) {
935 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
936 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
937 GEN9_RHWO_OPTIMIZATION_DISABLE);
938 /*
939 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
940 * but we do that in per ctx batchbuffer as there is an issue
941 * with this register not getting restored on ctx restore
942 */
943 }
944
945 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
946 IS_BROXTON(dev)) {
947 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
948 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
949 GEN9_ENABLE_YV12_BUGFIX);
950 }
951
952 /* Wa4x4STCOptimizationDisable:skl,bxt */
953 /* WaDisablePartialResolveInVc:skl,bxt */
954 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
955 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
956
957 /* WaCcsTlbPrefetchDisable:skl,bxt */
958 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
959 GEN9_CCS_TLB_PREFETCH_ENABLE);
960
961 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
962 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
963 (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A1))
964 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
965 PIXEL_MASK_CAMMING_DISABLE);
966
967 /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
968 tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
969 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
970 (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
971 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
972 WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
973
974 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
975 if (IS_SKYLAKE(dev) ||
976 (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_B0)) {
977 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
978 GEN8_SAMPLER_POWER_BYPASS_DIS);
979 }
980
981 /* WaDisableSTUnitPowerOptimization:skl,bxt */
982 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
983
984 return 0;
985 }
986
987 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
988 {
989 struct drm_device *dev = ring->dev;
990 struct drm_i915_private *dev_priv = dev->dev_private;
991 u8 vals[3] = { 0, 0, 0 };
992 unsigned int i;
993
994 for (i = 0; i < 3; i++) {
995 u8 ss;
996
997 /*
998 * Only consider slices where one, and only one, subslice has 7
999 * EUs
1000 */
1001 if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
1002 continue;
1003
1004 /*
1005 * subslice_7eu[i] != 0 (because of the check above) and
1006 * ss_max == 4 (maximum number of subslices possible per slice)
1007 *
1008 * -> 0 <= ss <= 3;
1009 */
1010 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1011 vals[i] = 3 - ss;
1012 }
1013
1014 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1015 return 0;
1016
1017 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1018 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1019 GEN9_IZ_HASHING_MASK(2) |
1020 GEN9_IZ_HASHING_MASK(1) |
1021 GEN9_IZ_HASHING_MASK(0),
1022 GEN9_IZ_HASHING(2, vals[2]) |
1023 GEN9_IZ_HASHING(1, vals[1]) |
1024 GEN9_IZ_HASHING(0, vals[0]));
1025
1026 return 0;
1027 }
1028
1029 static int skl_init_workarounds(struct intel_engine_cs *ring)
1030 {
1031 int ret;
1032 struct drm_device *dev = ring->dev;
1033 struct drm_i915_private *dev_priv = dev->dev_private;
1034
1035 ret = gen9_init_workarounds(ring);
1036 if (ret)
1037 return ret;
1038
1039 if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1040 /* WaDisableHDCInvalidation:skl */
1041 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1042 BDW_DISABLE_HDC_INVALIDATION);
1043
1044 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1045 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1046 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1047 }
1048
1049 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1050 * involving this register should also be added to WA batch as required.
1051 */
1052 if (INTEL_REVID(dev) <= SKL_REVID_E0)
1053 /* WaDisableLSQCROPERFforOCL:skl */
1054 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1055 GEN8_LQSC_RO_PERF_DIS);
1056
1057 /* WaEnableGapsTsvCreditFix:skl */
1058 if (IS_SKYLAKE(dev) && (INTEL_REVID(dev) >= SKL_REVID_C0)) {
1059 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1060 GEN9_GAPS_TSV_CREDIT_DISABLE));
1061 }
1062
1063 /* WaDisablePowerCompilerClockGating:skl */
1064 if (INTEL_REVID(dev) == SKL_REVID_B0)
1065 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1066 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1067
1068 if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1069 /*
1070 *Use Force Non-Coherent whenever executing a 3D context. This
1071 * is a workaround for a possible hang in the unlikely event
1072 * a TLB invalidation occurs during a PSD flush.
1073 */
1074 /* WaForceEnableNonCoherent:skl */
1075 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1076 HDC_FORCE_NON_COHERENT);
1077 }
1078
1079 if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1080 INTEL_REVID(dev) == SKL_REVID_D0)
1081 /* WaBarrierPerformanceFixDisable:skl */
1082 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1083 HDC_FENCE_DEST_SLM_DISABLE |
1084 HDC_BARRIER_PERFORMANCE_DISABLE);
1085
1086 /* WaDisableSbeCacheDispatchPortSharing:skl */
1087 if (INTEL_REVID(dev) <= SKL_REVID_F0) {
1088 WA_SET_BIT_MASKED(
1089 GEN7_HALF_SLICE_CHICKEN1,
1090 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1091 }
1092
1093 return skl_tune_iz_hashing(ring);
1094 }
1095
1096 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1097 {
1098 int ret;
1099 struct drm_device *dev = ring->dev;
1100 struct drm_i915_private *dev_priv = dev->dev_private;
1101
1102 ret = gen9_init_workarounds(ring);
1103 if (ret)
1104 return ret;
1105
1106 /* WaStoreMultiplePTEenable:bxt */
1107 /* This is a requirement according to Hardware specification */
1108 if (INTEL_REVID(dev) == BXT_REVID_A0)
1109 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1110
1111 /* WaSetClckGatingDisableMedia:bxt */
1112 if (INTEL_REVID(dev) == BXT_REVID_A0) {
1113 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1114 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1115 }
1116
1117 /* WaDisableThreadStallDopClockGating:bxt */
1118 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1119 STALL_DOP_GATING_DISABLE);
1120
1121 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1122 if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1123 WA_SET_BIT_MASKED(
1124 GEN7_HALF_SLICE_CHICKEN1,
1125 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1126 }
1127
1128 return 0;
1129 }
1130
1131 int init_workarounds_ring(struct intel_engine_cs *ring)
1132 {
1133 struct drm_device *dev = ring->dev;
1134 struct drm_i915_private *dev_priv = dev->dev_private;
1135
1136 WARN_ON(ring->id != RCS);
1137
1138 dev_priv->workarounds.count = 0;
1139
1140 if (IS_BROADWELL(dev))
1141 return bdw_init_workarounds(ring);
1142
1143 if (IS_CHERRYVIEW(dev))
1144 return chv_init_workarounds(ring);
1145
1146 if (IS_SKYLAKE(dev))
1147 return skl_init_workarounds(ring);
1148
1149 if (IS_BROXTON(dev))
1150 return bxt_init_workarounds(ring);
1151
1152 return 0;
1153 }
1154
1155 static int init_render_ring(struct intel_engine_cs *ring)
1156 {
1157 struct drm_device *dev = ring->dev;
1158 struct drm_i915_private *dev_priv = dev->dev_private;
1159 int ret = init_ring_common(ring);
1160 if (ret)
1161 return ret;
1162
1163 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1164 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1165 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1166
1167 /* We need to disable the AsyncFlip performance optimisations in order
1168 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1169 * programmed to '1' on all products.
1170 *
1171 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1172 */
1173 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1174 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1175
1176 /* Required for the hardware to program scanline values for waiting */
1177 /* WaEnableFlushTlbInvalidationMode:snb */
1178 if (INTEL_INFO(dev)->gen == 6)
1179 I915_WRITE(GFX_MODE,
1180 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1181
1182 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1183 if (IS_GEN7(dev))
1184 I915_WRITE(GFX_MODE_GEN7,
1185 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1186 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1187
1188 if (IS_GEN6(dev)) {
1189 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1190 * "If this bit is set, STCunit will have LRA as replacement
1191 * policy. [...] This bit must be reset. LRA replacement
1192 * policy is not supported."
