2b75b30faaf26044ebd6a9f5f9e85ed7c87535bf
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_runtime_pm.c
1 /*
2 * Copyright © 2012-2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 * Daniel Vetter <daniel.vetter@ffwll.ch>
26 *
27 */
28
29 #include <linux/pm_runtime.h>
30 #include <linux/vgaarb.h>
31
32 #include "i915_drv.h"
33 #include "intel_drv.h"
34
35 /**
36 * DOC: runtime pm
37 *
38 * The i915 driver supports dynamic enabling and disabling of entire hardware
39 * blocks at runtime. This is especially important on the display side where
40 * software is supposed to control many power gates manually on recent hardware,
41 * since on the GT side a lot of the power management is done by the hardware.
42 * But even there some manual control at the device level is required.
43 *
44 * Since i915 supports a diverse set of platforms with a unified codebase and
45 * hardware engineers just love to shuffle functionality around between power
46 * domains there's a sizeable amount of indirection required. This file provides
47 * generic functions to the driver for grabbing and releasing references for
48 * abstract power domains. It then maps those to the actual power wells
49 * present for a given platform.
50 */
51
52 #define for_each_power_well(i, power_well, domain_mask, power_domains) \
53 for (i = 0; \
54 i < (power_domains)->power_well_count && \
55 ((power_well) = &(power_domains)->power_wells[i]); \
56 i++) \
57 for_each_if ((power_well)->domains & (domain_mask))
58
59 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
60 for (i = (power_domains)->power_well_count - 1; \
61 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
62 i--) \
63 for_each_if ((power_well)->domains & (domain_mask))
64
65 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
66 int power_well_id);
67
68 const char *
69 intel_display_power_domain_str(enum intel_display_power_domain domain)
70 {
71 switch (domain) {
72 case POWER_DOMAIN_PIPE_A:
73 return "PIPE_A";
74 case POWER_DOMAIN_PIPE_B:
75 return "PIPE_B";
76 case POWER_DOMAIN_PIPE_C:
77 return "PIPE_C";
78 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
79 return "PIPE_A_PANEL_FITTER";
80 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
81 return "PIPE_B_PANEL_FITTER";
82 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
83 return "PIPE_C_PANEL_FITTER";
84 case POWER_DOMAIN_TRANSCODER_A:
85 return "TRANSCODER_A";
86 case POWER_DOMAIN_TRANSCODER_B:
87 return "TRANSCODER_B";
88 case POWER_DOMAIN_TRANSCODER_C:
89 return "TRANSCODER_C";
90 case POWER_DOMAIN_TRANSCODER_EDP:
91 return "TRANSCODER_EDP";
92 case POWER_DOMAIN_TRANSCODER_DSI_A:
93 return "TRANSCODER_DSI_A";
94 case POWER_DOMAIN_TRANSCODER_DSI_C:
95 return "TRANSCODER_DSI_C";
96 case POWER_DOMAIN_PORT_DDI_A_LANES:
97 return "PORT_DDI_A_LANES";
98 case POWER_DOMAIN_PORT_DDI_B_LANES:
99 return "PORT_DDI_B_LANES";
100 case POWER_DOMAIN_PORT_DDI_C_LANES:
101 return "PORT_DDI_C_LANES";
102 case POWER_DOMAIN_PORT_DDI_D_LANES:
103 return "PORT_DDI_D_LANES";
104 case POWER_DOMAIN_PORT_DDI_E_LANES:
105 return "PORT_DDI_E_LANES";
106 case POWER_DOMAIN_PORT_DSI:
107 return "PORT_DSI";
108 case POWER_DOMAIN_PORT_CRT:
109 return "PORT_CRT";
110 case POWER_DOMAIN_PORT_OTHER:
111 return "PORT_OTHER";
112 case POWER_DOMAIN_VGA:
113 return "VGA";
114 case POWER_DOMAIN_AUDIO:
115 return "AUDIO";
116 case POWER_DOMAIN_PLLS:
117 return "PLLS";
118 case POWER_DOMAIN_AUX_A:
119 return "AUX_A";
120 case POWER_DOMAIN_AUX_B:
121 return "AUX_B";
122 case POWER_DOMAIN_AUX_C:
123 return "AUX_C";
124 case POWER_DOMAIN_AUX_D:
125 return "AUX_D";
126 case POWER_DOMAIN_GMBUS:
127 return "GMBUS";
128 case POWER_DOMAIN_INIT:
129 return "INIT";
130 case POWER_DOMAIN_MODESET:
131 return "MODESET";
132 default:
133 MISSING_CASE(domain);
134 return "?";
135 }
136 }
137
138 static void intel_power_well_enable(struct drm_i915_private *dev_priv,
139 struct i915_power_well *power_well)
140 {
141 DRM_DEBUG_KMS("enabling %s\n", power_well->name);
142 power_well->ops->enable(dev_priv, power_well);
143 power_well->hw_enabled = true;
144 }
145
146 static void intel_power_well_disable(struct drm_i915_private *dev_priv,
147 struct i915_power_well *power_well)
148 {
149 DRM_DEBUG_KMS("disabling %s\n", power_well->name);
150 power_well->hw_enabled = false;
151 power_well->ops->disable(dev_priv, power_well);
152 }
153
154 /*
155 * We should only use the power well if we explicitly asked the hardware to
156 * enable it, so check if it's enabled and also check if we've requested it to
157 * be enabled.
158 */
159 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
160 struct i915_power_well *power_well)
161 {
162 return I915_READ(HSW_PWR_WELL_DRIVER) ==
163 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
164 }
165
166 /**
167 * __intel_display_power_is_enabled - unlocked check for a power domain
168 * @dev_priv: i915 device instance
169 * @domain: power domain to check
170 *
171 * This is the unlocked version of intel_display_power_is_enabled() and should
172 * only be used from error capture and recovery code where deadlocks are
173 * possible.
174 *
175 * Returns:
176 * True when the power domain is enabled, false otherwise.
177 */
178 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
179 enum intel_display_power_domain domain)
180 {
181 struct i915_power_domains *power_domains;
182 struct i915_power_well *power_well;
183 bool is_enabled;
184 int i;
185
186 if (dev_priv->pm.suspended)
187 return false;
188
189 power_domains = &dev_priv->power_domains;
190
191 is_enabled = true;
192
193 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
194 if (power_well->always_on)
195 continue;
196
197 if (!power_well->hw_enabled) {
198 is_enabled = false;
199 break;
200 }
201 }
202
203 return is_enabled;
204 }
205
206 /**
207 * intel_display_power_is_enabled - check for a power domain
208 * @dev_priv: i915 device instance
209 * @domain: power domain to check
210 *
211 * This function can be used to check the hw power domain state. It is mostly
212 * used in hardware state readout functions. Everywhere else code should rely
213 * upon explicit power domain reference counting to ensure that the hardware
214 * block is powered up before accessing it.
215 *
216 * Callers must hold the relevant modesetting locks to ensure that concurrent
217 * threads can't disable the power well while the caller tries to read a few
218 * registers.
219 *
220 * Returns:
221 * True when the power domain is enabled, false otherwise.
222 */
223 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
224 enum intel_display_power_domain domain)
225 {
226 struct i915_power_domains *power_domains;
227 bool ret;
228
229 power_domains = &dev_priv->power_domains;
230
231 mutex_lock(&power_domains->lock);
232 ret = __intel_display_power_is_enabled(dev_priv, domain);
233 mutex_unlock(&power_domains->lock);
234
235 return ret;
236 }
237
238 /**
239 * intel_display_set_init_power - set the initial power domain state
240 * @dev_priv: i915 device instance
241 * @enable: whether to enable or disable the initial power domain state
242 *
243 * For simplicity our driver load/unload and system suspend/resume code assumes
244 * that all power domains are always enabled. This functions controls the state
245 * of this little hack. While the initial power domain state is enabled runtime
246 * pm is effectively disabled.
247 */
248 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
249 bool enable)
250 {
251 if (dev_priv->power_domains.init_power_on == enable)
252 return;
253
254 if (enable)
255 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
256 else
257 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
258
259 dev_priv->power_domains.init_power_on = enable;
260 }
261
262 /*
263 * Starting with Haswell, we have a "Power Down Well" that can be turned off
264 * when not needed anymore. We have 4 registers that can request the power well
265 * to be enabled, and it will only be disabled if none of the registers is
266 * requesting it to be enabled.
267 */
268 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
269 {
270 struct drm_device *dev = dev_priv->dev;
271
272 /*
273 * After we re-enable the power well, if we touch VGA register 0x3d5
274 * we'll get unclaimed register interrupts. This stops after we write
275 * anything to the VGA MSR register. The vgacon module uses this
276 * register all the time, so if we unbind our driver and, as a
277 * consequence, bind vgacon, we'll get stuck in an infinite loop at
278 * console_unlock(). So make here we touch the VGA MSR register, making
279 * sure vgacon can keep working normally without triggering interrupts
280 * and error messages.
281 */
282 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
283 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
284 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
285
286 if (IS_BROADWELL(dev))
287 gen8_irq_power_well_post_enable(dev_priv,
288 1 << PIPE_C | 1 << PIPE_B);
289 }
290
291 static void hsw_power_well_pre_disable(struct drm_i915_private *dev_priv)
292 {
293 if (IS_BROADWELL(dev_priv))
294 gen8_irq_power_well_pre_disable(dev_priv,
295 1 << PIPE_C | 1 << PIPE_B);
296 }
297
298 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
299 struct i915_power_well *power_well)
300 {
301 struct drm_device *dev = dev_priv->dev;
302
303 /*
304 * After we re-enable the power well, if we touch VGA register 0x3d5
305 * we'll get unclaimed register interrupts. This stops after we write
306 * anything to the VGA MSR register. The vgacon module uses this
307 * register all the time, so if we unbind our driver and, as a
308 * consequence, bind vgacon, we'll get stuck in an infinite loop at
309 * console_unlock(). So make here we touch the VGA MSR register, making
310 * sure vgacon can keep working normally without triggering interrupts
311 * and error messages.