1193 */
1194 I915_WRITE(CACHE_MODE_0,
1195 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1196 }
1197
1198 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1199 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1200
1201 if (HAS_L3_DPF(dev))
1202 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1203
1204 return init_workarounds_ring(ring);
1205 }
1206
1207 static void render_ring_cleanup(struct intel_engine_cs *ring)
1208 {
1209 struct drm_device *dev = ring->dev;
1210 struct drm_i915_private *dev_priv = dev->dev_private;
1211
1212 if (dev_priv->semaphore_obj) {
1213 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1214 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1215 dev_priv->semaphore_obj = NULL;
1216 }
1217
1218 intel_fini_pipe_control(ring);
1219 }
1220
1221 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1222 unsigned int num_dwords)
1223 {
1224 #define MBOX_UPDATE_DWORDS 8
1225 struct intel_engine_cs *signaller = signaller_req->ring;
1226 struct drm_device *dev = signaller->dev;
1227 struct drm_i915_private *dev_priv = dev->dev_private;
1228 struct intel_engine_cs *waiter;
1229 int i, ret, num_rings;
1230
1231 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1232 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1233 #undef MBOX_UPDATE_DWORDS
1234
1235 ret = intel_ring_begin(signaller_req, num_dwords);
1236 if (ret)
1237 return ret;
1238
1239 for_each_ring(waiter, dev_priv, i) {
1240 u32 seqno;
1241 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1242 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1243 continue;
1244
1245 seqno = i915_gem_request_get_seqno(signaller_req);
1246 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1247 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1248 PIPE_CONTROL_QW_WRITE |
1249 PIPE_CONTROL_FLUSH_ENABLE);
1250 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1251 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1252 intel_ring_emit(signaller, seqno);
1253 intel_ring_emit(signaller, 0);
1254 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1255 MI_SEMAPHORE_TARGET(waiter->id));
1256 intel_ring_emit(signaller, 0);
1257 }
1258
1259 return 0;
1260 }
1261
1262 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1263 unsigned int num_dwords)
1264 {
1265 #define MBOX_UPDATE_DWORDS 6
1266 struct intel_engine_cs *signaller = signaller_req->ring;
1267 struct drm_device *dev = signaller->dev;
1268 struct drm_i915_private *dev_priv = dev->dev_private;
1269 struct intel_engine_cs *waiter;
1270 int i, ret, num_rings;
1271
1272 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1273 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1274 #undef MBOX_UPDATE_DWORDS
1275
1276 ret = intel_ring_begin(signaller_req, num_dwords);
1277 if (ret)
1278 return ret;
1279
1280 for_each_ring(waiter, dev_priv, i) {
1281 u32 seqno;
1282 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1283 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1284 continue;
1285
1286 seqno = i915_gem_request_get_seqno(signaller_req);
1287 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1288 MI_FLUSH_DW_OP_STOREDW);
1289 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1290 MI_FLUSH_DW_USE_GTT);
1291 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1292 intel_ring_emit(signaller, seqno);
1293 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1294 MI_SEMAPHORE_TARGET(waiter->id));
1295 intel_ring_emit(signaller, 0);
1296 }
1297
1298 return 0;
1299 }
1300
1301 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1302 unsigned int num_dwords)
1303 {
1304 struct intel_engine_cs *signaller = signaller_req->ring;
1305 struct drm_device *dev = signaller->dev;
1306 struct drm_i915_private *dev_priv = dev->dev_private;
1307 struct intel_engine_cs *useless;
1308 int i, ret, num_rings;
1309
1310 #define MBOX_UPDATE_DWORDS 3
1311 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1312 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1313 #undef MBOX_UPDATE_DWORDS
1314
1315 ret = intel_ring_begin(signaller_req, num_dwords);
1316 if (ret)
1317 return ret;
1318
1319 for_each_ring(useless, dev_priv, i) {
1320 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1321 if (mbox_reg != GEN6_NOSYNC) {
1322 u32 seqno = i915_gem_request_get_seqno(signaller_req);
1323 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1324 intel_ring_emit(signaller, mbox_reg);
1325 intel_ring_emit(signaller, seqno);
1326 }
1327 }
1328
1329 /* If num_dwords was rounded, make sure the tail pointer is correct */
1330 if (num_rings % 2 == 0)
1331 intel_ring_emit(signaller, MI_NOOP);
1332
1333 return 0;
1334 }
1335
1336 /**
1337 * gen6_add_request - Update the semaphore mailbox registers
1338 *
1339 * @request - request to write to the ring
1340 *
1341 * Update the mailbox registers in the *other* rings with the current seqno.
1342 * This acts like a signal in the canonical semaphore.
1343 */
1344 static int
1345 gen6_add_request(struct drm_i915_gem_request *req)
1346 {
1347 struct intel_engine_cs *ring = req->ring;
1348 int ret;
1349
1350 if (ring->semaphore.signal)
1351 ret = ring->semaphore.signal(req, 4);
1352 else
1353 ret = intel_ring_begin(req, 4);
1354
1355 if (ret)
1356 return ret;
1357
1358 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1359 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1360 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1361 intel_ring_emit(ring, MI_USER_INTERRUPT);
1362 __intel_ring_advance(ring);
1363
1364 return 0;
1365 }
1366
1367 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1368 u32 seqno)
1369 {
1370 struct drm_i915_private *dev_priv = dev->dev_private;
1371 return dev_priv->last_seqno < seqno;
1372 }
1373
1374 /**
1375 * intel_ring_sync - sync the waiter to the signaller on seqno
1376 *
1377 * @waiter - ring that is waiting
1378 * @signaller - ring which has, or will signal
1379 * @seqno - seqno which the waiter will block on
1380 */
1381
1382 static int
1383 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1384 struct intel_engine_cs *signaller,
1385 u32 seqno)
1386 {
1387 struct intel_engine_cs *waiter = waiter_req->ring;
1388 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1389 int ret;
1390
1391 ret = intel_ring_begin(waiter_req, 4);
1392 if (ret)
1393 return ret;
1394
1395 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1396 MI_SEMAPHORE_GLOBAL_GTT |
1397 MI_SEMAPHORE_POLL |
1398 MI_SEMAPHORE_SAD_GTE_SDD);
1399 intel_ring_emit(waiter, seqno);
1400 intel_ring_emit(waiter,
1401 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1402 intel_ring_emit(waiter,
1403 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1404 intel_ring_advance(waiter);
1405 return 0;
1406 }
1407
1408 static int
1409 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1410 struct intel_engine_cs *signaller,
1411 u32 seqno)
1412 {
1413 struct intel_engine_cs *waiter = waiter_req->ring;
1414 u32 dw1 = MI_SEMAPHORE_MBOX |
1415 MI_SEMAPHORE_COMPARE |
1416 MI_SEMAPHORE_REGISTER;
1417 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1418 int ret;
1419
1420 /* Throughout all of the GEM code, seqno passed implies our current
1421 * seqno is >= the last seqno executed. However for hardware the
1422 * comparison is strictly greater than.
1423 */
1424 seqno -= 1;
1425
1426 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1427
1428 ret = intel_ring_begin(waiter_req, 4);
1429 if (ret)
1430 return ret;
1431
1432 /* If seqno wrap happened, omit the wait with no-ops */
1433 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1434 intel_ring_emit(waiter, dw1 | wait_mbox);
1435 intel_ring_emit(waiter, seqno);
1436 intel_ring_emit(waiter, 0);
1437 intel_ring_emit(waiter, MI_NOOP);
1438 } else {
1439 intel_ring_emit(waiter, MI_NOOP);
1440 intel_ring_emit(waiter, MI_NOOP);
1441 intel_ring_emit(waiter, MI_NOOP);
1442 intel_ring_emit(waiter, MI_NOOP);
1443 }
1444 intel_ring_advance(waiter);
1445
1446 return 0;
1447 }
1448
1449 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1450 do { \
1451 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1452 PIPE_CONTROL_DEPTH_STALL); \
1453 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1454 intel_ring_emit(ring__, 0); \
1455 intel_ring_emit(ring__, 0); \
1456 } while (0)
1457
1458 static int
1459 pc_render_add_request(struct drm_i915_gem_request *req)
1460 {
1461 struct intel_engine_cs *ring = req->ring;
1462 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1463 int ret;
1464
1465 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1466 * incoherent with writes to memory, i.e. completely fubar,
1467 * so we need to use PIPE_NOTIFY instead.
1468 *
1469 * However, we also need to workaround the qword write
1470 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1471 * memory before requesting an interrupt.
1472 */
1473 ret = intel_ring_begin(req, 32);
1474 if (ret)
1475 return ret;
1476
1477 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1478 PIPE_CONTROL_WRITE_FLUSH |
1479 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1480 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1481 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1482 intel_ring_emit(ring, 0);
1483 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1484 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1485 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1486 scratch_addr += 2 * CACHELINE_BYTES;
1487 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1488 scratch_addr += 2 * CACHELINE_BYTES;
1489 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1490 scratch_addr += 2 * CACHELINE_BYTES;
1491 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1492 scratch_addr += 2 * CACHELINE_BYTES;
1493 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1494
1495 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1496 PIPE_CONTROL_WRITE_FLUSH |
1497 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1498 PIPE_CONTROL_NOTIFY);
1499 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1500 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1501 intel_ring_emit(ring, 0);
1502 __intel_ring_advance(ring);
1503
1504 return 0;
1505 }
1506
1507 static u32
1508 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1509 {
1510 /* Workaround to force correct ordering between irq and seqno writes on
1511 * ivb (and maybe also on snb) by reading from a CS register (like
1512 * ACTHD) before reading the status page. */
1513 if (!lazy_coherency) {
1514 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1515 POSTING_READ(RING_ACTHD(ring->mmio_base));
1516 }
1517
1518 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1519 }
1520
1521 static u32
1522 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1523 {
1524 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1525 }
1526
1527 static void
1528 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1529 {
1530 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1531 }
1532
1533 static u32
1534 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1535 {
1536 return ring->scratch.cpu_page[0];
1537 }
1538
1539 static void
1540 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1541 {
1542 ring->scratch.cpu_page[0] = seqno;
1543 }
1544
1545 static bool
1546 gen5_ring_get_irq(struct intel_engine_cs *ring)
1547 {
1548 struct drm_device *dev = ring->dev;
1549 struct drm_i915_private *dev_priv = dev->dev_private;
1550 unsigned long flags;
1551
1552 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1553 return false;
1554
1555 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1556 if (ring->irq_refcount++ == 0)
1557 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1558 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1559
1560 return true;
1561 }
1562
1563 static void
1564 gen5_ring_put_irq(struct intel_engine_cs *ring)
1565 {
1566 struct drm_device *dev = ring->dev;
1567 struct drm_i915_private *dev_priv = dev->dev_private;
1568 unsigned long flags;
1569
1570 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1571 if (--ring->irq_refcount == 0)
1572 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1573 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1574 }
1575
1576 static bool
1577 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1578 {
1579 struct drm_device *dev = ring->dev;
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581 unsigned long flags;
1582
1583 if (!intel_irqs_enabled(dev_priv))
1584 return false;
1585
1586 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1587 if (ring->irq_refcount++ == 0) {
1588 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1589 I915_WRITE(IMR, dev_priv->irq_mask);
1590 POSTING_READ(IMR);
1591 }
1592 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1593
1594 return true;
1595 }
1596
1597 static void
1598 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1599 {
1600 struct drm_device *dev = ring->dev;
1601 struct drm_i915_private *dev_priv = dev->dev_private;
1602 unsigned long flags;
1603
1604 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1605 if (--ring->irq_refcount == 0) {
1606 dev_priv->irq_mask |= ring->irq_enable_mask;
1607 I915_WRITE(IMR, dev_priv->irq_mask);
1608 POSTING_READ(IMR);
1609 }
1610 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1611 }
1612
1613 static bool
1614 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1615 {
1616 struct drm_device *dev = ring->dev;
1617 struct drm_i915_private *dev_priv = dev->dev_private;
1618 unsigned long flags;
1619
1620 if (!intel_irqs_enabled(dev_priv))
1621 return false;
1622
1623 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1624 if (ring->irq_refcount++ == 0) {
1625 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1626 I915_WRITE16(IMR, dev_priv->irq_mask);
1627 POSTING_READ16(IMR);
1628 }
1629 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1630
1631 return true;
1632 }
1633
1634 static void
1635 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1636 {
1637 struct drm_device *dev = ring->dev;
1638 struct drm_i915_private *dev_priv = dev->dev_private;
1639 unsigned long flags;
1640
1641 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1642 if (--ring->irq_refcount == 0) {
1643 dev_priv->irq_mask |= ring->irq_enable_mask;
1644 I915_WRITE16(IMR, dev_priv->irq_mask);
1645 POSTING_READ16(IMR);
1646 }
1647 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1648 }
1649
1650 static int
1651 bsd_ring_flush(struct drm_i915_gem_request *req,
1652 u32 invalidate_domains,
1653 u32 flush_domains)
1654 {
1655 struct intel_engine_cs *ring = req->ring;
1656 int ret;
1657
1658 ret = intel_ring_begin(req, 2);
1659 if (ret)
1660 return ret;
1661
1662 intel_ring_emit(ring, MI_FLUSH);
1663 intel_ring_emit(ring, MI_NOOP);
1664 intel_ring_advance(ring);
1665 return 0;
1666 }
1667
1668 static int
1669 i9xx_add_request(struct drm_i915_gem_request *req)
1670 {
1671 struct intel_engine_cs *ring = req->ring;
1672 int ret;
1673
1674 ret = intel_ring_begin(req, 4);
1675 if (ret)
1676 return ret;
1677
1678 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1679 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1680 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1681 intel_ring_emit(ring, MI_USER_INTERRUPT);
1682 __intel_ring_advance(ring);
1683
1684 return 0;
1685 }
1686
1687 static bool
1688 gen6_ring_get_irq(struct intel_engine_cs *ring)
1689 {
1690 struct drm_device *dev = ring->dev;
1691 struct drm_i915_private *dev_priv = dev->dev_private;
1692 unsigned long flags;
1693
1694 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1695 return false;
1696
1697 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1698 if (ring->irq_refcount++ == 0) {
1699 if (HAS_L3_DPF(dev) && ring->id == RCS)
1700 I915_WRITE_IMR(ring,
1701 ~(ring->irq_enable_mask |
1702 GT_PARITY_ERROR(dev)));
1703 else
1704 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1705 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1706 }
1707 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1708
1709 return true;
1710 }
1711
1712 static void
1713 gen6_ring_put_irq(struct intel_engine_cs *ring)
1714 {
1715 struct drm_device *dev = ring->dev;
1716 struct drm_i915_private *dev_priv = dev->dev_private;
1717 unsigned long flags;
1718
1719 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1720 if (--ring->irq_refcount == 0) {
1721 if (HAS_L3_DPF(dev) && ring->id == RCS)
1722 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1723 else
1724 I915_WRITE_IMR(ring, ~0);
1725 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1726 }
1727 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1728 }
1729
1730 static bool
1731 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1732 {
1733 struct drm_device *dev = ring->dev;
1734 struct drm_i915_private *dev_priv = dev->dev_private;
1735 unsigned long flags;
1736
1737 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1738 return false;
1739
1740 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1741 if (ring->irq_refcount++ == 0) {
1742 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1743 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1744 }
1745 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1746
1747 return true;
1748 }
1749
1750 static void
1751 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1752 {
1753 struct drm_device *dev = ring->dev;
1754 struct drm_i915_private *dev_priv = dev->dev_private;
1755 unsigned long flags;
1756
1757 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1758 if (--ring->irq_refcount == 0) {
1759 I915_WRITE_IMR(ring, ~0);
1760 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1761 }
1762 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1763 }
1764
1765 static bool
1766 gen8_ring_get_irq(struct intel_engine_cs *ring)
1767 {
1768 struct drm_device *dev = ring->dev;
1769 struct drm_i915_private *dev_priv = dev->dev_private;
1770 unsigned long flags;
1771
1772 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1773 return false;
1774
1775 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1776 if (ring->irq_refcount++ == 0) {
1777 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1778 I915_WRITE_IMR(ring,
1779 ~(ring->irq_enable_mask |
1780 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1781 } else {
1782 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1783 }
1784 POSTING_READ(RING_IMR(ring->mmio_base));
1785 }
1786 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1787
1788 return true;
1789 }
1790
1791 static void
1792 gen8_ring_put_irq(struct intel_engine_cs *ring)
1793 {
1794 struct drm_device *dev = ring->dev;
1795 struct drm_i915_private *dev_priv = dev->dev_private;
1796 unsigned long flags;
1797
1798 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1799 if (--ring->irq_refcount == 0) {
1800 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1801 I915_WRITE_IMR(ring,
1802 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1803 } else {
1804 I915_WRITE_IMR(ring, ~0);
1805 }
1806 POSTING_READ(RING_IMR(ring->mmio_base));
1807 }
1808 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1809 }
1810
1811 static int
1812 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1813 u64 offset, u32 length,
1814 unsigned dispatch_flags)
1815 {
1816 struct intel_engine_cs *ring = req->ring;
1817 int ret;
1818
1819 ret = intel_ring_begin(req, 2);
1820 if (ret)
1821 return ret;
1822
1823 intel_ring_emit(ring,
1824 MI_BATCH_BUFFER_START |
1825 MI_BATCH_GTT |
1826 (dispatch_flags & I915_DISPATCH_SECURE ?