312 */
313 if (power_well->data == SKL_DISP_PW_2) {
314 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
315 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
316 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
317
318 gen8_irq_power_well_post_enable(dev_priv,
319 1 << PIPE_C | 1 << PIPE_B);
320 }
321 }
322
323 static void skl_power_well_pre_disable(struct drm_i915_private *dev_priv,
324 struct i915_power_well *power_well)
325 {
326 if (power_well->data == SKL_DISP_PW_2)
327 gen8_irq_power_well_pre_disable(dev_priv,
328 1 << PIPE_C | 1 << PIPE_B);
329 }
330
331 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
332 struct i915_power_well *power_well, bool enable)
333 {
334 bool is_enabled, enable_requested;
335 uint32_t tmp;
336
337 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
338 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
339 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
340
341 if (enable) {
342 if (!enable_requested)
343 I915_WRITE(HSW_PWR_WELL_DRIVER,
344 HSW_PWR_WELL_ENABLE_REQUEST);
345
346 if (!is_enabled) {
347 DRM_DEBUG_KMS("Enabling power well\n");
348 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
349 HSW_PWR_WELL_STATE_ENABLED), 20))
350 DRM_ERROR("Timeout enabling power well\n");
351 hsw_power_well_post_enable(dev_priv);
352 }
353
354 } else {
355 if (enable_requested) {
356 hsw_power_well_pre_disable(dev_priv);
357 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
358 POSTING_READ(HSW_PWR_WELL_DRIVER);
359 DRM_DEBUG_KMS("Requesting to disable the power well\n");
360 }
361 }
362 }
363
364 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
365 BIT(POWER_DOMAIN_TRANSCODER_A) | \
366 BIT(POWER_DOMAIN_PIPE_B) | \
367 BIT(POWER_DOMAIN_TRANSCODER_B) | \
368 BIT(POWER_DOMAIN_PIPE_C) | \
369 BIT(POWER_DOMAIN_TRANSCODER_C) | \
370 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
371 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
372 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
373 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
374 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
375 BIT(POWER_DOMAIN_PORT_DDI_E_LANES) | \
376 BIT(POWER_DOMAIN_AUX_B) | \
377 BIT(POWER_DOMAIN_AUX_C) | \
378 BIT(POWER_DOMAIN_AUX_D) | \
379 BIT(POWER_DOMAIN_AUDIO) | \
380 BIT(POWER_DOMAIN_VGA) | \
381 BIT(POWER_DOMAIN_INIT))
382 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS ( \
383 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
384 BIT(POWER_DOMAIN_PORT_DDI_E_LANES) | \
385 BIT(POWER_DOMAIN_INIT))
386 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS ( \
387 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
388 BIT(POWER_DOMAIN_INIT))
389 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS ( \
390 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
391 BIT(POWER_DOMAIN_INIT))
392 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS ( \
393 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
394 BIT(POWER_DOMAIN_INIT))
395 #define SKL_DISPLAY_DC_OFF_POWER_DOMAINS ( \
396 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
397 BIT(POWER_DOMAIN_MODESET) | \
398 BIT(POWER_DOMAIN_AUX_A) | \
399 BIT(POWER_DOMAIN_INIT))
400
401 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
402 BIT(POWER_DOMAIN_TRANSCODER_A) | \
403 BIT(POWER_DOMAIN_PIPE_B) | \
404 BIT(POWER_DOMAIN_TRANSCODER_B) | \
405 BIT(POWER_DOMAIN_PIPE_C) | \
406 BIT(POWER_DOMAIN_TRANSCODER_C) | \
407 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
408 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
409 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
410 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
411 BIT(POWER_DOMAIN_AUX_B) | \
412 BIT(POWER_DOMAIN_AUX_C) | \
413 BIT(POWER_DOMAIN_AUDIO) | \
414 BIT(POWER_DOMAIN_VGA) | \
415 BIT(POWER_DOMAIN_GMBUS) | \
416 BIT(POWER_DOMAIN_INIT))
417 #define BXT_DISPLAY_DC_OFF_POWER_DOMAINS ( \
418 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
419 BIT(POWER_DOMAIN_MODESET) | \
420 BIT(POWER_DOMAIN_AUX_A) | \
421 BIT(POWER_DOMAIN_INIT))
422
423 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
424 {
425 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
426 "DC9 already programmed to be enabled.\n");
427 WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
428 "DC5 still not disabled to enable DC9.\n");
429 WARN_ONCE(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
430 WARN_ONCE(intel_irqs_enabled(dev_priv),
431 "Interrupts not disabled yet.\n");
432
433 /*
434 * TODO: check for the following to verify the conditions to enter DC9
435 * state are satisfied:
436 * 1] Check relevant display engine registers to verify if mode set
437 * disable sequence was followed.
438 * 2] Check if display uninitialize sequence is initialized.
439 */
440 }
441
442 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
443 {
444 WARN_ONCE(intel_irqs_enabled(dev_priv),
445 "Interrupts not disabled yet.\n");
446 WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
447 "DC5 still not disabled.\n");
448
449 /*
450 * TODO: check for the following to verify DC9 state was indeed
451 * entered before programming to disable it:
452 * 1] Check relevant display engine registers to verify if mode
453 * set disable sequence was followed.
454 * 2] Check if display uninitialize sequence is initialized.
455 */
456 }
457
458 static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
459 u32 state)
460 {
461 int rewrites = 0;
462 int rereads = 0;
463 u32 v;
464
465 I915_WRITE(DC_STATE_EN, state);
466
467 /* It has been observed that disabling the dc6 state sometimes
468 * doesn't stick and dmc keeps returning old value. Make sure
469 * the write really sticks enough times and also force rewrite until
470 * we are confident that state is exactly what we want.
471 */
472 do {
473 v = I915_READ(DC_STATE_EN);
474
475 if (v != state) {
476 I915_WRITE(DC_STATE_EN, state);
477 rewrites++;
478 rereads = 0;
479 } else if (rereads++ > 5) {
480 break;
481 }
482
483 } while (rewrites < 100);
484
485 if (v != state)
486 DRM_ERROR("Writing dc state to 0x%x failed, now 0x%x\n",
487 state, v);
488
489 /* Most of the times we need one retry, avoid spam */
490 if (rewrites > 1)
491 DRM_DEBUG_KMS("Rewrote dc state to 0x%x %d times\n",
492 state, rewrites);
493 }
494
495 static u32 gen9_dc_mask(struct drm_i915_private *dev_priv)
496 {
497 u32 mask;
498
499 mask = DC_STATE_EN_UPTO_DC5;
500 if (IS_BROXTON(dev_priv))
501 mask |= DC_STATE_EN_DC9;
502 else
503 mask |= DC_STATE_EN_UPTO_DC6;
504
505 return mask;
506 }
507
508 void gen9_sanitize_dc_state(struct drm_i915_private *dev_priv)
509 {
510 u32 val;
511
512 val = I915_READ(DC_STATE_EN) & gen9_dc_mask(dev_priv);
513
514 DRM_DEBUG_KMS("Resetting DC state tracking from %02x to %02x\n",
515 dev_priv->csr.dc_state, val);
516 dev_priv->csr.dc_state = val;
517 }
518
519 static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
520 {
521 uint32_t val;
522 uint32_t mask;
523
524 if (WARN_ON_ONCE(state & ~dev_priv->csr.allowed_dc_mask))
525 state &= dev_priv->csr.allowed_dc_mask;
526
527 val = I915_READ(DC_STATE_EN);
528 mask = gen9_dc_mask(dev_priv);
529 DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
530 val & mask, state);
531
532 /* Check if DMC is ignoring our DC state requests */
533 if ((val & mask) != dev_priv->csr.dc_state)
534 DRM_ERROR("DC state mismatch (0x%x -> 0x%x)\n",
535 dev_priv->csr.dc_state, val & mask);
536
537 val &= ~mask;
538 val |= state;
539
540 gen9_write_dc_state(dev_priv, val);
541
542 dev_priv->csr.dc_state = val & mask;
543 }
544
545 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
546 {
547 assert_can_enable_dc9(dev_priv);
548
549 DRM_DEBUG_KMS("Enabling DC9\n");
550
551 gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
552 }
553
554 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
555 {
556 assert_can_disable_dc9(dev_priv);
557
558 DRM_DEBUG_KMS("Disabling DC9\n");
559
560 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
561 }
562
563 static void assert_csr_loaded(struct drm_i915_private *dev_priv)
564 {
565 WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
566 "CSR program storage start is NULL\n");
567 WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
568 WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
569 }
570
571 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
572 {
573 bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
574 SKL_DISP_PW_2);
575
576 WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
577
578 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
579 "DC5 already programmed to be enabled.\n");
580 assert_rpm_wakelock_held(dev_priv);
581
582 assert_csr_loaded(dev_priv);
583 }
584
585 void gen9_enable_dc5(struct drm_i915_private *dev_priv)
586 {
587 assert_can_enable_dc5(dev_priv);
588
589 DRM_DEBUG_KMS("Enabling DC5\n");
590
591 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
592 }
593
594 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
595 {
596 WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
597 "Backlight is not disabled.\n");
598 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
599 "DC6 already programmed to be enabled.\n");
600
601 assert_csr_loaded(dev_priv);
602 }
603
604 void skl_enable_dc6(struct drm_i915_private *dev_priv)
605 {
606 assert_can_enable_dc6(dev_priv);
607
608 DRM_DEBUG_KMS("Enabling DC6\n");
609
610 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
611
612 }
613
614 void skl_disable_dc6(struct drm_i915_private *dev_priv)
615 {
616 DRM_DEBUG_KMS("Disabling DC6\n");
617
618 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
619 }
620
621 static void
622 gen9_sanitize_power_well_requests(struct drm_i915_private *dev_priv,
623 struct i915_power_well *power_well)
624 {
625 enum skl_disp_power_wells power_well_id = power_well->data;
626 u32 val;
627 u32 mask;
628
629 mask = SKL_POWER_WELL_REQ(power_well_id);
630
631 val = I915_READ(HSW_PWR_WELL_KVMR);
632 if (WARN_ONCE(val & mask, "Clearing unexpected KVMR request for %s\n",
633 power_well->name))
634 I915_WRITE(HSW_PWR_WELL_KVMR, val & ~mask);
635
636 val = I915_READ(HSW_PWR_WELL_BIOS);
637 val |= I915_READ(HSW_PWR_WELL_DEBUG);
638
639 if (!(val & mask))
640 return;
641
642 /*
643 * DMC is known to force on the request bits for power well 1 on SKL
644 * and BXT and the misc IO power well on SKL but we don't expect any
645 * other request bits to be set, so WARN for those.