1827 0 : MI_BATCH_NON_SECURE_I965));
1828 intel_ring_emit(ring, offset);
1829 intel_ring_advance(ring);
1830
1831 return 0;
1832 }
1833
1834 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1835 #define I830_BATCH_LIMIT (256*1024)
1836 #define I830_TLB_ENTRIES (2)
1837 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1838 static int
1839 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1840 u64 offset, u32 len,
1841 unsigned dispatch_flags)
1842 {
1843 struct intel_engine_cs *ring = req->ring;
1844 u32 cs_offset = ring->scratch.gtt_offset;
1845 int ret;
1846
1847 ret = intel_ring_begin(req, 6);
1848 if (ret)
1849 return ret;
1850
1851 /* Evict the invalid PTE TLBs */
1852 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1853 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1854 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1855 intel_ring_emit(ring, cs_offset);
1856 intel_ring_emit(ring, 0xdeadbeef);
1857 intel_ring_emit(ring, MI_NOOP);
1858 intel_ring_advance(ring);
1859
1860 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1861 if (len > I830_BATCH_LIMIT)
1862 return -ENOSPC;
1863
1864 ret = intel_ring_begin(req, 6 + 2);
1865 if (ret)
1866 return ret;
1867
1868 /* Blit the batch (which has now all relocs applied) to the
1869 * stable batch scratch bo area (so that the CS never
1870 * stumbles over its tlb invalidation bug) ...
1871 */
1872 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1873 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1874 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1875 intel_ring_emit(ring, cs_offset);
1876 intel_ring_emit(ring, 4096);
1877 intel_ring_emit(ring, offset);
1878
1879 intel_ring_emit(ring, MI_FLUSH);
1880 intel_ring_emit(ring, MI_NOOP);
1881 intel_ring_advance(ring);
1882
1883 /* ... and execute it. */
1884 offset = cs_offset;
1885 }
1886
1887 ret = intel_ring_begin(req, 4);
1888 if (ret)
1889 return ret;
1890
1891 intel_ring_emit(ring, MI_BATCH_BUFFER);
1892 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1893 0 : MI_BATCH_NON_SECURE));
1894 intel_ring_emit(ring, offset + len - 8);
1895 intel_ring_emit(ring, MI_NOOP);
1896 intel_ring_advance(ring);
1897
1898 return 0;
1899 }
1900
1901 static int
1902 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1903 u64 offset, u32 len,
1904 unsigned dispatch_flags)
1905 {
1906 struct intel_engine_cs *ring = req->ring;
1907 int ret;
1908
1909 ret = intel_ring_begin(req, 2);
1910 if (ret)
1911 return ret;
1912
1913 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1914 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1915 0 : MI_BATCH_NON_SECURE));
1916 intel_ring_advance(ring);
1917
1918 return 0;
1919 }
1920
1921 static void cleanup_status_page(struct intel_engine_cs *ring)
1922 {
1923 struct drm_i915_gem_object *obj;
1924
1925 obj = ring->status_page.obj;
1926 if (obj == NULL)
1927 return;
1928
1929 kunmap(sg_page(obj->pages->sgl));
1930 i915_gem_object_ggtt_unpin(obj);
1931 drm_gem_object_unreference(&obj->base);
1932 ring->status_page.obj = NULL;
1933 }
1934
1935 static int init_status_page(struct intel_engine_cs *ring)
1936 {
1937 struct drm_i915_gem_object *obj;
1938
1939 if ((obj = ring->status_page.obj) == NULL) {
1940 unsigned flags;
1941 int ret;
1942
1943 obj = i915_gem_alloc_object(ring->dev, 4096);
1944 if (obj == NULL) {
1945 DRM_ERROR("Failed to allocate status page\n");
1946 return -ENOMEM;
1947 }
1948
1949 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1950 if (ret)
1951 goto err_unref;
1952
1953 flags = 0;
1954 if (!HAS_LLC(ring->dev))
1955 /* On g33, we cannot place HWS above 256MiB, so
1956 * restrict its pinning to the low mappable arena.
1957 * Though this restriction is not documented for
1958 * gen4, gen5, or byt, they also behave similarly
1959 * and hang if the HWS is placed at the top of the
1960 * GTT. To generalise, it appears that all !llc
1961 * platforms have issues with us placing the HWS
1962 * above the mappable region (even though we never
1963 * actualy map it).
1964 */
1965 flags |= PIN_MAPPABLE;
1966 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1967 if (ret) {
1968 err_unref:
1969 drm_gem_object_unreference(&obj->base);
1970 return ret;
1971 }
1972
1973 ring->status_page.obj = obj;
1974 }
1975
1976 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1977 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1978 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1979
1980 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1981 ring->name, ring->status_page.gfx_addr);
1982
1983 return 0;
1984 }
1985
1986 static int init_phys_status_page(struct intel_engine_cs *ring)
1987 {
1988 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1989
1990 if (!dev_priv->status_page_dmah) {
1991 dev_priv->status_page_dmah =
1992 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1993 if (!dev_priv->status_page_dmah)
1994 return -ENOMEM;
1995 }
1996
1997 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1998 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1999
2000 return 0;
2001 }
2002
2003 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2004 {
2005 if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2006 vunmap(ringbuf->virtual_start);
2007 else
2008 iounmap(ringbuf->virtual_start);
2009 ringbuf->virtual_start = NULL;
2010 i915_gem_object_ggtt_unpin(ringbuf->obj);
2011 }
2012
2013 static u32 *vmap_obj(struct drm_i915_gem_object *obj)
2014 {
2015 struct sg_page_iter sg_iter;
2016 struct page **pages;
2017 void *addr;
2018 int i;
2019
2020 pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
2021 if (pages == NULL)
2022 return NULL;
2023
2024 i = 0;
2025 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
2026 pages[i++] = sg_page_iter_page(&sg_iter);
2027
2028 addr = vmap(pages, i, 0, PAGE_KERNEL);
2029 drm_free_large(pages);
2030
2031 return addr;
2032 }
2033
2034 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2035 struct intel_ringbuffer *ringbuf)
2036 {
2037 struct drm_i915_private *dev_priv = to_i915(dev);
2038 struct drm_i915_gem_object *obj = ringbuf->obj;
2039 int ret;
2040
2041 if (HAS_LLC(dev_priv) && !obj->stolen) {
2042 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, 0);
2043 if (ret)
2044 return ret;
2045
2046 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2047 if (ret) {
2048 i915_gem_object_ggtt_unpin(obj);
2049 return ret;
2050 }
2051
2052 ringbuf->virtual_start = vmap_obj(obj);
2053 if (ringbuf->virtual_start == NULL) {
2054 i915_gem_object_ggtt_unpin(obj);
2055 return -ENOMEM;
2056 }
2057 } else {
2058 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2059 if (ret)
2060 return ret;
2061
2062 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2063 if (ret) {
2064 i915_gem_object_ggtt_unpin(obj);
2065 return ret;
2066 }
2067
2068 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2069 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2070 if (ringbuf->virtual_start == NULL) {
2071 i915_gem_object_ggtt_unpin(obj);
2072 return -EINVAL;
2073 }
2074 }
2075
2076 return 0;
2077 }
2078
2079 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2080 {
2081 drm_gem_object_unreference(&ringbuf->obj->base);
2082 ringbuf->obj = NULL;
2083 }
2084
2085 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2086 struct intel_ringbuffer *ringbuf)
2087 {
2088 struct drm_i915_gem_object *obj;
2089
2090 obj = NULL;
2091 if (!HAS_LLC(dev))
2092 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2093 if (obj == NULL)
2094 obj = i915_gem_alloc_object(dev, ringbuf->size);
2095 if (obj == NULL)
2096 return -ENOMEM;
2097
2098 /* mark ring buffers as read-only from GPU side by default */
2099 obj->gt_ro = 1;
2100
2101 ringbuf->obj = obj;
2102
2103 return 0;
2104 }
2105
2106 struct intel_ringbuffer *
2107 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2108 {
2109 struct intel_ringbuffer *ring;
2110 int ret;
2111
2112 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2113 if (ring == NULL)
2114 return ERR_PTR(-ENOMEM);
2115
2116 ring->ring = engine;
2117
2118 ring->size = size;
2119 /* Workaround an erratum on the i830 which causes a hang if
2120 * the TAIL pointer points to within the last 2 cachelines
2121 * of the buffer.
2122 */
2123 ring->effective_size = size;
2124 if (IS_I830(engine->dev) || IS_845G(engine->dev))
2125 ring->effective_size -= 2 * CACHELINE_BYTES;
2126
2127 ring->last_retired_head = -1;
2128 intel_ring_update_space(ring);
2129
2130 ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2131 if (ret) {
2132 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2133 engine->name, ret);
2134 kfree(ring);
2135 return ERR_PTR(ret);
2136 }
2137
2138 return ring;
2139 }
2140
2141 void
2142 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2143 {
2144 intel_destroy_ringbuffer_obj(ring);
2145 kfree(ring);
2146 }
2147
2148 static int intel_init_ring_buffer(struct drm_device *dev,
2149 struct intel_engine_cs *ring)
2150 {
2151 struct intel_ringbuffer *ringbuf;
2152 int ret;
2153
2154 WARN_ON(ring->buffer);
2155
2156 ring->dev = dev;
2157 INIT_LIST_HEAD(&ring->active_list);
2158 INIT_LIST_HEAD(&ring->request_list);
2159 INIT_LIST_HEAD(&ring->execlist_queue);
2160 i915_gem_batch_pool_init(dev, &ring->batch_pool);
2161 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2162
2163 init_waitqueue_head(&ring->irq_queue);
2164
2165 ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2166 if (IS_ERR(ringbuf))
2167 return PTR_ERR(ringbuf);
2168 ring->buffer = ringbuf;
2169
2170 if (I915_NEED_GFX_HWS(dev)) {
2171 ret = init_status_page(ring);
2172 if (ret)
2173 goto error;
2174 } else {
2175 BUG_ON(ring->id != RCS);
2176 ret = init_phys_status_page(ring);
2177 if (ret)
2178 goto error;
2179 }
2180
2181 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2182 if (ret) {
2183 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2184 ring->name, ret);
2185 intel_destroy_ringbuffer_obj(ringbuf);
2186 goto error;
2187 }
2188
2189 ret = i915_cmd_parser_init_ring(ring);
2190 if (ret)
2191 goto error;
2192
2193 return 0;
2194
2195 error:
2196 intel_ringbuffer_free(ringbuf);
2197 ring->buffer = NULL;
2198 return ret;
2199 }
2200
2201 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2202 {
2203 struct drm_i915_private *dev_priv;
2204
2205 if (!intel_ring_initialized(ring))
2206 return;
2207
2208 dev_priv = to_i915(ring->dev);
2209
2210 intel_stop_ring_buffer(ring);
2211 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2212
2213 intel_unpin_ringbuffer_obj(ring->buffer);
2214 intel_ringbuffer_free(ring->buffer);
2215 ring->buffer = NULL;
2216
2217 if (ring->cleanup)
2218 ring->cleanup(ring);
2219
2220 cleanup_status_page(ring);
2221
2222 i915_cmd_parser_fini_ring(ring);
2223 i915_gem_batch_pool_fini(&ring->batch_pool);
2224 }
2225
2226 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2227 {
2228 struct intel_ringbuffer *ringbuf = ring->buffer;
2229 struct drm_i915_gem_request *request;
2230 unsigned space;
2231 int ret;
2232
2233 if (intel_ring_space(ringbuf) >= n)
2234 return 0;
2235
2236 /* The whole point of reserving space is to not wait! */
2237 WARN_ON(ringbuf->reserved_in_use);
2238
2239 list_for_each_entry(request, &ring->request_list, list) {
2240 space = __intel_ring_space(request->postfix, ringbuf->tail,
2241 ringbuf->size);
2242 if (space >= n)
2243 break;
2244 }
2245
2246 if (WARN_ON(&request->list == &ring->request_list))
2247 return -ENOSPC;
2248
2249 ret = i915_wait_request(request);
2250 if (ret)
2251 return ret;
2252
2253 ringbuf->space = space;
2254 return 0;
2255 }
2256
2257 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2258 {
2259 uint32_t __iomem *virt;
2260 int rem = ringbuf->size - ringbuf->tail;
2261
2262 virt = ringbuf->virtual_start + ringbuf->tail;
2263 rem /= 4;
2264 while (rem--)
2265 iowrite32(MI_NOOP, virt++);
2266
2267 ringbuf->tail = 0;
2268 intel_ring_update_space(ringbuf);
2269 }
2270
2271 int intel_ring_idle(struct intel_engine_cs *ring)
2272 {
2273 struct drm_i915_gem_request *req;
2274
2275 /* Wait upon the last request to be completed */
2276 if (list_empty(&ring->request_list))
2277 return 0;
2278
2279 req = list_entry(ring->request_list.prev,
2280 struct drm_i915_gem_request,
2281 list);
2282
2283 /* Make sure we do not trigger any retires */
2284 return __i915_wait_request(req,
2285 atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2286 to_i915(ring->dev)->mm.interruptible,
2287 NULL, NULL);
2288 }
2289
2290 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2291 {
2292 request->ringbuf = request->ring->buffer;
2293 return 0;
2294 }
2295
2296 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2297 {
2298 /*
2299 * The first call merely notes the reserve request and is common for
2300 * all back ends. The subsequent localised _begin() call actually
2301 * ensures that the reservation is available. Without the begin, if
2302 * the request creator immediately submitted the request without
2303 * adding any commands to it then there might not actually be
2304 * sufficient room for the submission commands.
2305 */
2306 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2307
2308 return intel_ring_begin(request, 0);
2309 }
2310
2311 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2312 {
2313 WARN_ON(ringbuf->reserved_size);
2314 WARN_ON(ringbuf->reserved_in_use);
2315
2316 ringbuf->reserved_size = size;
2317 }
2318
2319 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2320 {
2321 WARN_ON(ringbuf->reserved_in_use);
2322
2323 ringbuf->reserved_size = 0;
2324 ringbuf->reserved_in_use = false;
2325 }
2326
2327 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2328 {
2329 WARN_ON(ringbuf->reserved_in_use);
2330
2331 ringbuf->reserved_in_use = true;
2332 ringbuf->reserved_tail = ringbuf->tail;
2333 }
2334
2335 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2336 {
2337 WARN_ON(!ringbuf->reserved_in_use);
2338 if (ringbuf->tail > ringbuf->reserved_tail) {
2339 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2340 "request reserved size too small: %d vs %d!\n",
2341 ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2342 } else {
2343 /*
2344 * The ring was wrapped while the reserved space was in use.
2345 * That means that some unknown amount of the ring tail was
2346 * no-op filled and skipped. Thus simply adding the ring size
2347 * to the tail and doing the above space check will not work.