646 */
647 if (power_well_id == SKL_DISP_PW_1 ||
648 ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
649 power_well_id == SKL_DISP_PW_MISC_IO))
650 DRM_DEBUG_DRIVER("Clearing auxiliary requests for %s forced on "
651 "by DMC\n", power_well->name);
652 else
653 WARN_ONCE(1, "Clearing unexpected auxiliary requests for %s\n",
654 power_well->name);
655
656 I915_WRITE(HSW_PWR_WELL_BIOS, val & ~mask);
657 I915_WRITE(HSW_PWR_WELL_DEBUG, val & ~mask);
658 }
659
660 static void skl_set_power_well(struct drm_i915_private *dev_priv,
661 struct i915_power_well *power_well, bool enable)
662 {
663 uint32_t tmp, fuse_status;
664 uint32_t req_mask, state_mask;
665 bool is_enabled, enable_requested, check_fuse_status = false;
666
667 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
668 fuse_status = I915_READ(SKL_FUSE_STATUS);
669
670 switch (power_well->data) {
671 case SKL_DISP_PW_1:
672 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
673 SKL_FUSE_PG0_DIST_STATUS), 1)) {
674 DRM_ERROR("PG0 not enabled\n");
675 return;
676 }
677 break;
678 case SKL_DISP_PW_2:
679 if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
680 DRM_ERROR("PG1 in disabled state\n");
681 return;
682 }
683 break;
684 case SKL_DISP_PW_DDI_A_E:
685 case SKL_DISP_PW_DDI_B:
686 case SKL_DISP_PW_DDI_C:
687 case SKL_DISP_PW_DDI_D:
688 case SKL_DISP_PW_MISC_IO:
689 break;
690 default:
691 WARN(1, "Unknown power well %lu\n", power_well->data);
692 return;
693 }
694
695 req_mask = SKL_POWER_WELL_REQ(power_well->data);
696 enable_requested = tmp & req_mask;
697 state_mask = SKL_POWER_WELL_STATE(power_well->data);
698 is_enabled = tmp & state_mask;
699
700 if (!enable && enable_requested)
701 skl_power_well_pre_disable(dev_priv, power_well);
702
703 if (enable) {
704 if (!enable_requested) {
705 WARN((tmp & state_mask) &&
706 !I915_READ(HSW_PWR_WELL_BIOS),
707 "Invalid for power well status to be enabled, unless done by the BIOS, \
708 when request is to disable!\n");
709 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
710 }
711
712 if (!is_enabled) {
713 DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
714 check_fuse_status = true;
715 }
716 } else {
717 if (enable_requested) {
718 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp & ~req_mask);
719 POSTING_READ(HSW_PWR_WELL_DRIVER);
720 DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
721 }
722
723 if (IS_GEN9(dev_priv))
724 gen9_sanitize_power_well_requests(dev_priv, power_well);
725 }
726
727 if (wait_for(!!(I915_READ(HSW_PWR_WELL_DRIVER) & state_mask) == enable,
728 1))
729 DRM_ERROR("%s %s timeout\n",
730 power_well->name, enable ? "enable" : "disable");
731
732 if (check_fuse_status) {
733 if (power_well->data == SKL_DISP_PW_1) {
734 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
735 SKL_FUSE_PG1_DIST_STATUS), 1))
736 DRM_ERROR("PG1 distributing status timeout\n");
737 } else if (power_well->data == SKL_DISP_PW_2) {
738 if (wait_for((I915_READ(SKL_FUSE_STATUS) &
739 SKL_FUSE_PG2_DIST_STATUS), 1))
740 DRM_ERROR("PG2 distributing status timeout\n");
741 }
742 }
743
744 if (enable && !is_enabled)
745 skl_power_well_post_enable(dev_priv, power_well);
746 }
747
748 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
749 struct i915_power_well *power_well)
750 {
751 hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
752
753 /*
754 * We're taking over the BIOS, so clear any requests made by it since
755 * the driver is in charge now.
756 */
757 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
758 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
759 }
760
761 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
762 struct i915_power_well *power_well)
763 {
764 hsw_set_power_well(dev_priv, power_well, true);
765 }
766
767 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
768 struct i915_power_well *power_well)
769 {
770 hsw_set_power_well(dev_priv, power_well, false);
771 }
772
773 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
774 struct i915_power_well *power_well)
775 {
776 uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
777 SKL_POWER_WELL_STATE(power_well->data);
778
779 return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
780 }
781
782 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
783 struct i915_power_well *power_well)
784 {
785 skl_set_power_well(dev_priv, power_well, power_well->count > 0);
786
787 /* Clear any request made by BIOS as driver is taking over */
788 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
789 }
790
791 static void skl_power_well_enable(struct drm_i915_private *dev_priv,
792 struct i915_power_well *power_well)
793 {
794 skl_set_power_well(dev_priv, power_well, true);
795 }
796
797 static void skl_power_well_disable(struct drm_i915_private *dev_priv,
798 struct i915_power_well *power_well)
799 {
800 skl_set_power_well(dev_priv, power_well, false);
801 }
802
803 static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
804 struct i915_power_well *power_well)
805 {
806 return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
807 }
808
809 static void gen9_assert_dbuf_enabled(struct drm_i915_private *dev_priv)
810 {
811 u32 tmp = I915_READ(DBUF_CTL);
812
813 WARN((tmp & (DBUF_POWER_STATE | DBUF_POWER_REQUEST)) !=
814 (DBUF_POWER_STATE | DBUF_POWER_REQUEST),
815 "Unexpected DBuf power power state (0x%08x)\n", tmp);
816 }
817
818 static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
819 struct i915_power_well *power_well)
820 {
821 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
822
823 WARN_ON(dev_priv->cdclk_freq !=
824 dev_priv->display.get_display_clock_speed(dev_priv->dev));
825
826 gen9_assert_dbuf_enabled(dev_priv);
827
828 if (IS_BROXTON(dev_priv))
829 broxton_ddi_phy_verify_state(dev_priv);
830 }
831
832 static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
833 struct i915_power_well *power_well)
834 {
835 if (!dev_priv->csr.dmc_payload)
836 return;
837
838 if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
839 skl_enable_dc6(dev_priv);
840 else if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
841 gen9_enable_dc5(dev_priv);
842 }
843
844 static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
845 struct i915_power_well *power_well)
846 {
847 if (power_well->count > 0)
848 gen9_dc_off_power_well_enable(dev_priv, power_well);
849 else
850 gen9_dc_off_power_well_disable(dev_priv, power_well);
851 }
852
853 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
854 struct i915_power_well *power_well)
855 {
856 }
857
858 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
859 struct i915_power_well *power_well)
860 {
861 return true;
862 }
863
864 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
865 struct i915_power_well *power_well, bool enable)
866 {
867 enum punit_power_well power_well_id = power_well->data;
868 u32 mask;
869 u32 state;
870 u32 ctrl;
871
872 mask = PUNIT_PWRGT_MASK(power_well_id);
873 state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
874 PUNIT_PWRGT_PWR_GATE(power_well_id);
875
876 mutex_lock(&dev_priv->rps.hw_lock);
877
878 #define COND \
879 ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
880
881 if (COND)
882 goto out;
883
884 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
885 ctrl &= ~mask;
886 ctrl |= state;
887 vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
888
889 if (wait_for(COND, 100))
890 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
891 state,
892 vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
893
894 #undef COND
895
896 out:
897 mutex_unlock(&dev_priv->rps.hw_lock);
898 }
899
900 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
901 struct i915_power_well *power_well)
902 {
903 vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
904 }
905
906 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
907 struct i915_power_well *power_well)
908 {
909 vlv_set_power_well(dev_priv, power_well, true);
910 }
911
912 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
913 struct i915_power_well *power_well)
914 {
915 vlv_set_power_well(dev_priv, power_well, false);
916 }
917
918 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
919 struct i915_power_well *power_well)
920 {
921 int power_well_id = power_well->data;
922 bool enabled = false;
923 u32 mask;
924 u32 state;
925 u32 ctrl;
926
927 mask = PUNIT_PWRGT_MASK(power_well_id);
928 ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
929
930 mutex_lock(&dev_priv->rps.hw_lock);
931
932 state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
933 /*
934 * We only ever set the power-on and power-gate states, anything
935 * else is unexpected.
936 */
937 WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
938 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
939 if (state == ctrl)
940 enabled = true;
941
942 /*
943 * A transient state at this point would mean some unexpected party
944 * is poking at the power controls too.
945 */
946 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
947 WARN_ON(ctrl != state);
948
949 mutex_unlock(&dev_priv->rps.hw_lock);
950
951 return enabled;
952 }
953
954 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
955 {
956 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
957
958 /*
959 * Disable trickle feed and enable pnd deadline calculation
960 */
961 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
962 I915_WRITE(CBR1_VLV, 0);
963
964 WARN_ON(dev_priv->rawclk_freq == 0);
965
966 I915_WRITE(RAWCLK_FREQ_VLV,
967 DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 1000));
968 }
969
970 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
971 {
972 enum pipe pipe;
973
974 /*
975 * Enable the CRI clock source so we can get at the
976 * display and the reference clock for VGA
977 * hotplug / manual detection. Supposedly DSI also
978 * needs the ref clock up and running.
979 *
980 * CHV DPLL B/C have some issues if VGA mode is enabled.