2348 * Rather than attempt to track how much tail was skipped,
2349 * it is much simpler to say that also skipping the sanity
2350 * check every once in a while is not a big issue.
2351 */
2352 }
2353
2354 ringbuf->reserved_size = 0;
2355 ringbuf->reserved_in_use = false;
2356 }
2357
2358 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2359 {
2360 struct intel_ringbuffer *ringbuf = ring->buffer;
2361 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2362 int remain_actual = ringbuf->size - ringbuf->tail;
2363 int ret, total_bytes, wait_bytes = 0;
2364 bool need_wrap = false;
2365
2366 if (ringbuf->reserved_in_use)
2367 total_bytes = bytes;
2368 else
2369 total_bytes = bytes + ringbuf->reserved_size;
2370
2371 if (unlikely(bytes > remain_usable)) {
2372 /*
2373 * Not enough space for the basic request. So need to flush
2374 * out the remainder and then wait for base + reserved.
2375 */
2376 wait_bytes = remain_actual + total_bytes;
2377 need_wrap = true;
2378 } else {
2379 if (unlikely(total_bytes > remain_usable)) {
2380 /*
2381 * The base request will fit but the reserved space
2382 * falls off the end. So only need to to wait for the
2383 * reserved size after flushing out the remainder.
2384 */
2385 wait_bytes = remain_actual + ringbuf->reserved_size;
2386 need_wrap = true;
2387 } else if (total_bytes > ringbuf->space) {
2388 /* No wrapping required, just waiting. */
2389 wait_bytes = total_bytes;
2390 }
2391 }
2392
2393 if (wait_bytes) {
2394 ret = ring_wait_for_space(ring, wait_bytes);
2395 if (unlikely(ret))
2396 return ret;
2397
2398 if (need_wrap)
2399 __wrap_ring_buffer(ringbuf);
2400 }
2401
2402 return 0;
2403 }
2404
2405 int intel_ring_begin(struct drm_i915_gem_request *req,
2406 int num_dwords)
2407 {
2408 struct intel_engine_cs *ring;
2409 struct drm_i915_private *dev_priv;
2410 int ret;
2411
2412 WARN_ON(req == NULL);
2413 ring = req->ring;
2414 dev_priv = ring->dev->dev_private;
2415
2416 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2417 dev_priv->mm.interruptible);
2418 if (ret)
2419 return ret;
2420
2421 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2422 if (ret)
2423 return ret;
2424
2425 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2426 return 0;
2427 }
2428
2429 /* Align the ring tail to a cacheline boundary */
2430 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2431 {
2432 struct intel_engine_cs *ring = req->ring;
2433 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2434 int ret;
2435
2436 if (num_dwords == 0)
2437 return 0;
2438
2439 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2440 ret = intel_ring_begin(req, num_dwords);
2441 if (ret)
2442 return ret;
2443
2444 while (num_dwords--)
2445 intel_ring_emit(ring, MI_NOOP);
2446
2447 intel_ring_advance(ring);
2448
2449 return 0;
2450 }
2451
2452 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2453 {
2454 struct drm_device *dev = ring->dev;
2455 struct drm_i915_private *dev_priv = dev->dev_private;
2456
2457 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2458 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2459 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2460 if (HAS_VEBOX(dev))
2461 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2462 }
2463
2464 ring->set_seqno(ring, seqno);
2465 ring->hangcheck.seqno = seqno;
2466 }
2467
2468 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2469 u32 value)
2470 {
2471 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2472
2473 /* Every tail move must follow the sequence below */
2474
2475 /* Disable notification that the ring is IDLE. The GT
2476 * will then assume that it is busy and bring it out of rc6.
2477 */
2478 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2479 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2480
2481 /* Clear the context id. Here be magic! */
2482 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2483
2484 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2485 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2486 GEN6_BSD_SLEEP_INDICATOR) == 0,
2487 50))
2488 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2489
2490 /* Now that the ring is fully powered up, update the tail */
2491 I915_WRITE_TAIL(ring, value);
2492 POSTING_READ(RING_TAIL(ring->mmio_base));
2493
2494 /* Let the ring send IDLE messages to the GT again,
2495 * and so let it sleep to conserve power when idle.
2496 */
2497 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2498 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2499 }
2500
2501 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2502 u32 invalidate, u32 flush)
2503 {
2504 struct intel_engine_cs *ring = req->ring;
2505 uint32_t cmd;
2506 int ret;
2507
2508 ret = intel_ring_begin(req, 4);
2509 if (ret)
2510 return ret;
2511
2512 cmd = MI_FLUSH_DW;
2513 if (INTEL_INFO(ring->dev)->gen >= 8)
2514 cmd += 1;
2515
2516 /* We always require a command barrier so that subsequent
2517 * commands, such as breadcrumb interrupts, are strictly ordered
2518 * wrt the contents of the write cache being flushed to memory
2519 * (and thus being coherent from the CPU).
2520 */
2521 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2522
2523 /*
2524 * Bspec vol 1c.5 - video engine command streamer:
2525 * "If ENABLED, all TLBs will be invalidated once the flush
2526 * operation is complete. This bit is only valid when the
2527 * Post-Sync Operation field is a value of 1h or 3h."
2528 */
2529 if (invalidate & I915_GEM_GPU_DOMAINS)
2530 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2531
2532 intel_ring_emit(ring, cmd);
2533 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2534 if (INTEL_INFO(ring->dev)->gen >= 8) {
2535 intel_ring_emit(ring, 0); /* upper addr */
2536 intel_ring_emit(ring, 0); /* value */
2537 } else {
2538 intel_ring_emit(ring, 0);
2539 intel_ring_emit(ring, MI_NOOP);
2540 }
2541 intel_ring_advance(ring);
2542 return 0;
2543 }
2544
2545 static int
2546 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2547 u64 offset, u32 len,
2548 unsigned dispatch_flags)
2549 {
2550 struct intel_engine_cs *ring = req->ring;
2551 bool ppgtt = USES_PPGTT(ring->dev) &&
2552 !(dispatch_flags & I915_DISPATCH_SECURE);
2553 int ret;
2554
2555 ret = intel_ring_begin(req, 4);
2556 if (ret)
2557 return ret;
2558
2559 /* FIXME(BDW): Address space and security selectors. */
2560 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2561 (dispatch_flags & I915_DISPATCH_RS ?
2562 MI_BATCH_RESOURCE_STREAMER : 0));
2563 intel_ring_emit(ring, lower_32_bits(offset));
2564 intel_ring_emit(ring, upper_32_bits(offset));
2565 intel_ring_emit(ring, MI_NOOP);
2566 intel_ring_advance(ring);
2567
2568 return 0;
2569 }
2570
2571 static int
2572 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2573 u64 offset, u32 len,
2574 unsigned dispatch_flags)
2575 {
2576 struct intel_engine_cs *ring = req->ring;
2577 int ret;
2578
2579 ret = intel_ring_begin(req, 2);
2580 if (ret)
2581 return ret;
2582
2583 intel_ring_emit(ring,
2584 MI_BATCH_BUFFER_START |
2585 (dispatch_flags & I915_DISPATCH_SECURE ?
2586 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2587 (dispatch_flags & I915_DISPATCH_RS ?
2588 MI_BATCH_RESOURCE_STREAMER : 0));
2589 /* bit0-7 is the length on GEN6+ */
2590 intel_ring_emit(ring, offset);
2591 intel_ring_advance(ring);
2592
2593 return 0;
2594 }
2595
2596 static int
2597 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2598 u64 offset, u32 len,
2599 unsigned dispatch_flags)
2600 {
2601 struct intel_engine_cs *ring = req->ring;
2602 int ret;
2603
2604 ret = intel_ring_begin(req, 2);
2605 if (ret)
2606 return ret;
2607
2608 intel_ring_emit(ring,
2609 MI_BATCH_BUFFER_START |
2610 (dispatch_flags & I915_DISPATCH_SECURE ?
2611 0 : MI_BATCH_NON_SECURE_I965));
2612 /* bit0-7 is the length on GEN6+ */
2613 intel_ring_emit(ring, offset);
2614 intel_ring_advance(ring);
2615
2616 return 0;
2617 }
2618
2619 /* Blitter support (SandyBridge+) */
2620
2621 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2622 u32 invalidate, u32 flush)
2623 {
2624 struct intel_engine_cs *ring = req->ring;
2625 struct drm_device *dev = ring->dev;
2626 uint32_t cmd;
2627 int ret;
2628
2629 ret = intel_ring_begin(req, 4);
2630 if (ret)
2631 return ret;
2632
2633 cmd = MI_FLUSH_DW;
2634 if (INTEL_INFO(dev)->gen >= 8)
2635 cmd += 1;
2636
2637 /* We always require a command barrier so that subsequent
2638 * commands, such as breadcrumb interrupts, are strictly ordered
2639 * wrt the contents of the write cache being flushed to memory
2640 * (and thus being coherent from the CPU).
2641 */
2642 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2643
2644 /*
2645 * Bspec vol 1c.3 - blitter engine command streamer:
2646 * "If ENABLED, all TLBs will be invalidated once the flush
2647 * operation is complete. This bit is only valid when the
2648 * Post-Sync Operation field is a value of 1h or 3h."
2649 */
2650 if (invalidate & I915_GEM_DOMAIN_RENDER)
2651 cmd |= MI_INVALIDATE_TLB;
2652 intel_ring_emit(ring, cmd);
2653 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2654 if (INTEL_INFO(dev)->gen >= 8) {
2655 intel_ring_emit(ring, 0); /* upper addr */
2656 intel_ring_emit(ring, 0); /* value */
2657 } else {
2658 intel_ring_emit(ring, 0);
2659 intel_ring_emit(ring, MI_NOOP);
2660 }
2661 intel_ring_advance(ring);
2662
2663 return 0;
2664 }
2665
2666 int intel_init_render_ring_buffer(struct drm_device *dev)
2667 {
2668 struct drm_i915_private *dev_priv = dev->dev_private;
2669 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2670 struct drm_i915_gem_object *obj;
2671 int ret;
2672
2673 ring->name = "render ring";
2674 ring->id = RCS;
2675 ring->mmio_base = RENDER_RING_BASE;
2676
2677 if (INTEL_INFO(dev)->gen >= 8) {
2678 if (i915_semaphore_is_enabled(dev)) {
2679 obj = i915_gem_alloc_object(dev, 4096);
2680 if (obj == NULL) {
2681 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2682 i915.semaphores = 0;
2683 } else {
2684 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2685 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2686 if (ret != 0) {
2687 drm_gem_object_unreference(&obj->base);
2688 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2689 i915.semaphores = 0;
2690 } else
2691 dev_priv->semaphore_obj = obj;
2692 }
2693 }
2694
2695 ring->init_context = intel_rcs_ctx_init;
2696 ring->add_request = gen6_add_request;
2697 ring->flush = gen8_render_ring_flush;
2698 ring->irq_get = gen8_ring_get_irq;
2699 ring->irq_put = gen8_ring_put_irq;
2700 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2701 ring->get_seqno = gen6_ring_get_seqno;
2702 ring->set_seqno = ring_set_seqno;
2703 if (i915_semaphore_is_enabled(dev)) {
2704 WARN_ON(!dev_priv->semaphore_obj);
2705 ring->semaphore.sync_to = gen8_ring_sync;
2706 ring->semaphore.signal = gen8_rcs_signal;
2707 GEN8_RING_SEMAPHORE_INIT;
2708 }
2709 } else if (INTEL_INFO(dev)->gen >= 6) {
2710 ring->init_context = intel_rcs_ctx_init;
2711 ring->add_request = gen6_add_request;
2712 ring->flush = gen7_render_ring_flush;
2713 if (INTEL_INFO(dev)->gen == 6)
2714 ring->flush = gen6_render_ring_flush;
2715 ring->irq_get = gen6_ring_get_irq;
2716 ring->irq_put = gen6_ring_put_irq;
2717 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2718 ring->get_seqno = gen6_ring_get_seqno;
2719 ring->set_seqno = ring_set_seqno;
2720 if (i915_semaphore_is_enabled(dev)) {
2721 ring->semaphore.sync_to = gen6_ring_sync;
2722 ring->semaphore.signal = gen6_signal;
2723 /*
2724 * The current semaphore is only applied on pre-gen8
2725 * platform. And there is no VCS2 ring on the pre-gen8
2726 * platform. So the semaphore between RCS and VCS2 is
2727 * initialized as INVALID. Gen8 will initialize the
2728 * sema between VCS2 and RCS later.
2729 */
2730 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2731 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2732 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2733 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2734 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2735 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2736 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2737 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2738 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2739 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2740 }
2741 } else if (IS_GEN5(dev)) {
2742 ring->add_request = pc_render_add_request;
2743 ring->flush = gen4_render_ring_flush;
2744 ring->get_seqno = pc_render_get_seqno;
2745 ring->set_seqno = pc_render_set_seqno;
2746 ring->irq_get = gen5_ring_get_irq;
2747 ring->irq_put = gen5_ring_put_irq;
2748 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2749 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2750 } else {
2751 ring->add_request = i9xx_add_request;
2752 if (INTEL_INFO(dev)->gen < 4)
2753 ring->flush = gen2_render_ring_flush;
2754 else
2755 ring->flush = gen4_render_ring_flush;
2756 ring->get_seqno = ring_get_seqno;
2757 ring->set_seqno = ring_set_seqno;
2758 if (IS_GEN2(dev)) {
2759 ring->irq_get = i8xx_ring_get_irq;
2760 ring->irq_put = i8xx_ring_put_irq;
2761 } else {
2762 ring->irq_get = i9xx_ring_get_irq;
2763 ring->irq_put = i9xx_ring_put_irq;
2764 }
2765 ring->irq_enable_mask = I915_USER_INTERRUPT;
2766 }
2767 ring->write_tail = ring_write_tail;
2768
2769 if (IS_HASWELL(dev))
2770 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2771 else if (IS_GEN8(dev))
2772 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2773 else if (INTEL_INFO(dev)->gen >= 6)
2774 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2775 else if (INTEL_INFO(dev)->gen >= 4)
2776 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2777 else if (IS_I830(dev) || IS_845G(dev))
2778 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2779 else
2780 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2781 ring->init_hw = init_render_ring;
2782 ring->cleanup = render_ring_cleanup;
2783
2784 /* Workaround batchbuffer to combat CS tlb bug. */
2785 if (HAS_BROKEN_CS_TLB(dev)) {
2786 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2787 if (obj == NULL) {
2788 DRM_ERROR("Failed to allocate batch bo\n");
2789 return -ENOMEM;
2790 }
2791
2792 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2793 if (ret != 0) {
2794 drm_gem_object_unreference(&obj->base);
2795 DRM_ERROR("Failed to ping batch bo\n");
2796 return ret;
2797 }
2798
2799 ring->scratch.obj = obj;
2800 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2801 }
2802
2803 ret = intel_init_ring_buffer(dev, ring);
2804 if (ret)
2805 return ret;
2806
2807 if (INTEL_INFO(dev)->gen >= 5) {
2808 ret = intel_init_pipe_control(ring);
2809 if (ret)
2810 return ret;
2811 }
2812
2813 return 0;
2814 }
2815
2816 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2817 {
2818 struct drm_i915_private *dev_priv = dev->dev_private;
2819 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2820
2821 ring->name = "bsd ring";
2822 ring->id = VCS;
2823
2824 ring->write_tail = ring_write_tail;
2825 if (INTEL_INFO(dev)->gen >= 6) {
2826 ring->mmio_base = GEN6_BSD_RING_BASE;
2827 /* gen6 bsd needs a special wa for tail updates */
2828 if (IS_GEN6(dev))
2829 ring->write_tail = gen6_bsd_ring_write_tail;
2830 ring->flush = gen6_bsd_ring_flush;
2831 ring->add_request = gen6_add_request;
2832 ring->get_seqno = gen6_ring_get_seqno;
2833 ring->set_seqno = ring_set_seqno;
2834 if (INTEL_INFO(dev)->gen >= 8) {
2835 ring->irq_enable_mask =
2836 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2837 ring->irq_get = gen8_ring_get_irq;
2838 ring->irq_put = gen8_ring_put_irq;
2839 ring->dispatch_execbuffer =
2840 gen8_ring_dispatch_execbuffer;
2841 if (i915_semaphore_is_enabled(dev)) {
2842 ring->semaphore.sync_to = gen8_ring_sync;
2843 ring->semaphore.signal = gen8_xcs_signal;
2844 GEN8_RING_SEMAPHORE_INIT;
2845 }
2846 } else {
2847 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2848 ring->irq_get = gen6_ring_get_irq;