981 */
982 for_each_pipe(dev_priv->dev, pipe) {
983 u32 val = I915_READ(DPLL(pipe));
984
985 val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
986 if (pipe != PIPE_A)
987 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
988
989 I915_WRITE(DPLL(pipe), val);
990 }
991
992 vlv_init_display_clock_gating(dev_priv);
993
994 spin_lock_irq(&dev_priv->irq_lock);
995 valleyview_enable_display_irqs(dev_priv);
996 spin_unlock_irq(&dev_priv->irq_lock);
997
998 /*
999 * During driver initialization/resume we can avoid restoring the
1000 * part of the HW/SW state that will be inited anyway explicitly.
1001 */
1002 if (dev_priv->power_domains.initializing)
1003 return;
1004
1005 intel_hpd_init(dev_priv);
1006
1007 i915_redisable_vga_power_on(dev_priv->dev);
1008 }
1009
1010 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
1011 {
1012 spin_lock_irq(&dev_priv->irq_lock);
1013 valleyview_disable_display_irqs(dev_priv);
1014 spin_unlock_irq(&dev_priv->irq_lock);
1015
1016 /* make sure we're done processing display irqs */
1017 synchronize_irq(dev_priv->dev->irq);
1018
1019 vlv_power_sequencer_reset(dev_priv);
1020 }
1021
1022 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
1023 struct i915_power_well *power_well)
1024 {
1025 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1026
1027 vlv_set_power_well(dev_priv, power_well, true);
1028
1029 vlv_display_power_well_init(dev_priv);
1030 }
1031
1032 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
1033 struct i915_power_well *power_well)
1034 {
1035 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1036
1037 vlv_display_power_well_deinit(dev_priv);
1038
1039 vlv_set_power_well(dev_priv, power_well, false);
1040 }
1041
1042 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1043 struct i915_power_well *power_well)
1044 {
1045 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1046
1047 /* since ref/cri clock was enabled */
1048 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1049
1050 vlv_set_power_well(dev_priv, power_well, true);
1051
1052 /*
1053 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1054 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
1055 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
1056 * b. The other bits such as sfr settings / modesel may all
1057 * be set to 0.
1058 *
1059 * This should only be done on init and resume from S3 with
1060 * both PLLs disabled, or we risk losing DPIO and PLL
1061 * synchronization.
1062 */
1063 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1064 }
1065
1066 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1067 struct i915_power_well *power_well)
1068 {
1069 enum pipe pipe;
1070
1071 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1072
1073 for_each_pipe(dev_priv, pipe)
1074 assert_pll_disabled(dev_priv, pipe);
1075
1076 /* Assert common reset */
1077 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
1078
1079 vlv_set_power_well(dev_priv, power_well, false);
1080 }
1081
1082 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1083
1084 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1085 int power_well_id)
1086 {
1087 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1088 int i;
1089
1090 for (i = 0; i < power_domains->power_well_count; i++) {
1091 struct i915_power_well *power_well;
1092
1093 power_well = &power_domains->power_wells[i];
1094 if (power_well->data == power_well_id)
1095 return power_well;
1096 }
1097
1098 return NULL;
1099 }
1100
1101 #define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1102
1103 static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1104 {
1105 struct i915_power_well *cmn_bc =
1106 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1107 struct i915_power_well *cmn_d =
1108 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1109 u32 phy_control = dev_priv->chv_phy_control;
1110 u32 phy_status = 0;
1111 u32 phy_status_mask = 0xffffffff;
1112 u32 tmp;
1113
1114 /*
1115 * The BIOS can leave the PHY is some weird state
1116 * where it doesn't fully power down some parts.
1117 * Disable the asserts until the PHY has been fully
1118 * reset (ie. the power well has been disabled at
1119 * least once).
1120 */
1121 if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1122 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1123 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1124 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1125 PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1126 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1127 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1128
1129 if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1130 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1131 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1132 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1133
1134 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1135 phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1136
1137 /* this assumes override is only used to enable lanes */
1138 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1139 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1140
1141 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1142 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1143
1144 /* CL1 is on whenever anything is on in either channel */
1145 if (BITS_SET(phy_control,
1146 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1147 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1148 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1149
1150 /*
1151 * The DPLLB check accounts for the pipe B + port A usage
1152 * with CL2 powered up but all the lanes in the second channel
1153 * powered down.
1154 */
1155 if (BITS_SET(phy_control,
1156 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1157 (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1158 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1159
1160 if (BITS_SET(phy_control,
1161 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1162 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1163 if (BITS_SET(phy_control,
1164 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1165 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1166
1167 if (BITS_SET(phy_control,
1168 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1169 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1170 if (BITS_SET(phy_control,
1171 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1172 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1173 }
1174
1175 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1176 phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1177
1178 /* this assumes override is only used to enable lanes */
1179 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1180 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1181
1182 if (BITS_SET(phy_control,
1183 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1184 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1185
1186 if (BITS_SET(phy_control,
1187 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1188 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1189 if (BITS_SET(phy_control,
1190 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1191 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1192 }
1193
1194 phy_status &= phy_status_mask;
1195
1196 /*
1197 * The PHY may be busy with some initial calibration and whatnot,
1198 * so the power state can take a while to actually change.
1199 */
1200 if (wait_for((tmp = I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask) == phy_status, 10))
1201 WARN(phy_status != tmp,
1202 "Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1203 tmp, phy_status, dev_priv->chv_phy_control);
1204 }
1205
1206 #undef BITS_SET
1207
1208 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1209 struct i915_power_well *power_well)
1210 {
1211 enum dpio_phy phy;
1212 enum pipe pipe;
1213 uint32_t tmp;
1214
1215 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1216 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1217
1218 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1219 pipe = PIPE_A;
1220 phy = DPIO_PHY0;
1221 } else {
1222 pipe = PIPE_C;
1223 phy = DPIO_PHY1;
1224 }
1225
1226 /* since ref/cri clock was enabled */
1227 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1228 vlv_set_power_well(dev_priv, power_well, true);
1229
1230 /* Poll for phypwrgood signal */
1231 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
1232 DRM_ERROR("Display PHY %d is not power up\n", phy);
1233
1234 mutex_lock(&dev_priv->sb_lock);
1235
1236 /* Enable dynamic power down */
1237 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1238 tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1239 DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1240 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1241
1242 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1243 tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1244 tmp |= DPIO_DYNPWRDOWNEN_CH1;
1245 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1246 } else {
1247 /*
1248 * Force the non-existing CL2 off. BXT does this
1249 * too, so maybe it saves some power even though
1250 * CL2 doesn't exist?
1251 */
1252 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1253 tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1254 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1255 }
1256
1257 mutex_unlock(&dev_priv->sb_lock);
1258
1259 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1260 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1261
1262 DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1263 phy, dev_priv->chv_phy_control);
1264
1265 assert_chv_phy_status(dev_priv);
1266 }
1267
1268 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1269 struct i915_power_well *power_well)
1270 {
1271 enum dpio_phy phy;
1272
1273 WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1274 power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1275
1276 if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1277 phy = DPIO_PHY0;
1278 assert_pll_disabled(dev_priv, PIPE_A);
1279 assert_pll_disabled(dev_priv, PIPE_B);
1280 } else {
1281 phy = DPIO_PHY1;
1282 assert_pll_disabled(dev_priv, PIPE_C);
1283 }
1284
1285 dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1286 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1287
1288 vlv_set_power_well(dev_priv, power_well, false);
1289
1290 DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1291 phy, dev_priv->chv_phy_control);
1292
1293 /* PHY is fully reset now, so we can enable the PHY state asserts */
1294 dev_priv->chv_phy_assert[phy] = true;
1295
1296 assert_chv_phy_status(dev_priv);
1297 }
1298
1299 static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1300 enum dpio_channel ch, bool override, unsigned int mask)
1301 {
1302 enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1303 u32 reg, val, expected, actual;
1304
1305 /*
1306 * The BIOS can leave the PHY is some weird state
1307 * where it doesn't fully power down some parts.
1308 * Disable the asserts until the PHY has been fully
1309 * reset (ie. the power well has been disabled at
1310 * least once).
1311 */
1312 if (!dev_priv->chv_phy_assert[phy])
1313 return;
1314
1315 if (ch == DPIO_CH0)
1316 reg = _CHV_CMN_DW0_CH0;
1317 else
1318 reg = _CHV_CMN_DW6_CH1;
1319
1320 mutex_lock(&dev_priv->sb_lock);
1321 val = vlv_dpio_read(dev_priv, pipe, reg);
1322 mutex_unlock(&dev_priv->sb_lock);
1323
1324 /*
1325 * This assumes !override is only used when the port is disabled.
1326 * All lanes should power down even without the override when
1327 * the port is disabled.
1328 */
1329 if (!override || mask == 0xf) {
1330 expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1331 /*
1332 * If CH1 common lane is not active anymore
1333 * (eg. for pipe B DPLL) the entire channel will
1334 * shut down, which causes the common lane registers
1335 * to read as 0. That means we can't actually check
1336 * the lane power down status bits, but as the entire
1337 * register reads as 0 it's a good indication that the
1338 * channel is indeed entirely powered down.
1339 */
1340 if (ch == DPIO_CH1 && val == 0)
1341 expected = 0;
1342 } else if (mask != 0x0) {
1343 expected = DPIO_ANYDL_POWERDOWN;
1344 } else {
1345 expected = 0;
1346 }
1347
1348 if (ch == DPIO_CH0)
1349 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1350 else
1351 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1352 actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1353
1354 WARN(actual != expected,
1355 "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1356 !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1357 !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1358 reg, val);
1359 }
1360
1361 bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1362 enum dpio_channel ch, bool override)
1363 {
1364 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1365 bool was_override;
1366
1367 mutex_lock(&power_domains->lock);
1368
1369 was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1370
1371 if (override == was_override)
1372 goto out;
1373
1374 if (override)
1375 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1376 else
1377 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1378
1379 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1380
1381 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1382 phy, ch, dev_priv->chv_phy_control);
1383
1384 assert_chv_phy_status(dev_priv);
1385
1386 out:
1387 mutex_unlock(&power_domains->lock);
1388
1389 return was_override;
1390 }
1391
1392 void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1393 bool override, unsigned int mask)
1394 {
1395 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1396 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1397 enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1398 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1399
1400 mutex_lock(&power_domains->lock);
1401
1402 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1403 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1404
1405 if (override)
1406 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1407 else
1408 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1409
1410 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1411
1412 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1413 phy, ch, mask, dev_priv->chv_phy_control);
1414
1415 assert_chv_phy_status(dev_priv);
1416
1417 assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1418
1419 mutex_unlock(&power_domains->lock);
1420 }
1421
1422 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1423 struct i915_power_well *power_well)
1424 {
1425 enum pipe pipe = power_well->data;
1426 bool enabled;
1427 u32 state, ctrl;
1428
1429 mutex_lock(&dev_priv->rps.hw_lock);
1430
1431 state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1432 /*
1433 * We only ever set the power-on and power-gate states, anything
1434 * else is unexpected.