2849 ring->irq_put = gen6_ring_put_irq;
2850 ring->dispatch_execbuffer =
2851 gen6_ring_dispatch_execbuffer;
2852 if (i915_semaphore_is_enabled(dev)) {
2853 ring->semaphore.sync_to = gen6_ring_sync;
2854 ring->semaphore.signal = gen6_signal;
2855 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2856 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2857 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2858 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2859 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2860 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2861 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2862 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2863 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2864 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2865 }
2866 }
2867 } else {
2868 ring->mmio_base = BSD_RING_BASE;
2869 ring->flush = bsd_ring_flush;
2870 ring->add_request = i9xx_add_request;
2871 ring->get_seqno = ring_get_seqno;
2872 ring->set_seqno = ring_set_seqno;
2873 if (IS_GEN5(dev)) {
2874 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2875 ring->irq_get = gen5_ring_get_irq;
2876 ring->irq_put = gen5_ring_put_irq;
2877 } else {
2878 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2879 ring->irq_get = i9xx_ring_get_irq;
2880 ring->irq_put = i9xx_ring_put_irq;
2881 }
2882 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2883 }
2884 ring->init_hw = init_ring_common;
2885
2886 return intel_init_ring_buffer(dev, ring);
2887 }
2888
2889 /**
2890 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2891 */
2892 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2893 {
2894 struct drm_i915_private *dev_priv = dev->dev_private;
2895 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2896
2897 ring->name = "bsd2 ring";
2898 ring->id = VCS2;
2899
2900 ring->write_tail = ring_write_tail;
2901 ring->mmio_base = GEN8_BSD2_RING_BASE;
2902 ring->flush = gen6_bsd_ring_flush;
2903 ring->add_request = gen6_add_request;
2904 ring->get_seqno = gen6_ring_get_seqno;
2905 ring->set_seqno = ring_set_seqno;
2906 ring->irq_enable_mask =
2907 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2908 ring->irq_get = gen8_ring_get_irq;
2909 ring->irq_put = gen8_ring_put_irq;
2910 ring->dispatch_execbuffer =
2911 gen8_ring_dispatch_execbuffer;
2912 if (i915_semaphore_is_enabled(dev)) {
2913 ring->semaphore.sync_to = gen8_ring_sync;
2914 ring->semaphore.signal = gen8_xcs_signal;
2915 GEN8_RING_SEMAPHORE_INIT;
2916 }
2917 ring->init_hw = init_ring_common;
2918
2919 return intel_init_ring_buffer(dev, ring);
2920 }
2921
2922 int intel_init_blt_ring_buffer(struct drm_device *dev)
2923 {
2924 struct drm_i915_private *dev_priv = dev->dev_private;
2925 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2926
2927 ring->name = "blitter ring";
2928 ring->id = BCS;
2929
2930 ring->mmio_base = BLT_RING_BASE;
2931 ring->write_tail = ring_write_tail;
2932 ring->flush = gen6_ring_flush;
2933 ring->add_request = gen6_add_request;
2934 ring->get_seqno = gen6_ring_get_seqno;
2935 ring->set_seqno = ring_set_seqno;
2936 if (INTEL_INFO(dev)->gen >= 8) {
2937 ring->irq_enable_mask =
2938 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2939 ring->irq_get = gen8_ring_get_irq;
2940 ring->irq_put = gen8_ring_put_irq;
2941 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2942 if (i915_semaphore_is_enabled(dev)) {
2943 ring->semaphore.sync_to = gen8_ring_sync;
2944 ring->semaphore.signal = gen8_xcs_signal;
2945 GEN8_RING_SEMAPHORE_INIT;
2946 }
2947 } else {
2948 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2949 ring->irq_get = gen6_ring_get_irq;
2950 ring->irq_put = gen6_ring_put_irq;
2951 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2952 if (i915_semaphore_is_enabled(dev)) {
2953 ring->semaphore.signal = gen6_signal;
2954 ring->semaphore.sync_to = gen6_ring_sync;
2955 /*
2956 * The current semaphore is only applied on pre-gen8
2957 * platform. And there is no VCS2 ring on the pre-gen8
2958 * platform. So the semaphore between BCS and VCS2 is
2959 * initialized as INVALID. Gen8 will initialize the
2960 * sema between BCS and VCS2 later.
2961 */
2962 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2963 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2964 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2965 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2966 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2967 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2968 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2969 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2970 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2971 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2972 }
2973 }
2974 ring->init_hw = init_ring_common;
2975
2976 return intel_init_ring_buffer(dev, ring);
2977 }
2978
2979 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2980 {
2981 struct drm_i915_private *dev_priv = dev->dev_private;
2982 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2983
2984 ring->name = "video enhancement ring";
2985 ring->id = VECS;
2986
2987 ring->mmio_base = VEBOX_RING_BASE;
2988 ring->write_tail = ring_write_tail;
2989 ring->flush = gen6_ring_flush;
2990 ring->add_request = gen6_add_request;
2991 ring->get_seqno = gen6_ring_get_seqno;
2992 ring->set_seqno = ring_set_seqno;
2993
2994 if (INTEL_INFO(dev)->gen >= 8) {
2995 ring->irq_enable_mask =
2996 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2997 ring->irq_get = gen8_ring_get_irq;
2998 ring->irq_put = gen8_ring_put_irq;
2999 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3000 if (i915_semaphore_is_enabled(dev)) {
3001 ring->semaphore.sync_to = gen8_ring_sync;
3002 ring->semaphore.signal = gen8_xcs_signal;
3003 GEN8_RING_SEMAPHORE_INIT;
3004 }
3005 } else {
3006 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3007 ring->irq_get = hsw_vebox_get_irq;
3008 ring->irq_put = hsw_vebox_put_irq;
3009 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3010 if (i915_semaphore_is_enabled(dev)) {
3011 ring->semaphore.sync_to = gen6_ring_sync;
3012 ring->semaphore.signal = gen6_signal;
3013 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3014 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3015 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3016 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3017 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3018 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3019 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3020 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3021 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3022 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3023 }
3024 }
3025 ring->init_hw = init_ring_common;
3026
3027 return intel_init_ring_buffer(dev, ring);
3028 }
3029
3030 int
3031 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3032 {
3033 struct intel_engine_cs *ring = req->ring;
3034 int ret;
3035
3036 if (!ring->gpu_caches_dirty)
3037 return 0;
3038
3039 ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3040 if (ret)
3041 return ret;
3042
3043 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3044
3045 ring->gpu_caches_dirty = false;
3046 return 0;
3047 }
3048
3049 int
3050 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3051 {
3052 struct intel_engine_cs *ring = req->ring;
3053 uint32_t flush_domains;
3054 int ret;
3055
3056 flush_domains = 0;
3057 if (ring->gpu_caches_dirty)
3058 flush_domains = I915_GEM_GPU_DOMAINS;
3059
3060 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3061 if (ret)
3062 return ret;
3063
3064 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3065
3066 ring->gpu_caches_dirty = false;
3067 return 0;
3068 }
3069
3070 void
3071 intel_stop_ring_buffer(struct intel_engine_cs *ring)
3072 {
3073 int ret;
3074
3075 if (!intel_ring_initialized(ring))
3076 return;
3077
3078 ret = intel_ring_idle(ring);
3079 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3080 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3081 ring->name, ret);
3082
3083 stop_ring(ring);
3084 }
This page took 0.140635 seconds and 6 git commands to generate.