1435 */
1436 WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1437 enabled = state == DP_SSS_PWR_ON(pipe);
1438
1439 /*
1440 * A transient state at this point would mean some unexpected party
1441 * is poking at the power controls too.
1442 */
1443 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1444 WARN_ON(ctrl << 16 != state);
1445
1446 mutex_unlock(&dev_priv->rps.hw_lock);
1447
1448 return enabled;
1449 }
1450
1451 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1452 struct i915_power_well *power_well,
1453 bool enable)
1454 {
1455 enum pipe pipe = power_well->data;
1456 u32 state;
1457 u32 ctrl;
1458
1459 state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1460
1461 mutex_lock(&dev_priv->rps.hw_lock);
1462
1463 #define COND \
1464 ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1465
1466 if (COND)
1467 goto out;
1468
1469 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1470 ctrl &= ~DP_SSC_MASK(pipe);
1471 ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1472 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1473
1474 if (wait_for(COND, 100))
1475 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1476 state,
1477 vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1478
1479 #undef COND
1480
1481 out:
1482 mutex_unlock(&dev_priv->rps.hw_lock);
1483 }
1484
1485 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1486 struct i915_power_well *power_well)
1487 {
1488 WARN_ON_ONCE(power_well->data != PIPE_A);
1489
1490 chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1491 }
1492
1493 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1494 struct i915_power_well *power_well)
1495 {
1496 WARN_ON_ONCE(power_well->data != PIPE_A);
1497
1498 chv_set_pipe_power_well(dev_priv, power_well, true);
1499
1500 vlv_display_power_well_init(dev_priv);
1501 }
1502
1503 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1504 struct i915_power_well *power_well)
1505 {
1506 WARN_ON_ONCE(power_well->data != PIPE_A);
1507
1508 vlv_display_power_well_deinit(dev_priv);
1509
1510 chv_set_pipe_power_well(dev_priv, power_well, false);
1511 }
1512
1513 static void
1514 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
1515 enum intel_display_power_domain domain)
1516 {
1517 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1518 struct i915_power_well *power_well;
1519 int i;
1520
1521 for_each_power_well(i, power_well, BIT(domain), power_domains) {
1522 if (!power_well->count++)
1523 intel_power_well_enable(dev_priv, power_well);
1524 }
1525
1526 power_domains->domain_use_count[domain]++;
1527 }
1528
1529 /**
1530 * intel_display_power_get - grab a power domain reference
1531 * @dev_priv: i915 device instance
1532 * @domain: power domain to reference
1533 *
1534 * This function grabs a power domain reference for @domain and ensures that the
1535 * power domain and all its parents are powered up. Therefore users should only
1536 * grab a reference to the innermost power domain they need.
1537 *
1538 * Any power domain reference obtained by this function must have a symmetric
1539 * call to intel_display_power_put() to release the reference again.
1540 */
1541 void intel_display_power_get(struct drm_i915_private *dev_priv,
1542 enum intel_display_power_domain domain)
1543 {
1544 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1545
1546 intel_runtime_pm_get(dev_priv);
1547
1548 mutex_lock(&power_domains->lock);
1549
1550 __intel_display_power_get_domain(dev_priv, domain);
1551
1552 mutex_unlock(&power_domains->lock);
1553 }
1554
1555 /**
1556 * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
1557 * @dev_priv: i915 device instance
1558 * @domain: power domain to reference
1559 *
1560 * This function grabs a power domain reference for @domain and ensures that the
1561 * power domain and all its parents are powered up. Therefore users should only
1562 * grab a reference to the innermost power domain they need.
1563 *
1564 * Any power domain reference obtained by this function must have a symmetric
1565 * call to intel_display_power_put() to release the reference again.
1566 */
1567 bool intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
1568 enum intel_display_power_domain domain)
1569 {
1570 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1571 bool is_enabled;
1572
1573 if (!intel_runtime_pm_get_if_in_use(dev_priv))
1574 return false;
1575
1576 mutex_lock(&power_domains->lock);
1577
1578 if (__intel_display_power_is_enabled(dev_priv, domain)) {
1579 __intel_display_power_get_domain(dev_priv, domain);
1580 is_enabled = true;
1581 } else {
1582 is_enabled = false;
1583 }
1584
1585 mutex_unlock(&power_domains->lock);
1586
1587 if (!is_enabled)
1588 intel_runtime_pm_put(dev_priv);
1589
1590 return is_enabled;
1591 }
1592
1593 /**
1594 * intel_display_power_put - release a power domain reference
1595 * @dev_priv: i915 device instance
1596 * @domain: power domain to reference
1597 *
1598 * This function drops the power domain reference obtained by
1599 * intel_display_power_get() and might power down the corresponding hardware
1600 * block right away if this is the last reference.
1601 */
1602 void intel_display_power_put(struct drm_i915_private *dev_priv,
1603 enum intel_display_power_domain domain)
1604 {
1605 struct i915_power_domains *power_domains;
1606 struct i915_power_well *power_well;
1607 int i;
1608
1609 power_domains = &dev_priv->power_domains;
1610
1611 mutex_lock(&power_domains->lock);
1612
1613 WARN(!power_domains->domain_use_count[domain],
1614 "Use count on domain %s is already zero\n",
1615 intel_display_power_domain_str(domain));
1616 power_domains->domain_use_count[domain]--;
1617
1618 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
1619 WARN(!power_well->count,
1620 "Use count on power well %s is already zero",
1621 power_well->name);
1622
1623 if (!--power_well->count)
1624 intel_power_well_disable(dev_priv, power_well);
1625 }
1626
1627 mutex_unlock(&power_domains->lock);
1628
1629 intel_runtime_pm_put(dev_priv);
1630 }
1631
1632 #define HSW_DISPLAY_POWER_DOMAINS ( \
1633 BIT(POWER_DOMAIN_PIPE_B) | \
1634 BIT(POWER_DOMAIN_PIPE_C) | \
1635 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
1636 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1637 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1638 BIT(POWER_DOMAIN_TRANSCODER_A) | \
1639 BIT(POWER_DOMAIN_TRANSCODER_B) | \
1640 BIT(POWER_DOMAIN_TRANSCODER_C) | \
1641 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1642 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1643 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1644 BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */ \
1645 BIT(POWER_DOMAIN_VGA) | \
1646 BIT(POWER_DOMAIN_AUDIO) | \
1647 BIT(POWER_DOMAIN_INIT))
1648
1649 #define BDW_DISPLAY_POWER_DOMAINS ( \
1650 BIT(POWER_DOMAIN_PIPE_B) | \
1651 BIT(POWER_DOMAIN_PIPE_C) | \
1652 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1653 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1654 BIT(POWER_DOMAIN_TRANSCODER_A) | \
1655 BIT(POWER_DOMAIN_TRANSCODER_B) | \
1656 BIT(POWER_DOMAIN_TRANSCODER_C) | \
1657 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1658 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1659 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1660 BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */ \
1661 BIT(POWER_DOMAIN_VGA) | \
1662 BIT(POWER_DOMAIN_AUDIO) | \
1663 BIT(POWER_DOMAIN_INIT))
1664
1665 #define VLV_DISPLAY_POWER_DOMAINS ( \
1666 BIT(POWER_DOMAIN_PIPE_A) | \
1667 BIT(POWER_DOMAIN_PIPE_B) | \
1668 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
1669 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1670 BIT(POWER_DOMAIN_TRANSCODER_A) | \
1671 BIT(POWER_DOMAIN_TRANSCODER_B) | \
1672 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1673 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1674 BIT(POWER_DOMAIN_PORT_DSI) | \
1675 BIT(POWER_DOMAIN_PORT_CRT) | \
1676 BIT(POWER_DOMAIN_VGA) | \
1677 BIT(POWER_DOMAIN_AUDIO) | \
1678 BIT(POWER_DOMAIN_AUX_B) | \
1679 BIT(POWER_DOMAIN_AUX_C) | \
1680 BIT(POWER_DOMAIN_GMBUS) | \
1681 BIT(POWER_DOMAIN_INIT))
1682
1683 #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
1684 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1685 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1686 BIT(POWER_DOMAIN_PORT_CRT) | \
1687 BIT(POWER_DOMAIN_AUX_B) | \
1688 BIT(POWER_DOMAIN_AUX_C) | \
1689 BIT(POWER_DOMAIN_INIT))
1690
1691 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
1692 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1693 BIT(POWER_DOMAIN_AUX_B) | \
1694 BIT(POWER_DOMAIN_INIT))
1695
1696 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
1697 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1698 BIT(POWER_DOMAIN_AUX_B) | \
1699 BIT(POWER_DOMAIN_INIT))
1700
1701 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
1702 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1703 BIT(POWER_DOMAIN_AUX_C) | \
1704 BIT(POWER_DOMAIN_INIT))
1705
1706 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
1707 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1708 BIT(POWER_DOMAIN_AUX_C) | \
1709 BIT(POWER_DOMAIN_INIT))
1710
1711 #define CHV_DISPLAY_POWER_DOMAINS ( \
1712 BIT(POWER_DOMAIN_PIPE_A) | \
1713 BIT(POWER_DOMAIN_PIPE_B) | \
1714 BIT(POWER_DOMAIN_PIPE_C) | \
1715 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
1716 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1717 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1718 BIT(POWER_DOMAIN_TRANSCODER_A) | \
1719 BIT(POWER_DOMAIN_TRANSCODER_B) | \
1720 BIT(POWER_DOMAIN_TRANSCODER_C) | \
1721 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1722 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1723 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1724 BIT(POWER_DOMAIN_PORT_DSI) | \
1725 BIT(POWER_DOMAIN_VGA) | \
1726 BIT(POWER_DOMAIN_AUDIO) | \
1727 BIT(POWER_DOMAIN_AUX_B) | \
1728 BIT(POWER_DOMAIN_AUX_C) | \
1729 BIT(POWER_DOMAIN_AUX_D) | \
1730 BIT(POWER_DOMAIN_GMBUS) | \
1731 BIT(POWER_DOMAIN_INIT))
1732
1733 #define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \
1734 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1735 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1736 BIT(POWER_DOMAIN_AUX_B) | \
1737 BIT(POWER_DOMAIN_AUX_C) | \
1738 BIT(POWER_DOMAIN_INIT))
1739
1740 #define CHV_DPIO_CMN_D_POWER_DOMAINS ( \
1741 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1742 BIT(POWER_DOMAIN_AUX_D) | \
1743 BIT(POWER_DOMAIN_INIT))
1744
1745 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1746 .sync_hw = i9xx_always_on_power_well_noop,
1747 .enable = i9xx_always_on_power_well_noop,
1748 .disable = i9xx_always_on_power_well_noop,
1749 .is_enabled = i9xx_always_on_power_well_enabled,
1750 };
1751
1752 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1753 .sync_hw = chv_pipe_power_well_sync_hw,
1754 .enable = chv_pipe_power_well_enable,
1755 .disable = chv_pipe_power_well_disable,
1756 .is_enabled = chv_pipe_power_well_enabled,
1757 };
1758
1759 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1760 .sync_hw = vlv_power_well_sync_hw,
1761 .enable = chv_dpio_cmn_power_well_enable,
1762 .disable = chv_dpio_cmn_power_well_disable,
1763 .is_enabled = vlv_power_well_enabled,
1764 };
1765
1766 static struct i915_power_well i9xx_always_on_power_well[] = {
1767 {
1768 .name = "always-on",
1769 .always_on = 1,
1770 .domains = POWER_DOMAIN_MASK,
1771 .ops = &i9xx_always_on_power_well_ops,
1772 },
1773 };
1774
1775 static const struct i915_power_well_ops hsw_power_well_ops = {
1776 .sync_hw = hsw_power_well_sync_hw,
1777 .enable = hsw_power_well_enable,
1778 .disable = hsw_power_well_disable,
1779 .is_enabled = hsw_power_well_enabled,
1780 };
1781
1782 static const struct i915_power_well_ops skl_power_well_ops = {
1783 .sync_hw = skl_power_well_sync_hw,
1784 .enable = skl_power_well_enable,
1785 .disable = skl_power_well_disable,
1786 .is_enabled = skl_power_well_enabled,
1787 };
1788
1789 static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
1790 .sync_hw = gen9_dc_off_power_well_sync_hw,
1791 .enable = gen9_dc_off_power_well_enable,
1792 .disable = gen9_dc_off_power_well_disable,
1793 .is_enabled = gen9_dc_off_power_well_enabled,
1794 };
1795
1796 static struct i915_power_well hsw_power_wells[] = {
1797 {
1798 .name = "always-on",
1799 .always_on = 1,
1800 .domains = POWER_DOMAIN_MASK,
1801 .ops = &i9xx_always_on_power_well_ops,
1802 },
1803 {
1804 .name = "display",
1805 .domains = HSW_DISPLAY_POWER_DOMAINS,
1806 .ops = &hsw_power_well_ops,
1807 },
1808 };
1809
1810 static struct i915_power_well bdw_power_wells[] = {
1811 {
1812 .name = "always-on",
1813 .always_on = 1,
1814 .domains = POWER_DOMAIN_MASK,
1815 .ops = &i9xx_always_on_power_well_ops,
1816 },
1817 {
1818 .name = "display",
1819 .domains = BDW_DISPLAY_POWER_DOMAINS,
1820 .ops = &hsw_power_well_ops,
1821 },
1822 };
1823
1824 static const struct i915_power_well_ops vlv_display_power_well_ops = {
1825 .sync_hw = vlv_power_well_sync_hw,
1826 .enable = vlv_display_power_well_enable,
1827 .disable = vlv_display_power_well_disable,
1828 .is_enabled = vlv_power_well_enabled,
1829 };
1830
1831 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1832 .sync_hw = vlv_power_well_sync_hw,
1833 .enable = vlv_dpio_cmn_power_well_enable,
1834 .disable = vlv_dpio_cmn_power_well_disable,
1835 .is_enabled = vlv_power_well_enabled,
1836 };
1837
1838 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1839 .sync_hw = vlv_power_well_sync_hw,
1840 .enable = vlv_power_well_enable,
1841 .disable = vlv_power_well_disable,
1842 .is_enabled = vlv_power_well_enabled,
1843 };
1844
1845 static struct i915_power_well vlv_power_wells[] = {
1846 {
1847 .name = "always-on",
1848 .always_on = 1,
1849 .domains = POWER_DOMAIN_MASK,
1850 .ops = &i9xx_always_on_power_well_ops,
1851 .data = PUNIT_POWER_WELL_ALWAYS_ON,
1852 },
1853 {
1854 .name = "display",
1855 .domains = VLV_DISPLAY_POWER_DOMAINS,
1856 .data = PUNIT_POWER_WELL_DISP2D,
1857 .ops = &vlv_display_power_well_ops,
1858 },
1859 {
1860 .name = "dpio-tx-b-01",
1861 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1862 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1863 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1864 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1865 .ops = &vlv_dpio_power_well_ops,
1866 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
1867 },
1868 {
1869 .name = "dpio-tx-b-23",
1870 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1871 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1872 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1873 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1874 .ops = &vlv_dpio_power_well_ops,
1875 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
1876 },
1877 {
1878 .name = "dpio-tx-c-01",
1879 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1880 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1881 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1882 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1883 .ops = &vlv_dpio_power_well_ops,
1884 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
1885 },
1886 {
1887 .name = "dpio-tx-c-23",
1888 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1889 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1890 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1891 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1892 .ops = &vlv_dpio_power_well_ops,
1893 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
1894 },
1895 {
1896 .name = "dpio-common",
1897 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
1898 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1899 .ops = &vlv_dpio_cmn_power_well_ops,
1900 },
1901 };
1902
1903 static struct i915_power_well chv_power_wells[] = {
1904 {
1905 .name = "always-on",
1906 .always_on = 1,
1907 .domains = POWER_DOMAIN_MASK,
1908 .ops = &i9xx_always_on_power_well_ops,
1909 },
1910 {
1911 .name = "display",
1912 /*
1913 * Pipe A power well is the new disp2d well. Pipe B and C
1914 * power wells don't actually exist. Pipe A power well is
1915 * required for any pipe to work.
1916 */
1917 .domains = CHV_DISPLAY_POWER_DOMAINS,
1918 .data = PIPE_A,
1919 .ops = &chv_pipe_power_well_ops,
1920 },
1921 {
1922 .name = "dpio-common-bc",
1923 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
1924 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1925 .ops = &chv_dpio_cmn_power_well_ops,
1926 },
1927 {
1928 .name = "dpio-common-d",
1929 .domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
1930 .data = PUNIT_POWER_WELL_DPIO_CMN_D,
1931 .ops = &chv_dpio_cmn_power_well_ops,
1932 },
1933 };
1934
1935 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
1936 int power_well_id)
1937 {
1938 struct i915_power_well *power_well;
1939 bool ret;
1940
1941 power_well = lookup_power_well(dev_priv, power_well_id);
1942 ret = power_well->ops->is_enabled(dev_priv, power_well);
1943
1944 return ret;
1945 }
1946
1947 static struct i915_power_well skl_power_wells[] = {
1948 {
1949 .name = "always-on",
1950 .always_on = 1,
1951 .domains = POWER_DOMAIN_MASK,
1952 .ops = &i9xx_always_on_power_well_ops,
1953 .data = SKL_DISP_PW_ALWAYS_ON,
1954 },
1955 {
1956 .name = "power well 1",
1957 /* Handled by the DMC firmware */
1958 .domains = 0,
1959 .ops = &skl_power_well_ops,
1960 .data = SKL_DISP_PW_1,
1961 },
1962 {
1963 .name = "MISC IO power well",
1964 /* Handled by the DMC firmware */
1965 .domains = 0,
1966 .ops = &skl_power_well_ops,
1967 .data = SKL_DISP_PW_MISC_IO,
1968 },
1969 {
1970 .name = "DC off",
1971 .domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
1972 .ops = &gen9_dc_off_power_well_ops,
1973 .data = SKL_DISP_PW_DC_OFF,
1974 },
1975 {
1976 .name = "power well 2",
1977 .domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
1978 .ops = &skl_power_well_ops,
1979 .data = SKL_DISP_PW_2,
1980 },
1981 {
1982 .name = "DDI A/E power well",
1983 .domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
1984 .ops = &skl_power_well_ops,
1985 .data = SKL_DISP_PW_DDI_A_E,
1986 },
1987 {
1988 .name = "DDI B power well",
1989 .domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
1990 .ops = &skl_power_well_ops,
1991 .data = SKL_DISP_PW_DDI_B,
1992 },
1993 {
1994 .name = "DDI C power well",
1995 .domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
1996 .ops = &skl_power_well_ops,
1997 .data = SKL_DISP_PW_DDI_C,
1998 },
1999 {
2000 .name = "DDI D power well",
2001 .domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
2002 .ops = &skl_power_well_ops,
2003 .data = SKL_DISP_PW_DDI_D,
2004 },
2005 };
2006
2007 static struct i915_power_well bxt_power_wells[] = {
2008 {
2009 .name = "always-on",
2010 .always_on = 1,
2011 .domains = POWER_DOMAIN_MASK,
2012 .ops = &i9xx_always_on_power_well_ops,
2013 },
2014 {
2015 .name = "power well 1",
2016 .domains = 0,
2017 .ops = &skl_power_well_ops,
2018 .data = SKL_DISP_PW_1,
2019 },
2020 {
2021 .name = "DC off",
2022 .domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
2023 .ops = &gen9_dc_off_power_well_ops,
2024 .data = SKL_DISP_PW_DC_OFF,
2025 },
2026 {
2027 .name = "power well 2",
2028 .domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2029 .ops = &skl_power_well_ops,
2030 .data = SKL_DISP_PW_2,
2031 },
2032 };
2033
2034 static int
2035 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
2036 int disable_power_well)
2037 {
2038 if (disable_power_well >= 0)
2039 return !!disable_power_well;
2040
2041 return 1;
2042 }
2043
2044 static uint32_t get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
2045 int enable_dc)
2046 {
2047 uint32_t mask;
2048 int requested_dc;
2049 int max_dc;
2050
2051 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2052 max_dc = 2;
2053 mask = 0;
2054 } else if (IS_BROXTON(dev_priv)) {
2055 max_dc = 1;
2056 /*
2057 * DC9 has a separate HW flow from the rest of the DC states,
2058 * not depending on the DMC firmware. It's needed by system
2059 * suspend/resume, so allow it unconditionally.
2060 */
2061 mask = DC_STATE_EN_DC9;
2062 } else {
2063 max_dc = 0;
2064 mask = 0;
2065 }
2066
2067 if (!i915.disable_power_well)
2068 max_dc = 0;
2069
2070 if (enable_dc >= 0 && enable_dc <= max_dc) {
2071 requested_dc = enable_dc;
2072 } else if (enable_dc == -1) {
2073 requested_dc = max_dc;
2074 } else if (enable_dc > max_dc && enable_dc <= 2) {
2075 DRM_DEBUG_KMS("Adjusting requested max DC state (%d->%d)\n",
2076 enable_dc, max_dc);
2077 requested_dc = max_dc;
2078 } else {
2079 DRM_ERROR("Unexpected value for enable_dc (%d)\n", enable_dc);
2080 requested_dc = max_dc;
2081 }
2082
2083 if (requested_dc > 1)
2084 mask |= DC_STATE_EN_UPTO_DC6;
2085 if (requested_dc > 0)
2086 mask |= DC_STATE_EN_UPTO_DC5;
2087
2088 DRM_DEBUG_KMS("Allowed DC state mask %02x\n", mask);
2089
2090 return mask;
2091 }
2092
2093 #define set_power_wells(power_domains, __power_wells) ({ \
2094 (power_domains)->power_wells = (__power_wells); \
2095 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
2096 })
2097
2098 /**
2099 * intel_power_domains_init - initializes the power domain structures
2100 * @dev_priv: i915 device instance
2101 *
2102 * Initializes the power domain structures for @dev_priv depending upon the
2103 * supported platform.
2104 */
2105 int intel_power_domains_init(struct drm_i915_private *dev_priv)
2106 {
2107 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2108
2109 i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
2110 i915.disable_power_well);
2111 dev_priv->csr.allowed_dc_mask = get_allowed_dc_mask(dev_priv,
2112 i915.enable_dc);
2113
2114 BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
2115
2116 mutex_init(&power_domains->lock);
2117
2118 /*
2119 * The enabling order will be from lower to higher indexed wells,
2120 * the disabling order is reversed.
2121 */
2122 if (IS_HASWELL(dev_priv)) {
2123 set_power_wells(power_domains, hsw_power_wells);
2124 } else if (IS_BROADWELL(dev_priv)) {
2125 set_power_wells(power_domains, bdw_power_wells);
2126 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2127 set_power_wells(power_domains, skl_power_wells);
2128 } else if (IS_BROXTON(dev_priv)) {
2129 set_power_wells(power_domains, bxt_power_wells);
2130 } else if (IS_CHERRYVIEW(dev_priv)) {
2131 set_power_wells(power_domains, chv_power_wells);
2132 } else if (IS_VALLEYVIEW(dev_priv)) {
2133 set_power_wells(power_domains, vlv_power_wells);
2134 } else {
2135 set_power_wells(power_domains, i9xx_always_on_power_well);
2136 }
2137
2138 return 0;
2139 }
2140
2141 /**
2142 * intel_power_domains_fini - finalizes the power domain structures
2143 * @dev_priv: i915 device instance
2144 *
2145 * Finalizes the power domain structures for @dev_priv depending upon the
2146 * supported platform. This function also disables runtime pm and ensures that
2147 * the device stays powered up so that the driver can be reloaded.
2148 */
2149 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
2150 {
2151 struct device *device = &dev_priv->dev->pdev->dev;
2152
2153 /*
2154 * The i915.ko module is still not prepared to be loaded when
2155 * the power well is not enabled, so just enable it in case
2156 * we're going to unload/reload.
2157 * The following also reacquires the RPM reference the core passed
2158 * to the driver during loading, which is dropped in
2159 * intel_runtime_pm_enable(). We have to hand back the control of the
2160 * device to the core with this reference held.
2161 */
2162 intel_display_set_init_power(dev_priv, true);
2163
2164 /* Remove the refcount we took to keep power well support disabled. */
2165 if (!i915.disable_power_well)
2166 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2167
2168 /*
2169 * Remove the refcount we took in intel_runtime_pm_enable() in case
2170 * the platform doesn't support runtime PM.
2171 */
2172 if (!HAS_RUNTIME_PM(dev_priv))
2173 pm_runtime_put(device);
2174 }
2175
2176 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2177 {
2178 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2179 struct i915_power_well *power_well;
2180 int i;
2181
2182 mutex_lock(&power_domains->lock);
2183 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
2184 power_well->ops->sync_hw(dev_priv, power_well);
2185 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
2186 power_well);
2187 }
2188 mutex_unlock(&power_domains->lock);
2189 }
2190
2191 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
2192 {
2193 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
2194 POSTING_READ(DBUF_CTL);
2195
2196 udelay(10);
2197
2198 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
2199 DRM_ERROR("DBuf power enable timeout\n");
2200 }
2201
2202 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
2203 {
2204 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
2205 POSTING_READ(DBUF_CTL);
2206
2207 udelay(10);
2208
2209 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
2210 DRM_ERROR("DBuf power disable timeout!\n");
2211 }
2212
2213 static void skl_display_core_init(struct drm_i915_private *dev_priv,
2214 bool resume)
2215 {
2216 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2217 struct i915_power_well *well;
2218 uint32_t val;
2219
2220 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2221
2222 /* enable PCH reset handshake */
2223 val = I915_READ(HSW_NDE_RSTWRN_OPT);
2224 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
2225
2226 /* enable PG1 and Misc I/O */
2227 mutex_lock(&power_domains->lock);
2228
2229 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2230 intel_power_well_enable(dev_priv, well);
2231
2232 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2233 intel_power_well_enable(dev_priv, well);
2234
2235 mutex_unlock(&power_domains->lock);
2236
2237 skl_init_cdclk(dev_priv);
2238
2239 gen9_dbuf_enable(dev_priv);
2240
2241 if (resume && dev_priv->csr.dmc_payload)
2242 intel_csr_load_program(dev_priv);
2243 }
2244
2245 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
2246 {
2247 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2248 struct i915_power_well *well;
2249
2250 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2251
2252 gen9_dbuf_disable(dev_priv);
2253
2254 skl_uninit_cdclk(dev_priv);
2255
2256 /* The spec doesn't call for removing the reset handshake flag */
2257 /* disable PG1 and Misc I/O */
2258
2259 mutex_lock(&power_domains->lock);
2260
2261 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2262 intel_power_well_disable(dev_priv, well);
2263
2264 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2265 intel_power_well_disable(dev_priv, well);
2266
2267 mutex_unlock(&power_domains->lock);
2268 }
2269
2270 void bxt_display_core_init(struct drm_i915_private *dev_priv,
2271 bool resume)
2272 {
2273 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2274 struct i915_power_well *well;
2275 uint32_t val;
2276
2277 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2278
2279 /*
2280 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
2281 * or else the reset will hang because there is no PCH to respond.
2282 * Move the handshake programming to initialization sequence.
2283 * Previously was left up to BIOS.
2284 */
2285 val = I915_READ(HSW_NDE_RSTWRN_OPT);
2286 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
2287 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
2288
2289 /* Enable PG1 */
2290 mutex_lock(&power_domains->lock);
2291
2292 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2293 intel_power_well_enable(dev_priv, well);
2294
2295 mutex_unlock(&power_domains->lock);
2296
2297 broxton_init_cdclk(dev_priv);
2298
2299 gen9_dbuf_enable(dev_priv);
2300
2301 broxton_ddi_phy_init(dev_priv);
2302
2303 broxton_ddi_phy_verify_state(dev_priv);
2304
2305 if (resume && dev_priv->csr.dmc_payload)
2306 intel_csr_load_program(dev_priv);
2307 }
2308
2309 void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
2310 {
2311 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2312 struct i915_power_well *well;
2313
2314 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2315
2316 broxton_ddi_phy_uninit(dev_priv);
2317
2318 gen9_dbuf_disable(dev_priv);
2319
2320 broxton_uninit_cdclk(dev_priv);
2321
2322 /* The spec doesn't call for removing the reset handshake flag */
2323
2324 /* Disable PG1 */
2325 mutex_lock(&power_domains->lock);
2326
2327 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2328 intel_power_well_disable(dev_priv, well);
2329
2330 mutex_unlock(&power_domains->lock);
2331 }
2332
2333 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
2334 {
2335 struct i915_power_well *cmn_bc =
2336 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2337 struct i915_power_well *cmn_d =
2338 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
2339
2340 /*
2341 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
2342 * workaround never ever read DISPLAY_PHY_CONTROL, and
2343 * instead maintain a shadow copy ourselves. Use the actual
2344 * power well state and lane status to reconstruct the
2345 * expected initial value.
2346 */
2347 dev_priv->chv_phy_control =
2348 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
2349 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
2350 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
2351 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
2352 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
2353
2354 /*
2355 * If all lanes are disabled we leave the override disabled
2356 * with all power down bits cleared to match the state we
2357 * would use after disabling the port. Otherwise enable the
2358 * override and set the lane powerdown bits accding to the
2359 * current lane status.
2360 */
2361 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
2362 uint32_t status = I915_READ(DPLL(PIPE_A));
2363 unsigned int mask;
2364
2365 mask = status & DPLL_PORTB_READY_MASK;
2366 if (mask == 0xf)
2367 mask = 0x0;
2368 else
2369 dev_priv->chv_phy_control |=
2370 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
2371
2372 dev_priv->chv_phy_control |=
2373 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
2374
2375 mask = (status & DPLL_PORTC_READY_MASK) >> 4;
2376 if (mask == 0xf)
2377 mask = 0x0;
2378 else
2379 dev_priv->chv_phy_control |=
2380 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
2381
2382 dev_priv->chv_phy_control |=
2383 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
2384
2385 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2386
2387 dev_priv->chv_phy_assert[DPIO_PHY0] = false;
2388 } else {
2389 dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2390 }
2391
2392 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
2393 uint32_t status = I915_READ(DPIO_PHY_STATUS);
2394 unsigned int mask;
2395
2396 mask = status & DPLL_PORTD_READY_MASK;
2397
2398 if (mask == 0xf)
2399 mask = 0x0;
2400 else
2401 dev_priv->chv_phy_control |=
2402 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
2403
2404 dev_priv->chv_phy_control |=
2405 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
2406
2407 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2408
2409 dev_priv->chv_phy_assert[DPIO_PHY1] = false;
2410 } else {
2411 dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2412 }
2413
2414 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
2415
2416 DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
2417 dev_priv->chv_phy_control);
2418 }
2419
2420 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
2421 {
2422 struct i915_power_well *cmn =
2423 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2424 struct i915_power_well *disp2d =
2425 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
2426
2427 /* If the display might be already active skip this */
2428 if (cmn->ops->is_enabled(dev_priv, cmn) &&
2429 disp2d->ops->is_enabled(dev_priv, disp2d) &&
2430 I915_READ(DPIO_CTL) & DPIO_CMNRST)
2431 return;
2432
2433 DRM_DEBUG_KMS("toggling display PHY side reset\n");
2434
2435 /* cmnlane needs DPLL registers */
2436 disp2d->ops->enable(dev_priv, disp2d);
2437
2438 /*
2439 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
2440 * Need to assert and de-assert PHY SB reset by gating the
2441 * common lane power, then un-gating it.
2442 * Simply ungating isn't enough to reset the PHY enough to get
2443 * ports and lanes running.
2444 */
2445 cmn->ops->disable(dev_priv, cmn);
2446 }
2447
2448 /**
2449 * intel_power_domains_init_hw - initialize hardware power domain state
2450 * @dev_priv: i915 device instance
2451 * @resume: Called from resume code paths or not
2452 *
2453 * This function initializes the hardware power domain state and enables all
2454 * power domains using intel_display_set_init_power().
2455 */
2456 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
2457 {
2458 struct drm_device *dev = dev_priv->dev;
2459 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2460
2461 power_domains->initializing = true;
2462
2463 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
2464 skl_display_core_init(dev_priv, resume);
2465 } else if (IS_BROXTON(dev)) {
2466 bxt_display_core_init(dev_priv, resume);
2467 } else if (IS_CHERRYVIEW(dev)) {
2468 mutex_lock(&power_domains->lock);
2469 chv_phy_control_init(dev_priv);
2470 mutex_unlock(&power_domains->lock);
2471 } else if (IS_VALLEYVIEW(dev)) {
2472 mutex_lock(&power_domains->lock);
2473 vlv_cmnlane_wa(dev_priv);
2474 mutex_unlock(&power_domains->lock);
2475 }
2476
2477 /* For now, we need the power well to be always enabled. */
2478 intel_display_set_init_power(dev_priv, true);
2479 /* Disable power support if the user asked so. */
2480 if (!i915.disable_power_well)
2481 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
2482 intel_power_domains_sync_hw(dev_priv);
2483 power_domains->initializing = false;
2484 }
2485
2486 /**
2487 * intel_power_domains_suspend - suspend power domain state
2488 * @dev_priv: i915 device instance
2489 *
2490 * This function prepares the hardware power domain state before entering
2491 * system suspend. It must be paired with intel_power_domains_init_hw().
2492 */
2493 void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
2494 {
2495 /*
2496 * Even if power well support was disabled we still want to disable
2497 * power wells while we are system suspended.
2498 */
2499 if (!i915.disable_power_well)
2500 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2501
2502 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
2503 skl_display_core_uninit(dev_priv);
2504 else if (IS_BROXTON(dev_priv))
2505 bxt_display_core_uninit(dev_priv);
2506 }
2507
2508 /**
2509 * intel_runtime_pm_get - grab a runtime pm reference
2510 * @dev_priv: i915 device instance
2511 *
2512 * This function grabs a device-level runtime pm reference (mostly used for GEM
2513 * code to ensure the GTT or GT is on) and ensures that it is powered up.
2514 *
2515 * Any runtime pm reference obtained by this function must have a symmetric
2516 * call to intel_runtime_pm_put() to release the reference again.
2517 */
2518 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
2519 {
2520 struct drm_device *dev = dev_priv->dev;
2521 struct device *device = &dev->pdev->dev;
2522
2523 pm_runtime_get_sync(device);
2524
2525 atomic_inc(&dev_priv->pm.wakeref_count);
2526 assert_rpm_wakelock_held(dev_priv);
2527 }
2528
2529 /**
2530 * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
2531 * @dev_priv: i915 device instance
2532 *
2533 * This function grabs a device-level runtime pm reference if the device is
2534 * already in use and ensures that it is powered up.
2535 *
2536 * Any runtime pm reference obtained by this function must have a symmetric
2537 * call to intel_runtime_pm_put() to release the reference again.
2538 */
2539 bool intel_runtime_pm_get_if_in_use(struct drm_i915_private *dev_priv)
2540 {
2541 struct drm_device *dev = dev_priv->dev;
2542 struct device *device = &dev->pdev->dev;
2543
2544 if (IS_ENABLED(CONFIG_PM)) {
2545 int ret = pm_runtime_get_if_in_use(device);
2546
2547 /*
2548 * In cases runtime PM is disabled by the RPM core and we get
2549 * an -EINVAL return value we are not supposed to call this
2550 * function, since the power state is undefined. This applies
2551 * atm to the late/early system suspend/resume handlers.
2552 */
2553 WARN_ON_ONCE(ret < 0);
2554 if (ret <= 0)
2555 return false;
2556 }
2557
2558 atomic_inc(&dev_priv->pm.wakeref_count);
2559 assert_rpm_wakelock_held(dev_priv);
2560
2561 return true;
2562 }
2563
2564 /**
2565 * intel_runtime_pm_get_noresume - grab a runtime pm reference
2566 * @dev_priv: i915 device instance
2567 *
2568 * This function grabs a device-level runtime pm reference (mostly used for GEM
2569 * code to ensure the GTT or GT is on).
2570 *
2571 * It will _not_ power up the device but instead only check that it's powered
2572 * on. Therefore it is only valid to call this functions from contexts where
2573 * the device is known to be powered up and where trying to power it up would
2574 * result in hilarity and deadlocks. That pretty much means only the system
2575 * suspend/resume code where this is used to grab runtime pm references for
2576 * delayed setup down in work items.
2577 *
2578 * Any runtime pm reference obtained by this function must have a symmetric
2579 * call to intel_runtime_pm_put() to release the reference again.
2580 */
2581 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
2582 {
2583 struct drm_device *dev = dev_priv->dev;
2584 struct device *device = &dev->pdev->dev;
2585
2586 assert_rpm_wakelock_held(dev_priv);
2587 pm_runtime_get_noresume(device);
2588
2589 atomic_inc(&dev_priv->pm.wakeref_count);
2590 }
2591
2592 /**
2593 * intel_runtime_pm_put - release a runtime pm reference
2594 * @dev_priv: i915 device instance
2595 *
2596 * This function drops the device-level runtime pm reference obtained by
2597 * intel_runtime_pm_get() and might power down the corresponding
2598 * hardware block right away if this is the last reference.
2599 */
2600 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
2601 {
2602 struct drm_device *dev = dev_priv->dev;
2603 struct device *device = &dev->pdev->dev;
2604
2605 assert_rpm_wakelock_held(dev_priv);
2606 if (atomic_dec_and_test(&dev_priv->pm.wakeref_count))
2607 atomic_inc(&dev_priv->pm.atomic_seq);
2608
2609 pm_runtime_mark_last_busy(device);
2610 pm_runtime_put_autosuspend(device);
2611 }
2612
2613 /**
2614 * intel_runtime_pm_enable - enable runtime pm
2615 * @dev_priv: i915 device instance
2616 *
2617 * This function enables runtime pm at the end of the driver load sequence.
2618 *
2619 * Note that this function does currently not enable runtime pm for the
2620 * subordinate display power domains. That is only done on the first modeset
2621 * using intel_display_set_init_power().
2622 */
2623 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2624 {
2625 struct drm_device *dev = dev_priv->dev;
2626 struct device *device = &dev->pdev->dev;
2627
2628 pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
2629 pm_runtime_mark_last_busy(device);
2630
2631 /*
2632 * Take a permanent reference to disable the RPM functionality and drop
2633 * it only when unloading the driver. Use the low level get/put helpers,
2634 * so the driver's own RPM reference tracking asserts also work on
2635 * platforms without RPM support.
2636 */
2637 if (!HAS_RUNTIME_PM(dev)) {
2638 pm_runtime_dont_use_autosuspend(device);
2639 pm_runtime_get_sync(device);
2640 } else {
2641 pm_runtime_use_autosuspend(device);
2642 }
2643
2644 /*
2645 * The core calls the driver load handler with an RPM reference held.
2646 * We drop that here and will reacquire it during unloading in
2647 * intel_power_domains_fini().
2648 */
2649 pm_runtime_put_autosuspend(device);
2650 }
2651
This page took 0.117316 seconds and 4 git commands to generate.